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Foreword

The Theory of Manufacturing study had as one of its objectives to explore alterna-
tive formal system structures for characterizing modern manufacturing processes.
One such structure is based upon the metaphor of a living cell. In this Working Pa-
per, the abstract mathematical structure of this metaphor is developed as a basis

upon which to build a formal theory of cellular processes.

T.H. Lee
Director
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Abstract

Metabolism-repair systems represent a formal mathematical framework for
representating characteristic properties of living systems such as repair, repli-
cation, adaptation and so forth. In this paper, the concrete realization of such
structures is developed in the case when the system "metabolism"” is linear. Expli-
cit results are given to show when system repair operations can counteract en-
vironmentzal and met.aboiic fluctuations. Additional results pertaining to the repli-
calion operation and the possibility for "Lamarckian” inherit.anée are also given,
together with a formal demonstration of the increase in complexity as we proceed
from the processes of met.abolism to repair to replication. The paper concludes
with a discussion of several application areas, together with a consideration of
several conceptual and mathematical questions requiring attention for further

development of this non-Newtonian systems paradigm.



Linear Metabolism - Repair Systems

John Casti

1. Extending the Newtonian Paradigm

A number of authors [1-3] have recently (and not so recently) pointed out a
variety of deficiencies inherent in the classical Newtonian paradigm of mechanics
regarding its utility in describing living systems, both biological as well as social
and behavioral. In particular, it has been rather convincingly argued that the
Newtonian world view, as exemplified in classical particle mechanics, say, has no
role for any type of anticipatory behavior on the part of either observers or de-
cisionmakers [4]. Furthermore, the crucial biological activities of repair and re-
plication do not fit in any natural way into Newton's "Weltanschauung,” leading to
the conclusion that an extension of the Newtonian paradigm, comparable in scope
and impact to the extensions offered by both quantum mechanics and relativity
theory in physics, is long overdue for mathematically capturing the essence of bio-

logical, social and behavioral phenomena.

About 30 years ago in a series of papers devoted to relational cell models [5-
7], Rosen introduced the notion of a metabolism-repair (M,R)-network in an attempt
to show formally how the features of repair and replication could be naturally in-
duced solely from a cell's metabolic machinery. In subsequent work, it was also
pointed oul how anticipatory behavicral modes also followed in a straightforwarad
manner from the (M,R)~-formalism. Unfortunately, the formalism set up by Rosen

and developed by others [8-3] was purely relational; i.e., it dealt with the funrc-
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tional characteristics of the cell independent of its structural organization. In
order to make contact with real material objects, it was necessary to explore
means for realizing abstract (M,R)-systems in hardware, organic or otherwise.
The initial attempts in this direction led to realizations of (M,R)-systems as automa-
ta, but with a highly non-canonical state-space [10-11]. Perhaps due to the
discouraging results which followed from these somewhat unfortunate realizations,
the topic seems to have disappeared from the literature and died, what in our opin-

ion, is a very premature deall.

In this paper, we attempt to resurrect the theory of (M,R)-systems making use
of the vastly deeper understanding of the nature of canoniczal rezlizations ac-
quired over the past decade or so, starting with the pioneering work of Kalman in
the early '60s [12-14]. By making use of concepts and tools that were totzlly unk-
nown at the time of Rosen's initial work, we put the (M,R)-set-up on firmer system-
theoretic grounds, while at the same time answering a number of questions that
were only in the realm of speculation at the time of the early papers [5-11]. While
our results are presented only for the simplest case of linear (M,R)-systems, the
extension to nonlinear situvations follows zlong the sazme lines as the extensions
from linear to nonlinear in system theory as given, for example, in [15,20]. It is
our expectation that the framework set forth here will serve as a point of depar-~
ture for the development of the kind of extension to the Newtonian paradigm that
will serve the same role in biology and the social sciences that the Schrédinger

equation and the Lorentz transformation served for physics.

The paper is organized according to the following scheme. Section 2 presents
the basic ideas surrounding (M,R)-systems as originally developed by Rosen. In
Section 3, & brief review of the realization problem and the construction of canon-~
ical state-space models is givern for linear dynamical systems. The principal new

results of the paper are presented in Sections 4 and 5, where we give explicit
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characterizations of those linear systems which can be extended to linear (M,R)-
systems, together with a discussion of how system complexity increases as we at-
tempt Lo superimpose additional biological structure upon the basic metabolic
machinery. Along the way, it is shown that Rosen’s original scheme for the cell’'s
replication mechanism can only be possible for a very limited class of (M,R)-
processes. Finelly, in Sections 6 and 7 we discuss the extensions of our results to
nonlinear (M,R)-processes, as well as issues pertaining {o a network of cells and
the stability and control problems that such structures generate. The paper con-
cludes with an indication of several application areas where (M,R)-systems should

prove valuable in formalizing a variety of important practical questions.

