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Preface

This book is about ways of dealing with uncertainty in the management
of renewable resources, such as fisheries and wildlife. My basic theme is that
management should be viewed as an adaptive process: we learn about the poten­
tials of natural populations to sustain harvesting mainly through experience with
management itself, rather than through basic research or the development of
general ecological theory. The need for an adaptive view of management has
become increasingly obvious over the last two decades, as management has turned
more often to quantitative model building as a tool for prediction of responses
to alternative harvesting policies. The model building has not been particularly
successful, and it keeps drawing attention to key uncertainties that are not being
resolved through normal techniques of scientific investigation. We keep running
up against questions that only hard experience can answer, and a basic issue
becomes whether to use management policies that will deliberately enhance that
experience. Such policies would represent a radical departure from traditional
prescriptions about how to deal with uncertainty, namely to proceed with great
caution or to act as though there were no uncertainty in hopes that mistakes
and opportunities will automatically reveal themselves.

My major conclusion is that actively adaptive, probing, deliberately ex­
perimental policies should indeed be a basic part of renewable resource manage­
ment. The design of such policies involves three essential ingredients:
mathematical modeling to pinpoint uncertainties and generate alternative
hypotheses, statistical analysis to determine how uncertainties are likely to pro-
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pagate over time in relation to policy choices, and formal optimization com­
bined with game playing to seek better probing choices. In pursuing these ingre­
dients, I have been led to examine a variety of concepts and methods, such as
adaptive parameter estimation for dynamic models, that have not been widely
applied to renewable resource problems. Thus, I hope the book will serve two
purposes: to provide general motivation for deliberately treating management
as an adaptive process, and to bring together a collection of tools for adaptive
policy analysis that have previously been scattered through literature sources rang­
ing from engineering control theory to resource economics.

The book is intended for two audiences. The introductory and concluding
chapters, and chapter introductions throughout, are aimed primarily at practic­
ing resource managers and administrators who want to get some feeling for basic
issues and concepts. The later sections in Chapters 4-10 look more deeply at
various mathematical tools for analysis; these sections are aimed at analysts
(modelers, statisticians, stock assessment experts) who are concerned with the
practice of policy design. For the technical sections, I assume the reader is familiar
with introductory calculus, matrix algebra, and introductory statistics, including
regression analysis. Fourth-year undergraduates and graudate students in resource
ecology and economics generally have these prerequisites, and I have included
problem sets to make the book more usable as an advanced text. The problems
for each chapter are graded, so the first few require no special background while
the later ones assume at least some skill at microcomputer programming.

It would be nice to claim that the book presents a coherent theory for
management under uncertainty, with appropriate recipes for all circumstances.
Unfortunately, I rather doubt that such a theory can be developed, even in prin­
ciple; an essential feature of dealing adaptively with uncertainty is to reject recipes
and rituals, in favor of a search for better processes to promote imagination
and learning. We can now describe with some rigor how particular types of adap­
tive processes (such as sequential parameter estimation given a fixed dynamic
model structure) are likely to perform, but only under very restrictive assump­
tions. It is useful to examine such processes, if for no other reason than to pro­
mote frustration and a search for better assumptions. But the really key pro­
cesses are those by which we search for better assumptions upon which to base
rigorous analysis, and here I can offer only experience with a few techniques
such as modeling workshops.

In trying to get adaptive management ideas across to various resource
agencies, I have become acutely aware that management is done by people, as
well as for people. We all have limited backgrounds, interests, and abilities to
assimilate new ideas; these limits are inevitably carried into the work place, so
that decision making about renewable resources is anything but the coldly ra­
tional process usually assumed in introductory and theoretical texts. I feel that
this point is crucial for students to understand, so I return to it repeatedly with
comments and suggests about the need to develop simple and understandable
models, to communicate analyses vividly in terms of tricks like microcomputer
games and verbal summaries, and to recognize that there are fundamental con-
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flicts of interest that no analysis can resolve. My preoccupation with communica­
tion is reflected at places in a chatty or anecdotal writing style and in over­
simplification of some technical presentations; the choice was deliberate, and
I make no apologies to readers who would prefer a more precise, academic style.
On the other hand, I also make no apology for extensive use of mathematical
models and notation; only a fool would dare approach the study of dynamic
resource systems without these tools.

This book was written mainly under the support of the International
Institute for Applied Systems Analysis, Laxenburg, Austria. There Dr. C. S. Holl­
ing provided me essential support and protection to write. He saw the value of
forming a small research team, the Adaptive Resources Project (ARP), through
which many of these ideas were developed. For stimulating discussions and
assistance with the mathematical development, I am especially grateful to ARP
members Joe Koonce, Anatoly Yashin, John Casti, Valeri Federov, and
Mike Staley. Our project secretary, Shirley Wilson, handled the project administra­
tion and organization with a competence that gained us much time for research.
For patience with my abominable writing, I thank typists Ann Tedards, Susan
Riley, and Bonnie Riley. For pushing me to complete the book, special thanks
to Bob Duis and his editorial staff, especially Valerie Jones. I have also received
much support and valuable advice from colleagues at the University of British
Columbia, especially Ray Hilborn, Don Ludwig, and Donna Chin. For much
patience on too many long evenings and weekends, thank you Sandra, Daniel,
and William. Finally, no thanks would of course be too much for Ralf Yorque.

The International Institute for Applied Systems Analysis

The International Institute for Applied Systems Analysis is a nongovern­
mental research institution, bringing together scientists from around the world
to work on problems of common concern. Situated in Laxenburg, Austria, IIASA
was founded in October 1972 by the academies of science and equivalent
organizations of twelve countries. Its founders gave IIASA a unique position
outside national, disciplinary, and institutional boundaries so that it might take
the broadest possible view in pursuing its objectives:

To promote international cooperation in solving problems arising from social,
economic, technological, and environmental change

To create a network of institutions in the national member organization coun­
tries and elsewhere for joint scientific research

To develop and formalize systems analysis and the sciences contributing to it,
and promote the use of analytical techniques needed to evaluate and ad­
dress complex problems

To inform policy advisors and decision makers about the potential application
of the Institute's work to such problems
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The Institute now has national member organizations in the following countries:

Austria
The Austrian Academy of Sciences

Bulgaria
The National Committee for Ap­
plied Systems Analysis and
Management

Canada
The Canadian Committee for
nASA

Czechoslovakia
The Committee for nASA of the
Czechoslovak Socialist Republic

Federal Republic of Germany
Association for the Advancement
of nASA

Finland
The Finnish Committee for nASA

France
The French Association for the
Development of Systems Analysis

German Democratic Republic
The Academy of Sciences of the
German Democratic Republic

Hungary
The Hungarian Committee for
Applied Systems Analysis

Italy
The National Research Council

Japan
The Japan Committee for nASA

Netherlands
The Foundation
IIASA-Netherlands

Poland
The Polish Academy of Sciences

Sweden
The Swedish Council for Planning
and Coordination of Research

Union of Soviet Socialist Republics
The Academy of Sciences of the
Union of Soviet Socialist Republics

United States of America
The American Academy of Arts
and Sciences



Chapter 1

Introduction

The first step to knowledge
is the confession to ignorance.

Weinburg (1975)

Man has proved remarkably adept at developing harvests from poten­
tially renewable natural resources, such as fish, wildlife, and forests. But he

has shown considerably less skill in devising schemes for sustaining the har­
vests over long periods of time. Until the early part of this century, most
resource developments of the past few hundred years proceeded more like
mining operations, with a boom followed by stock depletion and collapse;
either no thought was given to the long term, or the resources were con­
sidered so abundant as to be inexhaustible. Then there was a dramatic shift
in viewpoint, with the emergence of theories about the limits of sustainable
harvests, development of monitoring systems that demonstrated the
deterioration of some resources, and the organization of public conservation
movements that brought political pressure on governments to act as regula­
tors of harvesting activity.

Particularly with the growth of government involvement in manage­
ment, there developed a strong demand for basic research and university
training programs. By the 1950s it had become common to claim that
fisheries, forestry, and wildlife management had developed into truly
scientific disciplines, with well defined paradigms for research and practical
action. There was, of course, considerable fragmentation into schools of

thinking that centered on different factors and investigative approaches (for.
example, some wildlife biologists emphasized problems of "habitat," while
others were concerned more with population dynamics), but the general atti­
tude was optimistic: the details would sort themselves out in due time, given
diligent research and longer experience.
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But by the late 1960s some workers were beginning to question seri­
ously whether the resource sciences were making any real progress. There
continued to be many gross instances of apparent mismanagement, such as
the collapse of the Peruvian anchoveta fishery and the realization that some
North American forests were being slowly depleted. Weaknesses in theory
and practice were particularly highlighted by the emergence of the environ­
mental movement, with its critical scrutiny of government policies and
demand for predictions in the form of environmental impact assessments.

It appears now that there were at least two fundamental flaws in the
early development of the renewable resource sciences. The first flaw has
been obvious to scientists from other disciplines, particularly economics, for
many years: research and management have concentrated primarily on
biological/ecological and technical harvesting issues, with only token con­
sideration to the socioeconomic dynamics that are never completely con­
trolled by management activities. This imbalance of concern appears even
in reviews that purport to raise wider concerns; for example, Gulland (1981)
in a recent paper on operations research in fishery management, stated that
"biological models lie at the heart of fishery management." Considering that
most resource scientists are trained as ecologists, it is particularly surprising
to see such attitudes: harvesting systems are very much predator-prey asso­
ciations (man-ecosystem), with all the potentials of such systems for unex­
pected dynamic response when viewed in a fragmentary way; attention has
also been often focused only on the prey, thus ignoring problems that
develop because the predators do not sit still either.

The second fundamental flaw in the development of natural resource
science is equally serious, and provided the central motivation for this book.
This flaw concerns the strategic question of how we should proceed to
develop better understanding of managed system responses and potentials in
a world of great uncertainty, limited research resources, and continuing
pressure for more intense exploitation. The traditional dogma has it that the
answer is to invest more in basic research, especially in ecology, while very
cautiously regulating harvests so as not to destroy potentials before they are
understood; "better" understanding is usually taken to be synonymous with
"more detailed" analysis of the components of production processes. When I
phrase the traditional view this way, at least two questions should immedi­
ately leap into the reader's mind: how is anyone going to put the component
pieces together, if ever they are all understood? If the systems to be under­
stood are managed conservatively, how can we possibly make all observa­
tions and experiments necessary to predict how they will behave when the
conservative policies are replaced by more optimum regimes as extrapolated
from the component understanding? My basic contention is that these ques­
tions cannot be answered affirmatively, implying that we must seek a funda­
mentally different approach to scientific management. I will argue that one
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possibility is to treat management as an adaptive learning process, where
management activities themselves are viewed as the primary tools for experi­
mentation.

Before proceeding to sketch out the basic issues of adaptive manage­
ment, and thereby provide an outline for this book, let me examine more
carefully the two questions raised in the last paragraph. Unless my negative
contention about these questions is clearly understood, the reader may see no
point in trying to work through the rather arcane machinery of analysis that
forms the bulk of the text.

Does Understanding Accumulate?

Consider first the question of how to assemble bits and pieces of
scientific understanding into an overall framework for management. Most
students, at least of biology, are taught that knowledge and understanding
accumulate, perhaps by fits and starts, toward a complete picture of nature.
I first became suspicious about this view in reading Thomas Kuhn's Struc­
ture of &ientific Revolutions (1962), which argues that science proceeds
through occasional sharp changes of view (paradigm shifts), often involving
simplification and discarding of amassed results rather than accumulation.
Then the point was brought home very forcefully to me one evening during
an otherwise blurry barroom conversation with W.E. Ricker, the noted
fisheries analyst. In reminiscing about the history of Pacific salmon manage­
ment, Ricker lamented that the current generation (1978) of management
biologists seemed to use less information in their decision making than had
their predecessors 20 years earlier, in spite of much greater expenditures for
inventories and research over those 20 years. The biologists in question
fully agreed, but argued that conditions had changed so much that the older
concepts, data, and management problems were simply no longer relevant.
In effect, they were saying that there is no single, structurally stable system
out there in nature to be understood. I cannot agree completely with that
argument, because one can always argue that they are just emphasizing
different aspects of a larger system. But how large is large enough to remain
interesting?

Even if managed systems do not keep slipping away and changing
under us, there remains the problem of how to use accumulated data
effectively. Some would argue that this is not a problem, and that the
human mind is quite capable of intuitively grasping and making valid infer­
ences with complicated relationships. A more honest, humble, and realistic
proposal has been to develop mathematical models that somehow integrate
the complexities in a systematic way, and then to use these models as
"deductive engines" for prediction. Such models are now widely used in
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resource management agencies (sometimes partly disguised through termi­
nology like "stand table" in forestry) but their impact on actual policy choice
is difficult to assess. Indeed, I have been a strong proponent of computer
simulation modeling, especially since cheap and friendly microcomputers
have made it much easier for people without a strong mathematical training
to become involved in model development.

But much modeling experience suggests even deeper problems with
the notion of accumulating experience. In the late 1960s, C.S. Holling and
J began to develop a process, now known as adaptive environmental assess­

ment (Holling, 1978), for more effectively constructing and testing simula­
tion models for natural resource management. Our goals were to compress

the time required for model development to an absolute minimum, and to

involve a wide variety of key actors (disciplinary scientists, managers, policy
people) in modeling for policy purposes. Using the process, we involved a

very large number of scientists and developed literally dozens of rather com­
plicated simulations, for cases ranging from Pacific salmon management and
forest insect problems in Canada, to environmental/economic issues of ski
area development in the Austrian Alps. In all these cases, major uncertain­
ties about economic/ecological processes were apparent, and the processes
involved showed two characteristics: (1) their effects were only clearly evi­
dent on large spatial and/or temporal scales, and (2) they were not the sub­
ject of intensive research investment.

Let me put this observation more vividly: we keep encountering key

processes, identified as necessary causal ingredients for prediction by many
scientists, that have effects that are only clearly visible over large areas

and/or long time periods. These processes are therefore either very expen­
sive to study experimentally, or do not offer the speedy rewards that scien­

tists need to keep publishing, get research grants, and so forth. A few exam­
ples are worth mentioning: large-scale dispersal of insect pests; changes in
recruitment rates of fish with varying densities of parental spawners; and

changes in the attack rates on prey by large vertebrate predators (like wolves)
with changes in prey density.

It is a sad but understandable fact that most scientists base their
research programs not on broad analyses of uncertainties, but instead on the
investigative tools (nets, etc.) and analytical methods that they learned in
university or find popular among colleagues. This means that some
ecological/economic research paths are deeply trodden, while others remain
untouched. For example, most population dynamics work in fisheries
centers on the use of well defined catch sampling programs and statistical

analysis procedures, aimed at estimating a few parameters of growth, mor­
tality, and average recruitment rate that some modelers during the 1950s
(Ricker, Beverton-Holt, etc.) prescribed as necessary to yield assessment.
Of course there are shining exceptions, but these are rare enough to make
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one wonder whether the systems we study might not be changing faster than
our understanding of them.

It has been argued that the large-scale processes that cause so much

grief for modelers should not be studied directly in the first place, and
instead should be logically decomposed into detailed subprocesses that are
more amenable to experimentation. So far as I can tell, those who make this
recommendation must never have actually tried it, or they would realize
that: (1) the number of details grows explosively as a process is decomposed
into finer details; (2) a model is still required eventually, to put all the details
back together, and small errors in this model can have large cumulative
effects; and (3) predictions from the detailed analysis must ultimately be

tested by reference back to, and experiments upon, the behavior of the
overall process of original interest. Also, you can be sure that there will be
at least one of the detailed subprocesses that does not lend itself to existing

experimental technique and resources, and the whole logical house of cards
will not stand without this detail.

Dangers of Extrapolation

We have come now to my second basic question about the traditional
scientific approach: how can we guarantee to conduct all observations and
experiments necessary to extrapolate an optimum management regime,
when the system of concern is perhaps maintained away from that regime by
conservative management policies? More simply, how can you know that
something will work until you try it? In the natural resource sciences, we
are not dealing with engineered systems about which correct predictions
should be possible, at least in principle, because the system components are
deliberately chosen with supposedly known characteristics. Even in these
systems, the regular occurrence of nasty surprises should be a warning to
anyone who would claim that we can understand how a complicated system
will act without actually testing it.

A Curved Example

Scientists who harbor some hope of successful extrapolation might
consider the example of Figure 1.1, which plots harvestable stock of a major

Pacific salmon system (Fraser River sockeye) resulting from allowing
different numbers of adults into their spawning rivers four years earlier.
There are obviously many processes at work in determining how many of

the eggs laid by the spawners will hatch, survive their freshwater rearing
period, then go to sea and survive to return as harvestable adults. (I spell
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this out a bit to evoke a sense in the biologist reader's mind of just how com­
plex the whole survival question is,) The key feature of these data is how
they appear to demonstrate that the system has been overexploited, at least
since accurate records have been kept: over the range of recent experience,
harvestable stock appears to be about linearly proportional to spawners.
This means that spawners should be allowed to increase, until an appropriate
point of diminishing returns is reached,
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Fisure 1.1. Relationship between number of sockeye salmon allowed to spawn in
the Fraser River, Be, and the number of resulting offspring measured as recruits
to the fishery four years later. Data are for 1939-73, omitting every fourth (cycle)
year beginning in 1942. The curves '11 and '11 are alternative extrapolations of
response to increased spawning stock. '12 predicts higher yields if more fish were
allowed to spawn. Source: Walters and Hilborn (1976); see also Walters (1977),
Holling (1978).

Now, Figure 1.1 shows just two curves extrapolating the pattern of
response to such an increase; infinitely many such curves could be drawn, all
consistent with historical experience but predicting different responses to
management aimed at increasing spawners. How might we resolve which of
these curves of average response is correct, and thereby determine the
optimum number of spawners to allow? The scientific answer to this
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question seems so obvious as to be hardly worth stating: let more fish
spawn, and see what happens. But this answer is not at all what the tradi­
tional approach would prescribe, and in fact was strongly opposed by some
biologists when we proposed it several years ago (Walters and Hilborn,
1976). The basic objections were: (1) the fisherman would protest loudly
(more spawners means less immediate catch), and would lose whatever
confidence they might have had that the managers knew what they were
doing in the first place; and (2) the uncertainty can be resolved without dis­
turbing the existing management balance, by conducting more basic
research on the factors that limit production (cause the curves to bend over at
high spawning densities). The first of these objections is more serious than it
may initially appear, and I will return to it and related issues in Chapter 2.

Reflect for a moment on the complexity of the salmon life cycle (and
it is simple by fisheries standards), and consider studying the various limit­
ing factors that could operate at each stage in this cycle, without deliberately
manipulating the number of fish entering each stage. We could, of course,
do local experiments on small groups of fish in limited areas, without appre­
ciably affecting the overall system. But what about those factors, such as
disease transmission, that are not apparent at all except when large
populations/areas are studied? (Disease outbreaks on spawning areas are a
real concern with Fraser River sockeye.) What about the effects of overall
densities of spawners on straying rates of fish to colonize new spawning areas
and old areas that were depleted many years ago? The list of these experi­
mentally difficult questions is practically endless, and would make any pre­
diction based on small-area studies very dubious indeed! So, even if a con­
servative harvest regime were followed for a long time so that all the feasible
local experiments could be conducted, there would still be fundamental
uncertainties about the effect of increasing overall spawning numbers. In
short, the waiting would not solve the problem, and considerable opportuni­
ties for increased harvest might be lost over the waiting period.

The fact that adaptive learning through management "experiments"
may proceed much more quickly than through conservative management
and basic research has been noticed by some practicing managers for many
years, and has helped fuel an unhealthy split and mutual contempt between
managers and researchers in many agencies. This split makes the valuable
basic advances that do occur much more difficult to put into practice, and
isolates researchers from the wealth of experimental opportunities afforded
by whole-system manipulations by managers.

It is implicit in the above discussion that every managed resource sys­
tem is somehow unique, with at least some quantitative characteristics that
cannot be inferred from experience with other (replicate) cases. This
assumption is obviously not correct in many situations, particularly in forest­
ry and agriculture, where large and relatively homogeneous systems can be
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subdivided into many spatial units, with some proportion of these units
devoted to experimentation that can be directly applied to the other units.
Indeed, one of the wisest resource management decisions in American his­

tory was embodied in the Homestead Act of 1865, which systematically
reserved a vast grid of farmland areas for agricultural experimentation.

Testing of innovative schemes on these areas has probably been one of the
main factors responsible for the dramatic success of American agricultural

development. Of course, even in these situations there are large-scale
processes such as wind erosion (producing dust bowls) and plant disease epi­
demics that could not reasonably be anticipated on the basis of local research
activities.

Fisheries and wildlife workers have been slow in taking advantage of

existing opportunities for replicated experimentation on a fairly large scale.
A very delightful and surprising paper by Bilton et al. (1982) illustrates this
well. They studied the effect of body size and date of release into the wild on
the survival rates of juvenile coho salmon produced in one of the many sal­
mon hatcheries that line the Pacific coast of North America. By varying
these two hatchery "operating parameters," they showed that there is a
rather sharply defined optimum combination to shoot for, involving smaller
sizes and later releases than have generally been used in production
hatcheries. The surprising thing about this study is not that it found such an
optimum, but that it was done more than 20 years after large-scale invest­
ment began in salmon production hatcheries. The earlier record of experi­

mentation and even standard operating results from these very costly
hatcheries is so spotty and pathetic that one must wonder how the invest­
ments were ever justified in the first place.

Issues of Adaptive Management: A Preview

The various questions raised above are disturbing, and they have cer­
tainly not been resolved by my brief discussion. My hope has been only to
raise doubt in the reader's mind about some very basic (and usually unques­
tioned) notions of how we should proceed in developing better resource

management systems. The remainder of this text will explore an approach
that has come to be called "adaptive management." This approach begins
with the central tenet that management involves a continual learning process
that cannot conveniently be separated into functions like "research" and
"ongoing regulatory activities," and probably never converges to a state of

blissful equilibrium involving full knowledge and optimum productivity.
The business of designing adaptive management strategies appears to

involve four basic issues:
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(1) bounding of management problems in terms of explicit and hidden
objectives, practical constraints on action, and the breadth of factors
considered in policy analysis;

(2) represent.'1tion of existing understanding of managed systems in terms
of more explicit models of dynamic behavior, that spell out assump­
tions and predictions clearly enough so that errors can be detected and
used as a basis for further learning;

(3) representation of uncertainty and its propagation through time in
relation to management actions, using statistical measures and imag­
inative identification of alternative hypotheses (models) that are con­
sistent with experience but might point toward opportunities for
improved productivity;

(4) design of balanced policies that provide for continuing resource pro­
duction while simultaneously probing for better understanding and
untested opportunity.

The following chapters will look into some details about each of these issues,
using a mixture of theoretical arguments and relatively simple case exam­
ples. The emphasis will not be on presenting recipes for successful practice,
but rather on stimulating critical thinking about the issues.

Chapter 2 examines the very treacherous matter of deciding what
management is about. In systems analysis this is sometimes called "bound­
ing the problem," and most, if not all, resource policy analyses go astray
right at this starting point. It is very easy to build a lovely fairy castle of pol­
icy based on some incorrect presumption about what management should or
can do, then to be shattered upon presenting it by hearing just two words:
"who cares?"

Chapters 3-5 are concerned with representation of understanding
through mathematical models. Chapter 3 reviews the so-called adaptive
environmental assessment (AEA) process mentioned earlier, which tries to
make model building a more effective adaptive process for the people
involved in it. Chapter 4 looks at some of the models that have been widely
used in fisheries analysis, and at some of the biological and economic
processes that these models have failed to address adequately. Chapter 5 is
concerned with the very exciting possibility that many resource problems can
be well represented with very simple and understandable models resulting
from "compression" of the quite complex models that usually emerge early
in the AEA process. Simple models are more attractive to decision makers,
and are usually all that can be identified or realized in the face of the very
noisy data available.

Chapters 6 and 7 look at the sometimes discouraging problems of
embracing uncertainty by comparing models with experience in the form of
time series data from exploited resources. Chapter 6 discusses uncertainty in
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general, then reviews the Bayesian idea of assigning probabilities to alterna­
tive models and the recent systems theoretic idea of "realization," in which
the analyst seeks to find all possible dynamic structures that are consistent
with the data available. Chapter 7 borrows some ideas from the theory of
stochastic control, to model the sequential learning process involved in
resource development and continued probing of responses; a particular con­
cern in this chapter is with statistical methods of "tracking" parameter
changes over time in relation to unmodeled processes such as environmental
change.

Chapters 8-11 take up the matter of finding optimal, or at least rela­
tively good, harvest regimes in the face of great uncertainty. Chapter 8
reviews some basic ideas about stochastic optimization, with emphasis on the
notion of designing feedback policies to cope with unpredictable variation.
Chapter 9 deals with the design of actively adaptive management policies, in
which there is a deliberate attempt to find some optimal balance between
conservative, usually stabilizing, harvest regimes versus the disruptive prob­
ing necessary to gain better understanding of long-term potentials. Chapter
10 looks at the design of actively adaptive policies for replicated systems,
where a number of spatial subunits (stocks, areas) are managed together and
may be informative about one another. Finally, Chapter 11 examines the
design of adaptive policies for complex and ambiguous situations where for­
mal optimization is not practical because of the number of variables
involved.

Problems

1.1. Consider the uncertain production relationship in Figure 1.1. Iden­
tify at least three factors that might make average recruitment lower
(dome-shaped curve) at higher spawning stock densities. Indicate
why "local" (laboratory, field pilot scale) experimental data about
these factors would not provide a reliable basis for predicting
responses of the whole system.

1. 2. Again in relation to Figure 1.1, identify two major reasons why a
return to historical escapement levels might not result in an immedi­
ate return to historical recruitment rates.

1.3. Table 1.1 shows population size and harvest data for whitetail deer
introduced into a large fenced area, the George Reserve (McCul­
lough, 1979). Assuming that population size next year equals popu­
lation this year plus net production minus harvest, estimate net pro­
duction for each year as population next year minus population this
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Table 1.1. Population size and harvest of whitetail deer in the George
Reserve. Estimates from Figure 3.1 of McCullough (1979).

Prehunt Prehunt
Year population Harvest Year population Harvest

1927 16 0 1949 132 35
1928 30 0 1950 130 58
1929 50 0 1951 87 14
1930 80 0 1952 121 43
1931 140 0 1953 127 45
1932 160 10 1954 129 40
1933 220 96 1955 158 84
1934 155 19 1956 112 58
1935 215 41 1957 91 22
1936 170 100a 1958 107 52
1937 145 36 1959 96 35
1938 140 37 1960 101 55
1939 143 46 1961 77 13
1940 130 51 1962 112 53
1941 130 43 1963 108 30
1942 120 33 1964 118 41
1943 110 30 1965 122 44
1944 106 22 1966 121 47
1945 104 11 1967 125 63
1946 160 52 1968 103 50
1947 130 30 1969 94 43
1948 103 20

aValue of 80 assumed in Chapter 5 estimation.

year plus harvest. Plot your estimates as a function of population this
year. Does this plot leave you with any doubt about whether the
population has recently been held near the level that would maximize
average net production?

1.4. A controversial aspect of big game management In Canada and
Alaska concerns the validity of wolf control (predator removal) as a
means of increasing ungulate productivity and stock sizes. A typical
wolf pack needs to kill around 100 moose per year to maintain itself
(survive, reproduce, etc.), and under "normal" conditions a pack will
defend a territory large enough to contain at least 1000 moose; under
such conditions the wolves are apparently quite selective about taking
mainly weaker moose that would likely have died anyway. But what
might happen in situations where the moose population has been
reduced by hunting, habitat loss, hard winters, or other factors?
Identify several specific alternative hypotheses about the effect of
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wolves in such situations, and suggest experiments that might help
resolve the uncertainty.

1.5. Develop a computer program to test how many observations would be
required to tell which curve in Figure 1.1 is correct, given different
escapement levels. The program should (1) plot the historical data
and curves 1/1> 1/2; (2) secretly (randomly) select one of the curves,
then generate simulated data from it at any escapement level you
select; and (3) pause after generating and plotting each data point, so
you can decide visually whether the correct curve is apparent. For the
dome-shaped model, use the equation

R, = S/-I exp(1.96 - 0.44s.-1 + w.)

where R = recruitment, S = escapement, and w/ is normally distri­
buted with mean zero and standard deviation 0.3. For the asymptotic
model, use

"'.s,_le
R, =---------

0.1237 + 0.1025s,-1

with w, as above. On average, how long does it take you to be
confident about the correct curve when the escapement is 1.5? 2.0?
3.0? Be sure to conduct at least five trials (called Monte Carlo simu­
lations) at each escapement level, since the number of data points
required for clear discrimination is itself a random variable. How
many mistakes did you make by picking the wrong model after too
few observations were available? Based on this experience, what do
you think about the policy recommendation of "incremental experi­
mentation" on the Fraser River, which would involve slowly increas­
ing escapements toward 2 million over a 10-20-cycle period?
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Chapter 2

Objectives, Constraints, and
Problem Bounding

I, the Onceler, felt sad

as I watched them aJl go,
BUT ...
Business is business!
And business must grow
regardless of crummies in tummies, you know

Dr Seuss, The Lorax

It hardly bears repeating that resource policy analysis cannot proceed

intelligently without at least some articulation of the objectives of manage­
ment, the constraints placed on managers to reflect broader resource alloca­

tions and implied social objectives, and the scope of factors considered
worthy of study. Most textbook discussions have concentrated on debates
about obvious objectives, such as maximizing sustainable yield or economic
efficiency of harvesting, and I will review these discussions briefly below.
However, actual management practice rarely proceeds in accordance with
simple objectives; after all, decision makers are people who, like the rest of
us, are guided partly by motives that are often not so lofty and are not
spelled out clearly. These implied objectives are usually expressed in terms
of risk-averse behavior and resistance to change in general, and so can (and
do) make it extremely difficult to implement adaptive policies that call for
variation and change as essential to learning. So if the reader is otherwise
excited by the idea of adaptive management, he or she should understand
right at the outset that there are formidable obstacles to practical implemen­
tation.

The discussion will proceed in five steps. First, I will provide some
background to the need for management, by reviewing the usual course of
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events in unmanaged systems; two extreme patterns are possible, depending
on the basic structure of resource ownership. Second, I will review some of
the obvious management objectives that have developed in response to the
general perception that unmanaged systems do not behave optimally.
Third, I will look into the delicate matter of how management institutions
actually behave, in view of implied objectives and the fact that there are
always conflicting actors who bargain to better their positions. Fourth, I will
argue that institutional factors lead not to productive equilibrium, but rather
to a rhythm that occasionally produces crises and adaptive opportunity, so
the timing of policy design and implementation is crucial. Finally, I will
turn to the difficulties of bounding problems for analysis, to draw the dis­
turbing conclusion that there are no natural boundaries; the very definition
of a problem is itself an adaptive process.

Behavior of Unregulated Systems

The quotation at the beginning of this chapter comes from a delightful
children's book about the "conflict" between ecology and economics; it
presents a model of development that I have noticed is also held by most
university undergraduates, namely that unregulated development driven by
the greed of resource exploiters always results in the total destruction of
resources. In this model, government regulation is always necessary if there
is any concern for the rights and opportunities of future generations.

In reality the need for management is rarely so clear-cut, and depends
on at least two basic factors. The first is resource tenure or ownership; even
in the absence of public intervention, resources held in "private ownership"
tend to be husbanded by the owners. The second is the economic behavior
of resource users even when the resource is held "in the commons" (public
ownership); this behavior can result in harvesting cycles or "bionomic equi­
librium" (Clark, 1976) where it does not pay the resource users to destroy
the resource completely.

Tenure and resource hw-bandry

In the early development of North America, it was established as a
legal principle that fishery and wildlife resources be held in public owner­
ship, for the use and enjoyment of all. This choice was understandable in an
environment of plenty, and where the creatures were usually seen to move
about over large areas. However, a very different situation has developed in
parts of Europe, and this situation gives important clues regarding basic
human attitudes and values about long-term resource maintenance.
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Wildlife and freshwater fish are remarkably abundant in Central
Europe (the Germanies, Austria, Czechoslovakia, Hungary), especially con­
sidering the human population density. There is a complex system of
resource tenure and ownership, with harvesting rights and management
responsibility held largely by individuals, families, or game cooperatives in a
mosaic that has evolved over many years. Individuals gain access to harvest
through various arrangements, ranging from long-term leases to daily
licenses, and the costs are astronomical by North American standards. In
1982, a day of Austrian trout fishing cost me about 530; a friend's 130­
hectare deer hunting lease cost him about 58000 per year. These charges do
not even entitle the harvester to keep what he takes; the kill may be retained
by tenured owners for sale through the ordinary meat market.

Such high charges for hunting and fishing have led some economists
to conclude that resources are maintained in Central Europe simply because
it pays to do so in the short term. This conclusion is both naive and mislead­
ing; it does not explain, for example, why people like my hunter friend are
willing not only to spend a lot of money every year, but also to put much
time and effort into husbandry activities like habitat improvement and
winter feeding. Some of those activities will not bear fruit until long after
my friend and the people from whom he leases are gone, yet he pursues
them joyfully. There is a concern for the long-term future that can hardly be
explained by today's balance sheets.

The term "resource husbandry" is often applied to situations where
the users, without external regulations, show great concern for maintaining
the resource in spite of other short-term economic opportunities. The atti­
tudes and priorities of husbandry seem to reappear wherever the resource
user can sequester fairly stable rights or tenure, suggesting that these atti­
tudes reflect rather basic human values that transcend local cultural cir­
cumstances. Attitudes very similar to those of my hunter friend are regu­
larly expressed by American environmentalists, by Canadian big-game
guides who hold relatively exclusive territories for trophy hunting, and by
marine commercial fishermen when they lament about the competitive con­
ditions of large fleets pursuing a shared resource.

Ray Hilborn and I accidentally stumbled on a vivid demonstration of
husbandry attitudes by Canadian Pacific salmon fishermen, who normally
operate under viciously competitive circumstances involving large numbers
of boats fishing short weekly openings in small areas off the British Colum­
bian coast. We were conducting short courses for the Canadian govern­
ment, intended to expose commercial fishermen to some of the management
principles and difficulties faced by the government's biologists; it was hoped
we could help defuse some of the governmentlindustry conflict for which the
salmon fishery had become notorious. We decided it might be helpful to
have a simple simulation game on a microcomputer, where a fisherman
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playing the game would have to manage a model salmon population over
time by choosing catches and spawning escapements each year. In effect we
made the game player a sole owner of the resource, and he could do with it

as he wished. Several dozen fishermen have played this game, and we never
saw a single instance where the player deliberately chose to take a quick kil­
ling and get out! All the players adopted a "timeless" attitude, probing the
model's responses to try and find a good operating level (spawning stock) for
maintaining high long-term productivity. After playing they continued to
complain bitterly about the government, but only about how it went about
regulating them. The basic objective of husbandry was never questioned.

These fishermen were not a culturally homogeneous group who might
have been educated from childhood to accept a conservation ethic. They

ranged from native Indians, who very explicitly claim such an ethic as part
of their tradition, to some very hard-nosed businessmen of various European
descents. Their educational backgrounds ranged from third-grade illiteracy
to a masters degree in economics. Some had grown up with fishing and had

relatively small financial investments in the business, while others had
recently purchased quarter million dollar seine fishing vessels and were obvi­

ously out to make a fortune.
There is an extensive literature on resource husbandry, most notably

in this century by writers like AIdo Leopold and Roderick Haig-Brown.
Rather than dwell on it further, for the remainder of this book I will take the
demand for long-term management as a basic given for policy design. Hav­
ing a long-term view is an obvious condition for adaptive management;

there is no point in learning more about something you intend to destroy
shortly.

Behavior of common property systems

Most really grim instances of resource mismanagement (from the hus­
bandry point of view) have occurred in situations where no one claimed
ownership of the basic resource, and where there was relatively open access
for new harvesters to enter the game. In such situations it makes no sense to
the individual harvester to engage in conservation practices, since the benefit
of his actions may be immediately taken by someone else. It is little wonder
that North American resource users have often been branded as shortsighted

and greedy; it would usually be a waste for them to behave otherwise.
Let us sketch out the typical pattern of development that occurs in a

common property resource that is initially unexploited, and where the users
do not agree over time to accept some collective or external restraint. This

pattern has been well documented in many texts; for a good discussion of it
in terms of dynamic models, see Clark (1976). I find it easiest to visualize
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the processes involved by thinking of the pattern as having four basic stages,
the last of which may be lost under certain conditions: (1)
discovery/initiation of development; (2) bandwagon growth; (3) the fallback;
and (4-) evolutionary development. Each of these stages is discussed in the
following paragraphs.

The discovery/initiation phase of development is poorly understood
and curiously unpredictable. It involves much more than a general percep­
tion that there is an abundance of something worth harvesting. Some
resources have been passed over for many years, even after their abundance
was noted, and it seemed quite clear that there were potential markets for
the products. The initial development appears to require special risk-taking
individuals, driven either by exploratory curiosity or by desperation about
the disappearance of opportunities elsewhere. Particularly in the develop­
ment of commercially sold resources, the risks can appear to form a very for­
midable barrier: will the harvesting equipment work as planned? Can a pro­
duct marketing netwurk be developed? Will the resource collapse naturally,
sooner than expected? Will the rapid entry of other harvesters deplete the
resource so quickly that even initial investments will not be repaid? These
questions may not loom so large in the minds of the government or large
corporation agents who initiate many modern resource developments, but
they remain as brakes to slow the first harvesting steps.

Once it is reasonably clear that the resource is abundant enough to
support more users and is profitable to pursue, development enters the
bandwagon growth phase. There is rapid diffusion of information among
potential resource users, sources of capital financing are offered (if appropri­
ate), and there is rapid learning about how the resource is distributed and
can be captured efficiently. There may also be rapid learning, of the
avoidance type, by the organisms. These learning changes are critical from
the point of view of adaptive management, since they greatly complicate the
interpretation of data acquired from resource harvesters, during a period of
great disturbance that would otherwise represent a valuable chance to learn
more about response potentials of the resource.

A number of factors may cause potential harvesters to overestimate
how well they would do by entering the game, as the bandwagon phase
proceeds. First, the information they receive on profitability is generally a
bit dated, and is often a biased sample emphasizing those already in the
game who have done well. Second, it may take time, several years even,
from the point of the decision to enter until capital equipment (boats, etc.)
are ready to use; the entering harvester must make some forecast, which
usually means assuming that conditions will remain as they have been for at
least a few more years. Third, examination of harvest data may give a seri­
ous overestimate of the renewal potential of the resource; the initial develop­
ment usually "mines out" some unproductive stock components (older
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organisms, marginal substocks that take long periods to build up, etc.; see
Ricker, 1973b).

Considering the above factors, the third or fallback phase is practically
inevitable. Rather suddenly, the harvesters find themselves in an environ­
ment of substantially reduced resource abundance and strong competition
from other harvesters. As economists put it, the profits are dissipated, so no
new entry decisions are made. However, there may still be new entrants,
due to misinformation and to the lags from decision to action, so the squeeze
becomes even tighter. The outcome is, of course, predictable: catches fall,
many harvesters cannot meet costs or feel they could do better somewhere
else, and harvesting effort also declines. Sometimes the decline is exag­
gerated by some natural catastrophe or environmental change that would
have done less damage to the unharvested stock; perhaps the most dramatic
example in this century was the collapse of the Peruvian anchoveta fishery
(Figure 2.1).
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Figure 2.1. Development of the Peruvian anchoveta fishery. The sharp collapse in
1972-7 3 was apparently associated with a major oceanographic change known as
El Nino. For an excellent analysis, see Glantz and Thompson (1981). Source:
Glantz (1983).

Under certain conditions the fallback is followed by an evolutionary
development period, which is characterized by relatively stable or cyclical
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yields, and by occasional periods of rapid technological change in the har­
vesting industry as new techniques are discovered and diffuse among har­
vesters. In biological terms, it is a period of "punctuated" evolution, with
periods of near equilibrium interspersed with episodes of rapid change
(Caddy, 1983). These episodes may be driven by harvesters trying to gain
comparative advantage over one another, but unfortunately this generally
involves getting better at finding the resource. In the long term, technologi­
cal improvements may drive the resource stock so low that it collapses to a
point of commercial, or even biological, extinction.

Three conditions must be met if there is to be a period of bionomic
equilibrium or evolutionary development after the fallback, in the absence of
management. First, the resource must become effectively more difficult
(costly) to find as its abundance declines. This means it must not be spatially
clumped in some very accessible manner; the passenger pigeon was
apparently hunted to extinction in North America because the last few flocks
and individuals kept returning to the same trees, where they were easily
shot. Second, there must not exist some alternative resource that can con­
tinue to support high harvesting effort after abundance has declined. This
was a basic problem with blue whales in the Antarctic; they would not have
been driven so near extinction if the whaling fleets had depended on them
alone. The fleets kept going, and killing blue whales incidentally, because
they could still take fin, then sei, then minke, and other whales. The third
condition is that the stock should not exhibit some production difficulty when
densities are low, such as trouble in finding mates (so-called Allee effect), or
increased natural mortality rates due to predators that would ordinarily take
only a small fraction of the stock but remain efficient hunters when the stock
is low (so-called depensatory mortality effects).

A great deal of concern has been voiced by resource biologists about
the third of those conditions, probably just because it is a biological condi­
tion that their training prepares them to think about. There are plenty of
examples of the first two conditions causing at least commercial extinctions,
but surprisingly little empirical evidence that the third condition is a com­
mon danger.

The key point to take away from this brief description is that resource
development in the commons involves a number of fundamental forces or
processes, both economic and biological, that do not just disappear when
management is attempted. Profitability, risk, recent experience, the com­
petitive scramble, and technological evolution remain as variables
influencing the behavior of harvesters. Biological factors such as erosion of
stock structure through loss of less productive subunits result in a changing
pattern of productivity over time. On both sides of the ecological/economic
interaction, there are forces at work to prevent the long-term maintenance of
any happy equilibrium or balance that may be achieved, and these forces
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come back to haunt the manager who tries to view his problem from any
narrow perspective or disciplinary emphasis.

Explicit Management Objectives

In practical situations resource management plans may be developed
from detailed scientific analyses, but they are ultimately the subject of essen­
tially political debate and action. In such debates it has proven essential to
define and focus argument on relatively simple measures or standards of per­
formance. There is nothing wrong with structuring debates in this way;
indeed it may result in clearer illumination of broader concerns and tactical
requirements for action than would any deliberate attempt to systematize
debate to cover all issues. The following review of simple objectives is
presented in a roughly historical sequence, to show how explicit objectives
have become more sophisticated over time.

Sustainable yield

One simple management objective has been just to maintain the
status quo, preventing resource deterioration and decline of yields from
whatever average has been recently achieved. More precisely, the manage­
ment authority maintains a running account of recent performance, usually
in the form of graphs plotting production trends over time, and tries to
prevent these trends from turning downward. Management is viewed as a
holding action against the forces of resource depletion.

This objective is obviously foolish from any long-term perspective,
since action guided by it will prevent both development of potential and
recovery from historical depletion. Yet many management agencies in
North America, particularly those concerned with wildlife and sport
fisheries, have acted as though it were a sufficient basis for wise decisions.
When asked why they do not try to do better, proponents from these agen­
cies have responded with arguments like: (1) ecology is so complex that
there is no such thing as a relationship between stock and sustainable yield,
so any deviation from the current ("tried and true") regime might result in
some unexpected disaster; (2) movement to a more productive regime would
involve allowing higher immediate yields, and these would result in unreal­
istically high expectations about the long term; or (3) movement to a more
productive regime would involve lower immediate yields, which are politi­
cally difficult to sell. We see in these arguments some of the implicit
management objectives that will be discussed in the next section.
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Maximum sustainable yield

21

It has long been recognized that there is likely to exist some relation­

ship between resource stock or population size, and the sustainable rate of
harvest. Very low stocks are likely to produce only small sustainable yields,
if for no other reason than that not enough organisms are around to do the
reproducing and growing that constitutes potential production. Very high
stocks are also likely to be unproductive, due to competitive interactions that
reduce the performance of the average individual; also a high stock might
perhaps deplete the other ecological resources upon which it depends. It has
been argued that any natural population that we see today must exhibit some

pattern of excess production related to stock size, at least on the long-term

average; populations without this characteristic should have already gone
extinct due to inevitable natural variations.

So, the argument goes, there should exist some intermediate stock or
production base that produces the greatest excess above maintenance
requirements; this excess is the maximum sustainable yield (MSY). Rather
elaborate models have been developed to make inferences about precisely

what stock size should produce MSY, and about management tactics (such
as regulating the size of organisms harvested) to maximize particular mea­
sures, such as total weight of organisms harvested. We will discuss some of
these models in Chapters 4 and 5.

Some authors have tried to view MSY as a rigidly deterministic,

equilibrium concept, and have argued that it is silly even to compute such a
simple number to describe the potential of populations that are subject to
various effectively random disturbances. They note further that it would be
impossible to maintain the MSY, as a fixed quota, for any length of time.
Even the slightest downward disturbance in stock size would result in lower
production, which would not balance the MSY quota, so stock size would
decline further. There would ensue a vicious circle of more and rapid
declines. The decline of the Pacific halibut (Figure 2.2) may have been
partly due to such a vicious circle, where the initial disturbance was an
increase in incidental catches of halibut in other fisheries (Deriso, 1983).

Another problem with MSY is Ricker's (1963) "big effects from small

causes." The exploitation rate that produces MSY is likely to be near a cliff
edge, with slightly higher rates driving the stock toward extinction. The

exact location of the cliff edge can never be known exactly, and it is a real
problem to decide how conservative the management should be.

In response to problems of deterministic assessment, it has been sug­
gested that managers regulate harvests according to a "feedback policy" that
varies the yield over time in some relation to changing stock size. As
we shall see in Chapter 8, it is not difficult to construct such a policy if the
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Figure 2.2. ~ reconstruction of historical changes in stock biomass, equilibrium
(sustainable) catch, and actual catch for the halibut fishery of the northeast Pacific
Ocean. Notice that the reduction in actual catches was initiated around 1970, a
fuHI0 years after a marked stock decline had begun. Source: Deriso (1983).

objective is a stochastic analogue of MSY, namely to maximize the average
yield over a long period. Then the optimal feedback policy to use is ridicu­
lously simple. The manager should set a particular base stock or escapement
computed from studying production rates at different stock sizes, then each
year harvest the excess above this base. Unfortunately, such base stock or
fixed escapement policies require annual assessments of stock size (which can
be very costly), and result in high variability of harvests from year to year.
They also prevent the variation in stock size that is needed to make statisti­
cally valid, adaptive assessments of the stock-production relationship, which
is likely to be changing over time.
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Risk-averse utility
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Many resource managers show strong aversion to any policies or
developments that involve risk. As noted above, managed systems are often
viewed as delicately balanced, with any change inviting disaster. In an effort
to counter such rigid and intuitive views, while providing some rational way
of dealing with the reasonable objective of avoiding unnecessary risks, it has
been suggested that management should attempt to maximize what statistical
decision theorists can a "risk-averse utility function" (Raiffa, 1968; Keeney,
1977).

A utility function is just a way of measuring the uncertain outcomes
of alternative "gambles," on a single value scale. I can explain the idea most
simply with an example, a situation my brother-in-law faced a few years
ago. Through some lucky circumstances, he was involved in the discovery
of a potentiany very rich gold mine. Shortly after the discovery he was
approached by a large company, which offered to buy the claim for
$250000. So he was faced with a hard choice: take the certain quarter of a
minion, or gamble that by keeping the mine he could get much more. He
felt the mine could produce anything (after development costs) between zero
and about $2 million, and his "expected value" (outcomes weighted by odds)
was about $1 million. Wen, he chose to take the sure quarter million; his
"utility" for this was higher than for the gamble with an expected value four
times higher. He claims he would not have been able to decide if the sure
offer had been only $100000, so we say he had equal utility for the choices
"100000 for sure" and "gamble on a million." The utility measure defined
(and assessed) this way can also be used to compare various gambles against
one another, and to define a general pattern of risk aversion in the decision
maker's mind. If my brother-in-law had required a million for sure before
he would forgo the gamble, we would caU him "risk neutral." Had he
required an even larger sure payment, we would call him "risk prone."

In resource management it is tempting to construct utility functions to
measure perception of policy gambles involving harvest, so as to help select
the best possible (utility-maximizing) gamble. Such assessments require
determining the utility functions of the decision makers, and also doing an
honest job of admitting and clarifying uncertainties and placing odds on
alternative outcomes. Thus the assessments are in the general scientific
spirit of making management as open and objective as possible. There
might be serious technical problems about placing odds on outcomes, but
these odds are somehow perceived and used anyway in making intuitive
decisions, so they should at least be aired for debate.

Unfortunately, there is a pretty fundamental difficulty: whose utility
function should guide the decision? Ray Hilborn once assessed the utility
functions for catches of Canadian government salmon managers and some
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commercial fishermen. He found the government biologists to be uniformly
very risk-averse, as were the younger commercial fishermen he interviewed.
These young fishermen had new families and mortgages to worry about, and
were concerned to maintain a steady, even if lower, income. But there were
some risk-neutral individuals, and even a few (mostly older) risk takers who
saw fishing as a grand gambling game; they claimed to highly value occa­
sional chances at the big haul. Why should the public, the basic owners of
the resource, act to support any of these very personal attitudes? The biolo­
gists were certainly not vested with any special understanding of public
values and needs. Indeed, since the public holds and somehow benefits from
many resources, perhaps it would be best served by treating each in a risk­
neutral way.

Risk aversion is an important concern in adaptive management.
Consider the choice, for example, between some conservative, status quo
harvesting policy versus a more daring experimental policy with uncertain
outcomes. Suppose we are confident that the conservative policy will con­
tinue to produce average harvests of 10 units per year, while available data
indicate a 75% chance that the experimental policy will result in yields of 20
units per year, but a 25 % chance that the average will be reduced to 5 per
year. Especially when many such policies and outcomes are to be compared,
using some formal computational procedure (optimization algorithm), we
are forced to find some objective way of ranking or ordering the choices. If
we ignore risk aversion, and weight each possible outcome by its probability
of occurrence, we would assign the experimental policy an expected value of
(0.75)(20) + (0.25)(5) = 16.25; this calculation obviously favors the experi­
ment. However, for a risk-averse manager, the statistical expectation will
have little meaning; the 25 % chance oflow returns will weigh heavily on his
mind.

Economic efficiency

Most resource management III this century has centered mainly on
the husbandry objectives outlined above, with the implicit assumption that
regulation and enhancement of biological harvests will also lead to economic
well being. This assumption is incorrect, and like many shortsighted and
expedient choices it can lead to precisely the longer-term maladies that it
seeks to prevent. Recall again that management rarely proceeds as a simple
"command and control" process with management agencies fully in charge;
instead there is a bargaining process with at least some power vested in the
resource harvesters. When their economic interests are jeopardized, the har­
vesters are usually in a position to prevent, retard, or delay needed husband­
ryactions.
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Consider what happens when a lid or quota is placed on harvest from
a developing (or recovering) common property resource. This lid does not
remove the economic incentives (profits, high wages) that attract new har­
vesters and investment in better equipment; indeed, it may have the oppo­
site effect by providing potential investors at least some assurance that a bio­
logical fallback is not imminent. So economic development proceeds, and
the limited yield is shared among progressively more harvesters. Ultimately,
profits are dissipated and wages fall exactly as in the unregulated situation,
until no new investors are attracted. Far more labor and capital than are
needed are now employed in pursuing the resource, but even further
changes are to come. In order to achieve harvest limitation, the manage­
ment authority employs tactics such as closed seasons and restricted harvest

areas. Harvesters, seeking ways to better their individual takes, start
responding to the regulations with various technological innovations (such as
faster boats to reach the fishing areas first). To survive, other harvesters are
forced to copy these innovations, and progressively more stringent regulation

is required to stay in step with the developing technology. New technologies
often involve economies of scale through larger harvesting units, so the
industry becomes more capital intensive with larger debts to be serviced (and
therefore stronger insistence on high harvests in the short term). So, in the
long term, harvesting industries tend to develop toward configurations of
technologies and income levels that are highly vulnerable to unexpected
events and natural variations; such industries become powerful lobbying
forces against management actions that are intended to cope with the varia­
tions.

A general hypothesis in economics is that maximization of a society's
welfare requires at least that the basic factors of production (labor, capital,
resources) be "efficiently employed," i.e., shuffled around through market
incentives or central planning until each productive activity uses no more of
each factor than necessary. According to this hypothesis, governments as
resource owners should restrict entry to resource harvesting, even if there is
no concern about long-term bargaining relationships, to that level of harvest­
ing effort where adding another unit would add more to harvesting costs
than to revenues. For a more precise discussion of the conditions for

economic optimum, see Clark (1976).
We may quarrel about the welfare maximization hypothesis, ques­

tioning everything from the economists' welfare measures to the assumptions
they like to make about things like perfect markets. But the key point is that

lack of economic management is bad for almost everyone concerned with a

resource; it pays to take at least some steps toward economic efficiency.
There have been some very clever proposals about how to accomplish this.
One approach is to place a direct tax on the harvest (but not on resource
entry; high "license fees" often make matters worse in the long term), so the
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public both takes its cut of the profits directly and makes new entry
unprofitable before the industry gets so large. Another is to assign indivi­
dual (or vessel) quotas, usually with some tenure or ownership and transfer
rights so more efficient harvesters can buy them up, with each quota large
enough to assure reasonable wages and return to capital investment. Con­
sidering the dangers of quota regulation in relation to generally uncertain
overall resource production, an alternative scheme is to allocate transferable
shares as fixed proportions of whatever variable total harvest is allowed.

Diacountrxi value

Concern with economic regulation has brought attention to a very
fundamental issue in resource management, namely how to value harvest
deferred to the future relative to what could be taken today. Surely we
should not claim that a ton of codfish harvest taken 100 years from now is
worth as much to society as a ton taken next year; what is our responsibility
to try and ensure that the later ton is available, especially considering the
gross uncertainties involved? No one may even want codfish 100 years from
now, and even better substitutes may be available. Also, we can take the
money from that ton of codfish next year, and invest it in other productive
activities whose value grows with time; should we save the codfish if its
growth potential is lower?

Economists approach these questions with two notions: option value
and discounting (Krutilla and Fisher, 1975). Option value is defined as the
amount of money that we would be willing to bid now, just to ensure the
availability of a resource to future generations. Its determination is essen­
tially a political and social matter, difficult to do in practice (how do you eli­
cit correct responses from people about what they would be willing to pay?).
Discounting is a more practical approach, and is based on an argument of
rational consistency in comparing any two time periods in the future: if we
value a unit of harvest deferred until next year at 90 % of its value if taken
this year (a 10% discount rate), should we not also assume that decision
makers 5 or 10 or 20 years from now will place the same relative value on
the next year's harvest? If so, we should value a unit harvest two years from
now as 0.92 or 81 % of its value now, three years from now as 0.93 or 73%
of its present value, and so forth. The total future value, say V, can then be
viewed as an infinite sum of annual values Vr , weighted by discounting:

GO

V =E arvr
r=O

where ais the discount factor (0.9 in the above example). This formulation
of value has the advantage of not assuming an arbitrary cutoff point or time
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horizon, as is sometimes done in making calculations about future opportun­
ities.

If it is agreed to measure resource value in terms of discounted incre­
mental values, it becomes a critical problem to choose an appropriate
discount rate or at least to show that the ranking of any proposed policy
options is the same for all reasonable rate choices. Some economists have
argued that this is a nonproblem, that resources should be treated like any
other investment opportunity and valued with current lending rates. Others
argue for very low "social discount rates." The basic issues at stake are the
ethical responsibility of governments today to future generations, and
whether to be optimistic that people in the future will find ways to take care
of themselves no matter what we do today. Obviously these issues cannot be
resolved completely: values are not universally shared, and the future will
remain uncertain.

Clark (1973) published the disturbing conclusion (for resource
managers) that it is optimal to let a renewable resource be driven toward
extinction, if the maximum renewal rate of the resource is less than the
discount rate used in valuing it. It may not pay the harvesters to drive the
resource to extinction, but government should not intervene to prevent a low
bionomic equilibrium. This conclusion came at a time of great controversy
about the world's whale stocks, whose maximum production rates of 3-15%
are well below the interest rates that were then prevalent in invesunent deci­
sion making, and there were heated debates about it. Although it is difficult
now to cut through the confusion of issues in that debate (i.e., whether it is
ethical to kill whales at all), it appears that consensus was reached that the
International Whaling Commission should base its decisions on very low
discount rates. Other agencies and commissions will probably follow this
model, and I will assume low discount rates in most places where the ques­
tion arises in this book.

Economic stability

Resource harvest is fed into marketing systems, or at least the har­
vesting activity supports some secondary industry (guides, tourist resorts,
etc.). These induced activities may be impossible to sustain without some
trust among the actors involved, in the form of reasonably stable employ­
ment, supplies, orders, reservations, and so forth. What bank, for example,
would give a fish processing plant or fishing resort the revolving loans it
needs to meet operating expenses when income is delayed or seasonal, if
there is no assurance that fishing will even be allowed next year? When you
think about the complex web of transactions and consensus required to
maintain resource-based economic activity, especially in systems that have
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been functioning for many years, it is easy to understand why about 90% of
the discussion in government/industry forums (commissions, hearings, user
committees, etc.) is usually about issues of short-term stability, and 10%
about the "broader" objectives outlined above. Yet there has been very little
theoretical or empirical research about the importance of short-term stability;
I suspect this reflects a lack of experience by most researchers of the practi­
calities of business decision making.

Prevention of rapid change can be in direct conflict with other
management objectives. I noted earlier that maximization of average harvest
is achieved by a "fixed escapement" policy, which causes large variations in
catches; this conclusion also applies when catches are discounted into the
future, and when the objectives involve simple measures of economic
efficiency, such as total long-term profit. For stocks that are already seriously
depleted, fixed escapement and related policies imply that harvesting should
be discontinued immediately and completely, in order to minimize the
recovery time to productive stock levels. The adaptive probing policies to be
discussed later in this book call for strong variations in harvests around the
level that appears best on the basis of historical data.

For stocks that exhibit strong short-term variations, there have been a
few attempts to quantify the trade-off between maximizing long-term yield
versus maintaining some constancy over time. Figure 2.3 shows an example
(Walters, 1975) for sockeye salmon of the Skeena River in British Colum­
bia. Here I did a series of optimizations, each with a progressively higher
target (or average) catch, and at each target tried to find the feedback policy
that would simply minimize the variance (mean squared deviation from
average) of catches around the target over a long time horizon. The result­
ing curve of mean versus variance is called a Pareto frontier, and it shows
the best achievable combinations of these two measures. The results show
that it might be possible to almost completely eliminate variation in catches,
but only by accepting a considerable (30%) reduction in the average. This
conclusion is hopeful; most fish stocks are not as variable as the Skeena sock­
eye. However, objective analysis cannot show where on the Pareto frontier
of Figure 2.3 it would actually be best to operate; that is a matter for
compromise between government and industry.

Other mechanisms and policies can act as buffers against variations in
natural production, if it is considered important not to stabilize harvests
directly. In market economies, prices for major resource commodities are
inversely related to supplies; this tends to dampen variations in income, at
least to the immediate resource harvesters. Better technologies for product
storage (canning, etc.) allow processing industries at least some flexibility to
stabilize delivery of harvests to markets, although these industries must then
maintain inefficiently large capital facilities if they are to take advantage of
bumper crops. Government may take an active role to stabilize incomes,
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Figure 2.3. Best possible trade-off between mean and standard deviation of catches
from a salmon population. Each point along the dotted "frontier" represents the
lowest standard deviation that can be achieved by following a feedback policy that
holds the mean as shown on the vertical axis. For Skeena River sockeye, the his­
torical combinations achieved were far below the optimum. Source: Walters
(1975).

especially for harvesters, through various insurance programs. Usually these
programs, such as unemployment insurance, serve the whole society; it
would be possible to design more focused resource insurance schemes to tax
the harvesters in good years and pay them back in bad ones. Indeed, feed­
back saving/spending schedules could be computed cheaply and separately
for each individual, to reflect his own time preferences and risk aversion.

Economic and cultural opportunity

Some resources appear to be managed as glorified welfare programs,
with far more people employed in management and harvesting than would
appear to be economically efficient. Canadian fisheries are an example;
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government expenditures for management, industrial subsidies, and unem­
ployment insurance probably exceed total resource revenues (quantities
times wholesale prices) in some areas and years, although exact accounting is
impossible because of shared programs and so forth. Such policies are
justified in the short term as politically expedient (buying votes, etc.) and
socially merciful in view of the human suffering that would be caused by
dislocating and retraining people for other employment. But might there not
be long-term values as well, especially in an era where the labor require­
ments for many economic activities are falling due to changing technologies?

A valid objective for government policy might be simply to help max­
imize the diversity of choices and opportunities for people to seek employ­
ment and lifestyles that suit their personal preferences. Resource harvesting
usually involves rather unique cultural situations and lifestyles, with dimen­
sions ranging from outdoor work to the challenges of scramble competition
to the very special community life that develops in places like isolated fishing
villages. It has been argued that the attractiveness of these situations is one
of the reasons why resource industries become overdeveloped, with some
new entrants knowingly accepting lower wages and profits than they could
achieve elsewhere. In effect, the wage differentials measure how much these
entrants are willing to pay to enjoy such lifestyles; the problem, of course, is
that by taking a part of the limited pie, the new entrants force already estab­
lished harvesters also to accept less. Perhaps the answer to this problem is to
develop systems of legal rights, based on precedence of entry and general
welfare concerns, analogous to those used in the management of water
resources.

Implicit Objectives

The above discussion was intended to lead the reader rather gently
from a consideration of obvious theoretical objectives through to thinking
about some of the deeper social issues that should concern resource
managers. Now we shall step back a little, and look at how management
institutions function as collections of people with limited rationalities and less
lofty personal objectives that color their responses to threat and opportunity.

In a brilliant study of how public decisions are made, Allison (1971)
notes that analysts have used three models to interpret how management
institutions "behave" in practice. Simplest is the rational actor model, in
which the institution is seen as behaving like a single individual, somehow
making rational choices using information and explicit objectives. Allison
notes that this model often does not work; actual decisions bear little rela­
tionship to stated objectives. More realistic is the standard operating pro­
cedures model, which argues that most government actions are the result of
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people who try to follow standardized operating procedures and rituals. The
idea is that thinking in general, and risky decision making in particular,
makes most people very uncomfortable; so they try whenever possible to fall
back on "tried and true" measures, and generally try to minimize the
amount of hard work required to get on with the job. Also, following stan­
dard procedures frees people to spend time working on personal objectives,
such as moving up in the government hierarchy, and to shift blame for bad
outcomes onto "the system."

Allison's third model, of push-and-pull among power factions, is
perhaps even more relevant to understanding how resource decisions are
made. The notion is that government agencies and their constituents are
divided into power blocks or factions, each with rather narrow objectives.
Decisions "emerge" from direct bargaining among factions, hidden power
plays, differential access to higher authorities, and so forth. The key point is
that lines of authority and influence are seldom so clear-cut as you might
think from looking at organization charts, committee systems, and commis­
sion agendas.

It is easy enough to see the power faction model in terms of broad
government/industry/public factions, but it is equally important to under­
stand that there are usually factions within government agencies as well. In
large agencies especially, people are charged with specialized tasks. It can
become impossible for individuals to maintain a balanced view of how
important their tasks are to the management system as a whole, and they
often feel a need to press task objectives strongly just to survive in the orga­
nization and maintain personal esteem. My favorite example, from personal
and family experience, is the people who run government fish hatcheries. It
is virtually impossible to work around a hatchery for very long, with its very
tangible outputs produced through a lot of drudgery like pond cleaning and
crises like disease outbreaks, without developing a very strong personal com­
mitment and feeling that it must all be worthwhile. So when broader
management analyses indicate (as is often the case) that the hatchery fish are
not surviving to be caught or are surviving well but causing problems with
wild production through competition or attracting too many fishermen, it is
little wonder that hatchery people often become viciously defensive and try
to build their power bases through simplistic arguments and direct appeals to
the public for support.

Management agencies are supposedly organized as hierarchies of
responsibility, with people at the top concerned about broad strategic issues
and people at the bottom about day-to-day operational tactics. But this
intended organization usually breaks down to some degree in practice.
Power factions, in pursuing limited objectives, do not respond precisely to
commandlcontrol decisions from above. People at top decision levels do not
concentrate solely on the difficult and ambiguous strategic questions; they
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often take refuge instead in worrying about (and interfering directly with)
the more understandable details of routine operations.

So throw together some hatchery managers, law enforcement officers,
ecological researchers, welfare economists, statisticians, policy planners,
resource biologists, administrative personnel, and perhaps quite a few oth­
ers. Call this a management agency. Now "interface" it somehow with its
constituents, ranging from politicians worrying about the next election, to
concerned conservationists, to careful business entrepreneurs, to "cowboys"
out to take the biggest catch this year. Be sure to throw in a few characters
with complex motives, like an operator of sport fishing charters who loudly
opposes fishing regulations that would make it easier to catch fish without his
help. Finally, consider the resource itself, a complex ecological system that
is too expensive to monitor thorougWy, changes unpredictably in response to
environmental factors, and generally offers all sorts of conflicting signals that
are open to every interpretation from imminent disaster to grand opportun­
ity. There you have the modern management situation. It is little wonder
that progress appears to be almost nonexistent, that only major crises seem
to elicit concerted response, and that resource managers are often branded as
cynics with little concern for resource husbandry.

Rhythms of Crisis and Opportunity

The last paragraph was not meant to be completely discouraging, and
it contained what I believe is a critical phrase: "crises seem to elicit con­
certed response." The behavior of managed systems appears to follow a
rhythm, or pattern, of punctuated evolution that has much in common with
the evolutionary development of unmanaged resources: there are time win­
dows when substantial policy change and adaptation is possible, interspersed
with longer periods of normal operation when changes are actively resisted
or ignored (Caddy, 1983). It appears that whole economies display such
rhythms, as evidenced by Marchetti's (1980) analysis of major technological
innovations over time.

Cycles of opportunity for change are practically inevitable in large
management systems, when various management responses are delayed
through insistence on standard operating procedures and where each move
involves bargaining among conflicting interests or factions. Most actions
will follow Lindblom's (1959) prescription of "incrementalism," making
small improvements without taking large risks. The trouble is, of course,
that no procedure or policy is perfect when dealing with a large, open sys­
tem; even if the system's environment is not changing, policies contain the
seeds of their own destruction. Holling (1980) cites the examples of insecti­
cide spraying to control spruce budworm outbreaks in eastern Canadian
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forests, and forest fire control in the western United States. These policies
were initially very successful, but set in motion an accumulation of fuel (for
fires and insects) that made control costs grow rapidly and the disasters more
severe when they did occur. Examples already mentioned from fisheries
include the eventual collapse of fish stocks managed under fixed-quota har­
vests, and the decline of wild stock production following the introduction of
hatcheries intended to supplement that production.

It appears to be a general feature of policy failure that the deteriora­
tion starts out slowly (while the policy works almost as planned), then
accelerates as the system state moves further from its intended level when the
policy was designed. In principle it should be possible to design feedback
policies where state changes are monitored to prevent entering such
"domains" of rapid change, but in practice the key variables are either not
recognized and considered part of the problem, or they are measured inaccu­
rately enough so there is continuing excuse for inaction until the changes
become too large to ignore. In short, Lindblom's presumption of incremen­
tal changes and responses simply does not work.

So the rapid changes induce a sense of crisis among the actors
involved in policy formulation, leading to a period of willingness to reexam­
ine basic objectives and assumptions. "Systems views" are solicited, and
there is likely to be good funding for us modelers. What happens next
appears to depend somewhat on luck. If the debates and analysis stumble
upon some really good new approach, it may be quickly adopted and blessed
with a chance to become standard operating procedure. More often, the
most pressing problems seem to solve themselves; the people most hurt by
the crisis give up and go away, and the system settles into a new apparent
"steady state" (period of tolerably slow change). Unfortunately, the new
steady states resulting from inaction tend to be progressively less productive
relative to long-term potential, with the resource stock eroded and generally
higher costs of production. This deterioration is often masked (and left open
to debate) by well intentioned decisions during the crisis to introduce new
resource monitoring systems; rarely is there sufficient attention to make sure
that the old and new data sets can be precisely compared.

Government employees often complain that crises develop all too fre­
quently, so they are forced into "firefighting" new problems every few days
or weeks, and have no time for long-term planning. They rightly develop a
feeling of unease that all the tactical "band-aids" are hiding the patient's real
illnesses, or are making them worse. Their concerns are justified, but what
they are usually seeing are the seeds of disaster rather than the deeper culmi­
nation of effects that represents major crisis and opponunity for strategic
change. Such opportunity is likely to come only once every 10-30 years.
For example, in the history of Pacific salmon management in Canada, the
following periods stand out:
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1913:

1925:

1947:

1969:

1980:

Adaptive Management ofRenewablf' Resources

Natural disaster reduces Fraser River sockeye, fishery develops for
other stocks.
New fishing techniques, overcapitalization, high exploitation rates
coastwide.
Widespread stock depletion, initiation of systematic catch and
escapement monitoring.
Collapse of herring fishery, rapid growth in various government
programs.
General feeling of economic crisis and failure of regulatory sys­
tems, initiation of Royal Commission on Fishery Policy.

There were, of course, other developments between these very fuzzy dates;
for example, a major salmon enhancement (habitat improvement,
hatcheries, etc.) program was initiated in 1974, and it helped contribute to
the sense of crisis that emerged around 1980.

One should not be discouraged that major opportunities for change do
not come very often-perhaps only once or twice in a manager's working
lifetime. There is plenty to be done at other times, and it may even be pos­
sible to deliberately engineer changes in the period and depth of the rhythm.
Especially with messy data sets that are open to alternative interpretation,
and with a diverse community of economic interests containing some dis­
gruntled people all the time, there is always the chance to form vocal coali­
tions of unease. This apparently happened in the salmon history outlined
above; Pearse's (1982) analysis of biological and economic statistics does not
show all that much change in the late 1970s. Obviously, crisis engineering
cannot be recommended as a regular management tool; it is too easy for
fabricated cases to be shattered, and with them the credibility needed for
ongoing management. A wiser strategy is to be alert to real crisis develop­
ment, and then to try to manage its course so as to turn it more quickly into
adaptive opportunity.

Bounding Problems for Analysis

It should be obvious from the discussion so far in this chapter that
there are no "natural" boundaries for defining renewable resource systems or
the limits of management responsibility in dealing with them. Once one
admits that it is not enough to focus on biological resource husbandry, the
domain of potential concerns becomes a matter of practicality and continuing
adaptation. Suppose, for example, you have been asked to examine future
management options for the Peruvian anchoveta fishery. You might begin
with a look at its biological history of performance, especially as related to
the oceanographic changes (El Nino) that apparently led to its collapse
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(Figure 2.1). But you would quickly become concerned with why the stock
has not been allowed a better chance to recover, and this would involve
analysis of the political and economic environment within which decisions
are made. Since the fishery is a major component of the Peruvian economy,
perhaps you should be worried about how managing the fishery would affect
overall measures of economic performance, such as employment and invest­
ment in other industries. That would lead you in turn to issues of interna­
tional trade, such as Peru's balance of payments and world demand for the
anchoveta as an industrial product. Anchovetas have been used mostly for
fertilizer, so you might worry about world demand for fertilizers in general,
and in particular about substitutes that may enter the market. In the limit,
what seemed at first to be a tidy biological problem turns out to have even
global dimensions and opportunities for policy intervention (Glantz and
Thompson, 1981). Frightened by this scenario of broadening economic con­
cerns, you might choose the opposite tack of delving more deeply into the
biology and oceanography. Need I even point out that you would, if you
proceed systematically, expose an equally frightening chain of causality lead­
ing down into biological details and outward across the Pacific Ocean?

It is easy to become caught either in a case of "paralysis through
analysis," or the equally foolish extreme of rejecting analysis entirely and fal­
ling back on the problem bounds set through earlier experience or codified in
someone's textbook. It should be possible to improve upon either extreme,
without ever pretending that there exists a single "best" model and course of
action. In this view, analysis should proceed by deliberately looking at the
system from several vantage points, each differing in four key bounding
dimensions:

(1) breadth of factors considered;
(2) depth of analysis into detail;
(3) spatial scale of variables considered;
(4) time scale or horizon for prediction.

The classical "theory of fishing" mostly prescribes analysis at only one point
in these four coordinates: (1) breadth-a single biological species; (2) depth
-average rates of growth, mortality, and recruitment; (3) spatial scale-the
so-called "unit stock" of interbreeding individuals with similar movement
patterns; and (4) time scale-a few fish generations, or sidestepped by
assuming equilibrium. In retrospect, many historical fisheries situations
(such as the anchoveta) could have been better understood by broader
analysis (including economic factors), perhaps even less concern for biologi­
cal details, by looking at larger spatial scales in relation to factors like move­
ment of fishermen from stock to stock, and by deliberately examining regula­
tory options and effects on several time scales. In other cases, probing into
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details might have revealed dangerous pitfalls or interactions that would
become important later.

The approach of deliberately looking at a system from several per­
spectives (different problem boundaries), hoping to learn something from
each, is related to a common debate that I consider rather trivial and decep­
tive. That is the argument about "top-down" versus "bottom-up"
approaches to analysis. According to top-down proponents, you should
begin by looking at the system very broadly and simply, as a few subsys­
tems, then begin decomposing each subsystem until an acceptable or ideal
level of detailed description is achieved. The bottom-up view is that you
should begin, instead, with the system's most primitive or elementary units
(individual fish, boats, etc.), and reconstruct (predict) aggregate behavior of
direct management interest by analysis of the interactions of the elementary
units. My objection to looking at problems according to either of these
recipes is simple enough. Neither has a "natural" starting point in the first
place, and by pretending that one exists you are quite likely to enter a long
process of analysis leading directly away from the relationships that should
be of concern. You can only avoid this in the top-down approach by begin­
ning always with a global perspective, which would usually be a waste of
time, and in the bottom-up approach by always starting with molecules,
which is equally silly. Also, human beings generally do not think very sys­
tematically, especially in cases where imaginative solutions may be needed,
and are likely to leave out something important when following any particu­
lar recipe. That key element of imagination and creativity can most readily
be stimulated by deliberately and repeatedly jolting your perspective to look
at things from different angles.

One way to make the business of problem bounding a little less pain­
ful and ambiguous is to think carefully at the outset about what products the
analysis should produce. It has been taken for granted by too many analysts
that the ultimate goal should be detailed and quantitative predictions about
the future of the system. But in practice such predictions are seldom exam­
ined very carefully or taken seriously by the actors involved in decision mak­
ing. Indeed, data and predictions are often used very selectively to back up
narrow positions and even deliberately to promote confusion in what have
been called "battles of models." Detailed analysis may be necessary to estab­
lish credibility or to explore particular tactical options, but the key product
should usually be a small set of strong (robust) qualitative arguments and
conclusions that can be understood and debated by actors without quantita­
tive skill. Each step in the analysis (and each proposal for data gathering, for
that matter) should be first examined in terms of its likely contribution to
qualitative arguments.
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Figure 2.4. Problem boundaries are often identified by working outward from a
few key perfonnance indicators. Broader and more detailed concerns are added at
each step by thinking about factors that influence each variable already identified,
until boundaries are reached where it is felt that further elaboration would be im­
practical or unnecessary.
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Experienced model builders often approach problem bounding by
"working outward" from a few key indicator variables, as illustrated in Fig­
ure 2.4. For example, early discussions might indicate that it is critical to
make at least some predictions about total catch and employment. A next
step is to identify major factors that influence or determine the key indica­
tors, and that are likely to change over time in relation to policy actions and
uncontrolled natural dynamics. Catch is obviously influenced by available
stock size and harvesting effort, and these variables are in turn interdepen­
dent (arrows in Figure 2.4), since changes in stock size will influence the wil­
lingness of harvesters to exert effort. Then, in a series of further steps, the
variables and interactions (dependences) identified at each previous step are
examined more closely, with a view to identifying (1) component factors that
may be important (for example, stock size is influenced by growth, recruit­
ment, and natural mortality, as well as catch); and (2) boundaries for the
analysis, beyond which further elaboration would be impractical. In this
approach, the "boundary" is defined by making a series of explicit decisions
to treat factors as constant or related to factors already identified, while
admitting that, in fact, there are other influences at work. In Figure 2.4, a
decision to treat interest rates and prices as constant, or related only to catch,
is made as an explicit choice not to look into the larger economic system
where availability of financing and product demands are determined.

The Hilborn Plan

Let me close this chapter with a brief case example of policy analysis
in fisheries. This example illustrates some difficulties and pitfalls of analysis,
but also the potential for uncovering new policies that sidestep apparently
unresolvable conflicts in objectives.

For several years, a small research group at the University of British
Columbia had been looking into various problems of Pacific salmon manage­
ment in Canada. In cooperation with government biologists, we examined a
rather staggering mass of data ranging from historical population trends to
fishing fleet behavior to the details of fish movements and regulations in local
fishing areas. We constructed literally dozens of management models, from
simple stock-recruitment curves to a giant coastal simulation that traced how
over 100 stocks move through the various fisheries each year.

Then in 1981, Peter Pearse was appointed to lead a Royal Commis­
sion on the status and potential of the Canadian Pacific fisheries. Royal
Commissions bring many actors together in a format of public hearings and
written briefs, and the Commissioner produces a report with recommenda­
tions for government action. We were asked to prepare an analysis of the
biological potential of the stocks, using our experience plus a sequence of
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assessment workshops involving government scientists and managers, and to
present key results to Commission audiences in the rather innovative form of
microcomputer simulation games that could be used by the audiences to
explore alternative policy options. By the time any of these games were
ready, the Commission's hearings had already fostered some very lively
debate about the future of the resource.

Our earlier analyses had indicated two basic paths that future produc­
tion might follow (Figure 2.5), both rather bleak from some points of view.
One extreme path involved "bite the bullet" rehabilitation of overexploited
natural stocks to more productive levels as quickly as possible, by not fishing
at all in various places (see above discussion on MSY objective). An alterna­
tive we called SEP or "the American plan," to stress a pattern that had
already developed in Washington and Oregon. This option would involve
maintaining and trying to increase harvest through massive investment in
enhancement (hatcheries, etc.), and it was just beginning in Canada with a
$300 million enhancement program. The basic trouble with this plan is that
the enhanced stocks are mixed with wild fish in most fishing areas, yet can
withstand much higher exploitation rates. So to reap the benefits of
enhancement, it appeared necessary to allow high exploitation rates that
would cause further decline in wild stocks. The end result would be a fool's
bargain, with the same total production concentrated in relatively few
engineered systems, operated at least partly at public expense.

We could see no way around a hard choice between these two
options, until Dr Mike Healey commented during an assessment workshop
that we should be looking at broader policy options such as catch quotas.
We had avoided discussion of quotas because of their obvious dangers, noted
earlier in this chapter, and had concentrated instead on an agonizingly
detailed analysis of optimum spawning stocks and exploitation rates. Then
Ray Hilborn made what I can only call a brilliant intuitive leap, seeing a
new option that all of us had missed (Figure 2.5).

Hilborn's idea is almost ridiculously simple. It comes from noting
that the exploitation rate, which must be reduced if wild stock recovery is to
occur, is basically just the ratio of catch to stock size. We usually assume
that the ratio can be reduced only by reducing catch. But in the salmon
case, enhancement can be used to increase the denominator, stock size; in
fact, this direction is politically much preferable to reducing catches immedi­
ately. Hilborn's idea is to hold catches at constant quotas for a while as
enhancement comes on line, so initially the exploitation rate must fall. This
starts to allow wild stock recoveries, which in turn contribute to driving the
rate down. The end result is like eating your cake and having it too: both
wild stock and enhancement production are increased, and stable economic
returns are maintained during the transition period. To hold the quotas in
the face of increasing abundance of fish, it would be necessary to
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Figure 2 .5. Three scenarios for future development of the salmon fisheries of Brit­
ish Columbia. The rehabilitation scenario involves reduced catches immediately to
allow stock recoveries. The current salmonid enhancement program (SEP)
scenario involves continued development of artificial production systems, and re­
placement of natural populations. The Hilborn policy scenario involves a combina­
tion of anificial production and fixed catch quota until the mid-1990s. Source:
Walters et al. (1982).
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progressively decrease fishing effort (days open, net sets per fisherman, etc.)
and thus, possibly, employment in the industry, but that reduction would
probably be necessary under the other plans as well.

Hilborn's plan is an excellent example of "counterintuitive behavior"
in dynamic systems; two apparently dangerous policy instruments when con­
sidered separately (quotas and large-scale enhancement) can in combination
produce improvements measured by a whole variety of management objec­
tives. We followed up the initial idea with much careful quantitative model­
ing, to look for dangerous side effects and to determine more precisely what
quotas and enhancement outputs would be needed to give various time pat­
terns of development. But this was easy after seeing the basic need to look at
the combined effects of the policy instruments, rather than the incremental
effects of each.

So modeling and analysis led us initially to a point of frustration,
which it then took a step of creativity and imagination to break. But even
the point of frustration might not have been reached if we had tried to
sidestep a lot of careful, quantitative analysis. The creative step then led to
another round of analysis, and eventually to the simple policy arguments of
the previous paragraph. It is these arguments that were finally debated in
the Pearse Commission.

Problems

2.1. Criticize the proposition that "the objective of management should be
to maintain the population at the level where productivity is highest,
so as to provide the maximum sustainable yield." What must be
meant here by "productivity," and how does the proposition read if
you insert this meaning instead of the single word? Is there likely to
be such a well defined level? What investments might be necessary to
achieve and maintain any particular population level?

2.2. Try to determine your own degree of risk aversion regarding uncer­
tainty about future incomes, by identifying what level y of sure
income you would barely accept if the alternative choice were a 50:50
gamble with possible outcomes 0 and X dollars. (Be sure to estimate
y for several values of X, including some X values well above what
you ever expect to earn.) You are risk averse if your y values come
out far below XI2, and risk neutral if they are near X. Then com­
ment on the following questions: Have you been (or can you be)
completely honest with yourself about how you would react if the
choices were real? If you are some day in a government policymak­
ing or advisory position, should you advocate public policy choices
that "feel comfortable" in terms of your own personal risk aversion?
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2.3. Suppose you are asked to advise about how to manage a population
that has been depleted through overharvesting or a natural disaster,
and will likely remain low unless deliberate steps are taken to reduce
harvest rates. Suppose it has been estimated that the best stock size
(for long-term production) is roughly double the current stock size,
and that the population will increase by 10 - X percent per year
toward that best level, where X is the annual percent harvest rate
allowed over the recovery period. Show how the choice of X will
affect the length of the recovery period.

2.4. Suppose the harvest value in each year for problem 2.3 is presumed
to be VI = XrN,}..', where}.. = 0.98, and the total resource value is
measured by V = r;:~~ v,. Suppose the population is to be held at N,
= 2No after it reaches this level, by setting X = 10% per year. Show
how the total value V will be affected by the choice Xl of harvest rate
during the recovery period. What happens to your conclusion if}" =
0.92? }.. =0.85?

2.5. Consider the stochastic recruitment models presented for Fraser River
sockeye salmon in problem 1.5. For each model, use Monte Carlo
simulations to estimate the mean and variance of catches over the next
50 cycles (generations) for three possible "feedback policies" for set­
ting C l , the annual catch:

(1) C r = R l = 1.0 (but C, = 0 if R, < 1.0). Here 1.0 is a "fixed
escapement" target.

(2) C l = 0.75 R r • Here 0.75 is a "fixed harvest rate" target.
(3) C, = 2.5. Here 2.5 is a "fixed quota" independent of N,.

For all tests, let s, = R, - C,. Which policy would you prefer if you
were a commercial fisherman?

2.6. Using the simulation developed for problem 2.5, try to find a feed­
back policy function C(R,) that will give higher variance of catches
over 50 cycles than the fixed escapement policy. Then try to find a
policy function that will keep the catch as near to 4 million as possi­
ble, deviating from this target only when the stock size gets very low.
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Chapter 3

A Process for Model Building

Modding is much too important to be left to modelers.

F.E.A. Wood (1978)

Chapter 2 emphasized the complex environment of renewable
resource decision making, and the need for both careful quantitative analysis
and some "imaginative synthesis" to occasionally cut through the complexi­
ties. This chapter turns to a process, called adaptive environmental assess­
ment (AEA), that uses the construction of dynamic models as an intellectual
device to help people clarify issues, communicate effectively about shared
concerns, and explore objectively the consequences of alternative policy

options. Details of the process have been described elsewhere (Holling,
1978; ESSA, 1982), so this chapter will provide only an overview with
emphasis on how the process is employed to promote adaptive policy
development.

