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The Theory of Manufacturing study had as one of i t s  objectives t o  exp lore  a l terna-  

t ive formal system s t ruc tu re s  f o r  character iz ing modern manufacturing processes.  

One such s t ruc tu r e  i s  based upon t h e  metaphor of a living cell. In this  Working Pa- 

p e r ,  t he  abs t r ac t  mathematical s t r uc tu r e  of this  metaphor is developed as a basis 

upon which t o  build a formal theory  of cellular processes.  
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Abstract 

Metabolism-repair systems represent  a formal mathematical framework f o r  

representating character is t ic  propert ies  of living systems such as repai r ,  repli- 

cation, adaptation and s o  forth.  In this paper ,  the  concrete realization of such 

s t ruc tures  is developed in the  case when the  system "metabolism" is linear.  Expli- 

c i t  resul ts  are given t o  show when system repai r  operations can counteract  en- 

vironmental and metabolic fluctuations. Additional results pertaining t o  the  repli- 

cation operation and the  possibility f o r  "Lamarckian" inheritance are also given, 

together with a formal demonstration of t he  increase in complexity as we proceed 

fron; the  processes of metabolism t o  r epa i r  t o  replication. The paper  concludes 

with a discussion of several  application areas ,  together with a consideration of 

severzl  conceptual and mathematical questions requiring attention f o r  fu r the r  

development of this non-Newtonian systems paradigm. 



Linear Metabolism - Repair S y s t e m s  

John Casti 

1. Extending the Newtonian Paradigm 

A number of au thors  [I-31 have recent ly  (and not  s o  recent ly)  pointed out a 

variety of deficiencies inherent  in t h e  classical Newtonian paradigm of mechanics 

regarding i t s  utility in describing living systems, both biological as well as socizl  

and behavioral. In par t i cu la r ,  it has  been r a t h e r  convincingly argued t ha t  t he  

Newtonian world view, as exemplified in classical pa r t i c le  mechanics, say,  ha s  no 

ro l e  f o r  any type  of anticipatory behavior on t h e  p a r t  of e i t he r  observers  o r  de- 

cisionmakers [4]. Furthermore,  t h e  crucia l  biological activit ies of r e p a i r  and re- 

plicztion do not f i t  in any natural  way into Newton's "WeLtanschauung," leading to 

t he  conclusion t h a t  a n  extension of t h e  Newtonian paradigm, comparable in scope 

and impact t o  t he  extensions offered by both quantum mechanics and relativity 

theory in physics, is long overdue f o r  mathematically capturing t h e  essence of bio- 

logical, social and behavioral  phenomena. 

About 30 y e a r s  ago in 2 series of pape r s  devoted t o  relational cell  models 15- 

71, Rosen introduced t h e  notion of a metabolism-repair (M,R)-network in an  attempt 

t o  show formally how t h e  f ea tu r e s  of r e p a i r  and replication could be  naturally in- 

duced solely from a cell 's  metabolic machinery. In subsequent work, i t  was also 

pointed out how anticipztory behavioral  modes also followed in a s t ra ightforward 

manner from t h e  (h! ,R)-f ormalism. Ucf ortunately , t h e  formalism se t  up by Rosen 

and. developed by o the r s  18-91 was purely relational;  i.e., i t  dealt  with the  mnc- 



tional charac te r i s t i cs  of t h e  cell independent of i t s  s t r uc tu r a l  organization. In 

o r d e r  t o  make contact  with r e a l  material  objects,  i t  w a s  necessary t o  explore  

means f o r  realizing a b s t r a c t  (M,R)-systems in hardware,  organic  o r  otherwise. 

The initiz! at tempts in th is  direction led to  realizations of (M, R)-systems a s  automa- 

ta, but with a highly non-canonical state-space [LO-111. Pe rhaps  due t o  t h e  

discouraging resu l t s  which followed from these  somewhat unfortunate realizations, 

t he  topic seems t o  have disappeared from the  l i t e r z tu r e  and died, what in o u r  opin- 

ion, i s  a very  premature  deztk .  

In th is  pape r ,  we attempt t o  r e s u r r e c t  t he  theory of (K.R)-systems making use 

of t he  vastly deepe r  understanding of t he  na ture  of canoniczl rezlizztions ac- 

quired ove r  t he  past  decade o r  so,  s tar t ing with t h e  pioneering work of Kalman in 

t h e  ear ly  '60s 112-14). By making use of concepts and tools t h a t  were totzlly unk- 

nown at t he  time of Rosen's initizl work, we put t he  (M,R)-set-up on f i rmer  system- 

theore t ic  grounds, while at t h e  same time answering a number of questions t ha t  

were only in t h e  realm of speculation at t h e  time of t h e  ea r ly  pape r s  [5-111. While 

o u r  resu l t s  are presented only f o r  t he  simplest c a se  of Linear (M,R)-systems, t h e  

extension t o  nonlinear situations follows along t he  szme lines as t h e  extensiozs 

from l inear  t o  nonlinear in system theory as given, f o r  example, in [15,20]. I t  i s  

our  expectation t ha t  t h e  framework set fo r th  h e r e  will s e r v e  as a point of depar-  

t u r e  f o r  t h e  development of t h e  kind of extension t o  t h e  Newtonian paradigm t h a t  

wil! s e rve  t he  same ro l e  in biology and t h e  social sciences t h a t  t he  Schrodinger 

equation znd t h e  Lorentz transformation served f o r  physics. 

The pzpe r  is organized zccording to  t he  following scheme. Section 2 presents  

the  basic ideas surrounding (M,R)-systems as originally developed by Rosen. In 

Section 3, 2 brief review of t h e  realization problem and t h e  construction of canon- 

ical state-space models i s  giver; f o r  l inear  dynamical systems. Tne principal new 

resc l t s  of the  pzper  zre presented in Sections 4 and 5, where we give explicit  



character izat ions  of those  l inear  systems which can be  extended t o  l inear  (M,R)- 

systems, toge ther  with a discussion of how system complexity increases  as we at- 

tempt t o  superimpose additional biological s t r uc tu r e  upon t h e  basic metabolic 

machinery. Along t h e  way, i t  is shown tha t  Rosen's original scheme f o r  t h e  cell 's  

replication mechanism can only be possible f o r  2 very  limited c lass  of (M,R)- 

processes.  Finally, in Sections 6 and 7 w e  discuss t h e  extensions of o u r  resu l t s  t o  

nonlinear (M,R)-processes, as well as issues pertaining t o  a network of cells and 

t he  stability and control  problems t h a t  such s t r uc tu r e s  generzte .  The pape r  con- 

cludes with a n  indication of severa l  application areas where (h!,R)-systems should 

prove valuable in formalizing a var ie ty  of important p rac t ica l  questions. 

2. MetaboIism - Repair  Networks 

Consider a collection of N "cells", each of which accep ts  a var ie ty  of inputs 

and produces  z spectrum of outputs. Assume tha t  at leas t  one cell  accep ts  inputs 

from t h e  "environment" and at least one cell produces outputs t h a t  are sen t  t o  t h e  

environment. Fur ther ,  suppose tha t  every  cell  accep ts  e i t h e r  environmental in- 

puts or ha s  as i t s  inputs an  output from at leas t  one o t h e r  cell; similarly, assume 

tha t  each  cell  produces e i t h e r  a n  environmental output o r  has  its output utilize6 as 

another  ce l l ' s  input. Such a network might look like Figure 1 (with N=5).  Here  we 

have t h e  cel ls  MI - M5, toge ther  with t h e  two environmental inputs ol and 02: as 

well as t h e  single environmental output yl. We call such a network a "metabolic" 

network. 

