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1. Introduction

This paper is addressed to some of the more important

applications of bilinear programming which is a technique for

solving a special class of nonconvex quadratic programming

problems with the following structure:

O,A2x2=b2 ,x2 ~ O}

(1.1)

n. m. m. xn.
where c

1
. £ R 1, b. £ R 1, A. £ R 1 1, i = 1,2,

1 1

n.
constants and xi £ R 1, i = 1,2 are variables. We will refer

to this as a bilinear program in standard minimization form.

Corresponding to the above,

(1 .2)
will be referred to as a bilinear program in canonical mini-

mization form. Bilinear programs in standard and canonical

maximization form will be defined anologously. As in the case

of linear programming, bilinear program with general mixed

equality and inequality constraints can be reduced to a stan­

dard form and to a canonical form as long as the linear con­

straints with respect to x 1 and x 2 are separable with each

other.

Several papers have appeared since 1971 dealing with the

algorithms to solve this class of problem or its equivalent,

among which Konno [13], [15], Gallo-Ulkucu [7 ], Falk [5 ] are

notable. Recently, the author implemented his algorithm on

CYBER 74 to get encouraging numerical results [13]. At the

same time, he established the finite convergence of his cutting

plane algorithm [15] with the incorporation of facial cut intro­

duced by Majthay and Whinston [19]. Now that there is a workable

algorithm, we will pursue further to show the appliciability of

bilinear programming to real world problems. In fact, the ex­

istence of many practical problems which are naturally put into

the structure of bilinear program motivated the author's work
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in algorithm.

Before going into typical applications, we will briefly

summarize the relationship of bilinear program (BLP) to other

groups of mathematical programming problems.

First of all, BLP is a very straightforward extension of

linear programs (LP) (see e. g. [ 3 ] ) •

min {ctxlAx = b, x ~ O}
x

where c, x ERn, b' E Rm, A E RffiXn and c is a fixed cost vector.

If we want to vary c as well as x in a polyhedral convex set,

say,

then the problem becomes a BLP where c 1 = c 2 = 0 and Q is an

n x n"identity matrix in (1.1). We will refer to this problem

min {ctxlAX = b, x ~ 0, AIC = b l
, C ~ O} (1. 4)

as an extended linear program (ELP) in standard minimization

form. tve will discuss several examples of ELP in Chapters 2 and 3.

Secondly, there is a similar but entirely different class

of problems called a generalized linear program (GLP) introduced

by Dantzig and Wolfe [3]:

n
G .x.1 Y ( c j ) EC. C Rm+1min

{ jI1
a.x. = b, x. > 0, ,

(c.,a.,x.) J J j=1 J J J - a. J
JJ J J

1, .•• ,n}j = (1 .5)

where a. E Rm and C. is a closed convex set, j = 1, ••• ,n.
J J

This program is the source of the famous decomposition algorithm.

Here the column vectors (C j ) as well as x. 's are variables and

each column (C j ) is allo",:~ -:::0 move in a ~losed convex set C .a. J

independendly' 6f each other. This independence property dis-

tinguishes itself from BLP and it is quite essential for GLP
algorithm (decomposition algorithm) to work (see [3]) .l~ will look
into the relationship between GLP and BLP in section 5.1 and
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show that the special case of a non-standard generalized linear

program, i.e., a GLP some of whose variables x. are not
J

restricted in sign, is essentially a BLP.

Thirdly, it will be shown in section 4.1, that the so­

called linear max-min problem (U1MP):

(1 .6)

where X and Yare polyhedral convex sets, can be converted into

a BLP by taking the partial dual of (1.6) with respect to Y

under some regularity condition. This problem was treated by

Falk [5] as well as by Dantzig [4] and Konno [17]. It will

be shown in section 3.1 that L~1P has several applications

with game theoretic flavour.

Fourthly, it is possible, at least theoretically to trans­

form the problem with complementarity condition

(1 .7)

t
into a BLP by putting x 1x 2 term into the objective function as

follows:

where M is a large positive constant. (1.7) was analyzed by

Ibaraki [10] and by Konno [17]. We will briefly touch on this

topic in section 5.2.
Finally, it has been proved in [14] that the minimization

of concave quadratic function subject to linear constraints

(CQP) :

(1 .8)

where Q is a symmetric negative semi-definite matrix, can be

converted into a BLP:

min {ctu + ctv + utOvlAU = b,u > O,Av = b,v > O}
(1 .9)
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The relationship between (1.8) and (1.9) has been fully discussed

elsewhere [14], where we will show that (i) if x* is optimal for

(1.8), then (u,v) = (x*,x*) is optimal for (1.9) and (ii) if

(u*,v*) is optimal for (1.9), then both u* and v* are optimal

for (1.8). Also it has been shown how to exploit the symmetric

structure of (1.9) to improve the cutting plane algorithm

developed in [13]. It is well known that CQP is closely related

to 0-1 integer program and there-ore BLP is indirectly related

to 0-1 integer program.

The following figure briefly summarizes the relationship

among various problems cited above, the details of which will

be discussed in full scope.

SPECIAL STRUCTURE

FIGURE 1.1

at the appropriate places.
In the following chapters, we will choose some of the

typical examples from the various areas of applications and

discuss them in some detail. We tried to pick up, among others,

the problems which are of practical, theoretical and computa­

tional interests. This paper is an elaboration of the author's

earlier paper [17] with significant revisions and additions.
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2. Extended Linear Programs

In this chapter we will discuss two typical examples of

BLP with very natural physical and economical interpretation.

The first one is minimization of the transportation cost which

is the cross product of quantity and distance. The second one

is the application in decision analysis in which we want to

minimize the cross product of prol ability measure and weights

of importance.

2.1 Location-Allocation Problems

There is a large amount of literature under the title of

location-allocation theory. (See, for example, reference [24]).

Suppose we are given

a} a set of m points distributed in the plane

b} a vector value to be attached to each point

c} a set of indivisible centroids without predetermined

locations

then the location-allocation problem in its most general form

is to find locations for m centroids and an allocation of vector

value associated with n points to some centroid so as to mini­

mize the total cost. Here, we will present one original example

of this type of problems which is put into the structure of BLP

in a very natural way.

(a) Single Factory Case

= 1, ... ,n.

Let there be m cities Pi' i = 1, ... ,m on a plane.

located at (p.,q.) relative to some coordinate system.
1 1

going to construct a factory somewhere on this plane.

factory needs b j units of n different materials Mj , j

P. is
1

\'le are

This
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Figure 2. 1 . 1 Single Factory Case

b. = requirement for M.
J J

u .. = shipment of M. from p.
1.J J 1.

a .. = supply of Mj at p.
1.J 1.

C .• = unit price of M. at P.
1.J J 1.

f. = unit shipment cost of M.
J J
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Let us assume that P. can supply a .. units of M
J
. at the unit

1 lJ
price c .. and the unit transportation cost (per unit amount per

lJ
unit distance) of M. is given by f .. Our concern now is to

J J
minimize the total expense which is represented by the sum of

total purchasing cost and the total transportation cost.