Why Bother?

Let me begin with a brief discussion about why it is important for
resource analysts to engage in quantitative model building in the first place.
This issue has been discussed at length in dozens of treatises from practically
all scientific disciplines, and at least one (general systems theory) is deeply
preoccupied with it. Yet among resource scientists, and particularly biolo­
gists, just mentioning the word "model" can still be an invitation to long and
heated debate, or even immediate personal rejection. All sorts of myths
about what modeling can and cannot accomplish are promoted on the one
hand by people who seem threatened by it, and on the other by inexperi­
enced proponents who try too hard to defend it. Let me review a few of
these myths, and show that there is really nothing to be frightened or defen­
sive about.
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Perhaps the worst myth is what I call the all or nothing stance.
According to this myth, if models are to be useful they must be capable of
detailed and/or precise quantitative predictions. It is not made clear what is
meant by "useful," but the implicit presumption is either that scientific
hypothesis testing hinges critically on small deviations from predictions, or
that selection among policy options requires accurate prediction. If these
presumptions were true, it would indeed be folly to engage in renewable
resource modeling. The old adage about computers, "garbage in, garbage
out," could be (and is) interpreted literally and applied to all resource
models, if for no other reason than the lack of natural bounds for resource
systems (Chapter 2). One can always find some "boundary assumption"
about the constancy of larger systems surrounding the resource or unim por­
tance of some details that is almost certain to be incorrect. So some people
argue that if you cannot do it perfectly, do not do it at all. This argument
should carry about as much weight in modeling as it does in other human
affairs.

Another myth is that modeling is a substitute [or experience. I know
few model builders who would make this claim, which goes back to the
Baconian notion that the behavior of natural systems can be deduced a priori
from basic principles. But the claim is often made that models can be used
as "laboratory worlds" to "test" the possible effects of policy options that are
too big or expensive to study experimentally. Here I think modelers have
been at fault for not choosing their words more carefully; there can, of
course, be no test (in the scientific sense) when experimentation or observa­
tion is impossible. A more precise statement of the "laboratory world"
notion requires some cumbersome verbiage, and goes something like this:
we must still make policy choices even when experimentation is impossible,
and choice is always based on some sort of inference about alternative out­
comes; since inference (i.e., prediction) is unavoidable, we should make the
assumptions underlying it (i.e., the laboratory world) as clear as possible, if
for no other reason than to avoid mistakes of reasoning (hidden assumptions,
incorrect deductions). In other words, modeling in some general sense is
unavoidable, so do it openly.

It is really an empirical question about whether explicit modeling (as
opposed to intuitive inference) really helps to avoid bad reasoning. Few
would doubt this in fields like physics, but some historians have promoted
the myth that "complicated" sciences like biology have proceeded produc­
tively without resorting to the "mental crutches" of modeling. So they must
deny that the models of the mathematician Thomas Malthus helped Charles
Darwin crystallize his ideas about natural selection, that Gregor Mendel and
his successors did not benefit from thinking about and extending his genetic
models, and that an army of field ecologists has not gone forth to study why
Gause's competitive exclusion principle (deduced from a trivial model) has
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not prevented the incredible richness that we see in natural commumtles.
One may argue in each of these cases that the models were too simplistic and
should have been discarded or modified long before they were, that they
were woven into dogmas that retarded scientific progress; but this is an
indictment of scientists, not of the models!

The value of modeling in fields like biology has not been to make pre­
cise predictions, but rather to provide clear caricatures of nature against

which to test and expand experience. It seems to be a very fundamental
human need or requirement to construct such caricatures as a basis for learn­

ing. Moskowitz (1978) noted that even the learning of language by children

seems to involve a modeling process. His argument is that children form

explicit hypotheses (models) about how to say words, then use feedback from

parents to correct these models. This argument has a counterintuitive conse­
quence supported by some experimental evidence: "baby talk" by parents
can promote rather than retard learning, by giving children feedback that is
closer to their initial models (and so makes it easier for them to modify these

models).
Modeling involves two fundamental phases of thinking that alternate

with one another in a sort of adaptive dance. There is an inductive,
creative, synthetic, constructive phase when we try to decide what and how
to include in the caricature of reality. Then comes a deductive, more

mechanical phase when we use mathematical analysis and simulation,
employing the caricature as a "deductive engine." We then compare the
deductions with expectations and, if inconsistencies are revealed, the dance

continues with another round of induction. Learning is involved in both

these phases; we may be equally surprised by the gaps in understanding that
attempts at synthesis usually reveal, and by the predictions themselves.
Some workers have stressed one or the other phase, claiming that we learn
either mostly from the discipline of thinking constructively, or from rigorous
deductive analysis. So we find people content to develop flow charts and
"conceptual frameworks," and others preoccupied with mathematical tools
for optimization, sensitivity analysis, and so forth. These extreme stances

have contributed a lot to the confusion.
When you reject the extreme stances and recognize modeling as a

very human way of groping for understanding, it should be obvious who will
benefit most from it: those who engage in it directly. A great deal of money

has been wasted by government agencies on contracts to model builders, in
the hope that grand predictive models will be produced and then used by the
agency. The modelers certainly learned a lot from these efforts, and have
produced many lovely (and largely ignored) reports detailing formulations,
predictions, and uncertainties. A few of the models have seen some use, but
mostly as interactive computer games that are not taken ~eriously, or as gen­
erators of thick printouts to impress audiences who will never read them.
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How Adaptive Environmental Assessment Works

AEA was developed as a way of getting people involved in modeling
as a learning process, rather than as something you hire a specialist to do.
The basic idea in AEA is to bring people with a mix of knowledge and
talents together for brief periods of intense interaction in "modeling
workshops." The usual workshop involves:

(1) a modeling team with some experience in the details of mathematical
formulation and computer simulation;

(2) research scientists with various disciplinary backgrounds and special­

izations;
(3) resource managers with experience in the nuts and bolts of monitor­

ing and regulation, and a feeling for the history of the system;
(4) policy analysts/decision makers with some broad responsibility for

defining management objectives and options.

It is made an explicit objective of each workshop to develop and test (deduce
predictions, run on computer) a quantitative model of the management
problem during the time available. In early sessions, this model is usually
developed as a computer simulation, representing various components of the
managed system in some detail. Later sessions may involve "compressing"
the model to eliminate unnecessary details and to provide a clearer, simpler
basis for developing qualitative arguments about policy options.

That it is possible to build rather complicated and realistic models
during short workshops was discovered by accident, around 1970. Our
group at the University of British Columbia was asked to give a three-day
seminar on systems analysis to research project leaders from the Interna­
tional Biological Program (IBP), which consisted of several large (and at that
time, unique) interdisciplinary research teams, each attempting to study a
"whole ecosystem." These leaders had been encouraged to include model
builders in their teams and to synthesize the disciplinary results into ecosys­
tem models, and most of them were rightly suspicious of the idea. To give
them an inside view of modeling potentials and pitfalls, and to stress the
observation that it is mostly the modelers who learn from modeling, we
decided it might be possible to actually have them construct and run a little
ecosystem model during the seminar. So we put together a team of graduate
students to help with the programming, and Ray Hilborn wrote a skeleton
program to make it easier to enter model relationships and plot results. That
seminar was three days of sleepless nightmare for the modeling team; the
research leaders enthusiastically elaborated a far more complicated ecosystem
model (of a hypothetical lake) than we could program for them, our mini­
computer broke down several times, and the only simulation results that we
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finally did get were utter nonsense. We feared that the seminar had pre­
cisely the opposite effect than intended, and that the participants would leave
with even deeper doubts about the value of model building.

Figure 3.1. The construction of quantitative models is an important step in prob­
lem analysis, but the models should not be seen as final products. Here is where
they usually belong. Source: Buckingham (1979).

Then letters began arriving from the IBP project leaders, asking for
more results from their model and requesting that we do similar exercises
with their teams as participants. So we held a series of what were now called
modeling workshops, and each case allowed us to test and refine various tac­
tics to improve communication and programming. C.S. Holling suggested
we try the process on resource management cases, and he arranged to do a
series of workshops for the Canadian Department of Environment on prob­
lems ranging from spruce budworm dynamics in eastern forests to Arctic
development to Pacific salmon management. These cases led to a growing
demand, and the emerging AEA process was applied to literally dozens of
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cases. Hilborn's programming aids were developed into a widely used pack­
age called SIMCON (Hilborn, 1973), and the AEA process was turned on
itself to assist in training new modeling teams. Four modeling teams were at

work in North America and Europe by 1982.
Few of the models developed in AEA workshops have been used

directly for policy analysis. Most have been put where they belong as
mechanical instruments for prediction (Figure 3.1), having served the essen­

tial purpose of promoting clearer thinking by and communication among the
workshop participants. Some have provided a starting point or broad frame­
work of relationships for organizing sequences of more focused workshops
and meetings, leading finally to serious policy recommendations.

Getting Started

Perhaps the most difficult step in AEA occurs during the first
workshop day or in earlier "scoping sessions" involving the modeling team
and key clients. This is the step of problem bounding, discussed in Chapter

2, where it is decided what basic components and space/time scales are to be
considered. When the bounds are set in scoping sessions, it can be difficult
to decide even who should be involved in the workshops. Politics and preju­
dices make it difficult to see a clear entry to the problem. Disciplinary spe­
cialists become defensive, worrying that their area of knowledge will not be
represented in enough detail or will be seen as of questionable importance
for continued research support. Managers insist on attention to practical
questions and to the narrow objectives that they feel comfortable working
toward. Policy people press for looking at the problem more broadly, since
they must take account of social objectives and forces that extend far beyond
the particular resource system being considered. The modeling team tries to
make its work easier, promoting consideration of factors and processes that

they already know how to represent in the computer.
Frustrations can build rapidly during the problem-bounding discus­

sions, and final consensus is seldom reached except as a matter of sheer
exhaustion or running out of time. Indeed, one of the original ideas behind

building models during short workshops was to prevent the kind of "diseased
introspection" or "paralysis through analysis" that has gripped some interdis­
ciplinary teams, and to force movement through a series of steps that are
quite likely in the end to reveal that many of the original or intuitive con­
cerns were unwarranted.

Some of the early AEA workshops were conducted during a period
when the Canadian bureaucracies were being encouraged to use systems
approaches, and in particular the notion of "management by objectives."
The idea was apparently that formal articulation and listing of objectives



A Process for Model Building 49

would make civil servants function more effectively. Our workshops were
often attended by people fresh from meetings where such lists were pro­

duced, so we tried a few times to use their lists in problem bounding. The

results were disastrous, basically because spelling out what you would like
tells you very little about how to get there. In the end, we found it much
more productive to ask for lists of (1) possible actions (policy instruments,
regulatory measures, etc.), and (2) performance indicators (population size,
revenues, employment, etc.) that would be used to measure attainment of
objectives. These lists help directly to define a model structure, by pointing

to input/output relationships that should be represented either directly or
indirectly (as the consequence of interaction among other, so-called "state"
variables).

We were often admonished to "stick to the facts" and try to model
only those processes and variables for which a solid data base was available;
that is, we were asked to represent some problems narrowly, but precisely.
But by doing this we would simply be reinforcing concern with those well
trodden paths that researchers and managers have found it convenient to fol­
low, and the process would fail as a device to promote learning. Luckily,
there were normally a few wiser heads among the participants, and they
helped to convince others that we should worry first about understanding the
problem system, rather than about what work happened to have been done

to date on it.
Perhaps the most important lesson that we have learned about prob­

lem bounding is the value of deliberately looking at the system more

broadly, and in somewhat more detail, than initially appears worthwhile.
To encourage this, it is necessary to conduct the problem-bounding discus­
sions as "brainstorming" sessions, with emphasis on getting people to throw

in lots of ideas and factors while being careful not to make critical comments
or judgments that may inhibit others from speaking. &ientists usually have
a terrible time trying to behave this way, while policy people enjoy it. The
following two examples show what effect it can have on later analysis and
conclusions.

James Bay development

The James Bay development is an enormous hydroelectric project in
northern Quebec, and we were asked to look at its environmental effects.
Details of the AEA workshop and its results are given in Walters (1974); let

me just trace here what happened because of one comment during the
bounding exercise. Most of our attention had been focused on how to model
the project elements (darns, diversions, etc.) and their obvious direct impacts
on fisheries, wildlife, and the native Indian economy. Then one character
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asked "what about the camp cooks," and amidst groans of disgust from other
participants went on to explain that the large construction camps would have
cooks (and others) with some free time every day for fishing; they might take
enough fish to make a significant dent in the very unproductive stocks, like
lake trout, that are characteristic of northern lakes. To humor him, we
agreed to include a few simple harvest calculations in the computer program.
Later in the workshop, these calculations were discussed and some rough
data on catches were presented. Suddenly the numbers did not look so
small, and we began to worry about other "incidental" harvesting activity,
for example by tourists stopping along the several hundred kilometers of
access roads to the project from southern Quebec. It did not take long to
realize that we were talking about fisheries and wildlife "impacts" that were
likely (if uncontrolled) to be at least an order of magnitude larger than total
direct impacts in the actual development area, where most of the monitoring
and research had been concentrated!

This example alerted us to be very careful about spatial bounding for
environmental assessment in general. As shown in Figure 3.2, assessment
normally proceeds with the assumption, borrowed by analogy from physics
and engineering, that effects of disturbances are greatest at the source and
diffuse in space and time. It is easy to see how bad this assumption is, just
by thinking about all the means we have for "transporting" some ingredients
of a problem to other places, or "storing" them for someone else to worry
about later.

Salmon fishing in British Columbia

Southern British Columbia supports a valuable sport and commercial
fishery for chinook and coho salmon. In view of evidence that some stocks
were declining, we were asked to examine various regulatory options for the
complex gauntlet of fisheries involved (Argue et al., 1983). Shortly after the
juvenile salmon go to sea, they become subject to "shaker mortality," when
they are hooked and released by sport and commercial troll fishermen.
Many are trapped and smashed in seine nets. As they migrate and grow,
they become of legal size and are taken in various sport and trolling areas.
Seines, gillnets , Indians, and river sportsmen take them as they mature and
move into spawning rivers. The situation obviously calls at least for some
careful quantitative book-keeping, since regulations at one point in the
gauntlet may just make more fish available for harvest later. The fishing
interest groups are not exactly in love with one another, and demanded
assurances that conservation measures imposed on them would not benefit
someone else.
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Figure 3.2. Alternative paradigms for the distribution of development impacts.
Source: Holling (1978).

It is usual in modeling such situations to assume that fishing efforts
are either constant or subject to full management control. Then the model is
used to search for better, or at least mutually acceptable, effort combinations.
But an economist in the workshop pointed out that all sorts of variables affect
fishing effort, and that sport fishermen in particular may respond to changes
in the abundance and size of fish available. He noted that the sport fishery is
"open entry" with a trivial license fee, and involves a very large number of
people (over 100 000) who could (and do) create political nightmares for
anyone trying to regulate their effort directly. We were not convinced it
would matter, but to pacify the economist we agreed to include a program
option that made simulated sport effort increase with fish abundance.

That option came to dominate the later analysis, as we realized that
the sport fishery is a significant mortality agent and response by it can com­
pletely cancel or even reverse the effects of most conservation and enhance­
ment measures aimed at increasing juvenile and ocean survival. For
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example, suppose the shaker mortality can be reduced by making sportsmen
and trollers use barbless hooks. Fish "saved" in this way may just attract
more sportsmen later on. Sport effort responses may also exaggerate the
"American plan" effects of enhancement on wild stocks (Chapter 2). In
short, the sport fishery may induce an effectively unregulated "bionomic
equilibrium" on the system, with all attempts to increase stock size just
adding to the total sport harvest.

Similar concerns about sport effort response have become a policy
issue in other North American fisheries, such as the billion dollar sport
fishery developed in the Laurentian Great Lakes through salmon and lake
trout stocking and efforts to control the parasitic sea lamprey (we will return
to this case in Chapter 5). Effort responses should be a major worry in some
wildlife situations as well. But effort responses are one of those processes
mentioned in Chapter 1 as being very difficult to study experimentally.

Workshop Tactics

In the two examples above I skipped from the crucial first step of
problem bounding to the end results, to show how apparently minor changes
in the boundaries can make a drastic difference in what is finally considered
most important. However, like many lessons that seem obvious with hind­
sight, some careful and even tedious steps were required along the way. For
each factor that emerges as important, usually another dozen fade from con­
sideration as their possible effects are articulated. This section reviews the
steps and tactics that follow problem bounding in AEA workshops.

Defining subsystem tasks

Problem-bounding discussions can lead to an amorphous set or listing
of concerns. A first step in bringing some order to those concerns is the
seemingly simple matter of classifying them into a few subsets or subsystems.
Then later in the workshop each subsystem is analyzed more carefully by a
working group consisting of one member from the modeling team and
several participants. Generally the classification is most naturally based on
areas of disciplinary concern and knowledge, so that each working group can
concentrate on a "tightly interlinked" set of variables and relationships,
which are "loosely connected" to other subsystems through a few variables of
shared concern.

Unfortunately, the interactions that we call resource dynamics are not
so easily decomposed into nice disciplinary clusters of roughly equal com­
plexity (which would even the workload among the participant groups).
Suppose, for example, that we are looking at a case where the obvious



A Process for Model Building 53

concerns include biological population dynamics, pollutants and their effects
on the population, development of the harvesting industry, and the regional
economy within which the industry is embedded. Here it would seem obvi­
ous to have two working groups consisting mostly of biophysical disciplinari­
ans, and two with mostly social scientists. Now, which group should deal
with (analyze, construct simulation rules for) harvest, that key link between
population and industry? If the population group tries to model harvest,
they may need all sorts of input information from the industry group, such
as harvesting effort and measures of technological efficiency in capturing the

organisms. This would violate the tactical objective of having working
groups that share or exchange only a minimum amount of information. The

situation might not be improved by making harvest a responsibility of the

industry group, since they may need equally complicated biological informa­
tion (on densities, seasonal distribution, spatial pattern of organisms avail­
able, etc.). As we shall discuss in Chapter 4, harvesting involves a tightly
interdependent set of biological and economic factors, and some processes

like the short-term "numerical response" of harvesters to resource density
have not been studied carefully either by resource biologists or by econo­

mists. Such gray areas that fall between topics of traditional disciplinary
emphasis arise very often in workshops, and are usually the source of key

uncertainties. In practice, a workable approach has been to assign the
difficult concerns, such as harvesting, to whichever subsystem working group
appears initially to have the lightest workload. Then, as uncertainties and
expert knowledge become clearer during working group discussions, respon­
sibilities are reassigned by forming ad hoc new teams or committees to look

at the most troublesome concerns. This adaptive approach to the workshop
agenda is welcomed by most participants, though a few always find it confus­

ing and even threatening. Indeed, to apply it in an ordinary setting
(scientific meeting or management conference) would be to invite an unpro­
ductive diffusion and fragmentation of discussions, following lines of least
resistance into old and comfortable topics. What makes the adaptive agenda
work in AEA is the insistence on producing a working model during the
time available; the developing model provides both a concrete framework for
seeing where the discussions fit together, and an ever-present excuse to cut

off irrelevant or repetitive conversations.

Looking outward

The initial problem breakdown into subsystems is followed by a spe­
cially structured discussion, called "looking outward," intended to define the
working group responsibilities as precisely as possible. It proceeds by asking
each working group to state what input information it will need from each
other working group in order to represent whatever interactions or variables
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are assigned to it as internal concerns. At first this forces each group to do
two things: (1) to think carefully about how detailed their submodel needs to
be (to decide how detailed the information inputs from other groups need to
be); and (2) to "bargain" with the other groups about what they can, in prac­
tice, provide. So a "fishing industry" group may initially ask a "population
dynamics" group for information on total catches. Then the population
group might reply with offers of detailed size composition of the catch. The
ensuing exchange may reveal that there is some reason, not initially recog­
nized, why the industry group should worry about such details. Or, the
population group may realize that its initial assumption about the need for
detail (as output from its submodel) is exaggerated.

After an initial round of defining and bargaining about input needs
for all the subsystems, each working group is then asked to look systemati­
cally at all the outputs it has been asked to produce for the other groups.
Then the question is asked "in view of these outputs requested from you, is
there any other input information that you will need besides what was listed
in the initial round? Or, even better, can you get by with fewer or simpler
inputs than you originally thought?" These questions often result in quite
surprising reappraisals by participants of what the problem is really about,
and about the importance to other disciplines of measurements (variables)
they are (or are not) prepared to supply.

In principle, the looking outward process can result in an escalating
argument over details, with each group forced to request more inputs as
requests for its outputs grow. To my knowledge, this difficulty has never
occurred in practice; most often the discussions go to the opposite extreme,
with participants too willing initially to oversimplify the interactions. Also,
participants tend to "police" one another, by referring back to the
action/indicator lists developed during problem-bounding sessions, and
insisting that each new request for inputs be justified as necessary for calcu­

lating indicators in relation to actions.
Occasionally the looking outward process is used in meetings where

there is no time or commitment to produce an explicit model. This has been
especially valuable for interdisciplinary research teams trying to plan joint
studies. Too often, the members of such teams proceed into the field with a
distorted or narrow notion of what the other members will need or can use,
with a predictable result: a collection of reports that enhance each member's
position in his discipline, and a paper or two about the whole system, but
filled with arguments that bear little relationship to the data collected.

Submodel development

The action/indicator and looking outward discussions leave each
working group with specific modeling responsibilities, as shown in Figure
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Figure 3.3. Each submodeling group in an AEA workshop has a well defined job
in terms of the information available to it and the outputs it must produce from its
submodel's calculations.

3.3. The group must produce a collection of rules for predicting how a par­
ticular set of indicators and outputs to other groups will vary over time, in
relation to actions and time-varying inputs from other submodels.

As a charge to each group before it begins to formulate its rules, we
warn not to try anticipating which combinations of actions and time-varying
inputs might be tried later in the workshop. In other words, each group
must try to formulate its rules (submodel equations) so as to be valid for all
possible values of its input variables. This has a way of shifting attention
away from recent historical averages and trends, toward trying to make
statements about functional relationships (how variables relate to one
another, independent of particular times of observation). Almost immedi­
ately and inevitably, attempts to make such functional statements lead to the
recognition that historical experience is limited, so that extrapolations (as in
Figure 1. 1) will be necessary.

Most AEA computer simulations are constructed with the basic logical
structure shown in Figure 3.4. The state of the modeled system at any
moment in time is represented in terms of the values of a collection of "state
variables," such as population size and amount of harvesting equipment
currently available. Then the simulation rules (model equations) try to
predict new values for all the variables after some short time step (usually a
year), in relation to (1) current variable values (e.g., current population
affects population change), (2) policy actions specified for the step, and (3)
values of external "driving variables" (random environmental effects, varI­
ables represented only as time trends) chosen for the step.
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Figure 3.4. Logical structure of simulation models produced in AEA workshops.
Long-term predictions are generated by repeatedly applying the rules for change to
the new states resulting from the last application of the rules.

Long-term predictions are built up by applying the rules repeatedly,
each time letting the last predicted state be the new starting state. It might
seem that this iterative or "recursive" procedure just invites trouble, in the

form of errors that accumulate over time. Unfortunately, there is no way to
avoid such error accumulation in processes that the rules imply should exhi­
bit positive feedback (geometric growth; larger variable values causing still
larger changes). On the other hand, there is no other known way of deduc­
ing the dynamic consequences of whole collections of processes interacting to
produce both positive and negative feedbacks.

The rules within each step may be quite complicated and involve all
sorts of mathematical forms, such as differential equations, to represent vari­
ables that change continuously in time; but we find that most workshop par­
ticipants can relate most easily to the idea of a basic dock or time step within
which they are free to represent both continuous change and discontinuous

phenomena like seasonal reproduction. Indeed, the rules for change within
each time step are often organized to reflect the seasonal cycles of organisms
and economic activity.

After this approach to simulation has been explained to workshop par­
ticipants, it is usually easy for them to decide, at least generally, how their
rules for change should be structured. With the help of its modeling team
member, each group makes a list of the state variables for which they will

need to construct rules of change. Then the change (per time step) in each
variable is expresst'"r1 as a tautology that decomposes it into more manageable

components (for example, population change equals births minus natural
deaths minus harvest plus immigrants minus emigrants). Then it is
attempted to express each of the components as a function of whatever pol­

icy, state, and driving variables are thought to influence it. These functional
relationships form the basic empirical assertions or scientific hypotheses of
the model.

The business of developing functional relationships is difficult for par­
ticipants who are used to thinking in terms of time series and trends, or who
are not used to dealing with even simple equations. Here the modeling team
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member lends his experience to the working group, suggesting possible rela­
tionships based on his experience and the quantitative literature. These
suggestions form "straw men" that the participants can criticize, and these
criticisms often point to better representations. Again we see an adaptive
process, remarkably similar in many ways to the model mentioned in
Chapter 2 about how children learn language. The effective modeler is a
child, and his baby talk is corrected through criticism toward the understand­
ing that his parents, the participants, have. Some modelers I know con­
sistently get this backward, and try to act like parents with people who, in
fact, are considerably more knowledgeable than they; the resulting confron­
tations are seldom an effective learning process.

The formulation of functional relationships is accompanied by specific
data analyses to get at least rough estimates of key parameters, and to pin­
point where extrapolations beyond historical experience will be necessary.
Also, there is usually an attempt to examine very long-term historical records
for clues to relationships that may have been overlooked initially. For exam­
ple, very long records of relative fish densities can sometimes be obtained by
counting scales from cores of anaerobic bottom sediments (Soutar and
Isaacs, 1974); density cycles or inverse correlations between species may
point out possible ecological interactions (predation, competition) not evi­
dent from recent population statistics. Here modeling experience can again
be important: the modeler may see patterns predicted by other models; he
can then suggest to participants that they try (evaluate) similar causal argu­
ments.

After developing functional relationships, the working groups face a
final set of sometimes difficult choices about how to represent policy actions.
The easiest approach is usually to specify what control theorists call "open­
loop" policies. An open-loop policy is simply a time series of actions,
imposed from outside on the model without reference to changing system
state. Though some actions may actually be imposed this way in practice,
the more common situation is to have some sort of "feedback policy" that
relates action to estimated system state. Then a key part of the modeling
exercise becomes the development of a set of alternative feedback policies
that relate simulated action to different state variables (or simulated sampling
estimates of state variables); these alternative policies can be compared to
one another as simulation "scenarios".

Programming and scenario development

When the logical structure of the submodels has been decided, the
modeling team closets itself to develop the simulation program. The partici­
pants work on parameter estimates, if needed, and then convene for scenario
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development sessions. In these sessions, they try to define policies (combina­
tions of actions) that will challenge the model's credibility and perhaps sug­
gest directions for more careful policy analysis later. They are warned that
the simulation program is not to be taken very seriously, especially at first,
since there are likely to be programming errors and some ridiculous parame­
ter estimates.

There is no fixed protocol for the actual programming; each team
develops conventions and procedures that are comfortable for its members.
Usually the programming starts with a short working session to (1) layout
(flow chart) the order of calculations for the overall program, and (2) decide
on computer variable names and check consistency of measurement units for
those variables that are shared among submodels (the subgroup inputs and
outputs). Then each programmer follows his own procedures for making his
working group's model. His only constraint is a time deadline, when he
must be ready to have his subprogram interfaced with the others. Because of
variable work loads, programming skills, and plain luck, the submodels are
usually not completed in phase. This means they can be entered and
"debugged" sequentially, and the programmers who finish first can help the
others.

As the submodels are tested individually and interfaced, the program­
mers inevitably uncover logical problems with the initial formulation and
parameter estimates. Populations grow geometrically without bound, or col­
lapse even without harvest. Pollutants go to enormous concentrations, even
when simulated sources are turned off. Harvesting effort oscillates violently,
as the simulated harvesters alternately expect severe competition and none at
all. Some of these logical problems can be traced back to simple program­
ming errors, but there usually remains a subset that reflect errors in the ori­
ginal formulation and deeper systems issues (such as whether response time
lags will actually cause harvesting effort to oscillate).

So even before any formal sessions are convened to explore policy
options, the programmers must usually reconvene their subgroups. They
show preliminary results that do not seem to make sense, explain why the
equations imply these results, and solicit advice about whether to change or
add new relationships. This is an exciting time for many participants, as
they see the logical consequences of their own thinking and are forced to be
even clearer and more precise. Some come to appreciate how fragmentary
their thinking has been, and see new research questions and priorities.
Management approaches are questioned as being dependent on one or
another bad assumption, and imaginative new possibilities are suggested.
Occasionally, implausible predictions are seen to be borne out by field data
and to explain features in the data that had previously been ignored or
explained in other ways. (This is dangerous; such lucky discoveries in no
way imply that the model must be "correct;" see Chapter 6.)



A Process [or Model Building 59

With luck the model will go through several revIsions In the last
workshop day or two, with the results after each revision being harder to
reject on the basis of intuition and available historical data. At this point
many participants will develop a strong parental affection for the model, and
insist on using it to develop at least a few policy scenarios. It becomes
important that the model be "interactive:" it must easily permit a variety of
policy changes, and must produce graphical results quickly (no more than a
few minutes for the computer to produce each multistep scenario). With fast
interaction, the model becomes a game, played for its own interest and to
uncover flaws and policy possibilities.

In early workshops, we failed to recognize the learning value of game
playing, and insisted instead that the participants develop just a few compli­
cated scenarios and examine the results from each in detail. That is, we fell
into the trap of treating models as instruments for precise prediction. Now
most AEA workshops stress the use of tools, like microcomputers and
interactive graphics packages, that make it easier to explore model results
quickly and selectively. In a good workshop, we might end up running 20
or 30 scenarios, and then only examine the results from one or two in any
detail.

Running dowD

Early AEA workshops ended with formal discussion sessions to item­
ize research and management priorities. The submodeling and
scenario/gaming sessions usually make evident a number of gross uncertain­
ties, and a few opportunities for policy improvement. We felt it was impor­
tant to capture these pearls in some sort of workshop report, lest they be for­
gotten by participants after a few weeks "back at the office." It took a few
years for us to learn that (1) forgetting times can be even faster, i.e., a few
days; (2) reports are seen as a way to complete (and file away) analysis, not
keep it alive in people's minds; (3) most of the top research priorities are
about processes that no one knows how, or has the patience, to study (see
Chapter 1), and so are ignored anyway; and (4) workshop models are too
often deceptive, and priorities identified with them are usually changed after
more careful analysis.

What these points imply is that the AEA process should be used as a
starting point for analysis; there must be strong commitment to continue to
bring key people together for model improvement and policy exploration. It
seems, then, that the best way to end a first general AEA workshop is by
deliberately not drawing and printing any formal conclusions. Those last
hours are better spent in planning a timetable for further work. There
should deliberately be no clear ending, just as in other human learning
processes.
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Compression for Understanding

After observing the behavior of an AEA model in gaming sessions, it
is generally (perhaps always) possible to see ways to greatly simplify the
representation of those variables (indicators) that are of key policy interest.
Chapter 5 will discuss examples of the basis for and mechanics of doing such
"compressions" (simplifications without loss of essential features). Here I
will simply stress how model compression is promoted by and complemen­
tary to the AEA workshop process.

Reflect for a moment on the title of this section, which I lifted verba­
tim from Holling (1978). What do we mean when we say we "understand"
something? Is it just that we can predict how the thing will behave? I think
not; we might achieve good statistical prediction without ever asking how or
why the thing works. Also, there are things everyone would agree are
understood in some basic sense, but behave unpredictably (the weather, for
example). "Understanding," then, has to do with our ability to describe the
thing in simple terms, or place it in a "comfortable" category of similar
things. Actually, I have never heard anyone give a satisfactory explanation
of what understanding means, in spite of how important we all feel it is. But
everyone would agree that simple description is somehow essential to under­
standing. Then, if compression was always successful in capturing the
essential causality in and behavior of a system, we might want to title this
section "Compression results in understanding." Instead, about the strong­
est justifiable assertion is that "compression is a necessary, but not sufficient
step in understanding." Let us cut through this pseudophilosophical
wandering with a more direct empirical assertion: if you want to be under­
stood, be prepared to explain your system in simple terms; build this expla­
nation from a careful compression of the original system representation.

Recall again that most resource policies are the outcomes of bargain­
ing and debate in essentially political contexts. There is simply not enough
time in such contexts to consider all the details of each disciplinary concern,
even if it would help to do so. Recognizing this, resource scientists have too
often tried to make themselves understood by posing only very simplistic
causal arguments, such as "pollution will destroy the resource," or "current
exploitation levels will decimate the stock," or "habitat improvement will
provide more animals to harvest." These arguments may be quite under­
standable to other actors, but they are usually based on a kind of linear or
single-factor causality that nature is very unlikely to follow. So when the
arguments are convincing, they lead to unnecessary or extreme policies;
when they are not, the resource scientists lose credibility, and even more
simplistic recommendations may win favor.

Simple, but careful, reasoning based on compressing AEA workshop
models has been used in various resource policy debates, with very mixed
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results. In several cases, the very fact that modeling had been used was a
source of considerable debate (garbage in/garbage out, computers are taking
over the world, etc.), in spite of the fact that the reasoning was strictly verbal
and qualitative. In other cases there was considerable concern about why
the resource scientists involved were not using the usual old arguments, and
suspicions were voiced that the scientists must not agree among themselves
on what to say (and therefore should not be listened to at all). From these
cases, the cynical conclusion would be that rational arguments in general are
neither welcome nor influential in resource policy debates. But we have seen
enough cases where the arguments did matter, and significant policy changes
were effected, to suggest that the cynical conclusion is unsound and should
not be used as an excuse for inaction.

Building Modeling Teams

The key ingredient of AEA is an experienced modeling team. The
team members must be broadly knowledgeable about how to model various
processes, and must be adept at programming. They must have personality
traits that are difficult to pinpoint, but include willingness to listen to partici­
pants, ability to articulate quantitative ideas clearly in verbal terms, and wil­
lingness to quickly admit and learn from mistakes. They must be able to
take the stress and long working hours of the last few days of workshops.
This combination of quantitative skill, personality, and drive is quite
unusual, and recruitment of modeling team members has been a persistent
problem in the development and spread of AEA.

It is often assumed that mathematicians make the best modelers, or at
least that deep training in applied mathematics is necessary to become seri­
ously involved. This misperception has often led to recruitment of inap­
propriate people by government agencies. As noted earlier in this chapter,
modeling involves two phases: inductive (creative) and deductive (analyti­
cal). Too often, professional mathematicians are only trained and willing to
engage in the analytical phase; they will happily take a completely silly
model that someone else has proposed, and analyze it to death. But they
may lack the experience and insight about natural systems that are necessary
to be very critical or constructive. Some brilliant characters stand out as
exceptions to these generalizations, mathematicians who learned other dis­
ciplines and have become deeply involved in both modeling phases. But the
mathematical skill needed for model building (as opposed to analysis) is gen­
erally not that great, and includes only basic multivariable calculus,
differential equations, linear algebra, and probability theory. Most universi­
ties offer courses in all these areas for students from other disciplines, so it is
not at all difficult to find biologists and economists with the required skills.
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Unfortunately, quantitative courses do not ensure that these people can
proceed intelligently with model building. In recruiting new people for AEA
teams, we look first for disciplinary knowledge (the particular area is not crit­
ical), then for evidence of systematic thinking and mathematical background.
Finally, and most importantly, we look for that spark of imagination,
confidence, and concern that marks individuals who will be willing to dare
try and put together what they know in new ways.

Experience appears to be absolutely essential for AEA team members.
Very few people can start afresh with a new problem, and immediately see
how to give it quantitative form. Instead, we mostly build from past experi­
ence, seeking similarities and analogies between new and old cases that
might permit mathematical formulations developed for the old cases to be

applied afresh. Occasionally we may stumble upon or derive a quite new
formulation, but most AEA models are built up from standard parts that
have stood up to repeated tests. Some authors have correctly noted that
model building mostly involves accumulating a "bag of tricks," and becom­
ing adept at pulling out the right one for each new occasion. This is a tricky
business, because it is all too easy for a modeler to try and force new prob­
lems into inappropriate mathematical frameworks that he happens to know
well. A good example is the tendency for many operations researchers to
force every problem into the optimization framework called "linear program­
ming;" some do this even for problems where no optimization is called for in
the first place. We try to avoid such difficulties, and the associated "railroad­
ing" of workshop participants, by supplying each AEA team member with
the broadest possible bag of tricks, and accompanying the presentation of
these with a range of examples of how they have been misapplied in the
literature and in our own past workshops.

The AEA process has been turned upon itself several times to train
new modeling teams. The agenda for training workshops involves a mix of
lectures and demonstrations. plus a series of 2-4 mini-workshop case studies.
Much of the lecture material is presented in this book and in Holling (1978).
The miniworkshops take real cases of interest to the agency sponsoring the
training, and go through all the workshop steps outlined above with a sym­
pathetic participant group (usually personnel from the sponsoring agency).
The case studies are selected partly to demonstrate particular dynamic pat­
terns and interactions that turn up repeatedly in AEA workshops. Occasion­
ally a training miniworkshop has stimulated so much interest among partici­
pants that a larger follow-up or workshop sequence has followed it.

A serious weakness in the AEA training process has been our inability
to provide better guidance in tactics of handling workshop participants. We
do not yet understand why the behavioral interplay between team members
and participants sometimes results in remarkably creative efforts, but only in
serious misunderstanding at others. Questions about how to deal more
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effectively with people should perhaps be the greatest emphasis In future
development and experimentation with the AEA process.

Problems

3.1. Compare the "looking outward" approach as described in this chapter
to the "working outward" approach to problem bounding described in
Chapter 2. By looking at linkages among predefined subsystems, will
looking outward promote broader problem definitions in the same
way that working outward does? How can these approaches be used
to complement each other?

3.2. Often in AEA workshops, a disciplinary subgroup will be bogged
down in controversy about how to represent a particular process
(detail required, form of relationship, etc.). Suggest alternative ways
to avoid such deadlocks, and show how each of your suggestions
might fail in practice.

3.3. Compare the learning process by participants in AEA workshops to
the way scientists learn about a process by doing a sequence of experi­
ments with it. Is it less "valuable" to see existing data in new ways
(as often happens in workshops) than to spend the same time and
effort gathering new data? Do you expect new concepts and perspec­
tives gained during a single workshop to remain prominent in the
minds of participants, without deliberate repetition and reinforcement
later?

3.4. A useful tool for workshops is a simulation control program that sets
up the time "loop" of Figure 3.4, provides for storage of key indicator
variables as they are calculated at each time step, and allows plotting
of variables over time and against one another after each simulation is
completed. Develop such a program, so as to store the indicators in a
two-dimensional array by code number and time and allow later plot­
ting of them by code number.

3.5. Consider the common situation where there are two interdependent
submodels, A and B, such that some new variable values (after one
time step) in A depend on values of some B variables at the start of
that step and some B values likewise depend on starting A values.
What can go wrong in a computer program that updates var.iables in
sequence (first submodel A, then B)? Suggest at least two ways to
avoid mistakes in which variable values arc used.
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Chapter 4

Models of Renewable Resource

Systems

Some people, notably poets and mathematicians,
use other tricks than words themselves can play

to convey meaning.

Beer (1978)

A deceptively simple way of describing adaptive management is to say
that it involves trial and error learning. The difficulty with this description is
that the phrase "trial and error" connotes for most people a process of blind
probing where reward and punishment are easily recognized, i.e., a process
of natural selection and evolution. It is certainly not the intent of this book

to promote such a process; it should be possible to design resource manage­
ment policies that are much less wasteful. In the first place, we can develop
structural representations or models of how nature might respond to alterna­
tive actions, and then use these models to direct the learning trials more
wisely. In other words, we should begin adaptive policy design by posing
clear hypotheses based on previous experience and functional understanding.
In the second place, the detection of and response to errors are not so simple
in resource systems as they are in natural selection. We can always make
foolish errors by adopting the simple model "nature will be the same next
year as in the recent past," while restricting our learning process only to
measuring that recent past more accurately. To step beyond this approach
of "riding the trend," we must look more carefully and quantitatively at
dynamic interactions-and when we do so, the errors become more subtle
and difficult to detect. This chapter will examine some models of resource
interactions, with emphasis on formulations that have been "successful" in
the sense that they have predicted well for at least short periods, and so pro­

vide a good starting point for the more subtle learning that goes beyond sim­
ple trend analysis.
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Later chapters will examine how model prediction errors can be for­
mally used in adaptive learning processes, but there are some basic criteria
for judging the credibility of dynamic models in relation to historical experi­
ence. These criteria should be applied in thinking about the models in for­
mal policy design. So the first section below gives you some ammunition for
thinking critically (adaptivelyl) about the models reviewed in later sections.

The review sections will look at progressively broader dynamics,
beginning with single-species populations and ending with a look at how
resource harvesting systems are embedded in larger regional economies.
Each section begins with about the simplest plausible model for the processes
in question, then proceeds to more detailed and realistic formulations.

Judging Model Credibility

There is great confusion in the renewable resources literature about
how to recognize "good" or "bad" models when you see them. Previous
chapters have noted that one common criterion, detail and precision of pre­
dictions, is of less value than it might seem intuitively. Another common
criterion is whether a model represents "basic causal factors" correctly. But
consider the following example. Suppose two analysts present you with
models for a marine fish population, and you feel it is necessary to make
some judgment about which to use for policy design. The first analyst has
found that recruitment has been closely related to ocean temperatures when
the recruits are spawned, and his model reproduces this pattern very pre­
cisely by making various calculations (based on experimental data) about
how temperature affects juvenile growth and time exposed to various preda­
lOrs that take only small juveniles. The second analyst has not examined the
mechanism of survival at all, and instead has simply derived empirical prob­
ability distributions for recruitment rates at different spawning stock sizes.
If your background is in biology, your intuition will probably be in favor of
the first model; it seems to represent the system better. But wait a moment'
If you are concerned with management, perhaps you should worry more
about how recruitment varies (in a statistical sense) than about why, espe­
cially if the variation is likely to be due to some environmental factor that
you can neither control nor predict. If spawning stocks can be controlled to
some degree through harvest regulation, you should worry much more about
the average recruitment rates at different stock sizes (i.e., under different
policies) than about the inevitable "random" variations. Indeed, if you want
to use the first analyst's model for harvest assessment, you will need to assess
(predict) a probability distribution for future marine temperatures-and
when you use this distribution, you had better get the same results that the
second analyst already gave you in a simpler form. (If not, the second
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analyst's distributions contain some source of variation that cannot be
accounted for by marine temperature alone, and for which you should also
account.) This example shows a very basic principle of modeling; the cri­
teria and model you should use are very much dependent on what questions
you are trying to answer.

The following subsections outline some model evaluation criteria that
should be of panicular concern to resource managers charged with evaluat­
ing the consequences of alternative harvesting policies. Some of these cri­
teria may be of less interest to scientists charged with trying to understand
why (in a functional sense) things vary. There is, of course, no clear distinc­
tion between these charges; without depth of understanding, the manager
may be caught unawares by some perfectly predictable factor; likewise, the
scientist may be directed to more interesting research questions by applying
criteria that initially seem important only in management contexts.

Repeatability

As noted in Chapter 3, dynamic models consist of functional relation­
ships that predict how various components of change wil1 vary in response to
changing system states. These functional relationships are assumed to
represent the effects of processes that are somehow repeatable or stable over
time. Consider, for example, a hypothesized relationship between fish
spawning stock and subsequent recruitment, as in Figure 1.1. Suppose the
spawning stock is maintained at one base level for some time and average
recruitment from this base level is measured. Then suppose the stock is dis­
turbed (reduced or increased) for some time, then returns to the base level
again. The stock-recruitment relationship is said to be strictly repeatable if
the same mean recruitment is obtained as before the disturbance, for all base
stock/disturbance combinations. Probably no real stock-recruitment rela­
tionship would be strictly repeatable, since at least some extreme distur­
bances (stock reductions) would lead to irreversible loss of genetic and spatial
substructures. However, it is reasonable to expect many functional relation­
ships to be weakly repeatable, in the sense that the same response mean wil1
be obtained after disturbances within a range of magnitudes that are most
likely to occur in practice.

The importance of repeatability in model relationships is obvious.
Without it, the model cannot be parameterized (quantified) by reference to
historical experience, and we have noted in earlier chapters that there is no
real substitute for that experience. In later chapters we will examine the pos­
sibility of estimating response parameters adequately, while assuming that
they are in fact slowly changing. But the statistical methods involved in such
parameter "tracking" do not perform well when several parameters are
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Figure 4.1. Two examples of apparent nonrepeatability in the relationship
between spawning stock and subsequent recruitment. Pacific cod stock and recruit­
ment estimates from cohort analysis (Walters et aI., 1982), Columbia River chi­
nook salmon data redrawn from Van Hyning (1973).
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admitted to be simultaneously "drifting," so at least weak repeatability must
be assumed for most relationships.
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Figure 4.2. Trends in population size and the nonrepeatable relationship between
calf production and female population, for a reindeer herd in northern Finland.
Data provided by T. Helle (personal communication). The increased birth rates
following decline are thought to be due to culling of older, less productive females
from the population during the harsh winters (1967-68) when the decline took
place.

Examples of nonrepeatable relationships are shown in Figures 4.1 and
4.2. In the Pacific cod example, juvenile survival rates are high during
population increases, but low during decreases. The same is true of many
ungulate populations, as in the reindeer example. In both of these cases, we
would say that population density is not sufficient to predict reproductive
rates. Disturbances leading to higher population densities result either in
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compositional changes within the population (for example, genetic selection
for aggressive animals that do not care so well for their young), or in changes

in the environment of the population (for example, deterioration of food sup­
plies or increases in predator populations). In the third example, Columbia
River salmon showed quite a repeatable stock-recruitment relationship until
the early 1950s, when recruitment declined sharply, remaining at a lower
level ever since. The decline may be due to habitat changes (hydroelectric
dams on the Columbia), but a more likely cause is an increase in ocean mor­
tality due to a growth in troll fishing that took place after 1950 and that
probably harvests many Columbia River fish before they can be counted as
returning recruits to the Columbia system itself.

Nonrepeatability in hypothesized functional relationships implies, in
general, that the model is missing some basic state variables (such as food
supply) or driving variables (such as high seas fishing mortality), whose
effects are persistent over time. Thus the search, using historical data, for
nonrepeatable relationships is a key step in trying to develop better models;
it is an essential part of the learning process.

Stationarity

We expect some factors in the environment of any resource system to
vary in an unpredictable or random fashion over time, without showing per­
sistent changes in response to a changing system state. In simpler terms, we
expect unpatterned variation around any functional relationship, as opposed
to the persistent deviations of the examples in Figures 4.1 and 4.2.

When the probability distribution for unpatterned variation around a
functional relationship is stable over time, we call the relationship a station­

ary stochastic process. In a stationary relationship, particular outcomes (for
example, recruitment) may be quite unpredictable; we ask only that they be
drawn from the same distribution whenever the same initial system state
occurs. Stationarity may be viewed as a stronger assumption than repeat­
ability, since for repeatability we require that only the mean response (but
not the whole distribution of responses) remain constant.

Very few resource time series are long enough to provide even weak
tests of stationarity hypotheses. An exception is the Skeena River sockeye
salmon (Figure 4.3). In this case, intermediate spawning stock sizes have
produced almost the same distribution of recruitments, even after a distur­
bance in the early 1950s resulted in very low spawning stocks for some
years. Over the whole period of record, average recruitment at each spawn­
ing stock size has apparently been decreasing slowly (Ricker and Manzer,
1974).

It is reasonable initially to assume stationarity in the responses of
most resource systems that exhibit extreme random variation naturally.
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Figure 4.3. A long record of spawning stock and recruitment estimates for sockeye
salmon in the Skeena River, Be. Such records are needed to determine patterns
of "random" variation and the temporal stability (stationarity) of such patterns.
Source: Shepard et al. (1964) and Walters (1975).
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These systems would not be around today to worry about in the first place,
unless they had quite strong mechanisms for repeatedly recovering from
extreme states. The lie, of course, is given to this argument by many small
clupeid fishes, such as herring and sardines, that have shown strong natural
variation but have then collapsed, apparently irreversibly, after intense
fishing.

Robustnc:sB

It is a common observation in model building that the same functional
relationship or equation system can be derived from a variety of more
detailed causal arguments. Functional relationships or models that have this
property are said to be robust to uncertainties about underlying mechanisms.
As can be shown even for very simple dynamic systems (Walters, 1980),
robustness is a curse to the researcher who hopes that the ability of his model
to fit data is a test of the assumptions used to derive it. By the same token, it
can be a blessing to the resource manager who seeks a representation that is
likely to have the right shape or pattern of response, no matter what the
underlying causality.

Robustness will be a central concern in Chapter 5, where we will see
that it is generally associated with very simple equations and graphical rela­
tionships. However, quite complex models can also be robust in the sense
that all of their many functional relationships can be derived from a variety
of even more detailed arguments. But they are generally not robust to
changes in the structure or pattern of connection among relationships, or to
the addition of new details to the model structure. My favorite example of
this is the British Columbia salmon model discussed in Chapter 3. That
detailed model had a myriad of relationships involving recruitment, mortal­
ity, growth, fishing, and so forth. Then we added the "little detail" of mak­
ing the sport fishing effort respond to fish abundance, and the whole charac­
ter of our predictions about fishing regulations was changed dramatically.
With hindsight we were able to strip the big model of most of its complexi­
ties, leaving behind a simple and robust representation of the basic dynamics
of stock production in the face of unregulated effort. But we could not see
how to design that robust model in the first place. Thus robustness is not
guaranteed by starting out simple; it can only be assured by much penetrat­
ing and critical analysis.

Consistency and completeness

No model can completely represent the world, but it is reasonable to
ask at least that it be dimensionally consistent (in the sense of introductory
physics or chemistry texts), and reflect basic accounting or conservation
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principles. Thus a model that seeks to represent dynamic changes in a popu­
lation of N animals should not have its reproductive rate expressed in
biomass units; if it seeks to represent how the N animals move about in
space, it should not implicitly create or destroy any when moving numbers
from area to area. It is surprising how often such very basic logical require­
ments are violated by models reported in the resources literature; usually the
justification is statistical convenience or unwillingness to extrapolate (until
conclusions are drawn!) from units of direct measurement. It is common,
for example, to see recruitment relationships in fisheries represented in terms
of recruitment and spawning stock "indices" (like catch per hour of test
fishing gear) whose relationship to actual historical system states is tenuous at

best.

Identifiability

It is easy to make a model appear very realistic just by decomposing
its parameters into simpler, explicit components. For example, any survival
rate over a finite time period can be written as the product of several survival
rates over shorter time periods or "stanzas" of life. This can make sense,
when the component rates have been measured directly and are functionally
related in the model to state variables or policy actions. But, too often,
models just string together a collection of constants. In the statistician's
terms, these constants are not separately identifiable, in the sense that their
individual effects cannot be distinguished from data on the overall process.
It is fine as a scientist to say that y = b\b2 x, where b t and b2 are constants;
but if only y and x are observed, then only b' = b,b2 in the overall relation­
ship y = b'x is identifiable.

There is even some danger in stringing together nonidentifiable con­
stants in models. Errors in the initial or baseline estimates of such constants
do not always "average out" across the whole collection. So, an apparently
realistic representation is quite capable of giving quantitatively much worse
predictions than an aggregated model whose parameters are more easily
estimated from historical data.

Systems properties

Analysts and theorists about dynamic systems in general have learned
to watch for a number of basic model properties that are difficult to see by
examination of individual functional relationships. The most important of
these properties are:

• feedback loop pattern

• time delay structure
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• thresholds and limits

• inflected functional relationships
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The feedback loop pattern is discerned by examining the collection of posi­
tive and negative effects that state variables have on one another. Positive
feedback (exponential growth) interactions are examined with the suspicion
that some key ingredient might be missing from the model. Negative feed­
back interactions are examined as regulators or limiters of system behavior.

The time delay structure can be particularly important in resource
system models, in terms of both biological and economic variables. Students
of population dynamics are acutely aware of how time delays can introduce
various overshoots and oscillations to population behavior. Similar
economic oscillations are a daily fact of life for everyone.

Thresholds, limits, and inflections (sigmoid shape) in functional
responses can also have profound effects on stability properties of the model
system. The classic example is the sigmoid feeding functional response of
vertebrate predators to prey density. At low prey densities, acceleration in
predator attack rates as prey density increases can result in regulation of the
prey population at low levels. On the other hand, satiation (limiting, satura­
tion) of predators at higher prey densities can result in "release" of the prey
to increase explosively until some other regulatory agent becomes important.

Stocks as Units of Analysis

The basic biological unit of management is most often assumed to be
the single-species "unit stock," a collection of individuals who interbreed and
exhibit an aggregate production process dominated by reproduction, growth,
and mortality rather than by migratory exchanges with other collections. It
was once thought that such unit stocks would be relatively easy to identify, in
terms of morphological similarity among individuals and similarity in basic
behavioral patterns, such as selection of reproductive locations and migratory
paths. However, recent studies of genetic composition (using electro­
phoresis) and dispersal patterns (using large-scale marking and tagging) have
revealed considerable "fine structure" within some collections that were
thought to be homogeneous units (STOCS, 1981). In other cases, greater
dispersal among collections has been discovered than was originally
expected. Also, the spatial boundaries of management are often dictated by
political or administrative practicalities. In particular, it is often not practi­
calor economical to establish separate monitoring and regulatory activities
for every genetic "substock" revealed by electrophoretic or other methods.
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So a "managed population" is usually an arbitrarily defined collection
of organisms with at least some internal heterogeneity and exchange with
other populations. In the models discussed below, we will assume that the
unit is large enough so that changes in abundance are dominated by
processes other than dispersal to and from other units; internal heterogeneity
will be seen as a source of nonrepeatability and slow parameter change over
time in the basic production processes of recruitment, growth, and natural
mortality.

Population dynamics models can be classified into four groups, based
on the complexity of representation of production processes. Surplus pro­
duction and stock-recruitment models look only at total population changes
as a function of stock size, without regard to how particular processes (repro­
duction, growth, etc.) are varying. Dynamic pool models represent the
population state in terms of age structure, with "submodels" for recruitment,
growth, and mortality. The Deriso model combines these approaches, using
only total stock size as a state indicator, but with component processes expli­
citly represented and some age structure effects implicit in the model equa­
tions. Life history stanza models usually consider age and sometimes spatial
structure, and decompose recruitment and survival processes into variously
detailed steps or life history stanzas.

A common feature of population dynamics models of all complexities
is the attempt to represent a variety of ecological interactions as implicit
functions of stock size. That is, stock size is treated as a surrogate or index
for the intensity of factors such as intraspecific competition for food, canni­
balism, mortality due to diseases, aggressive interactions leading to dispersal,
and so forth. Thus the danger of nonrepeatability is always present, since
various external variables (such as food supply and predator abundance) may
not respond immediately to changes in stock size.

There have been two basic schools of thought or paradigms about the
importance of various factors in the response of populations to harvesting.
Proponents of the "annual surplus" paradigm, which arose mainly from
studies of birds and small mammals, argue that many populations produce
an annual "reproductive excess" that will later be lost through competition
for food or breeding space if it is not harvested. In other words, the habitat
has a basic carrying capacity that is exceeded each year due to high repro­
ductive rates; the excess can (and should) be harvested, and this harvest is
unlikely to outstrip the reproductive potential. Therefore, management
should focus mainly on maintenance and improvement of the habitat carry­
ing capacity, and not be too concerned about harvest regulation.

Proponents of the "logistic production" paradigm, which arose mainly
from studies on fisheries and large mammals, argue that population size is
the most important determinant of the annual surplus that can be taken on a
sustained basis. Birth and/or death rates change smoothly as population
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(4.1 )

density increases, so that net production is maximal at an intermediate den­
sity well below the carrying capacity. Since harvesting may drastically affect

the population size (and hence future surpluses), harvest regulation should
be the central concern of management. As we shall see in Chapter 5, these
paradigms are really not that different; general models may produce either
extreme of qualitative behavior (or something intermediate), depending on
reproduction and survival parameter values. In this chapter, we will mainly
review models arising from the logistic production paradigm.

Surplus production modda

Surplus production models usually look at the harvestable biomass B,
present at any time t, and describe rate of biomass change as the difference
between two functions:

dB,
- = P(B,) - C(B" E,)
dt

where P(B,) is the net rate of biomass production as a function of current

biomass, and C(B" E,) is the rate of biomass harvest (yield) as a function of
current biomass and some measure of the amount of effort E, directed at har­
vesting. Usually it is assumed that P(B) is a dome-shaped function with a
single maximum at an intermediate stock size B·.

The most common assumption about production is that P(B) is logis-

tic:

(4.2)

where the parameter r is an intrinsic or low density rate of production and k
is the natural equilibrium stock size in the absence of harvesting. Under the
logistic assumption, the maximum net production rate is achieved at B· =
k /2, and the rate at this stock size is rk /4. Another common formulation is
the beta function

P(B) = rBo [ 1 - ~ J~ (4.3)

where rand k are as in the logistic and the parameters a and (3 can be

adjusted to give P(B) various shapes over the biomass interval [0, k].
The harvest function C(B, E) has been modeled in various ways, or

treated simply as a "policy variable" subject to direct control. The most
common assumption is that effort E, can be measured as a rate, in terms of
the area (or volume) swept by harvesters per unit time, and that this area is
distributed at random with respect to the spatial distribution of biomass.
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Then the catch rate is modeled simply as

C(B, E) = qB, E, (4.4)

where q, the ~catchability coefficient," represents the proportion of B, taken
by one unit of effort. A generalization of this "random search" model is to
use a Cobb-Douglas type production function (as is common in economics),
of the form

C(B, E) = qB~ Ef (4.5)

(4.6)

where ex and {3 again represent shape parameters to account for effects of
nonrandom searching, competition among units of effort, saturation of the
harvesting gear, and so forth.

In practice, biomass time series are almost never observed directly.
Thus, to evaluate and calibrate surplus production models against historical
data, it is necessary to hypothesize a second observation model about how
observable abundance indices are related to the actual biomass. The most
widely used assumption comes from equation (4.4), namely, that the catch
per unit effort y, is linearly related to stock size:

C,
y, =- =qB,

E,

where the catch and effort rates are integrated or averaged over a short time
period around t. This observation model has been very widely and rightly
criticized, because harvesting efforts are seldom applied at random with
respect to the stock distribution. The effect of nonrandom searching is to
make y, remain high as B, decreases; that is, the catch per effort fails to
reflect stock declines until they are well under way. We shall return to this
point later.

On a global basis, probably the most widely applied assessment pro­
cedure in fisheries is the so-called "Gulland method" (Gulland, 1961), which
is based on equations (4.2), (4.4), and (4.6). The method begins with the
assumption that effort changes are gradual enough so the stock always
remains near equilibrium. Then, if the production function is logistic and
catch is proponional to stock and effort, it follows that

(4.7)

and the equality is exact at equilibrium (P = C). This equation can be
solved for equilibrium stock B. as a function of effort:

B. = k _..9!5.. E
r

(4.8)
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(4.9)

(4.10)

Then, assuming [equation (4.6)) that catch per effort is proportional to
stock, substituting y. = qB. into (4.8) gives the simple prediction:

2k
y. =qk -~E

r

that is, catch per effort should be linearly related to effort (y = b l + b2x),
with intercept b l = qk and slope b2 = -q2k/r. An alternative of way of
expressing this prediction is by saying that catch should be quadratically
related to effort; if C. = qB.E, then substituting (4.8) for B. gives

2k
C. = qkE _..9...-~

r

which is of the form C = ax + bx2 with a = qk and b = -q2k/r. To allow
for disequilibrium effects and response delays in processes such as recruit­
ment, Gulland recommends plotting y and C against a running average of
past efforts rather than just E,. Hilborn (1979) has shown that this approach
is deceptIve in most cases, resulting in overestimates of the equilibrium catch
except when fishing efforts have changed very slowly over very long time
periods (15-20 years).

Equation (4.10) has sometimes been confused with the so-called
"catch equation" that results from looking at the cumulative catch Y,
achieved each year when an initial fixed and nongrowing biomass is depleted
rapidly each year. In that case, it is reasonable to approximate the biomass
depletion and catch accumulation by

dB- = -qEB
dt

dY dB-- = ---
dt dt

(4.11)

The solution to these equations over a short fishing season of length T, given
an initial biomass Bo, is

Y = Bo(1 - e-qET
) (4.12)

The exponential form represents "exploitation competition," in which later
units of effort partly sweep areas from which biomass has already been
removed by earlier effort units. Unfortunately, equations (4.10) and (4.12)
both predict a curved relationship between catch and effort for lower effort
levels; equation (4.10) predicts that catch will falloff at higher efforts, while
(4.12) predicts that it will reach an upper limit (Bo). If a data set containing
many years' catches fits (4.12) better than (4.10) at high effort levels, the
implication is that Eo has remained high from year to year, i.e., biomass
production between harvest seasons somehow results in Bo each year
independently of how much was left behind after last year's harvesting.

Schaefer (1957) and later Schnute (1977) have tried to avoid the
equilibrium assumption of Gulland's method. Schaefer looked at the logistic
equation in terms of a discrete time approximation:
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B'+I = B, + rB, [1 - ~' ] - qE,B, (4.13a)

Solving the observation equation (4.6) for B, gives the "state reconstruction"
B, = y,/q, then substituting this into (4.13a) and rearranging gives

r 2
y'+1 = (1 + r) y, - --qk y. - qE,y, (4.13b)

This equation is in the form of a multiple linear regression (y = bjxl + b2x2

+ b3X3) to predict next year's relative abundance y'+I, with b l = 1 + r, b2

= -rlqk, b3 = -q, XI = y" X2 = y;, X3 = E,y,. Note the similarity of this
regression to that of the Gulland method [equation (4.9)]. Schnute (1977)
began with the differential equation

dB [ B]- = rB 1 - - - qEB
dt k

and then noted that this can be written as

dB [r ]B = r - T B - qE dt

Integrating equation (4.15) over a one-year time step gives

r - -
log B'+I -log B, = r - T B - qE

(4.14)

(4.15)

(4.16)

where jj and E are the mean biomass and effort over the period t to t + 1:
,+1

jj = I B dt
o

Then again, using the observation model (4.6) and state reconstruction B =
ylq, but approximating 9 by (y'+1 + y,)/2 and E by (E'+I + E,)I2, Schnute
also arrives at a multiple linear regression to represent the dynamics of rela­
tive biomass change and to estimate the parameters r, k, and q. Unfor­
tunately, it is easy to show that both Schaefer's and Schnute's methods fail
badly when there is significant observation error (so y, is not exactly equal to
qB,) or nonlinearity in the observation relationship (Uhler, 1979). The
direction of bias in parameter estimates is often such as to encourage the
manager to think that the stock is now near its most productive level B" no
matter where it really is relative to that level.

The greatest difficulties in applying surplus production models have
come from their stringent assumptions about the relationship between stock
size and observed abundance indices, such as catch per effort. Nonlinear
relationships are probably the rule, and q tends to change over time as har­
vesting technologies improve. Other problems have arisen because of time
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delays in component production responses (particularly recruitment), and
persistent or cyclic disequilibrium in internal stock structure. For example,
a single, large year class or cohort can enter a stock, then have its growth
and natural mortality rates dominate the stock's overall production over a
period of several years; net production is dominated first by recruitment and
growth, then later by natural mortality. At no point will the stock then exhi­
bit its long-term average productivity for each of the stock sizes it passes
through.

Stock-recruibDent models

Reproduction in most organisms is highly seasonal, and the adult
stock often suffers high or total mortality after reproducing. Such stocks are
usually harvested shortly before the reproductive season, as "recruits" that
will not likely undergo much more growth or natural mortality before repro­
ducing. It has been an irresistible temptation to model such stocks in terms
of the relationship between stock after harvest in one generation, and subse­
quent recruitment to the harvestable stock of the next generation. Letting S,
represent the reproducing stock of one generation, and R'+l be resulting
recruitment, most models have been of the form

R'+I =as,h(S,) (4.17)

where a is the maximum recruitment per Sr, and h(S,) is a decreasing func­
tion of S, such that h(O) = 1. h(S) is intended to represent density­
dependent effects of adults on juvenile survival or intraspecific competition
among the juveniles. The two most common examples are the "Ricker
model" (Ricker, 1954), where h(S) = e-Ps , and the Beverton-Holt model
(Beverton and Holt, 1957), where h(S) = 1/(1 + as/{3j. Both {3 and (3' are
parameters for the equilibrium, unharvested stock size. The Ricker model
always generates a dome-shaped relationship, while the Beverton-Holt
model predicts that recruitment will increase to an asymptote. Various other
formulations, such as R = aSb and R = as/(k + S)', have given marginally
better fits to particular data sets, or seem to be based on sounder biological
derivations (for discussions, see Paulik, 1973; Ware, 1980; Shepherd,
1982). But, for reasons to be discussed below, it is seldom worthwhile using
complicated formulations with many parameters that are each assigned much
biological significance.

Recruitment rates usually appear to vary rather drastically due to fac­
tors other than spawning stock, and this variation has led to three reactions
from management analysts. First, some analysts have argued that effects of
spawning stock on recruitment can be effectively ignored, since recruitment
can be better predicted by other factors. This argument reflects serious



80 Adaptive Management ofRenewable Resources

confusion about the objectives of management: it assumes that year-to-year
prediction is somehow more important than understanding average
responses to exploitation (as measured by stock remaining after harvest), and
that average recruitment will remain healthy no matter how high the exploi­
tation rate.

Second, many biologists have tried to decompose the survival function
h(S,) into a sequence of survivals through various life history stanzas,

h(S,) = SIS,S] ... Sn (4.18)

and then have tried to explain or predict how these component survivals vary
in relation to stock size and key environmental factors. So in marine fishes it
is often found that egg and larval survival rates are correlated weakly with
larval densities, and more strongly with physical variables, such as water
temperature and the spatial pattern of water transport (Sharp, 1980). Sur­
vival rates in freshwater and anadromous fishes are usually related to water
flows (or rainfall or runoff) during one or another life history stage. Oem­
sionally, survival rates have been shown to vary in relation to biotic factors
that are less random from year to year than most environmental factors, such
as densities of predators. There have been three basic difficulties with the
disaggregation approach: (1) lovely correlations have a nasty way of sud­
denly breaking down, never to reappear; (2) there is usually at least one sur­
vival stage that is quite variable, but for which no clear explanatory factors
can be found; and (3) the environmental and ecological explanatory variables
are not themselves predictable, so even knowledge that they are causes of
variation does not help much in predicting average future responses to policy
options.

Third, it has been suggested that recruitment should be modeled as a
fundamentally stochastic and unpredictable process, with the
stock-recruitment function viewed as a collection of probability distributions
(one for each level of spawning stock). In this view, the stock-recruitment
curve is a description of how average recruitment varies with reproducing
stock (and is therefore useful for analysis of long-term average responses to
various harvest policies), without pretense that the curve is at all useful for
short-term predictions. The curve should be described simply, with rela­
tively few parameters, and reflect little more than basic density dependence
and the reasonable assumption of continuity-similar (nearby) reproducing
stocks should result in similar recruitment distributions. Also, in this view it
is important to have realistic models for the distributions of recruitments
around the curve of averages. In the 1970s, some workers (Allen, 1973;
Walters, 1975) noted that these distributions often appear to be log-normal
-bell shaped around the average but with a long upward tail so that occa­
sional very large recruitments are produced. Rinaldi and Gatto (1976)
noted that there is a good theoretical reason for the distributions to be
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log-normal, and Peterman (1981) has
justification. The Rinaldi-Gatto argument
noting, as in the previous paragraph, that
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provided further empirical
is very simple, and begins by

h(S) = S.S2S3 ... Sn

where n is potentially very large. Now, each of the Si is likely to be a ran­
dom variable, and many of the s;'s will be essentially independent of one
another (involve factors operating at different life stanzas, etc.). If Sj is a
random variable, so is In (Si)' and the sum

In h(S) =In SI + In S2 + In S3 + ... + In Sn (4-.19)

is of course a sum of random variables. When such sums are not dominated
by a few elements that take only a few extreme values, they tend to be nor­
mally distributed by the Central Limit Theorem of fundamental statistics.
Thus In h(s) for any fixed s is likely to be normally distributed, hence the
product

h(s)eV (4-.20)

is log-normal where v' is a normally distributed random variable represent­
ing the combined effects of all random survival factors. The overall stochas­
tic recruitment model is then

R'+l =a'f(S,)e" (4-.21)

where a' is estimated so as to include the mean of v', f(S,) is a deterministic
"kernel" of density-dependent effects, and v, is normally distributed with
mean zero. This is particularly convenient when f(S) =e-bS and we define
a' - e' , to give the stochastic Ricker model

(4-.22)

(4-.23)

The above theoretical arguments imply that the linear regression formula

Rt+l
In -- =a - bS, + v,

S,

will have the nice statistical property of additive, normally distributed errors,
so a and b can be estimated (and uncertainty about them interpreted) using
simple classical formulas. The hasic predictions of equations (4-.21) and
(4-.22) are that variation around the recruitment curve will increase with
increasing mean recruitment, while variation in In (RIS) will be similar for
all values of s; these predictions accord well with most historical data sets.

Unfortunately, there is a serious empirical difficulty in applying any
of the approaches outlined above, which statisticians call the "errors-in­
variables" problem. We shall examine this problem further in Chapter 6,
but it is worth highlighting the main difficulty at this point. The problem is
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Figure 4.4. Two examples of the distortion in apparent stock-recruitment relation­
ships when the spawning stock is measured with random error. The "actual" rela­
tionships are straight lines from the origin, with small scaUer. The "observed" re­
lationships are ploued after adding random counting errors to the spawning stocks.
Source: Walters and Ludwig (1981).

that reproducing stocks S, are usually measured with considerable random
error. Walters and Ludwig (1981) and Ludwig and Walters (1981) have
shown that these measurement errors smear out or bias the apparent S-R
relationship in the worst possible way from a management viewpoint: they
make recruitment appear to be independent of reproducing stock. Figure
4.4 shows two examples where the stocks are actually severely overexploited
so that R =- as; the apparent relationship is R = constant + random errors.
In general, errors in S assessments cause the estimate of a to be too high,
and of the equilibrium stock parameter (b, {3, (3', etc.) to be too low. A
manager looking at S-R data from an overexploited stock will think that
there is no recruitment problem; a researcher will seek other variables
besides S to explain variation in R. There is no good statistical procedure to
correct for these biases, since the measurement errors essentially destroy
information about the functional relationship. The problem is not alleviated
in any way, and in fact is not even addressed, by methods for studying
correlated random variables, such as Ricker's (1973a) GM regression.

The errors-in-variables problem has made it difficult to study key
issues in stock-recruitment modeling, particularly the usual assumption that
f( S) decreases monotonically as S increases, so R /S is highest at very low
stock sizes. There is crude evidence of depressed productivity at low stock
sizes in some populations, due either to difficulty in finding mates (the Allee
effect), breakdown in social structure and migration patterns, or increased
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Figure: 4.5. A relationship between spawning stock and subsequent recruitment
that can arise when predators follow a sigmoid functional response in their con­
sumption rates of juveniles. If the predator population remains fixed over time,
the prey stock may display stable equilibria at stock sizes S/ and Sh; the stock size
Su is an unstable level from which the stock will either collapse to S/ or grow to­
ward Sh.

(depensatory) mortality rates due to predation. A particularly bad situation

can be created by predators that show behavioral "SWitching" to other prey

types as the stock of concern decreases. Such predators are said to have a

type III or sigmoid functional response to prey density (Holling, 1965;
Peterman, 1977). Mortality rates due to such predators are highest at prey

densities just above the switching point, and are less significant at both very

low and very high prey densities. This results in recruitment curves for the

prey of the shape shown in Figure 4.5, with a "predator pit" and the possi­

bility of two stable equilibria in stock sizes. Once depressed by harvesting,
such stocks may be "caught in the pit" and maintained at low levels by
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Table 4.1. Average age composition of the catches and average body weights for
four British Columbia fishes.

Pacific ocean
Pacific cod Rock sole Herring perch
1960-80 1956-80 1951-80 1966-80
(21 yrs) (25 yrs) (30 yrs) (15 yrs)

Age
a p. W p. W. p. W. p. W..

1 0.0156 0.175 0.0212 0.013
2 0.2732 0.914 0.0303 0.33 0.1249 0.054
3 0.3752 2.00 0.1008 0.44 0.3473 0.085
4 0.2202 3.00 0.2137 0.55 0.2459 0.115
5 0.0789 4.14 0.2574 0.66 0.1501 0.145
6 0.0241 5.21 0.213 0.77 0.0722 0.165 0.0105 0.485
7 0.00824 6.19 0.1028 0.87 0.0289 0.173 0.0143 0.529
8 0.00324 7.20 0.0482 0.97 0.00781 0.187 0.0249 0.572
9 0.00105 8.31 0.0204 1.07 0.00156 0.189 0.0523 0.614

10 0.0003 9.2 0.0096 1.15 0.00014 0.231 0.0790 0.654
11 0.0037 1.22 0.1077 0.694
12 0.1228 0.732
13 0.1302 0.770
14 0.1050 0.806
15 0.0754 0.841
16 0.0545 0.876
17 0.0445 0.909
18 0.0409 0.942
19 0.0382 0.973
20 0.0335 1.00
21 0.0227 1.03
22 0.0149 1.06
23 0.0113 1.09
24 0.00873 1.12
25 0.00367 1.15
26 0.00260 1.17
27 0.0012 1.20
28 0.00087 1.22
29 0.000133 1.30

predation in spite of reduced harvest rates. Indeed, as noted in Chapter 2,
unregulated harvesting may itself be related in a sigmoid pattern to stock
size, thus preventing stock recovery after accidents. See the anchoveta his­
tory in Figure 2.1, and theoretical arguments in Jones and Walters (1976).
Even an apparently small, but actively switching, fishery may maintain a
stock at depressed levels.
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Surplus production and stock-recruitment models do not explicitly
represent how net production results from the balance of recruitment,
growth, and natural mortality rates. Dynamic pool models make specific
predictions about these rates, usually with respect to the population age
structure as a basic state description (rather than total biomass or numbers).
Early workers usually dealt only with equilibrium rates, assuming constant
recruitment and simple models for growth and survivorship. These so-called
"yield per recruit" models were a great source of confusion for scientists and
managers with weak mathematics backgrounds, because they were presented
as elaborate equations that seemed very complicated and realistic and had all
sorts of magical symbols such as w, x, tA, and O. In fact, the basic biological
assumptions underlying these calculations were trivial or even deceptive, and
could safely be used to predict little more than the best "age at entry" or
minimum size of animals that should be allowed in the harvest.

Equilibrium analysis

The basic conclusions of traditional equilibrium yield analysis can be
obtained very simply with a hand calculator or microcomputer, without wad­
ing through any elaborate equations. Let us illustrate the steps with four
typical data sets (Table 4.1), on the average proportions of the catches and
body weights at age a for four fish that are commercially important on the
Canadian Pacific coast. Before analyzing these data, we must make some
independent assessment of the average natural mortality rates, as a propor­
tion of the fish that die naturally each year between fishing seasons, for each
of the stocks. It is usual to assume that this rate is independent of the age of
the fish, and we shall stick with this assumption (but note how the data in
Table 4.1 hint strongly at decreasing survivorship, or perhaps reduced vul­
nerability to fishing, in the older ages!).

Chapter 6 will deal with some of the difficulties in obtaining natural
mortality estimates; for the stocks in Table 4.1, various procedures have
given rates in the following ranges:

Stock

Pacific cod
Rock sole
Herring
Pacific ocean perch

Natural mortality rate
(proportion dying/year)

0.4-0.8
0.2-0.5
0.3-0.6

0.05-0.15
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Note that these rates are highly uncertain compared with the other data
available, and one might be tempted to just pick some conservative base
figures using intuition or major summaries of published estimates, such as
Pauly (1979), which indicate that survival rates can be predicted nicely from
basic data on growth and longevity.

To estimate equilibrium yield, let us first note that this yield is a sum
over ages of average number (Na ) of fish reaching each age times average
body weight (W.) at the age times exploitation rate at the age. If recruit­
ment is at equilibrium near the historical average, say R, then the number
of fish reaching each age can be written as N. = R 1., where 1. is the total
survivorship up to age a:

.-1

1. = S·-1 II (1 - hk)
k ~I

where s is the average natural survival rate (i.e., s ... 0.85 - 0.95 for Pacific
ocean perch), and hk is the exploitation rate at age k. Using this shorthand,
the equilibrium yield Y can be expressed as

00

Y =R E 1. W.(1 - ha )

a=l

(4.24)

Now, the key policy variables in this yield model are the ha , the age-specific
harvest rates. Usually these cannot be controlled separately, but may be
modeled as h. = hv., where h is the average exploitation rate, and the Va

are average age-specific vulnerabilities that depend on the harvesting tech­
nology (net mesh sizes, etc.) and space/time pattern ("nursery areas", etc.)
of fishing allowed. The yield per recruit, from equation (4.24), is

Y 00

-=- =E 1. W.(1 - ha )
R a~1

and this sum can be computed easily once we fix s and a harvest policy h. =
hVa for all ages a.

So what to do about the unknown R, average recruitment, in equa­
tion (4.24)? Let us estimate R using a simplification of the method most
widely used in fisheries, which is called "cohort analysis" (Pope, 1972;
Jones, 1981). This method uses the idea that we can solve the basic survival
equation

N.+ I = (N. - C.) s (4.25)

(where C. is the catch at age a) backward in time if we know N.+ I at some
terminal age. Solving (4.25) for Na , we get

N.+ 1
N. = -- + C.

s
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Applying this equation repeatedly beginning with some maximum age a =
m for which C.+ 1 =0, we get

Cm - I+ -- + Cm - 2
S

Cm
Nm - , =-- + Cm - I

S

Cm
N m - 2 = -2­

S

Cm Cm - I
Nt = R =~ + ---;;;-::2 +

s s

(4.26)

(4.27)

If catches at age a have been reasonably steady over time, then equation
(4.26) implies that average recruitment R can be expressed as a weighted
sum of the average catches at age Ca , where the weighting factor associated
with each a is lIs·- I

. These factors get bigger (fast!) as age increases, so the
catches of older animals have a strong influence on R; this makes sense, con­
sidering that for each animal who survived to be caught at an old age, many
more must have been born and died naturally prior to that age (especially if
s is low). As a further step, let us next write R in terms of the historical
average total catch C and average proportions of catch at age P. (Table 4.1),
by substituting C. = CPa into equation (4.26) and rearranging:

- - [- P2 P3 Pm JR = C PI + - + - + ... +--
S S2 sm-I

The basic point of this equation is that average recruitment is estimated by
looking at catch C, the catch age distribution P., and natural mortality (1 ­
s) which takes some of the recruits. In the following, we shall take C = 1 as
the unit of catch measurement, in order to simplify the discussion.

Let us return now to equation (4.24), which says that average yield is
V = R(VIR). We see that the estimation of R depends on s [equation
(4.27)], such that R increases if we decrease the estimate of s. VIR
depends on s also, in exactly the opposite way: as s decreases, we predict
that fewer animals will reach the ages where the W. are larger, and so we
predict that VIR will decrease. So an immediate and important question
arises: just how sensitive is the overall assessment of V to estimates of s,
which are notoriously difficult to obtain with any confidence? For the four
examples in Table 4.1, the disturbing answer to this question is shown in
Figure 4.6, which plots VIC computed from equations (4.24) and (4.27) as
a function of the assumed survival rate s, for increasing h(O.I, ... , 0.5) and
reasonable v. values for each species considering current harvesting technol­
ogies. In each case we see that there is a range of survival rate assumptions
for which the assessment of average yield obtainable (at intermediate harvest
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rates h) increases very sharply as s is further decreased. Thus there is a
basic asymmetry, which in one sense simplifies the assessment problem:
either the yield assessment is quite good (actual s almost surely greater than
critical value for increase), or is in grave doubt with the potential Y perhaps
being very high relative to the historical average C.

We could, of course, elaborate the equilibrium yield calculations out­
lined above in much more detail by using age-varying survival rates, more
realistic vulnerability schedules, seasonal or instantaneous growth data, and
so forth. I will leave it as an exercise for the reader to show that such details
add very little to the basic predictions. In most practical cases, it is silly to
worry about 5 or 10 or even 20% changes in the assessment of Y, consider­
ing that changes in fishing effort or recruitment rates (Shepherd, 1982) may
have much larger effects in the long term.

Dynamic predictions

While equilibrium analysis can give insights about the importance of
some rate estimates, it is usually important to study the temporal behavior of
age-structured stocks, especially in relation to various assumptions about the
stock-recruitment relationship, effects of random variations in recruitment,
and effects of the time delays implied by having harvest and reproduction
concentrated in older age classes. Such studies can be done efficiently with
simulation models that keep track of the age structure over time using two
basic equations:

N.+1,t+1 = N."s(1 - h.,) a = 1, ... , m
(4.28)

N1,'+1 = E,f(S,)e V

Here the second equation is a stock-recruitment relationship, where the egg
production or total relative reproductive output in year t is

m

Et =E F.N••
a-=1

(4.29)

and F. is the relative or absolute fecundity of an animal of age a. Density­
dependent effects on juvenile survival are represented by [(5.), where

m

5, =E C.N.,
a=l

(4.30)

and C. is the relative effect of an animal of age a on juvenile survival. The
most usual case is to assume C. = kF., implying either that reproducing
adults impact juvenile survival in proportion to fecundity, or that density
dependence in survival is due to interactions among the juveniles. eV is a
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log-normal random survival effect, as in the previous section on stock and
recruitment. The age-specific harvest rates h.r can be modeled as h.r = h,v.,
where h is the simulated overall exploitation rate, and the v. are age-specific
vulnerabilities. Annual yield is calculated as either

E W.N.,(1 - h.r ) or E W.sN.,(1 - h.r)

depending upon when the harvest takes place in the annual cycle [equations
(4.29) and (4.30) implicitly assume that No, is the stock measured at the time
of spawning in year tJ.

Equations (4.28) can display all sorts of fancy and' interesting
behavior, especially if £(5) is of the form ea

-
bS or some other equation that

results in a dome-shaped recruiunent relationship (for an analysis of the
basic stability theory involved, see Botsford, 1979). The simulated popula­
tion may cycle, overshoot then damp to the equilibrium, or even show
almost chaotic time behavior. The key parameters that determine stability
are those that set the maximum recruitment rate per adult [a in £(5) =
e· -bSJ, and the time delay from birth to recruitment and first harvest.

A potentially very important factor not usually included in age struc­
ture simulations is density dependence in growth rates, and associated
changes in reproduction and vulnerability schedules (Botsford, 1981).
Growth rates are higher in most organisms when densities are lower, and
fecundities tend to be more closely related to body weight than to age. In
fact, it seems that most stocks have a fixed weight at maturity, with fecundity
increasing almost linearly with weight afterward. This weight usually
corresponds roughly with the growth curve inflection point, where growth
rate begins to decelerate (food energy is put into reproduction instead).
Yield per recruit analyses usually indicate that the best minimum size for
harvesting is also at about the point where growth rates start to decelerate.
It is quite possible for the entire mechanism of population regulation to
operate through density-dependent effects first on growth, which then affects
fecundity and survival, without there existing any sort of density dependence
in juvenile survivals [£(5) = constantJ. For an example of the modeling
details involved, see Walters et al. (1980). The few existing models that
represent this mechanism of population regulation have predicted pro­
nounced temporal cycles in abundance, due to the long time delays for feed­
back between growth rate changes and the subsequent reduction in fecun­
dity. A variation on the theme is to assume that impacts of older animals on
juvenile survival [the G. parameter of equation (4.30)J are related to adult
size, which can happen, for example, when the larger animals become canni­
balistic. This additional feedback can result in multiple population equilibria
(Botsford, 1981).
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A dramatic step In connecting the simple surplus production and
stock-recruitment theories with the more detailed predictions of age struc­
ture analysis was published by Deriso (1980). He showed that the biomass
dynamics of age-structured populations can often be represented by a simple
delay-difference equation that looks much like a surplus production model,
but contains the same parameters usually used in dynamic pool models. His
derivation is based on noting that the harvestable population biomass B, at
any time can be written as

B, = E N.,W.,
.=Jc

(4.31)

where N., and W., are numbers and body weight at age a, and k is the "age
at entry" or first harvest. If we then assume that all animals in B, are equally
vulnerable to harvest at rate h, (so-called "knife-edge selection" at age k) and
have the same natural survival rate s, so that the total survival rate is I, = (1
- h,)s, then equation (4.31) can be written in terms of the previous year's
numbers and new recruits (Nk ,) as

..
B, = 1,-1 E N.-1,'_1 W.r + N k , Wkr

.=k+1
(4.32)

Next, Deriso assumes that the age at entry k is sufficiently large so that the
body growth rate is decelerating, and can be approximated by the Brody
equation, W., = Wk + QW.-1,,-1 (for a > k), where Q and W k are empirical
growth parameters. Substituting this growth model into equation (4.32) and
noting that

E N.-1,,-, W.-1,,-1 =B.-I
.1=6:+1

we get ..
B, = 1,_1 QB'_I + 1,-1 Wk E N._1,,_1 + N kr Wk.