2. Metabolism - Repair Networks

Consider a collection of N "cells"”, each of which accepts a variety of inputs
and produces a spectrum of outputs. Assume that at least one cell accepts inputs
from the "environment' and at least one cell produces outputs that are sent to the
environment. Further, suppose that every cell accepts either environmental in-
puts or has as its inputs an output from at least one other cell; similarly, assume
thal each cell produces either an environmental output or has its output utilized as
another cell’s input. Such a network might look like Figure 1 (with N=5). Here we
have the cells M, — Mg, together with the two environmental inputs w; and w,, as
well as the single environmental output 7,. We call such a m;t.work a "metabolic”

network.

It is reasonable to suppose that any cell in such a network will have a finite
lifetime after which it will be removed from the system. When this happens, all
cells whose input depends upon the output from the 'dead” cell will also be affect-

-

ed, ultimately failing in their metabolic role, as well. In Figure %, for instance, if




Figure 1. A Metabolism Network
the cell M, fails, then so will M,, Mg, M, and Mg all of whose inputs ultimately depend
upon M,’s output. Any such cell whose failure results in the failure of the entire

network is called a ceniral component of the network.

Now let us suppose thal we associate with each metabolic component M,, 2 com-
ponent R, whose function is to repair M;. In other words, when M fails the repair
component R; acts to build a copy of M; back into the network. The R, are consti-
tuted so thal each R; must receive at least one environmental oulput from the net-
work and, in order to functlion, R; must receive all of its inputs. Thus, in Figure 1

each R; must receive the sole environmental outpul 7,. Note also by the second
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condition that any cell M;, whose repair component R; receives V;'s output as part
of its inpul, cannot be built back into the network. We will call such a cell non-
reestablishable. Thus, the cell M, is non-reestablishable, while cell Mg is reesiab-

lishable.

Introduction of the repair components }Ri ! generates the following basic
question: who repairs the repairers ? It would lead to a useless infinite regress to
introduce another level of repair mechanisms, but what is the alternative *?
Nature's solution to the problem is to make the repair components self-replicating.
Before R, dies, the replication mechanism built into R, arranges to produce a copy
of Ry, which then takes R;'s place in the network. Such net.works.are called (M,R)-

systems.

The elementary concepts introduced above already allow the following in-

teresting results to be established [5,7]:

Theorem 1 (Rosen). Every finite (M,R) - network contains at least one non-

reestablishable component.

Corollary. If an (M,R) - network contains exactly one non-reestablishable

component, then that component is centiral.

Thus, we see that every (M,R)-network must contain some cells that cannot be built
back into the system if they fail. Further, if there are a small number of such
cells, then they are likely to be of prime importance to the overall functioning of
the system. This last result has clear implications for policies devoted to keeping
every component of a system alive (politicians and other social reformers: please
note!). It may be much better to allow some cells to fail rather than run the risk of
incurring a global system failure by trying to prop-up weak, non-competitive com-

ponents which, by Theorem 1, can’t all be saved in any case.
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Let us now turn to an examination of the simplest possible (M,R) - system com-

posed of & single component (N = 1). Diagrammatically, we have

or, more abstractly,

t Py
0 — T — BWQD,

where {1 = input set, I' = output set, f: Q — T' (= metabolic map),

P.: T — H (Q, I') (= repair map) with H ({Q, I') = set of all physically feasible meta-
bolic maps. Here we subscript the repair map by f to indicate that the role of P, is
to produce the metabolism { when the metabolic part of the system receives its

"correct” input @ € {1. We shall return to this point in detail in Sections 4 and 5.

The first point that arises is how to abstractly characterize the system repli-
cation map. Arguing biologically, the repair component Pf represents the system’s
genetic component and the job of the replication map is to use the sysiem’'s mela-
bolic machinery (Q,IH(Q, T)) and process i into & copy of P, € H(T, E(Q, ).
Pulling these remarks together, we see thal the replication map, call it B, must

act as
Bs: o — HOHWQ, D) .

Thus, the abstract diagram characlerizing the entire (M,R)-systenm is




£ Py 81
0 — T — H(0, D — H(T', H(D, 1))
fmetebolism! frepair| freplication!

In what follows, we shel! be concerned with putling concrete "meat’” on the abstract

"skeleton’ of this diagram.

Before discussing some of the questiions surrounding the behavior of such a
systemn, ‘two important poinis should be noted: 1) if we delete the repzair and repli-
cation components of the diagram, we are lefl with the standard starting point of
Newionian mechanics and modern system theory , namely, pure metabolism; thus,
the single-component (M,R)-network represents a genuine extension of the classi-
cal pa:‘adi_gm; 2) there is no set-theoretic difference between metabolism and
repair: they both represent meps beitween abstract sets. Biologically, this sug-
gests that there may be no intrinsic difference between a cell's metabolic and its

genetic activity. We shall explore this point in more detail later on.

The importiant questions surrounding the repeair aspects of the above type of
(M,R)-system revolve about the degree to which the repair and replication com-
ponents of the system can preserve the metabolic behavior in the face of fluctua-
tions in the system’s input @ or disturbances to its metabolism {.

