Working Paper

CONPARING THE PERFORMANCE OF
TWO CONMPETING HODELS

V. V. Fedorov

November 1986
wWP-86-73

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria



NOT FOR QUOTATION
WITHOUT THE PERMISSION
OF THE AUTHOR

CONPARING THE PERFORMANCE OF
TWO COMPETING MODELS

V. V. Fedorov

November 1986
wP-86-73

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only limited
review. Views or opinions expressed herein do not necessarily
represent those of the Institute or of its National Member

Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria



Foreword

Computerization of the environmental sciences is one of the most typical trends of
the last two decades. A number of different models describing the same objects or
phenomena are circulating in scientific media and interest in publications in which
these models are compared has increased impressively.

Usually the comparison is based on intuitive ideas, and the object of this paper is
to give some recommendations on how to use standard statistical techniques for
model comparison.The key theme consists of an introduction to several statistical-
ly reasonable discrepancy measures for competing models and their subsequent
maximization by varying the location of an experimental network.

In general, this paper covers the author's results in this sector of mathematical
statistics.
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COMPARING THE PERFORMANCE OF
TWO COMPETING MODELS

V. V. Fedorov

1. INTRODUCTION

Beginning with numerical weather prediction experiments in the 1920s, models
of environmental processes have become more and more complex, keeping pace
with advances in computer technology. Some of the current models can be run only
on very large computers such as the CRAY on which, for example, the Navier-
Stokes equations are solved using very short forward time steps and many points in
space.

Investigators have long been interested in testing these big models with field
data. In particular, when a new model is proposed (due to an advance in our physi-
cal understanding of the processes involved, or to advances in computer capabili-
ties) it is important to determine whether the model is better’ before adopting it
operationally for national weather forecasts, acid rain predictions, etc.

One problem is the definition of the word "better’’, which involves value judge-
ments. For example, in an urban air pollution model the predictions could be wide-
ly different from observed values simply because the forecast wind direction was
30 degrees in error. By rotating the axis, a much improved match of observation
and prediction could be obtained. Many similar examples could be given in which
objective criteria must be established and promoters of competing models may
sometimes disagree with one another because of the objective criteria they use.

Recent review articles on model performance in the air pollution field have
been written, for instance, by Hayes and Moore (1986), Willmott (1982), Zwerver
and Van Ham (1985), and a very interested paper by Fox (1981). Here we shall try
to connect the ideas given in those papers with more formal resuits from mathemat-
ical statistics.

Probably a scientist who has worked with complex numerical models of physi-
cal processes would be very sceptical about the simplicity of the models con-
sidered in this paper. Nevertheless, simple diagnostic cases illuminate the main
ideas and final results, and give some orientation which usually cannot be achieved
in more complicated situations. Most certainly, the process of model comparison
cannot be imbedded in a routine scheme (even one that is quite perfect). Usually
there is need for some integration of standard mathematical techniques with the in-
tuition of a researcher (for details, see Munn, 1981).

2. MAIN ASSUMPTIONS

Let a system '"object under investigation - process of observation” be
described by the following model

Yir S My(xy) + &, (i=1ln, r=1,7,). )
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A function 7m,(x) is a response function and z, is a vector of conditions under
which the i-th set of observations are made. Subscript "t" stands for "true' values
which we try to observe or measure in direct experiments and to estimate in in-
direct experiments. Errors ¢,,, for instance, can reflect the imperfection of an
observation process; stochastically of an object under observation; approximate
character of used representation for n,(z); and so on.

One of the most crucial assumptions in the following is that &,, are random

(stochastic) values. This is a significant component of model (1) and one can say
that a stochastic model is used for the description of &,,.. It is necessary to em-

phasize that this assumption is essential to the whole concept of the paper. Details
(to be supplied later) can technically change the final results, but they are adju-
stable to those details in the frame of the main idea of the paper.

Another significant assumption consists of the fact that components of z; (or

at least part of them) can be chosen (or controlled) by an experimenter. It will be
assumed that z; €X C R‘. where X is compact.

The set of values
n
¢y =lppzyd, Py =1 /N, Y Py =1
1=1

specifies a design. The fractions p;, can be considered as measures prescribed to
points z, and variations of these measures must be proportional to N "1 in prac-
tice.

The major efforts of this paper will be directed to the case when it is a priori
known that the function 7,(z) (or true response) has to coincide with one of the
two given functions, either n,(z,¥, or n,(z,¥,), where 191 are parameters to be
estimated, 191 € Qj cR™. In general, there are no very special demands to these

functions. For instance, they can be numerical solutions of some system of dif-
ferential equation. However, for a number of presented results, their linearity
(n(z,¥) = 19Tf (z)) will be important.