.=11:+1

(4.33)

Note that the summation in this equation is just the total number of vulner­

able fish N,_I at time r-1. This total can be written as N'-I = 1'-2N'-2 +
Nk,,-I, and multiplying it by 1'-1 W k gives 1'-1 WkNr - 1 = 1,-d'-2WkN'-2 +
1'-1 WkNk,.-I- Note that the first element on the right-hand side of this equal­
ity is 1'-1 times the second term in equation (4.33), but shifted back one
year, to r - 2, Equation (4.33) can be solved for this second term, while
shifting all indices back one year:
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Thus 1,_1 WkN,-1 =1,-I(B,-1 -1.-2 QB'-2 - Nk,t-I Wk ), Substituting this into
equation (4.33), rearranging, and shifting the time indices forward one year,
gives the basic Deriso model:

(4.34)

(4.35)

where the first term represents the growth and survival of B" the second
term "corrects" for age structure/growth changes, and the third term
represents the biomass of new recruits at time t + 1.

The key point about Deriso's model is that it represents age structure
effects on biomass dynamics exactly (the algebraic result is not an approxi­
mation) when the three basic assumptions of knife-edge recruitment, age­
independent survival, and Brody growth curve are met. The assumption of
knife-edge recruitment can even be relaxed, by interposing a "prerecruit
pool" between recruitment and B" with recruitment to B, coming from this
pool (see Deriso, 1980, for details). This is extremely convenient for model­
ing, since equation (4.34) is much easier to deal with than the age structure
accounting of the previous section. Also, any model that you would like can
be substituted for the recruitment term N"t+1 in equation (4.34); for exam­

ple, Nk,t+1 = S'-Hl ((S'-HI), where S.-Hl is the spawning biomass in the
year when N',I+I was produced. If we define B, as the biomass just before
harvest and S, = B,( 1 - h,) as the biomass after harvest (Deriso calls this
"spawning stock"), equation (4.34) can be written as

2 S,
B.+ 1 =(1 + Q)sS. - QS -S'-I + W,N','+l

B,

Another way of writing this equation is

[
S.-I JB'+l = sSt + QSS. 1 - S~ +R'+I (4.36)

where R.+ 1 is the biomass of new recruits. In this form it is more obvious
that the biomass dynamics will have components due to survival (sS.),
growth corrected for age structure changes [QsS.(l - sS.-dB.)], and recruit­
ment (R.+1). The connection to surplus production and to stock-recruitment
models is also clarified by equation (4.36): it predicts essentially trivial
effects due to growth and survival, but very important effects due to R.+1 and
its responses to past exploitation (i.e., to S,-HI)' Indeed, if we hold R con­
stant and examine the equilibrium catch C = hB [solve (4.36) with the time
subscript dropped], we obtain

C = 1 -131(1 -:;+132(1 _h)2 (4.37)

where 131 :::: (1 + Q)s and 132 = Qi. This equation either increases asymp­
totically (toward R) as h increases toward 1.0 (if 131 < 1; i.e., low growth
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relative to survival), or can have a weak peak at an intermediate harvest rate
(if (31 > 1; i.e., fast growth in early ages). This is the typical pattern of
equilibrium predictions from dynamic pool models that assume constant
recruitment. To get a nicely quadratic relationship between surplus produc­
tion and stock size (as in logistic surplus production models), the Deriso and
other dynamic pool models agree in predicting that recruitment changes
(decreases at high h) must be involved; growth and survival changes alone
will not produce a strongly curved production function.

One serious problem with the Deriso model as presented above is that
body growth of many animal species cannot be well approximated by the
two-parameter Brody growth equation; the Brody equation does not admit
that many organisms start out small, then grow slowly for many years. In
such cases, a three-parameter growth equation is needed, and Schnute
(1985) has shown how the Deriso model can be generalized to incorporate
this equation. Schnute also shows precisely how various simpler production
models are special cases of his generalized delay-difference equations.

There have been various attempts to estimate Deriso model parame­
ters using only total catch and relative abundance data, as are used in surplus
production analysis. However, usually at least five parameters are involved:
e, S, two recruitment parameters, such as a and b of the Ricker equation,
and a catchability or observation parameter q in the observation model y, =
qB" where y, are the observed relative abundances (usually catch per effort).
Unfortunately, most single-input, single-output (effort - catch, etc.) time
series can be approximated well by three- or four-parameter models. This
means that there will not be enough information in the time series to esti­
mate more than three or four of the original Deriso parameters, so that at
least one must be fixed through independent assessments. The obvious can­
didate is e, which can be estimated from the body growth data that is avail­
able for most organisms. Indeed, one of the strongest features of the Deriso
model is that it invites the use of independent assessments of various param­
eters, especially e, 5, and q. The value of having such assessments (which
may be very costly to obtain in the field) can be evaluated in terms of how
much they improve (reduce variance in predictions from) the surplus pro­
duction analysis obtained by fitting the model (instead of simpler surplus
production models) to catch-abundance time series, while holding the
independently assessable parameters constant.

Because of its simplicity and flexibility in the use of various data
sources, the Deriso model may gradually replace both more simplistic and
more detailed models as a basic standard or starting point for analysis. The
main deterrent to its general use is that it requires nonlinear parameter esti­
mation procedures. Such procedures are always tricky to work with
(Chapter 5), and are extremely tedious to do without a computer. In a way
this is good, since it forces the analyst to look very carefully at his or her data



94 Adaptive Management ofRenewable Resources

and parameter estimates (and not rely on the nice, but often deceptive, cook­
book recipes that are available for surplus production models).

Effecta of population structure

The modeling approaches outlined above, from logistic to Deriso, all
assume some homogeneity or similarity of response by the organisms mak­
ing up the "unit stock" under consideration. In practice, harvesting activi­
ties are usually nonrandom with respect to the population's spatial distribu­
tion, highly selective with respect to behavioral and growth phenotypes (the
big, dumb ones are easier to catch), and aggregated with respect to spatial
substructure generated by homing behavior and natural selection for special­
ized local characteristics. The basic implication of these heterogeneities is
that parameters measured as averages across the overall stock are likely to
change over time, as less productive and/or more accessible individuals (or
substocks) are depleted during periods of heavy harvest, or recover slowly
when protected. There is no simple way to predict in advance how fast these
changes will occur. Consider, for example, a situation where the recruit­
ment [(S) function is decreasing in 5 because organisms are forced to breed
in suboptimal habitats when 5 is large (imagine a salmon stream where some
spawners may be forced, through territorial behavior by others, to lay their
eggs too near the river bank or in tributary streams subject to flooding). If
the breeding habitat can produce a total of K juveniles, then for large 5,
[(5) == K/5. Now include some homing or limited dispersal in the picture,
such that even those animals produced in the marginal areas will tend to
return or stay there. They may well form persistent subpopulations in the
absence of harvesting. Next, imagine a harvesting process that hits both the
marginal and more productive areas nonselectively. Subpopulations in the
marginal areas will, of course, be reduced most rapidly, and [(5) will
increase as 5 is reduced in the ratio K/S; but even if 5 is held fixed, K will
then appear to fall as individuals fail to return to some areas at all. How fast
this will occur will depend on the details of the time patterns of local deple­
tion. Then imagine that the harvesting is suddenly stopped, so 5 increases
sharply. Will the marginal areas be reinvaded (recolonized) immediately? If
not, total juvenile production may build in fits and starts as accidental rein­
vasions take place, genes for dispersal behavior are favored, and so forth.
Each reinvasion accident may be followed by a relatively rapid local
recovery. In any case, it is quite unreasonable to hope that the details of
either the depletion or the recovery process can be predicted, or indeed that
they are even repeatable from one depletion event (experiment!) to another.

There have been two approaches to the representation of population
substructure. The most common has been to try and develop more detailed
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monitoring, modeling, and regulatory systems for the component subpopula­
tions. The alternative has been deliberately to try to track overall parameter
changes treated as statistical phenomena, by methods such as discarding
older data or weighting the older data exponentially less back in time. The
second approach will be discussed more fully in Chapter 7, as a problem in
adaptive parameter estimation. The first approach deserves a bit more dis­
cussion, since it is an area of intense research interest by biologists and
involves considerable expenses for management agencies that adopt it.

Attempts to develop detailed models of stock structure have run into
three main difficulties. First, there is the tactical problem of where to begin.
We know, for example, that all the salmon of British Columbia should not
be treated as a single stock, and, on the other hand, that it would be hope­
lessly complex to model all the several thousand discrete groups that have
been identified on the basis of spawning locations, run timing, electro­
phoretic patterns, etc. There is no ideal stopping place between these
extremes, and even the smallest groupings noticed so far may have substruc­
tures not detected by existing survey methods.

Second, it is seldom economical to gather long-term data on the rela­
tively fine space/time scale needed to detect composition changes and con­
struct accurate substock models. In particular, harvest data are usually
recorded on units of political or economic convenience, and historical
changes in substock structure cannot be inferred from the aggregate data
without assuming the very patterns that one seeks to measure in the first
place. Where very massive data sets have been gathered, as, for example,
for Pacific herring in British Columbia (Hourston and Nash, 1972; Hours­
ton, 1981), changes in sampling methods over time and space have made
detailed analysis almost impossible.

Finally, there is the functional problem of how to model the
dispersal/colonization processes associated with maintenance and reestablish­
ment of structure. Functional questions that must be addressed include:
how does stock size effect dispersal tendency or rate? How do dispersers
select sites at which to settle? What is the survival rate through the dispersal
process? How does selection act on colonizers to increase their fitness in a
new environment, and how fast does their performance improve? These
questions are about events on spatial and temporal scales that have proved
exceedingly difficult and costly for biologists to study. They are certainly not
answered (or even addressed) by the routine data usually gathered in
resource monitoring programs.

A few theoretical studies have simply assumed an arbitrary substock
structure, then asked what effect this structure would have on the overall
relationships (i.e., stock-recruitment) that are usually analyzed. Ricker
(1973b) has shown, for example, that as a fishery develops on a collection of
stocks such as salmon, the "a" parameter of his stock-recruitment model
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[equation (4.22)] for the whole collection will appear to increase, and the
equilibrium stock will decrease. Hilborn (1983) has examined similar sys­
tems in greater detail, and has shown that an effect like the errors-in­
variables regression bias may develop: recruitment may appear to be
independent of spawning stock, so it will appear best either to fish harder or
to keep the system at its current level, even if most of the substocks are actu­
ally being overexploited. Studies such as these are valuable, and should be
conducted as a guide to possible problems with aggregated analysis, even
when it is not possible to specify more than a few reasonable hypotheses
about the unknown substructure.

Detailed models of spatial structure have proven quite valuable in the
study of migratory organisms, where movements from area to area can be
established through methods such as tagging. Particularly in cases where the
organisms move from one political jurisdiction to another, or are subject to
different (and effectively competing) harvesting gear as they move about,
even some simple bookkeeping or allocation models can be of considerable
value in policy analysis. Good examples are the "gauntlet" models used to
study harvesting of Pacific salmon as they move along their ocean migration
pathways (Paulik and Greenough, 1966; Argue et al., 1983). The typical
result of such bookkeeping models is to show that conservation measures
imposed at one stage in the migratory pathway are likely to be canceled by
increased harvest of the organisms later on, so that some relatively compli­
cated and balanced policy must be implemented for the migration system as
a whole.

Stocks as Ecosystem Components

A bewildering variety of models have been constructed for exploited
ecosystems, ranging from simple predator-prey models with harvesting
terms, through to massive simulations of interactions among hundreds of
species. There are models for gross energy flux between trophic levels of the
ocean, and detailed day-by-day predictions of how plankton blooms develop
and are fed upon by local fish. Relationships between ungulate populations
and their predators and food supplies have been represented by models rang­
ing from a few equations for biomass transfer between trophic "compart­
ments," to detailed calculations of foraging patterns and nutritional balances
of individual animals. A first step in making sense of the various approaches
is to distinguish between models that concentrate on "fast variables" (such as
plankton populations) and interactions whose outcome may be essentially
random from year to year, and models that concentrate on long-term, more
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persistent changes in production processes. These longer-term models are
the most interesting from an applied viewpoint, since they focus on interac­
tions that might cause single-stock analyses to fail. As with effects of spatial
structure, one approach to the analysis of interactions would be to view them
as unpredictable generators of change in stock parameters, which we might
hope to track by means of adaptive estimation procedures rather than expli­
cit modeling of how the changes arise. This section will concentrate on the
alternative approach of trying to model the interactions explicitly.

From the viewpoint of any species stock, the ecosystem generates four
general inputs or categories of interaction:

(1) a basis for production in terms offood supply;
(2) sources of mortality in terms of parasites and predators;
(3) a physical structure that moderates trophic interactions by providing

safe places to breed, refuge from predation, more or less favorable
microclimates for physiological processes, and so forth; and

(4) a chemical environment that provides vital compounds (such as O 2)

and may contain various threatening pollutants of human and
biogenic origin.

Ecosystem modeling has concentrated on the obvious trophic inputs (1)-(2),
with only passing or implicit concern for how these interactions are shaped
by physical structures of biological origin (3). Modeling of chemical interac­
tions, particularly pollution effects, has been discouraged by lack of data on
the chronic (as opposed to directly lethal) effects of various compounds on
processes such as growth, migratory behavior, and avoidance of predators.
Even major pollution sources, such as acid rain, have proved extremely
difficult to model (except when grossly lethal levels are involved), since they
often generate both positive (fertilizers) and negative effects that may accu­
mulate quite slowly over time.

In the absence of long historical time series, there has been a tendency
in ecosystem modeling to assume that the correct model structure should
produce a stable equilibrium or "balance of nature." Forms of functions and
parameter values have then been chosen to guarantee this result. But a
variety of recent studies have cast serious doubt on the very idea that there
exists any balance of nature, except as a purely statistical consequence of
averaging dynamic changes over large areas. To illustrate this point, I like
to use the example of a wildlife biologist concerned with the savanna ecosys­
tems of Africa. Suppose the biologist chooses to look at ecosystem interac­
tions on a one hectare plot of ground at the edge of the famous Serengeti
plains. On this plot he will observe highly unstable dynamics, with seasonal
rainfall stimulating grass growth, the grass being depleted by passing herds
of ungulate grazers or fires that burn away shrubs and accumulated dry
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grasses, trees being knocked down and browsed by passing elephants, and so
forth.

If he enlarges his perspective to the area covered by seasonal migra­
tions of the major ungulate species, a more stable pattern will emerge; fires,
grazing, and rainfall generate a vegetation mosaic that the animals move
across and "sample" in sequences that allow them to maintain relatively
steady feeding rates and exposure to predators. But on a longer time scale
the biologist will find temporal instability even over this larger area due to
droughts, disease outbreaks, changing human activities and shifts in woody
vegetation cover due to larger fires and changes in the elephant population.
In frustration he may turn to the whole of Africa. On this scale he is likely
to see considerable temporal stability; effects of droughts in one area will be
averaged against effects of high rainfall in others, and so forth. Dispersal of
ungulates between major regions or migration pathways will ensure that
such areas are repopulated even after major disasters. Only a few very
large-scale ecological events, such as locust outbreaks, will alter such overall
statistics as total grass production.

The point of this example is that there is no "natural" perspective for
the biologist to adopt; he can see any dynamic pattern that he wishes, from
chaos to robust "balance," just by changing his window of observation and
aggregation. It is therefore not surprising that ecologists have argued, some­
times bitterly, about whether ecological interactions are likely to result in
such unstable phenomena as predator-prey cycles or instead in "prudent"
behavior leading to equilibrium. The modern synthesis is that both views
are correct: at smaller spatial scales (or over large homogeneous areas),
interactions involving competition and predation are likely to produce
unstable population sizes in the species involved (and models of homoge­
neous areas should behave accordingly); at larger scales, sources of spatial
heterogeneity (barriers and refugia) and local renewal (dispersal and coloni­
zation) lead to statistical stability (and models of large areas should represent
these mechanisms).

Models of trophic interactions

Three basic approaches have been taken to the modeling of trophic
interactions (food supplies and production). None of these approaches has
dealt adequately with the questions of spatial scale raised in the previous
paragraph, nor with questions about how unmodeled ecosystem components
may set the stage for (and modify over time) the obvious trophic interactions
that are represented. As an example, keep in mind that the aquatic macro­
phytes growing near the shores of a lake may contribute little to the trophic
base for a predator-prey interaction involving two fish species; but by
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(4.38)

providing a refuge for the juveniles of one or both species, these macro­
phytes may be a key determinant of predation rates.

The simplest approach has been to extend surplus production models
to include species interaction terms in the so-called Lotka-Volterra frame­
work. The two-species prototype would then be

d~1 = riB, [1 - :,1 ] - aI2 B.B2 - qIB1E,

d~2 = r2 B2 [1 - :: ] + a21 B1B2 - q2 B2E2

Here the logistic terms rB( 1 - Blk) represent the effects of intraspecific
competition for unmodeled resources, the aijBiBj terms represent competi­
tion or predation effects across species, and the qBE terms represent human
exploitation (E I = E2 if the same harvesting process takes both species). A
key assumption in such formulations is that species interactions are like
"mass action" random contacts in chemical reactions, so increases in either
species will increase the interaction rates aijB;Bj.

The most important consequence of this assumption is most easily
seen by comparing the two isocline patterns in Figure 4.7, which shows
combinations of B1 and B2 where dBldt = 0 and gives a general picture of
how the system will change from any starting combination. Case A shows
the behavior of equation (4.38), and the basic prediction is of a single stable
equilibrium (though one or the other species may vanish if the efforts are too
high). Case B shows an apparently similar model, except that the predator
feeding rate is assumed to satiate. Instead of the predation rate per predator
being a 12B" this rate is modeled as al2Bd(ex + B1), where ex is the density of
B, at which the predators get half of their maximum ration and al2 becomes
the maximum ration per B2 • Parameter values for case B were chosen to
give the worst possible situation, which involves two potentially stable equi­
libria (Bazykin, 1976; Bazykin et al., 1981): at point $1, both stocks are low
and the predator-prey interaction is the dominant stabilizing mechanism.
At point $ both stocks are high, the predators are satiated, and predation is
relatively unimportant. Harvesting mortality rates affect the locations of the
isoclines, and changes in them can make one or other equilibrium disappear
suddenly, with the result that stock size will move catastrophically toward the
other equilibrium. Thus an apparently minor change in functional assump­
tion leads to qualitatively different predictions. Even more complex patterns
are possible if the predators are considered to have type III (sigmoid) func­
tional responses to prey density. However, the essential point is that model­
ing species interactions is not like approximating more complex population
models by quadratic (logistic) production functions; qualitatively new
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Case A: No predator satiation
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Figure ".7. Qualitative behavior of simple trophic models can often be deduced by
looking at "isoclines," which are combinations of biomasses where one species is ex­
pected to have zero rate of change (13; = 0). In case A, the predator B2 captures
B, at a rate a12B,B2 (Le., does not satiate) and turns captures into B2 biomass at a
rate a21BIB2; for the parameter combination chosen, there is a stable equilibrium
at the combination S. In case B, the predation rate by B2 on B1 is aI2B,B2/(a +
B 1) (i.e., the predator satiates); for a small domain of parameter combinations,
there can be two stable equilibria (S, S') and one unstable one (u), with SI having
a "domain of attraction" shown by the dotted line. The isocline equations are
given by

Case A: (a12 < 0, a21 > 0, r2 > 0)

131 = 0 : B2 = _1_ [r1 - ql E, - ~ B1 ]
al2 k,

132 = 0 : B2 = ~: [r2 - q2 E2 + a21 J
Case B: (a12 < 0, a21 > 0, r2 > 0, ex > 0)

131 = 0 : B2 = _1_ [r1 - q l E I - 2 BI] (ex + Bd
al2 k l

132 = 0 : B2 k 2 [r2 _ q2 E2 + a21 B1 ]
r2 a + B 1
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concerns are introduced depending on precisely how the interactions are
represented. For further analyses of harvesting in the simpler interaction
models, see Beddington and Cooke (1982), Brauer and Soudack (1979), and
May et al. (1979).

Attempts to fit multispecies surplus production models like equation
(4.38) to time series data have not met with much success. The interaction
terms generally turn out not to be statistically significant. [For an exception
see Rinaldi and Gatto's (1978) work on shrimp-fish interactions.] This has
been interpreted as evidence that single-stock models are acceptable for
management purposes. But it is quite possible for the harvestable individu­
als measured in B1 and B2 to interact weakly, yet have strong impacts on one
another's juvenile survival. If the juveniles are recruited to B. and B2 only
after considerable time delays, the biomass changes may even appear to be
positively correlated (imagine high B[ resulting in low survival of species 1
juveniles; then if B2 decreases over the next few years, while the impacted
juveniles are recruiting to B1, it will appear that the fall in B2 has led to
decreasing production rates in B.). Thus, it would seem that potential
species interactions should be examined in more detail than models like
(4.38) will permit.

The second approach to trophic interactions has been to connect col­
lections of dynamic pool models together through interaction terms in
stock-recruitment relationships, growth rates, and natural mortality rates.
This approach at least avoids the problem, just noted, of time delays when
older animals of one species impact juveniles of another. However, these
models have usually made dangerously simplistic assumptions about the
interaction terms. Anderson and Ursin (1977), for example, assumed that
instantaneous mortality rates in prey age-species categories are proportional
to the abundance of predator categories; this is essentially the same as the
mass action assumption of equation (4.38) and leads to similar conclusions
about stability (Figure 4.7, case A). At another extreme, Levastu and
Favorite (1977) assumed that predator rations are constant, and their model
can produce highly unstable dynamics; some species are assumed essentially
to take quota harvests from others. It is easy to confirm with simple simula­
tion experiments that one must be just as careful about how predator func­
tional responses (to prey density) are represented in complex models, as in
the simpler surplus production models like equation (4.38).

A third approach to trophic interactions has been to start with a care­
ful "experimental components" (Holling, 1965) analysis of the functional
responses of predators to changes in their prey density, then to surround this
analysis with whatever bookkeeping is needed to keep track of age struc­
tures, etc. The basic starting point for such analysis is Holling's disk equa­
tion, which is derived by noting that a feeding animal must split his time
between searching for and handling prey. If he can devote a total time T,
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(4.39)

per day to feeding, this total will consist of searching time T, and handling
(pursuit, capture, manipulation, rest when gut is full) time T h :

T, = T, + Th

If the average time required to handle each prey is h, and if he captures N.
prey per day, the predator will spend T h = hN.. Now suppose that he
sweeps an area a' per time spent actually searching, and has a probability pc
of recognizing and successfully attacking any prey that is in the swept area.
If the average prey density in the area swept is N (prey per area), he should
on average attack a'peN prey per time spent searching-in other words, N.
= a'peNT,. Thus we can reexpress T, as T, = N./(a'peN). Substituting
this and the expression T h =hN. into the basic time budget gives

N.
T, =-- +hN.

a'peN

If we then solve this for N., the number of attacks per time, the result is
Holling's disk equation:

aT,N
N. =----

1 + ahN

where a = a'Pe, the "rate of effective search." The derivation can be
extended in several ways, for example, by assuming that a depends on prey
density through search image formation (to give a type III response). When
there are many prey types (i.e., age classes of a prey species, where each age
class is encountered at different rates), the multispecies disk equation for the
attack rate on prey type j is just

(4.39a)

where the sum is across all prey types taken.
Given the so-called "instantaneous" attack rates per predator pro­

duced by equations (4.39, 4.39a), it is then necessary to solve the exploita­
tion equations dNi/dt = -NaiP, where P is the predator density (or
-E k N"'kP, if there are many predators). A good approximation for short
time intervals over which the N i do not change too much «50%) is to take

N - N -NaiP1N;r
;,r+1 - ire (4.40)

(4.41)

where Nai is evaluated from equation (4.39a) with N; = Nil.

An alternative "exploitation equation," which implicitly assumes some
spatial effects in the sense that encounter patterns may not be random, is
Mace's (1983) model for a single average prey type:

[
alP - h(N, - N'+I)] NJlk ] -k

N,+I = N. 1 + k
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where a, h, and P are as defined for equations (4.39)-(4.40), and the
"search pattern" parameter k is defined as k = 1/(n - 1), where 0 < n < 1
implies that the search is concentrated where prey are scarce, n = 1 implies
a random search, and n > 1 implies that the search is concentrated in places
were prey are clumped. Mace suggests ways to estimate n and to extend
equation (4.41) to cases where several prey types are present. Since N'+l
appears on both sides of (4.41), the equation must be solved iteratively in
each time step; this extra effort is quite worthwhile when the search is
thought to be highly nonrandom.

There is a simple reason for describing the disk equation derivation in
some detail: it is usually necessary to estimate the feeding rate parameters
from behavioral information rather than from field monitoring data, such as
stomach contents. The handling time h can usually be obtained rather
easily, from experimental data on maximum feeding or growth rates (max­
imum rate = 1/h). Rates of successful search (a) are more difficult to esti­
mate. One approach is to note that a = pc X (distance moved) X (width of
reactive field). Thus, it can be estimated roughly from data on the combined
movement speeds of prey and predator, along with laboratory or field assess­
ments of the predator's reactive distance to prey (note that these speeds and
distances will depend on prey and predator sizes). The capture probability
pc is usually quite low, in the range 0.1-0.3, and should be estimated when­
ever possible from field observations. Obviously, big errors can arise from
chaining together assumptions on distances, speeds, and so forth. But the
estimates obtained in this way will at least give reasonable bounds for
interaction rates, and, more importantly, they force the analyst to think
more clearly about the spatial and temporal structure of the process. It usu­
ally becomes obvious, for example, that searching patterns are rarely ran­
dom in time and space, and at least some of the prey will be distributed in
partial refuges that are searched rarely or not at all. Examples of experimen­
tal component calculations with comparisons to other field data on feeding
rates can be found in Haber et al. (1976) and Clark et al. (1979). Experi­
mental component analyses of predation interactions have indicated that the
strongest effects should usually be concentrated in small or juvenile prey
categories. This agrees with the general field observation in fisheries and
wildlife that mortality rates in older age groups tend to be quite stable over
time, in spite of major changes in predator populations. An exception to this
rule has been observed in some cases involving introduced parasites, such as
sea lamprey feeding on trout in the North American Great Lakes (see refer­
ences in SUS, 1980).

Given estimates of mortality patterns associated with trophic interac­
tions, it remains for the modeler to represent how food intakes are translated
into rates of growth, reproduction, and mortality in the predator categories.
Here a useful observation, noted earlier, is that reproduction rates tend to be
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related to body size; thus, it is relatively simple to model changes in repro­
duction output once the growth effects have been determined. Changes in
mortality rates are more difficult; if predation rates are represented as size­
dependent, then some mortality effects will be implicit in the other calcula­
tions. But there may also be mortalities due to starvation and increased
exposure to various risks (including predation) associated with increased
movement (foraging and dispersal); this syndrome of mortality effects when
food is short has never been clearly understood by ecologists.

The above discussion has barely touched on the possibilities and prob­
lems associated with taking that one obvious step beyond single-stock model­
ing, to at least represent trophic interactions among key stocks. Yet we see
that this step is not a small one; it involves a geometric increase in the
number of assumptions and parameters that must be considered. This
observation has led many scientists to reject the possibility of ever construct­
ing credible "mechanistic~ models of interaction, and to concentrate instead
on either improving single-stock models or looking at ecosystems in terms of
other variables like energy flows and diversity.

Compressed representation of ecosystem efrecb

It would be nice if we could talk about ecosystems as productive units,
without ever becoming involved in the biology of individual species. Then
we could speak in such terms as Regier and Henderson's (1973)
"stress-response~model, about how various stresses, such as harvesting and
eutrophication, tend to

(1) reduce spatial heterogeneity and species diversity;
(2) increase temporal variability;
(3) drive the body size distribution toward smaller forms (species) that

turn over more rapidly and erratically;
(4-) shift energy and nutrient flows from maintenance pathways (decom­

poser food chains, etc.) into net output pathways, sometimes with
deleterious effects in the long term; and

(5) selectively favor species and forms that are of less value to humans,
but which are competitively replaced by more valuable forms when
the stresses are reduced.

But the key difficulty with this approach is in the last point (5): we value
productive resources not in terms of overall measures like total biomass pro­
duction, but rather in terms of particular species that stand out in quality as
food, fiber, or sport. So discussions that begin with general ecosystem con­
cerns have a way of deteriorating quickly into arguments about how valued



Models ofRenewable Resource Systems 105

species fit into whatever general response patterns are being described; the
specific interactions that were to be ignored then reassert themselves as cen­
tral topics of debate and inference.

Predator pit

Population size, Nt

Figure 4.8. A simple model for classifying populations and predicting responses to
some disturbances. Np is a lower equilibrium maintained by predation, Nc is a
higher competitive equilibrium, and N u is an unstable stock level. The ·predator
pit" survival depression may be absent in some populations.

Although discussions of individual stocks seem unavoidable, we might
at least seek prototypical or synoptic frameworks within which to discuss all
cases as they arise. Southwood and Comins (1976) and others have sug­
gested beginning with the simple gain relationship Nt+l/Nt = g(Nt ), where g
has the form shown in Figure 4.8. The key features of g are:

(1) the intrinsic rate of growth when Nt is small;
(2) the presence or absence and depth of the "predator pit" representing

effects of depensatory predation processes at intermediate Nt; and
(3) the decline in g due to intraspecific competition when Nt is large.

We may use this compressed model in two ways. First, species may be
classified according to the three basic dimensions of maximum growth, vul­
nerability to predation, and competitive ability. Second, some general infer­
ences about ecosystem interactions can be developed by asking how the qual­
itative form of g should change over time (increased harvesting will lower
the whole curve, fertilization will move it upward, increases in predator
populations will deepen the pit, and so forth).

Classification is aided by the fact that no species can be good at every­
thing, so there are trade-offs among maximum growth rates, predation
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Maximum population
growth rate

Competitive
ability

Resistance
to predation

Figure 4.9. Populations may be classified acconiing to maximum growth rate, tac­
tics for predation avoidance, and competitive ability. Populations with parameter
combinations below the constraint surface should disappear over time. A, B, and
C represent three specialized strategies. After Cody (1976).

avoidance, and competitive abilities. But we expect natural selection to push
these abilities toward some constraint set or surface in what Cody (1976) has

termed the "strategy space" (Figure 4.9). Thus, small species tend to have
high growth rates and vulnerability to predation, and mixed responses to

competitors. Large species tend to have low growth rates, low vulnerability

to predation, and to outcompete smaller species in the long term. Ecosys­
tems can be viewed as collections of such "strategists," occupying various
points on the surface in Figure 4.9. Strategists A are favored after major
disturbances or under continued hard exploitation; their g function shows
high maximum growth and a deep predator pit (when predators are
present). Strategists Band C are favored in the absence of disturbance: B
types sacrifice growth rate for competitive ability, and C types sacrifice
growth for the ability to avoid predation.
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As an example of how the synoptic model might be used for dynamic
prediction, consider how a type B species would respond to increasing then
decreasing harvest rates. Suppose the stock is initially at its upper (competi­
tive) equilibrium, point N c in Figure 4.8. Increasing harvest rate will lower
the g function, moving the equilibrium N c down and the unstable point N u

upward to meet it. If harvesting becomes intense enough, the N c and N u

points will vanish, and the stock will collapse to the predation-maintained
equilibrium Np • Then, if harvesting is reciuced, the stock will remain down
around N p 0), even if the other equilibria reappear as potentials. Suppose,
then, that exploitation rates on predator stocks increase, or that habitat struc­
ture alters so that juveniles have more refuges from the predators. In either
case, the predator pit will become shallower, so Np will increase and N u will

decrease; if they coalesce (vanish), the stock will begin increasing toward N c

(perhaps spectacularly). So we see from this example that a variety of
interactions can be "simulated," at least qualitatively, as changes in the
synoptic g function. The main danger in such simulations is in failing to
keep track of coupled changes in variables that have similar speeds of
response; it was assumed tacitly (and perhaps incorrectly) in the above
example that predators would not respond quickly and strongly to the initial
collapse.

Compressed or synoptic models of how stocks respond to various fac­
tors are likely to become more popular in applied ecology, because they are
robust to uncertainties about the details of production relationships. As we
shall see in Chapter 5, they can be constructed initially from fairly rigorous
and quantitative analysis of key interactions, such as predation. Then quali­
tative analysis is performed by asking how the initial quantitative parameters
should change in relation to factors, such as spatial structure, that are
difficult to model explicitly.

The Harvesting Process

Let us turn now to the interface between harvested populations and
the human harvesting system. This interface, where stock size and its bio­
logical attributes combine with harvesting effort and its technological attri­
butes to produce the harvests we observe, represents a process that is crucial
to two aspects of adaptive management. First, the process is never com­
pletely regulated, and it is important to understand how practical controls
(such as closed seasons, area closures, and effort limits) may produce varying
results over time. Second, it is generally through the harvesting process that
we attempt to measure the resource itself. Since independent sampling and
monitoring systems are very costly for regulatory agencies to maintain, the
harvesters are treated as samplers of attributes, such as relative stock size and
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age composition. We must at least understand the dangers in treating such
samples as representative of system state.

The IDaIIlI action aasumption

As noted earlier, a starting point for the analysis of harvest rate (C,)
in relation to stock size (N,) and harvesting effort (E,) is the simple mass
action model

C, = qN,E, (4.42)

where the catchability coefficient q is interpreted as the proportion of Nt
taken by one unit of harvesting effort. If the stock Nt is distributed over
some area A and each unit of harvesting effort sweeps an area a' with proba­
bility pc of capturing each organism in the area swept, and if the sweeps are
taken at random with respect to the spatial distribution of N, (which need
not be random), then q has the interpretation q = pc a'/A. That is, it is
exactly the same as the rate of effective search parameter a discussed above
for natural predators. Note that there is a basic symmetry which makes the
model more general; we can just as well view the harvesters as sitting still,
while the organisms sweep out search areas for the gear. We expect pc to
vary with the size of organisms (and a' as well, if it is the organism that
moves rather than the gear), to give a "mesh selection" pattern. In looking
at actual catch and effort data, we must take care that effort is measured in
units that reflect the area swept; such measures as the total number of
fishing boats or hunters will obviously not do, since these boats or hunters
may spend variable amounts of time actually searching and may change
technologies so as to sweep larger areas (Mangel, 1982). Clearly it is a
tricky business to translate time series of harvesting statistics into effort
measures such that q will remain constant with respect to those measures.

In the following subsections we will look more deeply into the harvest­
ing process by questioning some of the assumptions underlying equation
(4.42). As you read through this section, you may well wish to join some
prominent analysts in arguing that catch and effort statistics are basically use­
less as practical measures of changing system state, so it is imperative to
establish independent sampling systems. I will argue in the last subsection
that there is another option, namely to seek incentives or regulations that will
induce the harvesters to spend some of their time acting and reporting as
more representative samplers.

Exploitation effects

The first and most obvious thing wrong with equation (4.42) is that
successive units of harvesting effort may overlap one another during short

I
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periods of intensive effort or along migration routes. Ignoring other factors
like natural mortality during such periods, the simplest model for the cumu­

lative catch Y, in relation to the cumulative effort is the catch equation men­

tioned earlier [e.g., (4.12)], which in the notation of (4.42) becomes

Y, = N,(1 - e -qE,) (4.43)

where N, is the stock size at the start of the period of harvest. This model is
just the solution of dC = (qN) dE, with dN = -dC. For small E, this rela­
tionship approaches equation (4.41); as E increases, it predicts that Y, will
approach the asymptote N,.

When several agents of mortality or types of effort E; are involved in
the exploitation episode, the catch by each type is given by

Y i = Nt q;E, (1 - e-Z
) (4.44)

z

where z = E j qjEj is the total "force of mortality" or area swept by all the
agents. Here the total harvest is N,(1 - e-Z

), and each agent gets a fraction
q,E;/z of this total.

Equations (4.43) and (4.44) are troublesome as "observation models"
for N" since they imply that the state N, cannot be reconstructed given esti­

mates of q just by taking IV, = C,lqE,. However, they imply that the com­
mon abundance index CIE approaches NIE when effort (or q) is large, so

the state Nt can be estimated directly as IV, =:: Y,. This, of course, does not
help much in management unless it can be safely assumed that N'+l is
independent of N" in which case there is little need for management in the
first place.

Nonrandom searching patterns

Harvesting effort is seldom distributed at random with respect to N,.
In the worst cases, harvesting involves a two-stage process in which search­
ing gear (airplanes, etc.) map out the stock distribution (find large schools,

etc.), and effort is concentrated entirely on the largest aggregations. In this
case the harvesters may all achieve capacity loads or bag limits except when
the total stock is very low, and their catch rate is approximately C, = eE"
where e is the capacity or bag limit. Obviously, then, the catch per effort is
completely independent of stock size (CIE = c), and no signal is received
about N, by monitoring CIE until the stock is so low that some harvesters
are unable to reach capacity due to local exploitation effects.

When all large aggregations can be easily found and harvested com­
pletely, then C, = p. N" where p. is the proportion of the stock that is

included in the aggregations that are large enough to be economical to
exploit. If p. tends to be a constant proportion of Nt (no change in aggrega­

tion behavior as stock size is reduced), then C IE =p. N IE j is certainly not a



110 Adaptive Management ofRenewable Resources

stock size index and it would be better to use C instead. But who would
believe that p. is stable over time?

Actual searching processes involve all cases between purely random
encounters and the extremes just mentioned. Harvesters may sample in par­
tially nonrandom ways by using physical features that attract aggregations,
by working in areas that have historically been more productive, by follow­
ing spiral searches to retarget on aggregations after a first "strike," and by
watching one another so there is effectively some cooperation in finding
aggregations. To make matters still worse, all of these behaviors are likely to
develop and evolve over time, so the process becomes steadily less random
and more efficient. One need only glance through a fisheries trade magazine
to see how inventive fishermen have been about making the search for
aggregations more efficient; the development of nonrandom search and the
competitive edge it gives to clever harvesters has been one of the major
thrusts of technological development in fisheries.

A particularly nasty pattern of nonrandom search occurs when spatial
depletion moves outward from major bases of operation, such as fishing
ports. Often, heavy harvesting near to home (inshore, etc.) quickly results
in the depletion of local substocks, so the harvesters are forced to move pro­
gressively further away. Catch per effort measures may remain high until
the depletion "wave" hits the spatial limits of the stock, or else decline
steadily if the effort measure is crude and includes the nonsearching time
associated with movement to areas where depletion has not yet occurred.
Competition among harvesters can be fierce during such developments, and
a premium is placed on investment in larger and more mobile gear; some
workers have claimed that this technological development is economically
"healthy," confusing it with the economies of scale that can lead to more
efficient harvesting. In fact, the depletion process may in no way represent
efficient use of the resource. Similar situations also occur in forest wildlife
management, when development of road networks into more remote areas
(for mining and forest harvesting) keeps making more big game populations
accessible to depletion by hunters.

No general and simple theoretical models have yet been developed to
represent the spectrum of possible nonrandomness in search processes. An
equation with some potential is Mace's exploitation model, used to model
nonrandom search by natural predators [see equation (4.41)], but this model
cannot adequately represent some of the extreme (and economically most
important) cases. At this point it remains necessary to monitor in some
detail the spatial pattern of harvesting relative to stock distributions, on a
case-by-case basis. Thus, detailed logbooks and other recording systems for
effort and harvest distribution are a key component of resource monitoring
programs, as are the rather elaborate data-processing facilities necessary to
make use of this information.
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Gear competition and saturation
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Especially with stocks that are highly aggregated or schooled, there
can be direct interference (gear) competition among the harvesters; the pres­
ence of one or more units already in an area may prevent others from
searching or casting their gear. Further, the units already in place may not
move on until their "gear is satl).rated" (nets or holds filled, bag limits
achieved). An extreme example of this competition occurs in some fisheries
for Pacific salmon, where it is not uncommon to see a dozen large seine
vessels "lined up" waiting to set at particularly good locations, such as head­
lands and closed area boundaries.

Unless effort is monitored very precisely in terms of actual areas
swept, nets set, etc., the basic effect of gear competition is to make catchabil­
ity coefficients decline as effort increases. This may be misinterpreted as a
decrease in stock size, if catch per effort is used as an abundance index.

Gear saturation has a potentially more dangerous effect, since it
implies that catch per effort will be a nonlinear, saturating function of stock
size. When gear saturation is prevalent, actual stock size may decline con­
siderably before there is a noticeable drop in catch per effort. In mul­
tispecies harvesting, an associated problem is "discarding:" when more
valued species are abundant, harvesters may discard others to make room in
their holds or bags. Since the sorting is a function of the densities of pre­
ferred species, landed catches per effort of the less preferred species decline
-this creates the appearance of biological interaction among the species,
especially when the less preferred ones are small enough to be potential prey
of the others.

Let us make a small theoretical digression. Suppose you can observe
the equilibrium catch (C.) from a stock, and this catch exactly follows a logis­
tic production function, so that C. = rB,(l - B,lk) . But suppose that
instead of observing B, or qB" your monitoring system is actually giving an
abundance index Y, that saturates as B, increases: Y, = aB,/(l + abB,).
This disk equation model might represent gear saturation. If you plot C.
versus Y" you will get the correct quadratic curve only if h = 0 (i.e., Y =
qB). Otherwise, the "production function" will appear to peak at higher
stock sizes than k 12. As h becomes larger, the peak moves closer and closer
to the value of Y associated with B = k. This is not a management problem
if you have "sampled" the C. function thoroughly, since you will know what
index Y to shoot for in order to maximize C. (or whatever). But if you have
only observed the right-hand limb of the function (production at high
apparent stock sizes), then act as though the peak were going to occur at Y
equal to one half of its maximum, you will get a very nasty surprise! Your
prediction of very high production at that point will be grossly in error.
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EfFort venus quota regulation

Adaptive Management ofRenewable Resources

If it were possible to measure q, and if one could be sure that C =
qEN, then a simple feedback policy would be to fix the effort E at some
desirable and safe level. Then, if the stock size were small, the per capita
net production rate should exceed the mortality rate qE, and the stock
should increase. Likewise, it should move down toward equilibrium from
unproductively high levels. Under this system, it would be enough to have a
reasonable estimate of the optimum exploitation rate, and periodic fixes on q
to make sure that it was not changing rapidly. There would be no need to
measure or estimate stock size directly, except when reassessing q.

But this system will obviously not work if stock and effort are nonran­
domly distributed or if there is gear saturation. Under fixed effort, decreases
in stock size will not necessarily result in decreases in catch. If catch remains
nearly constant as N decreases, exploitation rates will increase in a depensa­
tory (predator pit) pattern. Recognizing this, many management agencies
have invested in expensive monitoring systems to make annual estimates of
stock size as accurately as possible, and to keep a running track of catch as it
accumulates so that harvesting can be shut down when a desired quota (rela­
tive to the estimated stock size) has been reached. In such situations there is
a tendency to ignore harvesting effort entirely, or to treat it only as a very
short-term predictor of the catch accumulation. Then, if the harvesting is
profitable and efforts continue to grow over time, the quota is reached earlier
each year, and it becomes progressively more costly and difficult to monitor
and regulate the annual catch accumulation. As the harvesting season is
shortened, intense gear competition develops (as discussed above); to stay in
the race, harvesters must invest in fundamentally uneconomical technologies
for getting there faster, holding the catches on board (so as not to waste time
unloading), and so forth.

So at one extreme we have the inefficiencies, but potential stability, of
random searching systems, and, on the other, a pathological quota system
that is expensive, requires good stock monitoring, and generates another
kind of inefficiency. It is a major challenge in resource management to
design short-term (in season) policies that avoid these extremes, or perhaps
to take another approach altogether.

Fishing for information

Harvesters of common property resources may be tightly regulated
for conservation or economic reasons, but by tradition they have been free to
make the most of their own decisions about where and when to exert har­
vesting effort. Regulatory agents view their task as the negative one of
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preventing depletion or waste, and they see the harvesters as antagonists who
should not be involved in management or be imposed with any more regula­
tions than necessary. Harvesters are rarely viewed as active cooperators or
collaborators in gaining better understanding of the resources, and, indeed,
there are usually strong economic incentives for them to sample nonran­
domly and to withhold information that might reach competitors and tax col­
lectors.

In terms of monitoring abundance changes, it would be valuable to
have harvesting effort more evenly or randomly distributed in space and
time. This is especially true in the early development of resources, when
harvesting effort would otherwise be concentrated on the densest and most
accessible stock aggregations. Why not make it a condition of participation
in the harvesting (part of the license fee, if you will) that each harvester
devote some fraction of his effort to searching, netting, etc., on a sampling
grid predetermined by the regulatory authority? With modern computer
systems, it would certainly be simple enough to assign each harvester a sam­
pling path that would not inconvenience him too much or place him at a
severe disadvantage relative to others. The main objection to this idea of
obligatory "fishing for information" is that too many of the harvesters would
either cheat (fake the observations) or record their sample catches too inaccu­
rately. This is a fair objection, but we should compare the costs of monitor­
ing and policing the harvesters to the costs that would otherwise be incurred
by the regulatory authority having to run its own sampling system; govern­
ment survey and research vessels, helicopter charters, etc., are notoriously
expensive.

There has not yet been a large-scale test of any fishing for information
system by common property harvesters. But there are scattered examples of
voluntary cooperation which suggest that the rewards to both harvesters and
managers (i.e., the public) of such systems can be substantial. The key
problem now is to break down the traditional adversarial attitudes on both
sides, and to design incentive systems that IIlake the sampling effort at least
equitable.

Dynamics of Harvesting Effort

It has been noted repeatedly above that the harvesting process is
never completely regulated. Even when strong limits are placed on the
development of harvesting capacity and short-term deployment of that capa­
city as searching effort, the harvesters are at least free to choose not to go out
if they are unlikely to meet operating costs or see better opportunities else­
where. This means that there will be some "natural" feedback between stock
size and harvesting effort. This feedback may make some management
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actions unnecessary or redundant, but more important for the adaptive
manager it may place severe constraints on how much informative variation
can be deliberately introduced into the harvest rate patterns over time.

It is tempting to look initially at the dynamics of harvesters as though
they were just another natural predator, and to use existing ecological
models to describe their behavior over time. The previous section did essen­
tially this, in viewing their functional responses to prey density as involving
experimental components of searching, handling, and learning. We could
go further, and talk about invesunent as a birth process, depreciation as
mortality, and so forth. However, lam uncomfortable with this approach
for two reasons:

(1) the short-term (within one year) "numerical response" of harvesters to
prey density is likely to be much stronger than most natural predators
would exhibit, since harvesters have many more options for surviving
through short periods of prey scarcity by engaging in activities other
than harvesting (they can do a lot more than switch prey species or
move to other habitats in search of alternative prey); and

(2) their response "parameters" may change quite rapidly in time due to
technological developments and changes in the economic environment
(prices, wages, leisure time, etc.) that they face. For example, the
"reproductive process" for a particular fishing Heet depends not only
on how many boats there are and how well they are already doing,
but also on the development status of other fishing Heets that might be
rapidly converted (through minor technological investments) to join
the Heet of interest.

In more vivid terms, fishing Heets as stocks may be much more tightly cou­
pled to the economic system surrounding them than are natural predator
stocks coupled to their surrounding ecosystem. This difference is, of course,
a matter of degree, but it is simply not worth ignoring in favor of sloppy
arguments by analogy.

Short-term effort responaes

Let us consider how to model the response of harvesting effort over
time periods sufficiently short so as to preclude significant change in harvest­
ing capacity. That is, let us assume that the total Heet size, the population of
sportsmen who know about and are equipped to pursue the stock of concern,
or any other capacity measure is constant, and examine how much of the
short-term potential represented by this capacity will actually be exhibited.
Here we must begin by being very careful to distinguish between arguments
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about how harvesters are likely to behave as individuals, versus arguments
about how the statistical aggregate of their responses will look to us if we plot
or model this aggregate (total effort) as a function of key variables like stock
size. Individuals have basically two decisions to make: whether to go out at
all, and how long to keep searching. Both of these will be a function of per­
ceived abundance, which may depend in a complicated way on total stock
size, the behavior of other harvesters, and various regulations .
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Figure 4.10. Expected pattern of effort exerted by a single harvester as a function
of the resource stock size. Each harvester k(K = 1, ... , N) may have different
parameters ak, mk, and qk.

In general, we expect the effort expended by the kth harvester, ek, to
vary with stock size, as shown in Figure 4.10. There will be an apparent
stock size ak below which he will perceive that it is not worth going out, and
a minimum effort mk that he will need to expend just to determine whether
it is worth staying out for longer. Then his effort may increase with stock
size to some maximum tk, beyond which it will fall due to gear saturation,
competition with other harvesters, and so forth. Obviously, the parameters
ak, mk, and tk will vary greatly from harvester to harvester, and will not be
stable over time. ak may be zero for some harvesters, especially where there
are alternative stocks that attract them to the area of concern (mk is then the
"incidental" effort on the stock of interest).

But the key management interest is in the total effort measure

where the harvesting capacity measure N is fairly large for most resources.
Let me repeat: E, is a statistical aggregate, and it will therefore be a more
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stable function of stock size than are the individual et responses. Nor need it
bear any simple relationship in its shape to the individual response pattern of
Figure 4.10, since it is the sum of many such shapes. A key determinant of
how E, will look as a function of stock size is the probability distribution
p(ak) of stock sizes at which different harvesters will begin going out. Four
examples of this distribution are shown in Figure 4.11, along with the result­
ing total effort response curves generated by assuming that tk is not much
larger than mk. In case A, most of the harvesters will go out even if stock
size B, is zero (catch from B, is incidental to their interests), and only a few
more are attracted as B, increases. In case B, the harvesters vary widely in
their perceptions of abundance, and effort increases smoothly over a wide
range of stock sizes. This is often the case, for example, in sport fisheries.
Case C shows a dangerous management situation, where the harvesters have
similar technologies, expect to cover costs even if the stock is very low, and
perhaps share information that gives them all nearly the same perception of
stock size. In this case, of course, effort rises rapidly over the narrow range
of ak values held by most harvesters, then decreases at high B, due to gear
saturation. bag limits, or even plain indifference to further catch. Case D
shows a mixed situation, where there is a small but efficient "local" harvest­
ing community with mostly low at values, and a larger "distant" community
that is attracted to harvest only when B, is large. This situation is probably
common in wildlife management (local hunters versus hunters from the
cities), and has become a serious marine fisheries problem since 1950 with
the development of high-capacity, distant fishing fleets by a few nations.

It is extremely difficult to study effort response patterns, as in Figure
4.10, directly from historical data. The probability distribution of ak values
will change from year to year, even if technologies are stable, due to chang­
ing perceptions of abundance. The number of potential harvesters is likely
to change on about the same time scale as stock size. Rapid changes in stock
size (the x axis of the effort response function) are usually accompanied by
regulatory actions that distort the response in various ways. Finally, there is
the familiar errors-in-variables statistical problem: even if the harvesters
have responded smoothly to changes in stock size, errors in its measurement
will make efforts appear to be independent of it. For examples of empirical
assessments of effort responses in fisheries, see Buckingham and Walters
(1975) and Argue et al. (1983).

In spite of measurement problems, it is important to think of the
short-term effort response as a basic component in analysis of stability of the
resource system, and as a "limiting factor" in attempts to deliberately vary
harvest rates more rapidly than would happen naturally (adaptive probing
policies). Let us examine the stability implications briefly here. There are
two of these: fast effort responses imply a greater stabilization of stock sizes
than simple predator-prey models would predict, and they introduce the
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Case A: Incidental harvesting Case B: Uneven technology
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Figure 4.11. Total short-term harvesting effort El is a sum of responses like those
in Figure 4.10, and this sum can have various shapes when plotted as a functional
relationship (El versus srock size B,). Cases A-D are explained in the text.
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Figure 4.12. The short-term balance between production and harvest rate, as a
function of stock size. The effort response HI (like case B, Figure 4.11) leads to
temporary equilibrium at the point 8 1 • The response H 2 (like case C, Figure 4.11)
leads to two possible stable equilibria (82 , 83).

possibility of multiple equilibria in stock sizes. The first of these implications
is obvious and hardly needs discussion. The second can be seen most easily
by thinking about the simple logistic production model, as shown in Figure
4.12. Equilibrium occurs when the production rate (dome-shaped curve) is
balanced by harvest rate (curve that increases with stock size). Inefficient
harvesting or uneven technology will produce the short-term harvest
response marked HI, which has a stable equilibrium at the point 5\. If the
harvesters become more efficient, but the catch capacity is constrained by
quotas or physical availability of the organisms, the short-term response may
shift from H\ to H 2 • If the response H 2 is stable over time, the stock may be
held at either of the stable equilibria 53 (low) or 52 (high). The stock will
move up toward 52 if it is initially (or accidentally) above the unstable point
U; it will move down toward 53 if some disturbance pushes it below U. Of
course, all of the equilibria 5\, 52, and 53 may move about or be unstable on
longer time scales due to changes in harvesting capacity and efficiency (see

Jones and Walters, 1976).
In models aimed at understanding qualitative patterns of effort and

stock size change, the key issue about the short-term effort response is
whether it has a sigmoid shape (positively accelerated) at low stock sizes.
When you consider the probability distributions p(a,) shown in Figure 4.11,
and the individual responses shown in Figure 4.10 for stock sizes above a" it
is clear that we should expect sigmoid E, responses whenever the harvesters
are seeking a single stock. The inflection point may occur at very low stock
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size, especially if stock and effort are not randomly distributed in space, but
it should exist nonetheless. The situation is less clear for incidental harvest­
ing in multispecies systems; efforts may follow any pattern from no response
at all to the classic sigmoid pattern of switching, as exhibited by natural
predators.

Dynamics of capacity and efficiency

On longer time scales, we expect the "population" of potential
harvesters to develop through capital investment and diffusion of information
about harvesting opportunities. Here it is worth making an initial distinc­
tion between sport and commercial harvesters.

Let us first take a passing look at sport harvesters. On large spatial
scales, populations of sport harvesters develop through demographic changes
and a complex cultural process of information exchange between generations
[most hunters learn how from their fathers; new entrants are likely to have
high ak values (see Figures 4.10 and 4.11) which decrease over time as the
individual gains experience]. In recent years, a rash of "how to" books on
sport fishing and hunting may have speeded up this learning process consid­
erably. Also, there have obviously been increases in the amount of leisure
time available to most people, and in the financial resources available for
sportsmen to make "high-technology" investments, such as larger boats and
four-wheel-drive vehicles. These technological developments have resulted
in nasty surprises for some managers, who are used to thinking in terms of
quite stable sport harvesting methods based on a tradition of tight regulation.
With respect to smaller spatial scales, such as single lakes and local hunting
areas, the development of sport effort again involves a complex and obscure
process of information exchange. Good spots (high stocks) may go almost
untouched for many years, then be depleted rapidly as "word gets out" and
diffuses rapidly through larger communities. In many places, public infor­
mation services have made the diffusion process much faster, but the effect of
this has not been documented quantitatively.

Long-term changes in commercial harvesting capacity and efficiency
have been a subject of intense investigation by resource economists and biol­
ogists concerned with using catch and effort statistics in abundance estima­
tion. Classical economic theory has it that we should expect capital capaci­
ties for harvesting to grow when returns on capital investment (profits) are
above the average for investments in general in the economy, and to decline
through attrition of less efficient harvesters when average profits are nega­
tive. It is easy enough to construct a simple dynamic model of this argument
(Figure 4.13), if we assume that short-term profitability is related to stock
size only (no direct gear competition). Figure 4.13 identifies three critical
parameters:
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Figure 4.13. Expected pattern of change in the growth rate of capital capacity for
harvesting, as a function of stock size. At stock size Bo, the addition of new capital
stock is just balanced by attrition. Capacity grows if the stock is above Bo and de­
clines if the stock is below Bo.

(1) Bo, the stock size at which the average harvester already working will
be barely taking enough harvest to cover his costs (including labor
and equipment replacement);

(2) d, the rate of depreciation or permanent conversion of capital to other

uses when the average catch per harvester is very low; and
(3) g, the maximum rate of growth as determined by the availability of

investment capital and new investors, and by the magnitude of each
new unit of investment (fleets based on very large vessels, and hence
larger risks, are expected to grow more slowly).

Unfortunately, simple investment ap(de)preciation models cannot

explain some critical features of the development process. As noted in
Chapter 2, they do not explain how development gets started in the first
place, or the initial penetration of new technologies into an established
industry. Such initial developments seem to involve either great risk taking
by individuals, or sheer desperation by people confronted with deterioration
of other opportunities. These arguments imply that the initiation of develop­

ment is going to be practically impossible to predict in most cases. Another
dIfficulty is that models like Figure 4.13 are like the effort response curves of
Figure 4.11: they represent the aggregate behaviors of a collection of poten­

tial investors. This has two implications. First, there is no reason to expect
that investors even care about the average rate of profit among harvesters

already at work; many new investors will feel that they have a special edge
in technology, intelligence, or whatever over the "old crowd," while other



Moods ofRenewable Resource Systems 121

new investors will be equally concerned about the disadvantage that they
may face due to lack of experience and established contacts with related

industries (processors, etc.).
Second, new investors must make some forecast of expected harvests,

based on imperfect knowledge. They are likely to use some weighted aver­
age of past catches or profitabilities as a prediction. A simple way to model
this is to assume that investment is related not to B" but to a running aver­
age

where the Cir are weights placed on different past abundances (or catches, or
profitabilities) and chosen such that Er Cir = 1 (the simplest weighting would

be Cir = 1/L).
In present times still another difficulty with the simple investment

models has become increasingly important. This problem relates to predic­
tion of the maximum growth rate g, considering that there has been an accu­
mulation of cheaply convertible capital equipment in various harvesting
fleets around the world. There have been a lot of capital "overdevelop­
ments," followed by retirement and "mothballing" of many harvesting units.
While these units do deteriorate over time and are scrapped, there neverthe­
less exists at most times a substantial pool of equipment that can be pur­
chased cheaply and reequipped to fuel new resource developments. Thus,
recent developments, such as coastal upwelling fisheries for clupeid fish off
Africa and South America (Glantz, 1983), have proceeded much more
rapidly than was predicted on the basis of earlier fisheries. In one dramatic
example involving the Pacific herring, most of the vessels entering the fishery
were local salmon boats that required only minor conversions, such as
smaller-mesh nets (Pearse, 1982).

To deal with some of these complexities, capacity and efficiency
modeling can initially be approached by brute force using a state representa­
tion analogous to age structure modeling. This approach begins by assum­
ing that the population of harvesting units (vessels, individuals, etc.) can be
partitioned into a collection of subpopulations or classes, each relatively
homogeneous with respect to three parameters:

(1) ai, the stock size at which units of class j can catch just enough to
meet their operating costs (see Figure 4.10);

(2) qi, the catchability coefficient (fraction of stock taken by one unit of
effort) per j unit; and

(3) Co, the unit capacity (maximum catch per vessel when stock size is
large) or bag limit for class j units.
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The state of the industry at any time is then represented by N;(i = 1, ... ,
n), the number of units in each class. The number of classes need not be
large, especially considering that a, q, and c are usually correlated: Iowa;
values are associated with units having high q; and, in fisheries at least, high
c;. Note that if we can simulate effort E; by categories, we will automatically
account for changes in overall efficiency, as measured by the average catch­
ability coefficient

n E;
q =E qi-

;=1 E,
where

n

E,=EE;
j::;l

The number of harvesting units N; in any efficiency-capacity class can
change over time due to four economic decision processes:

(1) investment in construction of new units;
(2) investment in movement and conversion of units from other harvest­

ing systems;
(3) investment in conversion of units to (and from) other classes within

the system as initially defined; and
(4) depreciation (irreversible scrapping or emigration).

In trying to model these processes, note that an investor usually cannot
prescribe a priori the efficiency q; that will result from his decision, although
he may influence this considerably through his choice of technology (horse­
power, vessel size, etc.). Thus, if we scan through the (a, q, c) classes seek­
ing that class with the highest current "attractiveness" (catch times price less
operating costs less fixed costs including interest payments on capital
invested), it should not be assumed that all new investments and conversions
will be to that class. Investments and conversions "aimed" at the most
attractive class should be smeared into surrounding classes using a reason­
able probability distribution. The process of incremental decision making,
where single, large, and risky investments are avoided, can be modeled as a
progressive conversion of units toward more attractive classes; such moves
reflect the possibility of transferring both physical assets (equipment) and
"know-how" among classes.

While it is easy enough to construct realistic models to represent the
incremental processes of conversion and depreciation, there remains the
difficult question of how to predict rates of new investment. Particularly
when the new investments are likely to involve large capital outlays, the deci­
sion process may involve many actors (corporations, governments, banks,
etc.) who can engage in various contractual arrangements to spread their
investment risks. Also, the large investments can involve considerable time
lags. Thus, the best approach from a management viewpoint may be to
view investment as an unpredictable "driving force" to be monitored adap­
tively (and perhaps regulated) as it proceeds.
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Options for economic regu.lation
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We have noted in passing that vanous economic processes can be
influenced by regulations that enhance or detract from natural feedbacks
between stock size and harvesting effort. Let us classify these regulations a
little more precisely in terms of the dynamic parameters that they influence.
There are four basic categories of economic actions:

(1) Entry taxes (license fees, etc.) and subsidies that influence investment
decisions and the stock sizes a~ at which various harvesters will ini­
tiate effort within each regulatory period. One-shot (first entry) taxes
and subsidies tend to promote overinvestment in large and efficient
harvesting units.

(2) Operating taxes and subsidies that influence short-term incomes (i.e.,
landing taxes reduce the effective resource price) and costs. These
actions affect short-term effort responses, and tend to discourage
major new investments and conversions among classes.

(3) Unit quotas and rights that set the capacities c~ of individual harvest­
ing units. As long-term rights, such regulations can promote harvest­
ers to take a longer view of the resource (and therefore become active
in helping to manage it), and to invest accordingly.

(4) Restraints and subsidies on new technologies, which prevent or
encourage changes in a~, q~, and C~. Such actions may be introduced
either to protect existing harvesters from new competitors, to main­
tain smooth feedbacks between stock size and effort, or to encourage
more efficient harvesting in spite of impacts on existing actors.

Interest among economists has recently centered on category (3), since unit
quotas have other effects besides breaking up the short-sighted decision mak­
ing that results in the "tragedy of the commons." Unit quotas, if they could
be assured in the face of changing stock sizes, would eliminate the incentive
to invest in technologies that do not directly promote cheaper harvesting, but
are instead directed at improving competitive positions (getting there first,
getting a bigger share of the overall quota, etc.). The incentive would, of
course, remain for harvesters to take their quotas as cheaply as possible,
which might even involve sharing equipment rather than placing it in direct
competition.

Rather bizarre and pathological situations have developed in a few
resources, due to failure to coordinate various economic and biological
management programs. For example, the Canadian Pacific salmon fishery
during the 1970s was managed under biological regulations that resulted in
progressively shorter fishing seasons in fewer areas, while the efficiency of
harvesting vessels was increasing rapidly. This growth in efficiency was
fueled by a license limitation and vessel "buy-back" program that reduced
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fleet size and increased profits available for reinvestment, by profits from the
lucrative roe herring fishery that many salmon fishermen entered, and
(amazingly) by continued government subsidies and tax incentives for con­
struction and technological upgrading of vessels. As improvements in
efficiency occurred, further restrictions were made in areas and seasons until
the industry "suddenly" felt itself strangled by regulation. Such situations
might be avoided by involving the various government and industry actors
in adaptive modeling exercises that allow them to demonstrate to one
another at least the qualitative consequences of the interactions promoted by
their actions.

Harvesting Industries as Components
of Economies

I noted in Chapters 2 and 3 that there are no natural boundaries to
the definition of natural resource systems as units of analysis and manage­
ment. This becomes particularly apparent and bothersome when we attempt
to model the development of resource industries. Consider for a moment
just the problem of estimating the profitability of harvesting as a determinant
of short-term effort responses, technology conversions, and entry of new
investors. It is easy enough to say that profitability is expected to be catch
times price minus operating costs as a function of effort expended and fixed
costs as a function of previous investment, interest rates, and so forth. But
will increases in catch drive the price to harvesters down, and what can we
say about how basic "factor prices" (labor costs, capital costs as measured by
interest rates, etc.) will change over time? Just as there is no natural limit
for the analysis of ecosystem interactions surrounding a stock of interest, it is
clear that we could extend the analysis of economic interactions far beyond
the harvesting industry. Rather than presuming to sketch out alternative
programs for large-scale economic modeling in this text, let me restrict the
discussion to two topics that are of particular concern in the design of adap­
tive policies for renewable resource management. The first topic concerns
variations in basic factor prices over the long time scales (20-50 years) that
are of interest in resource dynamics, due to forces that are largely indepen­
dent of how any single renewable resource is developed. The second topic is
the temporal pattern of economic infrastructure and interdependence that
develops as a result of resource harvesting, and that greatly extends the com­
munity of actors who influence and constrain the decision-making process.

The backdrop of factor prices

Scenarios for resource development are almost invariably constructed
with the presumption that economic parameters (prices, costs, interest rates)
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will either remain stable or grow (in the case of demand for products)
smoothly into the future. This has been encouraged by some economists,
whose thinking about the dynamics of economic growth as a smooth process
was encouraged by the period of rather smooth development from World
War II until the early 1970s. But the economic "shocks" of the 1970s and
early 1980s have led to concern that economic policies and "tinkering" have
not really been all that effective, and to renewed interest in "disequilibrium"
theories that emphasize the existence of various waves or cycles in economic
systems. With periods of around 50 years, there are the so-called "Kondra­
tieff" cycles that mark major depressions, and are thought to be driven by
human demographic waves ("baby booms," etc.), sequential depletion of
basic resources, and replacement of capital equipment in major industries.
On shorter time scales, various production and recession cycles have been
recognized (and debated!) in economic time series. Much of the debate has
been about whether there are true, rhythmic cycles or just the appearance of
regularity that the human eye will associate with any autoregressive or ran­
dom walk process. This debate need not concern us here: the important
point is that factor prices (and hence the profitability of harvesting) can be
expected to vary considerably over time, even if resources themselves are
managed so as to produce stable yields.

Variations in factor prices can be profoundly important in resource
management, since their effects are greatest in industries with low profit
margins, which is the normal state of affairs at "bionomic equilibrium." So
price increases, or cost decreases, are expected to encourage investment in
harvesting (or at least upgrading of technologies), and the windfalls are
quickly dissipated. Then, when prices fall again, or costs rise, the industry
enters a "crisis mode" that is discouragingly familiar to practicing resource
managers. There is strong pressure on government to allow short-term
overharvesting to prevent immediate "collapse of the industry," and harvest­
ers are encouraged to cheat the system by ignoring regulations and failing to
report catches. But then as economic conditions improve, there is a sense of
well-being and a window of opportunity to introduce innovative manage­
ment schemes without strong opposition from an industry preoccupied with
survival. Thus, economic variation should be viewed not as a discouraging
source of unpredictability, but rather as a generator of opportunities for
adaptive management.

Development of infrastructure and dependence

There is an interesting contrast from the theoretical point of view
between how ecosystems and economies respond to the development of
resource harvesting. We expect increasing exploitation, and measures like
fertilizers and pest control introduced to help sustain it, to result in
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simplification of ecosystems (and with this an assortment of risks) . Yet we
expect the opposite response in economic systems; as a resource is
developed, a progressively more complex set of related industries and activi­
ties may develop around it. These range from community services for har­
vesters to processing and marketing operations to businesses that build,
repair, and even invent the equipment for harvesting and processing. Thus,
the basic harvesting industry induces a sometimes complex infrastructure of
other economic activities, and the businesses involved can become progres­
sively more specialized and therefore directly dependent on the continuation
of stable harvests. A simple economic measure of infrastructure is the
number of jobs induced in the economy per job in the primary harvesting
industry; generally this statistic is on the order of 1-3.

From the resource manager's viewpoint, infrastructure development
means that there will be at least one additional person to bring pressure for
or against management reforms, for every harvester that he deals with as a
direct client. As the community of specialized actors and interest groups
grows, and their very real conflicts of interest become more evident, the
pressure for stable harvests and protection from further economic change
(i.e., competing new technologies) is likely to make policy change progres­
sively more difficult, except during the brief windows mentioned at the end
of the previous subsection.

The overdevelopment (from a manager's viewpoint) of infrastructure
is often promoted by other government agencies, through various subsidies
and capital investments like road and harbor development. Continued vari­
ation in, and uncertainty about, harvests has a way of holding back these
developments. But natural and inevitable patterns of variation are often for­
gotten during even brief periods of stability and prosperity. This short
"adaptive memory" means that the management system will never reach a
blissful equilibrium with its clients.

Problems

4.1. Discuss the validity of modeling resource-harvester interactions as a
simple prey-predator system. We can obviously identify things that
correspond to the ecologist's functional and numerical responses of
predators, prey selection, prey avoidance behavior, and so forth. But
do natural predators always have alternative prey, i.e., ways to make
a living? Do natural predator populations accumulate equipment for
prey capture and processing (capital) that does not just die if left idle,
and may reenter the system later on?
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4.2. Suppose you are handed a 30-year data set on survival rates in a
population, and the data suggest a la-year cycle that is not related to
obvious factors, such as population density. Does this pattern indi­
cate nonrepeatability or nonstationarity as defined in this chapter? If
you find a factor (for example, predator abundance) that seems to
explain the cycle, and include this factor in an "extended model" of
the population, what happens to your conclusions about repeatability
and/or stationarity?

4.3. When we plot equilibrium yield as a function of harvest rate for an
age-structured population model containing a stock-recruitment (den­
sity dependent birth-survival) relationship, the result is usually a
dome-shaped curve. This suggests that the equilibrium pattern can
be approximated by a simpler surplus production model, such as the
logistic. Identify key reasons why this suggestion is often unwise.
What if there is a need for nonequilibrium (transient, stochastic)
predictions? What policy variables will the surplus production
analysis ignore? Which of these difficulties can be avoided by using
the Deriso model?

4.4. Consider a simple logistic production model written as

r 2
B, +I =(1 + r) S, - k S,

where B, = biomass available for harvest, and S, = B, - H, is the
"spawning biomass" after harvest H,. Compare this model to the
Deriso model, which can be written as

[

2 S'_I ]B"I= (l+e)s-es Ii:""" S,+R(S.-t)

where R(S'-k) is a function relating the biomass of new recruits to
spawning biomass k years earlier. What happens to the Deriso
growth-survival term [(1 + e)s - es2S,-I/Brl S, if the stock
approaches equilibrium, and what does this mean about its relation­
ship to the logistic (1 + r)? What terms represent density-dependent
effects in both models? What form must the Deriso recruitment term
R(Sr-d have in order that the Deriso dynamics will "look" logistic?

4.5. Use a microcomputer to simulate the logistic and Deriso models III

problem 4.4, with the following parameters and relationships

S, = (1 - h,)B,

r = 0.2

h, = harvest rate; see below
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k = 1.55

e =0.5

S = 0.8

0.5S'--1
R(S,-l) =--­

I + S'-l

So = S_I = S-2 = Bo = 0.05

How do the population growth predictions (over, say, 50 years) differ
when h = O? What happens if you set h, = 0.5 for t = 30, 31 only?
Using h, = a for t = 1-30, then h, = 0.2 for t = 31-50, plot the
resulting net production measure B'+I - S, versus S,(t = 1-50) for
the two models; why does the Deriso model show nonrepeatability in
this relationship?

4.6. Prepare a computer program to demonstrate the distortion in
apparent stock-recruitment relationships when the spawning stock is
measured with large random errors. Generate the population dynam­
ics with a Ricker model N,+I = S,el-S,+w" where W, is normally dis­

tributed with mean zero and standard deviation 0.1; set So = 0.5 and
take S, = 0.6N, (i.e., 40% harvest) every year. For each year, gen­
erate measured spawning stock 5, = S,e

v
" where v, is normal with

mean a and standard deviation (1v; take the measured recruitment to
be R, = 5, + OAN, (i.e., catch measured exactly). Plot R,+l versus
5, for various sample sequences of W, and v, (each sequence is a
"Monte Carlo trial"), t = 1, ... , 20, while varying (1v from 0.0 to
1.0. Then repeat the trials for a variable harvesting regime, where S,
ranges from 0.1 R to 1.0 R,. Does variability in harvesting rates
help to compensate for the biases due to bad measurement?
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Chapter 5

Simple Balance Models in Applied
Population Dynamics

Single-species models need not be as naive
as they appear.

Caughley (1981)

This chapter is intended primarily for readers who are dissatisfied
with the rather vague and general discussion about simple versus complex
models in the previous chapter. I shall now focus more precisely on the eco­
logical side of resource dynamics, and develop some arguments that can be
applied to the economic side as well. As a preamble, let me reiterate that
managers are facing increasing demands to produce quantitative predictions
of population responses to disturbances, such as harvesting. Prediction
requires some sort of model, whose development is annoying but challeng­
ing. A tempting approach has been to construct the most detailed possible
calculations based on life table information, in the form of a computer simu­
lation (Walters, 1969; Gross et a1., 1973; Lett and Benjaminson, 1977). A
few workers have questioned the wisdom and need for such complicated
models (Burgoyne, 1981; Goodman, 1981; Ludwig et aI., 1978; Deriso,
1980), pointing out that the complex calculations can often be "compressed"
into simple models without great loss of accuracy. Simplified models have
obvious advantages: their parameters can be more easily estimated from
lumped (across age classes, etc.) field data, they are easier for everyone
involved (scientists and policymakers) to understand and evaluate critically,
and they are more readily incorporated into broader frameworks, such as
optimization and "ecosystem" models. Indeed, the search for sound but
simple models is a basic objective of science, as important in its own right as
the search for detailed understanding.

We can go a step beyond just saying that simple models are easier to
understand and evaluate: it appears that simplicity is essential to adaptive
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learning. All of us think about the world in terms of images (metaphors,
analogies) that embody experience with causality; we do not really think
very logically. Even textbook exercises in logic must be presented in terms
of vivid imagery (Venn diagrams, etc.) before most of us can initially grasp
them. With experience, we seem to become better logicians, but that is pre­
cisely the point: this experience represents adaptive learning through a set of
quite modest steps, and we must become psychologically comfortable with
each step before proceeding. Even when we construct complex models
through apparently systematic procedures, we maintain overview and judg­
ment about what to do along the way by visualizing the emerging model in
terms of simpler images (submodels, hierarchies, etc.). So what we will try
to do in this chapter is to strike more directly at mathematical representation
of those images that are understandable (and are therefore a basis for further
learning), using population dynamics as a prototypical problem.

The following sections present just one approach to the construction
and analysis of simple "balance" models for predicting year to year changes
in animal population sizes and for estimating average or equilibrium stock
sizes and harvests. The approach is illustrated using examples ranging from
deer to lake trout, cases where more complex models already exist for com­
parison of predictions. Simple algebraic arguments are used to show why
some common complications, such as population age structure, usually have
little effect on model predictions. Then I discuss some deceptive aspects of
assuming simple and repeatable relationships involving population density;
such relationships are usually assumed even in detailed simulations, and are
central to concepts such as maximum sustained yield.

Population Balance Models

This section describes development, empirical testing, and equilib­
rium analysis of simple balance models that involve only a single variable to
describe population state from year to year. It is argued that single-variable
models can realistically represent some biological complexities. When fitted
to population time series data, they can provide insights about what addi­
tional factors need to be considered. Equilibrium analysis helps to define
optimum harvest strategies and average responses to other disturbances.

Developing the balance equation

Several approaches can be used in developing simple population
models. The easiest and most obvious is to begin with some existing for­
mula, such as the logistic equation, then try to interpret its parameters in
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terms of the particular population of concern. This approach fails on two
counts: precise interpretation of parameters is impossible and the formula
always contains "hidden assumptions" that were used in its derivation, but
are not apparent in the final recipe. A more thoughful approach is to begin
with a tautology that specifies additive components of population change
(next year's population is this year's plus births minus deaths plus immi­
grants minus emigrants), then elaborate how these components are related to
population size and other factors. The problem with this approach is that
population rate components are not simply additive (i.e., total deaths depend
on total births since some juveniles will die; winter deaths depend on how
many animals remain after harvest; and so forth), so it is tricky and cumber­
some to define each component correctly.

The approach recommended here is a variation on the theme of
beginning with components of population change. I find that the simplest
algebraic formulation usually results from the following initial statement:
next year's population is the survivors from this year's population, plus sur­
vivors of the recruits added this year. Algebraically, the basic balance equa­
tion is then

(5.1)

where N, is a well defined measure of population size taken at a particular
point in the annual cycle (and Nt+l is measured at the same point next year),
S., is the total survival rate to t + 1 of animals present at time t, R, is new
recruits during the cycle between t and t + 1, and Sj' is the survival rate of
the new recruits from the time when they enter the population until they are
measured as part of N at time t + 1. Models involving additive components
of population change can always be converted into the framework of equa­
tion (5.1), and vice versa, by replacing death rates with survival rates. The
main advantage of equation (5.1) is that it allows simple representation of
the effects of sequential, independent mortality agents. For example, if N, is
defined as the spring population, the annual survival rate S., can be elab­
orated as

S., = s,(l - hr)sw (5.2)

where s, and Sw are summer and winter survival rates, and h, is a fall harvest
rate. Note that the resulting prediction of s.,N, does not depend on the tem­
poral ordering of mortality agents; it applies whether the harvest is taken in
spring, fall, or after winter mortality. To express correctly the survivorship
pattern of equation (5.2) in terms of additive mortalities, it would be neces­
sary to keep track of exactly when the mortalities occur; summer deaths
would be (1 - S5) N" the fall harvest would be h5s5N, since it comes from the
summer survivors (not N r), and the winter deaths would be (1 - sw) S5 (1 ­
h,) N,. The resulting balance equation would be unnecessarily complex, and
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would reduce algebraically to equation (5.2). Worse, it would be less gen­
eral, since different additive terms would be needed depending on the time
of harvest.

Equation (5.1) simply expresses a tautology, since the survival rates
and recruitment can be defined so as to include all possible effects, such as
immigration-emigration and temporal changes in age structure. The pro­
cedure for building a predictive model from it involves two basic steps.
First, and most critical, it is necessary to settle on a clear and precise
definition for N, in terms of which animals are to be included, at what time
of year. Examples would be "all deer present just before young are born in
the spring," or "all yearling and older harp seal females alive at the time of
calving," or "all 5-year-old lake trout alive in early summer." Without such
a clear definition, it is impossible to correctly define appropriate survival
rates and dependences such as the effect of N, on recruitment.

The second step is to define how the survival and recruitment rates
are to be calculated each year. At this point, historical data and
hypothesized density-dependent mechanisms become important, and it is
often instructive to proceed through a sequence of increasingly complex
model versions. The simplest hypothesis would be to assume density
independence for all specific rates, so that each S is constant and R t = bN"
where b is a constant birth rate per animal. In this case, the balance equa­
tion for an unharvested population measured just before the young are born
is

(5.3)

=RN,

where R = Sa + sjb is the annual rate of population increase (R = 1.1
implies 10% annual growth, etc.). Notice that this model has no balanced
population level N, such that Nr+1 = N,; Nt stays where it is in the unlikely
event that R is exactly 1.0, but this is true for any starting Nt. Such
behavior would normally not be considered credible in a population model,
and the model would be complicated by having at least one rate component
vary with population size. About the simplest hypothesis at this next level of
complexity would be that the birth rate decreases linearly with population
density (b = bo - biN,), as, for example, in McCullough (1979). This
results in the predictive model analogous to equation (5.3):

N t +1 = SaN, + slbo - bIN,) N,

= (Sa + sjbo) Nt - sjb 1N,2

= RoN, - R1N?

(5.4)



Simple Balance Models in Applied Population Dynamics 133

(5.5)

(5.6)

(5.7)

where R o is an "intrinsic" rate of increase and R I is a density-dependence
factor. This is a classical logistic growth model for discrete time prediction,
but with the logistic parameters defined in terms of more meaningful com­

ponent rates ( R o = s. + sjboand R 1 = sjbl)'
Balance equations and subsequent simplifications exactly like equation

(5.4) result when survival rates are assumed to depend linearly on popula­
tion density. A variation on this theme is to assume that the birth rate (b)
and adult survival are density independent, while juvenile survival follows
the relationship

So
s· =----
}, 1 + SIN,

where So and s\ are empirical parameters. This results in the balance model

sobN,
N'+I = s.N, + ----

1 + SIN,

The recruitment component of this equation increases to a limit sobis l as N,
increases, thus representing a "bottleneck" for juvenile survival. If both
juveniles and adults are indiscriminately subject to the bottleneck, so

So
s. = Sj = ---­

1 + SIN'

where N' is the number of animals entering the bottleneck, the balance
model becomes

Sp( N, + bN,) So
N, +1 = --'-'------'--

1 + slsp(N, + bN,)
(5.8)

RoN,
=----

+RIN,

where sp is the survival rate from spring until the bottleneck period begins.
Again, R o is an intrinsic rate of increase [spso(l + b»), and R , is a density
dependence factor [spsl(l + b»). The maximum bottleneck population size
N,+I in this case is Ro/R I = soisl.

The above examples only hint at the complexity that can be incor­

porated into balance models, then hidden through redefinition of "lumped
parameters" such as R o and R I . The survival rates can be decomposed into

arbitrarily detailed seasonal components, with density dependences that are
nonselective or operate only against juveniles. Especially interesting cases
arise where N, is defined as the number of animals m years old and older,

where m represents some age of interest, such as first maturity or first vul­
nerability to a mortality agent like fishing. In these cases, recruitment R,
represents the number of juveniles produced m years ago by N'-m, multi­
plied by the total survival rate (or 1m survivorship) over the m years of life
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prior to recruitment. If the average annual survival rate over the pre-recruit
period is SI, and all rates are density independent, the balance equation
becomes

(5.9)

If the population growth rate R has been relatively constant for the past m
years, so Nt = Nt-",R"', then equation (5.9) can be simplified to

bsjsibNt
N,+I = soN, + R'"

[
bSjsi ]

= so+~ Nt=RNt

(5.10)

Notice here that R = So + bsjs'iIR "', and this transcendental equation can­
not be solved directly for R as a function of So, Sj, and b; it is analogous to
Lotka's equation for the intrinsic rate of population increase, r.

It is difficult to define a purely mechanical recipe for constructing bal­
ance models, such as equations (5.3)-(5.10). In most cases, the appropriate
terms are obvious when the population definition and desired survival-birth
rate assumptions are spelled out very clearly. In several years of requiring
undergraduate biology students to develop various balance models, the only
common error that I have noted is the substitution of incorrect variables into
density-dependence relationships. For example, in equations like (5.7), stu­
dents often use incorrect terms for ~ [Nt instead of sp(Nt + bN,)) , thus
involving the wrong number of animals in survival and reproductive
processes; again, this is just a matter of not thinking precisely about
definitions.

Parameter Estimation and Model Testing

The construction of simple balance models involves the deliberate
neglect of many factors that may influence population change. This in no
way implies that such models will not give sufficiently accurate predictions
for management purposes. Even serious failures can be useful, since by
carefully examining the pattern of prediction errors it is often possible to
identify critical directions for model improvement. But in seeking more
accurate predictions and informative failures, one should at least try to make
each model give its best possible performance, i.e., fit the data as well as it
can. This section deals with the problem of choosing balance model parame­
ters that will give best fits (in a simple least-squares sense) to historical popu­
lation time series. Chapter 6 will take a more critical look at the whole idea
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of parameter estimation in decision-making contexts. Here I treat estima­
tion only as an aid to the scientific development of better models.

The simplest estimation case arises when the observed population
growth (or decline) has been purely geometric, with apparently constant R.
In this case only one balance model parameter (R) can be estimated, by
obvious statistical procedures. However, the balance model may sti1l be use­
ful in gaining further insights about some parameters when others have been
measured. independently. For example, Cooper and Smith (unpublished)
used equation (5.10) to develop better estimates of annual survival rates in
Northern elephant seals (Mirounga angustirostris). They had data on R ( ....
1.15), m (3), and b (0.95 per 3-year-old and older female). They were wil­
ling to assume SI =s. =s except for the first year of life, and they wished to
know how different estimates of first year survival Sj would affect their esti­
mates of s. Their balance model reduced from equation (5.10) to

0.5sm
-

l sj bR=s+----=-­
Rm

By solving this equation for s with the other factors given, it was possible to
show that s must be greater than 0.9 when reasonable estimates of Sj are
assumed. Similar calculations are becoming common in the literature (e.g.,
Smith and Polachek, 1981; Eberhardt, 1981).

