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PREFACE

The IIASA "Acid Rain” Project started in 1983 in order to provide the
European decision makers with a tool which can be used to evaluate policies
for controlling acid rain. This modeling effort is part of the official
cooperation between IIASA and the UN Economic Commission of Europe
(ECE).

The IIASA model currently contains three linked compartments: Pollu-
tion Generation, Atmospheric Processes and Environmental Impacts. Each
of these compartments can be filled by different substitutable submodels.
The submodels currently available are Energy Pathways and Sulfur Emis-
sions, the EMEP Long Range Transport Model, Forest Soil pH and Lake Aci-
dity. In addition, two submodels are under development: the NO_ Emissions
submodel and the Direct Forest Impacts submodel. The first version of the
Lake Acidity submodel was presented in September 1984 in a UNESCO-IHP
Workshop in Uppsala, Sweden. Since then several changes have been imple-
mented following the advice of experts. The model structure was docu-
mented earlier in Part 1 of this paper. This part describes the application
of the Lake Acidity model to numerous lake regions in Fennoscandia, as well
as the sensitivity and uncertainty analysis of the model.

Leen Hordijk
Acid Rain Project Leader
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ABSTRACT

The International Institute for Applied Systems Analysis is developing a
computer model which can be used by decision makers to evaluate policies
for controlling the impact of acid rain in Europe. As part of this task, a
dynamic model has been developed for describing the processes leading to
acidification of surface waters. The modeling philosophy is to use a simpli-
fied approach, which is warranted for a broad geographical scope. The
simulation model is constructed of several modules, each of them providing
an overview of a particular aspect of lake acidification. Because of the
very sparse input data available on a large regional scale, a new method is
applied for estimating unknown inputs. The model is calibrated to present-
day conditions by selecting input combinations from feasible ranges. Monte
Carlo techniques are used to determine those combinations of inputs that
produce the observed present-day lake acidity distribution, when the model
is driven by a specified deposition. The ensembles obtained in the calibra-
tion procedure for each lake region are used for the scenario analysis. The
usefulness of the method is compared with respect to the traditional a
priori parameter estimation technique. Results of sensitivity and uncer-
tainty analysis are used to compare model predictions with observed values
and to indicate where changes in the distributions of model parameters will
affect predictions the most.
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A MODEL FOR ANALYZING LAKE WATER ACIDIFICATION
ON A LARGE REGIONAL SCALE

PART 2: REGIONAL APPLICATION

Juha Kamari, Maximilian Posch, Robert H. Gardner and Jean-
Paul Hettelingh

1. INTRODUCTION

Numerous mathematical models have been developed that all have the
potential to estimate the quality of surface water in response to varying
atmospheric deposition. All models can be calibrated so that a satisfactory
fit with observed data will be obtained. Different models are constructed,
however, for different purposes, and therefore, models should be applied
only within the limits of their applicability.

First of all, models have been developed for simulating daily variations
of water quality in streams, caused by variations in deposition, as well as in
catchment hydrology and meteorology (e.g. Christophersen et al. 1982).
This kind of model can well be used to analyze the role and importance of
catchment processes in determining the short term variation in surface
water quality. It has indeed been shown that the characteristics of
present-day stream water chemistry can be accounted for by incorporating
only a small number of physically realistic processes. Such model however
lacks long term processes, which makes it unsuitable for assessing the long
term development of surface water quality.

Secondly, simplified equilibrium models have been developed, which
allow the estimation of future steady-state chemical composition of lakes
resulting from changes in loading of strong acids. These models are either
based on observed ionic relationships in present conditions (e.g. Henriksen,
1980), or on the assumption of steady-state chemical weathering (Schnoor
et al 1984). The equilibrium models are in fact easier to apply regionally,
but still several difficulties remain in their application. The models do not
give any information on the time span in which the steady-state condition
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will be reached. Also the effect of seasonal acid surges can not be assessed
by equilibrium models.

The third type of model utilizes mechanistic process oriented descrip-
tions for hydrology, soil chemistry as well as for stream and lake water
quality to provide a link between the time evolution of acidic deposition and
the long term surface water acidification (e.g. Chen et al. 1983, Cosby et al.
1985a). It has been shown that the observed surface water chemistry can
be reproduced by models that largely retain the simplicity of the equili-
brium models but that have mechanistic process-oriented explanations in
their structure (Cosby et al. 1985a, Kamari et al. 1985b). This simplified
approach also allows a theoretical basis for establishing confidence in the
estimates.

To date, mechanistic models have been applied only on single catch-
ments. Descriptions on quantitative consequences of alternative scenarios
can assist in formulating policies for emission control. From a decision mak-
ers point of view, however, the behavior of a single catchment is not very
interesting. The assessment should investigate broad scale aspects of
alternative policy formulations, and thus analyze the behavior of as many
catchments as possible. As an output, the model should produce well defined
illustrative information which can easily be related to the effectiveness of
the energy-emission scenario being selected.

To meet the need for regional prediction, simplified equilibrium models
are being used in the U.S. integrated assessment model of the acid deposi-
tion problem (see Rubin et al. 1984). The regional distribution of lake alka-
linity is represented by a three-parameter log-normal distribution. The
method has been used to estimate the effect of changes in acid deposition on
the mean and variance of the regional distribution (Small and Sutton 1986).
The approach is similar to that by Jones et al. (1984), who have used survey
information to synthesize the behavior of typical lake types of the region
using the modified empirical steady-state model by Henriksen (1980) and
Wright (1983). The dynamic upstream models describing the pollutant gen-
eration as well as the pollutant transport require, however, also dynamic
models for describing the environmental impact to be able to give estimates
on the time scales of the responses. In this paper a method is introduced for
applying a simple process oriented dynamic lake acidification model on a
large regional scale.
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2. METHODS FOR REGIONAL APPLICATION

2.1. Method for Scenarioc Analysis

The regional scenario analysis assessing potential surface water
impacts might be performed in two ways: 1) The catchment model can be used
to analyze changes over time in the chemistry of each lake in the district,
In this mode, the parameters of the model must be developed for each lake
in the region by using specific catchment- and soil information (see Kamari
et al. 1985a) and the regional effects estimated by predicting the behavior
of each lake in the region; or 2) The parameters of the catchment model can
be regionalized by specifying the probability distribution of model parame-
ters developed from the expected range of values for typical lakes in that
region. In this study a Monte Carlo parameter estimation procedure has
been adopted to develop appropriate distributions for this second
approach.