What is really essential in the last assumption is that one of the comparing
Sunctions coincides with the true response. In practice, this means that an ex-
perimenter believes in the closeness of (at least) one model to reality.

Cases where one needs to compare more than two models lead to certain
mathematical difficulties but the corresponding techniques are more or less a
straightforward generalization of the results presented here (compare with At-
wood and Fedorov, 1973).

3. OPTIMALITY CRITERIA

The objective of an experiment is to choose the true model. To start the dis-
cussion of the experimental design problem one must apply to some criteria of op-
timality (Atkinson, Fedorov, 1975; Fedorov, 1380). The main idea behind these cri-
teria is based on introduction of some measure of discrepancy between rival
models depending upon the difference: 1;1(:: vBy) —np(z,9,) .

To be specific, suppose that the first model is true, i.e., there exists such v,
that n,(z) = ny(z,¥,,) . If random errors ¢,, are independent and normally dis-

tributed with variances ¢® = 1 then it is reasonable to apply to the following meas-
ure of discrepancy

n
T'{ (€N-1’1g) = inf 2 Py 1771(31-1,11) - 772(3-'1."32){2- ()
‘62502 i=1
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The value NT‘{ (fN-"u) coincides with the noncentrality parameter of xz-
distribution (or F-distribution, when the variance of ¢&;, is unknown) if
Nz ;) = 1’2f2(z) where f,(z) is a vector of the given basic functions, and ,

coincides with ™2 . In other cases (ny(xz{¥,) is nonlinear or for arbitrary 1) this
fact has asymptotical (N +e) character. More details see in Atkinson, Fedorov,
1975; Fedorov, 1981.

It will be useful to consider also a generalized version of (2):

Ty(€y.9yy) = inf 2 PFiny(y,944) = Mp(zy,9) (3)
9e€0e 4=

For instance, robust M-estimators can lead to that kind of discrepancy measures
(see, Huber, 1981).

The design
¢y =Arg Sup Ty(€x.¥yy) (4)
N

is called Ty-optimal design. To emphasize that the criterion of optimality is con-
structed under assumption that n,(zv,,) = n,(z) the design fA', will some times be
called "locally T-optimal design".

Together with locally optimal designs we will consider maximin and Bayesian
designs.

The design £y is maximum if
me =Arg sup inf inf 2 p, {771("1-"1) = Nz, V) = o)
En 0,60, %50, Ty
=Arg sup inf T,(éy.9,).7=12.
ey 850, 7 vy
If
gy = Arg sup 2 m h[ Ty, B, (d V) (6)

where my is a prior probability of 7-th model and u(d 1’1) is a corresponding prior
distribution of 'Oj (7 =1,2) , then fBN is a Bayesian optimal design.

4. CONTINUOUS OPTIMAL DESIGNS

In what follows only the continuous versions of optimization problems (4)-(6)
will be considered. In other words, the discreteness of P, is neglected and

Ty€y9y) = inf { Finy(z.9,) — ny(z.9,){¢(dz) , (1)

where ¢(dx ) can be any probabilistic measure with a supporting set belonging to X
. It is clear that for the continuous case the subscript "N" does not bear any addi-
tional information and can be omitted.

Formally optimization problems (4) and (5) are similar. Both of them can be
transformed to the following optimization problem:

¢ =Arg sup T(¢) =Arg sup inf [ Fin(z ,9)}&(dz) . (8)
¢ ¢ deny

For instance, in (5) one has to put 9T = (1317'.1927') , n{z,¥) = Nz, ¥y) — ny(z.9,)
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and Q = Q,x(, . In the case of (4) when (1 = (1, and n(z.¥) = n,(z.,94;) — 13(z.9,)
it is crucial that the solutions of (8) will depend upon ¥,,:¢" = ¢ (9,,) .

Let us assume that

(a) the sets and (1 are compact and function n(z,"¥) be continuous on Xx (1 .

(b) the function F(z) is monotonously increasing when z 20 and monotonously de-
creasing when z <0 and continuous on Z ={z:z =n(z,¥),z €X,9€(} .

Theorem 1.
(i) There exists at least one solution of (B). The set of optimal designs is
convez.

(i) A necessary and sufficient E:ondition for a design ¢’ to be optimal is
the existence of a measure u (d V) such that

Tz, £ )< T,
where

T(z.¢") = [Fin(z,9u (@)
n-

and the measure x' has the supporting set

Q' = (¥":9" =Arg inf [Fin(z, 9t (dz)}, [ u' @) =1.
s€) X i

(iii) The function T(z.¢') achieves its upper bound on the supporting set

of ¢ .