More interesting estimation problems arise when the observed popu­
lation series shows some evidence of density-dependent rates. Here the
usual approach has been to estimate density-dependence parameters from
plots of rates versus population size, without regard to whether the rate data
might be biased or unrepresentative for Nt as a whole. Inserting such esti­
mates indiscriminately into a balance model is hardly a fair test of the
model's predictive ability . .If one elects, instead, to estimate model parame­
ters directly from the abundance (Nt) time series, the first necessary step is to
reduce the model to the simplest possible algebraic form so that the fewest
possible lumped parameters (like R o and R I in the above example) are
included. More detailed parameters are likely to be statistically confounded
(e.g., if s = S.S2 and only the total effect s is observed, then one can choose
any value for S2 provided the constraint S2 = slsl is maintained).

Given a lumped model, two extreme estimation procedures are possi­
ble. In the first, or "process error" procedure, one may assume that erratic,
short-term fluctuations in the abundance data are due solely to natural
processes (bad winters, etc.) and not to errors in measuring Nt. In this case,
the balance equation can be treated as a linear or nonlinear regression,
predicting N,+, from observed N, and unknown parameters R o, RJ, etc. For
example, R o and R 1 in the logistic model
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are the linear and quadratic coefficients of a polynomial regression with zero
intercept.

In the second, or "observation error" procedure, one assumes that
erratic fluctuations are due solely to errors in measuring Nt, and that the
actual dynamics followed some deterministic path. Standard regression pro­
cedures should not be applied in this case, due to the "errors-in-variables"
problem (Walters and Ludwig, 1981); further, if one assumes the dynamics
are deterministic, one should be willing to predict Nr +1 from the previous
predicted value, Nr , and to estimate NI or No as an additional unknown
parameter. The observation estimation procedure always involves non­
linear, iterative searches for best parameter estimates.

Appendix SA describes a simple estimation algorithm that can deal
with both the process error and observation error procedures. It can be
easily implemented on a programmable calculator or personal microcom­
puter that has enough memory to store the population time series twice, plus
a few small tables of intermediate calculations.

Figure 5.1 shows results of applying the estimation algorithm to
McCullough's (1979) data on the George Reserve deer herd (Table 1.1).
He gives data on the prehunt population Nr and harvest Hr. Following his
"recruitment model" arguments, and ignoring weak evidence for density­
dependent mortality, results in the balance equation

N'+l = s.(Nr - H r) + sAa - b(Nr - H r)] (Nr - H,)
(5.11)

where P r = Nr - Hr. He estimated the recruitment rate parameters a "'"
1.0, b "'" 0.005. Applying the estimation procedures of Appendix SA results
in the estimates:

Process error Observation error

Ro = s. + aSj

R 1 = bSj

1.93
0.00494

2.04
0.00608

Both procedures give surprisingly good fits to the data, and suggest that s.
and Sj are similar and are at least 0.95; this agrees with McCullough's obser­
vation that natural mortality rates have generally been very low. Obviously,
we cannot reject the simple balance model on the grounds that its prediction
errors are too large on average.

Stronger tests for model failure can be devised by examining the tem­
poral pattern of prediction errors, as in Figure 5.1. For the George
Reserve, these errors clearly depict a pattern that has been widely recog­
nized, but could be easily confused with the effects of harvesting: the popu­
lation performed better than predicted when it first peaked, then more
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George Reserve "process error" procedure

" !\- Observed Nt

/'~l"~'
,( ~'" /I..... 1\
I: ~ 7-'-:;.~__ ·. ../..., ...,..... I ..~
• '.~ ' .. I ,. .....';7. 'I _""-,

l '''" .... - " ,:-;t... "V"...... t-::.-.l · ".
/ Predicted Nt" V

.I
I

100

+50,-----a--.------------------------,

Of-.....L:!Y----V---V-----\--,.......,.t!Io.r-----J.-J,r--A.--F-=-----\.-~~~.-c:=~""'"

--50

200

1970196019501940
0'- --1- -'- -'- ---'

1928

"Observation error" procedure

/ Deviations from predictions

/\ ," Observed Nt, \' ,(
,,t..: y \ f'., ~.. -_..- ..'J •.• ' -.:.:;... • I \ _. .~

:, \:' " ... ..... I \ I \ ,....... ._-\
; ." - - I \ I .~, ,....,.)'II Predicted Nt v "·1 '~'\/

:/
:/

$I

1928 1940 1950
Year

1960 1970

Figure 5.1. Least squares fit of a simple balance model to the historical time series
of population numbers in the George Reserve deer herd. Data from McCullogh
(1979). For an explanation of alternative fitting procedures. see text and Appendix
SA.

poorly for a longer period afterward. The obvious explanation in this case is
that early high productivity was sustained by an excess of accumulated
forage, while poor forage production later resulted from "overbrowsing" dur­
ing the peak years. However, other mechanisms (such as genetically based
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changes in behavior) could produce similar effects. Note in Figure 5.1 that
the observation error procedure, with its deterministic prediction of popula­
tion changes (except for effects of time-varying harvest), results in a
smoother pattern of prediction errors with stronger autocorrelations (next
year's deviation is similar to this year's). Such autocorrelation is expected if
there actually is considerable process error, since each natural variation will
have a somewhat persistent effect on actual population size (but not on pre­
dictions based on earlier predictions rather than on earlier actual numbers).
Thus, patterned deviations from deterministic model fits do not necessarily
reflect any fundamental weakness in the model, since they can be generated
by ephemeral, unpatterned, and generally unpredictable natural events.

While examination of patterned prediction errors may help to identify
additional factors worth considering, the lack of pattern must not be taken as
evidence that the correct density-dependent factors have been identified.
The problem is that the same lumped balance model may result from a
variety of alternative assumptions, which in turn may ultimately have
different management implications. For example, an alternative model for
the George Reserve deer herd would be that adult survival is linearly density
dependent (5. = So - SIP,), while birth rate is density independent:

N'+I = (so - SIP,) P, + sjbP,
(5.12)

where R o = So + bsj, and R I = 5•. Without independent data concerning
density dependence in birth rates, one might erroneously conclude that sur­
vival is density dependent [since equation (5.12) gives the good fits of Figure
5.1], and that increased harvest rates would be compensated by improved
survival. There is no substitute for good independent data on population
rate processes.

More sophisticated estimation procedures and tests for model failure
can be devised in special cases. When the observation and/or process error
effects have a known probability distribution, the least squares fit may be
replaced by some stronger criterion (Ludwig and Walters, 1981). When
population size has not been measured directly, so only a time series of
abundance indices (catches per effort, crowing cock counts, etc.) is available,
models can be fitted to this series provided one is willing to assume a fixed
functional relationship between the index and actual population (for exam­
ple, index = kN" where k is unknown). Unknown parameters of this func­
tional relationship, or "observation model," can sometimes be included as
part of the set to be estimated, though usually they are confounded with
those balance model parameters that determine maximum population size or
carrying capacity. Fisheries workers routinely estimate the "catchability
coefficient" q in the relationship (catch per effort) = q (stock size), while
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otherwise assuming logistic stock growth (see Chapter 4). However, it has
been my experience that various elaborate procedures seldom give more
insight than simple process and observation error estimation based on
independently derived estimates of total population.

Equilibrium Analysis

Equilibrium analysis involves calculation of how population size, har­
vest, and perhaps other performance measures vary under the special condi­
tion that Nt+l = Nt. The analysis may, at least, indicate directions of popu­
lation change, and likely average population levels, even in cases where
year-to-year predictions are unreliable due to environmental effects and
other complications.

The analysis proceeds in three steps. First, explicit terms are inserted
into the balance equation to represent "control factors" of interest, such as
exploitation rates. Generally, it is best to express harvesting in terms of
exploitation rate rather than absolute harvest quota (even when there is no
practical way to hold the exploitation rate constant), in order to simplify the
subsequent algebraic manipulations. For example, one might represent har­
vesting of yearling and older animals in a deer population having linearly
density-dependent reproduction as

Nt+l = s.(1 - h) N, + sj(a - bNt ) Nt (5.13)

where N, is the spring population and h is the exploitation rate. In this case
the predicted fall harvest H, would be H t = hs,N" where s, is the survival
rate from spring to fall of the harvestable animals. In order to include fawns
in the harvest, one would simply multiply the recruitment term by 1 - h as
well, and the predicted harvest would then be H t = h[s,N, + s;(a ­
bNt ) N.), where s; is the fawn survival rate from spring to fall.

The second step is to solve for the equilibrium population by setting
N'+I = Nt = N., then manipulating the balance equation algebraically to get
N. on one side of the equals sign, and everything else on the other. For the
above example [equation (5.13)), and for many other cases, the algebra is
trivially easy:

(1) Substitute N. for Nt, Nt+l' etc.:

N. = s.(1 - h) N. - sj{a - bN.) N.

(2) Divide both sides by N.:

1 = s.(1 - h) + sj{a - bN.) (5.14)
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(3) Rearrange to get N. alone:

1
N. =- [s.(1 - h) + sja - 1]

sjb

The result is an equation that predicts how equilibrium population should
vary in relation to all the rate factors considered. An obvious extension is to
predict equilibrium harvest H., for example, if H, = hs.N" then substituting
N. for N, we get

hss
H. = - [s.( 1 - h) + sja - 1]

sjb

Notice that this apparently complicated yield equation follows from a series
of simple steps; there is nothing mystical or incomprehensible about it if

these steps are kept in mind.
The final step in equilibrium analysis is to develop tables and graphs

to display how the equilibrium population and associated harvest vary with
parameters of interest, such as exploitation rate. This just means substitut­
ing an appropriate range of numerical values into equations like (5.15) and
(5.16). Elementary calculus can be employed to find exact solutions for key
quantities (find maximum H. by setting the equation for dH./dh equal to
zero), but it is more important to understand qualitative patterns predicted
by the balance model [for example, equation (5.15) predicts that N. should
decrease linearly as h increases, while H. should vary quadratically with h].

Two mathematical difficulties can arise in equilibrium analysis as
described above, especially with step (2), when other than linear relation­
ships are used to describe density dependence in rates. Both appear as
difficulties in solving equations like (5.14) for N.. First, the equation for N.
may be transcendental (may not have an algebraic solution). For example,
suppose density dependence in survival is modeled as an exponential (as in
Ricker's model of stock and recruitment in fishes) with s. = soe-~N., where (3

is a density dependence constant, while birth rate is assumed to decrease
linearly with density. Then the equilibrium equation for N. cannot be
reduced beyond a form like N. + k,e -fiN. = k 2 , where k 1 and k 2 are con­

stants. Such equations can only be solved numerically.
The second difficulty is conceptually more interesting. The equation

for N. may have more than one nontrivial solution, indicating the presence
of multiple equilibria or a critical population size below which the model
predicts extinction. I was recently involved in a modeling exercise for bar­
ren ground caribou, where one scientist insisted that the number of very
young calves killed each year by wolves is nearly independent of caribou
population size, and depends mainly on the number of wolves present on the
calving grounds. He further argued that the number of wolves involved is
largely independent of caribou population, the wolves present being mostly
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young animals forced to disperse from packs that are maintained by other
prey besides caribou. Suppose that the annual total kill averages k young
calves per year, that the caribou birth rate is density independent, and that
the winter survival rate of subyearlings (after the main period of predation)
is linearly dependent on the number of older caribou. These assumptions
result in the balance equation

(5.17)

where So is the maximum winter calf survival and SI is a density-dependence

factor. If we set N'+1 = N, = N. and solve for N., the result is

(5.18)

where k l = 1 - s. - bso - ks., k 2 = sib, and k 3 = kso. This equation has
two solutions for N. given by [-k ± (kf - 4k.k3)051/Zk2 • The larger of
these is a stable "sustainable" population level. The smaller is a critical
population size below which the caribou will dedine toward extinction (or
decline until the wolf kill rate does respond to caribou population). I do not
wish in any way to imply that this caribou model is sound; it may just reflect
the incompleteness of one scientist's arguments (and is thereby instructive).
However, it does illustrate a general point: the most common cause of mul­
tiple equilibria in balance equations is the inclusion of "depensatory mortal­
ity agents" that exert an increasing relative effect as population size decreases
(the specific calf mortality rate due to wolves in the above example is k/bN,

which obviously increases as N decreases).

Effects of Population Composition

A common and deceptively incorrect criticism of simple models is that
they assume all animals in the population to have equal risks of mortality
and/or equal birth rates. Showing why this assertion is wrong gives insight
about why simple models often give predictions almost identical to more
complex models, and helps to show how simple models can be parameterized
from detailed life table data.

Consider partitioning a population into a collection of sex-age-health,
etc., classes, where N i, is the number of animals in class i at time t. The
total population is then Nt = Ei Nil and the proportional representation of
each class is P" = Ni,/N,. Suppose the survival rate through some period for
each class is S;t. Then the number of animals remaining at the end of the
period, say at t + 1, is

(5.19)
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Here § = Ei Sj,Pi , is a weighted average survival rate, with each Si, weighted
by the proportion Pi' of animals that started the period in class i (the argu­
ment is not changed if the animals change class, i.e., age, at the end of the
period). Exactly the same argument can be developed for birth rates bi,; the
male classes would, of course, have bi, =O.

Relationships like the above N'+1 = §N, are the basis of simple bal­
ance models. In no way do we need to claim that all the Si, (or bi,) involved
in § are equal to one another, or even that they are constant in time when §

is assumed to be constant. It is quite possible for the Pi' to vary in such a
way that § remains nearly constant while some Si, change considerably.

Further, patterned variations in Si, and bi, with population density
should result in patterned changes in the Pi' and in the aggregated § and 6.
Balance analysis assumes only that the aggregated patterns can be detected
empirically and represented algebraically through simple functions like 6 =
bo - biN,.

Stable age distributioDB

It is often reasonable to assume (or assumed anyway in computer
models) that some Si, and/or bi, are constant over time (or, at least, show no
patterned variation). The key question is then whether the class proportions
Pi' are stable, or more precisely: following some persistent change in
birth/survival rates, will the proportions Pi' quickly move to values Pi that
are independent of time? If the classes i represent age/sex groups, this ques­
tion is the classic one of stable age distributions, and the answer is generally
a resounding yes. Even when density-related changes in Si, and/or bi, lead to
changes in the stable proportions Pi, computer simulations generally show
close "tracking" of these stable proportions, unless other mechanisms in the
model result in strong population cycles (Botsford, 1979, 1981).

It is easy enough to concoct models with initial age structures and
density-dependence mechanisms such that the Pi' vary in complex or even
chaotic fashions over time; a basic requirement in these cases is that the
recruitment rate drops very sharply as population size increases. Such drops
apparently occur in some fish and marine mammal populations, but are
probably uncommon. I find the following rule useful: ignore fluctuations in
the Pi' unless there is evidence of strong, periodic fluctuations in stock size.

An implied assumption in the simple balance model examples above
is that average natural survival and birth rates are independent of exploita­
tion rates except through the influence of exploitation on population size.
This assumption is obviously false for cases where exploitation has strong
effects upon the stable proportions Pi (and therefore on the average rates).
However it is easy enough to show mathematically (i.e., Burgoyne, 1981)



en
T

ab
le

5
.1

.
E

ff
ec

ts
o

f
va

ri
ou

s
ha

rv
es

t
po

lic
ie

s
on

th
e

st
ab

le
ag

e
di

st
ri

bu
ti

on
o

f
a

hy
po

th
et

ic
al

un
gu

la
te

po
pu

la
ti

on
,

w
he

n
no

de
ns

it
y-

~.

de
pe

nd
en

t
ra

te
ch

an
ge

s
ar

e
as

su
m

ed
.

~ b:
l

I»

A
ge

(y
ea

r
o

fl
if

e)
§" t"l "

1
2

3
4

5
6

7
8

9
10

+
6a

5
~

P
er

ca
pi

ta
bi

rt
h

ra
te

(b
.)

0
0.

05
0.

3
0

.5
9

0.
85

0
.8

6
0.

85
0

.6
0

.2
5

-
-

-
~ ~ S·

A
nn

ua
l

su
rv

iv
al

ra
te

(5
.)

0.
7

0.
8

0.
9

0.
95

0
.9

5
0

.9
5

0.
9

0.
8

0.
6

0
.6

-
-

~ ~
H

ar
ve

st
po

lic
ie

s
(h

.)
an

d
t:-

: a
st

ab
le

ag
e

pr
op

or
ti

on
s

(P
.)

cl' "'0

h
b

c
(1

)
N

o
ha

rv
es

t
o

r
no

n-
-

-
-

-
-

-
-

-
-

-
-

-
I»"

•
.... ~.

se
le

ct
iv

e
ra

te
p

.
0.

26
0.

17
0.

12
0.

09
8

0
.0

8
4

0.
07

2
0.

06
2

0.
05

0
.0

3
6

0.
04

2
0.

27
0.

81
g

(2
)

Y
ou

ng
er

an
im

al
s

h.
0.

4
0.

2
0.

1
0.

05
0

.9
5

0.
05

0.
05

0.
05

0
.0

5
0.

05
0.

05
0.

05
f

ta
ke

n
se

le
ct

iv
el

y
p

.
0

.2
9

0.
13

0
.0

8
9

0.
08

0.
07

5
0.

07
0.

06
4

0.
05

2
0.

08
2

-
0

.2
9

0.
79

S ~. t"
l

to

(3
)

O
ld

er
an

im
al

s
h.

0.
0

0.
01

0.
05

0.
15

0.
2

0.
25

0.
3

0.
4

0
.0

4
ta

ke
n

se
le

ct
iv

el
y

p
.

0.
26

0.
18

0.
14

0.
12

0
.0

9
8

0
.0

7
8

0.
05

9
0

.0
3

9
0.

02
1

0.
01

2
0

.2
6

0.
83

(4
)

Y
ou

ng
an

d
ol

d
h.

0.
4

0.
2

0.
1

0.
05

0
.0

5
0.

1
0.

2
0.

3
0

.4
0

.4
se

le
ct

iv
el

y
p

.
0.

30
0.

14
0.

09
7

0
.0

8
6

0
.0

8
6

0.
08

1
0.

06
4

0
.0

3
9

0.
03

9
0

.0
2

6
0.

30
0.

81
vu

ln
er

ab
le

a
b

=
E

p
.

b•
•

s
=

E
p

.
b

.
ar

e
av

er
ag

e
ra

te
s

ap
pr

op
ri

at
e

fo
r

si
m

pl
e

ba
la

nc
e

m
od

el
s.

b
V

al
id

fo
r

an
y

ha
rv

es
t

ra
te

x
<

I.
..... ... ....,



144 Adaptive Management ofRenewable Resources

that nonselective harvesting (equal h on all classes) has no effect whatsoever

on the Pi, provided all rates are density independent; changes in survivor­
ship are exactly balanced by changes in population growth rate (which also
influences the stable proportions). This very important point has apparently
been missed by many authors, particularly those who have advocated use of
the Pi as an index of overexploitation. Indeed, even quite age-selective har­
vesting often has little effect on the stable Pi when no rates are density
dependent; Table 5.1 demonstrates this point for a simulated "deer" popula­
tion.

The stable proportions Pi (and thus the ~, 6 values) can be strongly
influenced by harvesting when rates are density dependent. An extreme
example is the case where total annual recruitment remains nearly constant
across a wide range of parental population densities Uuvenile production
"bottlenecks;" recruitment per parent is inversely proportional to total parent
population). In this case, the stable age proportions are just the total sur­
vivorships (1.), which are obviously influenced directly and cumulatively
(across age) by harvesting.

A bala oce model for Jake trout

It is quite possible for a simple model to realistically reflect equilib­
rium relationships involving harvesting, by representing how equilibrium
age structure and average rates are influenced by harvesting, even if this
model cannot accurately predict transient population changes. To illustrate
this point, the remainder of this section develops a balance model for
responses of lake trout (Salvelinus namaycush) in the Laurentian Great
Lakes to rehabilitation measures (stocking, harvesting, sea lamprey control).
The balance model results are compared to a detailed simulation based on
the model of Walters et aI. (1980). In this problem there would seem to be
little hope of learning anything from a simple model: the species is long
lived with considerable lags to the age of first harvesting, maturation is even
later, lamprey mortality effects are age-dependent and depensatory, and the
age structure is initially far from equilibrium since the population must be
built up by yearling stocking into a negligible base of natural fish. The fol­
lowing presentation omits references for the various life history and rate esti­
mates used; see Walters et al. (1980), Pycha (1980), and Wells (1980) for
further details.

Great Lakes trout become vulnerable to sea lamprey predation and
fishing at similar ages, around 4-6 years depending on the lake in question.
To develop a balance model, I defined N, as the number of 5-year-old and
older lake trout present in the early summer of year t. Annual natural sur­
vival rates (excluding fishing and lamprey mortality) for yearling and older
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fish appear to average around 0.75-0.8. Lamprey are thought to exert a
depensatory mortality influence, and D. Jester (Michigan Department of
Natural Resources, personal communication) has used experimental com­
ponents analysis (Holling, 1965) of their attack behaviors to derive the fol­
lowing approximate survival model:

-h,L,s., = So exp--- (5.20)
N,

where hI = PoexN,/«(3 + N ,). Here So is the natural survival rate (0.75-0.8),
L, is the number of parasitic lamprey present in the early summer of year t,

N , is the number of vulnerable trout present at that time, Po is probability of
mortality per lamprey attack, ex is the maximum number of attacks per lam­
prey per year, and (3 is the prey density needed for the lamprey to achieve
0.5ex attacks per year (hI is the number of attacks per lamprey in year t).
This elegant relationship just says that the trout survival rate will decline if
either the lamprey population L, increases, or the prey population Nt

decreases (relative to L,), yet lamprey have some limit to their searching
ability, so h' decreases if N, is sufficiently small.

While instantaneous rate relationships can be used to model the sea­
sonal intermixing of harvest, natural mortality, and lamprey mortality, for
the purposes of this discussion it will be sufficient to represent total annual
survival rate s, of 5-year-old and older fish as

s, = s.,(1 - h,) (5.21)

(5.22)

where s., is calculated from equation (5.20), and h, is the exploitation rate in
year t. Thus, from N, we would estimate the number of 6-year-old and
older fish in year t + 1 as s,N,.

Females first mature at ages 6-9; their fecundity then increases with
age in a roughly linear fashion for at least a few years, with a slope b' of
1000-3000 eggs per year depending on the growth rate. If the population is
at equilibrium with s, = s. and if the age at maturity is (say) 8 years, we
would expect to see s; 8-year-old females with an average fecundity of b' =
1000-3000 eggs for each 5-year-old present in N,. We would expect to see
s: 9-year olds, with an average fecundity of 2b'; s: 10-year-olds with a
fecundity of 3b', and so forth. Thus, the total egg production per 5-year-old

female present in year t is bs; (1 + 2s. + 3s~ + "'), while the total
number of individuals present per 5-year-old is 1 + s. + s: + .... The
ratio of these two series gives an average fecundity 6 at equilibrium of all
individuals 5 years old and older; after algebraic simplification of the above
series, the ratio reduces to

_ s;b'
b=-­

1 - s.
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(5.23)

(5.24)

We can then predict total equilibrium egg production per year as 0.5 bN"
with equation (5.22) accounting for the effect of survival on the age structure
and therefore b (the 0.5 factor accounts for a 50:50 sex ratio).

While there is no empirical evidence concerning density-dependent
survival factors in lake trout, it is reasonable to assume that egg to yearling
survival is a decreasing function of total egg deposition, reflecting the physi­
cal limits to quality spawning area and/or competition among the juveniles.
If E, is total egg production (= EN. at equilibrium), a survival bottleneck can
be represented as

SjO
Sj' =-_...:...._-

E.
+sjO-

Ym

where SjO is the maximum egg to fry survival (0.005-0.01) and Ym is the
maximum number of natural yearlings produced when egg deposition is
very high (bottleneck carrying capacity).

Total yearlings entering the population each year, Y" can be
predicted by combining equations (5.22) and (5.23), then adding the
number of yearlings stocked (S,):

[
sjos:b'N.-I) [ sjOs:b' N._ 1 ) -1

Y, = S, + 1 + --'-----
(1 -s.) (1 -s.)Ym

Of these Y, yearlings, only a fraction s~ will survive natural mortality factors
to enter the 5-year-old and older stock, N,H.

Combining the above arguments about survival and recruitment
results in the following balance model for lake trout:

N. H = s,N, + S~Y'-4 (5.25)

where s, is calculated each year from equations (5.20) and (5.21) (lamprey
and harvesting effects), and Y,-4 is calculated from equation (5.24); note that
Y,-4 depends explicitly on N.-s. This model is strictly valid only at equilib­
rium; in other situations of practical interest (population growth during
recovery), it will overestimate the annual egg deposition, since it assumes an
equilibrium spawning stock with perhaps substantial numbers of older, more
fecund females if s. is large. However, it remains to be seen whether the
equilibrium approximation results in unacceptably large errors compared to
an explicit age structure model.

Figure 5.2 compares predictions of equation (5.25) and an age­
structured simulation model that contains the same basic assumptions about
survival, age at maturity, and fecundity at age a, but does not assume that
the age structure of 5-year-olds and older is always at equilibrium. The
simulation keeps track of 20 separate age classes. Both models assume that
the initial population in all age classes is zero, then try to predict a possible
rehabilitation scenario:
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Figure 5.2. Comparison of predicted developments of lake trout populations in a
Laurentian Great Lake, using three alternative models. The simple balance model
does not account explicitly for age structure effects; the age structure simulations
predict slower growth because they account for reduced average fecundity when the
stock consists mainly of younger fish.

(1) 2 million yearlings are stocked each year, with genotypes and planting
locations chosen so the planted fish should reproduce as well as wild
fish; stocking is discontinued at year 20;

(2) control measures hold the number of lamprey to 50000, with no con­
trol failures;

(3) the annual harvest rate is initially zero, then grows linearly to 10%
between years 5 and 20, and afterwards remains constant.

It is obvious from Figure 5.2 that the simple lake trout model cannot
mimic the behavior of its more detailed relative during the early years of
rehabilitation. It initiates spawning by stocked fish only 5 years after stock­
ing begins, rather than 8-10 years after as in the simulation. This results in
unrealistically high recovery rates until stocking is discontinued. In later
years, the model predictions converge toward the same equilibrium stock.
Apparently, equation (5.22) gives a reasonable approximation of average
fecundity except in the first 25-30 years.
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Figure 5.3. Equilibrium stock size of lake trout predicted by the balance model
equations (5.20)-(5.21), (5.24), and (5.25), as a function of annual exploitation
rate. Note that for low stocking rates, there is an exploitation rate above which the
stock is predicted to collapse suddenly. When stocking is present, there is a lower
equilibrium stock size consisting mainly of stocked fish.

So we are left without a clear conclusion about the usefulness of a sim­
ple balance model for lake trout. The simple model has two features to
recommend it for policy analysis: (1) it organizes considerable biological
complexity into a few equations that can be examined critically by anyone
who can follow the algebraic shorthand; and (2) it captures a key qualitative
prediction that is difficult to demonstrate by simulation (Walters et aI.,
1980), namely, that there can be two stable endpoints (or rehabilitation out­
comes) of a given stocking policy, depending on the harvest rate during
recovery. This point is illustrated in Figure 5.3, which plots the balance
model's estimates of equilibrium N. in relation to equilibrium harvest rate.
At lower harvest rates, the model has only one (high) equilibrium. At inter­
mediate rates, there are both low and high equilibria separated by an
unstable critical stock size. The unstable point is generated by depensatory
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lamprey predation. At high harvest rates, only a low equilibrium remains,
maintained primarily by continued stocking. Similar "multiple equilibrium"
predictions have arisen in a number of other ecological models used for pol­
icy analysis (Ludwig et aI., 1978; Holling, 1973, 1980; examples are given
in Chapter 4). The detailed simulation exhibits similar qualitative behavior,
but the equilibria are reached slowly so it is difficult to see them by doing
numerical simulation trials.

The lake trout example as presented above is somewhat deceptive
since the simulation used simple "knife-edge" assumptions regarding vulner­
ability to mortality agents in relation to fish age. Figure 5.2 also compares
the balance model to a more realistic simulation with complex age-related
characteristics. The parameters for this simulation were chosen to reflect the
possibilities that (1) vulnerabilities to harvesting and lamprey attack increase
smoothly with fish age; (2) the probability of lamprey mortality per attack
decreases with fish age (older fish are more likely to survive each attack); and
(3) the natural mortality rate is higher in older fish. Figure 5.2 shows that
these complexities do not matter substantially to the simulation model pre­
dictions, and should not be considered grounds for not using a simple bal­
ance model. Like many biological complexities, they imply a smoothing of
dynamic response relative to what would be predicted by simpler "on-off'
models; it is not clear that this smoothing property should be of significant
concern in policy analysis.

The main conclusion of this section is that single-variable balance
models should not be rejected simply because they fail to represent explicitly
some aspects of population composition. The rate parameters of balance
equations are averages across component rates for composition classes, and
as such will be accurate if the composition is either stable or moves in
predictable ways as component rates are varied. This optimistic conclusion
will be challenged in the next section, which highlights some factors already
mentioned in Chapter 4 that can cause serious and persistent prediction
errors.

When Balance Models Fail

The key assumption underlying simple models is that there exist
stable and immediately repeatable relationships between key rate processes
and total population size across some composition classes. Model failure
occurs when there is a persistent or periodic change in rates observed at any
population levels that are likely to arise under management. Suppose a rate
value of, say, s· is observed while population size is N', and the population
then changes substantially but finally returns to N·; the rate may remain
persistently different from s·, and this change may alter even the ranking of
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N' in its desirability relative to other population levels attainable by manage­
ment. We might tolerate a model whose predictions were randomly too high
or low, or even damping in inaccuracy over time; feedback management
policies can be designed to deal with such situations (Chapters 7 and 8). But
persistent or periodic errors imply that we should try to identify, and
perhaps capitalize upon, additional aspects of the system's structure.

It is difficult to provide a simple classification of factors that can cause
model failure as defined in the previous paragraph. One obvious class is
irreversible change in some key habitat requirement, due either to external
forces or to change in population size. For example, a large population
increase may cause the effective extinction of some food organisms. As

noted by McCullough (1979) and Caughley (1976), interactions between
populations and their food supplies are generally expected at least to produce
time delays in population responses; large enough delays can result in
periodic prediction errors by any model that does not explicitly represent at
least the delays, it not food supply itself.

Predation is another factor that can generate irreversible rate changes.
The lower stable equilibrium for lake trout in Figure 5.3 is associated with
low survival rates of older fish (high lamprey attack rates per fish), while the
upper equilibrium is associated with high survival (low lamprey attacks per
fish). Lamprey abundance was held constant for those predictions (same
number of lamprey present at both equilibria); the presence of two equilibria
would not even have been suspected if survival rates had been assumed to
vary only with lamprey abundance (as in Pycha, 1980) rather than with the
ratio LIN. After seeing a number of examples like this, it is my personal
conviction that every applied population analysis should include a very care­
ful evaluation of possible changes in predation mortality rates.

Beyond obvious interactions involving food supply and predation,
there may exist persistent effects of more subtle factors like density­
dependent selection, loss of genetic variation at small population sizes, and
changes in abundance of competing species. Most basic texts contain cata­
logs of the possibilities. We simply do not have enough long-term case stud­
ies at this point to say much more; perhaps it is comforting that existing
studies (like the George Reserve deer) show changes that can largely be
explained by the obvious factors.

An untestable prediction that would be consistent with our under­
standing of long-term evolutionary changes is that all quantitative population
balance models must eventually fail due to the action of natural selection on
the biological factors that result in measurable rates. The key questions
become how fast do "parameters" change, and do they change smoothly or
abruptly? This we can only discover by experience, and more critically by
having clear null hypotheses against which the changes can be detected.
That is, the only way we can determine if some parameter has changed is to
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predict, using a model, what should have been seen if no change had
occurred. This means we are not going to escape the business of building
and testing balance models, and we should welcome their failures as a guide

to learning.
When there is no substantial data record against which to test alterna­

tive simplifications, the analyst has three basic options: (1) be patient; (2)
advocate an "actively adaptive" management policy that will induce informa­
tive changes in population size as quickly as possible; or (3) elaborate a com­
plex mechanistic model that tries to build up population dynamics predic­
tions from available understanding of the organisms and processes involved.
Only a fool would trust the third approach; it is too easy to miss the key
details, and in any case the relationships that were included might be as
unrepeatable as the overall density-dependence relationships can be.

When a simple model appears to be failing, there are two possible
directions to search for an explanation. First, one may go "downward" in a
hierarchical sense, into the details of population composition and rate com­
ponents. This has been the route taken in most wildlife population model­
ing, as witness various examples in Fowler and Smith (1981), and also in
fisheries, with the recent exceptions cited earlier (Botsford, 1979; Deriso,
1980; Schnute, 1985; Shepherd, 1982). Second, one may go "outward,"
and try to model the broader factors (food, predation, unregulated harvest
components, etc.) that operate on the population of interest. Ultimately the
second approach implies ecosystem modeling, which many ecologists sup­
pose a priori is hopeless. Certainly, the trophodynarnic/biomass dynamic
approaches to ecosystem modeling have not shown much promise (Chapter
4), but this may be a matter of poor state-variable selection leading to poor
functional assumptions. There is nothing, for example, to prevent us from
looking at "linked subsystems" (Overton, 1978) where each subsystem
involves a balance model of appropriate type and functional complexity for
that subsystem alone, and where variables that link subsystems are chosen
for functional convenience in the subsystems where they impact or are used
(i.e., number of parasitic lamprey is a useful variable for modeling the lake
trout subsystem; entirely different variables might be appropriate for describ­
ing the lamprey dynamics as a subsystem).

Appendix 5A: Fitting Balance Models to
Time Series Data

This appendix describes a general approach for finding "least squares"
estimates of balance model parameters. The idea is to find those estimates
that minimize the sum of squared deviations between model predictions and
time series data. In what follows it will be assumed that the reader has an
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introductory knowledge of calculus and matrix algebra. The approach
described is based on Bard (1974); further details and options can be found
there. Alternative approaches based on the theory of time series analysis are
reviewed in Priestly (1982).

Iterative improvement acheme

If one wishes to minimize a sum of squared deviations between obser­
vations N, and predictions N" the following iterative procedure is usually
reasonably efficient:

(1) Assign initial parameter estimates R inil to the parameters R o, R 1, etc.,
that are to be estimated.

(2) Calculate the vector of deviations d = N - N using the latest avail­
able parameter estimates (R ini• or Rn~w from below). d; = N, - N"
where N. is calculated from R.

(3) Calculate the sensitivity (or design or Jacobian) matrix X, where xij
is the derivative of the ith predicted value with respect to the jth un­
certain parameter.

(4-) Calculate and invert the cross products (or ap proximate Hessian)
matrix X'X, to give (X'X)-l.

(5) Calculate the parameter correction vector c = A(X'X)-IX'd, where A
is a "step size correction" that is initially set to 1.0 and reduced for
later iterations if the corrections fail to decrease in successive itera­
tions.

(6) Get new parameter estimates as R~w = R inil + C , and return to step
(2) unless all the elements of c are very small.

This procedure is identical to linear regression, and gives best estimates
without iteration [without repeating steps (2)-(7)] if the X matrix contains
only constants and data (i.e., its elements are independent of the parameter
estimates). More elaborate procedures for correcting step size, such as
Marquardt's algorithm (see Watt, 1968), sometimes give faster convergence
but in my experience are not worth the extra programming effort.

After the estimates have converged, a measure of uncertainty about
the correct parameter values can be easily calculated. This measure, the
"asymptotic covariance matrix of the parameter," E, is given by

E = [ ~ dl ] (X'X)-I

n-rn
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(SA.l)

(SA.2a)

where the d; and X are as defined above, n is the number of data points
(rows of X), and m is the number of parameters (columns of X).
Confidence limits for the individual parameters can be estimated as Si ±
ta,n-m & where t",n-m is the Student's t-statistic for a probability level and
n - m degrees of freedom, and E ii are the diagonal elements of E. The
interpretation and use of E will be discussed funher in Chapter 6.

CalcuJating lICIlSitivities to perameten

The key step in the above algorithm is calculation of the sensitivities
Xij = dN;/dRj • In general, we may express these sensitivities (using the
chain rule of basic calculus) as

dN; of; ofi dNi - 1--=--+----
dRj oRj aNi-! dRj

where f; is the balance model equation used to predict N;. Additional terms
of the form (ar;/oN;-~) (dNH)/(dR j ) must be added for cases (such as the
lake trout example) where Ni depends directly on N at times i - k. When
the real system is thought to have mostly "process error," so N; is best
predicted by the observed values N i - I , Ni-~, etc. (rather than N i - I, ... ), then
the second term(s) of equation (SA.l) are simply deleted since of;/oNi -, =
O.

When mostly observation errors are assumed, so N; is predicted from
&-1, note that equation (SA.l) is recursive in dN;/dRj : one first calculates
dNI/dR j , then this is used in calculating dNddRj , then this in calculating
dN]/dRj , and so forth. The problem is what to do with dN1/dRjo since this
should be predicted from No (and perhaps N -~). Here two approaches are
possible: (1) use the first data point as No, so dNo/dRj = 0; or (2) estimate
No as an additional unknown parameter (say R m ), so dNo/dRm = 1.0. The
second of these approaches is usually not worthwhile unless the early popula­
tion estimates are particularly suspect. In the first approach, the first k

observations are not predicted (where k is the largest lag appearing in the
model), so the X matrix has n - k rows, where n is the number of years'
data.

As an example of the sensitivity calculations, consider the simple
example N'+l =RoN, - R,N,2. In this case we have

of,+I
--=N,
oRo

of'+1 2--=-N
oR, '

of, ... 1

-~-- = R o - 2R 1N,
uN,

(SA.2b)

(SA.2c)



154 Adaptive Management ofRenewable Resources

[but ignore (5A.2c) for process error assumption]. The X matrix elements
are calculated by substituting these relationships into equation (5A.1). For
the process error assumption, note that only the second, third, etc., data
point can be predicted (or, in general, the first k data points are not
predicted if the model explicitly contains N t - l ); in this case the X matrix for
data points 2, ... , n is just

N , -M
N 2 -M

X=

N n - I -N~_I

where the first column of X represents R o and the second represents R I •

In programming the above procedures for programmable calculators
or computers, note that the rather large X matrix need not be stored expli­
citly. Only the matrix X'X and vector X'd are used to improve parameter
estimates. Except for the calculation of (X'X) -I, the above estimation steps
(2)-(4) can be accomplished by a simple "loop" over the data points to be
predicted. For each point i, first calculate the predicted IV; and d;; then cal­
culate the derivatives with respect to each parameter, storing these in a vec­
tor t (tl = oIV;/oRo, t2 = oIV;/oR., etc.). Then add t; • tj to the i, jth ele­
ment of X'X, for all combinations of i and j (X'X is symmetric; some cal­
culations can be saved by noting that X'X;j = X'X;). Finally, calculate tid;

and add it to (X'd)l, add hd; to (X'd)2, and so forth.

Estimation from population index data

Often N, is not observed directly, and model parameter estimates
must be based on a time series of index values Yr, whose functional relation­
ship to Nt must be assumed a priori. If this "observation model" is desig­
nated h(N,), so it is assumed that Yt = h(Nr), then the above procedures can
be used to find parameter estimates that most closely predict the index time
series. All calculation procedures are as described above, except that (1)
deviations d, are calculated as Yr - h(IVr), where IV is predicted from the
balance model as before (using either &-1, or Nt-I depending on the error
assumption), and (2) the elements of X are replaced by sensitivities of the
predicted observations to the parameters. These modified sensitivities are
obtained by the chain rule of calculus:

(5A.3)
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where iJh;/iJR j is zero unless R j is an unknown parameter of the observation
model itself (i.e., q in y, = qN,), and dN;/dR j is calculated as described
above. For the simple case y, = qN" the term iJh;/iJN; is just equal to q,
that is, all the original sensitivities are "scaled down" by the observation
model parameter.

What goes wrong

The above estimation scheme can fail if the data are very noisy or
exhibit temporal patterns that the chosen balance model cannot produce.
However, the most common cause of failure is reflected in the inability to
invert X'X, and/or erratic behavior of the correction vector c. The basic
cause of these problems is statistical "confounding" of the balance model
parameters, so that some columns of X are nearly (or exactly) linearly
dependent. In simpler terms confounding between two parameters means
that they have highly correlated effects on the predictions, at least over the
range of past observation. For example, the logistic model leads to an X
matrix with one column of N, values and one column of -N! values. These
columns are linearly dependent (correlation = 1) if the Nt values span only a
narrow range.

Confounding can also be thought of as the existence of a long, narrow
"trough" in the surface of sums of squares plotted as a function of the param­
eters. Erratic parameter changes usually involve jumping back and forth
along such troughs without there being any well defined deepest point.
Points along the bottom of the trough represent parameter combinations that
are equally good at explaining the observed data.

Poor estimation performance sometimes results from choosing bad
initial parameter estimates. This problem can usually be avoided by begin­
ning with the process error assumption, which generally implies less con­
founding of parameter estimates ("natural" variation generates informative
contrasts), applied to a transformed or approximate model that is constructed
so that X does not depend on the parameters (i.e., a model that is linear in
its parameters). For example, the balance model Nr+l = R oNt/(l + RtNt)
is nonlinear in its parameters; the transformation (N.lNt+l) = (l/Ro) +
(R,/Ro)Nt allows initial parameter estimates to be obtained by linear regres­

sion (y = Nt/Nt +I , x = Nt, intercept = lIRo, slope = RdRo). However,
such transformations generally do not result in best estimates relative to the
original time series data, and so should not be used to replace the procedures
outlined above.

Using time series data to estimate functional relationships can lead to
bad bias in the parameter estimates, when process errors are large and
influence the future states that are treated as regression "independent
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variables." Consider the Iinear-in-parameters case, where we take 11 =
(X'X)-'X'Y. If the model is structurally correct, so Y = X/J + w where
w is the vector of process errors, it follows by substituting the second equa­
tion into the first that

Ordinarily we assume that X and ware uncorrelated, so the expected value
of the error vector (X'X)-IX'W is zero. This assumption fails when w,
influences X;+I, X;+2, etc. (the future rows of X). For example, the Ricker
stock-recruitment model R,+l = S. exp (a - bS, + W,+I), leads to the obvi­
ous transformed equation In (R,+dS.) = a - bS, + w.+I, which is a linear
regression where (31 =a, (32 =b, and

X=

-ST-I

when there are T years' data. The spawning stocks S,+I, S'+2, etc., depend
on w, whenever the harvest rate has been relatively steady over time, or at
least when no deliberate effort has been made to experimentally set S. to be
independent of the recruitments R, (which obviously depend on WI)' The
correlation between X and w in this example leads to a very nasty bias: the
productivity parameter a is generally overestimated, and the spawning stock
for maximum yield is generally underestimated (by as much as 50 % when
the w's are realistically large and harvest rates are nearly constant).

Problems

5.1. Construct simple balance models to describe the following "typical"
density dependence patterns:

(a) birth rate decreases linearly with density, survival rates are
density independent;

(b) winter survival rate of juveniles (subyearlings) is inversely
related to the abundance of older animals N. present at the
start of winter, i.e., Sj. =so/( 1 + SIN,);

(c) limited breeding space, so that total births B reach an upper
limit Bm and vary with spring population N as B = boN/( 1 +
boN/Bm ); all survival rates are density independent.
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5.2. For each of the models in problem 5.1, plot the population size next
year (Nr+l ) as a function of N" using parameter values that will give
the populations a maximum rate of increase (at low N,) of about 30%
per year and an equilibrium level of N. = 1. Can the behavior of all
the models be well approximated by a simple logistic equation NrH =
R1N, - R 2N r

2?

5.3. Construct a balance model for a population that has limited breeding
space, as 5.1.c above, and is subject to depensatory mortality of the
juveniles by an efficient predator that does not depend on the popula­
tion in question for its own well-being (for example, think of feral cats
preying on juvenile pheasants, where the cats have many other food
sources). Represent juvenile survival rate as Sjt = soB/(Bh + B)
where B is births, So is the maximum survival rate, and survival goes
from zero to this rate as B increases while reaching sol2 when B =
Bh • Show that this model can exhibit a stable equilibrium at some
high N., and a critical population size Nt below which the depensa­
tory predation drives it to extinction. Show how the size of the "sta­
bility domain" N. - Nt varies with the annual survival rate s. of older
animals.

5.4. Construct an age-structured population model with birth and survival
rates as in Table 5.1, except make the survival rate for age 1 animals
(51) depend on total population size

10

N, = EN.,
.. ;::1

by the relationship 51' = 0.7/(1 + N,). Using the no-harvest P. from
Table 5.1 and No =0.1, construct an initial age structure N.t = P.No
to start the simulations. For each simulated year, calculate P., =
N.,/N, and use these proportions to estimate time-varying average
rates b, = E P.,b., §, = E p.,s., (only the p., and Sir are variable).
How do §r, b" and Nr vary over time if you use various harvest poli­
cies? Is there a repeatable relationship between §r and N r, provided
the population does not grow or decline too rapidly?

5.5. Modify the age-structured model in exercise 5.4 to use the survival
relationship SIr =0.7 exp (-0.69Nr). Do your results change? Then
multiply all the b. values by 5; now what happens, especially to the
relationship between §, and N.?
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Table 5.2. Estimates of Pacific helTing egg deposition and subsequent age
1 recruitment, and the number of predatory cod, in the Hecate Strait, Brit­
ish Columbia. Data assembled by M. Stocker and J. Westerheim, Canadi­
an Department of Fisheries and Oceans, Nanaimo, B.C.

Year

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

Number of
age 1 helTing
recruits
(X 10 -6)

359
586
182
756
627
514
968
355
128
67

197
214
270
343
329
608
444
550
169
254
210

Herring egg
deposition the
previous year
(X 10 12

)

5.3
3.44
3.44
6.24
4.28
8.16
8.7
8.4

11.22
8.06
4.64
2.36
2.12
2.94
4.04
5.32
5.9
8.46
8.76
9.8
7.36

Number of
age 2 and older
cod in the system
(X 10-6)

8.5
5.1
8.5
5
5
5.8
5.1
7.7

11.7
7.3
7.9

12.7
8.3
7.9
3.7
3.8
6.6
8.7

10.9
8.7
8.1

5.6. Table 5.2 shows crude data developed during an AEA workshop on
species interactions among commercial fish species in the Hecate
Strait, British Columbia. Estimate a Ricker stock-recruitment model
N 1 = E exp (a - bE) for herring, by linear regression of Y = log
NilE against X = E, where N. =age 1 recruits and E = eggs depo­
sited. How can the parameters a and b be interpreted? Then include
abundance of cod (a herring predator) N c as a second independent
variable, so the herring recruitment model becomes N l =E exp (a ­
bE - eNc). Does the fit improve? How would you interpret the e
parameter, and can you see a way to estimate it by using independent
data on cod prey consumption rates? Develop a simple balance model
for the herring, using your final stock-recruitment model and an
annual adult survival rate s. = 0.6. Use this model to show how the
equilibrium relationship between herring yield and harvest rate might
be influenced by changes in the cod stock.
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Chapter 6

Embracing Uncertainty

If the outcome of any research project could be safely
predicted, there would be no need for research.

Cushing (1968)

Previous chapters have stressed that resource managers must learn to
live with some very substantial uncertainties. Modeling helps to clarify and
highlight these uncertainties, but cannot usually resolve them by decomposi­
tion (reduction) of relationships into smaller and more understandable
(researchable) pieces. This means in the end that many key management
decisions are essentially gambles, no matter how nicely we may try to pack­

age the justification for these decisions by presenting reams of data and elab­
orate calculations. Most people find it rather uncomfortable at first to think
of resource decision making as gambling; somehow we expect governments
and international agencies to act prudently and with at least a modicum of

foresight. Indeed, when uncertainties are revealed in public debates it is
often argued that inaction (wait and see, do more research) is preferable to
the indignity of gambling; such arguments can reflect gross confusion

between personal ethics (gambling as a personal weakness or bad habit) and
public responsibility.

Most prescriptions about how to use model building and prediction in
management have implicitly shied away from treating decisions as gambles.
Typically, it has been argued that one should construct the best possible

model and parameter estimates, and then either act as though this model
were correct or perhaps be more conservative if the estimates are obviously
weak. It has been stressed that point estimates and predictions should be
accompanied by measures of uncertainty, such as confidence limits, but
there is seldom any careful analysis about how to behave differently if the
limits turn out to be quite wide (the usual case). In the language of statisti­
cians, the preoccupation has been with how to construct point estimates and
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their policy implications. In the language of control theory, this preoccupa­
tion has been called "certainty-equivalent" policy design; it has been shown
that for some very special situations (so-called linear-quadratic control prob­
lems), it is indeed optimal to act as though the current best estimates were
correct.

Statistical decision theorists have developed quite a different notion
about how to deal with uncertainty, and much of the remainder of this book
is based in one way or another on the approach that they have suggested.
Their basic claim is that one should first embrace uncertainty, by trying to
define not a single best prediction, but rather the set of possible outcomes
(models, states of nature) that are consistent with historical experience. Next

one should try to assign odds or probabilities to the alternative models, and
these odds should be somehow used in decision making. Placing odds is
very different, and usually more difficult, than just setting confidence limits.

This chapter will be concerned mainly with how to identify alternative
models and place odds on them, but let us first look ahead briefly to how
such results can be used. There are two very distinctive uses, and the first of
these has not been emphasized in the literature of decision making under
uncertainty. This is simply to expose uncertainties in an emphatic manner,
so as to stimulate imaginative thinking about policy options that may be
more robust or informative than the options that would otherwise be
evaluated. The second, more formal, use is in ranking or comparison of
options that have already been identified; most of decision theory is con­
cerned with how to go about constructing such rankings. The basic idea in
ranking alternatives is to construct (at least conceptually) a "decision table,"
or matrix, which displays the outcome of each policy option for each model
or hypothesis that has been identified as plausible. Then the ranking
proceeds by looking across the possible outcomes for each policy; it is usually
assumed that the best policy is the one with the maximum expected value,
which is the sum of products of outcomes times the probabilities of
occurrence. That is, the expected value of an option is its weighted average
outcome, where the weight on each outcome is its probability or odds of
occurring. Other ranking criteria are, of course, possible, such as
"min-max," in which we seek that policy whose worst possible outcome is
highest.

A much oversimplified example from Pacific salmon management will
serve to illustrate these ideas. In the early 1960s, it was suggested that
artificial spawning channels could be used to increase juvenile survival of
sockeye salmon from the Skeena River in British Columbia, and that more
juveniles going to sea would result in more harvestable adults returning a
few years later. Various experiences elsewhere had shown that juvenile sur­
vival could be improved, but there were no good data on the relationship
between juvenile production and adult returns. A caricature of this decision
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problem would be that there were two models of response (adult increase
versus no adult increase) and two decisions (build channel, do not build).
The following decision table shows a rough estimate (revised from Walters,
1977) of the net economic value of the sockeye fishery (an output measure),
in millions of dollars, for each of these models and decisions, as they might
have been evaluated before the actual decision:

States of nature

Option

Do not build channel
Build channel

No adult increase Good adult increase

240 240
135 564

According to these predictions, the fishery value would be roughly doubled
(5240 to S564 million) if the juvenile to adult survival were favorable, and
there would be a loss of around $105 million in construction/operating costs
plus lost yields (to allow stock recoveries) if the survival were not favorable.
Now suppose it had been decided to place roughly even (50:50) odds on the
two states of nature; in this case the expected value of the "do not build"
decision would have been 240 = (0.5)(240) + (0.5)(240), and of the "build
channel" decision would have been 349.5 = (0.5)(135) + (0.5)(564). Thus,
in an expected value sense, building the channel would be a good decision in
spite of the great uncertainty. But decision makers are averse to mistakes,
and the possible loss of $105 million might weigh more heavily than the
expected value calculations would indicate. Then the above decision table
would represent a source of some considerable frustration (how to balance
the 135 against the 564, and these against the "sure" conservative decision
giving 240), and we would hope that this frustration would lead to some
imaginative thinking about other policy possibilities. An obvious option
would be to construct a much cheaper temporary channel, with an expected
outcome of, say, $200 million in the "no increase" case and a lower payoff
of, say, 5500 million in the "good increase" case. The expected value of this
"experimental" option would be 350 = (0.5X200) + (0.5)(500), and we
begin to see the importance of setting the odds carefully based on past data
and judgment. In an expected value sense, the experimental option is barely
better than the "build" option, and this advantage would be lost if we assess
slightly higher odds for the "good increase" model.

The salmon example shows that by embracing uncertainty we may
come to see decision problems quite differently than if we insisted on trying
to provide single, best models and predictions in the first place. For exam­
ple, we would not agonize very long in the face of inadequate data about
whether "good increase" is the best model, and we would not suggest expen­
sive research programs to try and resolve the uncertainty prior to the deci­
sion. We would instead be quite concerned about the issue of risk aversion,
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and whether to count a $105 million loss as somehow different from a $224
million gain (see Chapter 2). We would worry about how to set odds on
these outcomes, and on the identification of still other outcome possibilities.
And, perhaps most important, we would try to eliminate entirely the original
problem of a difficult choice between extreme alternatives, by seeking adap­
tive policy options.

The following sections will discuss some ideas about how we recog­
nize and measure uncertainty, when we are seeking to identify alternative
models and place reasonable odds on them. Most of this discussion is really
just a review of material that can be found in various textbooks on statistics
and decision theory, and for further reading I particularly recommend Raiffa
(1968), Behn and Vaupel (1982), and Bard (1974). My particular concern
here will be to try to bring together some concepts and approaches that are
usually presented as scattered and distinctive, and to show how they are
applied in resource systems. The final section returns to questions raised in
Chapters 4 and 5 about how complex the alternative models should be.

Levels of Uncertainty

It is usual to distinguish between three types of uncertainty about
natural systems. First, we must admit that certain inputs or disturbances
that occur rather regularly or frequently over time will generate unpredict­
able and uncontrollable changes. This background variation or noise can be
of large magnitude without having any profound effects on management
decision making except (1) to make it imperative to have "feedback policies"
involving monitoring and adjustment to the changes, and (2) to retard efforts
to learn about underlying average patterns of response.

Second, there is statistical or "parametric" uncertainty about the
forms and parameter values of various functional responses, such as produc­
tion rates as a function of stock size. With this type of uncertainty we worry
about what equations to use, how to estimate parameters from noisy data,
and how to assign probabilities to various hypotheses expressed as alternative
equations and/or parameter values.

Third, there is always basic structural uncertainty about even what
variables to consider (in the words of Chapter 3, how to "bound the prob­
lem"). Incomplete structural representation implies that we can expect not
only time-varying parameters in functional responses, which can sometimes
be dealt with as statistical patterns without too much difficulty, but also some
surprises involving large and unexpected changes in response patterns.

In most of the following discussion I will deal mainly with the first
two types of "measurable" uncertainty. I doubt that there can, in principle,
be any consensus about how to plan for the inevitable structural uncertainties
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that haunt us, any more than we can expect all human beings to agree on
matters of risk taking in general.

It is important to note that the distinction between noise, parameter
error, and structural uncertainty does not stand up under close logical
inspection. It is just a simple way of modeling a continuous spectrum of
things that can go wrong at increasing temporal and spatial scales moving
away from any particular point of analysis. Noises are usually treated as
random and uncorrelated over time; when we see strong correlations
(space/time patterns) in noises, we seek to explain and model these by (un­
certain) functional relationships. As we gain greater experience, sources of
structural surprises become familiar and can also be modeled through func­
tional relationships. All this is just another way of saying that the "natural
systems" seen by managers are not really natural at all, but rather are the
result of arbitrary problem boundings and selections of state variables.

Another way of categorizing situations involving uncertainty is to
break up the sequence of decisions that are taken during resource develop­
ment into phases based on the availability of management experience. The
earliest phase we might call the preadaptive phase, in the sense that no direct
data on the system's response is available so decisions must be based on ear­
lier experience in "similar" situations. In this phase many decision options
may appear to be equally advantageous (or risky), and practically anything
that is done will yield valuable information for future decision makers. The
key policy issue in this preadaptive phase IS how much to invest in monitor­
ing systems that will give a consistent picture of responses during the
development.

The next or adaptive phase begins when there is enough experience at
hand to begin sorting out clear hypotheses (alternative models) about
responses to further action. The key policy issue becomes whether to act
informatively with respect to hypotheses that imply opportunities for
improved performance by moving outside the range of experience available
(a good example is in Figure 1.1; should spawning stocks be increased to test
whether larger recruitments would result?).

The final phase, which may never be attained in practice, might best
be called the certainty-equivalent phase. In this phase the system's responses
and limits have been well tested through experience, so that there is no prob­
able advantage in acting any other way than suggested by the best available
models. I personally have seen only one resource that I felt has entered this
phase, through a very long and painful pattern of development, collapse, and
rebuilding. This is the fishery for Pacific herring off the British Columbia
coast. In this case a reduction fishery built up and slowly depleted a rich
complex of substocks until alarming signs of recruitment failure were evi­
dent. The fishery was then shut down, and many substocks recovered
rapidly. A second fishery for roe (a prized delicacy in Japan) then
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developed, and this fishery, which takes place near spawning areas, has been
closely regulated to allow adequate spawning stocks in most locations. There
are still major uncertainties about the sustainability of harvests taken from
spawning areas and about how to regulate the various local fisheries
efficiently and safely, but there is at least consensus on the basic limits and
potential for further development. Only further experience will resolve the
sustainabiJity issue, and there is little point in either inviting a repeat of the
early disasters or managing so conservatively as to avoid all risk.

Again it should be obvious that there is no really clear distinction
between the preadaptive, adaptive, and certainty-equivalent phases of
resource development. In particular, there is a large element of luck
involved in whether early development decisions result in a solid basis for
more thoughtful and experimental progress later. There is a large element
of creativity (which also involves luck) in the imaginative discovery of
untested opportunities and ways to pursue them with reasonable safety.
And, finally, there is the danger that strong aversion to further change, or
simple complacency, will result too early in the adoption of stabilizing poli­
cies that prevent further informative variation. In a sense, it would be rea­
sonable to say that the major role of formal decision analysis all along the
way is to help maintain an open and balanced picture of what has been
learned versus what remains open to question.

Judging the Credibility of Alternative Models

For the remainder of this chapter we will examine what can be done
about assigning odds to alternative models, in situations where analysis has
proceeded to the point where various alternatives have been clearly defined.
To simplify the discussion a bit, let us concentrate on what can be said at a
single decision point in time, on the basis of information available at that
time; in Chapter 7 we will turn to the question of how to represent (model)
the propagation of uncertainties dynamically over time in relation to
management policies viewed as decision sequences.

At any decision point, the analyst has three ingredients to use as the
basis for inference:

(1) a set of models M, where each element m, of this set represents one
specific hypothesis about how the managed system responds;

(2) a set of "prior probabilities· PO(mi) that would be placed on the alter­
native models in the absence of any specific data on the system under
consideration, on the basis of previous experience with similar sys­
tems;
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(6.1b)

(3) a set of historical observations Yon the system under consideration,
where each measurement Yj is drawn from some larger (and usually
ill-defined) "database" about the system.

We seek to somehow combine these ingredients so as to make a stronger
statement about the posterior probabilities Pr(m;) that should be placed at
decision point t on each alternative hypothesis mi, using Y as well as Po.
Keep in mind that we wish to explicitly avoid the old business of finding a
single best model or estimator m", though it would be natural to define m"
as that hypothesis (if it is unique) with the maximum P,. In the following
discussion I shall use the terms "hypothesis" and "model" interchangeably;
instead of thinking of alternative models in terms of alternative equations,
think of each alternative model mi as being any quantitatively distinct rule
for prediction. Then, for example, model ml might be a logistic equation

N,+! = 1.2 N, - 0.1 N" model m2 might be another logistic equation N'+I
= 1.3 N r - 0.1 N" while model m, might be the equation N r+! = 1.3 NJ(l
+ NJI0), and so forth.

Readers with some statistical background will recognize that I have
just laid out the basic problem of Bayesian inference. In our context, Bayes'
theorem implies that, in principle, there is a well defined solution to the
problem; we should compute P,(mi) for each model m; as

Pr(m;) = J...L(Y!m;)Po(m;) (6.1a)
a

where L(Ylm;) is the likelihood (probability) of obtaining Y given that m; is
the correct model. and a is the total probability of getting the data Y (a is
simply the sum or integral of the products L(Ylm;)Po(mi) across all models
i). Each of the L . Po products can be viewed as a measure of "relative cred­
ibility" for one model. If we call L( Y Imi) . P(m;) just Tj , then (6.1a) can
be written more simply as

T j

P,(mi) = -N--

E Tj
j=1

Most modern statistics texts have some discussion about Bayes' theorem and
equation (6.1a), usually in the context where the model equation structure is
fixed and the mj are generated by varying some unknown parameters con­
tinuously [so the sum in (6.1b) is replaced by an integral]. They note that in
practice it is usually not a simple matter to compute or represent Pr(m;)
across large sets M, and warn that there are some basic theoretical
difficulties to be aware of as well. An obvious warning is that it is dangerous
to use equation (6.1a) as the basis for "scientific" inference, since the scien­
tist will almost inevitably inject personal biases through arbitrary choices of
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PO(mi) or by restricting the set M. The decision theorist's answer to this
warning is that scientific inference should not be confused with decision
making, which inevitably involves some subjective weighting of possible out­
comes [Po(m;) present and used even if not made explicit], even when the
decision maker tries to be scientifically objective. More vociferous advocates
of Bayesian inference would go further, and argue that even scientists do not
(and cannot) avoid various subjective weighting schemes. For our pur­
poses, it is enough to assert that Bayes' theorem provides the logical
machinery for including prior information in assessments where appropriate
or necessary. Another, perhaps more serious warning, is that the likelihood
of Y given any model cannot be assessed without making some strong
assumptions about probability distributions of observed outcomes. We shall
discuss this difficulty in more detail below.

There is essentially no way to avoid some version of equation (6.1a) if
we wish to assign odds to alternative models based on a data set Y. Argu­
ments about prior probability distributions can be avoided by setting all the
Po(m;) equal (so-called "uniform prior" distribution), and it can usually be
shown that the P,(mi) are insensitive to details about the assumed data distri­
bution, L( Y Im;). But it remains necessary to undertake a series of analyti­
cal steps that can be quite difficult but exciting. The following subsections
outline these steps in more detail.

Establishing the data set Y

The data set Y for a problem will consist of a collection of measure­
ments of variables such as stock sizes, catches, and harvesting effort. It is
usually convenient to partition this set into time series of "input" or control
variables, such as harvesting effort, and "output" or state response indices,
such as catches or catches per effort. The set may contain detailed statistics,
such as age composition of catches, and also aggregates or averages of these.
Generally, in what follows, we will assume that at least the detailed observa­
tions are statistically independent of one another, in the sense that they are
gathered as independent measurements. Nonindependence between two
statistics usually arises when they are both computed from the same detailed
measurements. So, for example, the statistic Y, = Z, - Z,_I, where Z is a
more primitive measurement, is obviously not independent of Y,_I, since
both depend on the measurement Z'_I.

It would be foolish to make any pretense that Y comprises all the data
that have ever been gathered about a system of interest, or even that it
represents a complete and unbiased statistical summary of available informa­
tion. Instead, we must take Y to be an arbitrary set of statistics that has
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been assembled for dealing with whatever decision problem is at hand from
some larger "database." This is an important point: it is seldom practical or
necessary to assemble all of the raw data available about a managed system,
just as it is impossible to develop any complete model of that system. If you
doubt this point, recall the earlier discussion (Chapters 2 and 4) about how
managed systems are defined by placing arbitrary boundaries with respect to
space, time, and disciplines of concern. Right from the start, data-gathering
programs reflect these arbitrary boundaries: we cannot even decide what
data to collect without some sort of vague model about what processes or
phenomena are important. Various practical constraints, such as funding for
sampling and lack of understanding about sampling design and procedures,
take a further toll on the set of potentially useful measurements.

One requirement that must be placed on Y is that it does not
represent a deliberate selection of data (from some larger set) intended to
support a particular model or hypothesis. This seems like an obvious
requirement, but it is regularly and blatantly violated by resource analysts;
the literature is full of examples where data have been carefully selected or
massaged (i.e., by running averages) so as to show good fits to particular
models.

In practice, the set Y need not be considered as fixed and immutable
at any particular decision point. Preliminary analysis may show that a first
set, say Y I , selected from historical records is inadequate to say much about
some models that have been proposed. By examining why this "failure" has
occurred, it may become apparent that other existing data should be
included in an extended set Y 2 , and so forth. The "final" analysis may be
based on a set Y that is an aggregation or selection from YI , Y 2 , provided
that Y does not deliberately support any particular model.

Let me inject a final word of caution about Y. Analysts are human
beings, and most of us find it impossible to be completely objective about
various models. Especially when we have been involved in developing
them, or have worked hard to understand them from papers or university
lectures, we tend to develop affection for particular formulations. Further,
we may unconsciously feel that professional reputation or credibility depends
on success in defending one formulation or other. These psychological con­
siderations will almost inevitably creep into the necessarily intuitive step of
sifting out firm sets Y from the databases available for most resources.
Perhaps the only practical means to assure greater objectivity in this inter­
play between models and data is by asking several analysts who likely have
different biases to work independently on the same database. Standard
scientific review procedures are a step in this direction, but they are seldom
structured so as to result in a synthesis that objectively embraces uncertain­
ties.
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We noted in Chapter 4 that dynamic models for resource systems
should be thought of as having two basic components: a "state dynamics"
submodel for changes in the actual system state, and an "observation" sub­
model for how observable quantities are related to the actual states. This
distinction becomes critical when we wish to determine the credibility of a
model in relation to some data set Y. One general way to represent most
state dynamics/observation models mj is by partly dropping the distinction
between variables and parameters, so all uncertain quantities are placed in a
vector ](. The models are then written as

State: X,+I = [(Xr, Ur) + Wr (6.2)

Observation: y, =h(xr) + Vr

where the Ur are controls, the Wr are random "process errors," and the v, are
random "measurement errors." In this formulation, we represent parame­
ters as those x's such that [ = Xr, i.e., X'+l = x,. "Parameters" that may
drift or move in unpredictable ways over time are modeled as random walk
processes by allowing X,+I = x, + W" where the variance of Wr is chosen to
reflect prior belief about how fast the parameter x may change. The error
terms need not be assumed additive, though this considerably simplifies
some calculations such as likelihood functions. In this representation, Y is
the set of observed u, and y, values.

It is essential that each model mi specify probability distributions
(usually as density functions) for the w, and Yr. If these variables are con­
tinuous, the usual assumption is that wand v are normally distributed with
mean 0 and covariance matrices E.. and E.; a simple justification is that the
normal distribution minimizes the information content (in a
Shannon-Weiner sense) assumed about the distribution (Bard, 1974).
Covariance matrices E .. and E. can be considered unknown along with
some or all of the x's, but, as we shall see below, this can greatly complicate
the analysis. A reasonable starting point is to assume that E .. and E. are
known in advance, and to proceed by assigning conservatively large values
to them (so that none of the models mi is assumed to hold very precisely).

The set of alternative models may be generated by varying the uncer­
tain initial states/parameters xo, by changing the state and observation func­
tions [ and h, and by combinations of these. Thus, the set M can contain
infinitely many elements, but this can create serious practical difficulties in
computing Q and p,(m,) in equation (6.1a). The computation is simplified
in some special cases where P, is a known and simple probability density
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(i.e., P, is a normal distribution when Po and the likelihood function are nor­
mal). While any collection of varying x's, ['s, and h's can, in principle, be
used to form the set M, the set should, in practice, include only those mi
which

(1) make distinctive predictions over some range of control or state vari­
able values, and

(2) if correct, imply different optimal management policies.

So, for example, in the analysis of alternative stock-recruitment models (see
Figure 1.1), it is not worthwhile to include alternative functions f that
behave in the same way over the observed range of data, and also make
similar predictions outside that range. Likewise, obviously nonidentifiable
(redundant) parameters should be omitted from the formulations. If, say, x
is a population size of older animals that is measured annually, one can of
course describe the dynamics of x as X,+I = S,SwX" where s, and Sw are sum­
mer and winter survival rates. But the data on x will allow identification of
only a single, lumped parameter (j = s, Sw since there are infinitely many s,
and Sw values that will give the same prediction of the x, time series; in
Bayesian terms, there are infinitely many combinations s, and Sw that will
have the same posterior density P,(s" sw), since they all predict the data
equally well and thus have equal likelihood L(x lSI' sw). Examples of
"lumped" parameters appropriate for Bayesian analysis were presented in
the previous chapter, where they were called R 1 and R 2 •

It is often not obvious whether several alternative functions f and h
will, in fact, give essentially the same predictions, and which unknown
parameters can be lumped without changing the predictions. Thus, the
safest tactic is to start with a bit of overkill, by including more alternatives
than really seem necessary. Then later examine those alternatives that turn
out to have equal P, and retain from this set only a representative subset
whose members imply different best policy choices.

The key point to keep in mind while constructing the model set M is
that the objective is to identify alternative hypotheses that matter in terms of
policy choice. It is easy to "waste" a great deal of time comparing models
whose differences (for example, in detail of representation) are certainly
scientifically interesting, but that all imply practically the same best manage­
ment strategy. To avoid this, it is important to keep iterating back and forth
between the statistical analysis and the broader decision analysis for which
the P,(mi) are only one input. To be understandable and therefore useful,
the final decision table (see first section) should be as simple as possible; it
should contain no more "states of nature" than necessary.



170 Adaptive Management ofRenewable Resources

Establiahing prior probabilities Po(m;)

According to Bayesian decision theorists, Pt(mi) is to be interpreted as
a measure of relative credibility for the outcome (model) mi, rather than as a
"frequency of occurrence" in the sense of classical probability theory. If so,
there is nothing wrong with injecting purely subjective judgments of credi­
bility, in the form of Po(m;), into the calculation of Pt.

Through many hard experiences in situations like AEA workshops, I
have come to distrust strongly the subjective judgments made by most
resource analysts (including myself). Too often they are based not on real
physical constraints (i.e., survivals must be less tban 1.0) or past experience
with other systems, but instead on accumulated folklore (wishful thinking)
and earlier application of inappropriate estimation methods to Y itself.
Assignment of Po based on the data themselves is, of course, a nasty version
of circular reasoning. In view of these difficulties, I advise always starting
with a uniform prior (all P's equal) and concentrate on making the range of
models included in the analysis wide enough to include some alternatives
that may initially seem physically infeasible. Then apparent inconsistencies,
such as high probabilities assigned to survival rates greater than 1.0, may be
revealed and help to identify errors in model structure and biases due to
difficulties with the data.

For some ecological parameters it is possible to construct reasonable
prior distributions on the basis of a large experience with similar systems.
This is the case, for example, with stock-recruitment parameters for Pacific
salmon, where many populations have been studied for several decades.
Mortality rates for most fish can at least be bounded from simple data on
growth, using the extensive summaries by Pauly (1979). There are clear
bounds for reproduction parameters in most mammal species. However,
again let me emphasize that such bounds must be used with great caution;
animals can perform in surprising ways in populations disturbed through
harvesting, and the data may contain effects of hidden (unmodeled)
processes, such as immigration from outside the system defined for analysis.

In analyses of how uncertainties propagate over time, it is often more
convenient to assume a normal rather than a uniform prior distribution for
uncertain parameters. There is no practical difference between these
assumptions provided the variances for the normal prior distributions are
made very large, except that known physical bounds must be ignored.
When computed posterior distributions place high probabilities on values
outside such bounds, the analyst's response, as noted above, should be to
reexamine the model structures and data used (rather than worrying about
the very formidable computational difficulties of estimating P, for a mixture
of normal and bounded uniform distributions).
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In principle, the likelihood function for a data set Y given a particular
model (all parameters fixed) is simple enough to define; it is the probability
of obtaining Y given that the model is correct. If all the elements Yi of Yare
independent of one another, and if the probability of getting YJ given mj is
dj(Yj Imi)' then the likelihood is just the product of the probabilities of the
individual "events" Yj:

L(Ylmi) =IT dj(Yjlm;)
j=1

(6.3)

if there are n observations. Note that there is no presumption here that all
the observations are drawn from the same distribution d, or even that the
observations have the same form of distribution. In this section, we shall
assume that Y has been constructed so that all the Yj are independent of one
another (see above), so that equation (6.3) can be used as a basic building
block for L. The problem then becomes to define the set of distributions
dj(Yj Imj) for the individual observations.

Generally, it is easier to describe uncertainties about dynamic
behavior and observations for a given model m; in terms of probability dis­
tributions for deviations like w, and v. in equation (6.2), rather than directly
in terms of distributions for Yj. This means that to find the distributions
diYJ Im;), we must make a change of variables from the assumed distribu­
tions for variables wand v. This can be tricky, especially when the devia­
tions are not assumed to be additive. In general, if the model is written as Y

= h(x, z), where z is a random variable that we assume to be distributed as
p(z) =g(z) dz, then in order to find P(y) we must be able to solve for z as a
function h- I of Y so as to give P(y) = g[h-l(y)]I(<Jy/<Jz)l. For the special
case Y = h(x) + z, this rule reduces to P(y) = g[y - h(x)] dy. In the fol­
lowing brief discussion, we will examine only the additive deviations case,
i.e., models in the form of equations (6.2).

In Chapter 5 we noted that parameter estimation for dynamic models
should be done differently depending on whether we assume only process
errors [1: v = 0 in equation (6.2)] or only observation errors (1: .. = 0). The
mixed, or "errors-in-variables," situation is considerably more difficult to
handle, and we must usually assume that 1: v and/or 1: .. are known a priori
in order for unique estimates to exist at all. The construction of a likelihood
function is most easily discussed in terms of these three situations.

(1) Assuming only process deviations w,. In this situation we assume
that the observations YJ are exactly equal to some functions hj(x,) of states x,
and that we know the probability distributions d,(w,) a priori. Equation
(6.2) then reduces to
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X,+I = [(x" u,) + w,

y, =h(x,)
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Two cases are possible, depending on whether or not we can uniquely
"reconstruct" the states Je, by solving h for x, given y [x, = h-I(y,)]. For

example, if the state x, is a scalar population size and y, is an abundance
index such that y, = qx" then for any particular hypothesis about q (i.e.,
given q) we can reconstruct X, = y,/q. Here, h-1 = (1/q) y,.

In the case where x, can be uniquely reconstructed from y" we first
do so and then substitute the estimates x, back into equation (6.2) so as to
solve for w, = X'+I - [(x" u,). The likelihood for the data set is then simply
the product

T-I

II d,(w,)J,
r=1

if there are T years' data. Here J, is the absolute value of the determinant
of the matrix {iJht/iJy;} evaluated at time t (a way of defining "uniquely
reconstructible" is that this determinant be different from zero).

If x, cannot be uniquely reconstructed from Y, given the parameters
of h, the likelihood function for Y becomes much more difficult to calculate
since Y, given x, does not uniquely determine the set of deviations w,. To
proceed, we must in essence first solve a "partial realization problem" (Kal­
man et aI., 1969) of finding the set of all values x,' that are consistent with
Y. We then find the w,' associated with each feasible combination (X,'-l, x,'),
and integrate probabilities of w' across all combinations to find the marginal
distribution for each y,. I am not aware of any practical example involving
nonlinear [ and h functions where these formidable steps have been accom­
plished fully.

(2) Assuming only observation deviations V,. This is the situation
usually treated in textbook discussions on fitting dynamic models to time
series data. Equation (6.2) reduces to

X,+I = [(x" u,)

y'+1 = h(x,) + v,

Notice that since the state dynamics are assumed to be deterministic, every
predicted x, can be computed if we are willing to assign a value to XQ (the
initial state). It must either be known, or included among the set of un­
knowns that are varied to generate the model set M. Then the likelihood
computation is quite easy. We simply simulate the trajectory x, for mi and
calculate the predicted observations h(x,). The deviations v, for which we
assume probability distributions, say d,( v,), are calculated as v, = y, - h(x,).

Ii



Embracing Uncertainty

The likelihood of Y is just
T

L(ylm;) = II d,(v,)
1=1
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If the reader is confused at this point, recall that in order to specify m;, we
must specify Xo exacdy, and the values (Ur, y,) are part of the set Y. Without
all of these specifications, we cannot do a simulation and compute the v,

values from which we compute L(Ylmi).

(3) Assuming mixed process and observation errors w, and v,. In this
situation, each model mj is specified pardy by a particular parameter combi­
nation x in equation (6.2), and we must in addition assign some prior prob­

ability distribution, say mo(xo) to the initial system state. We begin by not­
ing that each observation y, is the sum of two independent random variables:
(1) h(x,) which is random because of W" and (2) v,. Thus, if we denote the
density function for x, as mr(x,) and the density function for v, as dr(vr), and
note that v, = yr - h(x,), it is easy enough to write the marginal distribution
for yr, by integrating across the set X r of possible values of x,:

P(y,) = f mr(x,) d[Yr - h(x,)] dX,
x,

(6.4a)

To solve for such elements of the likelihood function (L = IT, Pr), we must
also find m,(x,). This can be done recursively given the initial density
mo(xo), which is analogous to assuming Xo known in the observation error
case, as

mr(xr) = f m'-I(xr-l)
X'_I

(6.4b)

X g[Xt - F(x,_.. U'_I)] dX,-,

where g is the density function of w, = x. - F(xr-l' Ur-I). Equations (6.4a,b)
are obviously not simple to solve for most nonlinear functions F and h; in
general, numerical integration is required, and the density function mr(x.)
must be approximated either numerically on a grid (impractical if x has
many dimensions) or by some simple density function.

To avoid the integrations in (6.4a,b) it is tempting to use the approxi­
mation

P,(Yt) "" d[Yr - h(x,)]

where the estimate xr = f'(Xr-I' Ur-I) is computed using a model f'that
accounts for the average effects of process errors. In other words, use the
pure observation error procedure [situation (2) above], but with a modified
deterministic model f'. [As we shall see by example in the next section, it is
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not good to use x, = [(X'-I) when process errors are actually present.] In
principle, the integration in equation (6.4a) can always be replaced exactly
by g[y, - h(x,')] for some value x'; the question is whether x,' can be com­

puted as some "nominal trajectory" or state reconstruction X, ... , XT from
the stochastic dynamics [(x) + w. There are as yet no clean theoretical
answers to this question, and little numerical experience using obvious state
estimation procedures such as the extended Kalman filter (see Chapter 7) to
obtain XT.

The one thing we know for sure about mixed-error situations involv­

ing dynamic production models is that you should not try to approximate the
likelihood function by assuming only process errors [assumption (1) above].
The result can be a badly biased posterior distribution P,({J) , favoring

parameter values {J that imply the stock is much more productive at low
stock sizes than it actually is (see Chapter 4; Uhler, 1979; Walters and

Ludwig, 1981). Most of the fisheries literature on estimation methods for
production models makes exactly this mistake, by assuming that abundance
indices, such as catches per effort, can be substituted directly back into the
production models, using (stock) = h- I (index) = y,/q. In the next section
we shall see just how bad the biases can be, using a very simple example.

Computing the posterior distribution P.(mi)

Unless you can find an exceptionally patient and clever mathemati­
cian to help with the calculus required to find analytical expressions for CI.

and L(Ylm.) in equation (6.1a), the practical approach to finding P,(mi) for
nonlinear [ and h models involves using the deceptively simple formula

(6.1b). For each model mi, you just calculate T; = L(Ylmi)Po(mi), then
add these up and divide each by the total. But we noted in the last subsec­
tion that the computation of each L(Y Imi) involves at least one simulation of
the period of historical record, and some side calculations involving the prob­
ability density functions of the deviations. Thus, it is not practical to com­
pute L( YImi) for a very large number of model equations, or very many
parameter values for a single-equation system. When the models m, are
generated by changing values of some parameter vector {J, there are
difficulties in even visualizing how P, varies with the parameter values if

there are more than two or three uncertain parameters. We address some
approaches to dealing with complex (many-parameter/many-equation)
models in the next section; for now, let us examine what can be done by
"brute force" with simple models, using logistic population growth as an

example.
Let us suppose that nature has generated a population dynamics that

follows the equation XI+I = XI + 0.1 x, - 0.1 X,2 - U , + W" where x, is
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population size (xo = 1), U , is a time-varying harvest (assumed known
exactly), and w, is a normally distributed environmental effect (process error)
with mean zero and variance O'~. Let us assume that this population has
been estimated each year t = 1, ... , T by a procedure that gives yl = XI +
VI' where v, is a normally distributed observation error with mean zero and
variance O'~. Let me emphasize that situations this simple are uncommon at
best, but we need to have a known and transparent starting point against
which to see what can go wrong in more realistic cases.

Now suppose we are confronted with a data set Y = {Ul, ... , UT,

yt, ... , YT} from this population, and that the Almighty has told us the
correct model structure ([ = x, + {3. XI -(32 x,2 - U I + W" h = XI + v,), but
not the parameters {3t, {32, 0'., and 0'.,. Suppose we do know that {31 and {32
should lie between 0 and 0.3, so the set of models mi should involve combi­
nations ({31, (32) from this range. We might then take M to be all combina­
tions of ({3., (32) values between 0 and 0.3, with each parameter varying in
steps of 0.025 ({31 = 0, 0.025, 0.05, etc.; (32 = 0,0.025,0.05, etc.). Then
we can easily visualize P,({31, (321 Y) as the vertical dimension in a 3-D plot
with {3, and {32 as the horizontal axes. Likelihood functions for the process
and measurement error extreme situations are easily seen to be of the form

(6.5)

where K is the same for all ({31, (32) for both situations, and T = E , E,2. For

the process error only assumption, the prediction errors E, are calculated as

E, = Y'+l - YI - {3. y, + {32 Yl2 + U,

t=1, ... ,T-1

(i.e., E, is the error in predicting Y,+I using (3 and Y,), For the measurement
error only assumption, E, = y, - ~" where ~o = Xo = 1.0 and x, = X,-t +
{31 X,-l - {32l-, - u, (i.e., the simulated population sequence). If we
assume a uniform prior distribution for the {3's over 0-0.3, the posterior
probabilities are given by calculating L using equation (6.5) at each ({3., (32)
grid point, summing the L's across grid points, and then dividing each L by
the sum over all grid points tested.

Figure 6.1 shows some numerical results obtained with an Apple
microcomputer using a harvest sequence U, that increased for a few steps to
drive x, down to around 0.5, then were chosen so as to hold X, near 0.5.
P lO({31 Y) forms a long hill, and I roughly sketched the contours of this hill
for several situations. Figure 6.1 is intended to show what you would con­
clude about PI by assuming either all process or all measurement error,
when the data are in fact generated from other assumptions. The first thing
to notice is that PI looks like a bivariate normal distribution in all cases, with
a high correlation between the two "random variables" {3. and {32. Also
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Figure 6.1. Contours of equal posterior probability for various parameter combi­
nations {3 [, {32 in a logistic model, using 10 years' simulated data. Actual error pat­
tern in data shown on left; assumed error (in probability calculation) shown above
the panels. 0 marks the true parameter values used to generate the data: • marks
the parameter estimate with highest posterior quality.

notice that the distributions do not peak up sharply at a single point after 10

years, but instead just form a narrower ridge. This is because harvesting
holds the population almost steady around 0.5 after year 5, so that, roughly

speaking, only the linear combination 0.5 = 0.5 + {3, 0.5 - {320.52 - U l +
W, is observed after this time; the ridge of P, values shows combinations of {3.
and {32 that satisfy this "constraint equation." Notice that the ridge is

correctly placed for all combinations of assumed and actual error structure.

Finally, notice that the distributions have peaks (maximum likelihood esti­

mates of {3" {32) that are badly biased upward when the wrong error structure
is assumed, even though the deviation variances used were quite small by
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ecological standards. That is a major lesson to be learned from this example:
be careful to test alternative assumptions about error structure when attempt­
ing to measure the relative credibility of alternative hypotheses.

Compressed Representations of Uncertainty

As the logistic growth example of the previous section demonstrates,
it is not a trivial matter to evaluate posterior probability distributions even
for parameters of simple models. This section discusses possible ways to get
compressed, understandable representations of uncertainty in situations
where the alternative models are complex and/or have too many unknown
parameters to allow brute force representation with a grid of parameter com­
binations. The approach suggested here involves three steps. First, find an
approximate representation of P, as a function of the unknown parameters p,
generally as a normal distribution centered on the maximum likelihood (or
maximum a posteriori density) estimates of p. Second, use the covariance
matrix of this distribution to guide the construction of a reduced parameter
set with elements that are not well determined by Y. Third, from the
models defined by this reduced parameter set, extract a few representative
examples that highlight qualitative and quantitative differences in predic­
tions.