The Monte Carlo method is a trial-and-error procedure for the solution
of the inverse problem, i.e. for estimating the poorly known input values
from the required output. In the regionalized model, the Monte Carlo
method is used to determine the combinations of inputs that produce an
acceptable distribution of output variables, observed in the study region.
For all inputs, ranges are chasen broad enough so that any reasonable
value for an input can be selected. Monte Carlo simulations are then car-
ried out by randomly selecting a set of input values from these designated
ranges and integrating the equations from 1960 on using this particular set
of values. A subset of accepted input values corresponding to the actual
observed present-day frequency distribution in 1980 in each lake region, is
obtained.

Mathematically this procedure can be described as follows. The
adopted model structure can be represented by a vector function
J ={4:-i/m)- The arguments of this function are the input and parameter
values driving the model, say z = (z,4,....z,) (e.g. £; = lake size, z, =
catchment size, ..., etc.) and time ¢. With ¥ = (¥ 1,...,ym) we denote the out-
put of a model run, e.g. alkalinity, lake-water pH, ..., stc.

v = J(=.t) (1a)

or, writing Eq.1a for each component,

vy = fi(zj_----:zn:t)
(1b)

Ym = ;fm(zi.....zn,t)
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Instead of taking fixed input values £ and running the model once to
obtain the output (prediction) at time £, one allows the input values to vary
within an interval, zf““szk <z k =1,.,n, where the lower and
upper bounds are estimated from the catchment characteristics of the
region studied. To put it precisely, each input parameter is randomized
with a distribution p,, £ =1,...,n obeying

pelze) =0 if =, <zk"_‘“' or z, > ¥ (2a)

b
and f P (z)dz Is the probability that z, lies in the interval [a,b]. Obvi-
a

ously

=
fpk(z)dz =1 for & =1,..,n {2b)

The frequency distributions », represent the distribution of the
parameters z, in the region as close as possible. In case of a poorly known
input parameter a uniform distribution over [z‘:"“‘,zt““"] is chosen, where
the boundaries are wide enough to encompass any feasible value in the
region under consideration.

To be able to to apply the Monte-Carlo procedure the distribution of
the output values y at a certain point in time ¢4, say ¢;, I =1,...,m, have to
be known from measurements; i.e. we know

w
f g,{(y)dy =1 forl=1,..,m 3)
i

For the description of the procedure used to solve the inverse prob-
lem, i.e. to determine the input parameter distributions for projections, we
consider only one output value ¥ (i.e. m =1; say lake-water pH) and further-
more we assume that the measured distribution at ¢, is a discrete one (7 ...

number of classes, 73; ... class boundaries)

gy for ny y<y=mn, i=1,. .7
2) = |9 else (42)

with

1
Lom —ni4) =1 (4b)
1=1



and

M = y™" and 7 = y"ex (4c)

(the index 1 on ¢ has been dropped for convenience.) Actually, the
assumption of a discrete distribution is not very stringent, since a) meas-
urements are always given as histograms, and b) any continuous distribution
can be approximated by a discrete one.

In order to derive "acceptable” input parameter distributions the
model is run many times, each time with a new randomly selected input vec-
tor z, where the random selection is performed according to the distribu-
tions p,. Let P = {z),... 2] be the set of these random vectors z and
Q= fy&).....y (N )] the set of output values of these runs at time 4. These ¥
output values are classified according to the classes defined in Eq.4a. Let
N, be the number of realizations with 7, 4 <y <7, with y €@ (clearly
YN, =N). Monte-Carlo runs are performed until N; = Nyq; for all

1

i =1,...,I, where N, is a preselected number of runs to be accepted. In this
way a subset @4 = fyi....,yNoi of @ is selected’, so that there are Nyg, out-
put values with n, , <y <7, ({ =1,....J) with y €@, To this subset @,
corresponds a subset Py = {z 1,...,::,,,0; of P of accepted input vectors =x.
From this set of accepted input vectors "new” input parameter distributions
pto, k =1,...,n can be derived; and these distributions are used for projec-
tions, i.e. for computing y-values for ¢ > ¢,.

Assuming that the set of input values obtained in the calibration is
representative of real catchments in the study region, this ensemble can be
used for the scenario analysis of the response of lake systems to different
patterns in acidic deposition.

2.2. Methaod for Sensitivity and Uncertainty Analysis

Several programs which have been specifically developed for efficient
Monte Carlo sampling of model parameters (Gardner et al. 1983) and the
analysis of statistical relationships between parameters and predictions
(Gardner and Trabalka, 1985) were adapted to IIASA’s computers and
applied to the lake model, Region 1 of Finland. These programs are linked
together in a system called PRISM. PRISM has been extensively applied to a
variety of models and environmental assessment problems (e.g. Gardner and
Trabalka 1985, Bartell et al. 1583, Hoffman and Gardner 1983,
Hoffman,Gardner and Bartell 1986).

PRISM is composed of three parts:

* Note that %4 is the i-th value of the set &, not the T -th component of a vector ¥.
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(1) PRISM1 produces a set of model parameters from pre-specified distri-
butions and correlations;

For each of the n input parameters of z, the type of frequency distri-
bution, the mean, the standard deviation, the minimum- and the max-
imum values are read. The range of values of the input parameters is
such that the number of intervals equals the number of parameter sets
to be used for the simulations, here N. This ensures the N segments to
be equally distributed over the entire value range for every parame-
ter. This is done by means of a matrix containing N sets of n normal
random numbers, which are ranked from one to N. The ranks are used
to denominate the N segments within every parameter value range.