Let's take & look at a few aspects of this question that we shzll address in consid-

erably more detail in Section 4.

Stable Metabolic Operations in Changing Environments - imagine the situa-
tion in which the cell’s "usual” input © is disturbed to a new input @. The condition
for steble operation of the cell is for the environment @ to be such that

Pe(f(e)) = 1, (*)
i.e. the metabolic structure { is stable in the environment @ in the sense that the
repair mechanism P. always regenerates { when the environmentizl input is w. We

would say that all ¢ € {I setisfying (*) form a stable environment for the cell.
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Now suppose that the new environment @ # w. Then (*) will hold only if either

f(w) = (@) or PH@) = 1.
The first case is trivial in the sense that the observed products of the cell are in-
variant to the change of environmental inputs. If f(w) $ f(@) then the cell's out-
puts are not stable with respect to the change of environment and we must consider
the repair mechanism to see whether or not the environmental alterations can be
compensated for in the sense that
P(f(@) =T = £,

with 'f_(B) = f(w), i.e., whether the genetic mechanism will produce a new metabol-
ism f which duplicates the output of f, but with the input © rather than . In this

case, the entire metabolic activity of the cell would be permanently altered if we

had
P.(f(@) = T.
On the other hand, if we had -f-('cS) = f(w) or, more generally,

P.E(@) = 1,

then the cell’s metabolism would only undergo periodic changes in time.
Finally we could have the situation in which
P,(f(®) =f = 1,¢
and, iterating this process, we may see that an environmental change will cause the
cell to wander aboui in the set H({1, '), changing its input/output behavior
through a sequence of metabolic processes £L ,f(z) .f(a),.... This "hunting” pro-

cess will terminate if either

(i) there exists an N such that

P, (M@)) = t®



or

(ii) there exists an N such that

P, (™)) = ¥ ¥ k=12..N-1
In case (i) the cell becomes stable in the new environment ©, while in case (ii) the
cell undergoes periodic changes in its metabolic structure. If no such N exists,
the cell is unstable and aperiodic. (Note: This last possibility can cccur only if the

set of possible metabolisms H((?, I') is infinite).

A collection of related questions zlso arise in connection with the replication
map B,. For instance, we can ask whether or not Lamarckian changes are possible,
i.e., can an environmental change @ — © generate a permanent change in the
genetic map P, via the replication map B, discussed above? In one particular con-
struction of 8, due to Rosen [7], it can be shown that such changes are not possi-
ble. We shall show that Rosen's case is very special and that the general situation

is far more complicated, even for linear maps.

Finally, we have a circle of issues relating to the complexity of (M,R)-systems.
We can ask, for example, how complex P, and 8; must be in order to repair a given
metabolic map f, and the degree to which this requisite complexity can be generat-
ed within the bounds of biological and/or social constraints. We shall explore such
considerations within the detailed confines of the linear framework developed in

Section 4.

3. Input/Output Maps and Realizations

Beyond any doubt, it can safely be asserted that the fundamentzal problem of
mathematical system theory is the construction of models from data: the Realiza-

tion Problem. In general terms, we are given a system's external behavioral
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description f (input/output behavior), and the task is to construct an internal
state-space and dynamies so that the behavior of the resuliing system Z agrees
with f, £ being in some sense the "simplest” such system. The degree to which this
construction can be carried out, either analytically or computationally, depends
upon the character of f, as well as upon other problem boundary conditions (meas-
urement error, constraints, input classes, etc.). Here we shall give a brief sum-
mary of the simplest and most well-understood case when f is linear. For a fuller
account of these results, as well as their extensions to nonlinear f, we refer to the

works [16-18].

Let (] be a set of admissable system inputs, with I" being the corresponding set
of outputs. We shall assume that the elements of () are sequences of vectors in R™,
while T consists of sequences of vectors in RP, m,p 2 1. The behavior map is speci-
fied by a time-invariant, linear map f: @ — I'. Thus, a typical element @ € QQ has

the form

w = (4p, Uy, Up,...) , U €RM,
while an element ¥ € T looks like

¥ = ¥y, ¥z ¥30...) ¥y €RP.
Notice that we assume that time is discrete with the input o starting at time t = 0,
while the first outpul appears one unit later at time t = 1. In view of the linearity
assumption on f, we can assert the existence of a sequence of matrices

B = {Ay, Ay, Ag,...}, A, €RPTM,

such that the action w — f(w) = 7 can be represented as

t-1
Yy = 120 Ay v, t=1,23,...

We call the sequence 5, the dehavior sequence. For technical reasons, it turns

out to be convenient later to express the above input/output relation in component
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form as
t -1
yo = LA TAGT - T AES @y,
i=0
where AL(-I_) = j“’ column of Ay _ and S(u;) = "stack’ of the veclor vy, i.e. the vec-

tor formed by stacking the columns of u, to form a column of scalars. In this situa-
tion, where u, is already a vector, S(u;) = u; and the operation "S" has no effect.
Later it will be important when it is operating on matrices.