As a preview to these steps, consider Figure 6.1. Here it is obvious
that P,((31, (32) can be well approximated by a normal distribution, even when
only a few observations are available. Further, we could find the mean and
approximate covariance matrix of this distribution quickly by standard esti­
mation methods, without searching the entire grid. The covariance matrix
would clearly show the {J., {J2 correlation (high probability ridge) and our
second step would be to express one or another parameter as a function of
the other. Ridges of high probability in this example define a straight line,
{J2 = k 1 + k 2{Jl; treating {Jl as the remaining unknown, the state dynamic
model becomes x,+! =x, + {J. x, - (k 1 + k2(Jl) x~ - u, + w" which has only
one unknown ({Jl) provided we accept that k 1 and k 2 are well defined by the
available data Y. Finally, from this reduced model we select reasonably
probable cases, such as {Jl = 0.05, {JI = 0.1, (J, = 0.2 that are consistent
with Y but imply quite different sustainable harvest rates.

Approximation of the a pcmeriori deoaity function

Suppose that instead of calculating P,(P Iy) at many P points, we
instead just try to find the maximum value po or at least some point along
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the ridge of highest probability. This is a standard problem in statistical esti­
mation, and various techniques to make the search for P' more efficient are
well reviewed in Bard (1974). Usually it is easiest to search for the max­
imum ofln PI. The maximum of PI occurs at the maximum likelihood esti­
mates ~ if we assume a uniform prior Po(P). Considering that we will be
using the estimation results to help in model compression rather than to
define a single "best" model, note that we need not be concerned about
whether the final estimates ~ are even unique; to find a ridge of equally
probable combinations is enough to help guide the search for a compressed
model structure.

Provided the observation set Y is not too small (5-10 observations per
state variable xr), In PI will generally behave as a quadratic function of P
near any peak or ridge point~. This means that Pr will be shaped like a nor­
mal distribution near ~, with covariance matrix Ell = -(H')-I, where Hij =
iJrp/iJPi iJPj and rp = - In [P,(t3)J. For details of this argument and approxi­
mate methods for calculating Ell, see Bard (1974) and Appendix SA. The
first things to look for in Ell are strong correlations "Kij, where "Kij =
EijNE ii Eli' High correlations (> 0.9) indicate that points along linear
combinations Pi = k l + k 2 Pj have nearly equal probability P,. It is not par­
ticularly critical that Ell be calculated accurately, since the informative corre­
lations "Kij stand out even in the crudest approximations; the so-called
"asymptotic covariance matrix" estimated from iJy,/iJPi (see Appendix SA) is
adequate for the purpose.

Given estimates Sand ES' it is a good idea to calculate L( YIp) Po(P)
for a variety of t3 values near ~ (preferably on a grid), to confirm the
existence and narrowness of P, ridges along the dimensions Pi and Pj that
show high correlations "Kij' Here it is especially valuable to have an interac­
tive computer program that calculates L . Po for any t3 you input. Such pro­
grams help you determine quickly whether the search for ~ has been success­
ful, and whether the Ell being used is really giving a good approximation to
the shape of Pro

Identification of reduced parameter lets

Here we seek to reduce the dimension of P by finding combinations
(functions) of parameter values that are well determined by the existing data
Y. One formal procedure that can be applied here is principal components
analysis of Ell' The principal components of Ell are the new parameters "y

defined by the transformation "y = DP, where D is the matrix of normalized
eigenvectors of Ell. The parameters "Yare statistically uncorrelated and have
variances CT~ = "Ki, where 'It; is the ith eigenvalue of Ell (see Bard, 1974, p
183). In seeking reduced parameter sets, we seek those principal
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components "Ii with lowest variance ri. These components define linear
equations

"Ii = E Dij {3j
j

from which we can solve for some of the {3's in terms of others, leaving only
those others as generators of alternative hypotheses that are consistent with
Y. When the data define a ridge of equally probable combinations {3i, {3j,
standard parameter estimation procedures fail and will not provide estimates
of E~. These procedures work by approximating Ei1

, usually (as noted in

Appendix SA) by:

E~I =J... t [apr) [a
p
.)

IJ S7 1=1 a{3i a{3j

or related information measures. In such cases, the required 'tri can still be
found, since 'trj = 1Ai, where hi is the ith eigenvalue of E~-I; matrix inver­
sion fails when some hi = 0, implying that combination "Ii has infinite vari­
ance (points (3 defined by such "Ii are points along the ridge).

However, principal components analysis as a mechanical procedure
does not give much insight about why certain parameter combinations are
well determined by the existing data Y, nor is the linear transformation "I =
D{3 always an appropriate functional form for estimating some parameters
from others. Thus, the principal components, along with parameter correla­
tions 'trij, should be used at first only as a guide in looking back at the model
structure and data to see which functions of the parameters have actually
been well defined by experience. There are three common conditions to
look for as starting points in this examination:

(1) Observations giving only a narrow range of states. Such situa­
tions are typical in the early development of resources, or where there has
been a strong policy to stabilize the system. In this case Y defines only the
average response, i.e., mean harvest Il in the logistic model of the previous
section, as a function of the average state x. Then we have "seen" only x =
f(x, Ii, (3), P = h(x, (3), and it is obvious how to solve for some of the {3's
given others while taking p, Ii as determined exactly (see example in previ­
ous section).

(2) Masking of a relationship due to errors-in-variables effects. A
good example of this condition arises in the estimation of natural and har­
vesting mortality rates from age composition data. When gathered over
many years, such data permit accurate assessment of the average total mor­
tality rate i, and the average harvesting effort E. It is usually assumed (see
Paloheimo, 1980) that z, = M + qEr , where M is a natural mortality rate
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parameter and q is the "catchability" parameter (see Chapter 4). But the
effective effort E, is usually measured with considerable error (equivalently,
q, is time-varying around an average q to be determined), and this destroys
the z versus E correlation. The data then determine only the linear combi­
nation i = M + qE without large bias. One can calculate q given M [q =
(1 - M)/E, or by cohort analysis], and M becomes the hypothesis­
generating parameter.

(3) System remaining near equilibrium with respect to inputs. Some­
times a wide range of states is sampled, but this is done by varying input
controls (i.e., harvest rates) slowly so that the state is always near a time­
varying equilibrium set by the controls. This condition has been actively
promoted by analysts seeking to estimate parameters of surplus production
models. For example, suppose the harvest is modeled as H, = qE, X" where
q is the catchability parameter, E is effort, and x, is stock size. Suppose the
dynamics of X are modeled by x,+( = x, + R I x, - R 2 X,2 - H,. Then, pro­
vided E, changes slowly, the model will predict x,+( =:: x, and the analyst will
see only H = R 1 X - R 2 x2 = qEx. If y, = H, IE, = qx, is taken as an
abundance index, we will see only the relationship E = (R,/q) - (Rdq2)y,
which can be used to establish equilibrium yields in relation to E, but not
dynamic transients. If the parameters 01 = R1/q and 02 = Rdq2 are deter­
mined precisely, then we may pick q as the hypothesis-generating unknown
(i.e., total stock size unknown), while assuming that R 1 = qo. and R 2 =
q202 .

Let us generalize a little from these conditions and examples. For any
data set Y, we can always compute a smaller set of statistics Z (mean values,
covariances, etc.) that are well determined if Y is reasonably large. The
model functions f and h predict how the elements of Z should vary as a
function of the parameters (3. Thus Z, along with f and h, establish a series
of constraints on the values of (3 that are consistent with Y. When Z does
not imply (3 uniquely (the usual case), the constraints are used to solve for
some (3's in terms of a reduced set 0 of hypothesis-generating unknowns.
While the choice of 0 is in principle arbitrary, there are usually "natural"
choices (like M and q in the examples above) that simplify the algebra and
make the results simpler to explain to scientists and policymakers.

Using singular value decomposition to find reduced
parameter sets

The main reason for introducing principal components analysis in the
previous section is that it is a familiar statistical tool to most biologists. A
preferable procedure for calculating which combinations of parameter values
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13 are equally consistent with the data set Y is to find the "singular value
decomposition" of the Jacobian matrix X, where X;j = a9;/al3j evaluated at
the "best" parameter estimate ~ (which may be a point on a ridge of equally
likely estimates). The singular value decomposition breaks X into three
matrices

X = US V'

where U and V are orthogonal (i.e., V V' = I) and S is the diagonal
matrix of "singular values" ai (S;; =a;). Efficient routines for computing U,
S, and V are generally available; for small problems « 10 parameters) they
do not take much more effort to compute than the X' X and (X' X)-I
matrices needed in parameter estimation.

To find equally likely parameter combinations, we first form the
orthogonal (uncorrelated) deviations z = V'b, where b; = l3i - ~i.

Confidence limits for the Z; are computed as Zi ± ."fd/a;, where d =
ns2 F",m-n [n = number of parameters, m = number of observations, F" =
Fisher's F-statistic for probability level ex, 52 = E(y - 9)2/(m - n) is the
residual error variance]. For two-parameter problems, confidence regions
can be plotted by rotating an angle e from 0 to 211' and calculating ZI =
."fd/al cos e, Z2 = ."fd/a2 sin e at each angle. Note that a zero singular
value (a; = 0) implies that Z; can be made arbitrarily large without leaving
the confidence region; i.e., the data do not set any limits at all on Zi for
which a; = O. Next, we transform back to find b = fJ - 8, by the matrix
operation b = V z. For two-parameter problems, finding V z means rotat­
ing the confidence ellipse. A graphical example of the confidence ellipse is
shown in Figure 6.2.

Generally, we can write the deviations b as

where V; is the jth column of the V matrix. For any Z; that is very poorly
determined (a; zero or very small), we can increase its value greatly (and
thus generate b = Zi V;) without leaving the confidence region for 13. Thus,
a practical prescription is to (1) find the smallest a;, and (2) generate param­
eter combinations fJ that are equally (or almost equally) likely as fJ = 8 +
Zi Vi by increasing Z;.

When singular value decomposition is used in parameter estimation,
a simple parameter correction scheme for nonlinear iteration j is given by

where 0 :s }.. :s 1 is a step size correction and V, S', U', and the deviations
9 - yare calculated using ~(j-I). S· is a diagonal matrix with Sir = l/a; if

a; =1= 0, and Sir = 0 if ai = O. Note that this iterative scheme will simply not
move once it reaches a ridge of equally likely parameter combinations where
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Figure 6.2. Confidence regions for uncertain parameters can be calculated by
singular value decomposition of the regression design or Jacobian matrix X =
{a 9;1a {3j}. Using symbols as defined in the text, the length of line AB is given by
"'/d/o j , and points along it are found by varying z in the scalar-vector product
z VI. The length of line AC is .../d/o2, and points along it are given by z V 2 • The
parameter combinations m I, m2, and m3 define a reduced model set for use in de­
cision analyses.

some Oi == 0 and values (3U+ 1
) = (3Ul + Zi Vi would represent moves along the

ridge.

Consider the following simple example. Suppose we wish to find out

as much as possible about {31, {32, {33 in the "experimental design model" Yi =
{3t + {32 X n + {33 X i2 , where Xij = 0 or 1, depending on whether treatment j
was present or absent. Suppose no "control" observations were made with
both treatments absent, and that there are two observations for each treat­
ment level. Letting the first two observations be for treatment 1 present,

and noting that 09;/o{3t = 1 for all observations, we get

x=

1 0

1 0

o 1

o 1
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The singular value decomposition of this matrix gives

0.5 -0.5 0

0.5 -0.5 0
U= 0.5 0 0

0.5 0 0

[~'
0

~, ]
where (11 = 2.44949,

s= (12 (12 = 1.41421,

0 (13 = 0

p816S
0.4082 0.4082 J

V'= -0.7071 0.7071

0.5773 -0.5773 -0.5773
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The fact that (13 = 0 implies that not all the parameters can be estimated; we
can add any multiple of the last column of V to the estimates, without
changing the predictions at all. Suppose we have the data

0.9

1.1
y= 1.9

2.1

and we take an initial estimate

a'" = [n
Then the iterative scheme above will converge in one iteration if h = 1,
since the model is linear in its parameters (X independent of (3). The
scheme gives

[
1.0 J~= 0
1.0

Further, we know that any estimate

{3' = ~ + Z3 V 3

[
1.0 J r 0.5773]= 0 + Z3 -0.5773

1.0 -0.5773
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will fit the data equally well. Intuitively, the interpretation of this example is
that the absolute values of {32 and {33 cannot be determined uniquely, since no

observations were made with both treatments absent (i.e., of the (3. effect
only). We can only determine the effects of {32 and {33 relative to the back­
ground mean {3,; provided we subtract the same amount (for example,
0.5773) from {32 and {33 as we add to (31, the resulting model will predict the
original data exactly as well as the nominal model Yi = 1 + (0) Xii + (1) X i2 .

Definition of representative models

In the end we seek to identify a set of models M that can be used in
decision analysis. To review, this means that we want to be able to compute
the expected value Vj of any policy UJ from a set of choices U, as

where V(Uj 1m;) is the performance expected if policy Uj is used and the sys­
tem turns out to respond as predicted by mi. Then we seek to provide a
ranking of the Uj according to expected performances Vj. The final analysis
should contain no more models mi than are really necessary to do this rank­
ing. The obvious implication of this argument is that the reduced model set
should be defined by looking back at the decision choices U available, using

some iterative procedure. By recomputing V j using progressively "coarser"

summations across fewer models mi, it can often be shown that the ordering
of V j values remains stable until the decision table contains far fewer models

than policy choices. When there is a continuous spectrum of policy choices
(as generated by "policy variables" like fishing efforts or quotas) and models
generated by varying some parameters {3, the iterative procedure may be
replaced by a search for some smooth (and simple) relationship between the
optimum choice and the parameters of a probability distribution used to
approximate P,({3). However, as we shall see in Chapter 9, the optimal
choice depends on l:1l as well as ~ when that choice affects l:p (so-called dual
effect of control), and this relationship is very difficult to estimate.

I have found that practically any portrayal of uncertainty in terms of a

few alternative models or hypotheses that are consistent with past data (for
example, ml-mJ in Figure 6.2) will stimulate some fruitful discussions about
new policy choices to include in the formal decision analysis. Often choices

are identified that force a basic rethinking about what models mi and data Y
should be included. The analyst must be careful not to inhibit this discus­
sion by initially presenting a numbing barrage of quantitative analyses about
precisely what policy would be best in relation to the original definition of
choices. This leads to a simple rule for defining the reduced model set:
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initially, present the best guess (~) and two extremes (low and high) with
assessments of P, for these choices. Then "fill in the gaps" between these
extremes later, after adequate discussion is allowed to really clarify the policy

choices.

Too Many Assumptions?

In this chapter I have deliberately avoided discussion of some tradi­
tional statistical methods for measuring uncertainty, except as they relate to
Bayesian inference. I have not, for example, even mentioned topics like
least squares estimation and residuals analysis. If you look back through the
chapter, you will see that the word "assume" appears far too many times for
comfort, and that the construction of probabilities for alternative models
requires far more acts of faith than any sane scientist would dare make. Let
me close with a simple reminder about why it is defensible to construct such
houses of cards: management decision making and science are not the same
thing. We cannot avoid making decisions, and in some way or other these
will be based on the data available. The decision theorist's argument, with
which I wholeheartedly agree, is that any inference from data to decision
must be based somehow on prior beliefs, likelihoods, and models; to proceed
without admitting and articulating these is the really unscientific thing to do.
The issue is not whether one should adopt a Bayesian approach, but rather
how to deal in a practical and efficient way with the formidable technical
(computational) difficulties that it entails without restricting analysis to the
most simplistic of model and policy choices.

In Search of Optimum Model Complexity

To readers with experience in renewable resource modeling, it may
seem that I have chosen in this and the previous chapter to emphasize overly
simplistic models (such as the logistic) as examples. There is more behind
this choice than a desire to illustrate basic concepts clearly; in many practical
situations it is unwise or even deceptive to try and penetrate more deeply
into the biological and economic details, though we know full well that these
details may be important in some sense. Two things go wrong as we try to
articulate more and more detailed models; it becomes more difficult to
specify functionally how the detailed components interact with one another,
and each additional model parameter becomes less well specified (flatter
probability distribution, wider confidence limits) by the available historical
data set Y. It is a reductionist myth that models become monotonically
better as the details of natural processes are more fully articulated. Practical
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problems of structural specification and estimation imply that there is some
balance point or "optimum complexity" beyond which model performance
will actually deteriorate. Indeed, much of the art in model building consists
of being able to recognize, usually by trial and error, when a reasonable bal­
ance has been achieved. This is a key point: the "best" model complexity is
a function of the skill and experience of the model builder, as well as of the
"objective" data Y and functional understanding available in the disciplines
of concern.

Costanza and Sklar (1983) have developed an example of how
"descriptive accuracy" (ability to fit historical data) is likely to vary with
model complexity (Figure 6.3). They reviewed 87 mathematical models for
freshwater wetlands (swamps, marshes, etc.) and shallow water bodies. For
about half of these they were able to measure descriptive accuracy quantita­
tively in terms of the correlations between model predictions and historical
data. They measured model complexity in terms of an "articulation index"
based on the number of model components, temporal resolution of predic­
tions (number of time steps in simulation, etc.), and spatial resolution
(number of spatial areas modeled). They took a product of their accuracy
and articulation indices as a rough measure of overall model "effectiveness."
They found that effectiveness defined this way was a dome-shaped function
of the model complexity: it is possible to predict a few things very well, or a
lot of things very poorly; between these extremes there is a balance point
where reasonable accuracy is maintained without too much loss of biological
"realism. "

The concept of optimal complexity can be made somewhat more pre­
cise for management situations when it is possible to define (1) a fixed data
set Y from which model parameters are to be estimated; (2) a series of alter­
native models fl, f 2 , ••• , where the models are ordered in terms of the
number of unknown parameters to be estimated from Y (f l has just 131, f 2

has 13\ and 132, etc.); and (3) a well defined management policy variable U(I3)
to be computed from a subset of the parameters. An example of a sequence
of population models would be (N, = stock, h, = harvest, Z. = an environ­
mental variable, such as water temperature)

f l : N.+ I =13. N, -h,

f 2 : N,+, = 131 N, - 132 N! -h,

f 3 : Nr+l = 131 N, -132 N! + 133 N,Z, -h,

f 4 : N'+I =13\ N, - 132 N,2 + 133 N,Z, + 134 N! Z, -h,

An example of a policy variable would be the stock size producing maximum
equilibrium yield; in this case U is not defined for f" and U "" (131 - 1)12132
for f 2 - f 4 provided Z varies randomly over time.
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(articulation) measured across a series of models for freshwater wetlands and water
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A basic management concern would be about the accuracy of estima­
tion of U. This accuracy can be measured by the approximate variance for­
mula

(6.6)

where h, :::;; iJUliJ{3" and E~ is the covariance matrix for the parameters {3.

Let us examine how of., will vary in relation to model complexity measured
by the number of parameters in {3. Recall that E~ can be approximated by

E~ = 5
2(X' X)-I (6.7)

where 52 is a measure of the residual error variance [52 = E(y - 9ild,
where d = degrees of freedom] and X ij = iJyi liJ{3j measured at the best
parameter estimates S. Substituting equation (6.7) into equation (6.6), we
get

(6.8)

Our concern is with what happens to 52 and the elements of (X'Xr l as the
number of parameters (number of columns in the X matrix) increases (the
best estimates Swill also change, but the main issue is uncertainty in U).

For ordered model sets, 52 is expected to decrease as the number of
parameters increases (Figure 6.4). A simple way to think about this effect is
to imagine that additional model components "absorb" or "explain" (perhaps
spuriously) more of the variation in observations, making the deviations y ­
y decrease monotonically as the number of parameters increases. Notice
that this rule seems to be violated in Figure 6.3; there descriptive accuracy is
measured roughly by R 2 = 1 - 5

2
/ y 2, where y2 is the total variance in obser­

vations, so 52 must be increasing across the model set if R 2 is decreasing as
the figure seems to imply. But the models used in Figure 6.3 are not an
ordered set, and increasing complexity (articulation) is represented there by
models that try to explain more kinds of variables, rather than the same vari­
ables in more detail. When 52 does, indeed, increase with model complex­
ity, the argument presented in Figure 6.4 is made even stronger.

On the other hand, the elements of (X'Xr t generally increase mono­
tonically as more columns (parameters) are added to X (Figure 6.4). This
effect is enhanced if the elements of the new columns are correlated with
columns already present. (For example, the X matrix for [I above has a
single column consisting of N, values; [2 has this column, plus a column of
N,2 values which are correlated with Nt especially if the variation in N, is not
large.) Thus the variances of individual parameters {3;, measured by
5

2(X' X)i;l, will increase whenever a column is added that increases
(X' X);;I more than it decreases 52; new columns that are strongly correlated
with old ones will have little effect on i (explain little more than the old ones
already do), yet will cause (X' X)i;1 to increase.

I
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a fixed data set Y by basing the calculation of U on parameter estimates from a
model of intermediate complexity, in this case four parameters (for explanation see
text). The minimum for Ob corresponds roughly to the maximum in
"effectiveness· of Figure 6.3.

Taking the product of decreasing l times increasing (X'Xr 1
, and

then calculating the quadratic form for CJ~ [equation (6.8)], we see that CJ~ is
likely to decrease at first as parameters are added, then later increase patho­
logically as confidence decreases in each of the parameters from which U is

calculated. There are exceptions to this rule (level sets of U coincide with
principal axis of E p, so U is well determined, though the (J's from which it is

calculated are not), but they unfortunately are not that common in practice.
So if we take CJ~, the variance of a key policy variable, as a measure of

the best model to use, we should seek an intermediate level of complexity

where CJb is minimized (Figure 6.4). This conclusion is in striking contrast
with a common practice in the renewable resource literature, which is to

measure the "quality" of models only in terms of descriptive ability as mea­
sured by R 2 or 52. As we see in the figure, it is quite possible for a very

good "predictive" model (low 52) to give very poor (highly uncertain) esti­
mates for key variables of policy interest.



190 Adaptive Management ofRenewable Resources

This conclusion applies to model structure as well: it can be best to
deliberately use a model structure that is known to be incorrect, if that struc­
ture leads to better performance in estimation of important policy measures
U([3). A good example is provided in Ludwig and Walters (1985). We
simulated fish population "histories" using a Deriso model (Chapter 4), and
then tried to recover the (known) optimum equilibrium harvest effort using
estimation schemes for the "data" based both on the Deriso model and on a
simpler production model that did not correctly represent time delays and
growth effects. Over many simulation trials, we found that the simpler
model often outperformed the Deriso model (better effort estimates). The
estimation procedure for the correct model involved trying to sort out, often
unsuccessfully, the effects of recruitment versus growth on net production.
These effects were "lumped" in the simpler model, and the estimation
scheme for it was more often able to capture the lumped effects accurately.

The above arguments do not in any way represent a coherent theory
of optimum model complexity. But they do suggest that such a theory can
be developed, and will likely become an important research area in the near
future. Based on experience with a variety of models for renewable
resources, I predict that the theory will show that quite compact models (2-4
parameters per measured state variable) are optimum for most practical
situations.

Problems

6.1. For the two alternative salmon models in Figure 1.1, we estimated
(Walters, 1977) the dollar value of future catches, discounted at 1%
per year, for four alternative escapement policies. Three of these pol­
icies represented "experiments," with increased escapements over
periods we felt would be necessary to see which model is correct. The
policies and value estimates were:

Correct model

7/1 7/2
(domed (saturating

Policy option curve) curve)

(1) Hold escapement 5232 million 277
at 1 million

(2) 1.5 million spawners for
15 years, then optimum 233 325

(3) 2 million spawners for 5
years. then optimum 226 332

(4) 3.0 million spawners for 3
years, then optimum 215 332



Embracing Uncerrainty 191

Here the decreasing values associated with increasingly severe experi­
ments, if 711 proves correct, are due to low harvests in the experimen­
tal period and also to lower recruitments produced by the experimen­
tal escapements. Assuming equal prior probabilities P(71I) = P(712) =
0.5, which option has the higher expected value? How low would
P(712) have to be for you to conclude that option 1 (no experiment) has
the highest expected value? What would happen to your assessment if
a higher discount rate were assumed, so the low catches during the
experimental period (due to allowing higher experimental escape­
ments) were given more weight in the total value calculation?

6.2. Bayes' theorem says the probability P(mi IY) that you should place on
a model mi, given a data set Y, is proportional to a relative credibility
measure PiLi for model i. Here Pi is the prior probability you would
place on model i before looking at the data, and L; is the probability
(or likelihood) of getting the observed data given that m; is actually
correct (roughly, L; measures how well the data fit mi, in light of
prior expectations about how much variability there should be around
the correct model). Further, Bayes' theorem says that P(m; IY) is
inversely proportional to the sum of credibility measures (E PjLj)

over all models j included in the analysis. In view of these com­
ments, indicate at least three qualitative ways to construct misleading
estimates P(m; IY) for any model j that you might personally favor or
dislike.

6.3. The methods introduced in this chapter seem to rely heavily on the
analyst's ability to define a closed model set mIl m2, ... , that includes
the "true" model from which the historical data Y were generated.
Such an approach may seem to you like taking an examination with
only multiple-choice questions, where the correct answer is always
"none of the above," What is wrong with this analogy? (Hint:
should you think of a model for management as "true" or "false" in
the first place?)

6.4. Consider again the George Reserve deer population (problem 1.3,
Figure 5.1) and a logistic model for it, N'+l = RaP, - R 1P,2 [equation
(5.11); R a and R I are parameters, P, = N, - H, is the population
after harvest in year t). Assuming that P, (Table 1.1) was measured
without error, the deviations w, = N,+1 - RaP, + RIP: must be due
to effects (biotic and environmental) not included in the logistic
model. Assume further that these effects were drawn by nature from
a normal distribution with mean zero and standard deviation (1.,
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The likelihood of the data given any particular possibility (Ro, R 1) is
then P(WI)P(W2) ... P(WI), where you use R o, R. and the N, P
data to calculate each W,. Write a computer program to calculate such
products, and use it to show how the likelihood varies with R o and R I

as you depart from the "best" estimates (1.93, 0.00494), for various
assumed values of (Jw between 5 and 50. Are your qualitative conclu­
sions (about which Ro, R 1 combinations are most credible) very sensi­
tive to your choice of (Jw?

6.5. For the George Reserve data and the model in problem 6.4, a singu­
lar value decomposition procedure gave

Ro = 1.892 R1 =0.00458

(Jl = 63344.47 (J2 = 178.80

V = [ -0.0086 -1.0 ]
1.0 -0.0086

i =E (N - N/I(42 - 2) = 27 1. 57

(so (Jw "" 16.48)

Using F095 •2,40 = 3.23, we see that the 95% confidence limits for Z2 =
(-1) (Ro - Ro) + (-0.0086) (R 1 - R1) will be ::t: 3.13, indicating
that Ro and R1 can be increased jointly (somewhat) without causing a
much poorer fit to the historical data. How does this conclusion com­

pare with your findings from problem 6.4? With the above informa­
tion, construct a 95 % confidence region for R o and R I, and use it to
define a reduced set of three models that are consistent with the data
but imply different management strategies. In particular, consider

the (unlikely) simple model R o = 1.36, R 1 = 0; how poor is the fit to
this model, and what are its management implications?

6.6. To illustrate the ideas of optimum model complexity, write a program
to generate fake data sets for the 4- parameter production model

N'+I = N, + rN;" [1 _:' )n - h,N, + w,

Use No = 0.9, r = 0.5, k = 1, m = 1.2, n = 0.8, and h, = 0.05 t, t

= 1, ... , 10. Use w, normally distributed with mean zero and stan­

dard deviation (Jw, where 0 < (Jw < 0.03. For this model, the policy
parameter "stock size for maximum surplus production" is given by
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N· = mk/(m + n). Assuming that the time series N
"

h" t = 0, ... ,
10 has been observed exactly (only process errors), develop parameter
estimation procedures (Appendix 5A, or above section on singular
value decomposition) for each of the following models of your fake
data:

("logistic", m = 1, n = 1)

[2: N'+l = N, + rN, [1 - :' Jn - h,N,

("general", m = 1)

[3: the four-parameter correct model

Include in your program a procedure for estimating the variance of
N·. using the formulas for (Jb in the final section of this chapter. By
generating data sets with increasing (Jw and fitting these data to all
three models, show that (J~. is minimized by assuming [3 if (Jw is
small, but by assuming [I if (Jw is large. Compare this result to Fig­
ure 6.3. What can you say about the problem of bias in N· when [I

or [2 is assumed? What happens to your conclusions if the data are
generated from a more informative harvest sequence, i.e., h, = 0.1,
0.1,0.9,0,0,0,0,0,0.5,0?

6.7. In exercise 6.6, you needed to use an approximation s\X'Xj-l for
the covariance matrix of the parameters, and a further approximation
for the variance of N·. To test the validity of these approximations,
generate 20 fake data sets with (Jw = 0.001 (an optimistic situation),
fit the correct model f] to each, and calculate the sample covariance
matrix

1 20- E (N: - N·)2
20 k=l

You should find that S2(X'X) -I usually underestimates the variation
Bamong trials, while the approximation for (J~. is not too bad. Why
does N· not have large variance, considering that it depends on
several quite uncertain parameters?
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Chapter 7

The Dynamics of Uncertainty

Aristotle's experimentations were confined
to catching nature in the act, without attempting,
after the modern fashion, to put her to the torture.

John Gillies (1797) Ethics and Politics

This chapter examines how uncertainty, measured by odds placed on
alternative models, is likely to propagate over time in relation to manage­
ment decisions. In Chapter 1, I stressed that responses of resource systems
to management can, in the end, only be learned through experience, so the
common prescription to "wait until we understand the system better" is
based on a false presumption that extrapolation (to the conditions created by
not waiting) will become possible even without experience. Then, in
Chapter 4, I suggested that the need to gain experience should not be treated
as an excuse for blind management by trial and error; we can, at least, con­
struct alternative models as a guide to possible responses. Chapter 6 then
looked into how we can, on the basis of historical data sets Y, place odds on
these alternatives. I turn now to the question of how to model (predict) rates
of learning when accidents or directed trials ("management experiments")
send a managed system into states for which responses are uncertain.
Perhaps the most important lesson from this analysis is that, in the face of
natural variation and noisy measurements, we should expect learning rates
to be discouragingly slow except when rather drastic experiments are under­
taken.

As a prelude to the examination of how probabilities placed on alter­
native models propagate over time, the first section below looks at how
bounds can be placed on the importance of learning by calculating the
expected value of a magical experiment that instantly resolves all uncertain­
ties, then comparing this value to the best that could be expected in the com­
plete absence of learning. This calculation shows that, surprisingly often,
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learning will not be as valuable as we might intuitively expect. Then subse­
quent sections examine simple statistical models for propagation of probabili­
ties over time, for cases where the value of learning is expected to be
significant. The models presented in these sections are intended to provide
( 1) a theoretical basis for understanding the factors that determine how fast
uncertainties can be reduced, and (2) practical calculation procedures that
can be used in "Monte Carlo" simulation studies of learning rates under par­
ticular policy options.

Bounding the Importance of Learning:
The Expected Value of Perfect Information

This section returns to the simple idea, introduced in Chapter 6, of
constructing a decision table that lays out the possible outcomes of alternative
policies. We will first see how to construct a table that defines the best policy
to take if no learning is possible. The expected value of using this policy is a
lower bound on future performance. Then for each possible "state of
nature" or model of outcomes, we pretend for a moment that the model is
known to be correct, and calculate the best policy to use and the value that
would be obtained. This results in a set of most optimistic (perfect
knowledge) estimates of value, and we compare these to the values expected
if the best "no learning" policy were used. To see intuitively how the calcu­
lations go, let us use the simple decision example from Chapter 6, involving
whether or not to build a salmon spawning channel:

Options

Models

No response
Good response

Do not build
channel

240
240

Build
channel

135
564

For this example, we assumed 50:50 odds on the two models, and estimated
expected values for the two policies as

Value of "do not build" =(0.5)(240) + (0.5)(240) = 240
Value of "build" = (0.5)(135) + (0.5)(564) = 349.5

Clearly the best policy, in the absence of further information, is to build.
But suppose we could make a magical study that would resolve beforehand
which model is correct. Then for the "no response" model, we could obtain
the value $240 million, and for the "good response" model, $564 million.
But before we do the magical study, we should place 50: 50 odds on these
outcomes, for an expected value of (0.5)(240) + (0.5)(564) = $402 million.
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This is the expected future value from the system, measured today, of doing
the magical study then acting correctly for whichever model turns out to be
right. If we compare this value to the best that can be expected without the
magical study (349.5), we get the "expected value of perfect information,"
$52.5 million = 402 - 349.5. Notice that this value of information can also
be calculated as the average, using today's odds, of the improvements in
value associated with learning that each model is correct:

52.5 = (0.5)(240 - 135) + (0.5)(564 - 564)

Notice that the gains are measured relative to the values (135 and 564)
expected under the best choice without magic, which in this example was to
build a channel.

Definition of the expected value of perfect
infonnation (EVPI)

LeI us now try to make these notions more general and precise. Sup­
pose that at some moment in time, statistical analyses such as those sug­
gested in Chapter 6 have led to probabilities p,(m;) on a series of models m;
in a set M. Suppose, further, that there has been defined a set U of policy
options, where each option Uj specifies a whole course of future control
actions. u} might, for example, be a feedback policy, such as "harvest u, =
x, - Uj animals if the number of animals x, exceeds uj, but harvest none if x,

is less than Uj." We then define the value V(Ujlmi) as some measure of
a verage or total future returns if the policy Uj is followed and if model m;
turns oul to be correct.

Now suppose we assume that no learning will take place in the future.
Then we can calculate a (pessimistic) expected value for each policy option

(7.1 )

This expected value is just a weighted average of the possible outcomes of
applying Uj, with each outcome model m; given a weight P,(mi). Then sup­
pose we calculate V(u}) for every policy Uj, and find that policy u· which has
the maximum expected value V( u·). Keep in mind that in order to obtain
this maximum, we have to calculate the conditional values V(u·lm;) for
every model mi; for some models, u· may be a very good policy [high
V(ulm»), yet it may be very bad for others (i.e., if others turn out to be
correct).

Next, suppose we consider each of the models m; separately, and find
the policies ut· that maximize V( Uj Im;). That is, ut· is the best policy
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(from U) to follow if m; is known to be correct. Then for each model mi, we
will have defined two extreme outcomes:

V(u·\mi): best value given m; but no learning(m; not known);
V(ui··lmi): best value given m;, and mi known with certainty.

Notice that the second quantity must be greater than or equal to the first;
otherwise we have incorrectly estimated the optimum ur for model i. The
values will coincide only when ut· = u· or when mi predicts the same out­
come by follow ing ur as u·.

Finally, the expected value of perfect information (EVPI) is defined as
the average gain associated with using ur instead of u·, where the average
is weighted by the odds currently placed (before perfect information becomes
available) on the models:

EVPI = E P,(m;)[V(u;"!mi) - V(u·lm;)] (7.2a)

This can also be written as

EVPI = E P,(m;) V(ur 1m;) - V(u·) (7.2b)

where V(u·) is the value associated with the policy u· that is best if we never
expect to learn which model is correct. The simplest interpretation of EVPI
is that it is our best estimate, given the odds currently placed on the alterna­
tive models mi, of the expected or average gain to be obtained if we could
suddenly resolve all uncertainty about which model is correct. Another
interpretation is that EVPI is the amount we should be willillg to pay, in
units of V, for a magical study or measurement that would resolve which m;

is correct.
There are three reasons why the value of learning, measured as an

upper bound by EVPI, is often not as large as we would intuitively expect.
First, the optimal policies ur for the various models need not differ greatly
from u·. Second, production models tend to predict nearly the same yield
across a fairly wide range of harvest policies, i.e., the differences V( ut·1 m;)
- V( u·1 m;) may be relatively small for all m; that are assigned high proba­
bility P,(mi). Finally, u· itself tends to be "close" to the ut· for those models
mi that are assigned high probability P,(mj); for these models, V(ut·1 mi) ­
V(u·jm;) is small unless the models are very sensitive to u. These points
will become a matter of critical concern in Chapter 9, where we will examine
methods to estimate optimum adaptive policies.

EVPI in a stoclt-recruitment example

A simple example will serve to illustrate how EVPI can be estimated,
and why it is often quite small. A common situation in salmon management
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is to have a fairly long series of spawning stock and recruitment observa­
tions, but all gathered over a rather narrow range of spawning stocks. Sup­
pose we have such a record, and believe that average recruitment can be
approximated by the Ricker model R'+l = S, exp [il - b(S, - §»), where iI

is the average value of In (R,+tlS,), and § is the average historical value of S,
(see Ludwig and Walters, 1981). Following the arguments of Chapter 6, let
us assume that the data are good enough to precisely estimate iI and ~, so we
can generate a range of models (hypotheses) by varying just the single uncer­
tain parameter b. Let us assume that, based on the data, we would assign b
a normal distribution with mean bo and variance E b • That is, each model
m, is the Ricker curve with an assumed value band M is the set of all b
values; the probability placed on each model is

1 [ -(b - bo)2 J
p,(mi) =P,(b) = -J2r E

b
exp 2E

b

Let us define a control policy Uj by the number of spawners Sj to allow each
year, where Sj is fixed over time. The annual catch is then 0 if R, :S Sj, and
R r - Sj when R, exceeds Sj. U is the set of all possible values of Sj'
Finally, let us use the average annual catch R(Sj) - Sj as our measure of
value V. For a fixed Sj, the average recruitment R is given approximately
by R = Sj exp [ii' - b(Sj - ~)], where of' = iI + rrl2, and rr is the variance
of environmental effects on recruitment. According to these definitions

(7.3)

Using this definition, it is possible to find the best policy Sj given no learn­
ing: it is the value of Sj that maximizes

+<»

V(Sj) = ! P,(b) V(Sj Ib) db (7.4)

This integral represents the analogue of equation (7.1) for mi generated by
continuous variation in b; for small E b it has an analytical solution which is
a function of S. The S for which the integral is maximum [V(S) maximum]
can be found by a simple numerical procedure, and this value S' is the
optimum escapement if no learning is expected. The same numerical pro­
cedure can be used to find the escapement S;' that is optimum for any fixed,
known b [i.e., S;· maximizes V(SI b)]. The expected value given perfect
information is then given by

EVPI = ! P,(b)V(S;'!b)db - V(S') (7.5)
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[This is the continuous version of equation (7.2b).] The integral in (7.5)
can be calculated numerically using various computer algorithms.

Table 7.1. Expected values of perfect information for a stock-recruitment system,
measured as a percentage of the average annual harvest expected if there were no
future learning. Parameters ii' and bo are determinants of productivity, while the
ratio (]blbo is a measure of relative uncertainty.

Initial recruitment parameters

ii' = 0.1 ii' = 1.0

bo = 0.5 bo = 1.0 bo = 0.5 bo = 1.0

Initial (]blbo = 0.1 0.13% 0.12% 0.11% 0.10%
uncertainty (]blbo = 0.5 0.11 % 0.32% 0.69% 2.26%

The key variables affecting EVPI in this example are A', bo, and I: b •

A' is a measure of average productivity per spawner, bo is a prior measure of
expected sensitivity of recruitment rate to changes in S, and I: b , of course,
measures uncertainty in b. Table 7.1 summarizes how EVPI varies with
these parameters, as a percentage increase in potential performance (average
annual catch) relative to the no learning maximum V(S·). From the table,
we see immediately that when I: b is large, the value of information increases
with A' and bo, which measure how sensitive V(S Ib) is to the choice of S
[i.e., how big the average difference V(S:·' b) - V(S·) is expected to be; to
see this, plot the average catch as a function of S, for different values of A'

and bolo Also, EVPI increases with I: b , since by increasing this variance we
admit higher probabilities for more extreme b values such that Sb" differ
greatly from S·. But we see from Table 7.1 that the value of perfect infor­
mation is only a small percentage of the average annual catch unless the
stock has been very productive (large A historically); for unproductive stocks,
the Ricker model predicts low sensitivity of V(S Ib) to changes in S. We
could, of course, construct recruitment models such that average catch would
be predicted to fall off more sharply as S is varied away from S··, but there
is little evidence of such sensitivity in the case of Pacific salmon.

Let us close this example by looking ahead briefly at questions to be
addressed in the remainder of this chapter and in Chapter 9. First, notice
that EVPI is a well defined function of I:b ; it increases as this variance
increases. Next, consider the Ricker model as written above, with only b
unknown: R = S exp [A - b(S - §)]; in this form, it is obvious that we
can only learn about b (reduce I:b ) by choosing S away from the historical
average §. (Otherwise, we "see" only R = §ea.) In subsequent sections, we
will examine methods for estimating the effect of actions like S, on
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uncertainty measures like E b • If we can estimate changes in E b , then we can
also predict how EVPI will change in relation to policy choices like Sr. The
change in EVPI is a simple measure of the "information value" associated
with any choice (though it is incomplete since it ignores the way future deci­
sion makers may also use information values in selecting decisions). Now,
suppose we calculate this information value for every choice St, and act as
though it is a real "benefit" of SI by adding it to the nominal expected value
V(Sr) that we calculate while assuming no learning. If the initial EVPI is
large and some extreme decisions will significantly reduce E b , we are likely
to find that the combined information plus nominal value is maximized at
some Sr quite removed from S· (best S if no learning), if S' is near ~.

When this happens, S is in some sense an optimal "probing decision." In
Chapter 9, we will look at more precise methods for estimating the com­
bined values of alternative decisions.

Information States and Sufficient Statistics

As we saw in the previous chapter, precise computation of the odds
Pr(m;) that should be placed on alternative models given a data set Y is usu­
ally a tedious and time-consuming task. When we turn to the study of how
PI(mi) propagates over time, it becomes important to have compressed equa­
tions (simple models of PI) that can be used to give analytical insight and
permit practical Monte Carlo (simulation) studies. Such compressions have
been a topic of much study in the field of control system theory, where the
subject is called "adaptive filtering." Most of the following discussion is bor­
rowed from the literature on that subject; for further reading, I particularly
recommend Young (1974), Gelb (1974), Meinhold and Singpurwalla
(1983), and Detchmendy and Sridhar (1966).

Recall that P,(mi) is computed from the likelihood function L( Y Imi)
and from prior probabilities Po(m;). Since Y is growing in time, there is
potentially a growing "information state" needed to compute P, (and there­
fore any decisions that depend on P,). As a first step toward avoiding this
growth in models of P"~ we usually assume that the observation set yr (a vec­
tor) is statistically independent of Yr- 1 = {YI' ... ,Y,-I}. Then the likeli­
hood function can be written as L( YrImj) = L(y,1 m;) L( Yr- 1Im;), and the
general Bayesian formula for P, can be written recursively as

(7.6)

where at = E j L(y,lmj)PI.,(mj). That IS, when the observations are
independent over time we can compute Pr knowing only y, and P,-I.

If the models form a discrete set ml, ... , mN, with N alternatives,
the N numbers Pr-J(mJ), ... , PI- 1(mN) form an information state of fixed
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dimension, which is fully sufficient to permit computation of P, after y, is
observed. We can "forget" about the original data Y,_I from which P,_I was
computed, since P'_I is a sufficient "memory" (contains all the information
needed) to compute P,. In statistical terms, we say that P,-I is a sufficient
statistic for Y,_I. Since the P,-l must sum to 1.0, there are in effect only N
- 1 distinct elements in the information state P,-I. These N - 1 numbers
are the minimum we can get away with storing, and using as the basis for
feedback policies (action as a function of information state) when there are N
discrete model alternatives.

The situation becomes more interesting when the model set is gen­
erated by continuously varying a set of unknown parameters (3, so we
describe uncertainty in terms of the probability density function PI({3). This
function is generally very complicated (cannot be represented exactly by an
analytical equation) for nonlinear models. However, as noted in Chapter 6,
p, can be approximated in the neighborhood of the most probable estimates
~, as a normal distribution, with mean ~, and covariance matrix E~,. If we
then use {~" E~J as an approximate information state for the calculation of
P, from P'-I, and if there are M unknown parameters, the information state
has roughly M + M 12 dimensions (M estimates ~" plus roughly half the
elements of E~, since E~, is symmetric).

There is a special class of dynamic models for which ~f and E~, do
constitute a complete set of sufficient statistics for p,. This is the class of
models for which (1) the state dynamics X'+I = f(x"u,,{3) are "linear in
parameters," i.e., can be written as

M

X,+I = E (3;fi(x" u,) + w,
j=)

where w, is normal and the fi do not depend on (3; and (2) the observation
dynamics y, = h(x,) are linear and invertible with no observation noise, i.e.,
y, = A X" where A is a known matrix having inverse A -I. It is often possi­
ble to convert other nonlinear models into the linear-in-parameters form by a
change of variables, though the condition of no observation noise is more
difficult to meet or justify. When the dynamic model can be written as
above, ~ and its covariance matrix E~ depend only on sums of products
among the ri and x, = A -I y,; these sums, or equivalently ~ and E~, are thus
sufficient statistics for Y. For models that are not Iinear-in-parameters, it is
not possible to calculate even ~, exactly without looking back at all the past
data. (See Appendix SA and note that the sensitivity iJ9;/iJ{3j and cross pro­
ducts matrices involved in updating the estimates ~ usually involve a compli­
cated interdependence of all the y's and (3's.)

To make these ideas clearer, let us examine two stock-recruitment
models. The Ricker model R, = S,-I exp [a - bS,- 1 + w,j can be
transformed into In R, = In S,_I + a - bS'-1 + w" which is linear in the
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parameters a and b when we treat {In R" S,-d as the basic observation set
Y (y, =In R" A = 1, u, =S,-I). To update parameter estimates, we need
only keep track of sums of cross products involving the In R, and Sr. The
Beverton-Holt model R, = oSr-le""/«(3 + S,-I) does not admit such a
transformation. To get a form that is additive in the errors w" we take In R,
= In 0 + In S,_I - In «(3 + 8,-1) + w•. In this case we can treat In 0 as one
unknown parameter, but the term In «(3 + S,-I) causes trouble. To estimate
parameters, we must calculate iJy./iJ(3 = -1/(13 + 8.-1), where y•• In R.,
for each y,. These derivatives involve all the past data points S, individually,
and change over time as we update S.

The precise definition of the sufficient statistics for a parameter set 13
given a data set Y is a set offunctions 11(Y)' ... , Im(Y) of the data, such that
the probability distribution of Y given these functions is independent of (3.
Then, in some sense, the functions contain all the information about (3, con­
tained by the original set Y. In practice, we search for these functions
(statistics) by examining the likelihood function L( Y 113), to see if it can be
expressed as functions of Y (such as E,y" E,y,2) that do not contain (3, which
operate on (add to, multiply, etc.) the 13. These functions are sufficient
statistics, and it is usually obvious how they will propagate over time as new
information is gathered. Such sufficient statistics form a natural information
state description for p,. Unfortunately, they cannot be found easily, or do
not exist, for most nonlinear models. Also there is no way to determine how
well they are approximated by the first and second moment statistics ~, Ea of
pt, except by comparing computations based on them to some more tedious
and accurate evaluation of p" on a case by case basis. Thus, in practice the
discovery of reasonable information states to describe learning about param­
eters of nonlinear systems is very much a trial and error modeling process,
akin to the search for reasonable dynamic models (we need both mi that
approximate Y, and statistical models that approximate p,).

Effects of Control Sequence on Uncertainty

In this section we examine some models that can be used to predict
how the odds placed on alternative dynamic hypotheses will change over
time in relation to the control (harvest, other disturbance) sequence
employed in management. These models help us to understand why learn­
ing rates are often discouragingly slow, and give general guidance about how
to design more informative policies. As in earlier sections, we will focus on
the Bayesian description of uncertainty

P,(m;) = _1 L(y,1 mi) P,-I(mi)
0,



The Dynamics of Uncertainty 203

As a preamble, let us discuss briefly the idea of a single "informative
decision" u, for models m; expressed in the format X,+I = f(xr , U r , IJ) + w"
y, = h(x" IJ) + vr • In this format, notice that all the information we get
about the effects of any u, will be through the observations Yr+l, y'+2, ••• ,

that measure in part the state responses X'+I, X'+2, •.. , to U,. Let us now
define Ur as locally informative with respect to any pair of models mj and mj

if L(Y'H Imi, u,) * L(Y'H Imil ur ) for some k ~ 1. In other words, U r is
informative if the models m;, mj assign different likelihoods to observations
Y,H for at least one future time k. This is not the same as saying that mi
and mj assign different likelihoods to every possible outcome Y; there gen­
erally will be certain, hopefully few, outcomes that are equally likely under
both models. (Murphy's law states that such outcomes are bound to hap­
pen.) Extending the notion a bit, an obvious step is to define Ur as globally
informative if it is locally informative with respect to every model pair mi,
mj in the set M under consideration. The purpose behind these definitions
is to highlight the fact that analysis of uncertainty about dynamic models is
not the same as classical experimental design in statistics, where we generally
think only about taking a single output measurement as a response to each
well defined (designed) combination of inputs. Then we seek to replicate at
least some combinations. In dynamical systems, single decisions may gen­
erate whole sequences of responses (not replicates!), and we must look care­
fully at how the alternative models make different predictions about these
sequences. The distinction between locally and globally informative has
obvious imporlance when the analysis involves only a small set of alternative
models; it may be practical to take small steps (incremental decisions) that
give information about part of the model set, but not to make the large
changes usually needed to be globally informative.

Learning rates about diac.rete altemative hypothe8es

Perhaps the simplest possible learning situation in renewable resource
management is shown in Figure 1.1. In such situations, we seek only to
understand the stock-recruitment (or production) response to the stock size
left after harvesting, and we suppose that stock and production can be mea­
sured exactly. Then the alternative hypotheses mi reduce to models of the
form X,+I = f;(ur) + w" Yr =X" since we can view the stock after harvest as
the control U,. Here, f; is any alternative production equation or curve of
mean response to varying u. Figure 1.1 shows two such functions
(hypotheses!) labeled 11\ and 112. If we take Xr to be the logarithm of recruit­
ment in year t, the Ricker stock-recruitment model (curve 111 in Figure 1.1)
would then be written as
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X/+I =In (u r) + a - bUr + w, (7.7)

(a and b are parameters, W r is a normally distributed environmental effect)
and the Beverton- Holt model (curve ''/2 in Figure 1. 1) would be

U,
X,+l =o{ + In + w, (7.8)

13 + U r

(a' and 13 are parameters, w, is normally distributed). To fix the two
hypotheses in Figure 1.1, I chose a = 1.96, b = 0.44, a' = 2.2, 13 = 1.3,
and I estimated the variance of environmental effects a~ :==: 0.1. (An alterna­
tive parameterization of the two curves is given in problem 1.5.) With W as
an additive error, both models predict (conservatively and realistically) that
recruitment (e") would be more variable around 'II and '12 if higher spawning
stocks were allowed.

Now suppose for this example we choose a spawning stock U
"

and
later (four years in the sockeye salmon case) observe Xr+l. Then for each of
the two models we can calculate what iW, = X,+l - fi(U , ) must have occurred
if the model were correct. The likelihood of Yr+1 (= X,+l) given model mi is
just the probability of obtaining this w,. Since we have hypothesized that w,

is normally distributed with mean zero and variance a~, its probability is
given by

1 2 2
g(w) = e -w n.°w d W

..j21ra~

Thus, L(Y'+llmi) is g(iWr), where jW, is the value of W for model i. Notice
that the models '11 and '12 predict nearly the same X,+l for u, < 1 million
spawners, so they will imply nearly the same likelihood for any X,+I that
arises. But the models diverge more and more for u, > 1 million spawners,
and only recruitments that fall halfway between them will be assigned equal
likelihoods (see the above comment about Murphy's law).

If we call the likelihood given the Ricker model L 1, and the likelihood
given the Beverton-Holt model L 2 , then the probability that we will place on
the Ricker model 'II after observing a new X'+I is given very simply by
Bayes'theorem:

L1Pr(ml)
P'+I(m I) = (7.9)

L1p,(ml) + L2P r(m2)

With just two models, P,(m2) = 1 - P,(ml)' and there is no need to even
keep track of Pr(m2). Using this, and calling P,+I(ml) just P,+I, we can
rewrite the dynamics of p, even more simply:

P,
P,+I = (7.10)

pr + e,(l - pr)

where e, is the "likelihood ratio" LdL\. In this form we see very clearly that
the learning rate, measured by pr+l - P" depends very much on choosing u,
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values such that the likelihoods (and their ratio e) are expected to be as
different as possible. Using the normal distribution equation for L;, we see
that e can be written as

[
1 22]

Q =exp 2a~ (lW r - 2 W t) (7.11 )

Large values of e result in lower pr+ I, and these will occur if either I w; (w; is
calculated by assuming that mt is correct) is large, or 2W,2 is small. Notice
that the ratio becomes "less responsive" to the w, values as a~ is increased; in
other words, individual prediction errors w, have less effect on e (and hence
PI+I) when we assume that they were sampled from a distribution with larger
vanance.

The easiest way to discover how P, will propagate over time when
there are just a few alternative models is by Monte Carlo simulation. The
procedure is essentially trivial. First, select one of the hypotheses as true,
and generate a set of "data" from it by solving the model equations over time
with random effects included. For each of the simulated data points Yr, cal­
culate L;t = L(y, Im;) for every model m; (see the general procedures for
likelihood evaluation in previous chapter). Then set initial odds pO(mi) on
all the models, and calculate pr(m;) recursively over time from the general
rule

Lj,p,_,
p, = -;;~=----=--­

i.J L j , pt-I
j

Notice that the P, values generated in this way are random variables, since
they are calculated from the random variables y, that determine the likeli­
hoods L i,. Thus, you need to repeat the simulation several times, with
different random error sequences, in order to get a good feeling for the range
oflearning patterns that might occur.

Figure 7.1 shows three sample learning trajectories for the Fraser
River two-model example. In each case the spawning stock was fixed at 1
million fish until time (generation) 10, then changed to a more informative
level for the next 10 generations. The correct model was the Ricker curve '11

of Figure 1.1. For the first trajectory, the informative spawning stock was 3
million fish, for which the two models make very different predictions of
average recruitment. Note that even in this case, it takes six generations to
be reasonably sure of the correct model. In the other two cases (2 million
and 1.5 million spawners after the tenth generation), learning rates are
discouragingly slow and the correct model is not obvious even after 10 gen­
erations. For the "mild experiment" (1.5 million spawners), which has actu­
ally been recommended as "practical," higher odds are placed on the wrong
model even after 10 generations.
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Figure 7.1. Predicted patterns of change in the odds placed on the two alternative
recruitment models of Figure 1.1, for different escapement experiments (S, in mil­
lions of spawners) after generation 10. A typical Monte Carlo trial is shown for
each experiment; exact outcomes cannot be predicted since they depend on the fu­
ture sequence of random environmental effects.
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The predicted learning rates in Figure 7. 1 are very typical for
stock-recruitment and surplus production models when realistic assumptions
about random variation are used in the calculations. That is, learning rates
tend to be slow relative to the generation times of managed populations (and
resource managers), even when management involves rather drastic experi­
mental action. With hindsight this conclusion is rather obvious, but it came
as quite a shock to us and to some Canadian government salmon biologists
in the mid-1970s. At that time, we did a series of simulations like Figure
7.1 (and problem 1. 5) to estimate how long it would take to evaluate the
performance of some salmon enhancement projects (such as hatcheries and
spawning channels) that were planned as part of a $300 million enhance­
ment program. Various uncertainties had been well recognized in planning
for that program, and it had been divided into two phases, each about 10
years long. The hope was that results from projects in the first phase would
be used to do a better job in the second phase. Well, it takes 2-5 years just
to get each project started (design, construction, etc.), then at least two more
years before the first results (returning adult fish) are seen. This means there
would be 4-6 observations at most from each project in phase I, to use as the
basis for phase II planning, even if all phase I projects were initiated in the
first year of that phase (a budgetary and technical impracticability). Need­
less to say, our gloomy warnings about the need to delay phase II were not
received very well by the people responsible for project development. As of
this writing, the fate of phase II had not yet been decided.

In one sense the learning rates shown in Figure 7.1 are even a bit too
optimistic, since only two alternative models are considered. By including
more models that give predictions similar to the correct one, it is, of course,
possible to increase the denominator in pt+l = L p';E Lpt so that the odds
with respect to anyone alternative will change more slowly. But this is not
so serious a problem as it may initially appear, when you consider how the
results will be used in decision analysis. Models that make similar predic­
tions generally imply similar prescriptions about the best policy to use, and
hence act almost as a single model in weighting the outcomes of any policy
choice. In fact, the probability of even including the exactly correct model in
the first place is vanishingly small; the best we can usually hope for is to
include one that implies roughly the correct policy choice.

Learning about unknown parameters

Suppose now that, instead of placing odds on a few alternative
hypotheses, we choose to represent uncertainty in terms of a probability den­
sity function p,({3) for the unknown parameters in a simple functional model.
We seek simple expressions that will give some insight about how p,({3)
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propagates over time; in practice this usually involves finding expressions for
how the mean or mode S, and covariance matrix Ea, of p,«(1) are likely to
change. Such expressions are called "filtering equations," or simply "filters"
for (1. Quite elaborate filtering schemes can be developed for nonlinear
parameter estimation (see Gelb, 1974; Soeda and Yoshimura, 1973), but a
general feeling for the factors that affect learning can be obtained by looking
at two special cases: recursive linear regression, and its simplest nonlinear
extension, the "extended Kalman filter."

Recursive Linear Regression

Linear regressions are models of the form

Yi = 1: (1j Zij + Wj

j

where Yi is the ith measured response (dependent variable), the Zij are
independent variables or inputs that are assumed to influence Yi through the
unknown parameters (1j> and Wi is a random error that reflects the combined
effects of measurement error and model inadequacy. Usually the model is
written in shorthand matrix form Y = Z f3 + w, where Y, (1, and ware vec­
tors and Z = {Z;J is called the input or design matrix. Least squares esti­
mates of (1 are given by S = (Z' Z)-I Z'y, with covariance matrix Ea =
S2(Z'Z)-I, where i is an estimate of the variance of the random effects w.

When W is assumed to be normally distributed, these estimates are also the
maximum likelihood and describe the Bayes posterior distribution p«(1) com­
pletely (it is also normal) when the prior parameter distribution po(l3) is
diffuse or normal with very large variances and zero covariances.

Dynamic models that are linear in parameters

X,+I =1: (1j fix" u,) + w,
j

can be treated as linear regressions, provided the x, can be reconstructed
exactly (without measurement error) from the observation model y, =h(x,).
When the observation model is linear in a matrix f30 of unknown parameters,
so that y, = (10 x" and when (10 has an inverse, so that x, = (10-1 y" we can
sometimes substitute this expression for x, back into the linear-in-parameters
dynamic model to obtain a new model that contains only y's, w's, and a
new set of parameters (1' that are functions of (1 and f30. Unfortunately, the
covariance matrix of f3 and (10 can usually be obtained only approximately
from the covariance matrix of (1' estimated by linear regression.

The estimation equations for linear regression can be written exactly
as a recursive relationship which updates the estimates and their covariance
matrix after each new observation is obtained. Suppose the regression based

on t - 1 observations has resulted in ~'-I and Ea'_I' and we make a new
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(7.12)

(7.13)

observation yr, Zr, where Zr is the vector of independent variable values at
time t (i.e., Z; is the tth row of Z). Then the recursive (learning) equations

for~, and Ea, are very simply (see Young, 1974)

~, =~'_I + k, E,

where E. is the "innovation" or error in predicting y, from previous esti­
mates ~ and current inputs Z,:

E, = y, - Z;~'-I (7.14)

(think of Z;~'-I as 9" so E, = Yl - 9,), and k l is the "filter gain" or "Kalman
gain" vector defined by

Ea,_, Z,
k, = (7.15)

i + Z;Ea,_, Z,

Notice that this filter gain is an increasing function of the prior uncertainty
Ebr-l' and a decreasing function of the variance of w, measured by S2.

Equations (7.12)-(7.15) define a remarkably simple model for learn­
ing about the unknown parameters of dynamic models that can be rewritten
to look like linear regressions. First, equation (7.12) says that the amount
by which we should change the parameter estimates ~ at each step is just
proportional to the prediction error E" where the proportionality constants
k, depend on how uncertain we already were (Ea,_) and on how much ran­
dom error (i) that we expect to see. Equation (7.13) says that uncertainty
measured by Ea will decrease over time at a rate determined by its current
level, by the error variance i, and by the input choice Z,.

To see how these equations work, let us consider again the Ricker
stock-recruitment model with only one unknown parameter b (see section
above on bounding the value of learning), which we can express as x,+! = if

+ b(S, - ~) + W" where Xl+! is In (recruits/spawners), and we presume if

and ~ are known. We can rewrite this by defining y, = X'+l - if, Z, = S, ­
~, and {3 = b, to give the simplest possible linear regression

y, = (3Z, + w, (7.16)

where y. is the observed deviation at time t+l of the "productivity index"
X,+I from its historical average if, Z, is the deviation of spawning stock S,
from its historical average ~, and {3 is the sensitivity of productivity to the
spawning stock allowed. The recursive regression equations for {3 reduce to
just

(7.17a)
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~, = ~'-I + k,(y, - 9,) (7.17b)

Es, =Es,_1
(1 -k,Z,) (7.17c)

where 9, = ~'-I Z,. It is quite obvious that the key variable in these equa­
tions is the spawning stock "disturbance" Z, = S, - §; learning rates mea­
sured by k, and ES, - ES,_, are roughly proportional to this disturbance
when it is small, and reach a maximum set by ES'_J when the disturbance is
large. The learning rate is zero when S, =§.

Similar predictions are obtained for examples involving more than
one parameter; the Z;, must differ from Zo in order to provide information
about 13;. However, an additional complication enters the picture; we must
also worry about correlations among the Zi. Such correlations are almost
always large when the Z; represent functions of the state variables x and con­
trols U in dynamic models. High correlation between any pair ZI and Z2
implies that the effects of 13. and 132 cannot be distinguished from one
another; in other words, many combinations of 13. and 132 could, with almost
equal probability, have given rise to the observed response. A good example
of this difficulty is with Schnute's (1977) method for surplus production (see
Chapter 4). His method in its simplest form uses the linear regression

y, = 131 Z.,'_I + 132 Z2,'-1 + 13, Z,,'_I + w,

where y, is an index of population change (log of catch per effort at t divided
by catch per effort at t - 1), Zl • 1.0, Z2 is the average catch per effort
over t - 1 to t, and Z3 is the average effort over t - 1 to t. Generally, we
find Z2 and Z3 to be highly and inversely correlated, since abundance as
measured by Z2 decreases as effort Z3 increases, and it is hard to break up
this correlation even by deliberately varying the effort level.

The Extended Kalman Filter

The extended Kalman filter (EKF) can be used to study uncertainty
in general state/observation models of the form x, = [(X'_I, U'-I, (3) + w,
and y, = h(x" (3) + v,. To simplify the discussion, as we did in parts of
Chapter 6, let us drop the distinction between state variables and parame­
ters, and simply call x, a parameter if [j = Xl' i.e., X,+I = X,. Then the
model is written as x, = [(X'-I, U'-I) + w, and y, = h(x,) + v" and the EKF
propagates uncertainty about all· state variables (and parameters) simulta­
neously. Its general form is very much like equations (7.12 )-(7.15), except
that the state/parameter covariance matrix E i is seen as changing dynami­
cally between observation times t -1 and t, and the independent variables Z,
are replaced by sensitivities (J [/(Jx and (Jh/(Jx of state dynamics and observa­
tions to the unknown x's. The EKF equations are (for details see Jazwinski,
1970)
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(7.18)

(7.19)

Here the prediction 9 is h[f(x._.. UI-I)] and the filter gain k. is given by

k. =E: Db.[Dh•E: Db. + Vurl (7.20)

where D h • is the observation sensitivity matrix iJh;/iJxj calculated at x =
f(X'_I, U.-I) and V. is the covariance matrix of observation errors v (usually
assumed to be known in advance). EO is a predicted covariance matrix of x,
based on uncertainty in x after observation at time t - 1 and on process
effects occurring over t - 1 to t; it is given (very approximately) by

EO =Df.ER._
1

D f• + V w (7.21)

where D f • is the process sensitivity matrix iJ f;/iJxj evaluated at x = X._I, and
V w is the covariance matrix of process errors w (again usually assumed
known in advance). If observation errors are ignored (V. assumed 0) and
V w = 0 for a subset of x's that have f(x) = x, i.e., a subset of "parame­
ters," the EKF equations for this subset reduce to looking like the linear
regression equations with Z = iJh/iJx.

Let me inject a word of warning before proceeding. The EKF equa­
tions are attractively simple, and it is tempting to use them for practical
parameter estimation (instead of messier, iterative, nonlinear estimation
algorithms or posterior density function evaluations). In my experience, the
EKF usually performs rather poorly for the highly nonlinear functions and
small data sets usually encountered in resource problems. It must be care­
fully tested for each case by using Monte Carlo simulations, which in the
end often requires more effort than using messier algorithms in the first
place. I introduce the EKF here strictly as a model from which we may
obtain some qualitative conclusions about learning rates.

As with recursive linear regression, the EKF model [equations
(7.18)-(7.21)] implies that learning rates are proportional to prediction
errors (y - 9) and to current uncertainty (EO), and are inversely related to
the expected magnitude of measurement errors V.. Process errors have a
more subtle effect, which we will explore further in a later section on
"parameters that aren't." As we assume larger values for V w , we increase
E R• correspondingly. But we also increase k. and thereby make the estima­
tion of x more sensitive (responsive, adaptive) to prediction errors as signals
of possible changes in the system state.

A lesson from the EKF that is perhaps not so clear in linear regression
is that reduction in uncertainty (as measured by E R.) is very much dependent
on how sensitive the predictions 9, are to the unknown states x,. Our ability
to "see" the x, through prediction errors y - 9 is measured through the
observation sensitivity matrix D h,. Those state variables Xi that are not
directly observed [i.e., parameters, etc., that do not appear in h(x)] enter
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the k, calculation only through their covariances E>;>j with those variables Xj

that are observed through h(x). These covariances are in turn determined
[equation (7.21)1 by the sensitivities of state variables to one another, mea­
sured by Dr,. Thus, direct and indirect linkages among observations and
state variables can be quite complex in nonlinear filtering, and it is difficult
to give simple rules of thumb about how to reduce correlations among the
variables by providing contrast in inputs.

Tracking Parameters that Arentt

Chapters 4- and 5 discussed various reasons why it is practically
impossible to construct models of renewable resource systems such that we
may confidently assume complete constancy in those numbers treated as
parameters. Almost always, the state variables we include in resource
models are aggregate indices or measures whose statistical behavior we hope
will be reasonably stationary. Parameters are usually defined by seeking bio­
logical and economic processes (such as birth and investment) having aver­
age outcomes that should be in some degree repeatable over time indepen­
dently of the individuals (organisms, boats, etc.) that are engaged in them.
To the extent that mixes of individuals change over time due to processes
that are not modeled (evolution, undetected environmental changes, or even
pure chance!), we should at least expect "drift" in parameter values. Worse,
we can be confident that there will occasionally occur abrupt and irreversible
parameter changes due to human activities and/or natural events that can be
neither anticipated nor controlled, that is, have origins outside the arbitrarily
defined "system" upon which management efforts and monitoring activities
have been concentrated.

In this section we will first look at how models for recursive
state/parameter estimation can be modified to permit tracking of parameter
changes. Then we will use the results to examine a very disturbing ques­
tion: under what conditions will learning rates even exceed rates of parame­
ter change? Considering the slow rates of learning that we must often live
with because of large process and measurement errors, we shall see that it is
quite possible to become more, rather than less, uncertain over time unless
variation in management inputs is kept above some critical "uncertainty
threshold. "

Approaches to parameter tracking

Time-varying parameters are a problem that must be faced even in
engineered control systems, and researchers in that field have developed a
number of practical approaches to parameter tracking and detection of
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(7.22)

abrupt changes. Three of these approaches are reviewed here: exponential
forgetting of data, assumption of random drift by parameters, and innova­
tion tests on the sequence of prediction errors.

A very crude way to be adaptive in the face of parameter changes
would be to just base all calculations of p,,~, etc., only on a window of data
extending back T time steps. A bit more elegant approach is exponential
past weighting of data. The idea here is that if parameters are changing, the
observations yl-I should be assigned a weight, say ),.(),. < 1.0), times the
weight placed on observations at time t. Then YI-2 gets weight ),.2, and so
forth. This is equivalent to saying that the observations should be assigned
increasing error variances riA, rlA2

, etc., moving back in time from the
present, where we take the variances as a measure of information content
with respect to the parameter values prevailing at time t. For estimation
problems representable by linear regression, exponential past weighting is
trivially easy to include in the recursive estimation equations; we simply
include),. in the filter gain equation (7.15), as

k 1 '"' Z,
, = + Z''"' Z L.fJ'_1),.i ,L.fJ

l
_ 1 I

Appearing in the denominator, ),. < 1 has the effect of increasing k, which
makes each prediction error E, = y, - 91 have a larger effect on~, - ~'-I' It
is difficult to say theoretically what value of),. should be assumed in relation
to expected rates of parameter change; good values of),. are usually found by
Monte Carlo simulations of estimation performance, where the "data"
presented to the estimation are generated by systematically varying key
parameters at reasonable rates.

I have already introduced the more elaborate approach of assuming
parameter drift, in the above discussion on the extended Kalman filter.
There we dropped the distinction between parameters and variables, and
treated parameters as variables assumed to follow a random walk model X,+I

= x, + w,. In the EKF, the diagonal elements of the process error covari­
ance matrix V w can be viewed as measures of how fast those x's treated as
parameters are likely to change. The standard error of WI for Xi, .,jVWij '

measures rougWy the average parameter change expected per time step. As
V w is increased, the filtering equations are "freed up" (larger k, values) to
track changes in x, that may be systematic (directional) instead of random.
The linear regression equations (7.13 )-(7.14) can be similarly modified to
permit selective (differential) parameter movement (Vwi; '* V Wij ) , by replac­
ing EfJH wherever it appears by EI, = EfJ'_1 + V W where the diagonal ele­
ments of V ware again the squares of the average rates of parameter change
expected.

Figure 7.2 shows some simulations of tracking performance for the
Schnute method of estimating surplus production parameters. Here "data"
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Case A: Variable effort policy after year 20
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Figure 7.2. Simulated performance of an adaptive parameter estimation scheme
for the logistic surplus production model. In case A, strong variations in harvest­
ing effort help to recognize that the catchability parameter q is increasing after year
20. In case B, the catch is held constant after year 20 (so effort decreases), and the
change in q is not estimated correctly.
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were generated with the logistic model structure assumed by Schnute, but
with the catchability coefficient increasing over time. Stable parameters
were assumed for the early development (the first 20 years) of the simulated
fishery (a bad assumption!), and an informative fishing effort sequence was
used. Then catchability was assumed to increase by 3 % each year after year
20, and two possible scenarios for regulatory response were simulated.
Schnute's linear regression estimates of {31 = r, (32 = r /kq. and b3 = q were
calculated recursively, but with variance components (V... ) added to the
second and third ({32 and (33) diagonal elements of Ea,_I at each time step.
Only small random errors w, were assumed (V... =0.001). so we see that the
estimates converge rapidly. The estimation "recognizes" that q is not chang­
ing until year 20. But when q begins to grow, the recursive estimation is at
first "confused," and its later performance depends very much on the effort
sequence that is followed. When effort is adjusted to hold only the catch con­
stant (implied correction for growing q). there is little informative variation
and the change in the q parameter is not detected even after 20 years. On
the other hand, when effort is pushed up and down every three years after q
begins to change, the filter tracks the changes fairly weB but becomes con­
fused about the rand r/qk parameters. Notice in both effort scenarios that r
and r/qk are badly correlated, since it is difficult to generate a sequence of
stock sizes varying widely enough to separate their effects.

Figure 7.3 shows a more realistic (and perhaps pessimistic) scenario,
in which the catchability is changing rapidly during the early phase of
resource development, while effort and stock size are also changing. We see
that the estimation remains confused until there is a sharp effort change, in
spite of low random errors. Effort disturbances help to sort out the biases
induced by correlated early changes in both state variables and parameters,
and there is little learning after efforts are later stabilized.

Abrupt parameter changes are in a sense easier to deal with than
slow, progressive changes that might be confused initially with state changes
or minor inadequacies in model structure. When there is a reasonable his­
tory of experience with one set of parameter values, abrupt changes show up
as persistent prediction errors when the data are analyzed forward in time
using filtering equations for parameter estimation. A simple tactic for deal­
ing with abrupt changes has been suggested by Yoshimura et al. (1979).
They advise setting up a two-level estimation system, with the first level
being a recursive filter that assumes constant parameters. Then at each time
step, a second level of analysis (and potential adaptation) is provided by
examining the most recent prediction error. If the most recent E. = y. - 9.
is large (i.e., unlikely) compared with the historical average (measured by
the residual error variance 52), then the parameter covariance matrix Ea is
arbitrarily increased (for example, by doubling all the diagonal elements).
This increases the filter gain k" and the estimation is freed up to seek new 13
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Figure 7.3. Simulated perfonnance of adaptive parameter estimation for logistic
production, for a situation in which the catchability parameter increases over years
1-10. The parameter estimates get progressively worse until there is a sudden
change in harvesting effort at year 8.

values. If the large innovation is not repeated, the estimates Swill not move

too much, because the moves are also proportional to E'+I, E'+2, etc., even
though k, has been made larger than it theoretically should be. Elaborate
statistical tests based on likelihood ratios can be developed to decide exactly
when an innovation E, is large enough to warrant changing Ea" but these
tests are unnecessary when the analyst has adequate time to reanalyze the
data repeatedly while trying different assumptions about what changes actu­
ally took place at each point where the prediction errors change abruptly. In
other words, the analyst should act as an intelligent and intuitive "second­
level controller" of the adaptive estimation scheme.

Figure 4.1 shows my favorite example of an abrupt parameter change
in a stock-recruitment system. Chinook salmon in the Columbia River
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(7.23)

showed one rather consistent pattern of recruitment until the mid·1950s,
when recruitment rates per spawner dropped quickly and have remained
lower ever since. This example illustrates nicely that big changes may occur
due to factors that are not immediately obvious. Anyone looking at Figure
4.1 would first say "which dam did that?," and pin the blame on the water
developments for which the Columbia River is so famous. The trouble is,
none of the developments coincides very closely with the change, and in fact
it is remarkable how little effect the various developments seem to have had
on recruitment rates per chinook spawner. My suspicion is that the change
was due to something else entirely-a rapid increase during the early 1950s
of commercial salmon troll fishing off the Pacific coast of Oregon, Washing­
ton, and British Columbia. The recruitment rates in Figure 4.1 are mea­
sured as the number of fish surviving their ocean life to return to the Colum­
bia River mouth, and troll harvests of them during ocean residence cannot
be measured accurately because the harvests are taken in areas where many
stocks are mixed. Even a small change in troll effort could have resulted in
large changes in ocean mortality, because many of the fish are exposed to
trolling for at least two years of ocean residence. In fact, total catch statistics
indicate that the effort increase was large.

An WICCI1ainty threshold principle

We have seen that learning rates about uncertain parameters can be
quite slow, and that these rates are dependent on how much the managed
system is disturbed through changing harvest policies. If so-called parame­
ters are also changing over time, it is natural to ask whether, or under what
policy conditions, learning rates can even keep up with parameter changes at
all. To examine this question, let us take the parameter covariance matrix
Ear as a basic measure of uncertainty, and examine how it propagates over
time. To ~implify the discussion a bit, let us look only at the case where esti­
mation can be reduced to a problem in linear regression; the conclusions are
equally valid for the more complicated algebra of nonlinear filtering.

According to the standard linear regression model, Ear [equation
(7 .13)1 should decrease monotonically over time. But if we assume that
parameters may change between observations by random movements, with
covariance matrix V w (diagonal elements of V w measure average move­
ments, off-diagonal elements measure correlations between moves by
different parameters), equation (7.13) should be expanded as

(Ea'_1 + Vw)Z, Z;(Ea,_1 + V w)
Ea, = Ea,_J + V w - --~-=--:::------------

~ + Z;(Ea'_1 + V w ) Z,
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Let us examine this rather messy equation simply as a dynamic model, for­
getting for a moment that the "state variables" Ea, have anything to do with
uncertainty. What we see immediately is a model with a positive growth
term, V .. , and a negative feedback term that is a complicated function of the
state, the growth term, and an external input (the independent control vari­
ables Z,). Obviously the growth term can exceed the negative feedback
term; the simplest condition for this would be Z, =O.

Now, any linear regression of the form Y = E~x + w (where the w's
are independent) is exactly equivalent to the regression y - 9 = E{3(x - x)
+ w, since we can write y = E{3(x - x) + {3x + wand y = (3x. This
means that the inputs Z, in (7.23) can be measured as disturbances from
their historical means i" provided we are careful to keep track of how each
new Z, alters i, = [(t -1)i,-1 + Z,]/tj recursively, the disturbance Z, - i,
is equal to [(t - 1)/tJ (Z, - i,-I). If we propagate equation (7.23) forward
in terms of these disturbances, we see that constant Z, values will stop having
any effect on Ea, once i'_1 becomes stable at the constant value chosen. So if
the mean historical inputs i and response 9 are well fixed by the data, the
negative feedback term in (7.23) will vanish, and Ea, will grow by incre­
ments V .. , unless there is disturbance in inputs away from i. Indeed, input
disturbances must exceed some threshold values in order to prevent Ea, from
growing.

We see an idea here analogous to the notion of multiple equilibria and
"domains of stability" in ecological dynamics. There is a domain of input
(state, control) combinations Z" whose size is determined by current uncer­
tainty Ea" random errors o'l, and expected rates of parameter change V .. ,
such that "choices" of an input combination from within this domain will
result in uncertainty actually increasing over time.

To illustrate this very disturbing idea, let us return again to the
almost trivial example of a Ricker stock-recruitment curve with only one

unknown parameter {recall that R, = S,_I exp [.if - b(S'-1 - §) + w.], .if

and § are known}. In this case we have the regression model y, = bZ. + w"

where y, = In (R,/Sr-I) - .if, and Z, = S,-I - § (a deviation l ). The
recurrence relationship (7.23) reduces to a scalar dynamic model for Et;,:

Z: (E t;r-1 + Q)2
Er = Er + Q - (7 24)

D, D,_I o'l + Z,2 (Et;r-I + Q) .

where .fQ is a rough measure of the expected or average change 1b, - b'_1 I

per generation in the actual responsiveness of productivity to spawning
stock. If we plot Et;, for this model as a function of the absolute spawning
stock disturbance Iz,\ (Figure 7.4), we see that Et;, decreases monotonically
as I Z, 1 is increased. At Z = 0, it has the value Et;r-I + Q, and at some
nonzero Z· it will just equal Et;,_1 (i.e., no change in uncertainty). Thus Z·
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Figure 7.4. When a supposed model parameter b is actually expected to change
slowly over time, uncertainty about its current value as measured by the variance
E,;, will increase over time (E,;, > E';,_I) unless the system state is disturbed by an
amount greater than Z·.

divides the disturbance into two domains: for Iz,1 < ZO, uncertainty will
increase from t - 1 to t; for IZ, I > Z·, uncertainty will decrease from t

1 to t. Z· can be calculated easily; it is

(7.25)

From this equation we see the rather obvious fact that the level of distur­
bance Z· needed to prevent increasing uncertainty gets bigger as the
expected rate of parameter change (Q) gets larger and/or the environmental
variation (<i) gets larger. Perhaps a little less obvious is that uncertainty is
easier to decrease if it is larger in the first place (Z· gets smaller as 1:&'_1 gets
larger); however, this fact is hardly comforting, since it only ensures that 1:6,
will not just keep increasing toward infinity if there is at least some distur­
bance in S'-Io To get a little better feeling for the practical implications of
equation (7.24), let us plug in a few representative estimates for Pacific sal­
mon. Letting § = 1 (i.e., be the unit of measurement of S,), and assuming
<i '"' O. 1, 1: &, _I = 0.01, we find that the disturbance required to hold uncer­
tainty steady is around 0.5 (i.e., 0.5§) ifv'Q =0.05, and is around 0.3 if
v'Q = 0.01. That is, for typical uncertainty about Pacific salmon, we would
need to introduce (or allow) disturbances of :t: 30 % in S, just to hold uncer­
tainty steady if only a 1% change in b is expected per year! In practice, the
statistical situation is usually much worse because of measurement errors in
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s, (see Ludwig and Walters, 1981). Also, b is at least partly a measure of
habitat "capacity" for producing more recruits when spawners are increased;
considering just human activities associated with salmon spawning streams, I
would be surprised if actual habitat capacities are changing by so little as 1%
per year.

A more complicated example of uncertainty domains is provided by
the problem of assessing impacts of fishing and lamprey control on the sur­
vival of lake trout in the Laurentian Great Lakes (see Chapter 5). Using
various statistical rituals on samples of the age distribution of the stock, it is
possible to obtain reasonable estimates of the total instantaneous mortality
rate z, suffered each year by the trout (Pycha, 1980). Provided the stock size
is not changing too rapidly, we expect this total mortality rate to be roughly
proportional to lamprey abundance (say L,) and fishing effort (say E,):

z, = M + ql L, + q2 E, + w, (7.26)

where the intercept M is an estimate of "natural" mortality rate, ql and q2

are catchability coefficients (fraction of stock taken by one lamprey and one
unit of fishing effort, respectively), and w, represents all sorts of measure­
ment and process errors that we need not discuss for the purpose of this
example. L, and E, have been inversely correlated in recent years (lamprey
decreasing slowly, fishing effort growing), but there has been enough con­
trast in their effects to provide at least reasonable estimates of M, ql, and q2.
However, these coefficients will almost surely change over time. The lam­
prey coefficient ql depends on the abundance of lake trout and other prey
fish, and on the distribution of all prey species relative to the lamprey's
spawning rivers; these dependences are complex and involve at least some
variables that are not adequately monitored. Likewise, the catchability
coefficient q2 will change as fishermen develop new tackle and acquire more
mobile vessels; again the detailed factors cannot be predicted or monitored
completely. So let us ask what level of variation in lamprey abundance L,
andfor fishing effort E, over time will be necessary at least to maintain
current levels of uncertainty about ql and q2. To simplify the presentation a
little, let us assume that i = M + qlL + q2 E is well determined from his­
torical experience, so the model (7.26) can be compressed to

(7.27)

where y, = z, - i, Z1l = L, - L (deviation in lamprey abundance from his­
torical average), and Z2! = E, - E (deviation in effort from historical aver­
age). Using this compression, we will obtain somewhat overly optimistic
estimates of the variation in L, and E, needed to reduce uncertainty about ql

and q2.
Since in this example we have some control of two input variables (L,

and E,) with uncertain effects measured by ql and q2, we must be more
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careful to say what is meant by "growing uncertainty." Some control choices
(combined changes in L and E) may permit growth in the variance of ql,

while actually reducing uncertainty about q2, and vice versa. The obvious
approach here is to find regions of choices that result in increasing variance
for each parameter, and from these identify the region of overlap where both
parameters would become more uncertain. Equation (7.23) permits us to do
this in a straightforward fashion; the region of increasing uncertainty for ql

is the set of all Zit (L, - i, E, - E) combinations such that Ell (variance of
ql = SI) is larger at t than at t - 1, and the region for q2 is the set of Zit
combinations such that En is larger. Looking at the negative feedback term
in (7.23), it is an exercise in algebra to show that these two regions are
defined by quadratic forms, and are therefore elliptical in shape. The orien­
tation of the ellipses is set by E 12 which measures correlation between 6, and
62 due to correlation in past input values. In the example we know that this
correlation will be negative.

Figure 7.5 shows how the domains of increasing uncertainty for ql

and q2 look, for the hypothetical parameters a'l = 0.1,

[
0.13 -0.12] [0.002 ° ]

E8, = -0.12 0.13 V w = ° 0.001

(i.e., roughly 30% coefficients of variation for measurement error and for
the current parameter estimates, 4% expected change per year in ql, and
3 % change per year in q2). The domain of joint increases in uncertainty is
long and narrow, indicating that uncertainty is likely to increase from t - 1
to t only if effort increase is accompanied by a lamprey decrease, or effort
decrease by a lamprey increase. Unfortunately, precisely such combinations
of input changes are likely to arise through management, since it has been a
policy to encourage more fishing as lamprey abundance has been reduced,
and local increases in lamprey abundance have been followed by restrictions
to fishing.