Let Q(xo'yo) be the location of the factory to be constructed

and let u .. be the amount of M. to be purchased at Pl" Then u·.
lJ J lJ

has to satisfy:

m
I u· . > b. j = 1 , .•. ,n

lJ - Ji=1

° < u· . < a .. i = 1 , ... ,m j = 1 , ••• , n- lJ - lJ
(2.1.1)

Total purchasing cost Cp is obviously given by:

C =p

m n
I I

i=1 j=1
c .. u ..
lJ lJ

(2.1.2)

and total transportation cost CT is given by

m n
C = I I f. • u·· d(Pi,Q)

T i=1 j=1 J lJ
(2.1.3)

where d(Pi,Q) is the distance between Pi and Q.

i) Manhattan Distance

If the distance d(Pi,Q) is given by 1 norm i.e.,

d(P
1
"Q) = d 1 (P

1
·,Q) Ip· - x I + Iq· - y I- 1 0 1 0 (2.1.4)

then the total cost C is given by

m n
I I [c ..u,. + f. u .. ( Ip. -x I

i=1 j=1 lJ lJ J lJ 1 0
C = + Iqi-yo l )]

(2.1.5)
By introducing auxiliary variables, xiI and Yil satisfying

Xi1-- x i2 = p. - Xo x i1 > 0, x i2
> 0, x i1 x i2 = 0, i = 1 , •• • ,m

1 - -

Yi1 - Yi2 = q. - Yo Yi 1 > 0, Yi2 > 0, Yi1 Yi2 = 0, i = , , ••• , m
1 - -

(2.1.6)
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the absolute value terms can be written as:

(2.1.7)

So the problem now is to

minimize C =

s.t.
m
L u .. > b. j = 1 , •.. , n

1J - Ji=1

0 < u· . < a .. i = 1, .. . ,m, j = 1 , ••• , n- 1J - 1J

Xi 1 - xi2 + Xo = p.
1

1 = 1 , ••• , m

y i 1 - Yi2 + Yo = q.
1

XiI > 0 Yil > 0 i = 1, ... ,m, I = 1 ,2,- -

= 0 i = 1, .•.m

(2.1.8)
It is straightforward to show that the optimal solution of the

associated bilinear program without the orthogonality condition

in (2.18) automatically satisfy the orthognality property if

f j ~ 0, j =.1, .•. ,n and hence the 'problem can be solved by

applying the algorithm developed in [13].

ii) Euclidean Distance

If on the other hand, the distance d(Pi,Q) is given by

2 norm, i.e.,

d(Pi,Q) = d 2 (Pi'Q) - I(Pi·:;-~)2~~ (qi~Yo)2'

(~.1.~)

then the problem becomes:



o < u.. < a.. i = 1, •.. ,m
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m n
[c ij

'-----i··
y ) 2J u ..minimize C = L L + f. I(p. - x) + (q.

i=1 j=1 ) 1 0 1 o 1)

m
L- u .. > b. j = 1 , ••• , n

i=1 1) - )

j = 1, ••• ,n

(2.1.10)

to which we can apply a modified version of the BLP algorithm.

(b) Multi-Factory Case

Let us consider here the multi factory version of the

problem treated in the previous section. The basic setting of
Jthe problem is the same as before except

(i)

(ii)

(iii)

Let

ku ..
1)

K(~ 1) factories Fk , k = 1, ... ,K have to be constructed

each factory is produving L different types of

commodities C.Q,' .Q, = 1, ... ,L

each product has to be shipped to the demand points

i.e., to m cities.

the amount of Mj to be purchased at Pi and shipped

to Fk
amount of C.Q, to be shipped to Pi from Fk

amount of Mj required at Fk

a ..
1)

c ..
1)

d
k

.Q,

maximum supply of Mj at

unit price of M. at p.
) 1

amount of C.Q, produced at

p.
1

ei.Q,

(p. , q . )
1 1

(Xk'Yk)

d(Pi,Fk )

f.
)

g.Q,

demand for C.Q, at P.
1

-location of P.
1

location of Fk

distance between P .. and F]
1 ~

unit transportation cost of M.
)

unit transportation cost of C.Q,
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The total cost is now given by

m n K
k

m K L
k n kc= I I I c ..u .. + I I ( I glxU + I f .u. .) d (P. ,Fk)

i=1 j=1 k=1 1) 1) i=1 k=1 ~=1 j=1 ) 1) 1
(2.1.11)

Also k
and k satisfy:u· . xi~ have to1)

m k b~I u .. > j = 1, ... ,'1 k = 1 , .•. ,K
i=1 1) - )

K kI u .. < a· . i = 1 , ... , m j = 1 , ••• , n
k=1 1) - 1)

m k d
kI Xu < ~ = 1 , ..• , L k = 1 , .•. , K

i=1 - ~

K kI Xu > e.~ 1 = 1 , ••• , m k = 1 , ... , K- 1.
k=1

k > 0
k > 0 (2.1.12)u· . Xi~1) - -

Hence now the problem is to minimize (2.1.11) subject to (2.1.12)

which is a BLP if d(',') is defined by 1 Ulorm.

We assumed here that there are no material flows between

the factories to be constructed. Should there be such a flow,

then the problem can no longer be formulated in the framework

of bilinear programming.

2.2 Applications to Decision Analysis

Suppose a decision maker is facing a problem of choosing

the 'best' among m possible alternatives A., i = 1, .•• ,m in the
1

stochastic environment where n possible events Ej , j = 1, ••• ,n

takes place with probability p .. when A. is chosen.
1) 1

Let us suppose also that there are K independent attributes

(objectives) Tk , k = 1, .•. , K, each of which has weight (degree

of importance) wk' Also let us assume that the utility asso­

ciated with the triple (A.,E.,T l ), is given by a~. and that the
1 ) '" 1)

overall utility of the decision maker is additive, i.e., the
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expected utility u. obtained by choosing A. is given by
1 1

u· =1
(2.2.1)

kGiven the constants wk ' p .. , a .. , we can choose the optimal
1) 1)

alternative by simply comparing u., i = 1, •.• ,m.
. 1

It sometimes happens, however, due to the lack of informa-

tion that the quantities wk ' k = 1, .•• ,K and Pij' i = 1, ••• ,m;

j = 1, .•• ,n are not known precisely. Typically, the analyst

has to interview the decision maker to estimate the weight of

relative importance wk of Tk and it sometimes happens that we

only have interval estimates

k = 1, ••• ,K

where ~k and wk are given constants (see [23]).

Similar situation applies as well to the probability measure
kp ..• Let us suppose here that
1)

-
Eij ~ Pij ~ Pij i = 1, ••• ,m ; j = 1, ••• ,n

n
L

j=1
p .. = 1
1)

i = 1, ••• ,m

where E .. and p .. are given constants.
1) 1)

In this case, the optimal alternative will not be uniquely

determined. However, some of the alternatives may be eliminated

as inefficient ones as follows:
Let

W= {(w1 ' ••• , wk ) I~k < wk < wk }

P. = { (p . 1 ' ••• , p. ) Ip .. < p .. < p ..1 1 1n -1) - 1) - 1)
n
l p .. = 1} . i = 1 , ••• , m

j=1 1)

which we assume to be nonempty.