If in addition to (a) and (b):

(c) the function Fi{n(z.,¥)] is a convex function of ¥ for all z€X and Q is a
convex compact, then

Theorem 2. There always exists an optimal design containing no more
than m +1 supporting points, where m is the dimension of V.

If, in addition to previous assumptions: (e) the function F(z) is symmetrical,
then:

Theorem 8. The supporting set of an optimal design for (8) belongs to Tche-
bysheff extremal basis:

9" .X") = Arg inf su KO IER
( ) 9dsn=&|n(z )i

Theorems 1-3 are helpful in the understanding of general structure of optimal
designs and in some cases in this analytical construction (see, Fedorov, 1981; Den-
isov, Fedorov, Khabarov, 1981).

In cases when the definition of {1 includes at least k¥ linearly independent con-
straints which are active for ¥ , i.e., ¥(¥') = O , then the number of supporting
points in Theorem 2 can be reduced until m +1 -k . Moreover, if the location of
these points is known then their measures can easily be calculated:

pi= 10/ Y 161, )
j=1
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A, =det {on(z,9)/ 69 ; &y/ 6'0{: =z 828" "
where the existence of the corresponding derivatives and the regularity of the ma-
trices are assumed.
m+1
Example 1. Let n,(z,9,) = L Y,z z% 1 and (2, 9,) = E Voo
=1
that F (z)-z X =[-1.,1] and t.here are no other const.raint.s except. that

192(,,“,1)-6>0 . In terms of (8) it means that n(z,¥) = 211, z%1 and

a-1 = Assume

Q={9v,,, =6>0].
The supporting set of the Tchebysheff problem

inf sup | vzl
% zi%1 azl |

is known (see, for instance, Karlin and Studden, 1966):

m+1—t

X" = {z; = cos m,i=1,m+1].

'I'he correspondmg measures can be calculated with the help of (9):
p1 pm+1—1/2m Pz-'-“' =Py =1/m

S. DUALITY OF SOME MODEL TESTING AND PARAMETER ESTIMATION
PROBLEMS

In this section only the linear case when n(z,¥) = 13Tf (z)and F(z) = 22 will
be considered and all results will formulated in terms of (8).

Let us start with the most. evident and simple case when one is interested in
some linear combination ¢4 of unknown parameters. For interpolation or extra-
polat.xon ¢ =f(zy) , where z, is the point of interest. Then if one wants to esti-

mate ¢ 19 the following criterion (see, for instance, Fedorov, 1972; Silvey, 1980)
can be used:

(&) =cTM (&), (10)
where the superscript means pseudo-inversion, and M(¢) = ff (z )fT(z)t(dz) . If

X
the model n(z,¥) is tested under the constraint (¢ T$)2 2 1 then:

T f %(z,9)¢dz) = inf STHM(&)V. 11
©= ot S n*z,9)¢dz) oo, TH@ (11)

It is easy to check that in (11), instead of 1, any positive constant can be taken
without influencing the optimal design if 7n(x,¥) depends linearly on ¥ . A similar
result holds for the criteria considered below and it will be used without comment.

It is natural to suggest that
(ecTM (8)c <= =
for any type of pseudo-inverse matrix, or in other words, we assume that cTo is

estimable in the experlment.s defined by £ . The necessary and sufficient condition
for the estimability of ¢ Tyis

cTi-M~ (M} =0 (12)
Designs satisfying (12) will be called regular.
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It is obvious that all optimal designs .f' for (11) coincide with the optimal
designs for the simpler problem

}21’1 STH (6D . 13)
c =

Taking into account the condition (12) and using the standard Lagrangian tech-
nique, we get
inf 9THE)Y = (cTH ()c |t (14)
cls

with 0’ =M ’1(£)c . From the last equation, it immediately follows that regular op-
timal designs, are the same for both criteria (10) and (11), more details see in
Fedorov, Khabarov, 1986. If there is some prior information on the parameters v,

described by a prior distribution function, uy(d¥) , then it is reasonable to use
the mean of the noncentrality parameter as a criterion of optimality

To(8) = [ [ n¥(z. 9)dz) ug(d9) .
If the distribution yo(d 1) has a dispersion matrix Dy , then
To(§) = tr DM (£)] .