By specifying a variance-covariance matrix, the vectors z may be
independently selected and correlated thus obtaining correlations of
ranks of parameter values. As a matter of fact, by pre-specifying a
correlation between two parameters, a correlation of the ranks of the
final output values will be produced. In PRISM1, a procedure ,recom-
mended by Iman and Conover (1982), has been implemented to reduce
the sampling errors associated with the Monte Carlo estimation of
correlations to a minimum.

PRISM1 may be used to perform a sensitivity analysis by varying all the
input parameters by one percent of their mean value or perform an
uncertainty analysis by specifying probability distributions for each
parameter (Gardner, 1984),

(2) PRISMZ runs the model to obtain the unique set of predictions associ-
ated with each parameter set, that has been obtained from PRISM1.
PRISMRZ is in fact an interface between the output of PRISM1, the lake
model and PRISM3.

(3) PRISM3 finally provides a statistical characterization of the variabil-
ity of the model output and estimates the statistical relationships
between model parameters and model predictions. For each model out-
put the arithmetic mean, the variance, the standard deviation, the
coefficient of wvariation and the geometric mean are computed.
Secondly a listing of correlations between and amnong the model param-
eters and responses, above a user selected threshold, is provided.
Lastly a stepwise regression analysis, using a standard FORTRAN pack-
age (IMSL 1980), is performed in PRISM3 between model responses and
model parameters thus providing an order of importance of the set of
input parameters (see Gardner, et al. 1983 for program documentation
and Gardner and Trabalka 1985 for details of the statistical methods).

PRISM has been used to analyze the behavior of the RAINS lake model for
input data of Region 1 of Finland, results of which are discussed in the next
chapter.



3. MODEL ANALYSIS

3.1. Model Parameters and their Dixtributions

A series of Monte Carlo simulations were performed to (1) estimate the
effect that uncertainties in model parameters have on model predictions and
(2) define the changes in parameter distributions which may be necessary to
match the model predictions with measured values. Information concerning
parameter sensitivities and distributional changes is important because it
provides a means of evaluating the suitability of model simulations to
represent a particular region of the landscape and a means of identifying
those variables for which additional data will most improve model resuits.

The regional version of the lake model requires that the input of
parameters be specified as probability distributions. However, the statisti-
cal descriptors of these distributions (e.g. mean, variance, etc.) are gen-
erally unknown. The reasons for this uncertainty are the lack of adequate
data for all the regions, the uncertainties associated with those observa-
tions or experiments that are available, and uncertainties and errors asso-
ciated with the process of extrapolating data to a regional level. For each
parameter, these uncertainties have been taken into account by specifying
a distribution whose range of values is large enough to include all possible
parameter values.

The model under study contains as a total about 50 parameters, input
variables, driving forces or initial conditions, which have to be estimated
on the basis of rather uncertain a priori information. All these inputs will,
for simplicity, be called parameters in the following. Some parameters have
been lumped so that the number of parameters included in the evaluation is
44. These parameters and their definitions are listed in Table 1.

In principle, in order to define ranges or frequency distributions for
parameters it is required that all such inputs are physically meaningful and
measurable so that those ranges can be found. In our case, we had informa-
tion to prespecify frequency distributions for nine parameters: AREAL,
RATCL, LDEPT, SOILT, SLOPE, SIBRC, CEC, BASEA, FCAP. The meteorologic
parameters, TEMO1 to TEM12 and PREQO1 to PRE12, reflected the spatial
variability within the region of concern of long-term means of monthly air
temperature and precipitation. The ranges for these prespecified distribu-
tions are listed in Section 4.1. All other parameters were given quite wide
ranges. The allowable ranges were either based on the conjecture of the
regional range of variation of the parameter, implying that the minimum and
maximum of the existing conditions were estimated, or on the mean value,
obtained from the literature, around which a feasible range was assumed.




Table 1: Model parameters used in sensitivity and uncertainty analysis.
|

No Name Mnluon. Ixxplmuon
1 AREAL A ake surface area
2 RATCL A/ Ag atio of lake area to catchment area
3 LDEPT z ake depth
4 SOILT z4+2p ot.al soil thickness (sum of A and B layers)
8 SLOPE S ean surface slope
6 SIBRC brg 1licate buffer rate
7 CEC CECsny ot.al cation exchange capacity
8 BASEA g4/ CECiny{Base saturation of A-layer
9 FCAP e 1l moisture content at field capacity
10 INPH p.{{ easured pH in 1980

11-22| TEMO1,..,TEM1Z (T, ..., T)p Monthly mean air temperature

23-34| PREO1,..,PRE12 | P,,...,P;p Monthly mean precipitation
35 STFAC v actor of deposition on forest vs. open land
36 BASEB [BCex p/ CECigBase saturation of B-layer
37 FSAT o, oil moisture content at saturation
38 RZ0 2, pth of lake mixing layer
39 EPSEV € vapotranspiration coefficlent
40 TLOW Y ¢ hreshold temperature for snow
41 THIGH T, hreshold temperature for rain
42 MELTR g elting rate coefficient
43 CALC Ky K 1Pco, umped equilibrium constant

or inorganic carbon species

44 COND K ydraulic conductivity at saturation

.Definit.ions as given in Kdmari et al. (1985b).

3.2. Model Sensitivity and Uncertainty

A sensitivity- and an uncertainty analysis have been performed on data
of Region 1 of Finland. The input format needed to perform an uncertainty
analysis is displayed in Table 2 for ten parameters that proved to be the
most important as determined by the sensitivity and uncertainty analysis
given in Table 3.