(2.2.2)

j=1, ••• ,n;

(2.2.3)
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Let
K n

WkP' .a~·IWC:Vl,u. = min { L L p. c:P.}-1 k=1 j=1 1J 1J 1 1

K n k- { L L p. c:P.}u· = max wkP' . a .. Iwc:W ,1
k=1 j=1 1J 1J 1 1

(2.2.4)

(2.2.5)

It is obvious that if ~r > us' then Ar is preferred to As and

As can be eliminated from the candifates of optimal alternatives.

Similarly, if

- min

then Ar is preferred to As and As can be eliminated.

Problems (2.2.4) (2.2.5) and (2.2.6) are all bilinear programs

with a very special structure. Let us take for example (2.2.4)

suppressing index i:

k n k
min L La. p .Wkk=1 j=1 J J

n
s.t. L p. = 1 E· < p. < p.

J J - J - Jj=1

~k < wk < wk , k = 1 , .•. , K- -

j = 1, .•• ,n

(2.2.7)

The following theorem characterizes the form of an optimal

solution of (2.2.7) which is guaranteed to exist since Wand

P are non-empty compact convex sets.

Theorem 2.2.1

Let wk ' k = 1~ •.• ,K; p., j = 1, ••. ,n be an optimal solutionJ _
of (2.2.7). Then wk is equal to ~k or wk for all k. Also, Pj

is equal to Ej or Pj except possibly for one index joe

Proof

Wand P are bounded polyhedral convex sets. Hence by the

fundamental theorem BLP [13], there exists an optimal solution
" "(w,p) where wand p are extreme points of Wand P, respectively.
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It is easy to see that any extreme point of Wand P has the

property stated in the theorem. I I
Using this theorem, we can construct a simple enumeration

technique by fixing wk equal to ~k or wk. Also it may be more

appropriate in some cases to normalize wk ' k = 1, ••• , K to
K

satisfy the condition 2 Wk = 1, as well as p. in which case
k=1 J

we still have a bilinear program~ith somewhat more complicated

structure. We will not, however, go into details about these

any further. For the background material of decision analysis

the readers are referred to Keeney-Raiffa [12] and to Sarin [23].
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3. Bilinear Assignment Problems

3.1 Introduction

Let there be n machines and n jobs and assume that one and

only one machine has to be assigned to each of the n jobs. Let

Pij be the profit associated with assigning machine i to j.

Then the problem of maximizing total profit can be formulated

as follows:

n n
maximize L L p .. x·.

i=1 j=1 1) 1)

n
s.t. L x .. = 1

j=1 1)

n
L x .. = 1

i=1 1)

x· . = 0 or 1
1)

i = 1, ... ,n

j = 1, .•. ,ni

i,j = 1, ... ,n.

(3.1.1)

This problem is called a standard linear assignment problem.

Let

2 n
Zn = {(zij) E:R

n I L
j=1

z .. = 1, i = 1, ... ni
1)

n
L

i=1
z .. = 1,
1)

and

j = 1, ... ,ni z .. > 0, i,j = 1, .•. ,n}
1)

(3.1.2)

I 2
Z = {( z .. ) Rn I (z .. ) E: Z , z.. = 0 or 1, i, j = 1, ..• , n}n 1) 1) n 1)

(3.1.3)

It it well known that all the extreme points of Zn belong to

zI and hence 0-1 constraints on the variables ln (3.1.1) can ben
replaced by nonnegativity constraints, so that (3.1.1) is

equivalent to the following linear program (see e.g. [3 ]).

n n
maximize {L L

i=1 j=1
p .. x .. l(x .. )E:Z}

1) 1) 1) n (3 • 1 • 4 )

As a natural extension to the above, the following quadratic
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assignment problem:

n n n n
maximize {L L L L

i=1 j=1 r=1 s=1

rs I Ia .. x .. x (x .. )E:Z}
1) 1) rs 1) n

(3.1.5)

has been considered by several authors. Unfortunately, however,

Z~ cannot be replaced by Zn in this case and the problem is

difficult to solve in general (see [8], [22]).

Let us introduce here a new class of assignment problems:

maximize
n n n n rs I I{L L L L a .. x .. y I (x .. )E:Z , (Yrs)E:Zn }

s=1 1) 1) rs 1) ni=1 j=1 r=1 (3.1.6)

We will call (3.1.6) a standard bilinear assignment problem. As

in the linear case, this problem has a very nice structure as

shown in the following theorem.

Theorem 3.1.1

(3.1.6)

maximize

Proof

is equivalent to

n n n n
{L L L L a~~x .. y sl (x .. )£Z , (Yrs)£Zn}
i=1 j=1 r=1 s=1 1) 1) r 1) n

(3.1.7)

(3.1.7) is a bilinear program in standard form and Z is
n

non-empty and bounded. Hence by the fundamental theorem of
"

B~P (see [13]) this problem has an optimal solution (xij ) and

(y ), both of which are extreme points of Z. Also, any
rs In"

extreme point of Z belongs to Z and hence the pair (x .. ),
" n n 1)

(Yrs) is an optimal solution of (3.1.6). I I
The implication of this theorem is that we can obtain a

locally optimal solution by the repeated use of simplex algorithm,

Le., by the augmented mountain climbing algorithm described in [13],

which is not the case for general quadratic assignment problems.

We can obtain, if we like, a global optimal solution by applying

the full version of the cutting plane algorithm proposed in [15].

We will discuss three typical examples of bilinear assignment

problems in the following sections.
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3.2 Multi-Stage Markovian Assignment Problem and Three

Dimensional Assignment Problem

3.2.1 Multi-Stage Markovian Assignment Problem

the first stage and one and only

k = 1, ... ,n at the second stage.

stage is given by Pij' Due to

to different kind of jobs, the outcome

at the second stage depends upon which

Let us consider the two stage version of the standard

linear assignment problem. Let there be n machines M.,
1

i = 1, ... ,n as before and each one of these machines has to be

aSoigned to one and only one of the n jobs J'~, j = 1, .•. , n at
J 2

one of the n jobs J k ,
1}n 2 nHere {J j 1 and {Jk }1 need

will assume that the outcomenot be the same set of jobs. We

associated with M. ~ J~ at first
1 J

necessary machine setup
. d . h 2assoc1ate W1t Mi ~ J

k
.......-...

i 'i 1.1
1

:
. !.._....--'

. 1\

. J 1; J
1 \
2 '

J1'
, -........