In practice, knowledge of D, is problematic and one can relax this demand and as-

sume only that the determinant of the dispersion matrix has a value d greater than
zero. In this case, the criterion

To(é) = lDi:lfidtr {DoM (£)4

can be the form of interest. If the matrix M(£) is nonsingular, then
To(§) =madl/™ip(e) /™, (15)

Evidently the maximization of (15) is equivalent to the maximization of |M(£)| .
This criterion is one of the most widely used criteria in the estimation problem.
Some properties of D-optimal designs connected with model testing were discussed
by Kiefer (1958) and Stone (1958). The above result gives additional explanation
of the relation between the D-criterion and the model testing problem.

Let us now consider a very natural criterion for the model testing problem,

$(¢) = inf ( n%(z,9)¢(dz) = inf T, (16)
supfs7q z)i% /e supioTg (z)i%1

for any function ¢ defined on U .
It is not difficult to check the chain of equalities:

inf STHM (&)Y = inf inf  dM(&)V
sug}drq(z)izzl zel {87y (z){%
3€
= inf {eT(z)M (&)g(z)|?,
x €U

where, of course, a design ¢ has to be regular for any ¢ = q¢(z ).z €l/ .

In most cases, the requirement of regularity causes the nonsingularity of
M(¢). This happens, for instance, when U =X .




The criterion
¥(¢) = sup ¢ T(z)M ~(H)g ()
Tz el

belongs to the family of g-criteria (Ermakov, 1983). When U =X and ¢(z) = f(z).
one can bet an even stronger result because the criteria

|M(&)| ™Y, and sup fT(z)M1(&)r (z)
Tz el

are equivalent in the case of continuous designs, a result which follows from Kiefer
& Wolfowitz's theorem. This leads immediately to the equivalence of (16) and D-
criteria.

The equivalence of some criteria can be proved with the help of the well-
known result on eigenvalues of matrices (com?are with Jones, Mitchell, 1978). Let
M be a symmetric matrix and let C = BB‘ be a positive-definite matrix. If
Ay 2A, are the rootsof |M=AC| =0 then

9THw
inff ——— =A,, .
sTcy m
From this relation, the equivalence of the following two criteria immediately oc-
curs

- -1 — : 2
¥(&) =210, T = nf Sz 9)édz) .

When C =1, then ¥({) is the popular E-criterion of design theory.

The results can be summarized in the following theorem. )
Theorem 4. The following crileria are equivalent on the set of regular

designs:

i Ty- d inf )

i) c (Hc an (cr‘;')z.,7(€ )

" er—1 . . o .

(i) (M~Y&| and A S rEe®Hut @) |

(iii) su%qr(z)M'(f)q (z) and inf v(€,9)
T E

T
2\(19}11 (z)8)%a6

(iv) MIBTM Y &)Bland _inf  A(&W) ,
3T Taxs

where 6>0 and y(£,9) =fh9rf(z){2£(dx) , with the integral over the

range X .

The requirement of regularity is essential for (i) and (iii) of the theorem. In
other cases for optimal designs the existence of the inverse matrix M'1(£) is evi-
dent.

The theorem is true both for discrete and continuous designs. But the
equivalence of (ii) and (iii) is based on Kiefer & Wolfowitz's theorem which is true
only for continuous designs.



6. NUMERICAL PROCEDURES

Theorem 2 gives possibility Lo construct T-optimal designs with the help of the
algorithms developed for the parameter estimation problem. These algorithms
were discussed repeatedly in the statistical literature (see, for instance, Fedorov,
1972; Ermakov, 1983). Therefore only the algorithms specially oriented to the
model testing problem will be considered in this section. For the sake of simplicity
they will be formulated for design problem (8) and we start with the algorithm,
which is a generalized version of that proposed by Atkinson, Fedorov (1975).

This aigorithm is based on the results of Theorem 1 and belongs to the family
of steepest descent algorithms.

To avoid difficulties related to singularities in optimization problems

int [Fin(z.9)i=) an

we assume that for T-optimal design (17) has unique solution -a(s') .
In practice, this assumption is not very restrictive because instead of (8) one
can apply to the regularized version of it

& = Arg sgpr f(1—p)¢ + ptyd . 1>p>0, (18)

where {, is any design providing uniqueness of ¥9(§,) . Due to concavity of T(¢)
(compare with Fedorov, Uspensky, 1975):

T(£') = T(¢) 2 1=p)T(£') + pT (&) .
(1) Let the design {, was constructed at the previous iteration

zl‘#l =Ara max!iuepx¢(z n‘l) ' -:inef& '(3 .f‘)‘ .

where ¢(z,£,) = Fin(z,9,){ — T(£) . X, is the supporting set of ¢, and
9, =4rg inf {F!n(z.ﬂ)it. (dz)

(1) &5, =@A=75)E + 71€(z;) . where 7, =ag if
sup P(zg ,0.85) = -:lnet"{. P(x; 4. 8;)  and 7, = —-maxia,,p; .4/ (1D, 44)] oth-

erwise, p;,, is the measure of point z, ,, prescribed by £, . The sequence
fag | providing convergency of (i), (i) can be chosen similarly to parameter
estimation case (see, for instance, Ermakov, 1983; Denisov, Fedorov, Kha-
barov, 1981):

a,—OO.Za‘=-,2af<-.