Estimates of the differential sensitivity (Tomovic and Vukobratovic
1972) of model predictions to changes in the model parameters can be
estimated by Monte Carlo methods when the variance of all parameters is set
to 17 of their nominal value (Gardner 1984). This numerical estimate of sen-
sitivity is useful because it measures the direct effect of each parameter on
model results without the effect of nonlinearities in the model and interac-
tions between parameters confounding the analysis.

Table 3 presents the results of the sensitivity analysis with the ranking
of parameter importance (column 1) based on the proportion of model vari-
ance explained by that parameter {(column 2). Model predictions are most
sensitive to SOILT, with this parameter explaining over 35% of the variabil-
ity in predicted 1980 pH levels. Predictions are less sensitive to BASEB and
SIBRC with these parameters explaining 15% and 147%, respectively, of the



Table 2: Descriptions of the Statistical Distributions, the mean, the
standard deviation, the coefficient of wvariation (C.V.), the
minimum and the maximum for 10 of 44 Model Parameters.

Name Distribution Mean Standard C.V. Ninimum Maximum

Type Deviation

SOILT uniform 2.6 1.4 53 0.2 5.0
BASEB uniform 0.45 0.029 6 0.4 0.5
SIBRC histogram 0.0034 0.0014 41 0.0017 0.0083
MELTR normal 0.0021 0.0032 152 0.0 0.37
EPSEV normal 0.0039 0.00058 15 0.002 0.0053
FCAP histogram 0.23 0.092 40 0.22 0.4
RATCL uniform 8.5 3.8 44 2.0 15.0
COND uniform 332. 192. 58 0.0 665.0
LDEPT histogram 7.7 8.4 110 0.8 100.0
BASEA histogram 0.28 0.28 a7 0.005 1.0

total variability. Parameters MELTR, EPSEV, FCAP and COND explain less
than 107 of the wvariability of results. The remaining 38 parameters are
relatively unimportant, affecting model predictions by less than 1%.

Table 3 also lists the results of the uncertainty analysis (columns 3 and
4). The differences between the sensitivity and uncertainties are primarily
due to the large differences in variability of a few parameters. Table 1
shows that SOILT has a moderately large coefficient of variation (63%) and
this combined with a high sensitivity results in SOILT producing over 587 of
the variance in predicted pH levels in 1980. Differences in the relative
variability of BASEB and SIBRC also explains why their effect on model
uncertainty is not the same as their sensitivities. Although BASEB and
SIBRC have similar sensitivities, SIBRC is more than six ‘times as variable as
BASEB (Table 2). The result is that over 97 of the uncertainty in model
predictions is due to SIBRC, while BASEB causes less than a 1Z change in
model results. The sensitivities of RATCL, LDEPT and BASEA are all rela-
tively small (<1Z), but when combined with rather large uncertainties, these
parameters explain from 31 to 47 of the variability in the predicted pH lev-
els. The regression statistics that these results are based on show that the
direct effect of parameter variability can explain over 80Z of the variabil-
ity in model results (R%2=0.81). Thus, nonlinear behavior of the model and
interactions among the parameters causes less than 207 of the total vari-
ance of estimated 1980 lake pH levels.

The estimates of the percent effects for SOILT and SIBRC given in
column 4 of Table 3 indicate the possible improvement in predictions which
might result from reductions in the variability of these two parameters.
For instance, a 501 reduction in the variability of SOILT will cause the vari-
ability in predicted pH levels in 1980 to drop by at least 252, while the same
degree of improvement in SIBRC would improve model estimates by less than
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Table 3: Results of sensitivity and uncertainty analysis for 10 model
parameters. The ranks given in columns 1 and 3 are based on
the magnitude of the effect of that parameter on prediced pH
values in 1880. The percent contributed by each parameter is
estimated from multiple regression methods as: (partial sum of
squares / total sum of squares * 100). Sensitivities are deter-
mined by simultaneous variation of all 44 parameters by 1Z of
the mean value (Table 2). Values for the uncertainty analysis
are determined by simultaneous variation of parameters from
prespecified frequency distributions (Table 2). Values less
than 17 are not shown.

Name Sensitivity Uncertainty
Rank Percent Rank Percent

SOILT 1 35 1 58
BASEB 2 15 21

SIBRC 3 14 2 9
MELTR 4 8 37

EPSEV S 8 6

FCAP 6 3 34

RATCL 20 3 4
COND 7 3 16

LDEPT 18 4 3
BASEA 13 S5 3

5%. Thus, further improvements (i.e. reductions in uncertainties) of other
parameters will have relatively little effect on results unless the variability
of SOILT and SIBRC are reduced.

3.3. Comparison of Simulation Results with Heasurements

The data from measurements of pH in 303 lakes in Region 1 of Finland in
1980 provides the basis for evaluation of model results and adjustment of a
few parameters which most affect model predictions. We developed a sys-
tematic procedure to use this information which involves: (1) determination
of the statistical characteristics of the measured pH levels; (2) development
of a priori criteria for comparing simulations and data and retaining the
subset of simulations which satisfy these criteria; (3) examination of the
distributional characteristics of parameters associated with this subset of
simulations; (4) estimation of new statistical distributions for parameters
identified by sensitivity and uncertainty analysis to be important in predict-
ing pH levels in 1980; and (G) comparison of the results of a new series of
Monte Carlo simulations against the original data to evaluate the degree of
improvement.
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This process of selecting the best subset of simulations (termed "filter-
ing” in the sequel) is based on the rational that model simulations which
begin in 1960 and produce unsatisfactory results in 1880 (i.e. fail to meet
the pre-established criteria) should not be used to make future predictions
of effects of sulfur deposition. However, the information provided by the
subset of accepted simulations may provide a means of reducing the vari-
ances of critical parameters and thus reducing the uncertainty associated
with the model results. Although all 44 parameters will show some change in
the statistics of their distributions as a result of the filtering process, we
restrict our interest to those parameters which have been shown to be
important (i.e. SOILT and SIBRC, Table 3).