, i J2 '.~
H \ I,

n / n n

I1achine 1st stage jobs 2nd stage jobs

(3.2.1)otherwise
x~. = 1

1

1J
o

job M1· was assigned to in the first stage. Let p. 'k be the
2 . 1 1J

outcome associated with Mi ~ J k glven M. ~ J ..
1 £ J

For £ = 1,2, let us define variables x .. as follows:
1J

if Mi is assigned to J~ at stage £

Then the two stage optimization problem is formulated as
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n n n 1 2
L L L (p,. + p, 'k)x, ,x'k

i=1 j=1 k=1 1J 1J 1J 1

(3.2.2)

s. t. 1 I(x, ,) E: Z
1J n

2 zI(x, .) c::
1J n

where zI is defined by (3.1.3), 7hich is equivalent to
n

n n n 1 2max L L L (p. , + p, 'k)x, ,x 'k
i=1 j=1 k=1 1J 1J IJ 1

(3.2.3)

s.t. 1(x, ,) E: Z
1J n

R,
the assignment Mi + J k at stage

Then the problem becomes

as we have shown in Theorem 3.1.1.

This approach applies to the general L stage assignment

problem as long as the inter-stage dependence is Markovian,

i.e., if the outcome of a particular assignment at stage t is

dependent only upon the current assignment and the assignment

of the previous stage.
R,

Let q. 'k be the outcome of
1J R,-1

R, given M, + J. at stage R,-1.
1 J

R, = 1, •.• ,L

Q~ =
1

I

maximize

R, I
s.t. (x' ,) E: Z1J n

R,= (x..), Q, = 1,...,Land 1e t1J

R,
qi1n i = 1, ... ,n;

/ R, = 1, .•• ,L;

QR, =

x, = 1, .•• ,L ~

(3.2.5)

(3.2.4)

(3.2.6)
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For simplicity, let L be an even integer and let

1 2
x x

3 4
x x

u = v =

(3.2.7)

Lx

Then we can rewrite (3.2.4) in a vector form

t 1 t

I
maximize p x + U Qv

L/2 I
s. t. u € ~ Zn

L/2 I
v € IT Z

1 n

(3.2.8)

where

Q =

(3.2.9)

It is again easy to show that (3.2.8) is equivalent to the

bilinear program in standard form:

I
maximize p t x 1 + U t Qv

L/2
s. t. u € IT Zn

1

L/2
v £ IT Z

1 n (3.2.10)
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3.2.2 Three Dimensional Assignment Problem

1 , ••• ,m, n

= 1, ... ,p.

(Ri , Sj' Pk ).

to be assigned

Also each

(3.2.11)

variables x. 'k with the implication
1J

the assignment (R.,S.,Pk ) takes place
1 J

1 if

o otherwise

Let there be m research assistants R., i =
1

scientists Sj' j = 1, ... ,n and p projects P k , k

Let a. 'k be the productivity of the combination
1J

We will assume that each research assistant has

to one and only one combination of Sj and P k .

scientist S. can be assigned at most b. times and each project
J J

has to have at least c k combinations of scientists and research

assistants. This is a typical example of a three dimensional

assignment problem (see [22]).

Introducing three indexed

the problem can be formulated as follows:

,/' m n r./ maximize I I

I
a. 'J x. 'k

i=1 j=1 k=1 1J;: 1J .

, n I1 s.t. L x. 'k = 1
) j=1 k=1 1J'

I

1 m rL Xijk < b.- Ji=1 k=1

I m n
L I x ijk > CkI -

i i=1 j=1

" x ijk = 0 or 1

i =. 1 , ••• " m

j = 1, ••• ,n

k = 1, ••• ,p

IJ., . k
1, J ,

(3.2.12)

Contrary to the two index case, the constraint matrix (3.2.12)

is not totally unimodular and hence cannot be solved by the

simplex method. This problem has mnp variables and m+n+p

constraints.

It has been shown, however, by A.M. Frieze [6] that this

problem is reformulated as a bilinear program. Let
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1 if R. is assigned to S.
~ )

o otherwise (3.2.13)

if Ri is assigned to Pk

otherwise (3.2.14)

Then since R. is assigned only once, we have the relationship
~

v.. . ,
1, J ,K

(3.3.15)

as long as the following conditions are satisfied:

n
~ y .. = 1 i = 1 , ... ,m

j=1 1)

n
~ z .. = 1 i = 1 , ... ,m (3.2.16)

j=1 1)

Hence (3.2.12) is equivalent to

m n Imax ~ ~ a ijk y .. Zik
i=1 j=1 k=1 1)

n
s.t. ~ y .. = 1 i = 1 , ••• , m

j=1 1J

m
~ y .. < b. j = 1 , ••• , n

i=1 1) )

I Zik = 1 i = 1 , ••• , m
k=1

m
~ zik > c k k = 1 , ..• , p

i=:1 -

y .. , '7' = 0 or 1 y.. . k (3.2.17)
1) ~ik ~ ,) ,
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where we used the relationship

m I m I Zik) =
m

L Xijk = L (y .. L y ..
i=l k=l i=l 1) k=l i=l 1)

etc. Let

{(Yij) I .I m
y = y .. = 1 , i = 1, .. . ,m; L y .. < b j , j = 1, •.. ,n}

1) 1) -)=1 i=l

{ (z ik) I I m
Z = .,. = 1 , i = 1, . .. ,m; L zik > c k ' k = 1, ••• ,p}... ik -k=l i=l (3.2.18)

The constraint matrices defining Y and Z are totally unimodular

i.e., the determinants of all the basis matrices are +1 or -1

and hence (3.2.17) is equivalent to the following BLP.

m n Imax L L a ijk y .. Zik
i=l j=l k=l 1)

s.t. (y .. ) E: Y (z ik) E: Z (3.2.19)
1)

This problem has 2m+n+p constraints (m more than (3.2.12)) and

only m(n+p) variables compared with mnp of (3.2.12). Also it

is important to notice that we can apply mountain climbing

algorithm to obtain a local solution in the .frarre\vork of standard

linear programming procedure, which is not the case for (3.2.12).

3.3 Reduction of a Sparse Matrix into an Almost Triangular

J'.1atrix

3.3.1 Some Examples

Let A = (aij ) be a given n x n matrix which contains nany zero

entries. It is sometimes desirable to permute the rows and/or

columns of this matrix and rearrange it into an almost triangular

matrix. Let us give here some of the typical examples.

a) Solution of a $ystem of Equations Ax = b

Let A be a nonsingular n x n matrix. It is well known that
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the system of equations Ax = b can be solved by simple

substitution when A is either lower or upper triangular

matrix. Even if A is not triangular, the efficiency of Gaussian

elimination will be greatly enhanced if there are fewer entries

a·. ~ 0, i > j (see [26]). So it is very desirable to find a
~J

way to permute rows and columns tv obtain an (almost) triangular

matrix.

b) Structuring of an Input-Output System

Let there be n industrial sectors Si each producing com­

modity C;, i = 1, ... ,n. Let us assume that a .. is the amount
... ~J

of Ci required when Sj produces a unit amount of Cj . Then n x n

matrix A = (a .. ) represents the relationship among S.,
~J ~

i = 1, ... ,n. Let us say that S. is independent of S. if a .. = o.
J ~ ~J

Suppose we want to put an ordering on S., i = 1, ... ,n based upon
~

this notion of independence.