If for given n(xz,9) and ¢(¥) formula (9) is admissible for computing then in-
stead of (ii) one can use this formula chosing from the sth-design (m —&) support-
ing points with largest vaiues of ¢(z,£;) . Together with z_ + they will form a sup-
porting set for £, +1 - This modification of the iterative procedure converges to an
optimal design containing non more than m +1—k supporting points and is very
close to the Remez algorithm for the Tchebysheff best approximation problem (for
details, see Demjanov, Malozemov, 1966; Denisov, Fedorov, Khabarov, 1981).



7. SEQUENTIAL DESIGN
Application to (4) and (5) makes it clear that iterative procedure (i), (ii) can

be used in practice for the construction of maximin designs or locally optimal
designs for given ¥,, . The latter design can be useful for the clarifying of gen-

eral structure of T-optimal design. To be more specific, one can use some sequen-
tial design procedures which were repeatedly discussed by different authors (see,
for instance, Atkinson, Fedorov, 1975; Atkinson, 1978).

The simplest sequential procedure is the following one:

(i) After N measurements one has to calculate
n N
¥, =Arg inf Y Fly, —n,(z;.9,)}.
o %5505 =1 ! !

(ii) The (N +1)-th measurement has to be done at the point:

TN+l = :‘3”"1(’1;’11\1) - ’72(’1‘§2N)¢ :

This sequential procedure has its roots in iterative procedure (i), (ii) from
the previous section. The similarity will be more evident if one put
7z ,¥) = ny(z,9,) = na(z.93), 7y = Wy+N)™1, where N, is a number of measure-
ments in an initial experiment. Naturally the deletion of "bad” points permissible in
the iterative procedure has no sense for the sequential design.

Some numerical examples illuminating the efficiency of sequential procedure
(i), (ii) were discussed by Box, Hill, 1967; Fedorov, 1972; Atkinson, 1978. The weak
convergency:

N - -~ R
Mim N7 Y Finy(2,.8,8) = 1p(z, 90 =
= sup inf fF'(nt(z.ﬂ) = Ny (z,95.)1€(dz) |
€ %" x
where 7y (z,¥) is a "wrong” model, follows from the convergency of iterative pro-
cedure (i), (ii) if one manages to prove that for the true model the parameter esti-

mators are consistent for the sequence {{y{ . The consistency can be assured by
application to regularization (18).

8. CONCLUSIONS

The results presented in this paper (based on formal, mathematical tech-
niques) confirm the validity of the following simple, intuitive idea:

"Observing stations should be located at sites where the discrepancy between

competing models is greatest’'.
Indeed, in case of two competing models n,(z,¥,) and 7n,(z,¥,). Theorems 1 and 3
lead to the recommendation that observing stations should be located at points
where the function

F(z) = [n,(z,9)) — ny(z,9,)]
approaches its upper bound for the (in the model testing sense) worst values of
parameters 191 and 9,.

The same idea can be treated in numerical procedure (i), (ii) of Section 6 and
the sequential methodology of experimental design.
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In the first case, at every s-th step one has to relocate a possible point of ob-
servation from an area where the discrepancy 7,(z,¥;) ~ Ny(z.¥¢) Is small, to an

an area where it has its largest value.

In the sequential design, every new observation has to be located at a point
where the current measure of discrepancy is largest (see (i), (ii), Section 7). It is
evident that, to some extent, similar sequential procedures are used regularly in
operational practice. Here, statistical theory provides a reasonable (from a sta-
tistical point of view) criteria of optimality, necessary formulae for calculations,
and (this seems a most useful resuit) global optimality of the procedure: sequential
designs generated by (i), (li) converge to a design which is optimal in the sense of
(3). ().

Section 5 confirms the common feeling amongst practitioners that the prob-
lems of model testing and parameters estimation are essentially overlapping. If
one can efficiently estimate the most characteristic parameters for competing
models, then model discrimination can be performed appropriately.
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