Table 4: Statistical summary of lake pH values in 1980. The first
column of pH values was estimated from measurements of 303
lakes in Region 1 of Finland. Column 2 gives the statistical
characteristics of prediced pH values for 1980 based on 500
Monte Carlo iterations with 44 parameters subject to random
variation (Table 2). The third column gives the statistical
characteristics of those simulations (104 out of 500) which sa-
tisfied the filtering criteria. The final column shows the sta-
tistical characteristics of 100 simulations with modified values
for the parameters SOILT and SIBRC (Table S5).

Statistic Actual Simulation After Results with
distribution results filtering new parameters

Mean 5.8 6.0 5.8 56
Std. Dev. 0.69 1.2 0.9 1.3
C.V. 12. 20. 15. 22.
Minimum 4.0 3.8 4.0 3.9

2.5 Ztile 4.4 3.99 4.2 3.9

25 1tile 5.3 4.7 5.2 4.2

50 Ztile 5.9 6.5 5.8 6.0

75 1tile 6.4 7.0 6.3 6.8
97.5%tile 6.9 7.4 7.3 7.5
Maximum 7.1 7.7 7.7 7.4

Column 1 of Table 4 presents the statistical characteristics of the 303
lake samples. The mean value of measured lake pH was 5.8 with a coeffi-
cient of variation of 12Z. The minimum and maximum pH level for these
observations is 4.0 and 7.1, respectively. We selected five intervals between
these limits to empirically characterize the frequency distribution of meas-
ured pH values. The limits of each interval were set so that the relative
frequencies were approximately equal (the limits were 4.0 to 5.1, 5.1 to 5.6,
5.6 to 6.0, 6.0 to 6.4 and 6.4 to B.0 with observed frequencies of 0.21, 0.19,
0.20, 0.20 and 0.20, respectively). Before the simulations were performed,
two criteria of comparison were developed from this data: (1) the simula-
tions must produce pH levels in 1980 that lie within the range 4.0 to 7.1;
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and (2) the relative frequencies of the subset of satisfactory simulations
must match those of the data.

Five hundred Monte Carlo simulations were performed and the results
compared with these criteria. Column 2 of Table 4 presents the statistical
characteristics of these simulations before filtering. The agreement
between model results and data is quite good with the mean value slightly
higher (6.0 vs. 5.8) and the variance of the simulations somewhat larger
than that of the data (1.2 vs. 0.69). Application of the first criterion
resulted in the elimination of 13 simulations out of 500, i.e. 32 were rejected
because they were outside the limits established by the data. The applica-
tion of the second criterion revealed that the relative frequency of
predicted pH values was uneven with only 47 of the simulations falling
between 5.1 and 5.6, while 197 of the measured values fall into this interval.
The adjustments necessary to obtain the desired frequency distribution
requires the rejection of 383 additional simulations. The statistical charac-
teristics of the final 104 filtered simulations (Column 3 of Table 4) show that
the application of these criteria resulted in an improvement in the mean and
reduction in the variance as well as a general improvement in the lower
percentiles of the pH distribution.

Table 5: Comparison of the statistical characteristics of SOILT and
SIBRC before and after the filtering procedure. The columns
indicated with "before" give the statistical characteristics of
SOILT and SIBRC used to generate 500 Monte Carlo simulations.
The columns indicated with "after" are the statistical charac-
teristics of the subset of simulations (104 out of 500) which sa-
tisfied the filtering criteria.

Statistic SOILT - SOILT SIBRC SIBRC
before after before after

Mean 2.6 2.3 0.0033 0.0031
Std. Dev. 1.4 1.3 0.0014 0.0014
C.V. 53.0 53.9 41.0 45.0

Minimum 0.20 0.24 0.0017 0.0017
2.5%tile 0.32 0.36 0.0017 0.0017
25 Ttile 1.4 1.25 0.0024 0.0022
50 Ztile 2.6 2.2 0.0031 0.0028
75 Ztile 3.8 35 0.0038 0.0034
g7.5%tile 4.9 4.6 0.0076 0.0077
Maximum 5.0 4.7 0.0083 0.0073

The changes in statistical characteristics of SOILT and SIBRC as a
resuit of the filtering process are slight (Table 5) with reduction by 122 in
the mean of SOILT as the most evident effect. The consequences of these
changes in SOILT and SIBRC were determined by using the statistics shown in
Columns 2 and 4 of Table 5 as an input for a new set of Monte Carlo simula-
tions. The results (Column 4 of Table 4) show a 7% reduction in the mean of
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the predicted 1980 pH levels, as compared to the original simulations
(Column 2 of Table 5), and a slight improvement of the overall distribution
of simulated pH values. It is apparent that the general fit of the model to
the data of Region 1 is rather good and, in spite of the elimination of 75% of
the simulations by the filtering criteria, the process does not dramatically
improve the results. However, it is also clear, that adjustments to SOILT
and SIBRC, although slight, do achieve the desired result. Additional infor-
mation from actual measurements for these two key parameters would be
desirable to further reduce the uncertainties associated with the lake
model.

The capability of the model, driven without filtering parameters out of
the prespecified parameter distributions (see Table 2), to produce
observed regional lake acidity patterns varies from region to region. This
tendency is demonstrated in Figure 1, in which the measured pH distribu-
tions for all five Finnish lake regions are displayed side by side with the pH
distributions that were obtained from 100 20-year Monte Carlo runs using
prespecified parameter distributions as sources of inputs. The results in
Figure 1 suggest that for some regions there was better a priori informa-
tion for the inputs than for others. For all regions it seemed, however, that
the model output adequately covered the whole range of observations. This
in turn suggested that the prespecified parameter distributions were
defined broad enough so that any realistic combination of parameters could
be sampled in the Monte Carlo runs.