I t  is reasonable  t o  suppose t ha t  any cell in such a network will have a finite 

lifetime a f t e r  which it  will be  removed from the  system. When this happens, all 

cells  whose input depen&s upon t he  output from the  "dead" cel! will also be affect-  

ed,  ultimately failing ic t he i r  metabolic ro le ,  as weli. In Figure 1, f o r  instance,  if 



Figure 1. A Metabolism Network 

the  cell MI fails,  then so  will MS, MJ, M4 and M5 all of whose inputs ultimately depend. 

upon M l l s  output. Any such cell whose failure resul ts  in the failure of the  ent i re  

network is  called a central component of the  network. 

Now l e t  us suppose that  we associate with each metabolic component Mi, a com- 

ponent Ri whose function is t o  repair Mi. In o ther  words, when Mi fails the  r epa i r  

component Ri ac t s  t o  build a copy of Mi back into the network. The Ri a r e  consti- 

tcted s o  that each Ri must receive a t  least one environmental output from the  net- 

work and, in o rde r  to  function, Ri must receive al of i ts inputs. Thus, in Figure 1 

each Ri must receive the sole environmental output yl. Note zlso by the second 



condition t ha t  any cell  Mi, whose r e p a i r  component Ri rece ives  M i ' s  o.;ltput as p a r t  

of i t s  input, cannot be built back into t h e  network. We w i l l  call  sach  a cell non- 

reestablishable.  Thus, t h e  ce!: M2 i s  non-reestablishable, while cell  M5 is reestab- 

l i shable .  

Introduction of t h e  r e p a i r  components fRi ]  genera tes  t h e  following basic 

question: who r e p a i r s  t h e  r e p a i r e r s  ? I t  would lead t o  a useless infinite r e g r e s s  t o  

introduce ano the r  level of r e p a i r  mechanisms, but what is t h e  a l ternat ive  ? 

Nature 's  solution t o  t h e  problem is  t o  make t h e  r e p a i r  components self-replicating. 

Before Ri dies,  t h e  replication mechanism built into Ri a r r anges  t o  produce a copy 

of Rl, which then takes  Ri ls  p lace  in t h e  network. Such networks are called (X,R)- 

systems. 

The elementary concepts  introduced above a l ready  allow t h e  following in- 

teres t ing resu l t s  t o  be  established [ 5 , 7 ] :  

Theorem 2 (Rosen). E v e r y  f in i t e  (M,R) - network conta ins  a t  leas t  one non-  

reestablishable component. 

Corollary.  If an (M,R) - network conta ins  exact ly  one non-reestablishable 

component, then  t h a t  component i s  central .  

Thus, we s e e  t h a t  every  (M,R)-network must contain some cells  t h a t  cannot b e  built 

back into t h e  system if they fail.  Fur ther ,  if t h e r e  are a s m a l l  number of such 

cells, then they a r e  likely t o  be  of prime importance t o  t h e  overal l  functioning of 

t he  system. This last resu l t  ha s  c l e a r  implications f o r  policies devoted t o  keeping 

every  component of a system alive (politicians and o t h e r  social  reformers:  please 

note!). I t  may be much b e t t e r  to.allow some cells t o  fa i l  r a t h e r  than run  t he  r i sk  of 

incurring a global system fai lure  by trying t o  prop-up weak, non-competitive com- 

ponents which, by Theoren 1, cac ' t  all be  saved in any case .  
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Let us now turn  t o  a n  examination of t he  simplest possible (M,R) - system com- 

posed of a single component (N = 1). diagram ma tical!^, we have 

o r ,  more abs t rac t ly ,  

where C1 = icput set, r = output set, f : R  --, r (= metabolic map), 

Pf : --, H ( R ,  I?) (= r e p a i r  map) with H ( R ,  I?) = set of all physicalLy feasible meta- 

bolic maps. He re  we subscr ipt  t h e  r e p a i r  map by f t o  indicate t h a t  t h e  ro l e  of Pf is 

t o  produce t h e  metabolism f when t h e  metabolic p a r t  of t h e  system receives  i t s  

"correct"  input o E R. W e  shall  r e t u r n  t o  th is  point in detail  in Sect ions  4 and 5. 

The f i r s t  point t ha t  arises is  how t o  abst ract ly  charac te r ize  t h e  system repli-  

cation map. Arguing biologically, t h e  r e p a i r  component Pf r ep r e sen t s  t h e  system's 

genetic component 2x6 t he  job of t he  replicetiox mz; i s  t o  nse  t h e  systerr , '~  a e t z -  

bolic machinery (R,r ,H(R, T)) an6 grocess  i t  into z copy of Pf E E(r,  H(S,  9). 

Puttixg these  remarks  toge ther ,  we s e e  thz t  t h e  replicetion map, call i t  Bf: mnst 

act zs 

Thns; t he  zbs t r ac t  d i z g r a ~  chzrzcter iz ing t h e  entiye (K,R)-systez is 



f P f s: 
n - r  - H ( R ,  Y) - ~ ( r ,  ~ ( n ,  r)) 

)metzSo!ism { [ r epa i r  { [replicztion { 

In what follows, we shzl! be  concerned with putting concre te  "meat" on t h e  abs t r ac t  

"skeleton" of th i s  diagrzm. 

Before discassing some of t he  questioxs sdrrounding t h e  behevior of such a 

system, two importznt points should b e  noted: 1) if w e  dele te  the  r e p z i r  2nd repli-  

cztior, corzponents of t h e  dizgram, w e  z r e  !eft with t h e  s tandard s tar t ing point of 

Iu'ewtonizn mechznics 2nd modern systerr. theory , nzmely, pu re  metabolism; thus.  

t he  single-component (M,R)-network r e p r e s e c t s  a genuine extension of t he  classi- 

cz! 7zradigm; 2) t h e r e  i s  no set-theoretic di f ference between metabolisn? and 

repz i r :  they both r e p r e s e n t  mz?s between abs t r ac t  sets. Bioiogiczlly, th is  sug- 

gests  t ha t  t h e r e  may b e  no intrinsic difference between a cell 's  metzbolic and i t s  

genetic activity.  W e  shall  explore  th is  point ir, more detail  l a t e r  or,. 

The important questions surrounding t h e  r e p z i r  aspec t s  of t he  2b0ve type  of 

(K,R)-system revolve abont  the  degree  t o  which t he  r e p z i r  znd replication com- 

ponents of t h e  system czn p r e se rve  t he  metabolic behzvior ir, t h e  f a ce  of fluctua- 

tions i:! t h e  system's icpnt  c: o r  dis turbances  t o  its metzbolism f .  

Let 's  t ake  2 look at 2 few aspec t s  of th is  question t hz t  we shzll  address  in cozsid- 

e rab ly  more deta i l  in Section 4. 

Stab le  Metabolic m e r a t i o n s  in  C h a n g i n g  E n v i r o n m e n t s  - imagine t h e  situa- 

tior, in which t h e  cell's "usuz!" input o is disturbed t o  a new input z. The conditio:! 

f o r  s tzble  operatior, of t h e  ce?! is f o r  t he  environmect o to  be  such t ha t  

Pr(f(o)> = f , ('1 

i.e. t h e  metabolic s t r u c t u r e  f i s  s table  in t h e  envirorment o in t he  sense t ha t  t he  

r e p z i r  mechanism Pf alwzys r egene ra t e s  f when t he  environmeztz! input i s  o. W e  

woulc! szy  thz t  z?! t: E 3 sztisfying (*) form 2 s tzble  environment f o r  the  cell. 



Now suppose tha t  t h e  new environment E f o .  Then (*) will hold only if e i the r  

f (0) = f ( E )  o r  Pf(f(Ej)) = f . 