The structure of the‘above inpul/outpul relation can also be written using 2

btlock Toeplitz matrix F as y = Fo, or,

¢ f )
(v ] a0 0 ] D
| [ 1 ] i
;yzl! |Az Ay O -iluli
t 1=‘A A A .illu! (*)
| | |As Az As || G2
N E bl
4 ’ 4

In what follows, it will also be useful Lo re-arrange the behavior seguence B in the

block Hankel form

)
jA1 Ap Aj i
lAz Ag Ay ‘

H = |
!Ag A, . !
R ]
N ?

We can now formulate Lthe Realization Probiem as:

Given the behavior sequence B, find an integer n, a vector space X of dimen-

sion n, and matrices F € RP*®, G € RMM  H € RP*® guch that

Lo ]
2.
!
[y

(1) A,

1}
'
;

1]
]
[

(2) The pair (F.G) is completely reachable, i.e.

rank [G [FG I PG | -+ - ' F7ig 1 = p;
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(3) the pair (F,G) is completely observable, i.e.,

rank [H”{ P/H” i F%H* i -« [ FP7lg’1 = p.

Dynamically, we can express the system £ = (F, G, H) as

Xeoo = Fx, +Gu, x4, =0 % €X, (L)
y' = Hxl 1 t, = O,l.z,....

The condition (1) simply means that the behavior of ¥ agrees with that of B
while conditions (2) - (3) insure thal I is the simplest possible linear system satis-
fying condition (1), in the sense that there is no system whose state-space X has
smaller dimension and whose behavior agrees with B The problem is how to con-
struct the space X and the system £ = (F, G, H) from B. The answer hinges criti-
czlly upon whether we know in adwvance whether or nol there exists anv n < =
with the requisite properties. If yes, then we can invoke a number of algorithms
for determining ¥; if not, we are in the realm of the so-called "partial realization”
problem, some of the deepest waters in modern system theory. We shzl! refer to
the references for a discussion of this case and consider here only the situation

where n is assumed Tinite and known.

Assuming the dimension n is known for a system ¥ satisfying conditions (1) -
(3), the first, and still one of the simplest, procedures for actually constructing
(F, G, H) is the Ho Realization Algorithm [14,16,19], developed by B.L. Ho in 1968.
Let n €  be given. I{ can be shown that the infinite Hankel array A is such that

rank A =n. Thus, there exist matrices P and Q such Lhat

f

0
where I, = nXxn identity matrix. Lel ¢ (H) denote the infirite array obtained from

H by ieft-shiftling each row, i.e.



N
Az Ay As
olH) =

Ag Ag

Further, let &, and C*® be "editing” matrices having the following actions:
R, (A) = ‘'retain first [ rows of A,”
CS (A) = ‘'retain first s columns of A."

Then Ho's Algorithm shows that a canonical (minimal) realization of B is given by

setting X = R" and taking £ = (F, G, H) to be
F=RPoHEH)QC",

G

R, PHC™,

H=R,HQC".

Thus, eside from the irivial editing operations R and C, the only real computation
involved in Ho's procedure is the calculation of the matrices P and Q reducing H to
Hermite form. All this is under the assumption, of course, that the all-important
dimension X = n is known via other considerations (e.g., all A, = 0 for i >N). In
what follows, we shall often invoke the existence of this algorithm (or its many

equivalents) as a means for constructively realizing different behavior sequences

that we encounter.
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4. Linear {(M,R)-Systems: Repair

Now we return to the consideration of the metabolism-repair systems outlined
in Section 2, with the additional assumption that the metabolism, repair and repli-
cation maps are linear. For the moment, let us focus attention only upon the meta-

bolic and repair structures.

The met.abo'lic map f: 0—=7T is exactly the struciture discussed in the
preceding section, with Q0 and T vector spaces of input and outpui sequences.
respectively. The repair map Pe: ['— H({}, ') must abstractly produce f, given
the output ¥ € I' produced by f from the input @ € 0. Since we have seen that the
metabolic map f is equivalent to the behavior sequence B, i.e.,

B = (A, Ap Ayl RO,

we conclude that the space

H (0, ) = {all possible behaviors B{ .

This is a vector space under the obvious rules for addition and scalar multiplica-

tion.

Since we have assumed the map P, Lo be linear, we can represent its aclion as

w. = 2 R,_’,_i N T=12,..., (**)

where (w,, v;) are the output and input to the repair system, respectively, with the
elements RJ. being linear maps determined by 7y and f. However, since the repair

system, when it operates properly, must accept the input 7y and produce the output
f, we must have w_ = A_and v, =S(y.,;) where S = "stack” operator defined in the
previous section. Note here t,hat, we have used a different time parameter T for
the repair system, as it will usually be the case that the time-scale of operation of
the repeir system is considerably slower than the metabolic operation. We return

to this point again in connection with replication in the next sectiion.
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It is an easy exercise Lo see that the elements Rj must have the form

R = [Byy | Byl - | Byl, By €RP™™,
i=12,...