It is obvious that if we can arrange A into an upper­

triangular matrix by simultaneous permutation of rows and columns,

then it gives

1 2 3 4 5 3 4 1 2 5

x x x 1 x x x x x 3

x x 2 x x x x 4

x x x x x 3 ==? x x x 1

x x x x 4 x x 2

x 5 x 5

a total ordering among the industries. This is not always

possible. However, if we can find an ordering which produces

an almost triangular matrix then it would serve as a reasonable

ordering.

c) Ranking n Players in a Contest

Suppose we are given the result of a contest played by n

persons Pi' i = 1, ... ,n. Each game is played between two players

and each pair of players played this game at most once. Let
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a .. = 1 if, and only if P. won over p)' and 0 otherwise. Then
1) 1

the ranking of these n players become the same problem as b)

above and the approach stated above would give one reasonable

ranking.

3.3.2 Mathematical Formulation

Let B = (bij ) be a binary n x n matrix associated with

A = (a .. ):
1)

1 if a .. t 0
1)

and let

b .. =
1)

o if a ..
1)

= 0

(3.3.1)

n
= {X = (x .. ) E R

nxn I LX.. = 1,
1) j=1 1)

i = 1, ... ,n;

n

L
j=1

x .. = 1, j = 1, ••• ,n}
1)

pI = {X = (x .. ) E Rnxnlx E p ; x .. = 0 or 1, i, j = 1, ..• ,n}
n 1) n 1)

Pn and Zn are

ered as a set

applies to pI
n

essentially the same set except that Pn is consid­

in Rnxn rather than in Rn 2 . The same remark
Iand Z as well.
n

a) Arbitrary Permutation of Rows and Columns

Any combination of row and column permutations of B can be
I Irepresented as XBY where XEPn and YEPn • The number of nonzero

entries in the lower triangular portion of the matrix after the
n n

permutation is given by L L (XBY)... Therefore to minimize
j=1 i=j+1 1)

this quantity, we have to solve

n n
minimize {L L

j=1 i=j+1
(XBY) .. IX E p

n
I , Y E pI}

1) n (3.3.2)
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or
n n n n

minimize L L L L
j=1 i=j+1 r=1 s=1

x. by.
~r rs sJ

s.t. (x .. ) £: zI
~J n

( ) £: ZIy ..
~J n

(3.3.3)

which is equivalent to a standard BLP without integrality

conditions

n n n n
minimize L L L L

j=1 i=j+1 r=1 s=1
x· by.
~r rs rJ

s.t. (x .. ) £: z
~J n (y .. ) £: zn

~J
(3.3.3 1

)

Problem a) of the previous section falls into this category.

b) Synchronized Permutations of Rows and Columns

Suppose now that the permutation of rows i and j has to be

associated with the permutation of columns i and j. Then we

have to solve the following problem

~(xt,X)
n n t

min = I L (X BX) ..
j=1 i=j+1 ~J

s.t. X £: pI (3.3.4)
n

or

~(xt,X)
n n n n

fin = L L L L x .b x .
j=1 i=j+1 r=1 s=1

r~ rs SJ

(x .. ) E: zI (3.3.4')s.t.
~J n

This is a general quadratic assignment problem and we cannot

replace zI by Z . But it is at least theoretically possiblen n
to reduce this to a standard bilinear program as we shall see

in the following.
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Let

b .. (m) = b.. + mo ..
1J 1J 1J i,j = 1, ... ,n (3.3.5)

where m is a positive constant and 0 .. is a standard Kronecker's1J
delta, Le.,

1 if i = j

0 .. =
1J

o otherwise

Let us consider the following bilinear program:

(3.3.6)

n n n n
min £'m(Y'X) = I I I I y. b (m)}{.

I j=1 i=j+1 r=1 s=1 1r rs sJ

(3.3.7)

s. t. X = (x .. ) E: P Y = (y .. ) E: Pn1J n 1J

Theorem 3.3. 1

and X*(m) solves (3.3.4) for m >

Let

solution

Y*(m) = (y'l'. (m)) and X*(m) = (x'l'. (m)) be an optimal
1J 1J n n

of (3.3.7). Then X* (m) = Y* (m) for m > m _ 'i' 'i'o L L 11 ..
j~1 i=j+1 1J

Proof

First note that x*(m)E:p I and Y*(m)E:pI. Next, let us proven n

z'l'.(m) ~
1J

n
I

r=1
y'l' (m) x* . (m) = 0.. Vi, j
1r rJ 1J

(3.3.8)

I I I
Since x*(m)E:Pn and Y*(m)E:Pn , Z*(m) ~ (zij(m))E:Pn . If (3.3.8)

does not hold, then there exists at least one pair of indices

(i,j), i > j for which Zij (m) = 1. It follows that yi£,(m) =

x~j(m) for £, = 1, •.. ,n. This implies that yik(m) = xkj(m) for

some k and yir(m) = X~j (m) = 0 for all rand s such that r +k,

s +k. Thus

n n n n
I I I I Yir(m)brs(m)x~j (m) > bkk(m) > moj=1 i=j+1 r=1 s=1 -
n n n n

= I I I I o. b (m) 0 .
j=1 i=j+1 r=1 s=1 1r rs SJ
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which is a contradiction to the assumption of optimality of

Y*(m) and X*(m) in (3.3.7). Thus we have established (3.3.8)

and therefore y~. (m) = x~. (m) for all i,j. It follows from
1J J 1

this that

and by obvious relation

we have

£m(X*(m)t, X*(m)) = min {£m(Xt,X) Ix E Pn }

Le., X* (m) solves (3.3.7) . "

We have established the equivalence of (3.3.4) and (3.3.7).

From the computational point of view, however, solving (3.3.7)

instead of (3.3.4) would not be more attractive since (3.3.7)

necessarily has many local minima because of large diagonal

entries.
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4. Game-Theoretic Applications

4.1 Two-Stage Game: A Linear Max-Min Problem

The concept of a two stage game was first introduced by

Dantzig [ 4] and recently treated by the author [17] and by

Falk [ 5]. Also the author appli2d this concept to analyze the

current conflicting situation between resource producing

countries and industrialized cou.tries in a somewhat different

context [16].

Let there be two players (nations) P1 , P2 and let

S = {s1,s2, ... ,sm} and T = {t1,t2 , ... ,tn } be the sets of acti­

vities available to P 1 and P2 , respectively. At the first

stage of the game, P1 chooses an activity level vector

x = (x 1 ' ... ,xm) ~ 0 which satisfies the given constraints. Let

us assume for simplicity that the feasible set of activities X

is defined by the system of linear inequalities:

X = {XERmIA1x ~ a 1 , x > O}

k 1 xm k 1where AER , a 1ER are given matrix and vector.