The f i r s t  case  is  tr ivial  in t h e  seme t h z t  t h e  observed products of t h e  cell  a r e  in- 

var iant  t o  t h e  change of environmental inputs. If f ( o )  # f ( z )  then t h e  cell 's  out- 

puts  are not s tzble  with r e s p e c t  t o  t h e  change of environment and we must consider 

t he  r e p a i r  mechanism t o  see whether o r  not t he  environmental a l tera t ions  can be  

compensated f o r  in t he  sense tha t  

- 
Pf(f(Z)) = f # f , 

with T(Z) = f (o ) ,  i.e., whether t h e  genetic mechanism wi l l  produce a new metabol- 

ism i which duplicates t h e  output of f ,  but  with t h e  input 3 r a t h e r  than o. In th is  

case ,  t h e  en t i r e  metabolic activity of t h e  cell would be permanently a l t e red  if we 

ha6 

On t h e  o t h e r  hand, if we ha6 :(E) = f ( o )  o r ,  more generally,  

pf(i(z)) = f , 

then t he  cel!'s metabolism would only undergo per iodic  changes in time. 

Finzlly we could have t h e  situation in which 

A - 
P,(T(E)) = f z f , f 

and, i tera t ing this  process ,  w e  may see tha t  a n  environmental change will cause t he  

cell  t o  wznder about in t h e  set 3(n, r), changing i t s  input/output behavior 

through a sequence of metabolic p rocesses  f (I) ,f (') ,f (3), ... . This "hunting" pro- 

cess  will terminate if e i t he r  

(i) t h e r e  exists a n  N such t ha t  

Pf (f(N)(E)) = ?(N) 



o r  

(ii) t he re  exists an N such thzt 

P, (f ("(Z)) = f (N -k) , k = 1,2,.. . , N  -1 . 

In case (i) the cell becomes stable in the new environment G, while in case (ii) the  

cell undergoes periodic changes in its metabolic s t ructure.  If no such N exists, 

the cell is unstable and aperiodic. (Note: This last possibility can occur  only if t he  

set  of possible metabolisms H(R , F) is infinite). 

A collection of related questions also ar i se  in connection with the replication 

I map Bf. For instance, w e  can ask whether o r  not Lamarckian changes are possible, 

I 

i.e., can an environmental change o --r Z generate a permanent change in the  

genetic map P, via the  replication map Bf discussed above? In one particular con- 

struction of & due to  Rosen [?], it can be shown that  such changes a r e  not possi- 

ble. W e  shall show that  Rosen's case is very special and tha t  t he  general situation 

is f a r  more complicated, even f o r  linear maps. 

Finally, we have a circle  of issues relating t o  the complexity of (M,R)-systems. 

We can ask,  for  example, how complex Pf and pf must b e  in o rde r  t o  repa i r  a given 

metabolic map f ,  and the degree to  which this requisite complexity czn be generat- 

ed within the  bounds of biological and/or social constraints. W e  shall explore such 

considentions within the  detailed confines of the linear framework developed in 

Section 4.  

3. Input /Output Maps and Realizations 

Beyond any doubt, it can safely be asserted tha t  the  fundamentzl problem of 

mathematical system theory is the construction of models from datz: the Realiza- 

tion Problem. In general terms, we a r e  given a system's external behavioral 



description f (input/output behavior), and the  task is to  construct  an internal 

state-space and dynamics so  that  the behavior of the  resulting system C agrees 

with f ,  C being in some sense the "simplest" such system. The degree to which this 

construction can be car r ied  out, either analytically o r  computationally, depends 

upon the  charac ter  of f ,  a s  well as upon other  problem boundary conditions (meas- 

urement e r r o r ,  constraints, input classes, etc.). Here w e  shall give a brief sum- 

mary of the  simplest and most well-understood case when f is linear. For a fuller 

account of these results,  as wel l  as their  extensions t o  nonlinear f ,  we r e f e r  t o  the  

works [16-181. 

Let n be  a se t  of admissable system inputs, with r being the  corresponding set 

of outputs. W e  shall assume tha t  the elements of fl a r e  sequences of vectors in Rm, 

while l? consists of sequences of vectors in RP, m,p 2 1. The behavior map i s  speci- 

fied by a time-invariant, linear map f : fl -+ r. Thus, a typical element o E fl has 

the form 

while an element y E looks like 

Y = ( Y ~ '  Y2, Y~ ' . . . ) '  # Y1 E RP * 

Iu'otice that w e  assume that time is discrete with the input w starting at time t = 0, 

while the  f i r s t  output appears  one unit la te r  at time t = 1. In view of the linearity 

assumption on f ,  we can asser t  t he  existence of a sequence of matrices 

El = A A A .  , A, E R P ~  , 

such that  the action o --+ f(w) = y can be represented a s  

We call t he  sequence B ,  the  behavior sequence. For technical reasons, i t  turns 

out t o  be convenient la te r  t o  express  the above input/output relation in component 



t -l 
T A ( ~ >  1 A (2) i . . . 

i ~ p j ]  s ( u i )  , ~t = C _ t-:I t-i 
I =o 

where A$ = j th colurzn of and S(ui) = "stack" of the  vec to r  u!, i.e. the  vec- 

t o r  forme2 by stacking the  columns o i  u, t o  form z column of scalars. In th is  situa- 

tior,, where u! is a l ready e vec tor ,  S(u,) = zi and t he  operztion ' I S '  has  no effect .  

i z t e r  i t  wil! be  important wher. i t  i s  operzt ing on matrices.  

The s t r uc tu r e  of the  above in- ,ut /outg~t  re le t ion czn z!so b e  writter, using a 

block Toep!itz a z t r i x  F as y = Fw, o r ,  

In whzt follows, i t  will also be useful t o  r e - z z z n g e  t he  behavior sequence B in t h e  

block Hznke! form 

We czr. now formulate t he  Realizztion Problem 2s: 

Given the behavior sequence B, find ar, in teger  r,, a vecto- space  X of dimen- 

sion n? znf! mztrices F E R"", G E RnXm, H E Rpxr, such t hz t  

(1) A, = Fr : 1 = I 7  A,..,,... , 

(2) The pa i r  ((F,C;) i s  complete!y reachab le ,  i.e. 

r znk  : G i FG i y 2 ~  i - . - : ?"'G ] - - III 



(3) t he  pz i r  (P,G) i s  completely observable,  i.e.,  

rznk [ H' i F'z' i F ' ~ ~ '  i . . . F*~-:H/ 7 = n .  

Dynzmicz!!~, we car, exp re s s  t he  system C = (F, G ,  I?) 2s 

The condition (2) s inply meacs tha t  t h e  behavior of C a g r e e s  with tha t  of B 

while conditions (2) - (3) insc re  thz t  C i s  t h e  simplest poss:Sle l inezr  system ss t is -  

fying coali t ion (I), in t h e  sense  t ha t  t h e r e  is no system whose state-space X has  

smzller dimension and whose behavior zg r ee s  with B The problem is  how t o  con- 

s t r uc t  t he  s?ace X and t h e  system C = (F, G ,  H) from B. The znswer hinges cri t i-  

czl!y cpon whether we know i n  advance whether o r  not t h e r e  exis ts  a n y  n < 

with t h e  requisite p roper t i es .  If yes,  then w e  czn invoke a curzber of algorithms 

f o r  determining C; i f  not, we are in t h e  reaLrn of t he  so-callec? " p a r t i d  redizatior," 

problem, some of t he  deepest  waters in nodern  system theory.  We shzl! r e f e r  t o  

t h e  r e f e r ences  f o r  2 discussion of this case and consider h e r e  only t he  situation 

where n i s  assumed finite an?, known. 

Assuming t h e  dimension c is known f o r  a system C sztisfying conditions (1) - 
(3), t h e  f i r s t ,  and sti!! one of t h e  simplest! ?rocedures  f o r  actually constructing 

(F, G ,  H) i s  t h e  KO Xealization Algorithm [14,16,19], developed by B.L. KO in 1968. 

Let n < m b e  givez. I t  c zz  be  shown thz t  t he  infinite Elankel 2 , r z y  H i s  such thz t  

rznk H = c. Thus, t h e r e  exis t  mztr ices  P and Q such thz t  

where I n  = r,xn identity matrix. Let o (H) denote t h e  infixite a r r a y  obtained f r o x  

H c y  ieft-shifting each row, i.e. 