So, in component form we can write (**) as

DOARE - [ RPISEY,

T-1 (
wo = iEO [R-r—i

where we have written RJ(s> = Bys-

Just as the metabolism f was represented by the sequence EAl,Az, .

now see that the repair system P, can be represented as
Pf = ER],-RZ'R31 c ot g
Similarly, we can also identify P, with the Toeplitz matrix

[ 5
’Rl 0 0] v

IR, Ry ©
Pr ¥ (Rs Rz Ry

| :
Remarks:

(1) If we write each A as

A = {Ai(l) | Ai(Z) [ e Ai(m)} , Ai(” € RP |

* {, we can

the "complexity” of each component of the metabolic map f is O{(pm); the complexity

of each element Rj of the repair map Py is O(p?' m). Thus, already the often noted

complexity increase associated with living systems begins to emerge through

natural mathematical requirements.

(2) A strzightforward calculation shows that the assumption dim £=n < e

implies that the sel { A;, Ay, ..., A, is linearly dependent (this follows from ele-

mentary properties of the Hanke! array ). It is now easy to see that the condition
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dim £ =n < e, also implies that the canonical realization of the repair sequence
{Rl. Rz,...§ has dimension np < n. Thus, we can again employ Ho’s Algorithm to pro-

duce a system EP = (Fp, Gp, Hp) realizing the repair sequence.

Ezample. . To fix the foregoing ideas, consider the situation in which the

system's environmental inpul « is
@ = (1,1,0,0,..0,
with the metabolic output 7 = f(w) being given by

v = {1,2,3,4,...{ = natural numbers.

Since w and 7 are scalar sequences, we have m =p = 1. We easily obtain the

behavior sequence

B = {1,1,2,2,3,3,4,4,...] = fAq, Ap, A3,...§ .
It can be shown that this behavior sequence has a canonical realization

r = (F, G, H) of dimension n = 3, so an application of Ho's Algorithm yields the

canonical system matrices

[0 1 ol [1]
F=|1 -1 1J,G= 1|, H=[100].
1 -2 2 2

The dynamics for the metabolic subsystem are

[0 1 ol [1]
z: Xgeg =11 -1 1%y + |1 0, Xg=0, xteR:’,
1 -2 2 2
Yo =[100]x,, t=0,1.2,...

Turning now to the repair component, we must have P.(y) = f which leads to

{ [1], iodd
R =

[-1], i even

Thus, the Toeplitz operator for P, is



—

| 1 0 0 O
'—1 1 00
Pfﬁll -~ 10 |
with the associated Hankel array
[, _ _ ]
1 -1 1 -1 1 '

Since we know thal the repair sequence has a finite-dimensional realization of
dimension np = n = 3, experimenting a bit with Ho’s Algorithm (or computing rank
Hp) gives np = 1, with the resultant canonical repair realization Zp = (Fp, Gp, Hp),
where

Fp=[-1], Gp=1[1], Hp=[1].
The repair dynamics are then

Zpyq = [(Hlz, +[1v,, 25=0, =0,1,2,...

w, = [1]z. .

From our earlier remarks, we connect this system with the metabolic map { via

inputs and oulputs as w, = A, , Vo T ¥, ,q.

Remarks

(1) At first glance, there appears to be a contradiction here to our earlier
claim that the repair system is more "complex’ than the metabolism. In this exam-
ple, we see that dim Ep =1 < dim £ = 3, so if one measures complexity by state-~
space dimension, then EP is actuelly never more complex than X. In fact, as we
have already noted, this will always be the case. However, our earlier remark
used a different notion of complexitly, one involving the objects of the behavioral
descriptions, the elements A; and R,. Unless p =1, the objects {R;} always contain

more elements than the EAil. Thus, by this measure of complexity, the repair sys-
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tem is always at least as complex as the metabolism. Roughly speaking, 1t is more
difficult to describe the behavior of the repair process than the metabolism, but is
simpler to realize its dynamics. In engineering terms, there are fewer integra-
tors", but of a more complicated type.

Now let us return to a consideration of the main function of the repair
mechanism: to restore the correct input/output behavior (w, 7) in the face of

changes in either the environmental input @ or the metabolic machinery f. There

are several cases and subcases to examine:

Case I. Fized environment o' and a fized genetic machinery Pf. with
variable metabolism f.

In this case, we are concerned with changes in the metabolic machinery from
some nominal, or basal, metabolism f°. In other words, we consider those metabol-
isms f such that Pf. (f(@®) =f or f*. In the first case, the repair machiner'y P;
stabilizes the system at the new metabolism f; in the second case, E’; acis Lo

restore the nominal metabolism f*.