4. REGIONAL APPLICATION

4.1. Data

No calibraton would be necessary if it was known that the model accu-
rately represented the behavior of the catchment and if the a priori infor-
mation on the shape of the distributions for all parameters, initial condi-
tions and catchment characteristics was correct. The model would produce
reliable distributions of the projections. The data, however, available on a
large regional scale like Europe is characterized by a high degree of
heterogeneily and generalization. The results of the analyses show that for
some regions the observed lake pH distribution could quite easily be gen-
erated, but for some regions, there was substantial difference between the
simulations and the measurements. Therefore, to enable more credible input
combinations to be generated, a formal approach was formulated for filter-
ing out the undesired inputs (see Section 2). This filtering procedure
resulted in a rejection of a number of those random ensembles of parame-
ters that are produced too frequently with the prespecified input frequency
distributions. This procedure changes the shape of the input distributions
to more accurately reflect the information available from available obser-
vations.

The above initialization of the model for scenario analysis, that is scal-
ing up the catchment model to a regional level, has several preparatory
steps. First of all, ranges or distributions for unknown parameters were
selected. In the estimation procedure, best available information and best
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guesses for the input distributions were used as a starting point. Then for
the model output, a target distribution was specified on the basis of a large
number of water quality observations. Finally, the filtering procedure was
applied. To start with, frequency distributions were selected independently
for the following twelve input and output parameters.

1.

10

Lake surface area in Fennoscandia (Finland and Scandinavia) can vary
anywhere from close to zero to over thousand kmZ. Usually a freshwa-
ter reservoir is termed a lake only if its surface area exceeds 0.01
km?2. ‘

Lake catchment area to lake surface area ratio provides an estimate
for the proportion of precipitation and air pollutants being deposited
directly on the lake surface. The ratio can range from 1.2 to several
hundreds, being, however, most commonly between 2. and 15.

Mean lake depth is a morphometric parameter that for individual lakes
can be determined from bathymetric maps. Lake volume (V;) is calcu-
lated from the mean lake depth simply by V; = 2-4; (see Table 1). The
mean lake depth can have a large range of variation, but in Fennoscan-
dia it usually ranges from 1 m to 100 m.

Mean catchment soil thickness is used to determine the volumes of the
two soil reservoirs, and the capacities of the soil buffering processes.
It is in most areas of Fennoscandia in the order of a few meters to a few
tens of meters.

Mean surface slope of the terresirial catchmenis vary from even ter-
rains (O.mm _1) to terrains varying in altitude, undulating catchments
{(10. - - -20.m m'i). and finally to mountainous catchment areas with
steep slopes (>30.m m '1).

Silicate buffer rate, i.e. the weathering rate of the silicate minerals
depends on the rock type as well as on the physico-chemical conditions
in soil. Literature values for the long-term silicate weathering rate
range from 0.02to 0.2 eqgm ‘3'yr -1

Total cation exchange capacity refers to the maximum capacity of
positively charged cations the soil can adsorb to its negatively
charged colloids or mineral particles. Cation exchange capacity thus
depends largely on the texture as well as on the humus content of the
soil, being in the order of 10. eqm"s for coarse sandy soils and
several hundreds eg m 3 for clay.

Base saturation determines the fraction of the total cation exchange
capacity being occupied by base cations (Ca?*, Hg2*, k*,Na*). The top
layers of silicate soils are usually within the range of 0.05 to 0.15.
Deeper layers have higher base saturations.

Field capacity, i.e. the amount of water the soil can retain against the
pull of gravity, is a function of soil properties. Depending on the type
of soil, values can range from0.02 m m~1 for sandy soils to 0.30 m m-1
for clays.

Climatic mean of monthly air temperature is determined by a long-
term average observed in the study region. Depending on the location
within the region the long-term mean temperature can have a variation
of 20 7.
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11. Climatic mean of monthly precipitation is determined by a long-term
average observed in the study region. Depending on the location within
the region the long-term mean precipitation can vary by 25 Z,

12. Lake pH and alkalinity are used as output state variables, which pro-
vide information on the acidification status of the lake. These vari-
ables are commonly measured in the survey programs. Lake pH, being
the negative logarithm of the hydrogen ion concentration, can range in
natural waters from 3.5 to 10. Lake alkalinity in surface waters usually
has values between -0.1 and 2.0 meq -1

A large number of water quality observations has become available in
national survey programs investigating the present extent of lake acidifica-
tion. At present, lake survey information has been implemented for the use
of regional modeling from two Nordic countries, Finland and Sweden. From
Finland, data from 9000 lakes from years 1975 - 1984 was made available by
the National Board of Waters, Water Quality Data Bank. The lake pH infor-
mation was divided into five parts to form lake acidity distributions for five
individual distinct lake regions. In Sweden, an extensive survey was con-
ducted in 1980 and reported by Johansson and Nyberg (1981). The lake pH
and alkalinity distributions were given separately for each of the 24 pro-
vinces in Sweden. These data groups were aggregated at IIASA to form six
lake regions each of them receiving more or less homogeneous deposition.
The lake regions considered in this application are displayed in Figure 2.

The frequency distributions of lake surface area and lake mean depth
for Sweden were obtained from the Swedish Lake Register of the Swedish
Meteorological and Hydrological Institute (SMHI). For Finland, this informa-
tion was provided by the Hydrological Office of the Finnish National Board
of Waters. An inventory, determining the number and the size distribution of
lakes in the whole of Finland, was completed in 1985 (E. Kuusisto, National
Board of Waters; forthcoming). The total number of lakes in Finland (larger
than 500 m?2) was counted to be 187,888.

The initial cation exchange capacities as well as the soil base satura-
tion were assigned distributions for all lake districts both in Finland and
Sweden based on the FAO-UNESCO soil map of the world (FAO-UNESCO 1974).
The soil map also provided information on the distributions of typical sur-
face slopes, which also is an input to the model. A frequency distribution
for the soil moisture content at field capacity was formulated on the basis of
the texture classes obtained from the soil map.