Further ,  let Rt and CS be "editing" matrices having the  following actions: 

Rt (A) = "retain f i r s t  L rows of A," 

CS (A) = "retain f i r s t  s columns of A,"  

Then Ho's Algorithm shows tha t  a canonical (minimal) realization of B is  given by 

setting X = Rn and taking C = (F, G ,  H) t o  be 

Thus, zside from the trivizl  editing operatiocs R and C, the only r e a l  computatior, 

involved in Ho's procedure is  t he  calculation o i  the matrices P and Q reducing H to  

Hermite form. Al l  this is under the  assumption, of course,  tha t  the  all-important 

dimension X = n is known via o the r  cocsiderations (e.g., all  A, = 0 f o r  i > N). In 

what follows, we shall often invoke the  existence of this algorithm (or i ts many 

equivalects) as a means f o r  constructively realizing different behavior sequences 

that  we encounter 



4. Linear (M.R)-Systems: Repair 

Now w e  r e t u r n  t o  t h e  consideration of t h e  metabolism-repair systems outlined 

in Section 2, with t h e  additional assumption t ha t  t he  metabolism, r e p a i r  and repli-  

cation maps zre linear.  For t h e  moment, le t  us focus attention only upon t h e  meta- 

bolic and r e p a i r  s t ruc tures .  

The metabolic map f : fl- r is exact ly  t he  s t r uc tu r e  discussed in t h e  

preceding section,  with fl and r vector  spaces  of input and output sequences, 

respectively.  The r e p a i r  n a p  Pf : r  - H(R,  r )  must abs t rac t ly  produce f ,  given 

t he  outpnt 7 r r  produced by f from t h e  icput o E fl. Since we have seen t ha t  t h e  

metzbolic map f is equivalent t o  t he  behavior sequence B, i.e., 

B = [ A , , A , , A  ,,... j Z f ,  

we conclude t ha t  t he  space 

I! (3 ,  r )  = tall possible behaviors B j . 
This is  a vec tor  space under t h e  obvious ru l e s  f o r  addition znd scalar multiplica- 

tior.. 

Since we have assumed t he  map Pf t o  be l inear ,  w e  can r ep re sen t  i t s  action zs 

7 -i 
W, = C R,+ vi , T = 12, ..., (**I 

i =o 

where (wi, vi )  z r e  t h e  output and in3ut t o  t h e  r e p a i r  systerr,, respectively,  with t h e  

elements R; being l inear  maps determined by 7 and f .  However, since t he  r e p a i r  

systerr,, when i t  opera tes  p roper ly ,  must a ccep t  t h e  input 7 and produce t h e  outpnt 

f ,  we must have w T  = A, and vT = S ( Y ~ + ~ )  where S = "stack" ope ra to r  defined in t h e  

previous section. Note h e r e  t ha t  w e  have  used a dif ferent  time parameter  T f o r  

t he  r e p a i r  system, as it will usually b e  t h e  case  t ha t  t he  time-sczle of operatior, of 

the  r e p e i r  sys ten  is considerably slower than t he  metabo!ic o;leratior.. We r e t u r c  

t o  th is  poizt again ir, connectior: w i th  replicatior, ir, t h e  next sectior.. 



It  i s  a n  ezsy exerc i se  t o  s e e  tha t  t h e  elements R j  must have t h e  form 

So, in component form we can write (**) as 

where we have written R/') = Bjs. 

Just  zs the  metabolism f was represec ted  by t he  sequence IA1.A2, . . 1, we can 

now see t h a t  t h e  r e p a i r  system Pf can b e  represen ted  as 

Pf = [R1,R2,R3, . . 1. 

Similzrly, we can a lso  identify Pf with t h e  Toeplitz matrix 

Remarks: 

(1) If w e  write each Ai as 

the  J'complexityJ' of eack component of t h e  metabolic map f is O(pm); t h e  complexity 

of eack element R, of t h e  r e p a i r  map Pf is  0(p2 m). Thus, a l ready t h e  often noted 

com~lex i t y  increase  zssociated with living systems begins t o  emerge through 

na tc ra l  mzthemztical reqnirernents. 

(2) A strzightforward calculation shows tha t  t he  assumption dim C = n < = 

implies t ha t  t he  s e t  [ A l ,  A2, ... , A Z n j  i s  l inearly dependent (this follows from ele- 

mentzry p roper t i es  of the  Hanke! a r r a y  H). I t  is now easy t o  see tha t  t he  condition 



dim C = n < a+, also implies tha t  the  canonical realizztion of t he  r epa i r  sequence 

IR2, R,,... { has dimension np 5 n. Thus, we can again employ Ho's Algorithm to  pro- 

duce a system Cp = (Fp, Gp, Hp) realizing the  r epa i r  sequence. 

Example. . To fix the foregoing ideas, consider the  situation ir. which the 

system's environmental input o is 

with the metabolic output 7 = f (0 )  being given by 

7 = [1,2,3,4 ,... j = natural numbers. 

Since o and 7 a r e  scalzr  sequences, w e  have m = p = 1.  W e  easily obtain the  

behavior sequence 

B = 11,1,2,2,3,3,4,4 ,... j = I A ~ ,  A,, A, ,... j . 

It  can be shown tha t  this behavior sequence has a canonical realization 

C = (F, G ,  H) of dimension n = 3, so  an  application of Ho's Algorithm yields t he  

canonical system matrices 

The dynamics f o r  t he  metabolic subsystem are 

Turning now t o  t h e  r epa i r  component, we must have Pf(7) = f which leads to  

Ri = { I l l ,  i odd 

[-I], i even 

Thus, the Toeplitz opera tor  f o r  Pf is 



with t h e  associated Hankel a r r a y  

Since w e  know tha t  t h e  r e p a i r  sequence has  a finite-dimensional realization of 

dimension np I ri = 3, experimentir.g a bi t  with Ho's Algorithm (or  computing rank  

Hp) gives np = 1, with t h e  resul tant  canonical r e p a i r  realization Cp = (Fp, Gp, Hp), 

where 

The r e p a i r  dynzxics  a r e  then 

2 ,  = [ - l ] z , + l ] v , ,  z o = o ,  7=0,1 ,2  ,... 

W, = l l ]  2, . 
From ou r  e a r l i e r  remarks ,  we connect th is  system with t h e  metabolic map f via 

inputs and outputs as w, = A , ,  v, = YT+I  

Remarks 

(1) At f i r s t  glance, t h e r e  z7pea r s  t o  b e  a contradiction h e r e  t o  o a r  e a r l i e r  

clzim tha t  t he  r e p a i r  system is more "corr.plexJ' than t h e  metabolism. In th i s  exam- 

ple,  w e  see t h a t  dim C, = 1 < dim C = 3, s o  if one measures complexity by state- 

space  dimension, then Cp is  actuzlly never  more complex thzri C. In fact, as w e  

have a l ready noted, th is  will always b e  t h e  case.  However, o u r  earlier remark 

used a dif ferent  notion of complexity, one involving the  objects  of t he  behavior21 

descriptions,  t h e  elements Ai and Ri. Unless p = 1, t h e  objects  IRi ] always contain 

more elements than t he  I A : ~ .  Thus, by this  measure of complexity, t he  r e p a i r  sys- 



tem is always at least as complex as the metabolism. Roughly speaking, it is more 

difficult to describe the  behavior of the r epa i r  process than the  metabolism, but is 

simpler t o  real ize  i ts  dynamics. In engineering t e r m s ,  t he re  a r e  fewer "integra- 

tors", but of a more complicated type. 

Now let  us r e tu rn  to  a consideration of the main function of the r epa i r  

mechanism: t o  r e s to re  the  co r rec t  input/output behavior (o ,  y )  in the face of 

changes in e i ther  the environmental input o o r  the metabolic machinery f.  There 

a r e  several  cases and subcases to  examine: 

Case I. FYxed environment o* and a fixed genetic machinery Pi with 

variable  metabolism f. 