Management donuts

When I showed the lamprey/fishing example above to my dear friend
and colleague Joe Koonce, he said immediately "good grief, that means they
have to manage in a donut!" Koonce is given to inexplicable outbursts at
times, but in this case I think he made a profoundly important point that
Figure 7.6 tries to show as a crude diagram. The argument is quite simple:
ecological systems tend to show stability domains, bounded by combinations
of policy and state variable values that result in abrupt and perhaps irreversi­
ble changes. Chapter 5 presented a model of effects of lamprey control and
fishing on lake trout, and it predicted a sharp drop in equilibrium stocks if
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(Et -E)/E
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Uncertainty in fishing effort effect (q2) increasing over time
Uncertainty in lamprey effect (q 1) increasing over time
Uncertainty in both effects increasing over time

Figure 7.5. Domains of change in two control variables, harvesting effort and lam­
prey abundance, such that changes within the domains will result in increasing un­
certainty over time about the effect of each control variable on the total mortality
rate of lake trout.

either of those controlled variables increase too much. Such obviously
dangerous policy combinations define the outside of Koonce's donut. But on
the other hand, we see from the previous section and Figure 7.5 that it is
necessary to induce or permit at least some changes in order to even measure
the control effects and thereby hope to better predict and avoid the outside of
the donut. The hole in the donut represents policy combinations that are
undesirable in view of this need for continuing adaptive learning.

Points within the management donut represent levels of disturbance
or variation in management actions that strike some reasonable balance
between avoidance of danger, versus probing that is necessary to even esti­
mate where the danger lies. The size of this domain for balanced action is a
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Figure 7.6. Koonce's donut. Changes in policy variables must be reasonably
large to allow learning about policy effects, but very large changes imply unaccept­
able risks.

function of the state of the art in modeling and monitoring, which deter­
mines the magnitude of measurement and process errors in estimation
schemes, as well as the resilience of the managed system itself. Improved
monitoring and estimation schemes cannot reduce the outside diameter of
the donut, but they can increase the donut's size by making the hole smaller.

Design of Infonnative Input Sequences

Let us close this chapter with a brief discussion about the design of
input (disturbance, control, harvest) sequences that maximize learning rates
about uncertain parameters. A policy that is designed solely to gain infor­
mation would rarely be optimum in any broad management sense, but it can
provide a useful backdrop against which to compare policies designed with
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other objectives in mind. Also, when uncertainty is very high (preadaptive
phase of management), an optimum experimental policy may be a better ini­
tial management plan than policies that emphasize slow development and
avoidance of risks.

MC2lIUI'elI of learning performance

If we want to talk about an "optimum" input sequence for learning,
we must first decide on a reasonable criterion (objective function) for rank­
ing alternative sequences against one another. It is quite possible, for exam­
ple, to design a harvesting policy that will allow precise determination of the
intrinsic rate of increase of a population (r of logistic, Ricker a, etc.), yet
give no information about other parameters (just drive the population way
down, then watch it grow). Once a criterion is selected, it is usually neces­
sary to search for a maximum (or minimum) value by numerical optimiza­
tion procedures, so it is important that the criterion not be too difficult to
compute. Four possibilities that are relatively easy to compute are outlined
here.

If it is not clear how uncertainty about particular parameters will
affect later policy decisions, we may take some general measure of uncer­
tainty based on p,(/3) as the criterion to be minimized. Here a natural choice
would be the Shannon information statistic I = E; Pi In pi, which for con­
tinuous variables is written as an integral

I = I pr(/3) In p,(/3) d/3
IJ

Obviously this statistic can be very hard to compute for general distributions
p,(/3) , but if we approximate pr as a normal distribution with mean ~, and
variance ~~r' then the Shannon statistic is proportional to the log of the
determinant of E~t:

I =k l + k z In I~~rl
(see Bard, 1974, Chapter 10). k 1 and k z can be ignored. For an "experi­
ment" involving control choices u 1, ••• , u" the sequence of T values that is
predicted to minimize In IE~T I is then taken as the optimal input design.
For computational purposes, it is usually simpler to maximize an equivalent
measure, IE~~II, since the elements of E-1 can be approximated by

E~\ = t [iJY,] [iJY']_l
'} 1=1 iJ/3i iJ/3j 11;,

i.e., Eii' is the sum of cross products of the sensitivities of predicted outputs
y, to the parameters /3; and /3j, weighted inversely by the expected variance
of the observation yr. Notice that the evaluation of Eijl usually requires
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some initial or prior assumption about {3, since the predicted sensitivities
depend on {3.

An even simpler criterion to minimize is the approximate variance of
the prediction error y1 - Y1 at the end of the T-year experimental period.
The variance of this prediction is roughly approximated by 11;1 + s;E~, S1,
where Si1 = aYTla{3i. As with the Shannon information criterion, we must
presume to predict E~, for any input sequence u., ... , u1 ; then we seek the
sequence that will minimize s' E s.

A third, related criterion can be defined if there are particularly
important policy variables H, such as optimum equilibrium harvesting effort
or optimum escapement, that can be expressed as functions of the original
model parameter (3. Suppose there are K such variables, and Hk = [k({3),
where k = 1, ... , K. Then the covariance matrix of the vector H is given
approximately by EA = S'E~1S, where the matrix S is defined by Sij =
aH;/a{3j. The obvious criterion to minimize is then the information statistic
for H, In IEAI. This criterion has the advantage that there are usually
fewer key policy variables H than uncertain parameters {3 ( IE it I =0 if there
are more H's than (3's). Parameters that do not directly affect H will enter
the analysis only through their effects on uncertainty about the parameters
that do affect H (these effects are measured in E~).

Notice that the above three criteria all represent weighted sums and
cross products of the elements of the predicted covariance matrix E~1' They
depend on prior estimates flo of fl1 only in so far as the elements of E~1

depend on the parameters; this dependence can be both direct ({3 appearing
in ayla(3) and indirect ({3 affects X" y depends on x,), Qualitatively similar
predictions about the effect of control on E~1 are likely to be obtained for a
wide range of prior estimates flo, but this must be checked in each nonlinear
case by repeating the optimization for a range of flo possibilities.

A final and rather more ambitious criterion would be the predicted
decrease in expected value of perfect information EVPI (see above section).
Recall that EVPI is calculated from p,({3) and from control choices u· and
uJ· defined by the models considered. Thus, if we can predict how P, will
propagate, EVPI can be calculated at any time step T. However, this means
redoing one optimization (to determine u· at time T) for each control
sequence examined. If this optimization is not too involved, then the
optimal sequence can be sought as the one which minimizes EVPI at time T.

None of these criteria gives much immediate insight about what pol­
icy sequence would be most informative, except when they are applied with
very simple models and estimation schemes. However, in just trying to
understand them one is forced to think a little more carefully about what
uncertainty means, and about how we should measure it in management
contexts where there are objectives other than just reducing uncertainty
about unknown parameters.
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There has been some experience in numerically computing policies
that optimize the information criteria outlined above (see, for example,
references in Bard, 1974; Mehra, 1974). These studies indicate that the
particular criterion used can make a big difference, but a few general
(robust) properties of the solutions have been noticed. By a "solution" we
mean an input or control sequence Ul, ••• , U r that optimizes one of the cri­
teria listed above, conditional on some reasonable prior estimate So if one is
needed to predict the propagation of pr(fl) over the T "experimental periods."

The first noteworthy property of such solutions is that they are usually
not unique. There will be several control sequences that give the same, or
nearly the same, expected learning performance. These sequences are likely
to represent a repeated cycle of inputs (like Ul, •.• , u. = high, low, low,
low; then Us, ... , Us the same), and nonuniqueness arises from insensitivity
to where in the cycle one starts at t = 1. A similar effect arises in classical
experimental design, where it is usually best to replicate a small set of exper­
imental combinations several times.

A second important property is that it is usually best to use only
extreme controls, such as the lowest and highest feasible harvest rates.
These extreme controls generate the greatest possible contrast over time in
the system states achieved as well as the direct control responses observed.
So, for example, if one wishes to estimate parameters like the logistic rand
k, the best harvest sequence will first drive the stock dow n as rapidly as pos­
sible, so responses at low stock sizes (effects of r) are visible. Then it will be
best to shut down harvesting so that the stock moves as rapidly as possible up
to levels where the effects of k become visible. Obviously the best predicted
sequence (high, low, low, low, ... , high, low, low) will depend on how hard
it is feasible to harvest, on how long the recovery is predicted (So!) to take
during periods of low harvest, and on the length of experimental period (T)
available. Longer experimental periods will favor the use of longer, more
extreme depletion and recovery cycles. When exploitation parameters (i.e.,
catchability q when effort is the control) are also uncertain, the best sequence
may involve a repetition of short cycles (high, low, high, low, etc.) that hold
the state nearly constant while providing contrast in direct control effects.

Finally, when the system model predicts strongly "nonlinear
behavior," such as the catastrophic collapses and recoveries predicted for lake
trout responding to lamprey control and harvesting (see Chapter 5), analyses
by Mehra (1981) indicate that the best experimental policy will be one that
keeps the system where it will exhibit the strong behavior as much of the
time as possible. So if there is uncertainty about the location of a "cliff
edge," the boundary of a domain of stability, or the outer rim of a manage­
ment donut, the optimum experimental policy will be to drive the system
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back and forth across the statelcontrol combinations that are thought to con­
tain this location. This is obviously a very dangerous prescription from the
management point of view, and highlights the basic conflict between learn­
ing versus maintenance of temporal stability and avoidance of risks.

A common management prescription that is definitely not optimal
from the viewpoint of experimental design is to slowly increment the inputs
over time so as to keep the system near equilibrium. Such policies result in
strongly correlated inputs, and in state variables being correlated with inputs
(i.e., stock size negatively correlated with harvesting effort), so the effects of
each cannot be distinguished. These individual effects would not matter if
we could assume the equilibria to be stable and repeatable over time (i.e., no
parameter changes), and if T were large enough to permit a leisurely search
for the optimum equilibrium (which is a reduced function H of the original
(3). Unfortunately, neither of these conditions is met in practice.

A challenging area for future research is in the design of informative
policies for problems where the appropriate model structure is highly uncer­
tain, and where part of the design problem is to decide what set of output
variables y, to monitor when resources for monitoring are very limited.
Most dynamic models for renewable resources contain functionally similar
parameters for response under extreme states (r and k, for example), and so
imply similar learning policies. But there is growing evidence that responses
away from these extremes are not always "logistic-like" (dome-shaped), and
may involve such things as multiple equilibria. If a design is adopted that
assumes some logistic-like response when, in fact, the behavior at intermedi­
ate states is more complex, the extreme inputs associated with that design
will either fail to detect the nonlinearities or drive the system into a state
from which recovery (and therefore later learning) is impossible. Such argu­
ments imply that robust design should involve less extreme input sequences
than would be recommended on the basis of very simple models, but it is not
yet clear how to strike a reasonable balance that avoids the confounding
effects associated with incremental input changes.

Policies that permit natural variation

As we shall see in the next chapter, feedback policies to maximize
average harvest may lead to reduced variation in the stock size after harvest
(escapement) each year. Such policies will obviously reduce learning rates
about the relationship between stock size and production, and Chapter 9 will
argue that it is often worthwhile to deliberately reintroduce escapement vari­
ation through probing experiments. As a compromise between these
extreme policy choices, one suggestion has been to use a constant harvest
rate (constant proportion harvested) policy that will partially stabilize the



228 Adaptive Management ofRenewable Resources

escapement, but will also allow some informative variation through natural,
random effects on the stock size before harvest each year.

Unfortunately, this compromise policy can lead to severe bias in esti­
mates of production parameters (see Appendix SA), in a direction that favors
overexploitation. Intuitively, the basic problem is that each potentially infor­
mative natural variation has a double effect: it causes the stock size to
change (as desired), but it also immediately favors parameter values or
hypotheses for which the variation is considered more likely. In other
words, it cannot immediately be determined whether the variation represents
a large deviation from the correct model for average response, or a small
deviation from a response model that will later be proved incorrect. This
ambiguity is exaggerated in situations where the deviations are autocorre­
lated (tend to occur in runs or cycles). The bias disappears for large sample
sizes, but over long time scales it is dangerous to assume that parameters are
constant in the first place. Ultimately, "natural experiments" or "dithering"
cannot be trusted as a source of informative variation.

Problems

7.1. As introduced above, the expected value of perfect information
(EVPI) is calculated for a fixed set of alternative models and a fixed
set of policy choices, by first finding the best choice if there is no
learning (never learn which model is correct), then looking at how
bad this choice is compared to the best choices for each of the alterna­
tive models. Identify the two basic reasons why EVPI may be small
in some cases, and give graphical examples (e.g., alternative models
of surplus production as a function of exploitation rate choice) of such
cases.

7.2. Monte Carlo simulation studies have confirmed much sad experience
with management experiments, demonstrating that it generally takes
many years to determine which response hypothesis is correct.
Management agencies generally cannot guarantee commitment of
financial resources (manpower, equipment, etc.) over such long time
scales, and the original plan of actions and patient evaluation may be
forgotten as the personnel who conceived it are retired or move to
new positions. Suggest practical steps for overcoming such institu­
tional difficulties.

7.3. We have seen that it is possible for uncertainty to actually increase
over time, if key "parameters" are changing slowly, but the system is
managed so as to prevent these changes from becoming apparent. A
particularly nasty and common example is with the "catchability
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coefficient" q (fraction of stock taken by one unit of harvesting effort),
through which we interpret catch and effort data using assumptions
like H. = qE,N, (catch H, is proportional to effort E, and stock N,).
Suppose effort is held constant over several years, and that catches
likewise remain steady. What two hypotheses can equally well
explain this temporal stability? Identify at least three strategies for
resolving which hypothesis is correct, and identify which management
actors (management agency, harvesters, future harvesters) would bear
the direct "cost of learning" for each strategy. In view of who bears
the costs, which strategy is likely to be the "course of least resistance"
politically?

7.4. Develop a microcomputer simulation to demonstrate how harvest pol­
icies will affect learning rates for a stock-recruitment system, where
recruits R, are generated from previous spawners S,-1 by the stochas­
tic Ricker model R'+l = S,e·-bS,+,., with a = b = 1, w, normally dis­

tributed with mean zero and standard deviation (1,. = 0-0.5. Con­
sider two extreme cases for the initial stock size So(So =0.1, So = 1)
so the stock may be initially overexploited or not yet touched. Esti­
mate a and b over time by the recursive linear regression equations
(7.12)-(7.15), with

R,
y, =In-­

S,-I

For the first four years of each simulation, use a constant exploitation
rate of 0.5, so S, = 0.5 R" t = 1, ... , 4. Then try several harvest
strategies, ranging from continued constant exploitation (so S, varies
only due to random effects of w, on R ,) to constant escapement (at S,
= 0.5 each year) to a "probing policy" where you attempt to have S,
range as widely as possible.
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7.5. Develop a program to recursively estimate the logistic parameters R o

and R , for the George Reserve deer herd (problems 1.3, 6.4), assum­
ing only process errors. How does your confidence in R o and R 1

improve over time, particularly over the long recent period where the
population has been held relatively constant by harvesting? Then
include a discount factor for older data [equation (7.22)]; as you vary
Afrom 0.8 (use 5 years' data) up to 0.95 (use 20 years' data), how do
the parameter estimates vary over time? Can you see evidence that
the "carrying capacity" (inversely proportional to R.) has decreased
over time?

7.6. Estimate EVPI for the Fraser River sockeye salmon situation in Fig­
ure 1.1, while assuming that (1) the two models T/l and T/2 are
assigned equal prior probability; (2) the management objective is to
maximize average annual yield; (3) the optimum policies u', u~· , and
ur are each a fixed escapement strategy. u:· is to use that fixed
escapement that will maximize average catch if T/l is known to be true,
and u· is to use the best escapement if there is no chance to learn
which model is correct. Note that the best escapement for u· is the
one that will maximize the expected catch 0.5 C. + 0.5 C2, where C1

is the average catch if 111 is true and C2 is the average catch if T/2 is
true (C 1 and C2 both depend on the escapement chQice). Considering
Figure 7.1, how long would it likely take to determine which model is
correct if the u· choice is actually adopted?
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Chapter 8

Feedback Policy Design

In essence, our approach is that management of a
natural resource, and also the sampling processes by
which we learn about the resource, can be thought of
as a game. The object of research is to gain insight
into the structure of the game and determine the
procedure that optimizes the outcome when the game
is played.

Watt (1968)

The notion of a feedback policy was introduced in Chapter 2, then

used rather loosely in later analyses, such as the section in Chapter 7 on the
value of perfect information. Before proceeding with discussions about

actively adaptive policy design in Chapter 9, we need to make the notion
more precise and examine some of the problems associated with computation

of optimum feedback policies in general.
The intuitive notion used so far is that a feedback policy is a condi­

tional program of actions, where the management action at each decision
point in time is chosen as a fixed function of the "system state" at that point.
It makes obvious sense to develop such a program when the system state is

not predictable in advance, if for no other reason than to force a strategic
statement of how various management objectives should be weighed against

one another in the event of (i.e., contingent upon) extreme changes that
require painful trade-off's.

In the absence of a feedback policy, each unanticipated system change

must be either ignored, or made the basis for an open-ended new evaluation
of objectives and actions. Policies that simply ignore changes and stick to

previously planned actions are known as "open-loop policies" (no feedback
"loop" from system to actions). It makes little sense to even talk about
open-loop policies in the usual resource management contexts, where at least
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some opportunities exist for monitoring and evaluation as management
proceeds.

The other extreme, of wide reevaluation at each decision point, is
much more interesting. Many management authorities, such as interna­
tional fisheries commissions, actually proceed in this way; major decision
points are associated with events, such as annual meetings, where there is a
more or less thorough review of historical data and "models" for system
response, and intensive debate about strategic objectives and the best
immediate tactics to follow. The possibility of such reevaluation raises a
serious question for anyone who proposes an analysis of alternative feedback
policies: what factors should be treated as variables in the definition of sys­
tem state?

For example, suppose we want to specify how annual harvests should
be varied in response to changes in stock size due to unpredictable events,
such as the appearance of strong or weak year classes. Should the catch be
made a fixed function only of total stock size, or should recruitment esti­
mates be treated as separate variables? Should the function have fixed
parameters, based on some model(s) whose parameters have in turn been
estimated from historical data, or should we assume that the parameter esti­
mates will be updated each year as new information becomes available? (If
so, the "parameters" are variables of the feedback policy function.) Particu­
larly this latter question can haye profound importance for adaptive policy
design: if we admit that management actions may vary in an informative
manner just due to revision of parameter estimates, we may well conclude
that it is unnecessary to deliberately introduce further "experimental" varia­
tion. Policies that rely just on parameter revision to provide informative
input contrast are called passively adaptive policies, while those that include
deliberate probing for information are called actively adaptive policies.

In thinking about the questions raised above, it is useful to recognize
very clearly that feedback policies are something more than just programs for
responding to change. Rather, tney are programs designed with at least
some anticipation of future responses to the actions taken. That is, feedback
policies are not strictly substitutes for accurate prediction, since we cannot
even design them without some model(s) for the effects that they will have'
A friend of mine who misunderstood this point once gave a definition of a
feedback policy as any rule for adaptation to changing circumstances. The
difficulty with this definition is that some responses to changing system state,
all of which he referred to as "adaptation," can actually prevent learning
about which responses would actually be best. For example, it is a feedback
policy to allow the same fixed number of salmon to spawn in a river each
year, in the sense that harvest is made a function of recruitment. But, if suc­
cessful, this policy absolutely prevents learning about what spawning stock
would result in the best recruitment. Feedback response to short-term



Feedback Policy Design 233

changes should not be confused with longer-term learning and adaptation to
changing system structure.

In this chapter we will first look at some alternative state measures
that can be used as the basis for feedback policy design. Then we will exam­
ine practical problems of computing "optimum" feedback policies given a
well defined model and management objective. Finally, we will look into the
stability and passive adaptation properties of leedback policies that are
designed without deliberately taking account of how actions affect learning
rates.

Feedback and Information States

It is a truism to state that the best management decision to make at
any point in time is some function of all the information available at that
time. In terms of the shorthand introduced in Chapter 6, we say that the
optimum vector of actions Ulo is a function of the alternative models
identified as plausible M, of the historical data available YI, and of prior
information available about which model is correct, measured by probabili­
ties Po(m;). Of course, u,o is also a function of the management objective(s),
which hopefully can be quantified (through measures such as total catch,
employment, and profits to the harvesting industry), but for now let us con­
centrate on the dependence on M, Y, and Po.

Sufficient information states

The first problem that we must face in feedback policy design is that
the total "information state" {M, YI' Po} is growing in dimension over time.
Obviously this happens with the data set Y, (unless older data are discarded),
and it is not unusual to see new models mj proposed as scientists find fresh
viewpoints about key variables or ways to deal with existing concepts. But
Po can also change over time, as experience with and analysis of similar sys­
tems leads to greater confidence about common processes and parameters.
We cannot, in principle, foresee all such changes, but we can at least try to
find information state representations for YI that do not involve viewing the
feedback policy as growing pathologically in complexity over time.

Much of the literature on feedback policy design begins by pretending
this problem away. It is assumed at the outset that Y, and Po are adequate
to define the "correct" model mt exactly, and that the system state x, can be
measured precisely. If mt is of the form X'+1 = [(XI' U" WI)' then there is no
reason to look back into the history of the system at all, since that history is
fully summarized by the current state XI. In other words, for any choice U"
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there is no information about the future of the system that is not contained in
[(x,) and the probability distribution for random effects WI' This very bold
pretense has been justified in two ways. First, it makes the mathematical
analysis more tractable, and hence the analyst can publish more papers.
Second, and more defensible, is that the policy computed by assuming away
uncertainties except w, is often close to or identical to the actual optimum
policy based on the full information state. This second argument should
begin to sound suspiciously familiar; we have returned to the introductory
remarks in Chapter 6, where I noted in passing that "certainty-equivalent"
policies are optimum for a special class of problems, including linear­
quadratic control systems. For a more precise and insightful discussion
about certainty equivalence, see Bar-Shalom (1981). Unfortunately for
resource analysts, a key requirement for certainty-equivalent policies to be
optimal is that the learning rates about unknown states/parameters be
independent of the control choices u,.

But the previous paragraph makes a key point: the optimum feed­
back policy should be a function only of those variables that contain unique
information about the future of the system. To clarify the point, let us think
of the feedback policy as a "black box" that outputs a policy choice u, when­
ever you give it a vector of inputs I, (the input vector I, is an arbitrary infor­
mation state). Now, if the black box is to output the optimum u,·, then
either it must be able to place the best possible odds on all future outcomes
that might arise from applying each choice u" or it must be able to compute
ut" without reference to these odds (certainty equivalence). It is the former
case which is of interest to us here, and the question becomes: what is the
minimal input (information) state I,· necessary for the black box to act as if it
were reanalyzing the whole information state {M, Y, Po} anew at each deci­
sion point t, so as to place the best possible odds on all future outcomes?
This question should sound quite familiar if you have read Chapter 6, where
we discussed the notion of "sufficient statistics" that capture all of the infor­
mation about p,(mi) that is contained in the original data set Y. To the
extent that "placing odds on future outcomes" means using the probabilities
P,(mi), the sufficient statistics for P, are at least part of the minimal informa­
tion state I,·.

When the system state x, can be measured exactly (no observation
model necessary), then placing odds on future outcomes (in the determina­
tion of un involves knowing only x" P,(m;), and the distribution of environ­
mental effects w" We should be able to design a black box policy that has
evaluations of the effects of w, "built in," so the minimal information state It"
is {XI, p,(mi)}. When P, can be computed from sufficient statistics 51(Y,),

52( Y,), ... , then I,· reduces to {x" 5 .. 52, ...}. In this case the black box
must in effect reconstruct P, from 51, 52, •.. , then look forward at X,+I, X'+2,

etc., using the odds defined by Pt.
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The situation is more complex when only indicator measurements yr

= h(xr) are available. Then there is uncertainty about the state X r as well as
model structure and/or parameter values, and looking ahead involves placing
joint odds of the form pr(Xr) Pr(m;) on both the starting point and the rules
for state transition. The feedback black box must try to reconstruct Pr(x r )

from available data Yr , as well as P.(m;); the black box designer must seek
sufficient statistics for p.(xr ) if the information state I r' is to be kept constant
in dimension. Notice that this "extra" problem of estimating pr(x.) vanishes,
at least symbolically, when the alternative models m; are generated by vary­
ing unknown parameters (3 that can be viewed as part of the state variable set
Xr; in this case all uncertainties are thought of as represented in pr(Xr), where
X r is called the "augmented state vector."

Approximate information states

Let us contrast the above view of a feedback policy as a black box
against the behavior of an intuitive decision maker engaged in harvest regu­
lation. To make a harvesting decision U r (allowable effort, quota, etc.) in
year t, the decision maker would typically begin by plotting historical
records of harvest and abundance (indexed, perhaps, by catch per effort).
Then he would examine the abundance trend for evidence of harvest effects,
and thereby construct an intuitive "model" for the stock response Xr+1 =
[(x"~ ur ). Recognizing the possibility of measurement errors in the abun­
dance time series, he would probably decide on a best estimate Xr by visually
smoothing the abundance curves, thereby making xr a function of the histor­
ical points yJ, ... ,y,. Finally, using the best estimate Xr and the intuitive
model, he would visually project abundance changes for a range of choices
U" and select that choice ur' which he expected would give the best balance
of objectives (immediate harvest versus maintenance of stock). I am delib­
erately being a bit optimistic here about intuitive decision makers, but at
least the good ones do try to form response models, recognize measurement
errors, and make alternative projections of some sort. So what then would
the black box do that is so different? The answer is nothing, really, except to
follow each of the steps precisely and repeatably: placing odds on models
replaces intuitive model construction, state/parameter estimation replaces
smoothing, and optimization replaces balancing of objectives. The key
difference is that, provided the black box has a reasonably small input set I,'
so it does not have to "reinspect" the entire data history at each step, we can
repeatedly simulate how it would perform in response to various things that
can go wrong with models, data, and objectives. That means we can "train"
it, by adjusting its components and parameters, in order to do a better job.
In such training exercises, we are almost bound to find ways to improve
upon purely intuitive feedback behavior.
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For practical game playing and formal optimization with feedback
policies, the information state vector Ir' required by the policy function (Ur'

as a function of In should have a very low dimension. This means that if
we throw together unknown parameters and state variables into a single un­
certain vector x" the probability distribution pr(x I ) needed to place odds on
future outcomes must be characterized by a few statistics in I r•• Three
options suggest themselves immediately:

(1) I r' = X" i.e., base the policy function only on the best estimates of
states and parameters (assume certainty equivalence).

(2) I,' = {XI, E i ,}, where Eir is the covariance matrix of x,. This is
known as the "wide-sense" information state (Bar-Shalom, 1981).
The basic justification for option (2), as mentioned in previous
chapters, is that p,(x,) is expected to be approximately normal around
the mode x,.

(3) It = {xt,Pr(mt),P,(m2), ...}, when the state Xr is measured exactly
and model uncertainty is represented in terms of just a few discrete
equation/parameter combinations m;. An advantage of this third
approach is that, if there are N hypotheses, only N - 1 values of P,
need be included (Wenk and Bar-Shalom, 1980); two-model analyses
require only a single uncertainty measure Pr(mt).

The "wide-sense" information state {Xr, Ex,} has been used very suc­
cessfully to gain understanding about a variety of adaptive control problems
(see references in Bar-Shalom, 1981), and we shall return to it again in
Chapter 9 along with the option of assuming only a few discrete alternative
models. The wide-sense information state {Xr, E,d is essentially a descrip­
tion of the first and second moments (means, variances, covariances) of the
historical data set Y, along with sensitivities of predictions to uncertain
states. Recall from Chapters 6 and 7 that Ei; consists approximately of ele­
ments like

-2 t [ar,] [ar.]
s ,=1 ax; aXj

which reduce to moment estimators E Xj Xj for systems that are linear in
parameters. The approximate behavior of x, and E ir can be predicted a
priori by filtering models such as the extended Kalman filter introduced in
Chapter 7. It would, in principle, be possible to develop filters that predict
the dynamics of higher moments of the data [and therefore of p,(x,)], but
such moments are unlikely to make much difference in calculations of the
expected values of alternative policy choices.

Another possibility is to base the policy function on best estimates xt

plus a single measure ai, of uncertainty about each (standard deviation,
range limit, or whatever). The trouble with this approach is that it does not
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"tell" the function about correlations among parameters associated with lack
of historical contrast in Y, and so the function cannot be constructed so as to
account implicitly for (or, if you like, anticipate) how these correlations
might be reduced through informative variations in U,. By always "seeing"
uncertainties as independent of one another, it will in effect miss opportuni­
ties to reduce uncertainty about one factor by taking actions that will reduce
uncertainty about another.

Computation of Optimum Policies

Given an information state description I" we seek next to find a feed­
back policy function ur• = u(I,) that will prescribe the best possible ur• for
any information state I, that may arise as a result of management history and
natural events. It may seem intuitively like an almost impossible task to find
such a function, even for simple definitions of "best possible" in terms of
management objectives like maximizing sustained yield. But it turns out
that there is a method of optimization, known as dynamic programming,
which produces exactly the desired function for small problems where I, has
only a few (~ 5) variables. These results can then be used to obtain some
idea of the form of the policy function for more complex problems, and once
this form is defined we can seek best values of its quantitative parameters;
this is called "optimization in policy space."

The principle of optimality and dynamic programming

There is an enormous literature on dynamic programming, and for
detailed introductions I particularly recommend the books by Richard Bell­
man (1957, 1961) that set the field in motion, and the texts by Larson
(1968), and Larson and Casti (1978, 1982). Here I shall give only a very
brief overview for readers who want an intuitive idea about how it works
and why it results in estimates of feedback policy functions. To make this
overview more understandable, I will omit most of the mathematical nota­
tion that usually makes dynamic programming appear very formidable at
first, and I will discuss only the simplest formulations for stochastic dynamic
problems.

Consider what it means to make the "best possible" management
decision at some point t in time. If we call the immediate "reward" (payoff,
harvest, net economic return, etc.) from this decision vr , then a reasonable
objective function for management is to try and maximize the sum, say V r ,

of these rewards from time t forward to some arbitrary "end time" T;
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V, = v, + Vr+1 + .. , + VT (8.1 )

Notice that this way of defining the total future value Vr makes it possible to
write (8.1) as a recursive relationship:

V, = Vr + V'+l (8.2)

Objective functions like this are called "separable," in the sense that we can
break up the total value into an immediate component (vr) that combines
simply with (adds to, multiplies, etc.) a longer term component (Vr+ l ) that is
of the same functional form as Yr. In dynamic programming we assume
that the "best possible decision" is the one which maximizes the expected
value of

T

Vr = E Vj = v, + Vr+1

;=t

That is, the best decision is the one which gives the best combined value v +
V, or, in our earlier terms, the best "balance" between short- and longer­
term rewards when there is some trade-off between v, and Vr +1 •

As we would typically measure them, the immediate rewards v, are a
function of the system state x, and the decision choice U,:

v, = Vr(xr, ur) (8.3)

Furthermore, any choice u, will in general affect the next state X'+I, which
will affect V'+J, and so forth. In other words, V,+! is a function of X'+I:

(8.4)

Now we can define the basic principle o[ optimality for dynamic program­
ming. Suppose that someone hands you, or that you have somehow already
computed, the best possible long-term value V'·+I (X'+l) [or every state Xr+l

that might arise. (Be careful here: what you have been handed is not a sin­
gle number, but rather a function of X'+l; it may help to think of this func­
tion just as a graph of the best value V:+l versus X r +1.) Suppose further that
you have a model that assigns odds P(X"d) to each possible next state X,+I

when given the current state x, and any action choice U,. Then the principle
of optimality simply states that the best value that can be obtained [rom time
t forward, V,·(x r), for any X" is the one that maximizes

(8.5)

where the 1: is across all states Xr+1 that are assigned nonzero probability
given x, and ur • Operationally, the principle of optimality says that in order
to find V,·(x,), you Just search across action choices u, while calculating the
value of each choice using equation (8.5), and take V: to be the highest
value that you find in this search. By repeating this little optimization for
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every possible state X" you can build up the function V"(x,). It is a tedious
business to repeat all these little optimizations; dynamic programming is
very much a technique of the computer age!

There are four remarkable features about the dynamic programming
technique as outlined above. First, the calculation of V t + V'+I depends only
on having some consistent means for assigning odds P,+I(X,+I) to states that
might arise given x, and u,. No other constraint whatsoever is placed on the
dynamic model for X over time, or on the control set chosen for analysis.
Thus, the dynamic model can be quite complex, provided it does not have
many state variables x that link the system's behavior from t to t + 1. The
controls may be tightly constrained to reflect practical limits on actions, and
in fact this even simplifies the searches for optima.

Second, the technique may be applied repeatedly to move backward
in time from T to the starting point t (so-called backward recursion), and
thereby build up a picture of the best actions to use over all time steps. So if
we start out with an arbitrary end value Vi-(xr) for being in different states
at the terminal time, we first look forward to this for each possible state Xr-I
at the next to last time and calculate Vi--I(Xr-I). Then for each possible
state XT-2 at time T - 2, we look forward to Vi--I(Xr-l) and thereby calcu­
late Vi--2(Xr-2). Then we move back to T - 3, and so forth.

Third, at each time step we necessarily construct a feedback policy,
because we find the best action u, {or each .~tate x, that might have arisen by
time t, without ever saying how (or whether) that state will actually occur.
The little optimizations for each x, find the control that maximizes v, +
E P Vi-+l, but by definition the Vhl are the best that can be done in the long
term. Thus, the feedback policy u,(x,) resulting from doing these optimiza­
tions for all x,'s is optimal for the long term also. It is the best balancing pol­
icy (v t versus V'+l) in consideration of the best future balances for V,+I versus
V'+2, etc., insofar as these future balances have been included in the calcula­
tion of V'+I' Richard Bellman's genius in recognizing and promoting this
remarkably simple logic will not soon be forgotten.

Fourth, the best policy u, to use for each x, quickly becomes station­
ary (independent of t), as we move backward from the end time T, provided
the short-term payoffs v,(x" u,) are calculated the same way each time up to
constant factors, such as a discount rate (V,+I =).. V" ).. < 1 always results in a
stationary policy), and that P(X,+I) given x" u, is constant over time (i.e.,
model is same for all times). This means that the requirement to assume
some terminal time T, and value V,'(xr) in starting the calculations, has lit­
tle or no effect on the final results, provided we move back sufficiently far
from T (i.e., the horizon is far enough away). Unless a very high value is
placed on some particular end state xi- and there is no discounting, the sta­
tionary optimum policy usually becomes evident within 2-10 backward
steps.
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The dynamic programming technique described above is known as
"value iteration" since the value function V,'(x,) is built up by backward
iterations in time. When it is known that a stationary policy will exist,
another technique known as "policy iteration" can often be used to find the
optimum stationary (feedback) policy more efficiently. For an example from
fisheries, see Ludwig and Walters (1981).

An important special case: v, linear in u,

Some of the tedious, repeated optimizations described above can often
be avoided by looking carefully at the structure of a problem. Of particular
importance in resource management is the situation where the actions u, can
be defined so that the short-term rewards v, are linearly related to them. For
example, if x, is the single variable "stock size" and u, is defined as the stock
to be left after harvesting (escapement), then the payoff measure v, = total
catch is given by

v, = x, - u,

Suppose now we try to find the maximum of V, = v, + V,'+I by standard
calculus (differentiate with respect to U" set derivative to zero). The result is

av, aV,'+I- = -1 +--=0
au, au,

(8.6)

which implies that the best u, is at the point where aV,'+I jau, = 1. Notice
that x, does not appear anywhere here, since X,+I will be a function of the
escapement u, {V'\l = V,'+I[x'+I(u,)]}, except that x, constrains u,(u, S x,).
This means that the optimum policy will be to use a u, as near to the point
where aV,\, jau, = 1 as permitted by the constraint u, S x" i.e., to use u, =
x, for x, below this point. This is just a "fixed escapement" policy: take no
harvest (escapement = stock) unless stock size exceeds the point u· where
aV· jau = 1, and set escapement to this value u· when stock size exceeds it.
Notice that this argument does not depend at all on the particular model for
X'+l as a function of u" except implicitly in that V'[x(u)] must have a
unique point where aV· jiJu = 1.

Similar results can often be obtained for more complex examples.
The key determinants of whether or not a simple policy exists are (1) the
short-term payoff function v" and (2) the dynamic model for X,+I insofar as
this model predicts state responses (X'+I versus u,) that are not dome-shaped.
Models that predict multiple equilibria are likely to generate value functions
V· with several points such that aV· jau = 1, and each of these points must
be checked for optimality.
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The dynamic programming technique can be modified to handle
situations where the feedback policy must be based on only part of the state
variable set X" Such situations are especially important in adaptive policy
design, where we must work with partial observations and parameter esti­
mates. The key requirement to apply the modified technique is that it must
be possible to assign a probability distribution pr(Xr IYr) to the unobserved
state variables X r given the observed variables yl'

The basic idea is to find a decision ur• that is optimal, in an expected
value sense, with respect to the observed quantities YI only. Then the joint
optimum value function V·(x, y) is calculated from u·. The little local
optimizations seek to maximize

\1,(y,) = ~ p(x, Iy,) [v,(x" u" y,)

+ E p,(Xr+1,Yt+I/Xr,Yr,UI)
JI',+l

(8.7)

Notice here that we must be able to assign odds to both XI+I and Yr+1 given
x" yr, and UI [these odds are pr(Xr+l, Yr+llxr, Yr)] and that otherwise V(YI) is
just a weighted average [by p(xrIYI)] of outcomes v + V· across the states X r
that might actually be present given YI. When we have found the u,· that
maximizes V, for a given Yr, we then calculate

Vr·(X" Yr) = v(xr, u,·, Yr)

+ E pr(X'+1, Y.+I IX" YI, ur)
"',+1

(8.8)

using this Ur· for every possible value of XI. Thus, in finding V·(Xr, YI)' we
have to do a local optimization for each value of yr, but only a summation
for each associated value of x" Various computer programming tricks can
be used to do this more complicated accounting almost as quickly as standard
dynamic programming.

Equations (8.7)-(8.8) are the basic formulation used to develop feed­
back policies based on information states I r• as discussed in the previous sec­
tion. The additional "variables" XI are unobserved state variables and



242 Adaptive Management ofRenewable Resources

unknown parameters. Under the special condition that p,(X, II,') is calcu­
lated by Bayes theorem [equation (7.6)], the double relationship (8.7)-(8.8)
can be replaced by a simpler, standard value recursion for VI·(In. For a
more careful discussion of this, see Bar-Shalom (1981) and problem 8.8.

The cune of dimenaionality

For all of its basic theoretical appeal, dynamic programming involves
some really nasty practical problems. You may have noticed that I have
repeatedly used statements like "for each x," and "for every y," rather

loosely, as though the state variables could take only a discrete number of
values. In principle, this is true if X is, say, the number offish in a popula­
tion, but it is hardly practical (or necessary) to do millions of little optimiza­
tions, one for each exact population size. For continuous variables XI, U"

and y, the usual approach is to use "state increment dynamic programming"
(Larson, 1968). We divide each state and action variable into a number of
discrete levels, to give a grid of discrete state combinations. Then V' is
evaluated at these grid points. For discrete levels x, such that some XI+I has
been calculated not to lie at a grid point, V' values for these x,+! cases are
interpolated from V' at nearby grid points. Unfortunately, this interpola­
tion can require a lot of computing time. One way to avoid it is to reformu­
late the dynamic model as a "Markov decision process," which allows only
discrete states and assigns probabilities to transitions between these states
(Mendelssohn, 1980). Uncertain outcomes are represented by the "transition
matrices" Pu,(xl+11 x,), where Pij is the probability of going from discrete state
j to discrete state i if control UI is used.

The curse of dimensionality refers to what happens to the number of
discrete states where Vt needs to be calculated, as the number of state vari­
ables is increased. So, if we need 10 levels of Xl, and 10 levels of X2 for each
Xl, then we need a grid with 10 X 10 = 100 discrete points. With six state
variables each discretized at 10 levels, the grid wilJ have 106 = 1 million
points! Remember, it is usually necessary to do a little local optimization at
each grid point, for each backward time step. Brute force dynamic program­
ming cannot be applied to problems with more than about eight state vari­
ables at 10 levels each, even using computers that approach theoretical limits
of computation speed. This limitation has led to active research on methods
such as "tunneling" in the state space, which means analyzing only a
minimum number of states that are most likely to occur, and "differential
dynamic programming" which avoids discretization and can handle some
very large problems. For an especially clear review of the latter technique, I
recommend Murray and Yakowitz (1979).
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The curse of dimensionality has provided a strong motivation for
research into model compression as discussed in Chapters 5 and 6. To be
quite honest, I think many of us only started to recognize other benefits
(credibility to decision makers, etc.) of model compression in policy analysis
after we had developed some compressed models solely as a means to avoid
technical problems in dynamic optimization. Even if various methods can
be developed to deal with many-dimensional problems, we will still have to
face the problem of finding compressed, understandable representations of
the feedback policies resulting from these methods. That is, we will have to
find ways to visualize u'(x,) functions when there are many x, variables,
since it would be silly to expect any real decision maker or manager to
blindly plug numbers into such a function and then follow its prescription.

Optimization in policy space

It was noted above that for relatively simple management objectives,
such as maximum average yield, the optimum feedback policy is likely to
have a correspondingly simple functional form. Even when the precise
optimum function is complex, its qualitative prescriptions (fish, do not fish,
etc.) will always be representable by a simple function with only a few un­
known parameters.

Suppose we can find an arbitrary policy function u, = u(x l , 'Y) which
has adjustable parameters 'Y. The simplest example would be when u, =
escapement, x, = stock size before harvest, and U is the fixed escapement
policy

{

X,

U, =u(xl , 'Y) = 'Y
if x, ::s; 'Y

if x, > 'Y

Here there is a single "policy space" parameter 'Y, which is the escapement
sought in every year for which x, ~ 'Y. A more complex example would be
when x, is an information state containing stock size x,, an estimate of some
unknown parameter ~, and its variance a&,. Then a simple adaptive probing
policy would be to perturb the escapement u, when a!, is large:

+ 'Y2~'
Of 2

{ 'YI 1 as, ::s; 'Y3
U =

'YI + 'Y2 ~, + 'Y4 if a!, > 'Y3

{:' if x, ::s; U
u, =

if x, > U

This policy has four parameters: 'YI and 'Y2 relate the target escapement U to
~" and 'Y3 sets a threshold a!, above which a disturbance 'Y4 is added to the
target escapement.



244 Adaptive Management ofRenewable Resources

Optimization in policy space means to seek the set of parameter
values 'Y' that are expected to give the best long-term performance for a well
defined objective function V = VI(XI, UI) + V2(X2, U2) + "', where V, is
the reward or payoff in time step t. It is usually not possible for stochastic
systems to find an explicit relationship between V and the parameters 'Y; a
brute force approach is to fix 'Y then to do repeated Monte Carlo simulations
(dynamic model with actions at each step calculated using the function 11) to
find an average V for this 'Y. Then 'Y is varied and the simulations to find V
are repeated, until a best estimate 'Y' is found. Various nonlinear program­
ming algorithms can be used to vary 'Y efficiently.

Repeated simulations at each policy combination 'Y can be minimized
by using the iterative procedure known as "stochastic approximation" (Rob­
bins and Monro, 1951). The basic idea here is to do a few stochastic simu­
lations around a starting value 'YI to get a single (random) estimate gVI of the
gradient of the value function at the point 'YI. {The ith element of gV 1

should be iJVliJ'Yi; this is approximated by [V('Yi + a) - V('Yi)] la, where
the same random sequence of inputs to the simulation is used at both points
'Yi and Vi + a.} Then a sequence of new policies 'Y. is found by the simple
rule

'Y. +1 = 'Y. + a. gv.

where a. is a positive constant that decreases as k increases, and can be
chosen in various ways to make the sequence converge to 'Y' more efficiently.
This method and various extensions of it are discussed for a fisheries exam­
ple in Ruppert et al. (1983). Gaivoronski and Ermoliev (1979a,b) have
developed sophisticated software for applying it to problems in adaptive con­
trol; see also Ermoliev and Gaivoronski (1984). The general theory has
been extensively developed by Soviet scientists, particularly Tsypkin (1971)
and Ermoliev (1976); see the review in Poljak and Tsypkin (1980).

When the feedback function has only a few parameters 'Y, it can be
very informative to systematically estimate V on a grid of'Y combinations,
and then plot the results using techniques like contour mapping. Indeed,
this approach has been used a great deal in fisheries; for example "yield iso­
pleth diagrams" are used to show how equilibrium harvest (a V measure)
varies with exploitation rate and minimum size of fish harvested. For sto­
chastic models, a very good idea of the average response surface can usually
be obtained by doing only a few (5-10) Monte Carlo simulations at each
grid point. A more elaborate variation on the theme is to plot a whole
variety of performance or value measures as a function of the parameters 'Y,
then arrange these plots as "nomograms" that show quickly how variation in
the parameters will affect various trade-offs among the performance mea­
sures (for examples, see Peterman, 1975; Holling, 1978; Argue et al.,
1983).
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This section clears up a few common misunderstandings about what
feedback policies do when applied in management, particularly to the tem­
poral stability of the managed system, and about the robustness of feedback
policies to errors in the formulation of models and objectives. Much intui­
tive discussion about feedback has unfortunately been borrowed from fields
such as control system engineering, where a particular kind of control objec­
tive (regulation of system outputs to constant target levels) has been of
predominant concern.

Stability of managed systems

Over a wide range of stock sizes, feedback policies for resource har­
vesting generally imply taking less when the stock is low and more when it is
high. Such policies might thus be expected to reduce the range of variations
in system state relative to the range that would be generated b.y "natural"
bionomic processes of investment and stock response. Such policies as fixed
escapement or fixed exploitation rate (harvest/stock) do, indeed, have this
effect when the policy information state does not include uncertainty mea­
sures, such as variances of unknown parameters. However, it is a serious
mistake to suppose that optimum feedback policies will, in general, stabilize
the system state and/or output measures such as harvests. A few examples
will serve to illustrate this point.

When harvesting a stock that has multiple age classes with the organ­
isms becoming increasing valuable with age, two key policy variables are the
annual harvest rate and the minimum age (or size) of animals harvested.
(Usually it is physically impossible to prevent harvesting of several ages
above this minimum.) However, often the minimum size cannot be closely
regulated, and younger (smaller) animals than desired are inadvertently
killed by the harvesting process, even when they are not retained as yield.
In this case the best policy for maximizing total long-term value can be a
periodic or "pulse fishing" policy, with high exploitation rates every few
years and no harvesting in between (Walters, 1969). The idea is that it is
better to wait for blocks of the young animals to grow to desirable ages, then
take them at once, instead of steadily cutting away at potential production by
killing some of them every year. Pulse harvesting is usually only economi­
cally practical where the resource can be divided into several spatial units
(substocks, lakes, clam beaches, etc.), so that there is a pulse harvest in at
least one unit every year. Nevertheless, the key point is that the best feed­
back policy for these situations is anything but state-stabilizing for each of
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the harvesting units involved. Pulse harvesting is not a new idea; there has
long been clear-cut logging in forestry, where for various biological and
economic reasons it often does not make sense to selectively take a steady
harvest each year.

Harvesting policies designed to stabilize economic outputs will gen­
erally cause increased, rather than decreased, variation in stock sizes when
the stock is subject to strong environmental effects. To see why this hap­
pens, just imagine how escapement levels for a salmon stock will vary if a
constant catch is taken from the migrating recruits each year, while the
abundance of these recruits is varying a lot from year to year. All of the
variation in recruitment will be transmitted through the fishery into variation
in spawning stock, which will in turn contribute to maintenance of variation
in future recruitments. We will return to this basic trade-off between varia­
tions in output versus variations in stock size in the section below on the
robustness of feedback policies to changes in management objectives.

Much of Chapter 9 will be concerned with demonstrating that
optimum feedback policies will often deliberately induce variation in system
states as a means of improving estimates of uncertain parameters or of test­
ing for possible opportunities beyond the range of historical experience.
There we will show, in fact, that the optimum policy is often much like a
pulse harvesting one, in the sense that it involves periods of steady harvest­
ing interspersed with strongly informative disturbances.

For at least some ecological systems, feedback policies that stabilize
the system state in the short term can result in pathological growth of
management costs in the long term. A widely discussed example of this is
control of forest fires, which in many forest ecosystems can result in accumu­
lation of understory vegetation that makes further fires more probable and
more devastating when, inevitably, they do escape control. In fisheries,
artificial "enhancement" programs are often justified as an interim means for
making fish available to maintain high harvest rates after natural disasters or
periods of overfishing; but the high harvest rates thus maintained are usually
felt by the natural stocks as well, so they decline even further and the system
becomes "locked into" artificial production.

Robustness to modeling errors

An important test of any feedback policy is its performance when used
with other dynamic models than the one assumed in designing it. A robust
feedback policy is one that will give near-optimum results for all, or at least a
wide variety, of such alternative models. This is a rather vague definition;
for a more precise analysis based on the notion of "nominal" (design) models
versus "extended" (more realistic, elaborate) models, see Wierzbicki (1977).
But the general idea is clear enough; it would be foolish to apply any policy
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whose performance is precisely dependent on the world behaving according
to any particular model.

Feedback policies for harvesting are generally very robust to modeling
errors in the biological production process, up to changes in the degree of
polynomial equation needed to approximate equilibrium production rates as
a function of stock size over the range of stock sizes generated by applying
the policy. This rule of thumb is not so complicated as it first sounds. Most
surplus production models, stock-recruitment equations, and dynamic pool
models with constant growth curves and stock-recruitment relations use
equations (logistic, Ricker, Beverton-Holt) for which the equilibrium pro­
duction rate can be approximated by a quadratic polynomial. Models with
two equilibria due to "predator pit" or cannibalism effects can be approxi­
mated by a cubic polynomial. Multispecies competition-predation interac­
tions can generate high-order polynomial effects.

However, analyses such as that of Hilborn (1979) indicate that there
is a strong asymmetry in the performance of "adaptive feedback policies"
that involve sequentially fitting simple production models to the catch/effort
time series, then modifying the feedback policy parameters at each time step
in accordance with changes in the production model parameter estimates
("passive adaptation;" information state includes estimates 11, but not vari­
ance measures). Generally, such policies perform very well (i.e., are robust)
if the stock is initially unexp]oited, even if stock behavior is affected by quite
complex age-size structure effects not represented in the surplus production
model assumed for the feedback policy. In contrast, they very often fail
badly if the stock is already overexploited when data first become available
for parameter estimation; the feedback policy often never "learns" that the
stock is overexploited, and continues to hold it at unproductively low levels.
Ludwig and Hilborn (1983) have shown that the only reliable way to
prevent such failures is to initially ignore the feedback policy and not harvest
the stock at all for a long period (10-20 years). The findings of Hilborn and
Ludwig are particularly disturbing, because good data are usually not
obtained during the early development of harvesting: the pathological situa­
tion is the most common one encountered in practice.

Robustness to management objectives

It is rather difficult to give a meaningful definition of the robustness of
a feedback policy to changes in, or errors in the determination of, manage­
ment objectives. But there is one very fundamental trade-off that has
already been mentioned several times above, for which feedback policies are
typically not robust at all.

This is the trade-off between the average reward rate (harvest, profit,
etc.) versus its variability over time. Generally, policies that come close to
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maximizing the average will also result in high variability around this aver­
age. When the initial state is far from optimal for maximizing the average,

such policies usually prescribe a "minimum time" action sequence for getting
to the best state as quickly as possible. For overexploited stocks, this means
taking no harvest at all (escapement = stock size) until the stock has
recovered; for underexploited stocks, it means harvesting hard to drive the
stock down to a more productive level as quickly as is feasible. For stocks

with large variations in year-class strength, it means gearing up to crop the
large year classes hard, then shutting down when only weak year classes are

present.
There have been a few attempts to design suboptimal feedback poli­

cies that give some balance between objectives related to average yield versus
variability (Allen, 1973; Walters, 1975). A remarkably simple policy that
usually gives a good balance in stochastic simulations is to just maintain a
constant exploitation rate. This means letting the harvests vary up and
down with the stock size, and adjusting harvesting effort over time if the
catchability coefficient is dependent on stock size (for example, when the
search is nonrandom; see Chapter 4). A variation on this theme is to hold
the exploitation rate constant except if stock size drops to, say, one half of
the most productive level, but to reduce the exploitation rate in proportion to
stock size below this level. For an example of performance analysis for this

policy, see Walters (1975).
Let me inject a historical comment at this point. In the early 1970s,

when a few of us began looking for tools like dynamic programming to gain
some insights about how management should respond to variability and

uncertainty, we intuitively expected the best policies to be quite complex
functions of stock size. There were all sorts of discussions and heuristic

prescriptions about what to do in the face of events like strong year classes
and collapses due to environmental fluctuations (the Peruvian anchoveta and
EI Nino were a favorite test case for discussions). It was a pleasant surprise
when the first results were published showing that a simple fixed escapement
is likely to result in maximum average yield. But that result had been antici­
pated by earlier work. The really surprising discovery has been the one
mentioned in the previous paragraph, that the best balance between mean

and variance is likely to be well approximated by just holding the exploita­
tion rate constant.

Performance of Passively Adaptive Policies

For the first time in this book, let us cast some doubt on the idea that
actively adaptive, probing (experimental) policies need to be used in the
ongoing management of a renewable resource. Here the doubt raised is not
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about the value of learning or the need to be adaptive, but rather only about
the need to experiment deliberately with policy actions. What we will show
is that strict, mechanical adherence to a passively adaptive (certainty
equivalent) feedback policy can produce essentially as informative a sequence
of actions as would deliberate experimentation, so even what is meant by an
"experiment" becomes unclear. Then, as counter to this theoretical argu­
ment, we will simply rejoin that managers are highly unlikely to adhere
mechanically to any procedure for calculating the next action to take, unless
motivated to act experimentally; they instead act so as to filter out the infor­
mative variation in favor of more conservative, incremental policies.

Informative variation from paaive adaptation

Let us look at the sequence of events that takes place when a passively
adaptive policy is followed with care. The policy prescribes action as a func­
tion of the system state and current estimates of dynamic parameters, such as
recruitment and mortality rates. It is assumed that during each period
between actions, the historical data set Y is updated, new parameter esti­
mates are calculated, and these new estimates are "plugged into" the policy
function for the next action. For example, if a logistic surplus production
model is assumed in the analysis of Y, and if the feedback policy is to try
and maintain the harvesting effort at E = rl2q (which would maximize the
average long-term catch if the stock dynamics were deterministic with an
intrinsic growth rate rand catchability q), then each year the new catch and
effort data would be added to Y, parameters reestimated, and the resulting
new estimates of rand q would be used to set the next year's effort.

The policy action calculated in this way can be informative for two
quite different reasons. First, if earlier actions have been taken without
analysis of data (a very common situation!), or were based on some other
model and process of policy formulation, then the prescribed action may be
well away from any taken so far. In this case we would tend to label the
action an experiment with uncertain consequences, even though it was com­
puted without giving deliberate thought to the value of information that
might result from it. The most vivid example of this situation in my experi­
ence was with a major sockeye salmon stock in British Columbia. Spawning
runs had been declining for more than a decade when we conducted a
stock-recruitment analysis in about 1980. The decline was apparently due
to a few natural accidents combined with a sequence of attempts to sustain
catches without systematic examination of the incoming stock-recruitment
data. Our analysis indicated that the "best" (for maximizing average yield)
escapement would be at several times the 1980 level. Though there was
direct historical evidence (from before the decline) favoring this conclusion,
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and no reason to suspect major recent changes in the spawning and rearing
environments, our conclusion was hotly debated. It was finally decided to
rebuild the spawning runs, but this was justified partly as an "experiment in
rehabilitation. "

Thus, we see that even the notion of an "experiment" is ambiguous.
Should we call any policy change with uncertain consequences an experi­
ment or probe? Or should we restrict the term only to changes that are
planned and justified on the basis of calculations about the expected value of
information associated with various alternatives? In Chapters 9 and 10, I
will be careful to use the term "experiment" or "probe" only in this second,
more restricted sense.

The second potential cause of informative variation from passive
adaptation is that the prescribed policy actions are, in fact, random vari­
ables, since the parameter estimates used in calculating them are random
variables. As shown, for example, in the simulations of logistic parameter
estimation in Figures 7.2 and 7.3, parameter estimates can jump around
violently, even when many years of data are available. This fluctuation is
especially great when the state-action sequence has been relatively smooth
(and uninformative), and when older data are discarded through procedures
like discounting that presume some parameter change. Probing (fluctuation
in actions) only when the historical data are uninformative is precisely the
sort of policy that we might want to design into the feedback system, and to
some degree we get it "for free" from a passive policy.

A way to find out about the robustness of parameter estimates derived
from a given data set Y (i.e., the real amount of information in Y) is by
what statisticians call "jack-knife techniques" (Tukey, 1977). The idea here
is very simply to systematically reanalyze the data while leaving out various
blocks of observations; if the whole data set is informative, parameter esti­
mates will not change much unless very large blocks are omitted. When
applied to the time series typically available for renewable resources, jack­
knife techniques usually show that the estimates are not at all robust, and in
fact usually depend very critically on one or a few outlying observations asso­
ciated with short periods of disturbance. Let us turn this rather disturbing
observation around and make it a prediction: when the inevitable distur­
bances do come, they are likely to result in big changes in parameter esti­
mates and hence in the actions prescribed by passively adaptive policies.

There is a growing literature in control system theory about the
"asymptotic behavior" of passively adaptive policies, as the quantity of data
available becomes very large. Essentially, the idea is to discover whether
policy changes due to random variations in parameter estimates will provide
enough disturbance to guarantee finding correct parameter estimates (or at
least the best policy) in the long term. Except for "pathological" cases, such
as resources that are overexploited when data gathering begins (see above),
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it is usually found that passive policies are indeed "asymptotically optimal."
However, I find this choice of terminology most unfortunate and even
deceptive; asymptotic optimality of a policy says absolutely nothing about its
performance on the relatively short time scales (30-60 years) that are of most
interest in renewable resource management.

Why passive adaptation fails in practice

It is one thing to design an automatic control system that will blindly
vary its actions as parameter estimates jump around; it is quite another to
expect people to behave in this way when they have the time to inject judg­
ment and intuition at each decision point. On several occasions I have been
present when new data became available and were eagerly plugged into esti­
mation algorithms, then watched the chuckles turn into groans when the new
parameter estimates caine out far from the old ones. Two things happen
then. First, there is a frantic rechecking of the data and calculations, accom­
panied by fervent prayers that an arithmetic error will be found. Then when
no errors are found, there is a rather remarkable reaction: the new estimates
and/or the original model are simply rejected, and policy planning goes
ahead on the basis of older information. In other words, actions are not
changed drastically as required for passive adaptation to work well in theory.
In the terms of statistical decision theory, people tend to act as though they
had placed a tight prior probability distribution on the parameter estimates,
even when there is absolutely no objective reason to do so.

People cannot be blamed for behaving more conservatively than a
mechanical control system. Indeed, we would be fools not to question the
accuracy of new data and validity of old models at each decision point. The
difficulty is that such healthy skepticism is too easily made the basis of
excuses for inaction, at times when bold changes are needed as a basis for
more informed decision making in the long term.

Conservative, risk-averse decision making creates a particularly
difficult situation for learning when environmental effects on stock size may
be autocorrelated over time. In this case, each run of poor production years
will lead to stock decline, which the manager cannot be sure is due to
environment rather than overharvesting. His conservative response will be
to cut back on harvests, rather than trust any hypothesis or model that
predicts recovery due to a return to good environmental conditions. If stock
recovery does occur following the conservative response, it is impossible to
tell whether the recovery is due to harvest reduction or to a run of good
environmental conditions. This confounding of environment versus
management can persist over several "cycles" of decline and recovery, and
lead to heated debate about the role of management. For an example, see
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the review by Skud (1975) of the famous "Thompson-Burkenroad debate"
about causes of fluctuation in the abundance of Pacific halibut (Figure 2.2).
In the end, such debates can only be resolved by an experimental decision to
deliberately avoid reducing harvests; it is not clear that the risks of this deci­
sion are worth taking even in the management of major resources.

Problems

8.1. Consider the feedback policy "harvest N - 1000 animals whenever
the population N exceeds 1000, and harvest none when N is less than
1000." This is a "fixed escapement" or "fixed base stock" policy, with
a target escapement of 1000. Such remarkably simple rules are often
optimum when the management objective is also simple, i.e., to max­
imize average yield. For a population that has decreasing percentage
growth rate over the range N = °to N = 2000, draw a graph to
show how the percentage harvest rate under the fixed escapement pol­
icy would compare to this growth rate; there is an equilibrium where
the rates balance. Then plot the percentage harvest rate expected
under two alternative policies, a fixed quota and a fixed percentage
harvest rate. Will the fixed percentage harvest policy also act as a sta­
bilizing feedback policy? Will it produce more or less variable yields
over time than the fixed escapement policy?

8.2. Suppose someone tells you that the maximum long-term harvest V'+I
from a population, beginning next year (t + 1), can be approximated
by V'+I = as, - bS,2, where S, is the population after harvest this
year. Then if the population this year is N" the harvest will be Nt ­
S, and the total value from now forward will be V, = N, - S, + V'+I

= N, - S, + as, - bS,2. For fixed N, = 1 (and a = 2, b = 1), plot

the value components N, - S, and V'+I, and their total V" as a func­
tion of S,. This allows you to find the optimum S" S·. Congratula­
tions! You have just solved a simple dynamic programming problem.
Now redo the plot for various values of N, over the range 0- 2, and
find S· for each case. Then plot S· as a function of N" and you will
have an optimum feedback policy: for any N, that might arise, you
have defined the best S to allow (and thus the best harvest in year t).
The trick, of course, is to approximate V,+J, and usually this requires
an iterative computer procedure (backward recursion). Now that you
understand how the "stage t iteration" is done, what additional rela­
tionship must you specify in order to move back another step and find

V'_I?
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8.3. Suppose you try to manage an ungulate population according to a
fixed escapement policy as in problem 8.1 above, after determining
the optimum base stock from a short time series of data that shows
density dependence in reproductive rates. Each year you estimate the
stock size, then harvest accordingly, then wait to see the result next
year when you make the next stock estimate. What will happen if
your base stock is, in fact, too large for the range to sustain, so that
the biomass and productivity of food plants decreases slowly over
time? Now suppose range condition is also monitored, so you can
relate reproductive rates to it as well as to population size. By plot­
ting harvest rate as a function of both population size and range con­
dition, can you suggest how the optimum feedback policy might look
for this more complex situation?

8.4. A good way to understand dynamic programming is to try writing a
computer program to do it for a deterministic, discrete model. The
heart of this program should consist of three nested loops (1) an out­
side loop over time steps (stages), where you view time as moving
backward as the loop counter increases; (2) an inner loop over states
that might have arisen by each time step (generally, assume that all
states are possible at each time step); and (3) an innermost loop over
action choices, which allows you to test the value of each policy choice
for each state. Within the innermost loop (state-action combination),
you must calculate (a) the immediate payoff v, in that time step as a
function of state and action; (b) the state x, +1 at time t + 1 given the
state at t and action choice (Le., one dynamic model prediction); (c)
the combined value v, + V'tl(X'+l). To do step (c), you must have
initially (before the first time step) set up a table of "terminal" V(x)
values (one for each discrete x), or set these all to 0. Also within the
innermost loop, set up a test so that you can keep track of the largest
combined value found, and the action associated with it. Then, after
leaving the innermost loop, store this maximum in a separate array
VN(x) for use in step (c) in the next time stage. Outside the inner
loop (after VN has been found for every x at time t), set V(x) =
VN(x) for every x before moving to the next time step. To test your
program, let (1) x = 0, 1, ... , 10 be discrete population levels; (2) h

= 0, I, ... , x be harvests; (3) v, = h,; (4) V(x) = 0 for all x at the
first stage (end time); and (5) use the table below as your state-action
dynamics model. In the table, 10 is the population carrying capacity,
and escapements of 4 or 5 produce the largest sustainable net increase
(i.e., leave 4 and have 8 from which 4 can be left again in the next

stage).
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Stock after harvest
at stage t: X, -h,

o
1
2
3
4
5
6
7
8
9

10
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Stock before harvest
at stage t +1: X,+l
o
2
4
6
8
9

10
10
10
10
10

8.5. Your computer program from exercise 8.4 can be easily modified to
handle stochastic dynamics, where the stock before harvest at time t

+ 1 is uncertain. To calculate the expected value for each policy
choice, modify step (c) within your innermost loop so that it calculates
the combined values as an average across possible states at t + 1, with
each possibility Xt+1 weighted by its probability p(xI+llxr , h,) of
occurrence given X, and the action choice h,:

combined value = v, + E p(x'+llx" h,) V(Xr+I)

(i.e., you need a loop over next states within your innermost loop
from problem 8.4, to sum up the probabilities of next states times the
values of those next states). Test your modified program using the
following stochastic model (state transition probabilities)

Stock Probabilities of next state X, +I

after
harvest
x,-hr 0 2 3 4 5 6 7 8 9 10

0 1.0
1 0.2 0.5 0.3
2 0.1 0.1 0.2 0.4 0.1 0.1
3 0.1 0.2 0.3 0.2 0.1
4 0.1 0.1 0.2 0.3 0.1 0.1
5 0.1 0.1 0.1 0.2 0.3 0.2
6 0.1 0.1 0.1 0.3 0.4
7 0.1 0.1 0.1 0.3 0.4
8 0.1 0.1 0.1 0.3 0.4
9 0.1 0.1 0.1 0.3 0.4

10 0.1 0.1 0.1 0.3 0.4

You should get essentially the same result as in problem 8.4.
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8.6. The discrete models considered in problems 8.4 and 8.5 are some­
what unrealistic, and can be cumbersome to specify as tables of out­
comes. The trouble with assuming that x, is continuous is that your
model [step (b) in problem 8.4] may specify an x,+! that is between
two of the "grid point" x values for which you have calculated
V(X'+l). To handle this difficulty, modify your programs from 8.4 to
8.5 so as to linearly interpolate V for any Xr+1 from the values at sur­
rounding grid points V(x_) and v(x+) where x- ~ x.+! ~ X+, using
the interpolation equation

Test this modification with the deterministic dynamic model X,+I =
10(x, -h,)/(4 + x, -h,). If you have done exercise 8.5, try also the
stochastic model X'+l = w.(x, - h.)/(4 + x. - h.) where the "carrying
capacity" w, is assumed to be stochastic and can take the values 7, 8,
9, or 10 with probabilities 0.1,0.4,0.4, and 0.1. Plot your estimates
of the optimum discrete h. after five backward steps, as a function of
the discrete x, values for which these h, were estimated. Can you use
this plot to interpolate optimum h. values for x. values not on the grid
points? How does the "feedback policy function" h. versus x, change
from stage to stage (does it become stationary, i.e., time indepen­

dent)?

8.7. As noted in Chapter 2, resource harvesters are sometimes more con­
cerned with avoiding very low harvests than with maximizing average
or total long-term harvest. A simple way to represent both concerns
is by assuming that the formal management objective should be to
maximize the product, rather than the sum, of harvests over time.
Then a single low (or zero) harvest can have devastating effects on the
estimated total resource value (V, = h. h'+l '" hT instead of V, =
h, + h'+1 + ... + hT ). Modify your programs from problems 8.4
to 8.6 so as to test this assumption, by (1) changing the v, + V,+1 cal­
culations [innermost loop, step (c)] to v, V'+l where v, is still just v, =
hr, and (2) initially setting V(x) = x [instead of V(x) = 0] for x =0,
... , 10 before starting the loop over stages. Do you still obtain a sta­
tionary feedback policy (graph of optimum h, versus x, not changing
with t) after several backward steps? How does it compare to the
optimum policy when harvest values are additive? Do you still get
similar policies for the stochastic and deterministic cases, or is the sto­
chastic policy now more "cautious?"
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8.8. In the case of incomplete state observation, the dynamic program­
ming recursion can often be simplified. Suppose the information state

I,' is fully sufficient to characterize the prior distribution p,(x,+,) in the

Bayes formula

P(Y,+I!X,+l)P'(X,)p, +I(X,+I) = -~~_.!....-_~~-'--

I p(Y,+I!X;+I)P,(X;+,)
Xr+1

The dynamic programming recursion can be written as

V,(In = f p,(x,) [v, + f p(x'+llx,)
x, ~r+ I

X J p(Y,+11 X,+I) V'+I(I''+I, X'+I»)
Yt+ I

(8.8a)

(8 .8b)

where V,(I,') is the expected value across possible states x, and

V'+I(I''+I, Xr+l) is the conditional value given that X,+I occurs (but is
not observed). By using (8.8b) to define V,+I(I,,+,) with (8.8a) substi­

tuted in for P'+l(X'+I), show that (8.8b) is identical to the simpler
unconditional recursion

V,(I,') = 1, p,(x,) [VI +.t P(X'+I Ix,)

X J P(Y'+I IX'+I) V'+I(I"+J»)
Yr+l

(8.8c)

Hint: start with (8.8c), and show that it is equal to (8.8b) since the
denominator of (8.8a) cancels many of the probability terms.
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Chapter 9

Actively Adaptive Policies

In the endless series of experimentation
in which they are caught, man and nature,
as a two-person game, constantly lead, mislead,
and surprise each adler into revealing
their possibilities and their limitations.

LaPonce (1972)

Chapters 7 and 8 have provided some basic building blocks for look­
ing at the question of how to design management policies for systems where
the sequence of decisions made over time can have an important impact on
uncertainty. When actions influence learning rates as well as obvious per­
formance measures, such as harvests, we say that there is a "dual effect of
control." In coining this phrase, the Soviet mathematician Fe\'dbaum
(1960, 1961) noted that there is often a basic conflict or trade-off between
learning and short-term performance: actions that perturb the system state

and output in an informative manner may require giving up immediate har­
vests, accepting the risk that the system will not recover after some perturba­
tion, or simply living with temporal variation that is uncomfortable from a
social and economic perspective.

Actively adaptive or "dual control" policies seek to establish some
optimum, or at least reasonable, balance between learning anrl short-term
performance. Notice here that I am being careful not to say "between learn­
ing and other performance measures," which would imply that learning
(resolution of uncertainty) should be viewed as inherently valuable. In adap­

tive policy design, it is essential to begin by carefully rejecting the intuitive
notion that learning is always valuable, and to instead view the resolution of
uncertainty as an important step only insofar as it may help to improve
long-term management performance in relation to objectives such as harvest
and profits. When we fail to make this distinction, we invite the resource
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So

Spawners

Figure 9.1. Two alternative models for the response of average recruitment to
changes in parental stock. Both predict that So is the best to allow in managing the
system, but m2 predicts an irreversible collapse if the stock ever gets very low.

manager to confuse personal curiosity with real needs in terms of his man­
date as manager, and to advocate policies that would make him feel more
comfortable at the expense of the clients that he serves. Consider, for exam­
ple, the two alternative recruitment models shown in Figure 9.1. According
to the model ml, recruitment rate would be about proportional to parental
stock at low stock sizes; according to m2, there would be a depensatory col­
lapse in recruitment at low stock sizes. However, according to both models
the best parental stock would be up round the level marked So. Now, a
manager might be curious or fretful about whether a response like m2 would
be obtained, but he certainly has no business as a manager advocating an
experiment to resolve this uncertainty (except, perhaps, as a sacrificial
"object lesson" for those who oppose regulations to keep the system at So).

Even when analysis proceeds by assuming that learning has value
only insofar as it helps in achievement of simple management objectives, it
turns out to be technically very difficult to calculate optimum adaptive polio
cies by using techniques such as dynamic programming. The basic difficulty
is dimensionality: in order to design a "closed-loop" feedback policy that
anticipates the effects of learning as well as future system states, we must
look forward in time to how uncertainty measures (such as parameter esti·
mates and their covariances) propagate along with system state variables.
Later in this chapter we will examine some very simple dynamic program­
ming formulations, since they give some qualitative insights about the two
basic questions of when to make probing experiments and how drastic to
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make each probe. However, as of this writing it is just not feasible to com­
pute optimum adaptive policies for realistically complex models. We will
examine one approximation scheme, known as the "wide-sense dual control
algorithm," that has shown some promise for dealing with larger problems
and gives further insights about the optimum balance between caution
(avoidance of risks) and probing.

As a preamble and motivation to the discussion about formal optimi­
zation techniques for adaptive policy design, let us first try to define the gen­
eral conditions under which it is worthwhile even considering an actively
adaptive policy. These conditions are rather more restricted than one might
expect, and in trying to pinpoint them we will see more clearly why it is
dangerous to proceed with purely intuitive notions about the value of experi­
mentation.

When Might Probing be Justified?

Let us define a probing action as any change in management tactics
that is deliberately intended to produce an informative response in the sys­
tem state or outputs, where, as in Chapter 6, we shall take "informative
response" to be one that is assigned different likelihoods of occurrence by
various models that are consistent with historical experience. We immedi­
ately encounter trouble with this definition, since it excludes policy changes
associated with passive adaptation (see Chapter 8), that may well involve
moving beyond the range of recent experience, but are prescribed on the
basis of a single "best" model without explicit evaluation of their informa­
tiveness. So, as a first (negative) criterion, we might say that probing is not
justified when an informative action would be prescribed in any case. Most
actions taken in the "preadaptive phase" of management, when uncertainties
are really gross, will obviously fall in this category.

In Chapter 6 we introduced the notion of expected value of perfect
information (EVPI) as a measure of the importance of resolving uncertainty.
EVPI was defined as the weighted average deviation between performance
given the correct model and performance given the action that would be best
in the absence of learning, with the average being across all models that
might be correct and the weighting being the prior odds placed on each
model. We noted that EVPI is different from zero only if (1) the models
predict different performances, and (2) knowledge of the correct model
would lead to a different action than would be best in the absence of learn­
ing. These criteria apply to the special case of probing, since it would not
make sense to partially reduce uncertainty in situations where even having
perfect knowledge would not make any difference. More succinctly, a neces­
sary (but not sufficient) justification for probing is that EVPI be greater than
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zero. Unfortunately, the existence of a large EVPI tells us only that
knowledge of the correct model mi and action ut' would in expectation lead
to a better result than using the no-learning action u'; it says nothing about
whether any particular action is best in the sense of providing that
knowledge.

Pulling together arguments based on performance of passively adap­
tive policies and on EVPI, it appears that four basic conditions are necessary
to justify a probing policy:

(1) there must be uncertainty about the best action to take;
(2) system performance must be sensitive to the action taken;
(3) alternative actions must be differentially informative;
(4) no single one of the alternative models for system response must be

considered very probable.

The last of these conditions is obvious, and need not be elaborated. Let us
examine each of the first three conditions in a little more detail, showing by
example why it is important to be careful about each.

Uncertainty about the best action

The existence of large uncertainty about system response need not
imply that the best action is also uncertain, as the example in Figure 9.2
shows. Here I have plotted three alternative hypotheses about how equilib­
rium yield will vary with harvesting effort, for a situation where the yield at
a given harvesting effort is obviously very uncertain. However, all three
models imply the same "optimum" effort. This situation can actually arise in
practice, for instance, when the population is expected to exhibit logistic
growth/production, and the rand q parameters are known in advance while
k is very uncertain. Knowledge of rand q may have been obtained, for
example, by studying the population for many years while it was severely
depressed. Notice that EVPI = 0, since ut' = u' for all these models, and
on that basis alone we would know that a policy experiment is not justified.

In situations like Figure 9.2, it is important to define precisely what
actions and performance measures are of concern in policy design. To a
government manager, Figure 9.2 presents the lucky opportunity to maxi­
mize average harvest simply by regulating the harvesting effort to a
moderate level. To representatives of the harvesting industry, the uncer­
tainty about yields under this policy would still represent a major source of
concern about actions, such as investment in processing plant capacity and
new vessels. It might be best for them to adopt actively adaptive policies in
relation to these actions.
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Figure 9.2. Three alternative models for yield as a function of harvesting effort.
All three models predict the same optimum effort.

Sensitivity of system performance to actions

It has long been noted that for most stock-recruitment models, the
average sustainable harvest (measured as recruitment minus spawning stock)
is relatively insensitive to the spawning stock. For example, with typical
parameter values for Pacific salmon, models like the Ricker and
Beverton-Holt predict that the average yield will remain within 10% of its
maximum if the spawning stock is kept within about 30% of the level that
gives the maximum average yield. Indeed, there would not be many pro­
ductive stocks still around if they were not forgiving of errors in policy
choice.

Insensitivity of performance to action again implies that EVPI will be
small. Each element in the EVPI average is V(ut·lm;) - V(u·!mi), and to
say that performance is insensitive to action is the same as saying that V
does not change much as u moves from u· to ut·. Sometimes there can be a
strong asymmetry in V(u··) - V(u·) across the plausible alternative models,
as shown for a yield/effort example in Figure 9.3. Here I have shown three
hypotheses that imply only small differences in maximum yield, but at very
different levels of effort. If m. is correct, operating at u;· or u;o would be
disastrous. If m2 is correct, operating at u;o would be disastrous. Yet
operating at u~· gives a quite good performance even if m2 or m3 is correct.
In this case, we would expect the best policy to be "cautious" and probe
toward the level u;· only if detection and recovery would be rapid if m,

turns out to be correct.
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Effort

Figutt 9.3. Three alternative models for yield as a function of harvesting effort.
The models imply different optimum efforts uj· - u;o, but nearly the same yield no
matter which policy is used. Thus, the obvious choice would be uj· .

Alternative actions d.iJferentially informative

Even when there is great uncertainty about system response to alter­
native actions, there are two possible reasons why no particular choices may
stand out as candidates for the optimum probe:

(1) very slow learning due to high "environmental variation" or poor
monitoring systems;

(2) similar learning rates under all choices.

If the first of these possibilities seems likely, the key policy recommendation
should be to seek alternative monitoring systems that will give stronger sig­
nals of response: further analyses should include the costs of these alterna­
tives as part of the costs of probing experiments.

Figure 9.4 shows a yield/effort example where most policy choices
would be equally informative, in the sense that the three alternative
hypotheses m. -m3 predict quite different yield responses at most effort lev­
els. Here the only partially uninformative choices are at effort levels where
the curves cross. The best policy choice would most likely be at one of the
three optima uj·, ur, and u;o, since each is informative. An obvious bad
choice (from the point of view of learning) would be a "conservative
compromise" roughly halfway between uj· and ur; this choice might be
favored if learning effects are ignored, as a cautious way to achieve reason­
able performance no matter which model proves correct.

The situations shown in Figures 9.3 and 9.4 are most likely to arise in
systems that have never been heavily exploited. Thus, they represent the
pattern of uncertainty expected in the preadaptive phase of management,
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Figure 9.4. Three alternative models for yield as a function of harvesting effort,
where most effort choices would be quite informative about which hypothesis is
correct.

which we have already defined as the phase where practically all actions
would be highly informative. Figure 9.4 is a good visual image to keep in
mind when thinking about the preadaptive phase.

Probing for opportunity

The conditions and examples outlined above suggest that it is
worthwhile to design deliberate policy experiments only when two rather
special conditions are met: (1) the best policy choice based on analyses that
ignore learning effects would be to continue operating well within the range
of recent historical experience, and (2) at least one plausible alternative
model predicts a higher performance by moving outside that range of experi­
ence, that is it represents a possible opportunity for improvement.

A prototypical yield/effort example with these properties is shown in
Figure 9.5. Here I have assumed a very limited range of historical experi­
ence, centered around the effort level u~' that would be best if model mt is
correct. Notice that if m, is taken as the most probable ("best") model based
on experience, then the prescription would be to continue operating in the
effort range where all models m.-m3 predict similar outcomes. Now, com­
pare Figure 9.5 with the examples in Figures 9.2 and 9.4. Notice that, as in
9.2, m2 and m3 in Figure 9.5 predict higher yields than ml, but the only
way to find out about them is to probe toward either ur or ur. In con­
trast, operating at the nominal effort level u~' in the Figure 9.4 example
would give at least some information about which model is correct (lower
yields than expected under mt if m2 or m3 is correct).
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Figure 9.5. Three alternative models for yield as a function of harvesting effort,
for a situation in which limited historical experience has been based on the assump­
tion that mt is correct. Probing decisions (movement or effort toward u;o or u;·)
might be justified in this case.

Figure 9.5 makes another point. Try to draw another two alternative
models, say m4 and ms, that also go through the center of the historical data,

but have lower maxima than mt (i.e., do not represent opportunities for
improvement away from ut·). You will, of course, find this to be impossi­
ble. mt is a nominal model that justifies or rationalizes historical choices
near ut". The only plausible alternatives that you can construct besides the
one rot that justifies (excuses) past actions are either indifferent to u (as in
Figure 9.3), represent opportunities (Figure 9.5), or raise the possibility of
dangers by acting differently (as in Figure 9.1).

Here is a key point: when the range of reliable historical experience
has been narrow, there are always plausible alternative models besides the
past-rationalizing choice (ml) that predict opportunities for improvement.
Thus, there is always a rational basis for probing policies when the range of

historical experience is limited. If you buy the various arguments presented
earlier (Chapters 4 and 7) about how parameters are likely to change over

time, then you should agree to an extension of the point: long periods of
"near-equilibrium" management imply a narrow range of reliable experi­
ence, hence plausible opportunities away from the current equilibrium.
Thus, just to establtsh a sustained equilibrium (the basic goal of manage­
ment according to some authors), is to set up conditions that will soon favor
a probing experiment away from that equilibrium I
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The guidelines and examples presented above help to define situations
where probing might be worthwhile, but it is necessary to look much more
carefully at each case to decide whether probing is in fact optimum and how
large the probes should be. In general, when we wish to talk about optimum
sequences of decisions over time, it is natural to formulate the optimization
problem in the framework of dynamic programming as introduced in
Chapter 8. More particularly, we expect that the optimum decision will be
specified by a feedback policy that can deal flexibly with various situations
that might arise; if it is, indeed, optimum to probe, then probing actions
should appear as behavioral features or "emergent properties" of the
optimum feedback policy, without it being necessary to treat each probing
change as a separate and explicit policy variable. This section develops a
basic dynamic programming formulation and presents examples that do,
indeed, show probing as an emergent feature of the optimum policy.

In its simplest form, dynamic programming is often thought of as a
way to find an optimum sequence of decisions, u;, u,"+, , U'\2, ... , as though
it were possible today (time t) to commit future decision makers to some
"open-loop" prescription that we devise. A better way to think about sto­
chastic dynamic programming is that it allows us to represent a sequence of
future decision analyses conducted at each time step using the same rules for
defining an optimum policy, but with different data (information states). To
the extent that we can predict how actions taken today will affect the out­
come of those future analyses, we may wish to take actions that will affect the
degree of uncertainty present in them. More vividly, actions taken today
contribute to the legacy of uncertainty faced in future analyses. If we can
anticipate even roughly how much each future analysis will be improved by
an action today that reduces the legacy, then we should include the improve­
ment somehow as part of the value of taking the action.

'The dynamic programming equation foc actively
adaptive management

Consider the decision analysis that might (can, should') be made at
any point in time during the ongoing management of a renewable resource.
At this point, the analyst has a collection of past information Y, from which
he can assign probabilities P,(m;) to alternative outcomes. Let us suppose
that he has summarized this information in a vector of statistics of fixed
dimension [say, yr, P,(ml), P2(m2) or X" ~" E~,l that includes the best
current estimate of the system state along with whatever measures are
needed to reconstruct P,(m.). Let us call this vector I" the decision
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information state. Without supposing that II is in any wayan optimum or
complete representation of the knowledge available for decision at time t, we
may still use it to predict approximately how the analysis will proceed. The
analyst will try to find a decision al that maximizes the expected total value
V, = v, + Vt+1 + V'+2 + ... of payoffs v" V'+h etc., into the future. If he
bases the calculation of VI only on II, without knowing the true state x,
(including true parameter values) and/or the true model m, then he should
solve a dynamic programming problem with incomplete state information,
as presented in Chapter 8. That is, he should try to maximize V(I,) while
looking forward in time to the conditional maximum values V'·+I (X, +1 , 1'+1)
that might arise. If he solves the problem this way, he will "automatically"
take into account his legacy of uncertainty by predicting It+I' The expecta­
tion he should try to maximize (by choice of u,) is

V,(I,) =~ p(x, II,) X (V'(X'. u,) (9.1)

: ~ P(Xt+I' 1,+11 x" I" u,) V,\, (Xt+I, 1,+1) J
Xt+I.I,+1

This equation is not as complicated as it looks. It says that V consists of a
weighted sum of terms v + E pV·, where each term admits one true
state/parameter/model combination x, and assigns it probability p(x, II,)
(read "probability of the combination x, given the information state I,"). For
this combination x" the total value is a short-term payoff V,(XI' u,), plus an
expected long-term value E pV'\I. Each element of this long-term value
summation admits one possible next state X'+1, 1'+1 given the current state x"

I" assigns it probability P(X'+I, 1,+, lx" I" u,) (read "probability of X,+I, 1'+1
given x" I" and u,"), and uses this probability to weight the future value
V'\I(X'+I, 1,+1) that we assume has already been calculated as the best that
can be done from time t'+1 forward if the state turns out to be X'+h 1,+1,
Now, the analyst does not have to assume that the true state Xt+1 becomes
known at time t+l. Instead he can calculate V'·+1(X'+h 11+1) in the same way
that he can calculate V,· (x, , I,) once he finds the a, that maximizes V, in
equation (9.1). Using this a" he then calculates

V,·(XI, I,) = v,(x" a,)

+ ~ P(XI+I, 1,+, lx" II, a,) V'\I(X'+I, 1'+1)
""+1,1

'
+1

(9.2)

This is just the summation element v+EpV· from (9.1) for x" evaluated at
the decision a, which is optimum given only I, [i.e., maximizes (9.1 )].