A geological map (UNESCO 1972) was used for assigning distributions
for the weathering rate of the silicate parent material. The same classifica-
tion of different rock types into weathering rate classes was applied as in
Kauppi et al. (1985). Ranges for the mean monthly temperature and precip-
itation of each district were derived from climatic data of about 200 obser-
vation stations in Europe, North-Africa and West-Asia (Miller 1982). The
minimum and maximum monthly values for each district were obtained by
interpolating the ocbserved mean monthly values over the whole of Europe.
The ranges used, therefore, reflect the climatic variability within the
region.
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For the mean catchment soifl thickness and for the ratio of lake area to
catchment area there was not enough a priori information available to
allow any detailed distributions to be formulated. These input variables
were designated ranges broad enough so that any reasonable value for an
input could be selected from the rectangular distributions. All other param-
eters were assigned constant values since, based on the model analysis
above, they do not significantly affect the output.

The prespecified frequency distributions for parameters as well as the
distributions obtained as a result of the filtering for one region in Finland
are displayed in Figure 3. In Figure 3a the corresponding cumulative fre-
quencies are shown. The greatest difference between the input and the
output distributions could be observed in the case of the mean catchment
soil thickness. It illustrates the main result of the sensitivity analysis that
the the soil thickness is important in determining the behavior of catch-
ments. This result can also be seen in Figure 4 where the output frequency
distribution for the mean catchment soil thickness is presented for all
regions in Finland. The output distributions differ from the prespecified
rectangular distributions for all Finnish lake regions.

4_2. Scenario Analysis

The purpose of the model development has been to apply it as a part of
a larger structure, the Regional Acidification Information and Simulation
(RAINS) model. The RAINS model attempts to structure the scientific infor-
mation about the acidification problem in a form usable to decision-makers.
The model provides a tool for assisting policy-makers in their evaluation of
air pollution control strategies, for acidification in Europe.

In this way the regional lake acidification model is turned into a device
for examining the impact of policies on an environmental system. Multiple
simulations of different policy alternatives will give information on the
effectiveness of chosen policy options. Each simulation represents a set of
assumptions on the energy development and on the measures taken to con-
trol emissions. A consistent set of assumptions (a policy set) is here called
an energy-emission scenario and the type of analysis is termed scenario
analysis.

After scaling the lake acidification model up to a regional level and
having obtained a set of accepted parameter vectors with the filtering pro-
cedure, the obtained ensembles can be used for future simulations. The
regionalized model is now applicable for providing estimates of the time pat-
terns of regional lake acidification for any energy-emission scenario and
year between 1980 and 2040. The model is run through the period of 60
years separately for each predefined lake region. An estimate of the lake
pH or lake alkalinity frequency distribution for either spring or summer is
produced as the output.

In the following, two example scenarios produced by the energy-
emission submodel of RAINS, are compared. The two examples are only
intended to demonstrate the model behavior as well as the model output. No
conclusions can be drawn about the effectiveness of the selected control
strategies.
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From 1960 until 1980 the two constructed energy-emission scenarios
were identical. The historical deposition pattern obtained on basis of these
energy-emission trends was used as a driving force for the filtering pro-
cedure. For the whole time span, covered by the model, the scenarios
assumed the same rates of energy development as defined by the latest esti-
mates of the International Energy Agency (IEA 1985). From 1980 on, how-
ever, the scenarios departed so that the 'base’ scenario did not assume any
pollution controls, whereas, the 'low’ scenario assumed effective measures
taken for the control of sulfur emissions. These controls were defined as 1)
pollution control devices on all power plants and 2) fuel cleaning in the
domestic energy sector (see Alcamo et al. 1985). The time development of
total sulfur emissions for the two scenarios is displayed in Figure 5.

By the year 1980, lake acidification has been reported to be an
observed phenomenon practically throughout Finland and Sweden. In the
worst acidified areas, viz. in the west-coast of Sweden over 30 Z of the total
number of lakes are acidified having measured summer pH values lower than
5.0. In southern Finland, the pH of the water is below 5.0 in less than 10 Z of
the lakes. In spring, when the annual minimum pH in the surface waters
occurs, the acidity of the lakes is even greater. Because of this, the spring
pH can be considered as a reasonable indicator of the risk of damage in
aquatic life due to lake acidification. The frequency distributions for the
lake pH in spring 1980, used as the starting state of acidification for the
scenarios, are shown in Figure 6.

The results of the model runs using the two scenarios show a clear
difference in the resulting spring pH values for example for the year 2010
(Figure 7). When the ’'base’ scenario was used as the input, acidification
tended to continue, and the frequency distributions for the spring pH
showed a shift towards the lower end of the distribution. However, with the
'low’ scenario, the model resulted in a slight improvement of the situation.
This shift in the frequency distributions towards higher pH values implied
that the deposition had lowered so much that for some lakes the alkalinity
production exceeded the deposition, and consequently, the model estimated
a recovery.

More precise figures for the time development of the regional lake aci-
dity are given in Table 6. The table compares the two scenarios in the
selected reference years. A critical pH of 5.0 is taken as the reference
value, because this represents a high risk of damage to aquatic life. The
estimates of the time pattern of the percentage of all lakes with a spring pH
below the selected value showed that first by the year 2010 there was a
recovery in most lake regions if the 'low' scenario was assumed. In Region 1
of Finland 3.9 percentpoints of the lakes recovered (from 18.5 to 14.6 per-
cent) and in the southern region of Sweden a recovery of 6.7 percentpoints
was thus obtained. This recovery evidently had to do with the reduction in
the strong acid load so that for part of the catchments the alkalinity gen-
eration is estimated to exceed the acid load. The results in Table 6 show
that under the low sulfur deposition scenario some regions become more
acidic after year 2010 because of the cumulative long-term processes in
soil chemistry (In Region 1 of Finland an increase of 3.8 percentpoints can
be noted between 2010 and 2030). The deposition rate of strong acids had
still exceeded the weathering rate of silicate minerals in soils, and soil aci-
dification had proceeded, increasing the acid load from the uppermost soil
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layers.