In this case, w e  a r e  concerned with changes in the metabolic machinery from 

some nominal, o r  basal, metabolism f*. In o ther  words, we consider those metabol- 

isms f such tha t  Pf. (f (om)) = f o r  f*. In the  first case, the r epa i r  machinery P; 

stabilizes the  system a t  the new metabolism f; in the second czse, 2; acts to 

r e s to re  the  nominal metabolism f*. 

To study this situation, i t  is useful to consider the map 

e,,, : H(n, r  1 - H(n, r  ) 

f + P,(f (o*)) 
- 

The case in which the repa i r  system stabilizes the system a t  the new metabolism f 

corresponds t o  finding the fixed points of the map , i.e., those metabolisms f 

such that 

The situztior: is which the  r epz i r  systerr. restores  the design metabolism f* hy 

"repziring" the  pertcrbztio? f f -+f ,  co,responds t o  finding those perturbations f 

suck: thzt 



Note t ha t  by construction we must have 

i.e., f* i s  a t r iv ia l  fixed point of +,,,p as is  t he  null metabolism f=O, by vir tue  of 

t h e  f a c t  t ha t  \ko.,T is l inear ,  being induced from t h e  l inear  map Pr. 

Since each f E H ( R , r  ) has  t h e  form f = iA1,A2,A 3,... { ,  w e  can  r ep re sen t  \k,,,p 

by t he  infinite matrix 

i , j=1,2, ... Since +fl,p i s  induced from the  r e p a i r  map Pp, t h e  

I+; +z2 6;3 1 

. . 
elements +;j will b e  determined by t h e  elements ~R;.R;.R; ,... J and o* = fu,,ul. ... { 

- 
+u=:?-= - 

determining Pp . I t  should b e  noted tha t  in genera!, as with t h e  choice of t h e  

*i2 . . . .  I I 
I . . 

matr ices  !A: { defining fx ,  t h e r e  is some level of a rb i t r a r i ne s s  in t h e  elements IR; j .  

where c;: E R ~ ~ ~ ,  

Unless t h e  input CY.* has  special  s t r uc tu r e ,  t h e r e  will b e  p(m-1) degrees-of-freedom 

in t h e  choice of each  A:; similarly, each R; will have pm(p-1) degrees-of-freedom 

in its elements, non-uniqueness t ha t  is inherited by t he  elements 4'; comprising 

+,=,?= 

W e  can now make t he  following observations about t h e  p rope r t i e s  of +,,,p and 

t h e  behavior of t he  r e p a i r  system Pp in t h e  form of 

Theorem 2. (r) h e  requirement tha t  f* = ~A;,A; ,A:,... 1 be a m e d  point  of 

*,,, means tha t  the vector [A;,A;.A;. ...I' is  a characteris t ic  vector of 

*u*,P w i t h  associated characteris t ic  va lue  1. 

h e  elements +rj are  restricted on ly  in that  they  must  be selected to 

s a t i s f i  t h i s  condition; 

(2) the per turbat ion  metabolism f = fA1,A2,A 3,... 1 wil l  be a fizea' point of 



4',,,r i f  a n d  o n l y  zf the  vec tor  [A1,A2,A 3,...]' is a c h a r a c t e r i s t i c  vec tor  of 

4',=,r w i t h  assoc ia ted  c h a r a c t e r i s t i c  v a l u e  I ;  

(3) the  p e r t u r b a t i o n  f w i l l  be "repaired",  i - e . ,  4',x,r(f) = f *  i f  a n d  o n l y  i f f  

has t h e  form f = f* + k e r  \k,,,r. In other  w o r d s ,  for  repair w e  m u s t  h a v e  

the  vec tor  [Al-A,: .A,--;,A,--A; ,... 1' E k e r  qu=,r . 

The last two points have deep implications f o r  the ability of the repa i r  system 

to function effectively in tha t  they a r e  diametrically opposed: if we want to be able 

t o  repa i r  many different types of perturbation f ,  then by ( 3 )  we need t o  have 

ker\k,,,f, "large"; if ker\kfl,f, is large, then the re  a r e  relatively "few" charac- 

teristic vectors with associated characteristic values 1 implying tha t  t he re  a r e  

only a "small" number of perturbations f tha t  will be stabilized by the repa i r  sys- 

tem. The sum total is tha t  we can ei ther  z r range  t o  have k e r  \k,,,T 'largeu and 

r e p a i r  many disturbznces, o r  we can have k e r  \k,,,f, "small" and be  able t o  s tab i l -  

i z e  many metzbolic disturbances, but not both! The amount of flexibility we have in 

choosing the  k e r  \kUxlr is dictated by the degrees-of-freedom we have in determin- 

ing Pf which, as noted above, is proportional to  the  quantity pm(p-l), where p and 

n a r e  the  number of metabolic outputs and inputs, respectively. (It should be 

noted thzt  this is the number of degrees-of-freedon: af t e r  satisfying the  condition 

in pa r t  (1) of Theorem 2). 

I t  is impossible t o  speak any more precisely about the  r epz i r  mechanism in the 

absence of more specific detzils about the s t ruc ture  of 4',,,,. So, let  us examine 

the process deternining in grez ter  detail. 

From the component representation of (**), we can see that  



This is clear ly  a t r iangular  (in fact, Toeplitz) representat ion as A, depends only 

upon t h e  elements A1,A2, . . . , Ar in a l inear ,  Toeplitz manner. As long as all p com- 

ponents of Air,  U; are not zero,  we can always find a solution to this  equation in 

t h e  components of t h e  matrices IR;-~]  and t he  elements juy { ,  

i=0.1,2,. . . , T -1; j =1,2,. . . ,m. In fact, generically t h e r e  is a pm(p-1)-parameter Jam- 

ily of such solutions, after we have selected some of t h e  en t r i e s  of t he  R's in o r d e r  

t o  satisfy t h e  requirement t h a t  

where t h e  elements R* denote  t he  parametrized family of solutions satisfying this  

relation.  

On t h e  o t h e r  hand, t h e  induced relation !Pu,,r says  t ha t  we must have 

f o r  some triangular choice  of *;, . In par t i cu la r ,  th is  means t ha t  *;=o, j > i and 

we have 

But, we a l so  have t h e  expression f o r  A: from above involving t h e  elements {R:-~{. 

Sett ing these  t w o  expressions equal, we obtain 

The relation ( t )  then enables us t o  pin down some of t h e  elements f qTk{, k=1,2, .... 

The a r b i t r a r y  elements in j\k:kj will usually then b e  dictated by t h e  a r b i t r a r y  ele- 

ments in t h e  IR:-~ j in o r d e r  t o  make t h e  k e r  \kflvP ',large" o r  "small", as t h e  case 

may be.  



One case in which w e  can be very specific about the s t ruc tu re  of \kelp is  

when m=p=l. In this case w e  can easily solve the relation ("8') f o r  the elements 

\k;y obtaining the triangular Toeplitz a r r a y  

Here the re  a r e  no degrees-of-freedom in the  IR;], s o  the  spec t ra l  s t ruc ture  of 

qfllP is fixed. 

EzampLe (continued] 

We can make use of the  above scalar  input/output case t o  examine the  r epa i r  

mechanism f o r  our  ear l ie r  sample problem. Before w e  had 

Let us suppose tha t  t he  metabolism f* is perturbed t o  the  new metabolism 

i.e., t h e r e  is  a change only in t he  2nd element. The system output under f is  now 

7 = f (oX)  = 11.3,4.4.5.6.? ,... 1. 

Thus, t h e  metabolic change results in a change of output from 7= = natural 

numbers t o  the closely related sequence 7,  which differs  from 7' only in t he  2nd 

and 3rd entries.  The question is what effect this seemingly minor change has upon 

the r epa i r  mechanism. 