To study this situation, it is useful to consider the map

® 2 et H(QT ) — H(QT)
f — Ppa(f (%))

The case in which the repair system stabilizes the system at the new metabolism f
corresponds to finding the fixed points of the map 'I'”,'t, , i.e., those metabolisms f

such that

The situalion in which the repair sysitem restores the design metabolism * by
"repairing” the perturbation f*—{f, corresponds to finding those perturbations f

such thatl
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Yoae(f) = 1%
Note that by construction we must have
Ve u(%) = 1%,

i.e., f* is a trivial fixed point of \I’Q,’r. as is the null metabolism f=0, by virtue of
the fact that \I'D,’f, is linear, being induced from the linear map Pf,.

Since each f € H(Q,T' ) has the form f = {A;,A;,A,,...}, we can represent ¥ ,

by the infinite matrix

j—

[ x® x® x
4,11 @12 \P13
Yoe e = ‘1’;1 2 i
where ‘I’; € RP*P, 1,i=1,2,... Since ¥ = ¢ is induced from the repair map Ppn, the
elements \I';J will be determined by the elements !RI,R;.R;,...; and o* = {u:,u;,...i
determining Pe . It should be noted thal in general, as with the choice of the

matrices {Ai‘ | defining f", there is some level of arbitrariness in the elements iR; .

Unless the input «* has special structure, there will be p(m-1) degrees-of-freedom

- in the choice of each Ai' ; similarly, each R; will have pm(p-—1) degrees-of-freedom
in its elements, non-uniqueness that is inherited by the elements \I';J comprising
‘I'v'.f"

We can now make the follow‘ing observations about the properties of \I',_,,,f, and

the behavior of the repair system Pg in the form of
Theorem 2. (1) The requirement that f* = {A;,A;.A;....i be a fized point of
'I'ut,ft means thal! the vector [AI ,A; ,A; ,-..] is o characteristic vector of
¥ = ,» with associated characteristic value 1.
The elements \I/;J are restricied only in that they must be selected 1o
satisfy this condition,;

(2) the perturbation metabolism{ = §A1,A2,A3,...§ will be a fized point of
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\Ifu,'f, if and only if the vector [Ai,Az,As,...]’ is a characteristic vector of

¥ = = with associated characteristic value 1,

(3) the perturbation [ will be "repaired”, i.e., \I'U,,f,(f) =" if and only if f

has the form f = f* + ker \I’D,'f.. In other words, for repair we must have

the vector [Al—A;.Az—A;,As—A; o]’ €ker ¥y o

The last two points have deep implications for the ability of the repair system
to function effectively in that they are diametrically opposed: if we want to be able
to repair many different types of perturbation f, then by (3) we need to have
ker¥, .y "large”; if ker¥ .« is large, then there are relatively "few" charac-
teristic vectors with associated characteristic values 1 implying that there are
only a "small” number of perturbations f that will be stabilized by the repair sys-
tem. The sum total is that we can either arrange to have ker ‘I',_,,,f. "large” and .
repair many disturbances, or we can have ker ‘pr,rx "small"” and be able to stabil-
ize many metabolic disturbances, but not both! The amount of flexibility we have in
choosing the ker ‘I'v,,f. is dietated by the degrees-of-freedom we have in determin-
ing P, which, as noted above, is proportional to the quantity pm(p-1), where p and
m are the number of metabolic outputs and inputs, respectively. (It should be
noted that this is the number of degrees-of-freedom after satisfying the condition

in part (1) of Theorem 2).

{ is impossible to speak any more precisely about the repair mechanism in the
absence of more specific delails about the structure of \I'U, re- SO, let us examine

the process determining ¥ R in greater detail.

wx

From the component representation of (**), we can see that

Sy

i
A.= 3 2 R 1 RIBI Ay ), (*=*")
=0

1]
o

i
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This is clearly a triangular (in fact, Toeplitz) representation as A, depends only
upon the elements A,,A,, . . ., A, in a linear, Toeplitz manner. As long as all p com-
ponents of AHJ_1 u; are nol zero, we can always find a2 solution to this equation in
the components of the matrices (R}_,] and the elements fU; !,
i=0,1,2,...,7-1; j=1,2,...,m. In fact, generically there is a pm(p-1)-parameter fam-
ily of such solutions, after we have selected some of the eniries of the R’s in order

to satisfy the requirement that

(™

i 7=
A = JZO 20 RID | - | RI®NAL ,u)), 7=12,. .

[ s

where the elements R* denote the parametrized family of solutions satisfying this

relation.

On the other hand, the induced relation ifu.'f. says that we must have
lg= o* o* Waxl [ =]
Vi3 ¥y Y3 A Aq

4 x = x
Vo1 Yoo . |l Ay 1=l A |

for some triangular choice of \P;J . In particular, this means that \I';J=O, j>iand

we have
Ap =¥l A; + Vphp + -

But, we also have the expression for A; from above involving the elements {R_,].