In the second stage of the game, given the full information on

the P1's choice of XEX. P2 chooses his action y from the fea­

ible set Y(x) which depends explicitly on x. Let us assume here

that Y(x) is also defined by the system of linear inequalities:

where

Y = {YERnIA2Y ~ a 2 , y ~ O}

By(X) = {Y ERn IB2y < b-B1X, y ~ O}

(4.1.2)

(4.1.3)

We will assume here that Y(x) is nonempty and compact for all
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XEX. As to the payoff structure of this game, we will assume

that P1 has to pay

(4.1.4)

to P2 when P 1 and P2 choose XEX and YEY(X}, respectively, where

m n .
P1ER , P2ER are glven vectors.

Given XEX, P2 naturally want, to maximize f(x,y} over

yEY(X}. Hence his problem is to

maximize (4.1.5)

(4.1.6)minimize

Let y*(x) be an optimal solution for this problem, which always

exists since we assumed that Y(x) is nonempty and compact for

all XEX. The problem for P 1 is now to

t t
{P1 x + P2 Y*(x) IXEX}

or equivalently,

(4.1.7)ttlmin max {P1 x + P2Y B1X + B2y ~ b}
XEX yEY

Palk [ 5] named (4.1.7) a 'linear max-min problem'.Por fixed x,

the maximizing part with respect to y is a linear program

Taking the dual of this linear program:

we get a bilinear program which is equivalent to (4.1.7)

x > 0

(4.1.8)

Let us consider now the linear min-max problem associated with
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(4. 1 .7) •

max min {p~x + P~YIB1X + B2y < b}
yEY XEX

(4.1.9)

This corresponds to the two stage game 1n which P2 plays first

and P1 plays next.

It is well known that in the standard zero sum two person

game where the sets of feasible s~rategies X and Yare given by

m
X = { (x 1 ' . . . , xm) I . I x. = 1 x· > 01 1 -1=1

Y = {(Y1'···'Yn)! I y. = 1 y. > 0
J J -

i = 1, ..• ,m}

j = 1, .•. ,n}

tand where the payoff is given by x Ay where A is a given m x n

matrix the famous min-max theorem [25] holds:

. t A . tmax m1n x y = m1n max x Ay
yEY XEX XEX yEY

namely there exists an equilibrium. However, in our setting it

is quite exceptional to have an equilibrium.

Let

By(X) = {YER
n

!B2Y < b-B 1X}

Bx(y) = {XERm !B1X < b-B2y} (4.1.10)

The next theorem is an extended version of the one proved by

Falk [ 5] .

Theorem 4.1.1

Under the assumption we made,

max min {p~X + piylB1X + B2y ~ b}
yEY XEX

> min max {p~X + P~YIB1X + B2y < b}
XEX yEY

(4.1.11)
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Proof

max min {p~x + P~YIB1X + B2y :: b}
ysY xsX

t + min [P~XIB1x b - B2Y]}= max {P2Y <-ysY xsX

t + min t> max {P2Y P1 x }
ysY xsJ.

min t t= {P1 x + max P2 Y}
xsX ysY

min t
[P~YIB2Y b - B1X]}> {P 1x + max <- -xsX ysY

min {p~x +
t b}= max P2ylB 1X + B2y <-xsX ysY

This theorem tells us an intuitively obvious fact that [5 ] P 1
will lose less if he plays first in the game. In fact Falk gives

an example in which strict inequality holds in (4.1.11).

Again (4.1.9) can be put into the structure of bilinear program:

t (b - t tmax P2Y + B2y) z 1 + a 1z 2

s.t. A2y < a 2 y > 0- -
t t P 1 ~ 0B1 z 1 + A1z2 > z1-

(4.1.12)

In particular, if the structure of the game is symmetric, i.e.,

if P1 = P2 = p, A1 = A2 = A, B1 = B2 = B, a 1 = a 2 = a then

(4 . 1 . 8) and (4. 1 . 12) become:

(4.1.13)

(4.1.14)

where

t t t
f(u,z1,z2) = P u + (b - Bu) z1 + a z2

U = {ulAu :: a, u > O}

{ I ttZ = (z1,z2) B z1 +Az 2 > p, z1 > 0, z2 > O}
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It is seen from these that only in a very exceptional

situation we have the equality in (4.1.11).

4.2 An Equilibrium Solution of a Constrained Bimatrix

Game

The standard bimatrix game (cr non zero-sum two person

game) is defined as follows [25]. Let there be two players

P1 , P 2 and let S = {s1 s 2, ... ,sm} ~nd T = {t1 ,t2 , ... ,tn } be

the sets of actions available to P1 and P2 , respectively.

Assume that the payoffs to P1 and P2 when P 1 chooses si and P2
chooses t j are given by a ij and b ij , respectively. Given two

matrices A = (aij ), B = (bij ), each player chooses the mixed

strategies (or probability measure) on Sand T, i.e., P1
chooses XEX

O
and P 2 chooses YEY

O
where

(4.2.1)

(4.2.2)

where em and en are m and n dimensional vectors all of whose

components are ones. Then the expected payoffs to P 1 and P 2
are given by xtAY and xtBy, respectively. (Note that the two

players P1 and P2 choose x and y simultaneously). Let us denote

this game as f(A,Xo ; B,Yo ).

Definition 4.2.1

A pair of mixed strategies (X,Y)EX
O

x Yo is a Nash equi­

librium point of a bimatrix game f(A,X : B,Y ) if
o 0

(4.2.3)

( 4.2.4 )

The Nash equilibrium point implies that as long as P1 sticks to

X, then Y is the optimal mixed strategies for P2 and vice versa.

It has been shown in [2] that the problem of obtaining a Nash

equilibrium point of (A,Xo : B,Yo ) can be reduced to a linear

complementarity problem (LCP):
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m+n t ( ) = 0Find: ZER such that Z ~ 0, s + Mz ~ 0 and Z s + Mz

where

] showed that their ingeneous comple­

generates a solution to this problem

Also Lemke and Howson [

mentary pivot algorithm

in finitely many steps.

Now let us introduce a constrained bimatrix game f (A,X :B, Y)

in which P1 and P2 have to choose their mixed strategies x an y

from more general constraint sets X an Y, respectively. We will

call X and Y admissible sets and XEX, yEY admissible strategies.

Definition 4.2.2

A pair of admissible strategies (X,y)EX x Y is called a Nash

equilibrium point of f(A,X: B,Y) if

~tA-x Y = max (4.2.5)

(4.2.6)

The following fundamental theorem has been established by Nash

[ 2 ] •

Theorem 4. 2 . 1

If both X and Yare non-empty, compact and convex, then

f(A,Xi B,Y) has a Nash equilibrium point for arbitrary A and B.

Though this existence theorem has been known for years, no

algorithm has been proposed except for the standard bimatrix

game f(A,Xoi B,Yo ) and for zero sum game i.e., A + B = O.

Let us now consider the 'constrained' bimatrix game (A,X 1 :B,Y1 )

where

m2
Y1 = {YER IP2y = P2' Y > O}

t. xm. t.
111

where PiER , PiER i = 1,2.

(4.2.7)

(4.2.8)
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We will pursue along the line developed in [20] and reduce the

problem of obtaining an equilibrium point of r(A,X,: B,Y,) into

a bilinear program.

First let us state the following lemma.