When the ’'base’ scenario was used as the driving force, there was a
clear ongoing lake acidification process occurring in the regions of higher
sulfur deposition, southern Finland and southern Sweden. For Lapland
(Region 5), deposition was calculated to remain in such low levels even with
the 'base’ scenario that no drastic effects on the lake water chemistry was
predicted (1.9 percent of the lakes in Region 5 of Finland have a pH below
5.0 throughout the reference years).

Table 6: Percentage of lakes in Finland and Sweden having spring pH-
values lower than 5.0, for the two example scenarios.
Reagion pH leas than 5.0
1980 1990 2010 2030
Base Low Base Low Base Low
Finland
1 19.4 21.4 18.5 29.1 14.6 32.0 18.5
2 5.8 7.9 6.9 7.9 5.8 8.9 5.9
3 2.0 5.9 1.9 9.8 2.9 9.8 2.9
4 5.7 5.7 5.7 10.4 3.8 13.2 4.7
5 1.9 1.9 1.9 1.9 1.9 1.9 1.8
Sweden
1 12.5 14.4 12.5 20.2 5.8 24.0 5.8
2 41.2 43.1 41.2 50.0 35.3 52.0 35.3
3 16.4 15.4 154 20.2 10.6 24.0 10.6
4 11.4 14.3 11.4 22.9 11.4 28.6 12.4
5 2.9 3.8 3.9 4.9 4.9 6.8 4.9
6 2.9 3.8 2.9 3.8 2.9 4.9 2.9

5. DISCUSSION

Uncertainty inherent in environmental modeling is inevitable. It seems
unlikely that any complex environmental system can be well described in the
traditional physicochemical sense (Hornberger and Spear 1981). The cred-
ibility of the models results is, however, a key issue in using mathematical
models for decision making. An essential aspect of the credibility is how well
the user of the model understands the uncertainty. The evaluation of the
lake acidification model of RAINS uncertainties and sensitivities has been
performed using the PRISM framework.

In regional applications, there remains uncertainty in the accuracy of
the data in two levels. First, measurements from the study area, forming the
input data used, always include some measurement error. The second level
has to do with the interpretation of the regional properties. Measurements
can only be viewed as samples of the regional system under consideration. It
is definitely impossible to sample every one of the catchments in Europe.
The aggregation and interpretation of aggregated information together limit
the utility of regional data as such. In some cases measurements are




-19 -

completely missing and the inputs have to be chosen from the best possible
experts opinion or even guesses. A filtering procedure has been used in
order to restrict unrealistic input ranges from producing an unrealistic
output.

The regional application itself forms an additional source of uncer-
tainty, which in fact may result in systematic errors. When determining the
input ensembles that produced acceptable distributions for output vari-
ables, a fixed historical deposition pattern from 1960 to 1980 was assumed.
If this deposition pattern was altered, a new different set of inputs might be
obtained from the allowable ranges. Besides the historical deposition pat-
tern, also the shortness of the calibration period (20 years) forms a possi-
ble source of error.

The results of the evaluation of parameters of the regional lake water
acidification model show that, in spite of large uncertainties for some key
parameters, the model seems to provide a good representation of measured
pH levels in Region 1, Finland. The analyses point out that in order to
improve the results and reduce the uncertainties associated with different
scenarios, efforts should be made to accurately define the input distribu-
tions for the most critical parameters; the mean catchment soil thickness
(SOILT) and the weathering rate (SIBRC) in the region. Relatively little
emphasis has been given to these two properties that together largely
determine the long-term behavior of the catchments. Current research is,
however, continuously expanding our knowledge on them and we expect to
be able to incorporate more realistic a priori distributions in the future.

The information provided by the sensitivity and uncertainty analysis
can be used, moreover, as a basis for further development of the model.
Processes associated with parameters which proved to be relatively unim-
portant, can be aggregated and the model simplified. There is good reason
to use annual or semiannual time steps to describe weather patterns rather
than to use the current finer resolution of monthly temperature and precip-
itation. These weather variables account for the hydrology and thus for the
seasonal variation in acidity, but they have no apparent effect on the long-
term development of the catchment.

Acidification models assessing long-term responses are extremely diffi-
cult to verify. Strict validation of these types of models requires long time
series records to determine whether the model estimates match the
observed catchment responses. Unfortunately very few, if any, such
records exist. The question whether the long term responses estimated by
the model are true projections of real systems’ responses remains there-
fore uncertain (cf. Cosby et al. 1985a,b) Given the best available data and
using parameter values that are within the ranges appropriate for natural
soils in Finland and Sweden, our model seems to produce plausible results.
The validation process in the case of a model examining long-term chemical
changes has to viewed as a stepwise process of gaining credibility. Ultimate
validation can never be established. Instead, uncertainty involved in both
the model structure and the model application can be assessed. That aspect
deserves a concentrated research effort in the future.
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The filtering procedure for finding an acceptable subset of parameter
combinations is by no means a final solution to the problem how to deal with
uncertain and unknown regional input data. The technique using a priort
criteria to select a satisfactory subset of model simulation resulted in some
improvements in the predicted results. We intend to continue these investi-
gations with data from other regions in Scandinavia in order to produce
reliable parameter estimates for each lake region and develop a strategy to
aggregate parameters for use with a simplified model structure. These
parameters will then provide the basis for estimating the expected effects
on lakes and associated uncertainties of different deposition scenarios of
the RAINS model.
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Figure 2: Geographical location of the lake regions in Finland and
Sweden.
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Figure 6: State of lake acidification in Finland and Sweden in 1980.
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lakes in the respective regions.
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