I have tried to simplify the notation in the above dynamic program­
ming equations (9.1 )-(9.2), by calling all unknowns x,. So x, includes
unmeasured state variables and parameters. If there is a discrete number of
alternative models mi, then think of the index r of the correct model m· as
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being one of the x, variables. Thus, we see that equations (9.1)-(9.2) are
quite general, since, in principle, they allow us to assign transition probabil­

ities p(x'+l' I,+llx" I" u,), even to such outcomes as change in the correct
model from one time to the next.

Notice that to perform backward recursion with equations (9.1)-(9.2)
is to build up a picture of a sequence of decision analyses, where each
analysis involves the maximization of V,(I,) while looking forward to the
possible outcomes already evaluated for similar analyses at t + 1, t + 2, etc.
When the short-term payoff function v, is of the same form at each step up to
terms like a constant discount rate, we find, as noted in the previous chapter,
that the optimum policy a, becomes constant at each information state after a
number of backward recursion steps have been performed. This stationary
function a(I,) is a feedback policy, with the remarkable property that it
anticipates future information states 11+.. 1,+2, etc., and future decision
analyses based on them.

To gain a better intuitive feeling for what is going on in equations
(9.1 )-(9.2), it may help to think of them as representing a "branching tree"
of possible outcomes associated with the decision u, at time t (Figure 9.6).
The first random branches away from each decision choice u, represent alter­
native state/parameter/model conditions possible at the time of decision.
Then the next set of branches represents states that might arise as of the next
decision point due to random effects in the system itself. For each of these
second-level branches, further random effects in the observation process may
lead to various possible information states at the time of the next decision.
Notice that the total future value V,'+l associated with the end of each three­
way branch is conditional on the actual state achieved (second branch),
which is in turn conditional on the first branch. This tree helps us to under­
stand why we cannot simply use I, as the dynamic programming state, as
Walters and Hilborn (1976) incorrectly proposed. If we suppose that the
branching tree ends on a V,'+I(I,+l) that is not conditional on x,+ .. then we
would admit in the next set of branches (t + 1 to t + 2) that various states
X'+l, X,+2 are possibly independent of the possibilities admitted in the tree for
t to t + 1. Then, to the extent that the odds on outcomes can be controlled
by informative actions, we would be pretending some ability to control the
actual parameters/model over time. The "optimum" policy would be to wait
for a favorable parameter estimate in I" then try to narrow the odds on this
estimate.

The feedback policy estimated by backward recursion of equations
(9.1)-(9.2) is "globally optimal" (very best adaptive policy possible) only if
three special conditions are met. First, the fixed-dimension information state
I, must contain all the information that the historical data Y, has to offer
about present and future states, i.e., about p,(x,). In nonlinear systems, this
condition cannot usually be met by any simple information state description
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Figure 9.6. The dynamic programming equations (9.1 )-(9.2) for adaptive decision
making can be visualized as representing a branching tree of possible outcomes.
The first branches represent decision choices, and the next three represent uncer­
tain outcomes in (1) what the current state X, actually is; (2) what next state X,+l

will arise given the X, branch; and (3) what next information state 1'+1 will arise

given X'+h X" and u,.

(see Chapter 7). Second, the decision-making process must consist of
independent reevaluations of data and choices (maximization of V,) at each
decision point, without it being possible for the decision maker at time t to
impose "open-loop" choices U:+I' U'\2, •.. , on his successors except through
the effects he may have on the future states (X'+l, 1,+1), (X'+2, ['+2), ., ..

When this second condition does not hold, the optimal policy could conceiv­
ably involve commitment to a fixed "experimental" schedule of actions over
several future time steps, followed afterward by a feedback policy based on
the results from that schedule. Third, we must suppose that no new models
(not admitted in XI) and/or data-gathering systems (which influence the odds
placed on 1'+1 given X,+I) will be developed at future time steps. This
assumption of a closed, repeated decision process based only on options and
outcomes recognized today is, of course, incorrect, but we cannot do much
about it except to take care that the recognized range of possibilities is real­
istically broad.

To apply the backward recursion for any particular example, we must
precisely define (specify, model) how to make three basic calculations. First,
we must specify how to calculate the probability p(x, II,) to place on each
possible true state X" given any information state I, that is considered possi­
ble. For example, if X, contains an unknown parameter IJ and I, includes its
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best estimate ~, and variance oJ
"

then we might estimate p(f31 ~" oJ) as a
normal distribution with mean ~, and variance oJ,. Second, we must specify

how to calculate the payoff v,(x" u,) in time step t as a function of the actual

state and control choice. For example, if one element of x, is N" the stock

size, and if u, is the harvesting effort, then we might take v, = catch = qu,N,
as the simplest payoff measure. Third, we must specify how to calculate

probabilities p(x,+1, 1,+1 1 x" I" u,) to place on each possible next state X,+I

and information state 1,+1, given each possible combination of state, informa­

tion, and action X" I" u, at time t. As assumed in Figure 9.6, the joint dis­

tribution of X,+I, 1
'

+ 1 can usually be represented as the product of two
independent distributions:

(9.3)

where the first calculation p(x'+llx" u,) places odds on X,+! given x, and u,

and the second p(I,; I Ix" I, I" U,) places odds on 1'+1 given the action U" next
state X,;I , and last information state I,. Notice that to specify p(x,+,lx

"
Il,)

is to build a stochastic model for the system dynamics, independently of any

measurements, while to specify p(Ir+llx';l' I" UI) is to build a model for how
statistics I, about X will propagate over time.

Let us now outline three examples of these calculations for exploited

populations. In the first two, it will be assumed that the stock size can be

observed exactly prior to making the final action decision at each time step;
with this simplification, I, includes the stock size and x, includes only infor­

mation about which alternative model/parameter value is actually correct.

In the third example, we will look at a surplus production situation with

three unknown parameters and the stock size not measured directly. As we
shall see, even this almost trivial biological representation of surplus produc­

tion leads to a dynamic programming formulation that is beyond the power

of existing computers to solve.

Example 1: Two state-transition hypotheses

Suppose we divide the range of pre harvest stock sizes that a popula­
tion might achieve in any year into 10 discrete levels or crude states: 1 =
very low, 2 = low, 3 = medium, etc. Suppose further that the management

decision is what discrete escapement level to leave behind after harvesting (1
= very low, 2 = low, etc.). Let us call the discrete population level N, (N,
= 1, 2, 3, ... , 10) and the escapement choices u, (u, = 1, 2, 3, 4, or 5).

Notice that U r :5 N r • Let us measure the short-term payoff as v, = ),.'(N, ­
U,), i.e., harvest N, - ll, discounted by the factor ),.', where),. :5 1.0. Sup­

pose that there are two alternative models, ill I and ill2 , about how the next

year's stock size N,; I will depend on the control Uri let us represent these
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(9.4)

models as two probability transition matrices, as shown in Table 9.1. The
i,jth element of each table is the probability p(N1+11 Ur, k) of getting a stock
size j next year given that escapement j was allowed this year, and if model
k (k = 1, 2) is correct. Notice that the two models place exactly the same
odds on different next states when escapement is low (u = 1, 2, 3), but differ
in the odds placed on higher stock sizes next year when escapement is high.
Thus, models m I and m2 are a much condensed prototype of the situation in
Figure 1.1; responses to low escapements are considered to be well known
based on historical data, and there is uncertainty (represented by ml and m2)
about responses at high escapements.

Table 9.1. Two alternative models of population response, expressed as probabili­
ties for next year's stock size given various escapement choices this year.

This year's Next year's stock size (N)
escapement

Model (m) choice (u) 2 3 4 5 6 7 8 9 10

ml 1 0.5 0.5
2 0.3 0.3 0.5 0.2
3 0.2 0.6 0.2
4 0.1 0.4 0.2 0.2 0.1
5 0.8 0.1 0.04 0.Q2 0.02 0.01 0.01

m2 1 0.5 0.5
2 0.3 0.3 0.5 0.2
3 0.2 0.6 0.2
4 0.1 0.1 0.2 0.4 0.2
5 0.01 0.05 0.8 0.05 0.05 0.03 0.01

Given an observed outcome Nr + 1 following a control choice u" Bayes'
theorem can be used to calculate the new probability Pr+l(ml) that should be
placed on model mt [Pr(m2) = 1 - Pr(ml)]. The formula is

Pr+l(ml) = _1_ p(Nr+ll Ur, ml) Pr(ml)
C¥r+1

where p(Nr+1 \ Ur, ml) is the probability (likelihood) of N r+l given u, and ml
from the first table in Table 9.1, and C¥r+l is the total probability of getting
N r +l :

C¥r+1 =p(Nr+ll Ur, ml) Pr(m.) + p(Nr+11 Ur, m2) [1 - Pr(ml)]

Let us take Pr(m,) as the single information statistic describing uncertainty
about which model is correct; it is, in fact, a sufficient statistic for ml, i.e.,
contains all the information about ml that is in the historical record (UI, N2),

(U2, N 3), ••• , (Ur-l' N,). It also includes a prior probability PO(ml).
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With the above definitions, the information state available for decision
making at time t becomes I, = {N"P,(m,)}. The only unknown x, is k (=
1 or 2), i.e., which model k is correct. Let us assume that the correct model
remains correct over time, i.e., X'+1 = Xt. Notice that the short-term reward
v, =At(N, - u,) is independent of the correct model k. Under these condi­
tions, the dynamic programming equation (9.1) reduces to just

(9.5)
2 10

+ E E p(N,+11 u" k) V'·+I(k, 1'+1)
k=1 N,+I=I

where, for each element in the summation, 1'+1 is the pair N,+1 for that ele­
ment and P'+I(ml); P,+I is calculated by equation (9.4) using N,+1t U" and
PI(m,) from It. The predicted Pt+l(ml) in 1'+1 need not fall on any of the
discrete grid points used to evaluate V'·+I. Thus, the numerical solution of
(9.5) requires interpolation between V'·+1 values in the P'+I(ml) dimension.
The reduced version of (9.2) is

V,·(k, II) =Nt - a,
10

+ E p(N,+11 at, k) v."+I(k, 1'+1)

(9.6)

where a, is the escapement choice that maximizes V, in equation (9.5).
Provided the information state variable P,(ml) in I, is represented on

a fairly coarse grid (say five or ten levels), the recursive optimization equa­
tions (9.5) and (9.6) can be solved backward in time easily, even on a micro­
computer. With a linear interpolation scheme for V'·+1 in the Pt+l dimension
and P, discretized at five levels, an Apple II can do 15 backward steps
[enough for the policy a(I,) to become stationary even for A= 1] in about 20
minutes. Note that at each step, the value function V,· must be estimated at
2 X 10 X 5 = 100 points [two k values, ten N, values, and five P,(m.) lev­
els]. This involves 10 X 5 = 50 maximizations of V, one at each of the ten
N I values and five P,(ml) levels.

An interesting feature of the problem is that the set of five u, choices
can be partitioned into four qualitative subsets, as shown in Figure 9.7. The
actions U = 1, 2 are both uninformative as to which model is correct, and
also not optimum unless the initial N, is low (1 or 2). Action 3 is optimum if
ml is known to be correct (and N, ~ 3), but it is uninformative:
p(N'+Ilml, U == 3) = p(N'+Ilm2, U = 3). Action 4 is optimum if m2 is cer­
tain (and N, ~ 4), and it is also informative about which model is correct.
Action 5 is highly informative (see the transition probabilities in Table 9.1),
but is not optimum if either model is known to be correct. The partitioning
shown in Figure 9.7 appears to occur to some degree in all nontrivial adap­
tive control problems. When the optimum-given-m subset contains only one
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Set of all ut

Figure 9.7. The decision choices u, = 1, 2, 3, 4, 5 in a simple adaptive decision
problem can be partitioned into four subsets. A key issue is whether decision 5
will ever be the optimum.

element, we get the degenerate situation of Figure 9.2. When the
uninformative-optimum-given-m subset is empty (where u = 3 as in Figure
9.7) we get the degenerate situation in Figure 9.4; all optimum-given-m
decisions are informative. Only one qualitative type of decision is missing
from Figure 9.7, namely, a cautious intermediate experiment between the
optima-given mt or m2.

A critical question is: would it ever be optimum to choose the highly
informative, "probing" decision u = 5 that is not optimum if either model is
correct? That is, should we ever pu :h beyond u = 4, which is informative,
might turn out to be optimum anyway, and would be the best "certainty­

equivalent" choice if P,(ml) < 0.5? The answer is a resounding yes, for the
information state N, = 5, and p,(ml) in the range 0.25-0.75. That is, when

there is high uncertainty as to which model is correct and there exists an
extreme decision that will resolve the uncertainty without risk of stock col­
lapse, this extreme decision is part of the optimum stationary policy Q(I,).
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While I have developed this example just to look at the question of
whether extreme, but informative, decisions would ever be optimal, I some­
times wonder if such simple transition probability models (representing only
a few aggregate stock levels and actions) might not be a more realistic way to
deal with many practical situations than the more elaborate population equa­
tions that we usually assume. Populations are usually monitored only
crudely (low, medium, high, etc.), and actions are often coarse (open sea­
son, close, etc.) as well. Moreover, it is easy to define rough transition prob­
abilities from historical data and for extreme (and controversial) hypotheses
about response; it is easy enough to show that the optimization results [feed­
back policy G(I,)] are not particularly sensitive to the probabilities assumed.
Fot examples of much more detailed calculations using transition probability
(Markov decision) models that do not involve learning effects, see Men­
delssohn (1980). For further examples that do involve learning, see Walters
(1981).

Example 2: Stock-recruitment model with an
unknown parameter

Here we return to an example discussed in Chapter 7, namely the
Ricker stock-recruitment model written as N'+I = u, exp [0 -13(u, - Ii) +
w,j, where the mean historical productivity and escapement parameters 0
and Ii are well fixed by past data, u, is the spawning stock, WI is a normally
distributed environmental effect, and 13 is an unknown parameter represent­
ing the sensitivity of productivity [In (N,+tlul)] to spawning stock. Here we
can generate an infinite number of models mj by varying the parameter 13, so
we speak about uncertainty in terms of the probability distribution p,(I3).
Assuming that the prior probability distribution po(l3) given no data is nor­
mal, and that N, and u, are measured exactly at each time step (generation),
then pl(l3) is a normal distribution with mean S, and variance u§" The
dynamics of Sand U§, are given recursively (for any step t to tl+l) by equa­
tion (7 .17) (r;~, = u~J As in the previous example, let us assume that the
management payoff is measured simply by discounted catch v, = )..,/(N, ­
u,). The example as outlined here has been analyzed in detail by Ludwig
and Walters (1981), using a scheme devised by Ludwig for an efficient
approximation of the dynamic programming value function V·.

With N, observed exactly, the only unknown XI in this example is the
parameter 13. The information state II available for decision making at time
t is assumed to be I, = {N

"
S" u$,}. The dynamic programming equation

corresponding to equation (9.1) becomes

V,(I,) = N, - u, + ).., I pl(l3) I p'(w,) V I\l(l3, 1'+1) dWr dl3
(j w,

(9.7)
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where p'(w,) is the normal distribution for w, (mean zero, variance u~). The
computation of these integrals [which replace the sums over X,+l in (9.1)] can
be simplified since p(f3) and p'( w,) are independent normal distributions;
their product gives a single normal distribution for the random variable Z =
f3(u, - a) + W" which is sufficient to calculate N,+I, and hence ~'+I and uj'+1
given u, and I, (i.e., to calculate 1,+1), The analogue of equation (9.2) is

v'"(f3, I,) = N, - a, + A Jp'(w,) V'"+I(f3, 1.+1) dw, (9.8)
W,

where a, is the escapement that maximizes (9.7) and 1.+1 is the information
state predicted given f3, I" a" and w, [using the recruitment model and
equations (7.17)].
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Figure 9.8. Various estimates by dynamic programming of the value V, of allow­
ing different numbers of spawners in a stock-recruitment example (for explanation
see text). Source: Ludwig and Walters (1981),

Figure 9.8 shows examples from Ludwig and Waltl:'r~ (1981) of how
V, for this problem varies with u" for two different levels of uncertainty
about f3, Here we deliberately assumed that the system had been managed
by a certainty-equivalent policy, so the historical a would coincide with any
assessment of the optimum a made by ignoring learning. A discount factor
A = 0.9 was assumed, and VI (marked "optimal" in the figure) is shown
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after enough iterations to assure that it had become independent of t (this
always happens for >. < 1). For comparison, three alternative ways of
estimating the optimum U, are shown. Value functions estimated by ignor­
ing all learning efforts are marked "averaged equilibrium" and "averaged
certainty equivalent." They both predict that the best policy would be to
allow around u, = 11 = 15 spawners. The value function marked "myopic
Bayes" was computed by looking at learning effects (I,+!) for only one step
into the future, then assuming no further learning. Here it becomes
apparent that the certainty-equivalent, historical choice 11 would be very bad;
the increase in myopic Bayes value by moving away from () is due to the
information value of taking just one informative decision. The optimal
value Vr is much flatter for large ajr' since in looking forward to future anal­
yses that might involve informative probing it places a higher value even on
staying at Ii for the first decision Ur. That is, it "recognizes" that some
future decision maker will act as it predicts is best, which is to allow a much
higher, probing escapement of around U = 30.

The most surprising discovery from this example was that the
optimum adaptive policy apparently involves either assuming certainty
equivalence (when o'J. is low), or making a large and informative probe
(when ajr is large). It never seems to be good to just "dither" the escape­
ment level slightly in hopes of gaining information about {3. One should
either ignore the uncertainty, or take a substantial step to resolve it. K.
Astrom (personal communication) has obtained similar results for a linear­
quadratic regulator problem with a single unknown parameter: the optimal
regulator acts to prevent output variation when the parameter variance is
low, and induces strong variation when the parameter variance is large.

The optimal policy can be approximated as shown in Figure 9.9. For
aj below some threshold 'Yo, the best escapement is approximated by U ce (ce,
certainty equivalent), which depends only on ~ (and the known parameters
ct, Ii, and u~). For aj greater than 'Yo, the best policy is approximated by
'YI U'" i.e., a multiple of the certainty-equivalent escapement. The best value
of 'Y1 appears to be roughly 2.0. A. Gaivoronski (personal communication)
has assumed a policy of this form and conducted optimizations in the policy
space'Y (see Chapter 8). For U ce = Ii, he also finds expected improvements
in the total value function V by moving from only certainty-equivalent con­
trol ('YI = 1) to the approximate optimal policy, and finds the best value of 'YI
to be around 2.0.

Example 3: Surplus production model

Let us assume that the biomass dynamics B, of a stock can be approxi­
mated by the stochastic logistic model
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Figure 9.9. The optimum escapement policy for a stock-recruitment system with
unknown parameter {3 (for response of productivity to stock size) can be approxi­
mated by the simple feedback policy shown here. When uncertainty is low, the
best policy is to allow the certainty-equivalent escapement Uc<' When uncertainty
is higher than 1'0, the best escapement jumps to 1'1 uc<, where 1'1 » 1.0.

dB 2 d- = {3, B - {32 B - {33 Bu, + W,
dt

where {31 = r, {:J2 = rlk, {3J = q, and u, is harvesting effort. Assume further
that u, is held constant over each year (t to t + 1), and that an abundance
index y, = (33 B, (catch/effort) is measured at the start of each year. Then

Schnute (1976) notes that (9.9) can be integrated to give (see Chapter 4):

I B'+1 -
n -- = {31 - {32 B - {33 u, + w, (9.10)

B,
- r1+1

where B = J, B, dt is the mean biomass over t to t + 1. Assuming further
that there is no observation e~ror (y, is exactly equal to (3J B,) results in a
linear regression model for estimating {31 - {33:

y'+1 {32 _
In -- = (31 - -{3 Y - {33 U, + W,

y, 3

where a simple approximation of 9 would be the mean of the end points
(y'+1 + y,)I2. Using this regression, uncertainty about fl is represented by

the covariance matrix Ea, which has six distinctive elements: a~l' a~2' a~J'

a~1~2' a~I~3' and a~2~3 (think of the a~j~j as correlations among the parameter
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estimates). The regression estimates lJ and Ell can be updated from t to t +
1 using the standard recursive linear regression equations (7.12)-(7.15),

given u, and y,+I. Thus, it would seem that equations (9.10), (9.11), and
(7.12)-·(7.15) provide all the machinery needed for a dynamic programming
formulation.

Now suppose we wish to design an adaptive feedback policy that
specifies the effort u, to apply during year t as a function of the estimate y, of

relative abundance at the start of the year, along with information about
future production based on the stock history Y, as summarized in the statis­
tics for {3. The "wide-sense" information state would then be:

(9.12)

that is, 10 variables are needed to characterize the current state estimate (13,
= y'/(33) and uncertainty about future production. If we discretize all these
variables for dynamic programming at only five levels each, we would end

up having to maximize V(I,) of equation (9.1) at 510 = 9765625 grid
points. The value function V:+ 1 has four additional dimensions, since it
includes the unknowns X'+I = (B'+I ,{3\ ,{32 ,(33r This H-dimensional func­
tion would be difficult to store in today's biggest computers even at only five
levels per variable, and would take many hours to calculate for each time
step. After making such a massive investment in computer time, we would

have a feedback function a(I,) defined over 10 variables, and it is not clear
how we would go about trying to visualize (or otherwise understand qualita­
tively) the prescri ptions of this policy.

If we are willing to assume that the historical data are adequate to
determine one of the three parameters exactly (for example, if we assume the

equilibrium combination 0 = {31 - {37!{33 9 - (33 Ii is known, we can solve for
one parameter given the others), then the required information state can be

reduced to

I, = {y, , lJ~ , lJi ,8;i ' 8~ , O~Il2}

where {3~ and (32 are the two parameters that are assumed to remain
unknown. This 6/9-variable problem would be barely within the feasible

computation limits for dynamic programming on large computers, and there
would still be a serious problem in visualizing and qualitatively interpreting

the feedback policy function a(I,).
Why is it that such an apparently simple dynamic model like logistic

surplus production leads to gross difficulties in computation and interpreta­
tion of an optimal adaptive policy? For an intuitive answer to this question,
look back again at what we seek to accomplish with an optimal adaptive pol­

ICY: the anticipation of future learning and its value to management.
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Simply to measure learning rates and the moving state of uncertainty, we
need to add at least six extra variables (E~) to the obvious state description
(13, ,~l ,~2 ,~,). In general, if there are n uncertain parameters, the adaptive
optimization needs to look at roughly (n 2 + n)12 additional variables beyond
the state and parameter estimates needed to define a certainty-equivalent
policy. To avoid this explosive growth in the information state dimension,
we must either assume away most uncertainties or be content with some
approximate calculation that does not require to build up the full feedback
policy a(I,) for all possible future information states. The best approximate
scheme currently available is the wide-sense dual control algorithm, which
we will introduce in the next section.

Wide-Sense Dual Control

Tse et aI. (1973) introduced an algorithm that shows considerable
promise for adaptive policy design in systems that have more than one
unknown parameter. Their "wide-sense dual control" algorithm has been
applied to a variety of examples, including economic models (Bar-Shalom,
1981; Pekelman and Tse, 1980) and fisheries stock-recruitment analyses
(Smith and Walters, 1981). Reviews of the algorithm can also be found in
Bar-Shalom and Tse (1976a,b). Basically, their approach is to begin with
the current wide-sense information state (x" ExJ for a problem, where x,
includes all unknown states and parameters. Without pretending to define
a(Ir) for all possible information states, they then seek an efficient way to
approximate the best current control a, while taking immediate and future
learning effects into account.

Given x, and Ex" the algorithm proceeds by first calculating a nomi­
nal or certainty-equivalent trajectory xiC:>., ... , x¥'), Ei~)+l' ... , Ei"]. using the
state and observation dynamic models

X,+I = [(x" Ur, w,) y, =h(x" v,) (9.13)

with the stochastic effects w" v, set to zero and with a nominal (open-loop)
control sequence UiC:>l, ... , u¥'). If possible, the nominal control sequence
should be chosen so as to be optimum for the nominal deterministic dynamic
xia

). It is important to keep in mind that X r is an "extended-state" vector
including all unknown parameters. For example, with the Ricker model
N t + 1 = u, exp ({31 - (32 U, + w,), the extended state would be x, =
(N" (3" (32)', for which the state equations [(x, u, w) are

Xt,I+1 = u, exp (X2. - X" u, + w,)

X2.r+1 = X2,
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The nominal dynamics of the covariance matrix Ex, can be approximated by
various filtering models, such as the extended Kalman filter (Chapter 7).
The key objective is to get at least some assessment of how uncertainty will
propagate along the nominal or "most likely" future path of states x,(o) and
controls uiO).

It is assumed that the management objective is to maximize a value
function V, of the form

T·-I

V, = E v, + l/;(XT) (9.14)

where in the simplest case the stepwise payoffs Vt are of the form

v, = lex"~ t) + 'P(u" t) (9.15)

(i.e., a term 1 related to the state and a term rp related to the control). l/;(XT)
is a "terminal value" associated with ending up in different possible states XT
at the last time step. For example, taking annual catch as the payoff measure

for the Ricker model results in lex"~ t) = Xl,t (i.e., N,) and 'P(Ut, t) = -u,
(i.e., minus the escapement); a simple terminal value would be l/;(XT) = XT,
i.e., just the last period stock size. Let us denote the total value for the nom­
inal trajectory X,t°, , ... , X¥,l , u,t~\ I ••• , u¥') by V.lo). Usually V,IO) would be a

most pessimistic assessment of the total future value of the system, since it
ignores all potential gains due to improvement of state/parameter assess­
ments and cautious anticipation of environmental effects.

As an aside, let me remind the reader that many resource assessments
stop at this point, with the assessment of a most likely future xIO), u,IO), and

viol. Indeed, decision makers often demand that only such assessments be
presented, without confusing and worrisome "hedging" or qualifications
about various uncertainties. As we shall see, the wide-sense algorithm at
least allows the analyst to present a compressed and understandable
representation of the effects of major uncertainties.

Effects of uncertainty are included in the wide-sense algorithm by car­
rying out a perturbation analysis (Taylor series expansion, to second order)
of the value function in the neighborhood of the nominal trajectory, for
"small" disturbances (in future states and controls) away from it due to sto­
chastic effects and learning in future time steps (t + 1, t + 2, etc.). The
perturbation analysis involves some rather complex algebra that need not be
repeated here; the clearest available summary is in Bar-Shalom and Tse
(1976b). Its basic result is that the dynamic programming value function
from time t forward can be approximated by Vicl) (cl is for "closed-loop"),
which consists of five terms:

V (c1) - + Vlo) + V(c) + VIP) + 1°), - v, •.,.1 ,+1 HI ')' '+1) (9.16)

Here V,I~1 is the value achieved along the normal trajectory xll~l, ... , x¥,l fol­
lowing the application of any choice of control u,. The other terms represent
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stochastic effects. V'(~l is a "caution term" representing the effects of uncon­
trollable future uncertainties (w, \.) on the long-term value. V,(':\ is a "prob­
ing term" representing the future value of the reduction in uncertainty due
to u, (i.e., the effect of u, on future covariance matrices E'+I, E1+2, etc.).
1'1~1 is a term representing the nonoptimality of U,l~l' ... , U¥'~I with respect
to the deterministic dynamics; it is equal to 0 if u(O) is optimal for the deter­
ministic problem (f with w, =0).

Formulae for computing the caution, probing, and nonoptimality
value terms Vl~I' Vl':\, and 1'1~1 are presented in Bar-Shalom and Tse
(1976b). Basically, each of these consists of a sum of components over
future time steps, where each component involves a "weighting" placed on
uncertainties predicted at that time step along the nominal trajectory. The
weightings are calculated from sensitivities (partial derivatives) of the value
function v, and dynamic model f, to the future states x, and controls U,. Of
particular interest for us here is the probing term Vi':-\. It is calculated as

T-l

W:\ = - E tr [A oj EJO)j
j::::t+1

(9.17)

(Here tr means "trace" of the matrix A Oj EJO) , the sum of diagonal elements
of the matrix.) The weighting matrices A Oj are measures of the value of
information associated with choosing a control u, that will reduce E'+I, E'+2,
... , E T • V~~l is negative, since the matrices A Oj are positive definite: thus,
it is measured as a "loss" that can be reduced by actions that reduce EJO).

Variation in value components with action choice

A simple use of the wide-sense algorithm is to compute the value
components "deterministic" vi':l. = v, + V!';.ll + 1'1~1, "caution" vi11, and
"probing" Vi~l for a range of action choices u,. This gives a graphic picture
of performance for the "baseline model" (ytd») and the values ytc) and ytp)

associated with choices U , that are different from the nominal choice U,(d) that
would maximize ytdl. Figure 9.10 shows two purely hypothetical examples
of how we expect the value components to vary for a harvesting problem
where u, is a measure of exploitation rate and performance is measured in
terms of long-term harvest. First, we expect a dome-shaped relationship
between nominal harvest value ytd) and harvest rate; the peak of this dome
defines the certainty-equivalent optimum rate u(o). Next, we expect the cau­
tion component ytc) to be the largest when the harvest rate u is smallest, and
to decrease as u, increases. Finally, we expect the probing value ytp) to be
lowest if u, is chosen to be near the historical average Ii, and to increase for
informative choices away from rJ. Notice that the certainty-equivalent and
average historical choices u(o) and Ii need not coincide (case B); when they do
not, we get one of the degenerate cases mentioned earlier, where it is
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Figure 9.10. Examples of how the long-term value of harvests can be broken
down into components as functions of harvest rate. The total value is yicll, which
is equal to a deterministic value prediction yid) plus a caution effect yic), less a
probing value effect yip). In case A, higher probing values away from the nominal
u(o) imply that the optimum u' is far below u(ol. In case B, even using u(o) is in­
formative since it is far from the historical average ii.
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unlikely to be worthwhile making a deliberate experiment since the
certainty-equivalent action u(o) is itself informative. The probing value Vlp)
is usually not zero even at u, = a, since operation at this point may continue
to induce informative changes in the system state and improvements in esti­
mates of mean response, even when the state is not changing.

As I have drawn the value components for case A in Figure 9.10, the
value of information is large enough to make u(o) a locally worst policy (com­

pare Figure 9.8), and there are two informative local optima. The best of
these is at the low harvest rate marked u·, where the probing and caution
components combine to produce a total expected value Vlcl) that is higher
than at u(o). In case B, the probing value is nearly the same for harvest rates
u(O) and below, and the caution component Vlc) "pushes" the closed-loop
optimum u· to somewhat below u(o). Obviously many other situations
involving u· - u(o) are possible, depending on the magnitude of the Vlp) and
VlC) components relative to Vld

) and on how much they vary with U,. To the
extent that the wide-sense approximations can be trusted for action choices
that deviate strongly from the nominal u(o>, pictures like Figure 9.10 can be
used to visualize all of the qualitative conditions and arguments presented
earlier about when probing may be worthwhile. To clarify the possibilities,
I have deliberately drawn the hypothetical values in Figure 9.10 so as to
exaggerate the probing effect VO') compared with that found in resource

examples analyzed to date.
Figure 9.11 shows wide-sense value components estimated for the

Ricker model with one unknown parameter, as discussed earlier {R = S
exp [a' - b(S - §) + w,j, b unknown, a' and § known, Rand S observed
exactly}. For this case the calculations can be done easily on a microcom­
puter. Here I assumed a' = 1, bo = 1, (1~ = 0.5, ). = 1, t = 0, T = 10,
and (1~ = 0.1. I took § so that it would coincide with u(o), the most favorable
condition for probing. As expected from earlier discussions, the optimum
action u· involves a strong probing increase in escapement level. The value
of information is relatively small (VlP) not a large loss), as predicted from
EVPI arguments in Chapter 7 (see Table 7.1). However, notice that Vld)

and Vlc) are almost independent of the initial choice Uo, since the nominal
feedback policy u(o) (fixed escapement, u(o) = min {R r, Ii}) gives good

catches for most years along the nominal trajectory except when uo is very
small (then a recovery period is required). Thus, even small changes in Vlp)
can shift the maximum of the total value Vlcl

) substantially away from its
peak considering only Vld

) + Vlc). This is essentially the same conclusion
reached by dynamic programming in Ludwig and Walters (1981), shown by
their (113, = 0.02 case in Figure 9.8; note that the wide-sense value estimate
of Figure 9.11 is roughly halfway between the myopic Bayes and optimal
estimates in Figure 9.8 (allowing for differences in the spawning stock
scales).
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Figure 9.11. Effect of spawning stock choice on components of long-term harvest
value, estimated by the wide-sense dual control algorithm. The total value esti­
mate y(cI) is equal to a deterministic estimate y(c) accounting for uncontrollable en­
vironmental effects, plus a value y(p) of probing away from the historical average
escapement ii.

Caution and probing in stock-recruitment

A detailed analysis of the Ricker stock-recruitment model with two
unknown parameters [a and b in R, = S,-1 exp (a - bS'_1 + w,), U, !E S,j
has been carried out using the wide-sense algorithm by Smith (1979) and
Smith and WaIters (1981). For this case the extended state description is x;
= (R" a, b). Assuming R, and u, (spawners) can be observed exactly, the
covariance matrix of a and b, E" can be estimated (and future values
predicted along a nominal trajectory R!O), E10») by recursive linear regression
[equations (7.12)-(7.15)]. The three different elements of E,(o~, O.b, and ol)
are equivalent to (can be computed from) three more intuitively meaningful
statistics:

the number of {R" u,-d observation pairs available in the historical
record Y;

C7~ the varian~e of Uo, ... , U'-l, a measure of how much informative vari­
ation in u, has already occurred;

ii, the mean historical level of spawning stock.

For typical values of a and C, it is particularly interesting to ask how the
closed-loop optimal control u,. varies with o~ and ii,.
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By conducting little optimizations as in Figure 9.11 across a grid of
initial combinations of the uncertainty measures (J~ and Ii, Smith was able to
determine how the optimum probing deviation u.. - U!d) depends on these
measures. Figure 9.12 shows a perspective plot of the probing deviation as a
function of (J~ and Ii. This picture shows that it is not worth probing (devia­
tion negligible) when (J~ is large, i.e., there has already been much informa­
tive variation. When (J~ is small, it is best to probe, and the direction
(higher or lower escapement) is determined by the historical average Ii. If
the stock has generally been low (relative to the estimated "equilibrium"
stock a/6), so that Ii is small, the best probe is upward to higher escape­
ments. When Ii has been large, it is best to probe down with lower escape­
ments. These prescriptions make very good intuitive sense for
stock-recruitment management in general.

By doing a large number of Monte Carlo simulations using randomly
chosen true values of a, b (from a normal distribution with means ao. 60,
variance Eo) and random disturbances w" it is possible to construct probabil­
ity distributions of total value V, associated with using a policy. such as in
Figure 9.12, and for alternatives, such as the certainty-equivalent regime
(use u,(O) every year). As shown in Figure 9.13, such simulations show that
the expected improvement from using the dual control (closed-loop) policy
comes largely from reducing the odds of very bad outcomes (V, much lower
than the potential). For most trials, the certainty-equivalent policy (passively
adaptive) does about as well as the dual control policy. But occasionally,
certainty-equivalent actions result in the spawning stock being "locked in" at
a low level so good parameter estimates are not obtained. The dual control
policy never gets caught in this "trap."

Figure 9 .12 implies a very interesting management pattern when
parameters are expected to vary over time and this is reflected in the param­
eter estimation procedure (older data discarded, data discounting, etc.). The
basic effect of assuming parameter variation is to make (J~ decrease over time
during any period when u, is held relatively steady. Without saying any­
thing about exactly how rapidly this decrease (increase in uncertainty) will
occur, we can nevertheless see what its qualitative effect will be: the optimal
policy will involve alternating periods of certainty equivalent versus probing
management, as shown in Figure 9.14. A few probing decisions will
increase (J~, thus making it optimal not to probe. Then (J~ will decrease over
the following period of certainty-equivalent actions, until it again becomes
optimum to probe. Notice that if the first probe is upward (Ii initially low)
the next is likely to be downward since the first will have caused Ii to
increase; this results in the "chattering" probing pattern during the probing
periods shown in Figure 9.14. Of course, the basic productivity of the stock
will set strong limits on how much probing is necessary or tolerable during
the probing periods.
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o

Figure 9.12. Optimum escapement level measured as a percentage deviation from
the best point estimate based on historical data, for a stock-recruitment system.
When the mean historical escapement ii has been low and steady (variability au
low), it is best to probe upward with higher escapements. When ii has been high
and steady, it is best to reduce escapements, in this example to 40 % of the best
point estimate. Redrawn from Smith and Walters (1981).

In terms of the "management donut" idea discussed in Chapter 7,
Figure 9.12 implies staying within the donut hole (domain of increasing
uncertainty) while o~ is large, then probing outside of it when uncertainty
increases sufficiently (o~ decreases sufficiently). It is impossible to give any
precise and general prescription about how often it is optimum to move out­
side the donut hole, since this frequency will depend on (1) how rapidly
parameters are assumed to change, and (2) learning rates following informa­
tive decisions, as affected by noise levels (process and observation variances).
It is unlikely that the optimum policy will involve continual probing (u,' far
from uio) in every time step); this would imply such rapid and frequent
parameter changes as to make it best to seek some alternative model that
explicitly represents why and how the original "parameters" vary. Likewise,
it is probably unwise to assume that parameters are constant over long
enough time scales to make probing periods not worthwhile at all. Based on
various simulation experiments with time-varying parameters in
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Figure 9.13. Over 50 simulation trials, an actively adaptive policy like in Figure
9.12 was always able to achieve at least 80 % of the maximum yield obtainable if
the stock-recruitment model parameters were known in advance. Passively adap­
tive policies (PAP) without probing, and nonadaptive policies (NAP) without any
learning usually also perform well on average, but occasionally do very poorly.
Source: Smith and Walters (1981).

stock-recruitment systems, I would generally recommend a probing period
about once every 10-20 generations of the organisms, whether or not there
is obvious evidence of parameter change.

Caution and probing in a surplus production model

As noted in the above section on dynamic programming, the logistic
surplus production model leads to an adaptive policy design problem that is
too large to solve directly. The wide-sense algorithm avoids the dimen­
sionality problem by trying to find only the next effort u, to make, given a
fixed information state. The wide-sense extended state becomes x; =



Actively Adaptive Policies 287

*:;)

+.;
c:
Ql

E
~
co
~
Ql

E
:J
E
.~

o

Time

Figure 9.14. The adaptive policy in Figure 9.12 can involve alternating periods of
stable (certainty-equivalent) escapements and strong probing episodes, if recruit­
ment parameters are admitted to change over time so that old data are discarded
(0'" decreasing during periods of stable escapement).

(B" r" k" q,). This state has covariance E" whose critical elements are u~,

uL u:, Un, Urq, and Ukq, if it is assumed that measurement errors are negligi­

ble (if not, E, includes u1" USr, USk, and Uaq as well). Again, E, can be
estimated (and predicted) by recursive linear regression if the measurement

errors are negligible. There arises an "opportunity" for learning not found
in the stock-recruitment examples, since learning rates depend on the states

B, as well as on the effort actions u,: a single, large value of u, may be used
to generate a whole sequence of informative values of B,. The wide-sense

algorithm accounts for such future learning due to current actions, since the

nominal trajectory x1~\, X'(~2, •••• U1~1' u,(%, ... , and nominal covariance

predictions E~C:>1r ElC:>2, ... , both depend on the choice u,.
As in the stock-recruitment case, the covariance matrix E, can be

represented in terms of a set of more intuitively meaningful statistics:

the sample size;

9, the mean index of past stock size;

u, the mean past effort level;

u~, the variance in past stock size (biased upward if measurement errors

are present, but not assumed in the estimation);

u~ the variance in past effort levels;

ryu the historical correlation coefficient between past stock size and past

efforts (usually large and negative).
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Of particular interest in this example is the correlation StatiStiC Tyu ,

which reflects the impossibility of controlling the stock size and effort
independently, as would be desirable in classic experimental design (we must
live with the fact that increasing u will drive y downward). More generally,
the whole state space defined by the six statistics (or E t) is not reachable
through controls; increases in (1~ imply increases in (1:.. increased Ii implies
lower p, and so forth. Since the whole space of combinations cannot be
reached in practice, there is no need to seek multidimensional analogues of
Figure 9.12; instead, we can deal just with representative trajectories (histor­

ical patterns).
Smith (1979) has calculated trajectories of effort and relative abun­

dance implied by the wide-sense algorithm and by passive adaptation
(choose u, to maximize \;1d) each year), for several prototypical situations in
terms of the initial information state Eo. Figures 9.15 and 9.16 show results
from two of his case simulations. In case A (Figure 9.15) he began with 10
years of data (open circles) on an "underexploited" stock, as might be avail­
able during the early development of a resource. The wide-sense algorithm
then gives the trajectory marked AAP (for actively adaptive policy), and pas­
sive adaptation gives the effort-abundance combinations marked PAP. The
AAP initially shuts down harvesting for three years, then moves to high
effort levels when catch per effort does not respond. The stock is pushed
down rapidly, and within a few years the best equilibrium [marked by an
asterisk in Figure 9.15(a») is approached. In contrast, the PAP spends
several years continuing to harvest at low rates, then increases efforts more
smoothly, eventually to end up near the best equilibrium. As shown in the
plot of cumulative catches [Figure 9.15(b)), the AAP gives up early catches
in favor of higher ones (closer to optimum marked OP) later. The sharp dis­
turbances in effort by AAP result in some reduction in the abundance-effort
correlation T yu , and much improved parameter estimation.

Figure 9.16 shows a case where the simulated stock was initially
overexploited, and was being held near a low equilibrium by high effort lev­
els. In this case the AAP immediately lowered effort levels, "watched" rela­
tive abundance increase for five years, then increased efforts again and
moved quickly to the best equilibrium. In contrast, the PAP spent several
years continuing to overexploit, then reduced effort drastically (as had the
AAP earlier), and finally moved up smoothly to near the optimum. As in
the other case, the AAP gave up early catches in favor of gaining informa­
tion about response, then took higher catches, later to end up with a better
cumulative result than the PAP.

Unfortunately, Smith found that both the active and passive policies
fail with discouraging regularity when the stock is initially overexploited,
especially when the data are, in fact, generated by a more complex popula­
tion model. As noted by Hilborn (1979), the failures are basically due to
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Figure 9.15. Successive combinations of harvesting effort and relative abundance
(catch per effort), and cumulative yields, for a simulated comparison of actively
adaptive (AAP) and passively adaptive (PAP) policies for management of a logistic
surplus production system. In this case the stock was initially underexploited, y '"
0.1, ii '" 2. Note how the AAP gives up early yields in order to improve catches
later. The cumulative yields marked OP would be best if the parameters were
known to the decision maker. Source: Smith (1979).
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Figure 9.16. Combinations of effort and relative stock size generated by actively
adaptive (AAP) and passively adaptive (PAP) policies, and cumulative yields com­
pared with the theoretical maximum (OP) achievable if the parameters were
known. In this case the stock was initially overexploited (ji == 0.1, ii == 2.5); see
Figure 9.15. Source: Smith (1979).
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biases in parameter estimation, which are most extreme when the stock size
has been held low for some time. As noted earlier, Ludwig and Hilborn
(1983) have found that the only consistent way to avoid these biases is ini­
tially to stop harvesting for a long period. The wide-sense algorithm
prescribes exactly this, but often does not wait long enough for a response.
The likelihood of this error, of course, increases for less productive (low r)
stocks, since they take much longer to give recovery "signals" against the
backdrop of random variation in both production and observation processes.

DiJIiculties with the wide-scDle algorithm

Although the wide-sense algorithm has strong intuitive appeal as a
way of estimating the benefits of caution and probing in the face of uncer­
tainty, its predictions must be interpreted with care. One weakness in the
algorithm is quite obvious. Its predictions are strictly valid only for small
disturbances from the nominal "best guess" trajectory x!O), ur(O). In the pres­

ence of large stochastic disturbances whose effects cannot be fully controlled,
and/or when parameter uncertainty is very high, the nominal trajectory may
be almost meaningless. In particular, the wide-sense algorithm may
underestimate how much learning will occur just due to passive adaptation
(see the final section, Chapter 8) and will therefore prescribe probing when it
would not really produce any net benefit.

Another potentially serious weakness is with the a priori prediction of
future uncertainties as measured by EI~I, EI~2, ... . For computational
efficiency, it is usual to predict E using simple filtering models such as the
extended Kalman filter. These predictions can be very bad when the
dynamic equations for the extended state X r and observation process are
highly nonlinear. In the two cases above, I assumed away some of the worst
problems in estimating E, by pretending that stock sizes and actions can be
measured exactly. The basic consequence of rejecting this assumption is to
make state "reconstructions" part of the estimation problem, which results in
slower learning of unknown parameters. Simple filtering models may either
under- or over-estimate this reduction in learning rates. Poor estimates of
learning rates have two conflicting effects. When learning rates are underes­
timated, so is the immediate effect of a probing decision. But, on the other
hand, probing appears more important because future learning rates are
predicted to be slow. When learning rates are overestimated (for example,
when measurement errors are ignored), then probing a decision appears
immediately more valuable than it should. But against this is balanced the
prediction that future learning rates will be higher. Thus, the net effect of
error in learning rate predictions is difficult to determine without trying
some numerical calculations with different filtering equations and estimates
of process and measurement error variances.
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Conflicting Objectives

Adaptive Management ofRenewable Resources

Let me close this chapter with a word of warning about actively adap­
tive policies. In the various examples discussed above, I have taken the
maximization of harvest as a reasonable optimization objective. This hap­
pens to be about the only payoff measure (in renewable resource manage­
ment) for which probing decisions are often optimal. When the manage­
ment objective reflects strong risk aversion, the wide-sense "caution" term
dominates, and learning is seldom seen as worth the risks that it entails.
When discount rates for future payoffs are high, there is likewise little point
in giving up immediate yields in favor of possibly detecting better opportuni­
ties for future yields.

Indeed, any objective function V or reward measure v, that places a
premium on maintaining the current state of affairs (reducing variability in
catches, incomes, etc.) will generally lead to cautious actions unless there is
gross uncertainty about whether the state of affairs can be sustained at all.
Now, suppose you are dealing with a managed system for which historical
actions have been highly cautious. This will have led to low variance in past
controls «(1~ small) and possibly system states as well. Thus, you are likely to
encounter precisely the conditions most favorable for adaptive probing, if the
management objective is really to maximize long-term yield. If you do
design such a new policy, you will have to justify it either by arguing that (1)
there has been misunderstanding in the past about what actions would, in
fact, maximize the long-term yield objective, or (2) whatever management
objectives led to the past policies should now be discarded in favor of the
objective you assumed in concluding that there should be active adaptation.
Either way, you are inviting a lively debate: you must either question past
methods, or past motives. The very conditions under which active probing
is most "needed" are the conditions under which it is going to be the most
difficult to sell to the various interest groups already involved with manage­
ment.

It is hardly worthwhile to engage in complicated optimization exer­
cises to find precisely the right probing decision for a particular management
objective, when there is great uncertainty about what that objective should
be in the first place. Therefore, I suggest proceeding in a stepwise fashion.
First, use the criteria outlined early in this chapter to decide whether delib­
erate probing could be worthwhile in principle. Second, use relatively sim­
ple procedures like the wide-sense algorithm to explore whether information
values and learning rates are likely to be large enough to be concerned
about, and to get a rough idea of, the best direction and magnitude of distur­
bance under simple management objectives. Third, develop simple adaptive
policy options based on rough calculations, and discuss these options with
the management authority and associated interest groups; here it is especially
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helpful to have vivid visual demonstrations, such as microcomputer simula­
tions, of how the options might work in practice. Fourth, if the discussions
lead to focused debate on management objectives, then try to obtain con­
sensus about the importance of improving long-term performance. If this
consensus favors the use of an actively adaptive policy, then finally proceed
with more precise calculations about the best disturbance regime to imple­
ment initially.

Problems

9.1. The three situations shown in Figures 9.1 to 9.3 are common in prac­
tice. For each case, assume that the curve marked rot is considered
the most likely, and describe precisely why it is not worthwhile trying
to design a deliberately experimental policy to determine whether one
of the other curves might be more accurate.

9.2. Every experimental policy is a gamble, since it involves an "invest­
ment" (reduction in immediate catch, capital investment, or risky
stock reduction) now that has no guaranteed rewards except reduced
uncertainty for future decision makers. The value of this reduction
can be measured only in a probabilistic sense. In most human affairs
(business decision-making, personal decisions), we accept such gam­
bles as routine and unavoidable "facts of life." Discuss factors that
have led to more conservative attitudes, and often unreasonable
demands for certainty and risk avoidance, in relation to public deci­
sions involving renewable resources. Does it matter that many actors
are involved in such decisions? Has the scientific community been
realistic in its arguments about the value of doing research and moni­
toring before making risky decisions?

9.3. The wide-sense dual control algorithm provides a means to supple­
ment "best" (most likely, certainty-equivalent) estimates of future
resource value with an additive estimate of the value of information
associated with alternative policy choices. This estimate of informa­
tion value is obtained by predicting how uncertainty (measured by
variances of unknown parameters) will propagate over time in rela­
tion to the state (stock) changes induced by each policy choice. As we
saw in Chapter 7, learning rates are usually predicted to be quite slow
except after dramatic policy disturbances. How is this observation
reflected in the shape of the information value (probing value) curve
ylP) in Figures 9. 10 and 9.11? Can you explain why the nominal
(most likely) value curves yld) are so flat in these figures? (Hint: yld)
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estimates the total future value while assuming future decisions are
made optimally with respect to the most likely model, no matter what
is done at the current decision point.)

9.4. Develop a dynamic programming algorithm to estimate the harvest
policy for maximizing long-term yields from populations where
uncertainty about future production can be captured in terms of two
alternative models, as in Figure 1.1. This is a three state-variable
problem, with two continuous variables (stock size and probability
placed on first model). The value recursion equations are given by
(9.1) and (9.2), where stock size at t + 1 is defined by your two
models and P,+! is calculated from Bayes' theorem [equation (9.4)].
Use your program to find optimum policies for a variety of two-model
cases as in Figures 9.1-9.5, involving both surplus production and
stock-recruitment dynamics.

9.5. Write a computer program to estimate how alternative choices of 'Yo
and 'Yt in the Figure 9.9 policy should influence long-term yield from
a stock that follows a Ricker stock-recruitment relationship. Set up a
grid of 'Yo and 'Yt choices. At each choice, do 100 Monte Carlo simu­
lations of 4-0 years each, taking total yield for the 4-0 X 100 years as a
performance measure for the choice. For each simulation (1) choose
the Ricker a and b parameters from normal distributions with means
of 1.0 and standard deviations 0.3; (2) let the initial stock size be
al2b; (3) harvest at a rate of al2 for the first five years, then use the
Figure 9.9 policy afterward; (4-) assume environmental effects w, are
normally distributed with (1~ = 0.2 (as in problem 7.4); (5) estimate
a and b over time within each simulation using a recursive linear
regression, and approximate the certainty-equivalent optimum
escapement for each year as (0.5 - 0.07a) alb (note that according to
Figure 9.9, you use this escapement whenever (1~ < 'Yo).

9.6. Develop a computer program to implement the wide-sense dual con­
trol algorithm, as presented in Bar-Shalom and Tse (1976b), for the
logistic surplus production model N.+1 = R lS, - R 2 S; + w, (see
Chapter 5), where S, is the stock size after harvest in year t and W t is
normally distributed with mean zero and variance 0.1. Assume that
N

'
+ 1 can be measured exactly, and that S, can be chosen at will each

year (except 0 ::5 S, ::5 Nr) and also measured exactly. Assume that
the annual value v, is simply N r - S, (the harvest) and that the plan­
ning period is t = 1, ... , 30 with VlI = N 31 • Note that your
extended state vector is x, = (Nt, R I , R2)', and u, = Sr, so your state
equations are
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X3,1+1 = X31
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Assume that the covariance matrix E~o) can be predicted by an

extended Kalman filter [equations (7.18)-(7.21)], with y, = N
"

V. = 0 and V. = l~ 1 ~ n
Assume initial state estimates Xo = (0.5,1.5,0.5), and the nominal
optimal policy ulo) = min (0.5, XII)' t = 1, ... ,30. Assume that the
initial covariance matrix for x is

o
1

0.95
~.95 ]

and obtain results for various h (parameter variance) values in the
range 0.01-0.5. For the initial time step (t = 1), plot the wide-sense
value components 0°), 0 p

), and 0 c
) as a function of u. For larger

values of h, you should find that 0 c1
) is maximized at a u value larger

than u(o), implying that the population should be increased to test its

carrying capacity.
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Chapter 10

Adaptive Policies for Replicated

Systems

We inherit the earth, but within the limits of the soil
and the plant succession we also rebuild the earth­
without understanding of the increasingly coarse
and powerful tools which science has placed at
our disposal.

A. Leopold (1933)

An implicit assumption in Chapters 4-9, and, indeed, in most of the
theoretical literature on resource management, is that every unit of analysis
(stock, spatial area) is somehow unique in terms of how we value its perfor­
mance and learn about its responses over time. But management authorities
are usually responsible for whole collections of ecological units that are struc­

turally similar (same species, etc.). In the statistician's terms, we might call
each of these units a "replicate;" we do not expect that replicates will be
quantitatively identical (same parameters), but we do hope for similarity in
response to factors like harvesting and also the possibility that some quantita­
tive differences can be ascribed to measurable "covariates" like size of area.
Often the harvesters may move about more or less freely among such repli­
cates, testing and choosing so as to achieve much more consistent perfor­
mance over time than they could obtain by staying with any single replicate.
So replicate management units provide both opportunities for controlled
experimentation with policy options, and also opportunities to distribute the
immediate costs and risks of these experiments so as to make them less
objectionable to resource users who are not much concerned with the long­
term value of better information. This chapter is intended to provide only a
very broad introduction to some of these exciting opportunities, and to some
of the frustrating technical difficulties that are encountered in attempts to
design optimum adaptive plans.
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The notion that various managed units may somehow be informative
about one another is certainly not unfamiliar to practicing resource
managers. Most management agencies have established experimental
management units (lakes, rivers, game management areas, etc.) where
research and monitoring investments are concentrated and new management
tools are evaluated. In North America the most extensive experimental net­
works are related to agriculture and its subsidiary resources, such as farm
pond fisheries. Experimental forest units are also common. Most fisheries
and wildlife agencies can afford to maintain only a few experimental units
for long-term studies, and tend to spread their experimental investments
across a variety of short-term studies aimed at evaluation of specific tools,
such as lake fertilization, special harvesting regulations, and provision of
improved breeding habitats (exhaustive descriptions of such tools can be
found in most applied ecology texts). Unfortunately, many of these studies
are initiated without any clear idea about, or means to estimate, the
"universe" of replicates to which the experimental results might be extrapo­
lated, without careful consideration of sampling requirements and the dura­
tion of study needed for unambiguous results, and without any systematic

procedures to ensure that favorable results are used more broadly as they
arise. Thus in the end, short-term results tend to end up buried in student
theses and agency reports; very few have a discernible impact on manage­
ment practices.

There has also been much agonizing about how to allocate monitoring
resources across many replicates. Some agencies have opted for relatively
inaccurate sampling of all replicates, with more detailed monitoring of only
the largest and most economically important units. Others have elected to
concentrate on better sampling of some subset of "index" replicates that are
thought to be representative or are convenient in terms of cost factors like
physical accessibility. Index monitoring programs are sometimes accom­
panied by research studies aimed at finding inexpensive measurements that
are highly correlated with the detailed index results, but can be gathered
from all replicates. In light of recent discoveries about severe bias in popula­
tion parameter estimates from inaccurate survey data (Walters and Ludwig,
1981; Uhler, 1979), the option of sampling all replicates may turn out in
some cases to have been the worst possible choice. At this extreme we face
the risk that none of the parameter estimates can be trusted. With a small
number of index systems, we face an alternative risk: parameter values from
the index replicates may not be representative of, or may vary so widely as
to be uninformative about, other replicates.

A point that has not been critically examined by many agencies is that
replicate units are "connected in value," in terms of how the agencies evalu­
ate their own performance and in terms of how resource users view the
opportunities available to them. It is common practice to present time series
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of aggregate harvest statistics, then point to the stability of these totals as evi­
dence of success in management for sustained yield. But often the totals hide
a pathological pattern of deterioration, in which harvesters concentrate first
on easily accessible replicates (and deplete these) then move on to new areas
as access or harvesting technology develops over time. When it is feasible to
regulate the distribution of harvesting effort among replicates, by measures
ranging from direct closures to area licenses to cost subsidies for operating in
unattractive locations, the management agency can induce informative pat­
terns of harvest variation within some replicates without greatly changing
overall performance levels. But harvesters can seldom be treated as pieces in
a board game, to be moved about freely at the manager's discretion; the
design of effective programs for redistributing effort requires at least some
understanding of how harvesters perceive the choices available to them in
terms of resource abundance, competition with other harvesters, and
differential costs related to factors like distance from home or port.

Obviously it would be possible to write whole books about each issue
raised in the above paragraphs. In this chapter, I will attempt to clarify what
the issues are, by providing (1) an overview and classification of the types of
linkages (among replicates) that should be of concern in adaptive policy
design; (2) a qualitative analysis of how dual effects of control can propagate
among replicates, and thereby imply different optimal adaptive policies than
would be designed by treating every replicate as unique; (3) a review of fac­
tors that should be considered in decisions about the allocation of monitoring
resources (funds, manpower); and (4) a summary of key ingredients needed
for evaluating alternative management plans that involve experimentation on
some or all replicates.

Linkages among Replicates

We have noted that replicate units can be linked or connected from a
management viewpoint in two obvious ways: information from each repli­
cate may help in management of others, and value from each replicate may
be traded off against (or accumulated across) value from other replicates in
measurement of management performance. This section tries to classify
more precisely the types of linkages that should be of concern in policy
development, and reviews some mathematical tools that can be used to study
linkage patterns and their effects on parameter estimation and feedback pol­
icy performance.

Similarity in parameters

In the design of scientific experiments, replication is necessary to
ensure that observed responses are not simply due to "local" factors that the
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experimenter cannot anticipate or control on each of his experimental units.
Also, we take it as an obvious matter of good planning to make the replicates
as similar as possible, by regulating the experimental environment, choosing
units that appear physically similar, and controlling treatment conditions.
This freedom to carefully plan and select units for study is seldom available
to the resource manager; he usually must confront a potentially heteroge­
neous collection of units that have not been treated similarly in the past and
will not be subject to a controlled environment in the future. Also, selection
of units on the basis of similarity and convenience is an invitation to results
that are not representative at all of the universe of units for which he is
responsible as a manager. Where the scientist would try to physically elim­
inate various factors that might be important in determining responses, the
manager must instead seek ways to live with their effects.

The temporal responses (abundances over time, catches, etc.) of repIi­
cates may vary widely due to differences in (1) exploitation histories, (2)
time-varying environmental factors, and (3) values of functional parameters,
such as intrinsic rate of increase, carrying capacity, and vulnerability to har­
vesting. Think of each replicate as having a "production function" with pos­
sibly unique parameter values, and a temporal response pattern that depends
on this function and on how the system is disturbed over time. In previous
chapters, our emphasis has been on how to estimate (reconstruct, retrieve,
infer) the production function for anyone unit, given a set of data Yabout
its temporal behavior. Let us suppose now that estimations have been car­
ried out for a series of replicate units, and we treat the resulting set of
parameter estimates as "data" for further analysis. This first step in living
with variation can have a dramatic result: we often find that some functional
parameter estimates vary much less among replicates than would intuitively
be expected from differences in temporal performance. In such cases, the
replicates are "linked" through similarity in production functions.

When the replicates represent different stocks or subpopulations of a
single species (or communities with the same species composition), my
experience suggests the following pattern. First, parameters that determine
maximum rates of population growth tend to be similar among replicates.
Examples of these parameters are the logistic model r, the Ricker model a,
calves or fawns per female in ungulate populations at low densities, and
natural mortality rates in animals of intermediate age. Second, parameters
that measure "natural" population sizes in the absence of harvesting tend to
be extremely variable among replicates. Examples are the logistic model k,
the Ricker model b, and the slopes of graphs relating ungulate reproductive
and mortality rates to population density. Third, parameters that measure
vulnerability to harvesting effort offer no consistent patterns; estimates are
similar from replicate to replicate in some cases and vary enormously in oth­
ers. Vulnerability is usually measured by a catchability coefficient q.
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Variation among maximum rates of population growth tends to
increase as the universe of replicates is extended to larger geographic scales.
So, for example, we find very similar Ricker a values for sockeye salmon
stocks from the same watershed, yet great variation when stocks from south­
ern British Columbia are compared with stocks from southeast Alaska. Such
latitudinal variations in maximum productivity are common in species of
recreational and commercial importance, and most often are associated with
changes in juvenile survival rates rather than fecundity. Similarity in some
components (such as fecundity) of a population rate process does not in any
way imply that the net rate (sum or product of all components) will be simi­
lar across replicates.

Substantial variation in "carrying capacity" parameters is to be
expected, simply because replicate natural stocks generally occupy geograph­
ical areas (or critical habitats like spawning areas) of varying size. Also,
trophic conditions (habitat productivity, food supplies, abundance of com­
peting species) often vary greatly across replicates, and exert their effects
mainly when population sizes are relatively large.

Variation in vulnerability to harvesting effort is expected when (1)
harvesting technologies and experience of harvesters differ across replicates;
(2) there are differences in such conditions for search as the fraction of area
accessible, visibility of animals within the searched area, and patterns of
clumping or schooling; and (3) animals from different replicates behave
differently in response to harvesting (for example, have become more wary
in units where harvesting has historically been intense). The first of these
sources of variation can be partly eliminated by calibrating the harvesting
effort data in terms of some standardized gear type or searching unit. The
other two sources vary greatly in importance from species to species.

It is useful to think of variations in parameter estimates among repli­
cates as consisting of three "variance components:" (1) deviations of esti­
mates from the true values for the replicates; (2) deviations among true
values due to unknown natural factors; and (3) deviations among true values
that can be "eliminated" or "factored out" by blocking the replicates into
subsets based on measurable factors (covariates), such as latitude, size of
area, and type of harvesting technology. More precisely, suppose S; is the
estimate of some dynamic parameter for replicate j, based only on analysis
of the available data from that replicate. We can write Si as

(10.1)

where {3 is the true mean value of the parameter across all replicates in the
management universe, {3g is the true mean of the parameter for the more
homogeneous subset (stratum) of units to which replicate j belongs, and {3; is
the true parameter value in replicate j.
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Equation (10.1) implies that we may see large variations among the
estimates ~j even when the subsets are quite homogeneous (small {3j - (3,)
and there is little variation due to factors like latitude (small (3, - (3), just due
to errors~; - {3i in the estimations for some replicates. As noted in earlier
chapters, estimation procedures usually result in deviations ~i - {3j that are
approximately normally distributed with mean zero and variance of C1§j'
High values of C1~j are expected for replicates that have been poorly moni­
tored and/or not subjected to informative variations in management policy.

Let us examine for a moment the simplest possible situation, when
the replicates are not blocked into any subsets and it is reasonable to assume
that the actual parameter values {3; were "drawn by nature" from a single
normal distribution with mean {3 and variance C1~. Then, assuming further
that the ~j - {3i are normally distributed with mean zero and known vari­
ances C1§j' Bayes' theorem can be used to find the most probable value ~; for
each replicate {3;; after algebraic simplification, the result is:

~i = Wj~; + (1 - W,)~

where W, is a weight associated with the independent estimate ~j:

Wj = 2 ~
C1fJ + C1fJi

(10.2)

(10.3)

and ~ is a weighted estimate of the mean {3 around which nature's "sample"
{3j were drawn:

E Wj~j

~ = -1:=.'-W-
j
- (10.4)

Equation (10.2) is a striking result, for it says that the best estimate of {3j for
each replicate is something other than the independent estimate ~j, if we are
willing to believe that the {3; actually represent samples from a distribution of
natural possibilities. If we believe a priori or have some evidence that the
actual variance C1J among the {3j is small, then Wj [equation (10.3)] is small
and we should assume that {3j is close to the average ~ across replicates. But
notice that we should place less weight on ~ if C1~j is also relatively small, that
is, if we are sure about ~j being close to {3j.

There is, in principle, nothing wrong with viewing the replicate
parameter values {3j as having been drawn from some natural distribution.
The key issue raised by equations (10.2)-(10.3) is the magnitude of the
"natural" variance C1r As we shall see in a later section, C1J is critical not
only in the estimation of {3i, but also in the determination of optimum exper­
iments and monitoring allocation among replicates. Note that C1J is not
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measured directly by the deviations (S; - ~), since these contain components
S; - {3; as well as {3; - {3. Also, standard analysis of variance procedures can­
not be used to estimate u~, since the replicates generally have inhomoge­
neous variance. Using Monte Carlo experiments to generate data sets with
known variance characteristics, I have found that an approximately unbiased
estimate of u~ can be found by a simple iterative procedure. Given a data set
(S;, U§i' j = 1, ... , R), use a trial estimate of u~ to calculate W; and ~ [equa­
tions ( 10.3)-( 10.4)], and obtain a new estimate as

;=1
u~ = ----::"R----

EW;
i=1

(10.5)

Then use this new estimate as the trial estimate for a second iteration [W;, ~,

equation (10.5)], and repeat until the successive estimates stop changing or
approach zero. Getting a zero estimate of u~ implies that the S; vary less
than would be expected just on the basis of u§;; this can happen by chance
alone, but it can also be due to underestimation of the u§;-a common prob­
lem when S; is obtained by some nonlinear estimation procedure that pro­
duces only an approximate estimate of u~;. Intuitively, equation (10.5)
apportions the deviations (Si - ~)2 according to the ratio u~/(u~ + u§), while
using this ratio to weight each variation; deviations with smaller u~; are given
greater weight in the overall estimate.

The theory of linear statistical models (experimental design, analysis
of variance and covariance, variance component models) can be used to
develop estimation procedures analogous to equations (10.1 )-( 10.5) for
more complex situations where the replicates can be blocked into more
homogeneous subsets, or part of the variation among S; ascribed to covari­
ates. However, such procedures should be used with care since they involve
a basic trade-off noted in the final section of Chapter 6 (Figure 6.4); as the
replicates are blocked into smaller sets, or more of the variation is ascribed to
covariates, the accuracy of estimation for each "structural parameter" (block
mean, slope of response to covariate, etc.) may improve at first, but will
eventually deteriorate if too many parameters are included in the analysis.
In my experience the best balance usually involves only a few (two or three)
blocks and/or covariates. Let me put this in more vivid terms: just because
you can think of many factors that might cause variation in a parameter
across replicates, do not suppose that the inclusion of all these factors in the
analysis will automatically make for a better prediction or estimate of the
value for each replicate; the effects of most factors will be badly confounded
(equally well explained by many different response models), or reasonably
ascribed to other factors that you have not yet thought to include.
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Correlation in response to nnmodded variables
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When the time series of deviations from model predictions are com­
pared for several replicates, it often turns out that the deviations are corre­
lated. This can mean either that the replicates are all responding to some
common, large-scale factors, such as climatic change, or that changes in
management policy have been applied to all replicates simultaneously and
have produced effects (deviations) not accounted for by the model(s). If
these two possible sources of error can be separated from one another, model
parameter estimation for each replicate may be improved by sorting out
(estimating, eliminating) components of deviation about which all the repli­
cates give some information.

One might expect intuitively that the use of data from several repli­
cates to jointly estimate common environmental effects would always result
in improved parameter estimation for each replicate. But two things work
against this improvement. First, estimating common effects is a special case
of estimating more parameters (the effects themselves), which is not always a
good idea (see previous section). Second, common environmental effects are
not logically separable from effects of policy actions, if all replicates have
been subject to the same management regime. This second point may be
especially important for adaptive policy design, since it hints that in order to
reap some benefits from joint estimation, we should consider deliberately
creating contrast in management actions among replicates.

There are two possible assumptions with which to begin analysis of
correlation in response to unmodeled factors. The simplest is that all repli­
cates are subject at each time to a common effect, measured as a component
of the process error around model predictions. We will develop an example
of this approach below. A more difficult approach is to assume that there is a
possibly unique correlation in deviations for every pair of replicates, so some
replicates may have very similar deviations while others behave indepen­
dently. Details about one nonlinear estimation procedure for this second
assumption can be found in Gallant (1975); the procedure involves the
simultaneous estimation of model parameters for all replicates, while weight­
ing the data by covariances estimated from prediction errors.

Let us develop a very simple example, in which stock-recruitment
data are available for several salmon stocks that spawn in a single watershed
and are therefore likely to share various factors ranging from river flow con­
ditions during spawning to variations in the marine ecosystem where all the
fish grow to maturity. Suppose we are willing to believe that the behavior of
each stock i can be approximated by a Ricker model with parameters aj and
bi • Treating the stocks as independent, we would estimate these parameters
from the linear regression
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R j,

In -- = a; - b;S;,r-I + W;r (t = 1, ... ,1) (10.6)
S;,'-1

where Ri, is recruitment to stock i for generation t, Si,.-I is spawning stock
at the end of generation t - 1, and Wi' is a normally distributed process
error that represents the combined effect of all variable survival factors.
Now suppose we assume that Wi' consists of two components:

Wi, = w, + wi. (10.7)

where wr is a common effect shared by all replicates during generation t, and
wi. is an independent effect due to unique conditions encountered by repli­
cate stock i. Equations (10.6)-(10.7) define a general linear model with 2R
+ T parameters (Raj's, Rb;'s, and Tw,'s), for which unique maximum
likelihood estimates do not exist unless we add some further condition such
as E wr = O. Adding this condition just means that we measure the time
mean of w, as part of the ai, from which it is, in principle, indistinguishable
anyway. For simplicity of presentation, we shall assume in the following
analysis that the wi, have the same variance in all replicates, and that the Si'
are measured without error. Notice that we are not assuming that the w,
values follow any particular pattern or probability distribution over time; we
are simply measuring them around a mean of zero, and throwing trends into
the estimates of a;.

Using the theory of general linear models (Graybill, 1961), we find
that the maximum likelihood estimates of band w, are given by the matrix
equation

(10.8)

where (1) A is a diagonal matrix having elements Ai; = E'~I (Sir - oS;?; (2)
B;, = (Si' - oSi); (3) RI is the TxT identity matrix multiplied by R (the
number of replicates); (4) d; = E'~I (Yi' - P;) (S;, - oS;); and (5) W, =
El'::l (Yi' - Pi). In the above, oS; is the arithmetic mean of S;, over time for
replicate i, Yir = In (R;,/S;,r-I), and Yi is the mean of pi' over time for repli­
cate i. Formulae for inversion of partitioned matrices can be used to solve
equation (10.8) efficiently on a computer. Then the estimates of ai are
found by

It = p; - 6, oS; (10.9)

as in standard linear regression. Though equation (10.8) looks quite messy,
it ends up being like the standard regression formula
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(10.11)

except that correction terms are included for covariances (Si' - Si) (Sj' - Sj)
among the spawning stocks and for deviations (Yi' - 9i) that are attributable
to the common environmental effects. Without these correction terms, some
variations due to simultaneous changes in spawning stock size would
incorrectly be interpreted as common environmental responses. The key
parameters for setting optimum spawning stock levels for the replicates are
the b; (see Chapters 8 and 9), and the variances of these parameters are
given by the ii element of E" where

E, = i [A - ~ BB'] -I (10.10)

where A and B are matrices as defined for equation (10.8) above,

T

(BB)ij = E (Si' - Si)(Sj' - Sj)
,=1

are covariances among spawning stocks, and i is the common estimate
across all replicates of the variance of wij (process effects not shared among
replicates); it is calculated as

R T

E E (Yi' - ai - bi Si' - W,)2
52 = _;_=_1_'=_1 _

RT - 2R - T + 1

Equation (10.10) implies that the estimates of the bi obtained by
analyzing all replicates simultaneously are not necessarily more accurate than
would be obtained by analyzing the replicates independently. (1~i for the
joint analysis depends on (1) how large the common (w,) effects are com­
pared to the independent errors wi,; (2) how accurately the w, are estimated,
which depends partly on how many replicates are included; (3) how much
informative variation in the Si' there has been within each replicate, and (4)
how much covariation there has been in the Sir among replicates. Indepen­
dent analysis of replicates will generally give larger values of 52 than the joint
analysis (i.e., w, effects not removed from the residuals), and the variance of
the independent estimates is given by 5

2A -I [equation (10.10)] without the
covariance terms [(1 /R) BBl There are two opposing effects of joint
analysis: (1) 52 may get smaller, but (2) the elements of [A - (lIR) BBT 1

will generally be larger than comparable elements of A -1. Notice that [A ­
(1 /R) BB'] approaches A only as the number of replicates R is increased,
and the correlation among spawning stocks (measured by BB) is reduced.
This is the same pattern of opposing effects as is shown graphically in Figure
6.4.

Figure 10.1 summarizes qualitatively how key factors interact to
determine the relative performance of joint versus independent estimation
procedures. First, note that when all replicates are subject to relatively large
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shared effects (w, large compared with w~), stock sizes are bound to be
correlated unless there is very tight control over each replicate; thus, there is
a region of situations that is not feasible to produce in practice. Then there
is a domain of situations within which joint estimation will result in better
parameter estimates; this domain is larger when more replicates are available
and when shared effects are larger. Finally, there is a domain of situations
involving small shared effects and/or high correlation in stock sizes, within
which it is best to just do independent estimations. The domain appropriate
for any particular case study can only be determined by trying both joint and
independent estimation procedures, then comparing the resulting parameter
variances and covariances.

If it is found that the joint estimation procedure gives poorer results,
yet there do appear to be substantial shared effects that cannot be accounted
for by correlated changes in stock sizes, then a next step should be to exam­
ine how future performance of the joint estimation scheme might be affected
by policy options that deliberately reduce correlation in stock sizes. Using
reasonable estimates of dynamic model parameters and future w, values,
generate a variety of simulated future data sets for several policy options that
are considered technically/economically feasible. Append the simulated data
to the original data set, and run through the joint estimation procedure on
these extended "synthetic" data sets. If such Monte Carlo trials consistently
show that some options would result in significantly better parameter esti­
mates for most replicates, then it is worth looking further at whether the
increased management costs of implementing one of those options might be
more than balanced by the expected value of having the better parameter
estimates.

The model defined by equations (10.6)-(10.7) is in one sense a
worst-case assumption about shared effects, since it assumes no temporal
structure in the w,. In some cases, it may be reasonable to construct models
with fewer parameters (less deterioration in joint estimation), by assuming
that the joint effects are functionally related to particular covariates (such as
river flow for salmon, winter snowfall for ungulates) that have been mea­
sured for all times and replicates.

Ecological coupling among replicates

In the previous section we discussed the possibility of learning more
about each replicate by using information from other replicates to sort out
some unmodeled effects that all replicates might display. Obviously the
replicates can be coupled more intimately than as echoers of a common
environment; they may directly influence one another through ecological
processes, such as dispersal between areas, competition for mobile resources,
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Figure 10.1. In replicated systems, there is no clear answer as to whether joint es­
timations of process error components shared by all replicates will result in im­
proved parameter estimation. If the replicates have been highly correlated in their
time dynamics, shared effects cannot be separated from the effects of changing
state.

and support of predators that end up dispersing among the areas. While the
effects of some processes (such as loss to mobile predators) may be viewed as
shared "environmental effects" and treated as in the previous section, others
imply a more careful look at the model structure used for each replicate. We
should, for example, account for dispersal among replicates through account­
ing terms that make each emigration rate show up as immigration rates to
other areas.
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Ecological isolation of replicates is likely to be strongest for freshwater
and island ecosystems. But even in these situations, resource managers have
had to deal with some big surprises as organisms have shown remarkable
powers of dispersal. A few of these surprises have been pleasant, as, for
example, when pink salmon reinvaded and rapidly increased in the upper
Fraser River of British Columbia more than 30 years after a disaster had vir­
tually destroyed the stocks. But most of the dispersal surprises have involved
exotic species with undesirable properties or even catastrophic impacts on
the invaded ecosystems. Major examples here include sea lamprey invasion
and rapid dispersal through the Laurentian Great Lakes, and the spread of
brook trout through high mountain watersheds of the western United States.
Considering the variety of human activities that can deliberately or
accidently cause transport of organisms among replicates, resource managers
should never assume that the replicates are fully isolated or protected from
structural change through the introduction of new species.
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Figure 10.2. For terrestrial systems, an increase in the size of each replicate
management unit means reduced importance of immigration-emigration rates as
determinants of changes in stock size, but increased complexity in observed re­
sponses and in monitoring systems needed to measure average response accurately.

For terrestrial ecosystems, the importance of ecological linkages is
very much dependent on the size of replicates as defined arbitrarily for
administrative or experimental purposes. Generally, we expect the basic
trade-off shown in Figure 10.2. As the size of each replicate is increased,
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processes such as dispersal are expected to become less important (probabil­
ity of emigration decreases, number of immigrants smaller relative to births
within the unit) as determinants of changes in stock size. But larger units
are expected to be internally more heterogeneous, and to consist of a mosaic
of subpopulations that have different productivities and exposure to harvest­
ing. The larger the area, the more difficult it is to design monitoring pro­
grams that will representatively sample the mosaic to give accurate estimates
of overall states and rates. Also, the internal structure is expected to evolve
over time (overall parameters not constant), as the harvesting process

depletes more accessible and less productive parts of the mosaic. When a
choice of replicate size is available (i.e., when historical data can be variously

aggregated or when new management plans are being developed), it is prob­
ably best to start with smaller units that can be aggregated later as sampling
strata; however, experimental policy tests should not be conducted on single
replicates so small that responses might be dominated or masked by immi­
gration rates from untreated units (in other words: try to monitor by smaller
units, but apply management changes to larger aggregations of these units).

Consider for a moment the problem of estimating dispersal rates
among replicates. The usual approach here would be through tagging stud­
ies, which have a number of well known difficulties, such as tag loss,
differential mortality of tagged organisms, and sampling for tag recoveries.
Suppose we try to avoid these difficulties by using parameter estimation
methods to infer dispersal rates directly from abundance changes among
replicates. Here we would begin by formulating a dynamic model for abun­
dance changes in each replicate, with dispersal rate terms included. For
example, we might try the logistic model

Ni,l+1 = R li N i, - R 2i Ni~ - Hi' (10.12)

where Nil is population size in replicate i, R. i and R 2, are internal produc­
tion parameters for the replicate, H il is the harvest from i in year t, and mij

are dispersal rates from area j to area j. Notice first that R Ii and E mij can­
not be separated by regression of N','+I on Nil alone; that is, emigration from
j cannot be distinguished from natural mortality in j (a component of R I;

see Chapter 5). We must use all of the stock sizes N j , in predicting each
Ni,I+1, and the regression coefficient for N jl is interpreted as mji. A basic
condition for this approach to work is that the N jl should not be too highly
correlated with Nil; otherwise we cannot logically distinguish between the
effects of (R ii - E mij) and each of the mj. But if the dispersal rates mij are,
in fact, much greater than zero, they are almost sure to cause N i, and N jl to
be correlated unless replicates j and j have been subjected to very different
harvest policies or environmental effects.
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So we come to basically the same conclusions as in the previous sec­
tion on shared environmental effects: an elaborate estimation procedure is
unlikely to help unless the replicates have been deliberately managed so as to
produce contrasts (low correlations) in abundances over time. This conclu­
sion is even stronger for more complex hypotheses/models of interaction
among replicates than is presented in equation (10.12). For more complex
interactions, such as competition for shared resources, we end up replacing
terms like m ft N jl first by products aij Nil N jl , and then by messier nonlinear
functions; if N; and Nj are correlated, most functions of them (like N; N j )

will also be. But such difficulties should not be construed as an argument in
favor of using methods such as tagging experiments instead of elaborate esti­
mation; it can be cheaper in the end to manage so as to deliberately produce
contrasts in abundance, especially considering that the estimation of other
parameters (besides interaction rates) is dependent on having such contrasts
in the first place.

Coupling in aggregate value

A management agency responsible for many replicate systems has
several choices about how to value the performance of each replicate. At one
extreme, the agency may choose to treat each replicate as a unique and irre­
placeable resource, to be managed in a highly conservative (risk-averse)
manner. In this case the agency will act roughly as though it measured
overall performance across replicates as the product of values (yields, net
recoveries, or whatever) obtained from the units; failure of anyone unit will
be seen as a failure of the whole management system. Precisely this sort of
performance evaluation can be forced on management agencies by the politi­
cal environment within which they operate; it happens when harvesters
and/or public interest groups treat each replicate as a battleground for bring­
ing pressure on the agency. It is, of course, quite natural for people to
notice and bring attention to failures, even when such failures are very local­
ized and rare. However, really strong pressure to avoid local changes
(management experiments, etc.) is mainly a problem in situations where
each replicate is large enough to support a "dependent community" of
economic interests (local fishermen, resort owners, hunters with limited
mobility) for which use of or movement to other replicates means consider­
able risk and hardship.

At the other extreme, the agency may act as though its performance is
judged as the sum or mean of values across replicates. In this case there is
obvious flexibility and opportunity to trade-off performance among units in
order to achieve informative variability. Such an ideal situation for adaptive
management is likely to exist only where the replicates are quite small and
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numerous, and do not individually support dependent commumUes of
economic interest. For example, it is hard to drum up much opposition to
an experimental management scheme involving a few small trout lakes in the
Sierra Nevada mountains of California, simply because there are hundreds
of lakes where recreational fishermen may go if the experiment involves
reduced harvests.

Most management agencies in North America operate somewhere
between these extremes, with some replicates where change would be
strongly opposed and others where adaptive management schemes might
even be welcomed by public interest groups. Unfortunately, monitoring
efforts are usually concentrated on the larger replicates that support depen­
dent communities. This means that good pretreatment (baseline, historical
"control") data are seldom available for the replicates where change is politi­
cally and economically most feasible. I have seen three reactions to this state
of affairs: (1) increased investment in baseline monitoring programs
intended to provide a more solid foundation for experimentation, without
trying to anticipate what actions might eventually be tried; (2) refusal to sup­
port adaptive programs, simply on the grounds that it would take too long to
gather baseline information; and (3) initiation of experimental programs
without concern for the possibility that response might be due to historical
factors rather than the experimental treatments (i.e., without adequate base­
line or control data). It is easy to find fault with each of these reactions, but
the key point is to recognize that they are often motivated not by a concern
with long-term understanding of the resource as a whole (across all repli­
cates), but rather by a desire to avoid confrontation over disturbances of the
most popular replicates.

For replicates whose values can be treated as roughly additive, it is
tempting to seek policies that generate variable harvesting within each repli­
cate while maintaining near constancy in total harvesting effort and/or yield
across replicates. Consider, for example, a situation where there are two
replicates, with stock sizes Nil and N zr . Suppose the harvest in each area in
any year can be expressed as qj Ejl Nir , where q; is a catchability coefficient
for unit i, and E;, is effort in that unit. If we try to maintain a constant total
effort E', then E I I + E21 = E', and total harvest is given by

(10.13)

(10.14)

Notice that if we also require harvest to be constant at some level C', equa­
tion (10.13) has a unique solution for Eil ; we are forced to choose

C' - q2 E' N21
Ell = and E2• = E' - Ell

ql Nil - q2 N 21

and to depend on changes in N Ir and N 21 as determinants of permissible
variation in effort levels. Using simulations with various models for the
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dynamics of NIl and N 2t , it is easy to show that constraining both total catch
and total effort generally leads to highly correlated stock sizes over time,
which would preclude the use of joint estimation procedures as introduced in
the last two sections. The situation is not much improved when only one of
the factors (total catch or effort) is held constant, since the stocks tend to be
consistently pushed in opposite directions (negative correlation) if total effort
(and catch) is moderate, or driven down together (positive correlation) when
total effort is high.