Lemma 4.2.2

(X,y)EX x Y is an equilibrium point of r(A,X,; B,Y 1 ) if

and only if tney satisfy the foll)wing system dual variables
£1 ,(1,2

together with uER and vER

~tA~ t~
0 ~tB~ t~

0x Y - P1 u = x Y - P2v =

Ay t~
< 0 Btx pt~ 0- P 1u - 2v <- -

P 1x = P1
pt~ = P22Y

x > 0 (4.2.8) Y > 0 (4.2.9)- -
Proof

The right hand sides of definitions (4.2.5) (4.2.6) when

A= X1 and Y = Y1 are linear programs. (4.2.8) follows from

(4.2.5) by the duality theorem of linear programming. (4.2.9)

follows from (4.2.6) analogously. I I
Let us now introduce an associated bilinear program in view

of (4.2.8) and (4.2.9)

maximize ep (x, y, u, v)

t t t
= x (A+B)y - P1 u - P2v

s.t. < 0

x > 0

< 0

(4.2.10)
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Theorem 4.2.3

A necessary and sufficient condition for (x,y) to be an

equilibrium point of r(A,x 1 : B'Y1) is that (x,y) is an optimal

solution of (4.2.10). Also ¢(x,y,u,v) = 0 at the optimum.

Proof

Let (x,y)

by (4 • 2 . 8 ) and

constraints of

be an equilibrium point of r(A,X 1 ; B,Y1 ). Then

(4.2.9), (x,y) tog'ther with (ij,~) satisfy the

(4.2.10), Le., (x,y,ij,~) is a feasible solution

Also ¢(x,y,ij,~) = O. However, by premultiplying

first and the third inequalities of (4.2.10) and

of (4 . 2 . 10) .
t tx , Y to the

using the facts that P 1x = P1 and P2y = P2' we obtain the in­

equality.

0
t t t t t

> x Ay - x P u = x Ay - P1u-

0
t t t t

> x By v Qy = x By - P2v

and hence ¢(x,y,u,v) < 0 for all feasible solution of (4.2.10),-
whence (x,y,ij,~) is an optimal solution of (4.2.10). Let

(x~,y*,u*,v*) be another optimal solution for (4.2.10). Then

¢(x*,y*,u*,v*) = O. But this holds if and only if

t t t t
(x*) Ay* - P1u* = (x*) By· - P2v* = 0

so that (x*,y*,u*,v*) satisfies both (4.2.8) and (4.2.9), i.e.,

(x*,y*,u*,v*) is also an equilibrium point of r(A,X 1 : B,Y 1 )· I I
This theorem states that the optimal objective value of (4.2.10)

is equal to zero regardless of the data of the problem. This

property is quite worthwhile since we can generate a 'deep' cut

at a poor local maximum point where the objective functional

value is far from optimal (see [13]).
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5. Miscellaneous Bilinear Programs

5.1 Non-Standard Generalized Linear Program

Generalized linear program (GLP) introduced by Dantzig

and Wolfe [3] has the following problem structure:

1, •.. ,n be given.

compact convex set

respect to (:;) as

and Wolfe proceeds

n
min I c.x.

j=1 J J

n
s.t. I a.x. = b

j=1 J J

x. > 0
(:;) E

c.
J - J

h Rm R1 d C CRm+1 .were a j £ , c j £ an j 1S a

j = 1, .•• ,n and maximization is with

as x j . The GLP algorithm by Dantzig

as follows :(c~')
Let J £ C., t = 1, ..• , t

J
., j =

~t J
. a.

J

Then we will solve the linear program:

(5.1.1)

well

roughly

t.n t ~t tmin I c.x.
j=1 t=1 J J

ton
I

J ~t tL a.x. = b (:5.1.2)
j=1 t=1 J J

t > 0 t 1 , ••. , t j j 1 , ••• , nx. = =
J -

and let TI£R
m be an optimal multiplier vector for this linear

program.

If

c. - 7T a. > 0
J J

j = 1, .•. ,n

then the current solution is optimal. If, on the other hand



-36-

there is an index j and a vector which

for which c. - n a. > 0, we solve the following n sub-
J J

function will be improved byc. - n a. > 0, then the objective
J J

introducting this vector into the

(:i)
J

basis. To find out the vectors

programs.

min (c. - if a. '(C i ) £ C.) j 1 •... ,n (5. 1. 3 )

Let (:~ ) be J its OP:im:~ SOlU:ion. If c~ - ii a~ < 0, then we

will introduce it into (5.1.2) and proceed. If Cj are all

polyhedral convex sets, then this algorithm will converge to

the optimal solution of (5.1.1) in finitely many steps if we

avoid cycling caused by degeneracy appropriately.

Now let us consider the non-standard GLP with some free

variables, i.e.,

n
min I

j=1
c.x.

J J

n
s.t. I a.x. = b

j=1 J J

x. > 0
J -

>
0x. - ,

J <

(:~} c. ,
J

j 1, ••• ,R. ;

j = R.+1, ... ,n (5.1.4)

j = 1, ... ,n

The usual technique of replacing a free variable by two non­

negative variables destroys the structure of the problem, i.e.,

let

> 0 x.') > 0
J ... .' j = ,q,+1, ... ,n
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then the problem is

~

min I
j=1

~

L
j=1

c.x. +
J J

a.x. +
J J

x. > 0
J

> 0

j = 1, ... ,~

j == ~+ 1 , ••• ,n

1, •.. ,~. ~+1 , ••• , n

(5.1.5)

Hence the columns of this problem are no longer independent and

GLP algorithm in its original form would not work.

Now let us consider the simplest case of the above in which

a j 's are constant and only c j 's are allowed to move in compact

convex sets, i.e., closed interval in this case

~ n
min L c.x. + L c.x.

j==1 J J
j=~+1 J J

~ n
s.t. I a.x. + I a.x. = b

j=1 J J j=~+1 J J

x. > 0 j = 1 , ••• , ~
J -

c. < c. < c. j = 1 , ••• , n
-J - J - J

(5.1.6)

Since x j > 0, j == 1, •.. ,~, it is obvious that optimal c. 's are
C- • 's for J' - 1 n ICY th bl . I . f . JJ - , ••• ,N. ~ence e pro em slmp 1 les somewhat to
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~ n
min L c.x. + L y.x.

j=1 J J j=~+1 J J

~ n
s.t. L a.x. + L a.x. = b

j=1 J J j=~+1 J J

x. > 0 j = 1 , ... , ~
J -

c. < y. < c. j = ~+ 1 , ... , n (5.1.7)-J - J - J

We will use the standard elimination technique to obtain an

expression of x k ' k = ~+1, ... ,n with respect to x j ' j = 1, ..• ,~.

Let

X· = d. +J JO j = ~+ 1 , -. •• , n (5.1.8)

Substituting these into (5.1.7), we obtain

~ [e j

n

dkjYk]Xj

n
min L + L + L d. y.

j=1 k=~+1 j=~+1
JO J

~

s.t. L a~x. = b l

j=1 J J

x. > 0
J

c. < y. < c.
-J - J - J

j = 1, ••• ,

j = ~+ 1, ••• , n (5.1.9)

which is a BLP with special structure. The following theorem

characterizes the form of the optimal solution.