To address this issue, we compute the  matrix \k,,,p which, using the require- 

ment tha t  f*  must be  a fixed point, gives 



identity. 

Consequently, appealing to  Theorem 2 w e  find that  the  metabolism f is also a fixed 

point of 4',,,f= with character is t ic  value 1; hence, t h e  repa i r  mechanism will pro- 

cess 7 into f and thus stabilize the  system at the  new metabolism f.  In fact,  this will 

be t rue  f o r  a n y  metabolic perturbation f of this system: the  r epa i r  process will 

immediately ''lock-on" t o  the  new metabolism f and stabilize the system there.  Thus, 

f o r  this system the re  is  no "repair" but only an  immediate stabilization at the  new 

metabolism. 

Another important point t o  note about this scalar  case is  that  w e  must have 

the  product ~f u: = 1 or 0 f o r  t he  possibility of either repa i r  o r  'locking-on" t o  a 

new metabolism. Otherwise, w e  cannot ever  exactly r e s to re  f* or exactly lock-on 

to  a new metabolism, but only obtain a scalar multiple of fL or f. Technically, of 

course, this i s  not an important distinction; in practice, i t  may or may not be signi- 

ficant. 

Case 11. k f luc tuat ing  environment u w i t h  fized nominal metabolism f* 

and fixed genetic machinery P, . 

In this situation, w e  have a chznge of environment om - w, and wznt to  find 

zl! those environments o such that  

P,. ( fm(om)) = P,. (f'(w)) (= f*) 

implies 

lr, o ther  words, we want t o  know when P is 1-1. 
f* 

But the  matrix representation of Pf. is 

i i j ~ ;  R; o . . .  I 
P,. = i R ;  I R; R; . . .  i l  R,= E , 

1 



implying thar  P,. is 1-1 if  and only if k e r  R; = 10 1. This will b e  t h e  case i f  and only 

if m = 1 and rank  R; = p. 

Here  w e  only consider t he  situation when PI. (I '(o*)) = PI. (~'(o)), since i i  

th is  i s  not t h e  czse, then we are back in Case I ,  i.e., t h z t  of a metabolic chznge. We 

can now conclude 

Theorem 3. If m = 1 and rank R; = p, all environments o such that 

f '  (0) = f '  (a*) are given by  o = ow + k e r  f'; 

Dn the other hand,  i f  m > 1 and/or  rank R; = r < p, then a n y  environ- 

mental change of the form o = x + 00, where x is  a n y  solution of the equation 

f '  (x) = 7 , 7 E k e r  R;, wil l  be repaired by P,. . 

Proof. Let m = 1 and rank  R; = p. Then t h e  o p e r a t o r  Pf. i s  1 - 1 and al l  t h e  

environments o such t h a t  PI, (f '(0)) = PI, (f '(ow)) implies f w  (o) = f ' (a') consist of 

those  o satisfying o = ow + k e r  f'. 

Now le t  m > 1 and/or  rank  R; = r < p ,  i.e. k e r  R; i s  non-empty. Let 

5 E k e r  R: and le t  x b e  a solution of t h e  equation f' (x) = 7. Then any environrnen- 

t a l  change of t h e  form ol"--, o = x + o* will be r epa i r ed  by t h e  genetic mechanisn 

Pfb since 

P,. (fW(o)) = P,. (f '(XI + f *(a'))' 

= P,. ($1 +- Pf. (f '(o*)) 

= 0 + f ' = f W  

Theorems 2 znd 3 cha rac t e r i z e  a l l  those  metabolic and environmental changes 

tha t  can  b e  "repaired" by a fixed genetic machinery P,.. Let us now consider t h e  

wzys in which this  genetic zppzra tus  itself czn change by mear,s of replication.  



5. Linear (P.R)- Systems : Repiication 

The system replication map 

8: : H(R,I')--+H (I', H(n , I ' ) )  

can be formally cocsidered in much the  same fashion as just discussed fo r  the  

r epa i r  mechanism P,. However, since the  functional role  of Pf is quite different 

from that  of PI, z number of interesting questions a r i se  tha t  are absent in the case 

of r epz i r ,  questions involving mutation, adaptation, Lamarckian inheritance and so 

for th.  We shall consider these matters in more detail ir, z moment, but f i r s t  le t  us 

look a t  t he  formal realization of Bf. 

Since 8, is z l inear map accepting inputs of the form f = !Al, A2, A 3 , . . .  J 2nd 

producing octpcts Pf = {Rl, R,,... !, we must hzve s: rezresentztior: of the  action 

of Bf 2s 

f o r  zn appropriate  s e t  of mztrices !Uj j ,  where the iz;)zt e, = S(AI) and the outpct 

ci = Ri. Arguing jest zs  f o r  the r epz i r  map , we conclude thz t  U! must have the 

form 

where each Cj, E R? m?. In what follows, we shall write u$') = Cjr So. just zs 

with f and. ?:, we hzve the  representztion of 6: as 

together wiih the  associzted Toeplitz identificztior, 



and the  associated Hankel a r m y  

Note that  in the  above set-up, since the  inputs f o r  the  replication system must 

correspond to  the metabolism f ,  while the  outputs must be the  associated r epa i r  

map Pf , we have the  relations 

e ,  = , c, = R, , 

with S being the  "stacking" operator .  These relations are expressed in the  time- 

scale o of the  replicator system. Here we have introduced still a third time-frame 

o t o  distinguish between the scale t f o r  metabolism and T for repair .  Usually, we 

will have At S AT S Ao. 

Using the same arguments as f o r  PI, i t  can be established that  if f has a 

finite-dimensional realization, so does Bf and the  dim Bf S dim f.  So, in connection 

with the  example given in the  last section, w e  find that  if 

then, a f t e r  a bit of algebra, 

Bf = {I,-2,1,0,0 ,... j . 
Thus, only the terms U1, U2 and U3 a r e  non-zero. Note the apparent  decrease in 

complexity of the sequences f ,  Pf and of as we pass frorn netabo!ism to  repa i r  t o  

replication. We will re turn  t o  this point below 

Applying Ho's Algorithm to  Bf yields the realization of the  replication map Bf 

io o o! i l  i 
3 c 0 qo + ! O  I e,, c;o=O* C c E R  90+1=1' l o ]  

10 0 0, 



The machinery outlined above provides a systematic p rocedure  f o r  generation 

of z canonical replication system via Ho's Algorithm (and a r e p a i r  mechanism, too) 

f o r  any metabolism, provided only t h a t  t h e  metabolism possesses some finite- 

dimensional realization; th is  is t h e  only condition needed f o r  t h e  existence of a 

finite-dimensional r e p a i r  and replication process  constructible di rect ly  from t h e  

metabolic components n, l? and H(R, r )  via "natural" mathematical operations.  In 

t h e  paper  [73, Rosen suggests ano ther  construction f o r  t h e  replication system, one  

which imposes no assumptions on t h e  metabolism but which entzils  some s eve re  con- 

ditions of ano ther  na ture  o r d e r  t o  make t h e  scheme work. Since Rosen's construc- 

tion brings fo r t h  many of t h e  aspec t s  of replication we want t o  examine, and is of 

some in te res t  in i t s  own r i gh t ,  we briefly summarize his  argument. 

Recall t h a t  f o r  replication w e  need a map Bf : H(Q, r )  --, H(r ,  H(R, l? )) pos- 

sessing t h e  p roper ty  t h a t  Bf (f) = Pi. Le t  X and Y be  a r b i t r a r y  sets. Then t h e r e  is 

a naturally defined map 

x̂  : H(X, Y) 4 Y , 

given by 

x^ (f) = f (x) , 

fo r  all x E X. This i s  t he  so-called "evaluation map" on I! (X, Y). Assume tha t  x̂  is 

1-1. Then t h e r e  exis ts  a mzp 2-I such t ha t  

x^ -1 : Y --, H (X, Y) . 