Setting these two expressions equal, we obtain

-

T—_
VAL + VA + o = 3 R ReBI A u), =120 (D)
j=0 {=

o

The relation (t) then enables us to pin down some of the elements {¥_, 1, k=1,2,....
The arbitrary elements in i\I':kl will usually then be dictated by the arbitrary ele-
ments in the {R{_} in order to make the ker ¥, o "large” or "small”, as the case

may be.
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One case in which we can be very specific about the structure of ¥, x ¢ is

when m=p=1. In this case we can easily solve the relation (**') for the elements

¥y 4 obtaining the triangular Toeplitz array

Rju, 0 0
Rpus+Rju; Riuy 0
¥, = [R3ug+Rzu; + Rpug+Rju;  Riug

x x
Ryup

Here there are no degrees-of-freedom in the [Ri' !, so the spectral structure of

¥ = g Is fixed.

Ezample (continued)

We can make use of the above scalar input/output case to examine the repair
mechanism for our earlier sample problem. Before we had
o* = {1,1,0,0,...1 = fu3,ui.uz,...4,

f* =11,1,2,2,3,3,...} = [A].Az.45....3,
Py = {1,-1,1,-1,...] = {R{,R;.R3....}.

Let us suppose that the metabolism £ is perturbed to the new metabolism

f=1{1,2223,3.4,4,...0 = {A.Az.4q,...,
i.e., there is a change only in the 2nd element. The system output under f is now
7 =f(o") = {1,3,4,4,5,6,7....].
Thus, the metabolic change results in a change of output from 7' = natural
numbers to the closely related sequence ¥, which differs from 7" only in the 2nd
and 3rd entries. The question is what effect this seemingly minor change has upon

the repair mechanism.

To address this issue, we compute the matrix ¥ .y which, using the require-

ment that f* must be a fixed point, gives



—
—

= identity.

Lo o B
or o
B oo

Consequently, appealing to Theorem 2 we find that the metabolism f is also a fixed
point of ‘Pm.r' with characteristic value 1; hence, the repair mechanism will pro-
cess 7 into f and thus stabilize the system at the new metabolism f. In fact, this will
be true for eny metabolic perturbation f of this system: the repair process will
immediately 'lock-on” to the new metabolism f and stabilize the system there. Thus,
for this system there is no "repair” but only an immediate stabilization at the new
metabolism.

Another important point to note about this scalar case is that we must have
the product Rfu; = 1 or 0 for the possibility of eitker repair or "locking-on" toa
new metabolism. Otherwise, we cannot ever exactly restore f* or exactly lock-on
to a new metabolism, but only obtain a scalar multiple of f* or f. Technically, of
course, this is not an important distinction; in practice, it may or may not be signi-

ficant.

Case II. 4 fluctuating environment © with fized nominal metabolism T+

and fized genetic machinery Pe .

In this situvation, we have a change of environment «w®—— w, and want to fingd

zll those environments w such that

P (@) = P.(f (@) (=1%)

implies

e = Nw).

Ir other words, we want to know when P L is1-1.

But the mairix representation of P_.is

{
(R 0 O 1
| = x 1
{Rz Ry O |
P.:} . N ‘ R;€Rpom,
| r
l ; |
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implying that Pf. is 1-1 if and only if ker R; = §0]. This will be the case if and only
if m =1 and rank R; =p. '

Here we only consider the situation when P, (%) = P. (f*(@)), since if
this is not the case, then we are back in Case I, i.e., that of a metabolic change. We
can now conclude

Theorem 8. If m=1 and rank RI =p, all environments o such that
') = " (@ aregiven by @w = o +ker f';

On the other hand, if m > 1 and/or rank R; =r <p, then any environ-

mental change of the form o =% + w*, where X is any solution of the equation

£*(x) =%, § € ker R], will be repaired by P,..

Proof. Let m =1 and rank Rl' = p. Then the operator Pf. is 1 -1 and all the
environments w such that P, () = P (f*(w") implies f* (@) = £* (@) consist of
those w satisfying @ = »° + ker £°.

Now let m >1 and/or rank Ri' =r <p, i.e. ker Rl' is non-empty. Let
¥ € ker R; and let ¥ be a solution of the equation f* (x) = ¥. Then any environmen-

tal change of the form w*— & = x + w* will be repaired by the genetic mechanism

Pf. since

Poo (f*(@)) = Poe(f7(x) +£3(07)
Poo(P) + P (70"

=0+f"=f"

Theorems 2 and 3 characterize all those metabolic and environmental changes

that can be "repaired” by a fixed genetic machinery P £ Let us now consider the

ways in which this genetic apparatus itself can change by means of replication.
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3. Linear (M,R)-Systems : Replication

The system replication map

8. : H(Q,T)—H (T, H(Q,TY)
can be formally considered in much the same fashion as just discussed for the
repair mechanism P,. However, since the functional role of 8¢ is quite different
from that of P, 2 number of interesting questions arise that are absent in the case
of repair, questions involving mutation, adaptation, Lamarckian irheritance and so
forth. We shall consider these matiers in more detail in 2 moment, but first let us

look at the formal realization of 8.