Theorem 5.1.1

Let c~, x~, j = 1, ... ,n be an optimal solution (if it
J J

exists at all) of (5.1.4). Then c~ = c., J' = 1, •.. ,~ and c~
J -J J

is either gj or c j for j = ~+1, ... ,n.

Proof

By the fundamental theorem of BLP [13J, there is an optimal

solution y* = (Yl+1' ... 'y~) where y* is an extreme point of the
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constraint set {(Y£+1'··· 'Yn) 19j s: Yj s: c j ' j = £+1, ... ,n}. II
We have shown that bilinear programming technique gives a

way to solve (5.1.4). This need not, of course, be the best

way to solve this class of problems. Typically, the modified

version of generalized linear programming algorithm might be

able to solve them more efficiently. We will not, however, go

into this subject in more detail ~ere.

5.2 Complementary Planning Problems

5.2.1 Problem and Examples

Let us consider the following class of problems

> 0 > 0

(5.2.1)

where

and xi' Yi are variable vectors of appropriate dimensions. The

last constraint x~x2 = 0 will be called complementary constraints

in the sequel.

t10re general problems with complementary constraints

minimize t + t + dtyc 1x 1 c 2x 2

s.t. A1X 1 + A2x 2 + By > b-
x 1 > 0 x 2 > 0- -

t
0x

1
x

2 =

has been discussed by Ibaraki [10] [11 ],

theorem and proposed an enumeration type

y > 0

(5.2.2)

who proved the following

of algori thIn.
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Theorem 5.2.1

If the constraint set of (5.2.2) is bounded, then (5.2.2)

has an optimal solution among basic feasible solutions.

Let us first introduce several typical examples of (5.2.1).

a) Complementary Flows in Network

Suppose we want to send two different kinds of flows F 1
and F 2 on a pipe line network. ~ = want to send Fi from source

Si to sink Ti , i = 1,2. Horeover, we assume that two kinds of

flows cannot be mixed with each other by some reason or the

other. If the capacity of a certain arc consists of many small

independent pipes, (more specifically each arc consists of small

pipes of 1/2 unit capacity), this problem can be handled by two

commodity flow algorithm of Hu [9]. However, if the arc with

capacity a. consists of a single pipe, then we have to have a
~

constraint

(5.2.3)

where x .. implies the amount of flow F; on arc A ..
~J ~ J

Associated with this there are the following three typical

problems

(i) Feasibility problem: Can we send some specified

amount of flows F 1 and F2 without mixing them up?

(ii) Haximum complementary flow problem: ~'Jhat is the

maximum sum of flows F 1 and F2 we can send on the

network without mixing two flows?

(iii) Minimum cost complementary flow problem: Find the

minimum cost complementary flow satisfying the given

flow requirement.

All these problems can be formulated in the framework of (5.2.1).

b) Orthogonal Production Scheduling

It sometimes happens in the optimization of a multi stage

production system that the use of certain activities in two

consecutive periods

(i) is prohibited (e.g., due to machine maintenance)
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(ii) incurs high penalty cost (e.g., hysterisis effects

in agricultural production system).

These types of problems can also be put into the form of (5.2.1).

5.2.2 Solution Technique

The most standard way to solve (5.2.1) is. to introduce an

t-dimensional vector u of 0-1 components and replace the

t · t bcons ra1nts x 1x 2 = 0 x 1 ~ 0, x 2 ~ 0 y:

x 1 < 1'1
0

u

x 2 < 1'1
0

(et-u)

x 1 > 0 , x 2 > 0

Here e~ is the ~ dimensional vector all of whose components are

1's and Mo is a constant satisfying

tU > max {e 0 x. IA. x. + B. y. > b" x 1, > 0, Y1' > O}o N 1 1 1 111

i = 1,2

The equivalence can be seen as follows:

u. = 0 ~{x1' < 0,
J J -

Hence (5.2.1) is equivalent to the following mixed 0-1 integer

programming problem:

maximize t t t tc 1x 1 + d 1Y1 + c 2x 2 + d 2Y2

s.t. A1X1 + B1Y1 > b 1-
A2x 2 + B2Y2 > b 2-
x 1 - 1-1 u < 0

0 -
x 2 + M u < 1'1 e

0 - o n

x 1 > 0, Y1 > 0, x 2 > 0, Y2 > 0- - - -
u = (u 1 ,u2 '···,u£)

u. = 0 or 1, j = 1, ••• ,t
J

(5.2.4)
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This can be solved by a usual branch and bound technique if t

is not too large. Instead,we will propose another classical

approach, i.e., penalty function approach by putting xix2 = °
term into the objective function:

maximize t t t t tc 1x 1 + d 1Y1 + c 2x 2 + d 2Y2 Mx 1X2

s.t. A1X1 + B1Y1 > b 1-
A2X2 + B2Y2 > b 2-
x 1 > 0, Y1 > 0, x 2 ~ 0, Y2 ~ 0 (5.2.5)- -

which is a BLP in canonical maximization form.

Theorem 5.2.1 If the constraint set of (5.2.1) is bounded,

then there exists a constant Mo such that (5.2.1) is equivalent

to (5.2.5) for M > M .o

Proof

This can be proved by standard technique and will be

omitted here.
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6. Concluding Remarks

We have picked up several examples of bilinear programs

and discussed them in some detail. Some of them are of real

practical interest (Chapter 2,3 and Section 5.2) and the others

are more of a theoretical nature (Chapter 4 and Section 5.1).

The style of presentation is somewhat different for these two

groups of examples, but we hope ~hat the readers are more or

less convinced of the applicability and importance of bilinear

programming through these examples.

The difficulty of nonconvex programs to which bilinear

program belongs is the existence of mUltiple local maxima. The

problems treated in Chapter 2 is easier from this viewpoint

than those in Chapter 3 and Section 5.2. Also the problems in

Chapter 3 are inevitably of high dimensionality and therefore

appear to be more difficult than those in Chapter 2. The game

theoretic problems of Chapter 4 may appear to be only of theo­

retical interest to some readers, but the two stage game of

Section 4.1 will have more importance in the future as the

author has shown in [16]. Also, a constrained bimatrix game of

Section 4.2 will have some applications in decisions under multi­

ple objectives.

Bilinear programming is still in its babyhood and a lot of

things have to be done if we want to solve a reasonably large

real world problem. The efficiency of cutting plane algorithm

developed in [13] is not yet authorized by an extensive testing

on the computers, though the preliminary results are encouraging.

On the other hand, the enumerative approaches of [5] [7] as they

stand now appear to be hopelessly expensive for larger probleMs.

Anyway there is a lot of space for improvements in the efficiency

of these two groups of algorithms and works in this area will be

quite worthwhile.

The last remark is in order: While it is usually difficult

to obtain a global optimum, the augmented mountain climbing

algorithm of [13] will be useful to obtain a good local optimum

without too much expenses.
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