Now w e  need only set X = r, Y = H (a,  r )  t o  obtain t h e  desi red replication mzp, 

call i t  ?-I: 

9-I : r i  ( R ,  r )  --, H ( r ,  H(R, r)) . 
This is Roser.'s constructior., which mi r rors  t h e  nsnz! procedure  f o r  construc- 

tiol: of t h e  dun1 space  of r .  Note, however, t hz t  t h e  success of th i s  procedure  f o r  

producing z replication map hinges entirely upon t h e  map 2 being 1-1. Rosen 



argues  t h a t  th is  is a mathematical expression of t h e  celebrated "one-gene, one- 

enzyme" hypothesis from molecular genetics,  and uses  th is  in terpreta t ion as sup- 

porting evidence f o r  his  construction.  Let us examine this  argument in light of t h e  

l inear  s t r u c t u r e s  introduced above. 

In o u r  terminology, Rosen's construction involves t he  injectivity of t h e  map 

If 7 is 1-1, then  we have a map 

?-I : H(R, r )  - H(r ,  H(R, r)) 
f + P, 

IA18 A 2 t - - . j  + !RIP R2t-.-j - 
But, th is  means t h a t  5-I i s  equivalent t o  t h e  matrix 

Thus, such a map exis ts  if and only if t h e  matrix 4, is invertible. But, since each  

U, E R P X P ~ :  c an  b e  invertible if and only if: 1) p = pZm2, i.e. p = m = 1 

and 2) Ul + 0. Consequently, we see t h a t  Rosen's scheme can work only in t h e  

case of a single-input/single-output metabolism, and even then only if U1 + 0; th is  

is a very  s e v e r e  res t r ic t ion.  

In summary, t h e  construction we have given f o r  t h e  replication operat ion 

works f o r  all finitely real izable  metabolisms. The construction due t o  Rosen will 

work f o r  any metabolism, provided t h a t  t h e r e  is only a single-input and a single- 

output (assuming U1 + 0) .  We shall see t h e  implications of these  di f ferent  situa- 

tions momentarily. 

Within t h e  context  of replication,  t h e r e  a r e  two basic questions of in teres t :  



1) When can environmental changes o --, o' resul t  in changes in the  replica- 

tion map Pf ? 

2) If external disturbances modify &, what kinds of changes in f can resul t  ? 

The f i r s t  of these is the  question of Lamarckian inheritance, while the  second 

addresses problems of mutation. We consider only the Lamarckian question he re ,  

deferr ing a treatment of the  second, vastly more complicated question to  a future 

paper .  

From the  diagram 

it  is  evident that  

Pf ( f (o>> = f = [Bf ( f>l  ( f (o>> 

Suppose w e  have a change of environment o --, a'. This resul ts  in a change 

y = f (o )  --, f (0') = 7'. Assume tha t  

p, (7) = p, (7') = f , 

i.e. the  r epa i r  mechanism is czpable of correcting f o r  the environmental change. 

The2 w e  have 

(Bf 0 Pf) (7) = (& 0 Pf> (7') = Pf , 

implying tha t  the replication operation is  unaffected by the environmental change. 

That is, Lamarckian-type changes in Ff cannot occur  under any type of environ- 

mental change tha t  can be corrected by the  r epa i r  operation Pf.  Theorem 3 

character izes  just what so r t s  of changes fall into this category. 

Under Rosen's scheme, it is shown in [7] that  no environmental change of any 

s o r t  can lead t o  Lamarckian changes in Bf, a vastly s t ronger  resul t  but, as noted, 

under extremely restr ic t ive hypotheses. 



6. Linear (M,R)-Systems : a Summary 

Our development of the realization theory for  linear (h',,R)-systems has been 

somewhat lengthy, in order to allow considerable commentary on the  basic set-up 

and properties of these objects.  Here w e  summarize the entire development in the 

following diagram. 

Pi 
(Repzir) : - 3 (R, r)  



p: 
(Replication): H(R, r )  --3 H(ru H(91 n) 

lU1, u2 *... j 
f = )A1, A,, a a . j I--+ Pf = )RIB R2,... 1 

V ! E R P T ~  

0 -1 
I u ( ~ ?  - u ( A )  , 4 = 1,2, ... R, = C rUo-l 0 -1 1 

1 =o 

Assuming tha t  the  metabolic component has a finite-dimensioned realization, so  do 

the r epa i r  and replication components, znd these canonical realizations can all be 

computed by means of Ho's Algorithm. Furthermore, the  dimensions of the realiza- 

tions f o r  t he  r epa i r  and replication systems will be no l a rge r  than tha t  of t he  

metabolic subsystem. Thus, any finitely realizable metabolism can b e  a 

metabolism-repair system using the  constructions detailed here.  

7.  Discussion 

The formalism given h e r e  fo r  l inear (M,R)-systems generates  a long list of 

questions, problems and extensions of the classical "metabolism-only" Newtoniar. 

framework meriting fu r the r  study. High on this list a r e  problems concerned with 

networks, mutation and nonlinearity. Here we only touch upon a few of t he  major 

issues. 

A. Networks - w e  began in Section 2 with a discussion of (M,R)- networks ,  

emphasizing the  ro le  of the  repa i r  mechanism z s  ar; object whose inputs generally 



come from other  cells in the  network. In particular,  we noted that  a repa i r  com- 

ponent needed t o  receive all of i ts  inputs in o rde r  to  function, so  tha t  if one of t he  

inputs was from i t s  own associated metabolism, then the  removal of tha t  metabolism 

would also incapacitate the repa i r  subsystem. W e  then immediately shifted atten- 

tion away from networks and considered only a single (M,R)-unit. This clearly 

involves a different interpretation of how the  r epa i r  and replication components 

interface with the  metabolism. A s  w e  have noted above, instead of imagining the  

metabolism t o  be removed, we consider what happens when the re  is an  environmen- 

tal  change o r  when the metabolic machinery acts ,  but imperfectly. These con- 

siderations bring us up against the  question of just how t o  in terpre t  the  action of 

the serially-connected metabolism-repair-replication subsystems. 

Naively, w e  could imagine tha t  the time-scales of operation of the  subsystems 

are so disparate that the systems opera te  non-concurrently. In o ther  words, the 

metabolic subsystem f i r s t  processes o into 7.  When this operation is complete, t he  

output 7 is processed by the  repa i r  system and, finally, when the  repa i r  operation 

terminates. the replication process begins. Of course, real cells never operate  in 

this fashion and this simple scheme can only be thought of as a convenient approxi- 

mation when the  time-scales are such tha t  At << A t  << Ao. 

More realistically, the th ree  subsystems operate  concurrently with the differ- 

ences in time-scales introducing time-lags into the  repa i r  and replication opera- 

tions, relative t o  metabolic time. In this case, we must drop the  mathematical fic- 

tion of infinitely long input and/or output sequences and assume tha t  o is  of finite 

duration, with the  metabolic output 7 = f(o)  also of finite length. In these situa- 

tions, t he  mathematical formalism requires  the full machinery of t he  so-called Par- 

tial Realization Problem and i ts  attendant version of Ho's Algorithm [14,16]. Since 

this is a matter of some delicacy, w e  defer i ts treatment t o  a later paper. 