Correlations among stock can be reduced when several or many repli­
cates are managed together, but only by resorting to concentration of effort
on one or a few replicates each year. Since concentration of effort leads to
exploitation or even interference competition among harvesters (crowding

effects in the replicates where effort is concentrated), they are unlikely to
cooperate in the experiment unless some inducement is provided. One
inducement is to offer direct compensation for extra operating costs and/or
lost harvests. Another is to rotate the effort concentration over time so that
each replicate has a long "fallow period" to become especially attractive (high
abundance, larger fish, more trophy animals) for the time when it is to
receive the concentration. We noted earlier (Chapter 8) that such "pulse
harvesting" regimes can even produce the highest average yield per year
from each replicate, when it is impossible to regulate the size/age distribu­
tion of animals harvested.

Sharing of monitoring and control resources

Biological monitoring and enforcement of regulations are typically the
two largest budget items for resource management agencies. Occasionally
some activities are combined, by making enforcement personnel responsible
for various sampling chores, but most often there is strong (or even vicious)
competition for budget shares between groups (divisions, departments, etc.)
responsible for the functions. The easiest function to justify to the public is
enforcement, so it is often an uphill battle to maintain even the most basic
monitoring programs. As noted in the previous section, there is a tendency
for all agency activities to be concentrated on the most accessible and pub­
licly visible replicates.

So far as I am aware it has never been possible to demonstrate quanti­
tatively how reallocation of agency resources among replicates will affect the
performance of each replicate. We can build statistical arguments about how
changes in monitoring programs will affect the accuracy of estimation for
parameters needed to set key regulations, but such arguments are complex
(hard to present in debates about funding) and require risky assumptions. It
is even more difficult to build a convincing case about the effects of incre­
mental changes in enforcement effort among replicates, since the response of
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harvesters to enforcement activity is very poorly understood. There are gen­
erally no data, for example, about how the occasional presence of a "game
warden" would affect the behavior of hunters who have previously enjoyed
unchallenged access to an area or stock.

Thus, in the end, management resources are allocated to activities
like monitoring and enforcement largely on the basis of historical precedent,
public pressure involving very naive arguments ("more wardens, less poach­
ers"), and the competence of activity leaders at bureaucratic infighting for
budget shares. The basic outcome of this allocation process is that the share
of "attention" devoted to each replicate need bear no measurable relationship
to the importance of that replicate either as a source of immediate yields or
as a potential site for future development or experimentation. Moreover, we
should expect this state of affairs to persist even if clever experiments are
conducted to demonstrate empirically how important each activity really is,
since there are strong personal motives for some management actors to
ignore or deplore such experiments in favor of "business as usual. "

Realistic planning for adaptive management of replicated systems
should either (1) include strong efforts to demonstrate vividly and simply
why a change in agency resource allocation would be worthwhile, or (2) treat
existing allocation patterns as severe constraints on where to conduct experi­
ments and on the type of regulatory actions that are practical to enforce in
effecting experimental changes. Where this second attitude is adopted, it
will often be best to pass up the best plans from a scientific viewpoint (nice
experimental designs, choice of representative replicates, etc.), in favor of
using existing opportunities, such as replicates that already have good moni­
toring programs. Let me put this another way: the selection of replicates to
include in an adaptive plan may involve a number of difficult compromises,
in terms of replicate attributes like accessibility, ease of enforcement, and
likelihood that responses will be representative (informative about how repli­
cates not included in the initial plan would respond if results from the plan
are later applied more broadly). It is doubtful that formal optimization pro­
cedures (multiattribute decision analysis, etc.) will be of much help in
finding the "best" compromise, but it is important to begin by laying out the
available choices in some systematic way (like lists of replicates that would be
favored on the basis of different criteria) in order to promote informed judg­
ment.

Dual Effects among Replicates

Chapter 9 emphasized that management actions often have "dual
effects of control," by influencing not only the immediate performance of the
managed system, but also the rates of learning about parameters that are
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important to long-term performance. In single systems that are managed
over time, the effects generally conflict: the most informative action is gen­
erally not the best for short-term performance. This conflict leads to a very
difficult optimization problem for which there is not yet much computational
experience. In this section we shall look at what happens when actions are
taken across several replicates that may be more or less informative about
one another; there is essentially no computational experience about this
much larger optimization problem, and the discussion wiU be restricted to a
qualitative review about its formulation and likely results.

Let us review for a moment how dual effects of control are
represented for single replicates in the wide-sense algorithm (Chapter 9),
which has promise for computation of optimum policies for larger systems.
The decision (control, action) u, at time t is seen as having three basic
effects: (1) along with X" it determines a short-term value component v, of
the total resource value V, from time t forward; (2) it affects the next state
X,+l which will in turn influence V.+l and Vr+I; and (3) directly and through
its effects on X.+l, it influences parameter estimation performance and hence
the level of uncertainty faced by the decision maker at time t + 1 as mea­
sured by the parameter covariance matrix 1:'+1. We may represent these
effects diagrammatically, as

(10.15)

where an arrow a - b symbolizes "a influences b" (or "the calculation of b
depends in part on a"). Recall from Chapter 8 that a crucial connection in
this diagram is V'+1 - V, (since V, = V, + V'+l)' which points out that the
total value V, of any decision choice u. is a combination of a short-term
payoff v, and future returns V'+I; the diagram shows that u, affects both
components (v, directly, V'+l through effects on X.+I and 1:,+1),

Now, suppose we have several replicates each with decision choices
Uit, state variables x," and parameter uncertainties measured by 1:ir • We
wish to define an optimal choice ui" ... , uR', while recognizing at least four
basic interactions among the replicates:
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(1) the contribution of each to some aggregate performance measure A V,
= [(Vir, ••• , VR,) + A V'+l;

(2) possible constraints on UII, ••• , URI associated with factors such as the
total harvesting effort available to apply across replicates;

(3) biological interactions and/or shared environmental effects that link
the dynamics of x (make Xj,+1 depend on Xj' as well as on Xir, and on
w, shared random effects); and

(4) effects of joint estimation, where E;'+I is possibly influenced by all
state-control choices and outcomes (Uj" xjt, Xj.r+l)' In terms of the
diagrammatic scheme (10.15), we have the "within-replicate"
influences shown there plus a collection of "cross-replicate" influences:

Uit - Ujt (control constraints)

xit • Xj ,t+l (biological interactions such as dispersal)

Uit

Xit ~ :Ejt+1 (joint estimation effects)

xit+1

Obviously, such influences can lead to a very complex web of calculations for
predicting the effects of each control choice Ult, ••• , UR" which can make the
search for an optimum choice very difficult. Below we will be content to
examine three special cases where the interactions are simple enough to per­
mit some qualitative arguments and conclusions. We will concentrate on
arguments about adaptive learning as represented by propagation of the E i ,

over time, and say a little about the interesting effects that control constraints
and biological interactions can have even in the absence of uncertainty.

Value independence, no joint estimation

Suppose the replicates are assumed to contribute independently to the
aggregate resource value, so the value obtained in year t is simply the sum
VII + V2r + ... + VRr. Suppose further that (1) the variation of actual
parameter values among replicates is thought to be very large, so joint esti­
mation equations like (10.2) would place very little weight on the common
estimator ~, and (2) shared environmental effects w, appear to be very small,
so there is not likely to be an improvement in parameter estimation by con­
sidering these effects.

In this extreme case it is best to manage the replicates independently
so as to maximize each of their long-term performances Vjl, unless there are
strong biological interactions or control constraints. When dispersal rates
among replicates are very high, they should be managed as a single unit with
the best total harvest allocated among replicates according to convenience or
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access cost criteria. The effect of intermediate dispersal rates on optimum
policies has not been thoroughly analyzed, and we will not consider it in this
review. Control constraints (enforcement resources, minimum tolerable har­
vests, etc.) will generally favor a concentration of management activity
(probing policy changes, etc.) on those replicates having the highest expected
performances Vi'. Since, by assumption, the replicates are not informative
about one another, there is no point in shifting management resources and
experimental activities toward less-valued replicates so as to minimize risks
and direct costs to harvesters.

Value independeoce, joint estimation

In this case we assume again that replicates contribute additively to
aggregate value, but assume that replicates may have similar parameter
values and/or large shared effects. This means assuming small values for u$
(variance among replicates) in weighted estimation models like equations
(10.2)-(10.3), and/or large shared effects w, in models like equations
(10.6)-(10.7), and/or significant connection parameters mij in models like
equation (10.12). In all of these situations, there can be substantial effects of
decisions and responses for each replicate i on the uncertainty I::jr+l of
parameter estimates for other replicates. Then, if we also estimate
significant values of information for reducing I:: , in some or all replicates
[using equations like (7.2) and (9.17)], it will be worth considering the
development of a coordinated probing policy that involves (1) deliberate
actions to reduce I::" on some representative subset of replicates if o~ is small,
and (2) variation of actions across all replicates in a way that will reduce
covariances in temporal behavior.

Recall from Chapter 9 that the long-term value from each replicate in
isolation can be approximated by the wide-sense components

(10.16)

When values are additive across replicates, we can combine the nominal and
caution terms V,<O) , 'Y}O) , and V}<) to obtain an aggregate base (nominal) value

Vi~l representing all long-term effects besides learning. Then

A V, = E Vi' + A Vi~1 + E V}~)+l
;

(10.17)

where A V'(~I is simply the sum of wide-sense value components from
independent analyses of the replicates, unless there are strong direct (biologi­
cal) interactions. The V'<~)+l terms are more difficult to assess, since each
depends on all the decision choices Uir, ••• , UR, (through the effect of these
choices on all the I::j,r+I)'
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Two situations are possible, depending on whether it is important to
avoid statistical correlation among replicates in states and controls over time.
When shared effects or direct interactions are not so important, probing
decisions on individual replicates simply reinforce one another by reducing
the variance of weighted estimators [for example, variance of ~i in equation
(10.2) is reduced by any action that reduces u~, which in turn depends on
the variances of all the S; from which ~ is estimated]. When shared effects
are important, it may be necessary or worthwhile to avoid simultaneously
probing in the same direction (for example, increasing escapements in
several stock-recruitment replicates simultaneously) since the probing effects
will be confounded with the shared w, effects.

To visualize the difference between these situations, consider a
stock-recruitment system with two replicates, where application of the wide­
sense algorithm separately to each replicate would give a pattern of value
components as in Figure 9.11 (the optimum escapement for each replicate
would be assessed at ut, much greater than the historical average Ii;). We
can plot the combined value A V, [equation (10.17)] as a function of the two
escapement choices UI, and U2" to give a contour map of value for various
decision combinations. Figure 10.3 shows roughly how these contours are
likely to look for the two situations. In the absence of shared effects (case A),
increasing escapement away from Ii; will increase the total value for both
replicates and the optimum combination will be somewhere near (ui, un as
determined by separate analyses. When shared effects are present (case B),
(ui, un will be a bad choice and it will be best to hold one of the escape­
ments near lij while moving the other to ul or beyond. The replicate held
near its historical average then acts as a backdrop or "control" against which
to measure the shared effects. If the systems are similar in nominal value
(ViO

), the best replicate to probe will be the one with the largest E j ,. In suc­
cessive time steps, the best replicate to probe may then change, so as to give
an alternating pattern over time until probing is not worthwhile for either
replicate.

It is interesting to speculate about the best probing policy when there
are strong shared effects across many replicates. If the responses of all repli­
cates are highly uncertain, the best policy is likely to involve probing on
most of them while holding a small subset constant as controls for shared
effects. But suppose that the responses of a few replicates have been
thoroughly tested (E; small), and they are found to have almost identical
parameter values (uJ small). Suppose further there is no reason to believe
that these replicates are somehow not representative of the system as a
whole. Should we then proceed with probing experiments on the other
replicates as well, thus sacrificing yields during the experimental periods, or
instead take it on faith that they are all similar and can be managed accord­
ingly? At this point a strict application of equations (10.2) and (10.3) would



318 Adaprive Management ofRenewable Resources

Case A: No shared effects considered
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Figure 10.3. Qualitative patterns of combined long-term value when two stocks
are managed as replicates. In case A, the value is maximized by pushing escape­
ment for both stocks toward the probing optima ui and U2 (away from the histori­
cal average escapements iii and ii2). In case B, shared environmental effects could
be confused with the effects of simultaneous probes toward higher escapement, so it
is best to increase only one stock while holding the other near ii as a ·control" for
the shared effects. Line A-B shows escapement combinations that are likely to pro­
duce total catch (both replicates) near the historical average without substantially
affecting future recruitments to either stock.
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tell us not to probe (Wi near zero and ~ well determined, so U~i very small).
Here I suspect most people would begin to seriously (and correctly) question
the basic assumption underlying equation (10.2), namely that the replicate
parameter values were "drawn by nature" from a simple distribution. In
other words, we would act as though uJ were larger than indicated by the
few replicates tested to date, on the off-chance of discovering some replicates
with atypical or special opportunities for increased yield.

It appears that the single most critical factor in probing policy design
for many replicates is the pattern of variation in parameter values among
replicates, measured most simply by uJ [equation (10.3)]. To the extent that
replicates can be classified into more homogeneous subsets by using struc­
tural covariates, such as area size, the best plan may involve a corresponding
stratification of replicates into test and control groups for each subset. But
the classification process requires that at least some replicates be tested
sufficiently (I: i , small) to make covariate effects visible against the back­
ground of variation caused by estimation errors within replicates. Thus, in a
"new" resource where the behavior of all replicates is highly uncertain, it will
be best initially to assume large u~ and choose replicates at random for prob­
ing tests. Then, if there is simultaneous investment in the measurement of
covariates that are likely to "explain" some parameter variation, the random
test pattern will give way over time to a more focused (structured, frag­
mented) probing design where homogeneous subsets are managed as learn­
ing units. To a distant observer, the overall management program will then
exhibit a mixture of passive adaptation or evolution (responses to the lucky
discovery of patterns attributable to covariates) and active probing to
uncover local opportunities.

Value dependence

The inferences about probing policy design presented in the previous
section depend critically on having additivity of value across replicates, so
that the payoff Vi' from any replicate need not be immediately (in year t) bal­
anced against or compensated by payoffs from other replicates. However,
most management authorities dare not operate with the assumption of addi­
tivity, and must, instead, try to maintain at least some stability in the total
annual performance across replicates. This means that probing experiments
that reduce any Vi' are penalized (by forcing changes in some other Vj'

payoffs), unless the compensating changes Vj' also lead to informative
responses. Unfortunately, the best probing changes are usually highly direc­
tional, toward untested opportunities for increased production (as discussed
in Chapter 9).
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One obvious way to represent value dependence is to assume that
payoffs Vi' are additive, but that the sum is constrained to lie within a narrow
range around its historical average. This constraint then defines a set of
feasible policy choices. An extreme example is shown in Figure 10.3, where
the line A-B defines escapement policy combinations that are expected to
produce exactly the historical average yield in year t from two
stock-recruitment replicates, if recruitments are at their historical average.
In this example, the length of the line A-B is set by the range of escapement
levels that are likely to produce recruitments at time t + 1 large enough to
allow total catch at t + 1 also to be in the tolerable range. We see in Figure
10.3 that probing toward either of the feasible extremes (A, B) will produce
some increase in expected value, but will not be toward the best combina­
tions estimated by assuming value independence. There is one consolation:
if one or both stocks have higher than average recruitment in year t, the
A-B line moves up and right; thus, the best adaptive choice may be feasible
in some good years.

The situation is not quite so grim when there are many replicates,
unless variability in parameter values «7~) among them is so high that tests
on a few will provide no insights about how the others can be better
managed. There are two extreme strategies for meeting overall harvest con­
straints while introducing as much variation as possible: (1) a diffuse stra­
tegy of disturbing all replicates a little; or (2) a focused strategy of probing
hard on a few replicates while making up losses by small changes in the rest.
I suspect that a focused strategy will generally be best, since there is high risk
in any diffuse strategy that the small disturbances will produce no useful
information at all (see the shape of probing value component in Figures
9.10-9.11). Notice that a focused strategy does not imply that only a few
replicates are ever disturbed, since different units can be tested over time;
however, sequential probing patterns will require some careful planning to
minimize the chance that various cumulative effects from unsuccessful tests
(for example, increase in the number of stocks recovering from low levels)
will suddenly make it impossible to meet overall targets or constraints. With
luck, favorable results from the first few probing tests (increased stock sizes,
etc.) will result in increased flexibility to disturb other replicates later.
Indeed, there would be no point in undertaking the first focused tests unless
there were a good chance of higher payoffs from these replicates later.

It is a pity that adaptive policy design cannot guarantee increasing
flexibility to meet harvest constraints over time, due to improved perfor­
mance in replicates for which uncertainty is reduced early in the experimen­
tal program, But improvement in expected performance, a basic require­
ment for probing in the first place, does not imply improvement in every
instance. Instead, we expect to make matters worse in at least a'few repli­
cates, and the balance can go this way for any finite sequence of examples.
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All we can honestly claim is that spreading the risk across many replicates
will greatly reduce the odds of an overall loss; this spreading of risk is
retarded by constraints that prevent variation in short-term payoffs for more

than a few replicates at a time.

Allocation of Monitoring Resources

It is obviously silly to talk about various adaptive probing strategies
unless there is substantial commitment to monitor dynamic responses over
time, and even the most rudimentary feedback policies require some moni­
toring of state changes in the replicates to which they are applied. However,
in situations where harvesters have some flexibility to choose the replicates in
which they will exert effort, it can be difficult to justify even that first step of
rudimentary feedback regulation; the harvesters may generate a kind of
feedback dynamics on their own, by shifting away from replicates with low
stock sizes (if low stock size implies low success rate) and toward replicates
where abundance is high. In the following discussion it ~ill be taken as
given that the harvesting system is large and efficient enough to severely
deplete many replicates if there is no active intervention by the management
authority.

An initial step in the allocation of monitoring resources is to ensure
that either (1) enough information is gathered from every replicate to allow
detection of and response to extreme state changes, or (2) state changes are
sufficiently correlated among replicates so that a feedback policy can be
applied to aU of them based on changes measured in a representative subset.
Then the basic issue is whether further investments should be directed to
providing very accurate assessments on a few replicates, or a bit more base­
line information on all of them.

We might expect some guidance about monitoring allocation from
statistical sampling theory, where a standard problem is the allocation of
sampling effort among strata, clusters, and so forth (see Cochran, 1963). A
typical result from this theory is that sample size should be proportional to
overall importance (stratum size) and expected variance among observations.
Unfortunately, such results are generally based on the assumption that there
is a single overall quantity or parameter that is of interest, rather than the
performance of individual sampled units. In the notation of equation (10.2),
sampling allocation formulas usually specify how to best estimate ~, but the
resource manager is interested in this quantity only insofar as it helps him
estimate the parameters {3i that characterize replicate performances. It is
hardly wise to allocate resources so as to best estimate a quantity that may
not be correct for any of the individual replicates.
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Monitoring and parameter estimation

It is important to recognize that monitoring and dynamic parameter
estimation are not the same thing. Monitoring is certainly required for esti­
mation, but precise monitoring is not sufficient to guarantee precise estima­
tion. Consider the trivial example of a population that has been constant
over time, and where a substantial investment has been made to measure
birth-death rates and the population size very accurately. If we try to fit
even a logistic model to these data, we will find that only one linear combi­
nation of the rand k values can be estimated; the data contain no informa­
tion about density-dependent effects (variation in rates with population size)
that are critical in determining whether the population is at its best level.
Indeed, the dual control calculations presented in Chapter 9, where probing
experiments were found to be worthwhile, were all based on the simplifying
assumption that the system state (catches, escapement, relative stock size) is
measured exactly over time, with no monitoring errors.

As noted in Chapter 6, it is extremely difficult to find even unbiased
parameter estimates when both process and measurement errors are present.
When we try to establish functional relationships of responses (rates, state
changes) to state variables, it is necessary to be very careful about statistical
"errors-in-variables~ effects (bias) due to measurement errors in the state
variables. Even simple stock-recruitment analyses give downright deceptive
results when spawning stocks are measured with the level of
counting/sampling error that is practical to achieve with inexpensive field
surveys.

Biases due to state measurement errors can be reduced not only by
better monitoring, but also by increasing the range of states tested through
more violent probing experiments [see Walters and Ludwig (1981) for
examples of bias calculations]. Since state variation is important anyway for
parameter estimation, it is quite possible that increasing variation will turn
out to be less costly than improved monitoring in many contexts. The sim­
plest way to check this possibility is by Monte Carlo methods, where param­
eter estimation performance is simulated for various combinations of state
variation (probing) and investment in monitoring. However, the trade-off
between probing and measurement will involve a conflict of interest in most
North American situations, where the costs of increased state variation
would ordinarily be borne by harvesters (through variations in harvests)
while monitoring costs would be borne by management agencies that are
partially funded from sources other than harvesting. Increased harvest vari­
ation can be a way of avoiding higher public expenditures for management
monitoring, but I would hate to try and sell this rather esoteric point in any
context of political debate.
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Since increased state variation can potentially compensate for the
effects of measurement errors, it is not obvious how to allocate monitoring
activity in coordination with adaptive plans, as discussed in the last section.
Intuition would suggest larger aUocations to the replicates that are subject to
probing tests, but this means that poorer control (pretreatment) data will be
gathered on other replicates that might be subject to test later in time.
Again, a key planning variable is the prior estimate of variance in actual
patameter values among replicates (aJ). If this estimate is small (replicates
expected to be similar), the best strategy is probably to focus both monitor­
ing and probing on a few replicates. If aJ is large, so every replicate will
have to be treated as unique in the long term anyway, then the best monitor­
ing policy may be diffuse: give each replicate equal attention, or allocate in
proportion to expected long-term value if the replicates appear to differ
greatly in potential.

A very dangerous monitoring strategy is to aUocate measurement
effort in response to large state changes that are due to natural or unmanaged
human factors, and come to the management agency's attention only after
they are weU under way. It is a very common "firefighting" behavior for
agencies to set up monitoring schemes after big changes, simply as a way to
demonstrate visible "concern for the problem" or in the mistaken belief that
the cause of the change can be inferred from measurements after the fact. A
case can be made for the notion of exploiting "natural experiments" as a
source of informative variation in system state (i.e., study transitional
responses after the unplanned disturbance). But, unfortunately, natural dis­
turbances large enough to be helpful for parameter estimation are also likely
to be associated with changes in system structure (new species, new harvest­
ing tactics, loss of substocks, etc.) and new parameter values that are not
representative of normal replicates.

Adaptive allocation of monitoring n:sources

The previous paragraph points out that management agencies often
engage in a kind of adaptive allocation of monitoring effort, by shifting
attention to crisis situations as they arise. Such strategies are intriguing,
even though they are unlikely to result in clean, consistent time series that
are convenient for statistical analysis. Parameter estimation procedures and
Bayesian probability assessments can be formulated so as to account for
differences in measurement precision over time [see Bard (1974) for details1,
though the assessment of changes in measurement error variances then
becomes a more important component of the monitoring program.
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Suppose it is planned to use a JOint parameter estimation scheme,
such as equation (10.2), and that we can make some estimate of how the
variance of ~i for any replicate will be affected by allocating an increasing
share of the total monitoring effort to it. Then, if we ask how to minimize
some simple measure of overall information performance, such as the sum of
variances of ~i across replicates, formal optimization procedures are likely to
tell us that an extreme strategy is best: either diffuse the allocation across all
replicates in rough proportion to the U§i' or else focus all of it on a subset of
replicates with the highest initial uncertainty. The latter outcome is more
likely if ua is small and focused monitoring can result in quick reduction in
uncertainty about~. Thus, it is quite possible for the optimum allocation to
flip suddenly in time, from diffuse to focused (or vice versa) as the uj; are
reduced and more information becomes available about ua.

In the face of very large uncertainty, diffuse monitoring will provide
little information about the (3i, which in turn means a poor estimate of the
actual variation among replicates (uJ). Thus, I would recommend to gamble
initially that uJ is small, and focus the monitoring (and experimental prob­
ing) on a few replicates while gathering only very crude information for
feedback control on the other replicates. The initial test replicates should be
chosen so as to be as different as possible with respect to structural covari­
ates, in order to provide both a conservative (high) estimate of ua and a basis
for later classifying replicates into more homogeneous subsets. Then, as
good parameter estimates begin to emerge from the test set, two evaluations
should be initiated: (1) exploratory analysis of the detailed data already
available, to see if there are simpler (less expensive) measurements that are
highly correlated with system state, and (2) calculation of expected results
from diffuse versus focused monitoring, to see if [in conjunction with the
results of evaluation (1)] a shift in attention would be worthwhile. At some
point in time, evaluation (2) is likely to call for a major, adaptive reallocation
of monitoring activity that permits better feedback management of all repli­
cates simultaneously.

It is possible that precise monitoring of state responses in even one
replicate would require most of the resources available to the management
agency. In this case it would be unwise to use a focused monitoring stra­
tegy, since there is no way to assure that the replicate chosen for the study is
representative. Instead, the agency should seriously consider either (1)
diffuse monitoring coupled with hard probing experiments on many repli­
cates simultaneously, or (2) placing its attention initially on the development
of innovative monitoring tools and techniques, or (3) shifting the burden of
monitoring more to the harvesters, such as by requiring them to do sample
searching in patterns that will allow better mapping of relative resource den­
sities.
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It is not yet possible to compute optimal adaptive policies for repli­
cated systems, even when each replicate can be assumed to follow some very
simple dynamic model. Still, it should be possible to develop management
plans that improve substantially on the extreme alternatives of either treating
every replicate as unique, or allocating management activity solely in
response to political pressure and to the detection of local crises. In this clos­
ing section, I will simply identify five basic ingredients that will be needed in
the design of experimental plans that involve deliberate attempts to probe for
information.

Systematic evaluation of available data

The starting point for experimental design should be a systematic syn­
thesis of historical data, and from this the estimation of model parameters
and measures of uncertainty (or place odds on a variety of alternative
models) for each replicate. If reasonably accurate parameter estimates are
available for some replicates, a further component of the historical analysis
should be a search for patterns in the parameter estimates that might be
attributable to structural covariates and provide a basis for stratifying the
replicate set into more homogeneous response groups.

Historical databases can be surprisingly difficult to assemble. Few
management agencies have attempted even to archive all their data in one
place, let alone put it in accessible forms such as computerized databases.
Also, it is often impossible to find out exactly how the earlier data were col­
lected, since sampling procedures are typically not documented in detail; this
makes assessment of measurement errors and comparison of alternative
monitoring techniques very difficult. However, the arduous task of digging
through old records and files can be quite rewarding; a management agency
can accumulate staggering amounts of information over many years, all
stored away by people with the best of intentions for future users.

An accounting system for overall value

A second obvious need is to develop a generally acceptable protocol
for measuring the aggregate value from managing all replicates together.
This may be simply an additive accounting of yields, or a complex scheme
for weighting several benefit-cost measures from each replicate against stan­
dards or constraints on average performance.
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The development of this protocol should involve some examination of
the factors that have determined the historical distribution of harvesting
effort among replicates, such as travel costs and proximity to dependent com­
munities. In view of such factors and the need for cooperation (consensus)
between harvesters and the management agency, it will typically be wise to
adopt a more sophisticated valuation scheme than just the sum of harvests.
At least, the replicates of major historical importance will have to be
weighted more heavily when the costs of experimentation are assessed.

Model for propagation of u.occrtaioty

An essential feature of adaptive management planning is the deli­
berate attempt to predict how future state changes and data gathering are
likely to affect learning about parameters (or the odds placed on alternative
models). To make such predictions, it is necessary (1) to specify beforehand
precisely how future data are likely to be analyzed (estimation schemes,
etc.), and (2) to develop a stochastic model framework for generating possi­
ble data sets and applying the analysis techniques to them.

When there are many replicates that will be analyzed through a com­
plex joint estimation scheme, the safest technique to use initially is "brute
force" Monte Carlo simulation. Set up a model for all the replicate dynam­
ics (and interactions) and for the observation process (monitoring scheme).
Establish an automated procedure to confront the estimation scheme with
many fake data sets from this model, each set representing different dynamic
parameter choices and sequences of errors (process and measurement). The
confrontation with many data sets will then have to be repeated for each
experimental management plan under consideration.

Method for caIculatiog the value of reducing
uncertainty

Suppose that methods such as Monte Carlo simulation indicate that a
proposed experimental plan will likely result in parameter covariances Ell,
... , ERr after t years, starting from initial uncertainties E IO , ••• , E RO across
the R replicates. This outcome does not really mean much unless it can be
translated into an effect on aggregate value. About the simplest reasonable
estimate of this effect would be the change in expected value of perfect infor­
mation (EVPI, see Chapter 7) from time 0 to time to This change measures
the expected improvement due to using the plan up to time t as opposed to a
nonadaptive (no-learning) alternative, then switching back to the nonadap­
tive plan at time to If EVPI is calculated as suggested in Chapter 7, then
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EVPI, - EVPIo will be a relatively small, marginal value for each replicate
but may be very large in aggregate across replicates.

An alternative to EVPI calculations is a tedious estimation, by Monte
Carlo simulations, of expected performance when each experimental plan is
accompanied (or followed) by feedback management based on the parameter
estimates obtained. In other words, simulate the whole "closed-loop"
dynamics (for all replicates) of natural state responses, measurement, estima­
tion, and management action as a function of estimates. This approach will
provide a conservative estimate of future management performance since it
will not account for future innovations in monitoring technology and experi­
mental design.

Mc:chanisms for generating alternative plans

Given some perspective on the system from historical data analysis,
and machinery for tracking the possible effects of any plan that is devised,
the key problem then becomes how to develop some alternative plans that
make statistical sense and are practical in terms of considerations like "politi­
cal salability" that are difficult to quantify in the value accounting system.
One possibility is to have a computerized procedure that can generate many
plans by systematically or randomly selecting replicates for disturbances, and
disturbance patterns to apply to them. But such procedures will only be
effective if they can be provided with very tight search criteria beforehand,
such as the number of replicates to test each year and the best magnitude
and frequency of disturbance for each replicate.

The best plans are likely to come from some process of imaginative
synthesis that involves discussion among people with different areas of exper­
tise, ranging from experimental design to administration of sampling pro­
grams. Automated procedures for plan generation and testing can be used
to focus the discussions and provide quick feedback about options as they are
suggested, but it is important that the discussants (planning team) see these
procedures as tools to stimulate imagination.

Problems

10.1. Spatial replication or subdivision of renewable resources creates flexi­
bility for experimental management, provided harvesters can move
around so as to make up local losses with gains elsewhere. But each
replicate may still have a "dependent economic community" (resorts,
equipment service facilities, harvesters with limited technology or
means to travel) that will oppose experimentation with it, especially if
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the experiment involves immediate reduction in harvests. Assuming
that such communities should not (or politically cannot) be ignored,
suggest schemes to avoid making them bear the major burden of
experimental losses and risks.

10.2. It has been proposed to experimentally vary exploitation rates on
Pacific cod in the Hecate Strait, British Columbia. The Strait can be
divided into two areas (replicates) with roughly equal initial stock
sizes, and it is thought that there is little dispersal of fish between
these areas. The current stock biomass is thought to be around
10000 tons (5000 in each area), producing an annual trawl catch of
3000 tons with 10000 hours of trawl effort (5000 hours in each area).
Due to exploitation competition [Chapter 4, equation (4.12)], it is
thought that the harvest rate u, (now 0.3) in each replicate area will
vary with effort according to the catch equation u, = 1 - e -q£" where
q = 7.13 X 10-5 and E, is hours of trawl effort in the replicate.
What will happen to total catch this year if all the effort (10 000 hours)
is concentrated in one replicate (with a stock size of 5000 tons)?
What will the total catch be next year if all the effort is then moved to
the other replicate, assuming that the net stock increase in each area is
30 % of the stock size left after harvest this year? If it is required that
the total catch be kept constant (at 3000 tons), what effort will be
required this year if it is all exerted in one replicate? What effort will
be required next year if it is all exerted in the other replicate, and the
net stock increases are again 30% of the stocks left after harvest this
year? Do these results suggest that the evaluation of experimental
plans should include economic factors, such as the cost of exerting
each unit of fishing effort?

10.3. For replicate systems that may be subject to shared (similar) "environ­
mental effects," it may be possible to estimate the effects as extra
dynamic "parameters" when historical data from all the replicates are
analyzed together; then, after correcting for the estimated shared
effects, each data set may appear much less "noisy." However, this
possibility is lost when all replicates have been subject to the same
harvest policies over time. Explain this finding in terms of the classi­
cal scientific idea of treatment and control measurements in experi­
mental design. When unpredictable environmental effects may be
present, is it possible, even in principle, to logically distinguish
between these effects and the effects of policy change, unless there is
at least one replicate where the policy has not changed? In fitting
models to time series data from a single (unique, isolated) replicate,
we pretend to avoid this treatment control issue by assuming a
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stationary model structure (same equations, parameter values over

time); what price do we pay for this assumption? (Hint: see Figure

6.4.)

10.4. The sockeye salmon example in Figure 1.1 has been used repeatedly

in this book, to make various points about uncertainty. The figure

may be misleading, since it represents aggregate data across many

biological stocks that spawn in widely separated tributaries within a

large watershed. Combined analysis is valid only if the stocks have

Table 10.I(a). Spawning escapement and subsequent recruitments for four
hypothetical salmon stocks from a large watershed. Total returns are from
eggs spawned in brood years, and are combined for return years 3-5 years
after spawning.

Stock #1 Stock #2

Brood Total Brood Total
year Escapement return year Escapement return

1948 10356 232876 1948 670622 1909842
1949 3593 29456 1949 58247 618785
1950 1259381 9220024 1950 17308 203432
1951 143428 522087 1951 100116 743398
1952 9317 16451 1952 485585 1837630
1953 3472 29548 1953 200691 615701
1954 2651231 15072461 1954 34296 697671
1955 63336 852458 1955 121167 1479484
1956 3321 7672 1956 646906 2421690
1957 2807 21365 1957 138464 138089
1958 3287678 2013436 1958 120 104 427605
1959 134 545 879895 1959 463060 2187519
1960 1907 2412 1960 426546 1046818
1961 1118 6215 1961 39101 68788
1962 1 113088 2777 736 1962 77713 974905
1963 156454 3033433 1963 998231 1164753
1964 604 17 132 1964 238272 2031487
1965 1795 50353 1965 35335 155375
1966 1 255893 3851506 1966 209619 861265
1967 838945 3054910 1967 174715 1965450
1968 3686 20551 1968 413862 2413817
1969 4986 11834 1969 70902 397863
1970 1495504 4990517 1970 135388 667540
1971 283791 635367 1971 157193 575904
1972 4153 38740 1972 562650 1900778
1973 1014 88234 1973 55675 203224
1974 1061 774 6264261 1974 107563 579665
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Table 10.1(b). Spawning escapement and subsequent recruitments
for four hypothetical salmon stocks from a large watershed. Total
returns are from eggs spawned in brood years, and are combined for
return years 3-5 years after spawning.

Stock #3

Brood
year

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

Escapement

19979
582228

59104
60423
30212

154036
35050

2159
25280

234850
38807

2670
14447

198921
26716

4607
2390

23045
10830
21044

1522
109655
32578
95940

4657
299892

51374

Total
return

198153
1030708

241087
173645
88572

540597
155482
27456

110394
1222183

102352
20835
74127

255212
75785
92222
41860

416779
83040

339270
10412

1374870
180924
432732

32401
1337312

138337

Stock #4

Brood
year

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

Escapement

19431
12725
32539
12856
28050

8989
28137
21636

8690
20237
38439

8363
7033
4246

15824
14469

1196
13521
13360
19720

2407
41716

6108
2482

15193
27806
40032

Total
return

131 635
54928

182836
116935
10933

217870
232492

72378
21572

8801
30715
39208

4623
57472
47854

161915
24962
32377
12377
30940
43587
46276
63126
20372
72938
34050
41873

highly correlated responses, and so act in effect as a single unit.
Table 10.1 shows hypothetical time series data for four large contri­
butors to the total production. Plot total recruitments over time; do
you see obvious correlations? Then develop a computer program for

estimating shared environmental effects as deviations from Ricker
stock-recruitment relationships [equations (10.6)-(10.11)], and apply
it to the four data sets. Plot stock-recruitment relationships for the
four stocks, corrected for the estimates of shared effects. Are your
variance estimates for the Ricker b parameter (key determinant of
optimum spawning stocks) improved by doing the joint estimation?
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10.5. Table 10.2 shows summer population size and fall harvest data for

four reindeer herds in northern Finland. Fit each data set to the logis­

tic model N,+I = R 1 8, - R 28,2, where R" R 2are production param­

eters, N,+I = summer herd size in year t + 1, and 8, = herd size

after harvest in the fall of year t. Is the density-dependence parame­

ter R 2 significantly different from zero for any case? From other

herds and independent data on reproductive rates, we know that the

maximum rate of increase should be around R I = 1.5. Assuming

this value, calculate time series of R 2 values [R 2 , = (1.58, ­
N'+I)/S,2j for the four herds; these time series presumably reflect

Table 10.2. Summer population size (N,) and fall harvests (H,) for four
reindeer herds in northern Finland. Comparable data are available for 52
other herds. The Paistunturi and Ivalo herds depend mainly on ground
lichens for food in late winter. The Jokijarvi and Oivanki herds have access
to arboreal lichens and have been given supplemental food (hay) in late
winter since the mid-1970s. (Data provided by T. Helle, University of
Oulu, Finland.)

Year Paistunturi Jokijarvi Oivanki Iva10

1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

Nt

8750
1211
8831
7900

10436
10472

7619
8215
7696
7129
7140
9565
8515
8083
4830
2895
5280
7967
8761
9020
9743

11283
12526
14858

H,

1716
2689
1988
2196
2724
2715
2978
2789
2466
2181
1032
2257
2564
2553
2553
1301
340

1239
2128
2349
1635
2653
3199
5091

Nt

695
628
663
738
755
554
662
820
938
947
804
870
965

1175
986

1000
1226
1303
1582
1547
1723
1695
1529
1445

H,

140
202
101
211
197
142
141
157
235
274
158
186
186
262
288
255
323
356
409
583
642
676
386
471

Nt

1285
1244
1167
1537
1623
1575
1856
1947
2380
2531
1925
2415
2439
2711
2994
3187
3446
2827
2833
3041
3212
3231
3598
2910

H,

231
276
123
274
310
198
261
248
333
638
209
232
370
420
417
654
544
389
689
750
730
583
997
720

Nt

3268
4341
3208
2090
2957
3138
1535
1450
1990
2981
1679
1918
2171
1949
1814
1526
1831
2379
2583
3344
4075
4910
4126
5416

H,

1161
1632
691
534
877

989
589
595
798

1096
518
694
793
624
534
213
245
330
285
447
513
901
746

1033
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varying winter "carrying capacities~ for the herds. Do the herds
appear to be subject to similar winter conditions? Can you develop a
formal regression method, like equations (10.6)-(10.11), for estimat­
ing shared variations in carrying capacities along with the average R.
- R z response curves for each herd?

10.6. The reindeer herds in Table 10.2 show no convincing evidence of
decreasing productivity (reproductive rates, winter survival rates) as
herd sizes increase. The current Finnish government policy is to set
upper limits on the herds, at near the current herd sizes; there is con­
cern that larger herds would damage the winter ranges (the animals
feed on ground lichens that are very unproductive) so as to reduce
carrying capacities in the long term. There is also concern about the
long term sustainability and hidden costs of supplemental feeding as
practiced with many herds like Jokijarvi and Oivanki. The lichen
ranges now appear to be at equilibrium, at very low biomasses
(50-300 kg/ha compared to 3000 kg/ha on ungrazed ranges), with
annual net production rates of around 10% (300 kg produces 30 kg
net growth) being taken by reindeer in winter. Develop alternative
models for possible changes in range condition and animal produc­
tivity if herd sizes are allowed to increase. Assuming that total har­
vest across the four herds of Table 10.2 is to be kept relatively con­
stant, simulate changes in herd size and range condition for a variety
of experimental policies that try to allow one or more herds to
increase until biological limits become evident. Note that you will
need to consider experiments of very long duration (50-100 years);
looking more broadly at Finland as a whole (56 herds), can you sug­
gest plans that might be less risky and bring results more quickly?
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Chapter 11

Adaptive Policy Design for
Complex Problems

Decision theory is well adapted to coping with
such probability distributions. Unfortunately,
people are not.

R. Yorque(Holling, 1978)

So far in this book we have concentrated on relatively well defined
problems of harvest management, where it has been possible to specify clear
alternative models for the managed system and the process of learning about
it through adaptive estimation. While, in principle, the various recipes of
Chapters 6-10 can be applied to any system, they may fail in practice when
(1) the system is of high dimension (many variables); (2) consensus cannot
be reached about a small set of alternative hypotheses that capture key uncer­
tainties; and (3) no single objective function will represent the conflicting
interests of the various actors involved in management. In time we can
expect to see considerable progress in methods for dealing with the technical
difficulties of modeling and formal optimization for systems that involve a
whole panorama of biophysical and economic variables. But such technical
developments will be of little value unless they are accompanied by progress
in dealing also with the very human problems of reaching consensus by
embracing uncertainty, and of reaching some balance when there is, in fact,
no identifiable decision maker and policies proceed from the competitive or
cooperative activities of many actors.

In this final chapter I will review some steps that we have found help­
ful in working with the human problems, then examine two case studies
where the problems are vividly clear. These cases (acid rain in Europe,
fishery management in the Great Lakes) involve a range of environmental
and economic issues that extend far beyond renewable resource
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management, and each involves many policy design problems that, in prac­
tice, cannot be lumped together in any single coordinated framework. How­
ever, in each case it is possible to suggest a basic adaptive strategy that
somehow cuts across various subsystems to influence management perfor­
mance in each of them. It is emphasized that the discovery of such strategies
is a matter of luck and imaginative synthesis, not of mechanical systems
analysis. In closing, I will discuss some of the tactical implications of mov­
ing away from traditional methods of problem analysis towards methods
more favorable for adaptive policy design.

Moving from Analysis to Synthesis

Looking back over earlier chapters, you will see that I have recom­
mended three essential steps in adaptive policy design: modeling to pinpoint
uncertainties, compression for understanding, and optimization to seek best
policy options in recognition that uncertainties will change over time.
Below, each of these steps is reviewed with a view to its application in com­
plex problems, along with a fourth step that I consider essential: imaginative
synthesis, the search for innovative options and strategies. I place this step
last for a special reason: the search requires motivation, even desperation,
and this is provided by the frustrations that inevitably accompany the first
three steps.

Modeling to pinpoint uncertainties

I have emphasized throughout this text that an important first step in
policy design is to obtain an honest picture of uncertainties by trying to
develop formal models that are consistent with historical experience. For
complex systems, the development of such models must be undertaken with
the cooperation and involvement of the actors who are expected to under­
stand the results; here the AEA workshop approach discussed in Chapter 3
becomes a valuable tool. It is critical that this model-building step involve
the deliberate attempt to construct predictive models, even when it is known
in advance that the predictions would have little credibility.

The basic reason for emphasizing modeling as a first step is simple
enough: other processes for defining uncertainties will lack a necessary foc\ls
on and definition of policy options, and so will be used as a forum by various
scientists to promote their own research interests. It is entirely too easy to
concoct very convincing verbal arguments about why almost any detailed
process research is important to the "understanding" of big problems like
acid rain. But many details have a way of paling into insignificance
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(properly) when included in models that deliberately try to make calculations
about the whole problem.

Serious tactical and political difficulties usually arise at this step,
because the modeling almost inevitably alienates (appears threatening or
superficial to) various members of the scientific community whose advice has
traditionally been sought by policymakers. Thus, it is essential that the
modeling involve this community, challenge it to see the problem more
broadly, and dispassionately embrace and evaluate various alternative
hypotheses that have emerged from within the community. To be dispas­
sionate implies not favoring any single hypothesis or previous model, and
not openly condemning any of them. Formal methods for assigning odds to
various alternatives, as discussed in Chapter 6, may be helpful at this stage,

but it is essential to use the statistical tools only to sort out hypotheses that
are clearly inconsistent with historical experience. The set left over after this
sorting usually leaves considerable room for controversy about the future.

Compression for understanding

The next step is to develop systematically a range of predictions about
key policy indicators, using the alternative models and basic policy options
identified during the initial modeling work. Again, it is essential at this
stage not to seek any best scenario or most likely outcome. Instead, the key
goals should be (1) to gain consensus about how large is the range of future
outcomes and how deep are the conflicts about which outcomes would be
best, and (2) to engender a healthy frustration about the state of affairs.
This frustration will help later in the search for imaginative policy options,
but at this stage it has the more immediate value of motivating those
involved in the analysis to "get down to essentials." That is, it motivates the
search for a compressed representation in terms of a few extreme alternative
hypotheses, management options, and scenarios of future development.

The quantitative details of alternative predictions are almost always
unimportant in large problems. They pale into insignificance in comparison
with the qualitative differences that are noticed and highlighted by actors
with conflicting objectives. This point is really what makes compression for
understanding possible in the first place. To understand it better, I recom­
mend conducting a simple modeling exercise. Construct a little simulation
model for some resource, just complicated enough to display dynamic tran­
sients of such indicators as catch and industry employment in relation to a
key policy variable, such as the harvesting effort allowed. Then run several
simulations (scenarios) with various temporal patterns of change in the policy
variable, and graphically compare the predicted indicator patterns. Having
done this many times with all sorts of actors, let me make a strong
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prediction: you will never even bother to read the scales on the vertical axes
of these graphs. That is, your comparison of the options will not (and gen­
erally should not) depend strongly on the quantitative scales (arbitrary units
of measurement) that you have chosen for the indicator variables. You will
look for ordering in, and basic differences between, the options (effort pat­
terns) treated.

Systems analysts are fond of various formal techniques for "sensitivity
analysis" of model predictions to changes in parameters and actions. Calcu­
lation of sensitivity to parameters is certainly an integral part of parameter
estimation (see Appendix 5A, and Chapters 6 and 7) and approximation of
odds to place on alternative hypotheses. Also, it can help to sort out various
unnecessary redundancies, such as strings of parameters that multiply
together and therefore each have the same effect. But for complex systems,
particularly those that can exhibit multiple equilibria and other sudden quali­
tative changes in behavior as parameters are varied, formal sensitivity testing
can be deceptive by lulling the analyst into thinking that a thorough testing
has been done when, in fact, the possible behaviors have barely been
touched. It is much more important to develop and "play" with various
model structures, both simple and complex, so as to gain experience in
where to look for key interactions and relationships that affect qualitative
prediction. Good compressed models are usually discovered by noticing first
that the original complicated model "behaves like" a simpler one with which
the analyst has had previous experience.

Seeking the best option

The final section of Chapter 9 highlighted the need to proceed care­
fully with adaptive optimization, moving back and forth between the results
based on formal objective functions and the reactions of actors whose objec­
tives these functions are supposed to represent. The usual result of the steps
outlined in that section is not consensus about the best action, but rather a
clarification of which objectives are really conflicting in terms of policy
choice. Often, apparently conflicting objectives in fact imply the same best
policy choice and so lead to coalitions of interest that would not be intuitively
obvious. But basic conflicts usually still remain, between short-term versus
long-term values and between temporal stability versus informative variabil­
ity.

Some analysts find it disturbing that modeling exercises intended to
bring actors together often result initially in a deepening of conflicts, by
highlighting trade-offs that cannot be avoided. It is somehow expected that
cooperation in clarifying what the trade-offs are should be accompanied by a
commitment to accept some formal calculation of the best compromise pol­
icy. There has been much interest in "multiobjective decision analysis" (see



Adaptjve Poljcy Desjgn for Complex Problems 337

Keeney and Raiffa, 1976), which emphasizes precisely such formal methods.
But by seeming to provide a reasonable compromise among options that are
all bad in the first place, such formal methods are a lot like sensitivity
analysis mentioned above: they may lull the actors into accepting a solution
too early. Again, let us recall that there is value in allowing tension and
conflict to build, as motivation for seeking innovative policy options.

Consider for a moment that the model building/optimization process
is itself a problem in "adaptive management" of the people involved. Here
the "system" is the analytical machinery for working out optimum feedback
policies given a specified input set (hypotheses, objective function, action
choices). "Management" consists of varying the inputs, then observing reac­
tions to the formal outputs. It is unnecessary to quantify such output obser­
vations as "level of tension among actors;" the key point is that by being
even a bit sensitive to them, it is usually possible to provide "rewards" (pre­
dictions, policy options) that are sufficiently interesting to keep the actors
involved in the process. In my experience there is eventually a "break­
through" that involves not compromise, but rather some quite different way
of seeing the problem (i.e., a whole new input set). The challenge is to keep
the process going long enough for this change to take place. My only advice
about how to become such an adaptive manager is to try it, while being
prepared to make and learn from a lot of very embarrassing mistakes. As in
any complex management activity, there is in the end no substitute for hard
experience; the real trick is to keep firmly in mind at the most difficult
moments that mistakes are healthy, and if quickly admitted are unlikely to
cause the whole process to break down.

Imaginative synthesis

Perhaps the greatest mistake that an analyst can make is to suppose
that better management options will emerge from dispassionate and relaxed
discussion about the managed system. There is an excellent warning about
this mistake in the old adage "necessity is the mother of invention," and
plenty of empirical evidence about how major innovations in technologies
and social systems have come mainly in times of crisis (see Chapter 2). The
AEA workshop process uses the pressure of short meetings to stimulate
thinking about model building, and I have watched people (including
myself) accomplish more in a five-day meeting than they normally would in
a year of puttering about the office.

There is a strong tendency in resource management to defer hard
decisions as long as possible, in the hope that natural events will produce a
favorable outcome. In a way we might call this behavior "adaptive policy by
default," since it often has the effect of letting major and informative system
changes take place before there is any (feedback) reaction. The wait-and-see
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attitude is a very difficult one to overcome, and I expect that it can only be
dealt with in general by trying deliberately to build up among the manage­
ment actors some of the same emotions (frustration, desperation) that would
eventually move them to act. The idea here should not be to try to fool any­
one into thinking that there really is a crisis when, in fact, the system is
doing reasonably well. Rather, it is simply a matter of recognizing that
emotional involvement is a strong prerequisite for creative thinking, a fact
that is obvious to artists, but that many scientists (the bad ones) fear to
admit.

So far we have discussed only one example of imaginative synthesis,
the Hilborn plan (Chapter 2) that provides a way to avoid a very difficult
choice in Pacific salmon management (rehabilitation versus enhancement).
Two other examples will be discussed in the following case studies, and both
also involve finding a way to sidestep some very difficult choices. All three of
these examples first appeared as sudden "leaps of imagination" or "intuitive
jumps" by participants in AEA workshops, at moments of high frustration in
the midst of discussions about uncertainties and policy options. On several
occasions we have tried without success to foster such leaps during more
relaxed and freewheeling "brainstorming sessions" where participants are
urged to think up wild ideas while agreeing not to be critical of one another.
Though my sample sizes are obviously very small, I have become convinced
that there is no substitute for hammering away systematically at a complex
problem until it is clearly and simply expressed in terms of basic strategic
options; only when all these options look bad is the magic of imagination
likely to be displayed.

Experience is important in the search for imaginative policies.
Rather than plucking something entirely fresh out of the air, we usually gain
new ideas by seeing analogies or similarities between the problem of current
concern and earlier ones where advances have been possible (model building
works this way as well). I hope that the Hilborn plan, and the policies sug­
gested for the two cases below, will be useful as analogues for many other
situations in renewable resource management.

Acid Rain in Europe

Many people feel that acid rain is the largest environmental problem
of this century, in terms of the magnitude of potential ecological impacts and
the economic/political difficulties of policy formulation on such large spatial
scales. For readers who have been residing on another planet or never look
at newspapers, let me briefly review what is understood about the problem.
Anthropogenic releases of sulfur and nitrogen into the atmosphere have
increased greatly in this century, largely due to increased use of fossil fuels
and especially high-sulfur coal for electrical power generation. Through
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various chemical transformations in the atmosphere, acidic SO. and NO.
compounds are produced and precipitated as dust and rain. In Europe, as in
North America, atmospheric transport from highly industrialized areas (the
UK, France, Italy, West and East Germany) carries at least some of the
material great distances, and in particular into parts of &andinavia, where
soils and surface waters have very low buffering capacities. The pH has
become too low in many lakes to support fish life, and the effects are exacer­
bated by the seasonal release of very acidic waters during spring snow melts.
Effects on terrestrial ecosystems have been less pronounced except in a few
areas where trees have been killed by massive concentrations of the pollu­
tants, although there is some evidence of effects on forest growth and there is
concern about the mobilization of highly toxic metals (especially aluminum)
where soil pH is reduced.

There is little doubt that acid rain is now causing some important eco­
logical damage, and that this will increase over time due to the accumulation
of acidic compounds in waters, the erosion of soil buffering capacities, and
the continued growth in emissions, if current energy development trends
continue without regulation. There has been a great deal of research aimed
at trying to understand the chemical and ecological mechanisms involved in
the ecosystem response, in the hope that it will be possible to predict long­
term changes more precisely. However, direct experiments so far with
ecosystems suggest that there are some rather subtle mechanisms at play
(such as "buffering" by purple sulfur bacteria in lakes), implying that there is
little hope of building accurate predictions (models) for terrestrial systems
until more direct experience (with increasing inputs) is obtained. Thus, acid
rain is a classic example of the issue raised in Chapter 1: we can build as
many quite credible impact models as you would like, but in the end only
experience or deliberate large-scale experimentation will reveal the correct
alternative.

The emission-transport-impact system has three basic control points:
(1) emission can be reduced by changing fuel mixes (coal types, nuclear
power, etc.) and/or installing emission control devices, such as scrubbers,
that remove compounds from emission gases; (2) long-range transport can
be reduced by going back to lower stacks on power plants (admitting that
dilution is not always the solution), thereby accepting much greater deposi­
tion near the large emission sources; and (3) impacts can be ameliorated by
direct application of buffering compounds (lime, etc.) to the affected ecosys­
tems. All these suggestions have a variety of direct and hidden (not obvious)
costs, that are potentially staggering on a scale such as that of Europe. One
OECD study proposed spending US$3 billion on scrubber retrofits, which it
was estimated would reduce sulfur emissions by about 50%. Economic
analysis of possible control strategies is greatly complicated by the fact that
many nations are involved, and none of them wants to be placed at a
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competitive disadvantage in exports/industrial production by bearing
differentially high control costs. However, these costs are directly paid, they
will inevitably touch whole economies through taxes and/or energy prices.

Critical uncertainties

We have already noted two major uncertainties about the acid rain
problem: ecological impacts on terrestrial systems have not yet become
clearly evident, and the total economic impact of various control strategies
may extend far beyond what any direct analysis would indicate. A third
major uncertainty concerns the importance of long-range transport. When
acidic deposition is measured at some sampling station, such as in central
Norway, it is as yet impossible to say what proportion of the compounds ori­
ginated from different source locations. Within the Scandinavian countries
that have been most impacted so far, there are local emission sources that
could account for at least half of the current estimated deposition rates in
these countries. This is a critical policy issue, since the impacted regions are
hardly justified in calling for control measures by other countries if, in fact,
they are creating the problem for themselves.

In an effort to estimate who is to blame for the existing deposition pat­
terns, detailed atmospheric transport models have been used to simulate
annual deposition patterns from various point source locations. The basic
outputs of these models for policy purposes are emission-deposition tables,
showing how much of the simulated deposition in each nation is due to emis­
sions from each other nation. Unfortunately, alternative simulations using
reasonable parameter values do not agree in their predictions about the key
issue of transport from continental Europe into Scandinavia. The basic
difficulty is that Scandinavia sits on the tails of the emission plumes from
southern areas like the UK, and receives total inputs that are only a small
part of the southern emissions. The amount of material reaching the tails of
the simulated plumes is very sensitive to various model parameters, such as
wind speeds (reduce wind speeds a little and more will be deposited near
emission sources, leaving less available for deposition further away ... ). In
the end, it is just not possible with current modeling technology to resolve
the uncertainty about what fraction of Scandinavian deposition comes from
local as opposed to distant sources.

Hard options

In early 1983, the United Nations Economic Commission for Europe
(ECE) ratified the Geneva Convention on Transboundary Air Pollution.
Under this convention, the nations of the ECE in effect recognized the
potential importance of acid rain, and agreed that they "shall endeavor to
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limit and, as far as possible, gradually reduce and prevent air pollution
including long-range transboundary air pollution." No purse strings were
attached to this agreement, and there are key clauses about the need for
more research and monitoring to determine the efficacy of whatever control
measures are taken. It was agreed that control measures should be "compa­
tible with balanced development," meaning that all parties should share the
economic burden of control costs and should move together in reducing
emissions and/or impacts.

So a strategic option has in effect been chosen, though it is not at all
clear how to proceed tactically (scrubbers versus liming, etc.). Also, the
massive investments required may well prove to be too much for many ECE
nations to stomach. No matter how far the actual expenditures finally go, a
glaring feature of this strategy is its presumption of certainty about the shar­
ing of blame for deposition patterns. If all nations move together to reduce
emissions, it will never be determined whether the long-range transport esti­
mates were correct (if all national emissions fall by roughly the same per­
centage, so will all national depositions, no matter what the spatial
emission/deposition pattern actually is).

Most of the debate has been about the tactics and economic feasibility
of emissions reduction, and the common default option of "let's wait and
see" has been pushed aside through a great deal of diligent publicity. mostly
by scientists, about the imminence of the crisis. There is just enough visible
damage to make a credible case that more is soon to follow. At the heart of
arguments against waiting is the very long recovery time for terrestrial
ecosystems should damage over large areas suddenly start to appear. This is
a very compelling argument: a large fraction of the public takes pride and
solace in the forests of central and northern Europe; the possibility that some
of these might be lost and not regenerate within their lifetimes is a risk that
Europeans are simply not willing to take.

An actively adaptive option

It is clear that something must be done soon, at least to reduce the
risks associated with current deposition rates in the Scandinavian countries.
It is equally clear that whatever actions are taken must be shared in cost by
the member nations of the ECE. However. I think it is a terrible mistake to
adopt without serious question the "engineering mentality" of a strategy
based on widespread and simultaneous application of technologies for emis­
sion reduction. There is still that nasty little uncertainty about where the
depositions are coming from in the first place. Luckily, it is simply unneces­
sary to proceed as though the long-range transport models were correct.

A rather radical policy suggestion emerged from discussions during
an AEA workshop on acid rain held at the International Institute for Applied
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Systems Analysis (I1ASA), Laxenburg, Vienna, in early 1983. No con­
sensus was reached about this suggestion, and it is not supported by or seen
as a topic for further research by IIASA. The suggestion was simply for the
ECE nations to share the costs of subsidizing all fossil fuel power plants in
Scandinavia to use only low-sulfur fuels for a few years. This would mainly
mean paying the price and transportation cost differentials for such fuels,
which are not readily available in Europe, along with the costs of improving
deposition monitoring networks to ensure that any effects of the local emis­
sion reduction would be measured accurately.

To invest in this very large-scale "experiment" would certainly be a
gamble for the ECE. If sharp reductions in deposition rates were detected,
this would be evidence against the importance of long-range transport.
Other European nations might then opt not to invest so much in emission
control, letting the Scandinavian nations find their own solution to what had
been demonstrated to be their own problem. So, on this side of the gamble,
the other nations would gain and Scandinavia would lose. If only small
changes in deposition rates were detected, then two possibilities would have
to be explored. The first is that monitoring systems were just not good
enough to detect the changes. The second is that long-range transport is,
indeed, important. Either possibility would favor a return to the original
strategy of shared emission reduction, with all nations the losers. Notice that
the gamble is asymmetrical: Scandinavia would lose either way (unless the
ECE agreed to continue fuel subsidies indefinitely, which is quite unlikely).
So you should not be surprised that Scandinavians who heard about the
suggestion were not at all pleased.

On closer inspection, the original suggestion turns out not to be very
good. Based on the most extreme estimates from transport models and emis­
sion source distribution data, it is very unlikely that the reduction in deposi­
tion rates would exceed 25 %. Monitoring systems capable of detecting this
change against background natural variation would currently be very costly
to install and operate. To avoid confounding of effects, other nations would
have to forgo or delay emission reduction programs aimed at reducing local
as well as distant impacts (this is especially a concern for West Germany).

But the suggestion triggered a whole collection of other ideas based on
the concept of large-scale, shared-cost experimentation, aimed at defining
actual emission/deposition patterns. One suggestion was to reverse the fuel
subsidies, to temporarily reduce sulfur emissions from the Germanies and
the UK rather than Scandinavia. This would be much more costly, but
would be immediately beneficial in terms of environmental impacts outside
Scandinavia. Another suggestion was to design a continent-wide plan for
sequentially installing permanent emission control devices on the largest
point sources (mainly power plants), with the sequence chosen so as to be as
informative as possible about the long-range transport pattern.
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Perhaps the most interesting thing about these options is that they are
viewed as radical in the first place. It is quite natural for most people to
think about other large investment programs in terms of a careful sequence
of tests using devices such as market surveys and pilot studies. Somehow it
is viewed as unscientific or threatening to talk about experimentation on
large spatial scales, as though experiments were things to be done only in
boxes or on benches in university laboratories. Worse, some scientists
involved in our discussions were worried about the very notion of publicly
admitting uncertainty, and felt that it was important to maintain at least the
appearance of consensus within the scientific community. The arrogance of
this attitude is shocking; in effect the scientists are saying that policymakers
cannot be trusted to deal directly with uncertainty (or perhaps more to the
point, that the policymakers might not continue to support "valuable"
research if it does not appear to be giving consistent answers).

Lake Trout Rehabilitations

The Laurentian Great Lakes of North America have had a fascinating
management history. For reviews see the symposium proceedings of SCOL
(1971), PERCIS (1976), and SUS (1980). Fishery development began in
the 1800s, with the exploitation of large species like lake sturgeon and lake
trout. As the larger species and individuals were depleted, commercial har­
vesting turned to progressively smaller forms and more inaccessible stocks
(deep water, far offshore, etc.). By about the 1930s, it appears that a rough
bionomic equilibrium had been reached. But then there came a series of
rapid and disastrous changes, ranging from the invasion of the parasitic sea
lamprey to the introduction of much more efficient monofilament gillnets.
Many species, including the prized lake trout, virtually disappeared from the
upper lakes (Superior, Huron, Michigan), and a number of complete extinc­
tions occurred. In Lake Erie, pollution effects became obvious with the
depletion of oxygen from large areas in the lake's central basin. Dramatic
changes continued into the 1960s and 1970s, with such events as the explo­
sive growth of alewife populations, the sudden reduction in lamprey abun­
dance through control efforts with the chemical pesticide TFM, and the
development of an extremely valuable sport fishery for introduced salmonids
and hatchery-produced lake trout.

In the following discussion, let us concentrate just on the rehabilita­
tion of lake trout, which is seen as a key indicator of success in efforts to
restore the "health" of the Great Lakes ecosystems. Further, let us restrict
the analysis to three key policy variables: harvesting, stocking, and lamprey
control. It must be kept in mind that responses of lake trout to these vari­
ables will take place in a complex and changing environment. Effective
fishing efforts and mortality rates will be influenced by changes in the



344 Adaptive Management ofRenewable Resources

abundance of other species, such as the introduced Pacific salmon. Stocking
policies are evolving with the introduction of new hatchery techniques, the
diversification of hatchery gene pools, and the discovery of more effective
tactics for putting the stocked fish where they are more likely to survive.
The abundance and attack patterns of lamprey will continue to change due
to pollution control in their spawning rivers and changes in the availability of
alternative prey. There will be changes in the community of "forage" fishes
(alewife, small coregonids, sculpins) upon which the lake trout feed. There
may be substantial improvements in some aspects of water quality (reduced
eutrophication), but deterioration in others (accumulation of heavy metals
and toxic organic residues). Exotic species, such as the pink salmon, will
continue to effect unpredictable changes in the community trophic structure.
In short, it is not technically feasible (and there will probably never be
enough data) to build any comprehensive and credible model that captures
all of the dynamic variables and assorted policy variables associated with
these changes. Through a series of AEA workshops that tried to look at
some of the possible changes, we sorted out the three key policy variables
mentioned above as dominant factors in all of the models that were pro­
duced.

Considering how many management agencies and extragovernmental
interest groups are involved, it is a wonder that some reasonably well coordi­
nated management policies have been designed. There is a coordinating
body, the Great Lakes Fishery Commission, which promotes cooperation
through various committees and meetings, and which exerts direct authority
over the lamprey control program. The federal governments of Canada and
the US have taken responsibility for the implementation of lamprey control
and for most of the lake trout stocking program. State and provincial agen­
cies are responsible for regulation of harvesting through tactics such as bag
limits and closed seasons. At every level, the government agencies are
responsive to pressures from special interest groups, such as sport fishing and
tackle manufacturing associations.

Critical uncertainties

There is little doubt that a harvestable population of lake trout can be
maintained by continued stocking and lamprey control, at least for the next
decade or two. The biggest uncertainties are about what will happen in the
long term. All stocked lake trout are marked with fin clips, so the develop­
ment of natural reproduction can be monitored through juvenile and catch
sampling. So far, the development of an unmarked stock has proceeded
roughly as expected only in Lake Superior, where there were residual wild
stocks after the initial collapse. In Lakes Michigan and Huron, where wild
stocks apparently became extinct, the stocked fish have apparently not
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reproduced successfully. Thus, a first major uncertainty is about whether
wild stocks can be reestablished at all, even if fishing mortality rates can be
effectively regulated.

A second major uncertainty concerns the future of lamprey impacts.
Chemical pesticides usually do not work in the long term (genetic resistance
develops), and in any case the attack/mortality rates depend on the relative
abundance of prey and predator (see Chapter 5). Now that prey abundances
are higher, it may be possible to reduce control efforts considerably (and
delay the development of resistance) without changing such visible indicators
as the number of fish marked by lamprey wounds. The fact that fish do sur­
vive attacks (and show up much later in catches with old scars) has led to
controversy about whether the lamprey has ever been a major mortality
agent except in laboratory experiments. The stock collapses were associated
with high fishing rates as well as high wounding and scarring rates, and it is
possible that the lamprey caused high mortality rates only after fishing had
reduced stocks so far that the number of attacks per fish remaining became
intolerable.

The third major uncertainty concerns regulation of fishing mortality
rates. As noted in earlier discussions on Pacific salmon management (Hil­
born plan, Chapter 2), sport fishing efforts are notoriously difficult to regu­
late when the abundance of fish is attractively high. Native Indian fisheries
may cause local depletions, as old treaty rights are reaffirmed through court
tests. There is pressure to allow the reestablishment of commercial net
fishing.

Finally, there is great uncertainty about future changes in the forage
fish base for trout production. There are signs that native species, which are
more difficult for the trout to capture, are becoming reestablished. Alewife
and smelt (both exotics) populations have declined in some areas. There
may be continued growth in stocking rates and natural reproduction of intro­
duced Pacific salmon, which use the same forage species.

Difficult policy options

In an effort to promote understanding and consensus among the vari­
ous actors, there has been a strong move to define simple targets for manage­
ment action, such as the establishment of self-reproducing wild stocks of lake
trout. There is general consensus about only one policy requirement,
namely that lamprey abundance must be kept as low as possible through
continued chemical treatment and development of less environmentally
dangerous comrol measures (weirs to block lamprey spawning, biological
control techniques, etc.). A basic conflict has arisen about stocking and har­
vesting regulations, and it is essentially one of short-term versus long-term
objectives.
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According to the long-term view, fishing rates and stocking policies
should be adjusted to restore a naturally reproducing system as quickly as
possible. The basic argument is that nature can do the best (and cheapest)
job at producing fish in the long term, and that anyway there is direct value
in having a "balanced" natural ecosystem with a diverse (and statistically
stable) collection of natural stocks. It is not yet clear what stocking policies
are needed (since there are risks like the possibility that stocked fish may act
like sterile male releases with respect to self-producing stocks that have
already been established), but it does seem obvious that fishing rates should
be kept very low. Let us call this policy of much restrained fishing the "reha­
bilitation option."

According to the short-term view, the most important thing is that a
valuable fishery has been reestablished and the sportsmen engaged in this
fishery form a powerful political lobby. Thousands of them have invested in
expensive boats and gear, resort development is booming, and it is rapidly
being forgotten why the lake trout stocking programs were initiated in the
first place. Hatchery managers and lamprey control agents use the sport
catch and economic values as measures of their own performance, and join
many sportsmen in opposition to restrictive fishing regulations. It is argued
that while it would be better to have naturally reproducing fish stocks, there
is just too much now invested in the fishery to make severe cutbacks politi­
cally feasible. Let us call the policy of letting fishery development continue
the "put-and-take" option.

A matter of some mystery to me is that some biologists do not seem to
understand that there is a fundamental conflict between the rehabilitation
and put-and-take options. I have seen several reports emphasizing the need
to increase stocking rates so as to speed wild stock rehabilitations, without
any mention at all of harvest regulation or the likelihood that increased trout
abundance due to more stocking would in turn attract higher fishing efforts.
This is not just lack of a systems view; it is plain stupidity. A variation on
the theme is an option we might call "balanced development" (it is not!),
which proposes that catches and efforts be allowed to grow at a moderate
pace set by incoming data about how fast the stocks are recovering. The
flaw in this argument is that fishing rates in some areas may already be high
enough to greatly delay or preclude wild stock recovery, so it is essentially
just a tactical variation of the put-and-take option.

An adaptive option: Surfing in the Great l.akes

The above argument about two extreme options should be starting to
sound quite familiar. It is much like the situation we faced with British
Columbia salmon before the Hilborn plan was discovered. Indeed, the Hil­
born plan might well be a good way to proceed. But let me now discuss
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another option, which confronts the existence in the Great Lakes situation of
a "cliff edge" associated with depensatory lamprey mortality. Chapter 5
presented a quite simple model for how equilibrium stock size in lake trout is
likely to vary as a function of harvest rate, stocking, and lamprey abundance
(Figure 5.3). The essential prediction of this model is that the stock may
have two equilibria, with movement from the upper to the lower involving a
catastrophic collapse (falling off a cliff edge) as fishing rates increase. This
prediction is certainly in line with the history of Great Lakes stocks. The
upper equilibrium consists of a mixture of stocked and wild fish, with the
large stock size resulting in relatively low mortality rates due to the lamprey.
The lower equilibrium consists mainly of stocked fish, with high enough
mortality rates due to lamprey predation to prevent wild stock recovery. At
very low fishing rates the lower equilibrium may vanish entirely (if stocking
rates are high enough and lamprey abundance low enough), permitting
movement toward the high (mixed) equilibrium. At high fishing rates, the
high equilibrium vanishes entirely (wild stocks are not sustainable), even if
lamprey abundance is negligible. It was noted in Chapters 5 and 7 that the
location of the cliff edge is likely to vary over time, so that there may exist no
completely safe harvest rate low enough to guarantee maintaining the mixed
(or pure wild) stock equilibrium if ever it is achieved.

For the sake of argument, let us take it as given that the rehabilitation
option (or a Hilborn plan) has won out, and that harvest rates have been low
enough to allow a mixed (or pure wild) stock to develop and reach tem­
porary equilibrium. This situation will likely be reached by the mid-1980s
in Lake Superior, although reinvasions of old spawning areas may keep the
equilibrium moving slowly upward over time. It is still unclear about what
will happen in the other lakes.

Now we face an interesting question: given reasonable recovery, how
should the harvest rates then be allowed to vary, especially considering that
there may be no completely safe rate and there will continue to be strong
demand to allow growth in sport catches? One option would be to try and
hold the harvest rate low and steady, then monitor abundance and lamprey
wounding rates closely so as to respond quickly if the cliff edge moves toward
lower harvest rates. A basic difficulty with this option is that if it succeeds
for a long time (10-20 years), expectations and commitment will develop so
as to make effective response more and more difficult. When the collapse
does come, it may go a long way before there is the political. will to take
action (as has happened repeatedly in the history of Great Lakes manage­
ment).

An alternative option I call "surfing on the cliff edge," and its develop­
ment was motivated by two observations. First is Mehra's (1981) discovery
(see Chapter 7) that the optimum policy for estimating parameters in fold
catastrophe models (the model in Figure 5.3 is like a fold catastrophe)
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involves staying in the region of instability (around the cliff edge) as much of
the time as possible. Second is the fact that equilibrium yield would be max­
imized by harvest rates near the cliff edge, if the cliff edge were stable in
position and if harvest rates could be regulated exactly.

Equilibrium stock size and yield are shown as functions of harvest
rate in Figure 11.1, for a combination of parameter estimates and fixed
stocking ratellamprey abundance levels that are "reasonable" for Lake Supe­
rior. Also shown are regulated trajectories of abundance and harvest rate for
three policy options. In option A (associated with stock size NA, yield VA,
and harvest rate UA), the harvest rate and yield are held "safely" low and
constant. In options Band C there is a cycle (surfing) around the cliff edge.
In these options, harvesting effort (u) is allowed to grow (catch increases,
stock decreases) until a catastrophic decline begins. Then, in option B, the
decline is allowed to continue until most of the natural stock is lost, then
fishing efforts are reduced and held down until the stock increases. Notice
that the average yield under this policy would be lower than under policy A,
since the recovery part of the cycle would probably take many years. Under
option C, response to the decline occurs much earlier and less effort reduc­
tion is necessary to bring about a stock recovery (since the stock declines less,
mortality rates due to lamprey are also less). If option C were practical, it
would result in higher average yields than option A and would allow regular
monitoring of the location of the cliff edge.

Notice that surfing policies Band C involve two key variables: how
far the collapse goes before harvest rate restriction is initiated, and how
rapidly the harvest is reduced once the decision is made to do so. For sim­
plicity, I am assuming here that the unregulated (bionomic) equilibrium
would be at a quite low stock size, so that effort would not begin to decrease
naturally before the collapse is well under way. The first of these variables
we might call a "detection threshold;" if it were too small (small stock
decrease), then random fluctuations in apparent abundance would be con­
fused with collapses, and harvest rates would be restricted unnecessarily
often. If it were too large, the stock and yield fluctuations would become
intolerably large. Thus, the optimum detection threshold is a function of the
quality of monitoring statistics available (i.e., investment in monitoring) and
the expected amount of natural random variation in stock sizes. The second
of the variables we might call the "power to respond," since it is determined
by how drastic an effort reduction (how severe the regulations) the manage­
ment authorities dare to impose without inviting political decisions to over­
ride their recommendations and allow high harvests to continue. Such over­
riding decisions happen with discouraging frequency in the management of
North American sport fisheries.

Given a "kernel of understanding" about responses to varying fishing
efforts, a next step would be to examine how stocking and lamprey control
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Figure 11.1. Three policy options for regulation of harvesting effort on lake trout
in the Great Lakes (see Figure 5,3). In option A, effort is kept low and steady, In
option B, effort is allowed to increase until a major collapse occurs, and then there
is a long recovery period. In option C, effort also increases until collapse starts,
but detection and response to the collapse is much faster, Band C are ·surfing"
policies.
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might also be manipulated to improve the adaptive surfing policy. Time
delays in response to these actions become a critical concern: the effects of
altered lamprey control will not be seen for at least one year, and effects on
stocking do not become apparent for at least 4-6 years. This means that
stocking cannot be used to effect a quick reduction in mortality rates during
declines, although increases in it can (1) reduce the power to respond
(reduce fishing effort) that is required for natural recovery, and (2) hasten
the recoveries. Changes in lamprey control are expected to have little effect
unless the stock size is driven very low before management responses are
effected.

A side benefit of the surfing option might be to prevent the develop­
ment of unrealistically high expectations about sustainable harvests. This in
turn might lead to mandates for investment in better monitoring systems
(reduced detection thresholds) and larger powers to respond. So far as I
know, no management agency has ever knowingly substituted a policy of
regularly allowing small, manageable crises for the typical policy of pretend­
ing that none will occur. Thus, I can offer no solid evidence about whether
expectations would, in fact, remain reasonable. The users (and many
managers) of natural resources often seem to have very short memories, and
we are talking here about cycles with periods of 10-30 years. Perhaps it is
unreasonable to expect any mandates to persist for so long.

I suspect that in the long term we will have no choice but to develop
surfing policies for many natural resources. The pressures to allow growth
away from cautious equilibria (like UA in Figure 11.1) are always great, and
will continue to grow if demands keep increasing as they have in this cen­
tury. Also, we can expect improvement in monitoring systems, which will
eliminate one of the biggest excuses for caution. Rather than fighting for a
temporal stability that cannot be maintained for long anyway, perhaps we
should be concentrating on how to manage the cycles most effectively and
informatively.

At various points in this book I have stressed that effective resource
analysis takes more than good biology or good economics or good mathemat­
ical modeling. Management is done by and for people; even the best ideas
will be cast aside in favor of easy courses of action like pretending certainty
or waiting for problems to take care of themselves. It is just too easy for
people to hide behind platitudes like the need for caution, or the importance
of detailed understanding before action, or the need to apply methods and
models that have stood the test of time (usually without any real test, of
course). Adaptive policy design stresses the use of methods and concepts
that are often not simple to explain, demand the explicit admission of
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ignorance, and place a premium on imagination rather than on precision of

thinking. Anyone who is convinced that it is important to design and use

adaptive policies should be prepared for an uphill battle: he implicitly places

high importance on long-term objectives and will have to act as an active
advocate of these objectives while trying to be dispassionate about the avail­

able scientific evidence. Table 11.1 reviews some of the strategic changes in
attitude that an advocate of adaptive management might try to promote.

Hardly anyone would argue with items (6)-(8); the real tactical difficulties

come in trying to be convincing about items (1 )-(5), where conventional

attitudes have become deeply rooted through the educational system within

which most people with scientific training have spent many years.

Table 11.1. Conventional versus adaptive attitudes about the objectives of formal
policy analysis.

Conventional Adaptive

(1 ) Seek precise predictions (1 a) Uncover range of
possibilities

(2) Build prediction from (2a) Predict from experience
detailed understanding with aggregate responses

(3) Promote scientific (3a) Embrace alternatives
consensus

(4) Minimize conflict among (4a) HigWight difficult trade-
actors offs

(5 ) Emphasize short-term (Sa) Promote long-term
objectives objectives

(6) Presume certainty in (6a) Evaluate future feedback
seeking best action and learning

(7) Define best action from a (7a) Seek imaginative new
set of obvious alternatives options

(8) Seek productive equilibrium (8a) Expect and profit from
change

There is, perhaps, only one really essential principle to keep in mind
when searching for tactics that will convince people to change conventional

attitudes and engage willingly in the process of adaptive policy design. I
have heard educators call this the principle of self-discovery, and it says that

people only change their basic attitudes when they devise the arguments to

do so for themselves; people generally do not respond strongly to the argu­
ments made by other people, no matter how tight the reasoning behind

them. We can see this principle at work in most matters of everyday life,
but, like motivation for creativity, it is something that many scientists are

loath to admit. Even in matters that do not touch closely on personal pride
or self-justification for past courses of action, most people act as though they
simply do not hear very well. Let me mention again an example of how this
principle can be used. We had virtually no luck in the mid-1970s In
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convincing government managers and fishermen to use probing escapement
experiments for Pacific salmon management, no matter how carefully we
explained the decision theoretic basis for such policies. What finally did the
trick was an almost trivial computer simulation game that let people try to
manage a randomly varying population over time; most individuals who
play this game start intuitively making probing decisions almost immedi­
ately, and before long are asking for guidance about how to quantitatively
optimize the probing pattern.

Working from the principle of self-discovery, it is simple to construct
a list of tactical changes for more effective communication, as shown in
Table 11.2. None of these recommendations is new, and you can find items
(2)-(4) repeated over and over in textbooks on organizational management,
instructions to contributors for practically every major scientific conference,
and posted as admonitions to employees on bulletin boards of government
offices everywhere. The amazing thing is how seldom they are heeded.
Government managers still waste day after day in rambling meetings, scien­
tists try to hide their ignorance behind vast tables of statistics, and profes­
sional status is wielded like a club at very intelligent people who happen not
to carry the standard credentials.

Table 11.2. Conventional versus adaptive tactics for policy development and
presentation.

Conventional Adaptive

(1) Committee meetings and (ta) Structured workshops
hearings

(2) Technical reports and (2a) Slide shows and computer
papers games

(3 ) Detailed facts and figures (3a) Compressed verbal and
to back arguments visual arguments

(4 ) Exhaustive presentation (4a) Definition of few strategic
of quantitative options alternatives

(5) Dispassionate view (5a) Personal enthusiasm
(6) Pretense of superior (6a) Invitation to and assistance

knowledge or insight with alternative assessments

Tactics (3a) and (4a) in Table 11. 2 represent the greatest intellectual
challenge. It is not difficult to provide simplistic representations of renew­
able resource problems; arguments based on extreme hypotheses (predic­
tions) and policy options are regularly used by government and industry to
promote objectives like increased funding. But these simplistic arguments
are usually based on weak analogies with frightening events of everyday life,
rather than careful consideration aimed at finding interactions and quantita­
tive details that can be ignored without grossly misrepresenting the basic
dynamic structure of the problem. The challenge involves more than the
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technical steps of laying out a problem systematically, then doing things like
sensitivity analysis to obtain simpler models; it is also a matter of being wil­
ling to step out from behind a barrier of professional details and stand
exposed to criticism for possibly leaving out some important factors.
Perhaps there is some comfort in the fact that all analyses leave out impor­
tant factors (see Problem Bounding, Chapters 2 and 3), and that the most
stinging criticisms are valuable prods to learning.

Cutting through the list of adaptive tactics are the suppositions of
enthusiasm to communicate, and willingness to accept fresh viewpoints.
Possibly no human being can proceed with much balance in these dimen­
sions. To be enthusiastic, one must develop a certain affection for a set of
models and policy options. Then this affection makes it difficult to be open
about criticism and new ideas. This brings me to a final tactical suggestion,
the implications and implementation of which I will leave you to ponder:
seek laughter at every opportunity.

Problems

11.1. Explain why a uniform (all nations equal) reduction in sulfur and
nitrogen emissions across Europe (or North America) would not help
resolve uncertainties about the importance of long-distance transport
of air pollutants. Then consider two basic groups of actors, "southern
Europe" and "Scandinavia." Develop a series of alternative experi­
mental plans for emission reduction by one or the other group, and
for sharing costs of these reductions. For each plan, construct a table
listing the immediate and long-term costs and benefits to each of the
groups, for both extreme hypotheses about the importance of long­
range transport to Scandinavian deposition rates (insignificant versus
dominant). Does this table help you to see why Scandinavia is likely
to oppose any experimental plan?

11.2. Compressed models, such as Figure 11.1, are intended to show gen­
eral response patterns and impacts of strategic policy choices, and are
not the best tool for detailed temporal prediction or analysis of specific
questions, such as how to regulate fishing effort. Explain why the
reverse is also true, i.e., detailed models are not the best tool for stra­
tegic analyses. Would examination of a few detailed scenarios likely
reveal the patterns predicted in Figure 11.1? What concerns will tend
to be the focus of discussion and debate, if management actors work
together to develop overall (i.e., strategic) management plans using a
detailed model?
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11.3. Tables 11.1 and 11.2 define the adaptive analyst as basically an
inventor, salesman, and broker of ideas. This view is hardly in keep­
ing with the common view that analysis should be dispassionate and
objective. Using examples from your own experience, criticize my
assumption that it is possible to be both enthusiastic (inventive, con­
vincing) and objective in the development of models and the recogni­
tion of uncertainties about them.

11.4. The business of developing compressed, understandable representa­
tions of complex problems involves at least two types of logical opera­
tion (or creative activity): selection of a subset of variables (such as
lake trout population size in the Great Lakes) that are somehow
representative of many other variables or factors, and aggregation of
variables and processes (age classes into total population, harvesting
activities and regulations into overall harvest rates, etc.) so that only
broad actions and outcomes are considered. Can you think of other
logical operations that might be productively applied to big problems?
What is implicitly assumed about other variables when a few are
selected for further study? What mathematical operations (addition,
multiplication, etc.) can be used in the process of aggregation?

11.5. For complex systems, there will be a variety of compressed represen­
tations as in Figure 11.1, representing different major variables and
policy instruments. One can ·connect" these representations intui­
tively, for example, by moving the stock equilibrium curve in Figure
11.1 to represent changing impacts of water pollutants. Identify some
basic guidelines for avoiding deceptive conclusions from such a quali­
tative analysis. For example, one must be careful about using a
dynamic response variable from one model as a control variable in
another model, as would happen in the Great Lakes if lake trout
abundance were treated as a control variable in a compressed model
of population changes in small fish species (like alewife) that are lake
trout prey.

11.6. One might argue that for really large and complex systems, all
compressed representations may be misleading; further, in such cases
the best adaptive policy might be to allow only slow, incremental
changes in variables that are subject to direct control, while monitor­
ing carefully so as to react in the event of sudden catastrophes should
they arise. Criticize this argument, paying particular attention to (1)
hidden assumptions about the "smoothness" (linearity, simplicity) of
most system responses, and (2) the assumption that flexibility to
respond when necessary can be maintained during periods of relative
stability.
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