Returning t o  t h e  problem of (M,R)-networks, a s  soon as we couple severa l  

(K,R)-units as in Section 2, we immediately encounter a new set of mathematical 

questions surrounding t he  operat ion and behavior of the  network. For  example, 

each unit of t he  network ha s  i t s  own charac te r i s t i c  time-scales f o r  i t s  metabolic, 

r e p a i r  and replication operations.  How do these  time-scales i n t e r ac t  to  produce 

t he  global network behavior ? Also, t h e r e  may be  t r an spo r t  delays in passage of 

input materials from one cell  t o  where i t 's  needed f o r  ano ther ' s  r e p a i r  system. If 

th is  delay is  too g r ea t ,  t h e  receiving r e p a i r  system may fa i l  t o  opera te .  How can  

w e  build th i s  type  of deizy into t h e  mathemztical formzlism ? Finally, we encounter  

questions about  t he  overal l  stabil i ty of t he  network. The principal questions of 

concern involve t h e  "viaSility" o r  "resi!iencel' of t he  network t o  var ious  types  of 

local per turbat ions .  One such local d is turbance might involve t h e  breakdown of 

the  metabolic-repair-replication sequence of z group of cells. Another class of 

dis turbances  would a r i s e  when we consider t he  dynamical behavior of a n  individual 

cell. We know from Theorem 1 t h a t  t h e r e  must exis t  cel ls  t ha t  cannot be  repa i red  

and t ha t  if t h e r e  are only a "small" number of such cells, t h e  removal of t h e  non- 

repa i rab le  cells  will r e su l t  in t h e  collapse of t he  en t i re  network. How small is 

"small" ? I t ' s  at leas t  1, but  c an  i t  be  l a r g e r  ? The znswer seems t o  involve the  

connective pa t te rn  in t h e  network. Also, how can w e  identify t h e  non- 

rees tzbl ishable  elements ? And how resil ient is the  network t o  mutations, in which 

t h e  metabolism just changes,  r a t h e r  than dies ? These are typical  questions of t he  

type we czn only begin t o  address  if w e  have a good mathematical formalism a t  hand 

f o r  chzracter iz ing the  (M,R)-networks. 

B. Mutations a n d  Selection - w e  have a l ready noted t h a t  a chznge in t he  

replication mzp pf corresponds direct ly  t o  what in biology is  termed a "mutation". 

I t  i s  a t  th is  point t ha t  by incorporating a selection mechanism into ou r  set-up, w e  

can  use t he  (M,R)-framework t o  study the  evolutionary behavior of e i t he r  a single 



(M,R)-cell o r ,  more appropria te ly ,  a network of such cells. The identity 

adaptation -= mutation + selection 

allows us t o  tzlk about various types of gozl-oriented behaviors  (via di rected 

mutations and/or  modified selection processes),  the reby  incorporating anticipa- 

t o ry  behavior into o u r  set-up in a mathematically and physically natural  fashion. 

From a techcical  perspect ive ,  t h e  problems of mutation and selection pose 

severa l  challenges. The f i r s t  just involves t racing out  t h e  e f fec t s  on t h e  metabol- 

ism of zny par t i cu la r  change in t h e  replicztion process  Pf -+ pi. Since p: does 

not a c t  directly upon f ,  but only upon t h e  genetic r e p a i r  map Pf, t h e r e  is a n  added 

level of difficulty involved in ascertaining t h e  p rec i se  relationship between Bf and 

f. In Nature i t  is usually assumed t ha t  mutations arise from random events imping- 

ing upon t h e  system from t h e  outside; viewing t h e  (M,R)-set-up as a metaphor f o r  

social 2nd behavioral  phenomenz, th is  zssumption is usually not tenable. Very 

likely, we will need t o  consider directed muta t ions  arising e i t h e r  within t he  sys- 

t e m  itself (by feedback,  say) ,  o r  imposed upon t h e  system by a n  outside controller.  

In t h e  f i r s t  case ,  we have  t h e  problem of incorporating t h e  re levan t  feedback 

loops into t he  mathematical formalisrr,; the  second case is  formally equivzlent t o  

t h e  czse of nzturaily-induced mctations, but emphasizes t he  importance of deter-  

mining z d i rec t  path  from Bf t o  f .  This r ep r e sen t s  a new type of control  process ,  

not yet  dealt  with in t h e  l i t e r z tu r e .  

The second half of t h e  above "adzptive identity" necess i ta tes  t h e  superposi- 

tion of z c r i t e r ion  of "goodness" upon t he  behavioral  output of o u r  (N,R)-network. 

Formally th is  problem is a typical  one faced in con t ro l  theory: determination of the  

system objective function. However, f o r  (M,R)-networks w e  have z very  dif ferect  

situation insofar as t h e  interaction between t h e  controls and t h e  system behavior 

i s  concerned. Firs t  of al l ,  t h e r e  may be  many different types  of controls  acting 

simultzneously (environmental changes in w ,  mutations ir. ef, changes in metabolism 



f ,  etc.). In addition, t h e  primary goal of living systiens is not real ly  optimality, but 

r a t h e r  viability. Somehow, t h e  selection process  h a s  t o  be developed t o  s e r v e  two 

conflicting needs at once: t h e  need t o  specialize t o  exploit a par t i cu la r  eco-niche, 

and t h e  need t o  generalize in o r d e r  t o  remain viable under  a var ie ty  of unknown, 

and probably unknowzble, environmental d is turbances  and random mutations. The 

framework given above provides u s  with a vehicle f o r  t h e  detailed exploration of 

such questions. 

C. NonLinearity - ou r  t reatment  has  focused upon l inear  metabolic, r e p a i r  

and replication maps. I t 's  f a i r  t o  ask t o  whzt deg ree  t he  resu l t s  and conclusions 

we have drawn re ly  upon th i s  obvious physical fiction. The answer: i t  depends. A t  

t h e  level of abs t rac t  input/output maps and t he i r  abstract  realization by canonical 

dynamical systems, t h e r e  is no problem. Relatively r ecen t  resu l t s  in nonlinear sys- 

t e m  theory  a s s e r t  t h e  exis tence of such objects  under  very  weak hypotheses on 

t h e  input/output behavior.  However, at t h e  level of t h e  actual  cons t ruc t ion  of t h e  

re levant  state-space and dynamics (the Ho Algorithm level), much depends upon 

narrowing down t h e  term "nonlinear". For  l a rge  c lasses  of nonlinear maps (multil- 

inear ,  polynomial, linear-analytic, piecewise-linear, . . .), var ious  extensions of Ho- 

type  algorithms are possible; however, a general  nonlinear f is just too general  f o r  

any kind of specif ic  construction.  So, t h e  deg ree  t o  which we can actually c a r r y  

out  t h e  operat ions  outlined in Section 3 f o r  nonlinear behaviors  depends upon t h e  

deg ree  t o  which w e  can precisely specify t h e  type of nonlinearity involved and t h e  

degree  t o  which t h z t  nonlinearity deviates from a l inear  s t r uc tu r e .  A reasonably 

up-to-date account of these  mat ters  is found in [15,20]. 

D. AppLications - w e  should not fail  t o  mention some of t h e  applications t o  

which a decent  theory  of (h!,R)-systems can be  directed.  Leaving aside t h e  obvious 

biologiczl questions which motivated Rosen's original introduction of t h e  (M,R)- 



concept, t he re  are numerous socizl and behavioral settings that  appear  to fit  

nicely into the  overall (M,R)-scheme. For example, in [21] the re  is a treatment of 

technological development within a network of industrizl firms using the  (M,R)- 

ideas. While this work is preliminary, i t  appears  t o  hold promise f o r  shedding light 

on a number of issues currently of interest in the general a r e a  of flexible 

manufacturing systems. In another direction, the  biologically-based arguments we 

have presented seem to  be completely in line with recent  t rends in economics, in 

which an evolutionzry view of economic processes has been promoted by Boulding 

1221, Nelson and Winter [23] and others  as a means of breaking out of the 

Newtonian-based equilibrium-centered economic paradigm. Finally, t he re  a r e  the 

various approaches to  an evolutionary view of social organizations, starting with 

Spencer and the  Social Darwinists, and continuing on through Spengler and Toyn- 

bee and on down t o  the present-day work of Jantsch [24], Weidlich and Haag [25!, 

Axelrod [26] and others.  The (M,R)-paradigm holds out the promise of offering a 

formal s t ruc ture  within which t o  s tate  and address many of the most pressing ques- 

tions standing in the path of a deeper  understanding of these areas. 
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