Since #. is & linear map accepting inpuls of theformf = SAi, Ao, A3....§ and
producing outputs Pr = |R,, R,,...1, we must have & representation of the action
of 8¢ as

-1
ce = ) Ugy & »
1=0
for an appropriate set of matrices ini, where the inpul e, = S(4;) and the output
¢; =Ry Arguing just as for the repzir map , we conclude that U, must have the

form
Uy = [Cyy ! Cypi * " | Cyppls I=12,.,

where each C,. € R? XmP  In what follows, we shall write U =C,.. So, just as
: ! kY

with f and P., we have the representation of . as

together with the associated Toeplitz identificalion

o G

[
o

o o

04

S

8.

<
w ™
R o
nN

(e



and the associated Hankel array

[Ul Uz Us
Uz Uz Uy

Hp ® Uz Uy Us

Note that in the above set-up, since the inputs for the replication system must
correspond to the metabolism f, while the outpuls must be the associated repair

map P, , we have the relations

€e = S(Auﬂ.) v G T Rc '
with S being the "stacking” operator. These relations are expressed in the time-
scale o of the replicator system. Here we have introduced still a third time-frame
o to distinguish between the scale t for xﬁetabolism and T for repalr. Usually, we
will have At < At < Ac.
Using the same arguments as for Pg, it can be established that if f has a
finite~dimensional realization, so does B, and the dim B, < dim f. So, in connection
with the example given in the last section, we find that if

f = {1,1,2,2,3,3.4.4....1,
P, = {1,-1.1,-1,1,-1,...},

then, after a bit of algebra,
8. = (1,-2,1,0,0,...1 .
Thus, only the terms U,, U, and U are non-zero. Note the apparent decrease in
complexity of the sequences f, P, and g, as we pass from metabolism to repair to
replication. We will return to this point below.
Applying Ho's Algorithm to B¢ yields the realization of the replicalion map g,

as
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The machinery outlined above provides a systematic procedure for generation
of z canonical replication system via Ho's Algorithm (and a repair mechanism, too)
for any metabolism, provided only that the metabolism possesses some finite-
dimensional realization; this is the only condition needed for the existence of a
finite-dimensional repair and replication process constructible directly from the
metabolic components ), T and H(Q, I') via natural” mathematical operations. In
the paper [7], Rosen suggests another construction for the replication system, one
which imposes no assumptions on the metabolism but which entzils some severe con-
ditions of another nature order to make the scheme work. Since Rosen's construc-
tion brings forth many of the aspects of replicat.iqn we want to examine, and is of

some interest in its own right, we briefly summarize his argument.

Recall that for replication we need a map 8,: H(Q, I') — H(T, H(Q, T')) pos-
sessing the property that 8. (f) = P,. Let X and Y be arbitrary sets. Then there is

a naturally defined map

-~

X : HX,Y) — Y,

given by
x () =),
for all x € X. This is the so-called "evaluation map" on H (X, Y). 4ssume thal X is
1-1. Then there exists a map X ! such that
Pl Yy —H®Y.
Now we need only set X =T, Y =H ({}, ') to obtain the desired replication map,

call it 71

571 H(Q, T) — H(L HQLTY) .
This is Rosen's construction, which mirrors the usuza! procedure for construc-
tior of the dual space of I. Note, however, that the success of this procedure for

producing a replication map hinges entirely upon the map X being 1-1. Rosen
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argues that this is a mathematical expression of the celebrated "one-gene, one-
enzyme’ hypothesis from molecular genetics, and uses this interpretation as sup-
porting evidence for his construction. Let us examine this argument in light of the

linear structures introduced above.

In our terminology, Rosen's construction involves the injectivity of the map
y: H(@ HQ, ) — HOQT)
P b— .
If ¥ is 1-1, then we have a map
571 H(Q, T) — KT KO, T)Y)

iAl' Az....} — ERI' Rz....g .

But, this means that "7"1 is equivalent to the matrix
U, 0 O

U, U, 0
Us Up Uy

Thus, such a map ¥ exist.s if and only if the matrix g, is invertible. But, since each
U, € RP®®™" g_can be invertible if and only if: 1) p =p?m?, i.e. p=m =1

and 2) U, # 0. Consequently, we see that Rosen’s scheme can work only in the
case of a single-input/single-output metabolism, and even then only if U1 # 0; this

is a very severe restriction.

In summary, the construction we have given for the replication operation
works for all finitely realizable metabolisms. The construction due to Rosen will
work for any metabolism, provided that there is only a single-input and a single-
output (assuming U; # 0). We shall see the implications of these different situa-

tions momentarily.

Within the context of replication, there are two basic questions of interest:
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1) When can environmental changes @w — o’ result in changes in the replica-

tion map 8, ?

2) If external disturbances modify g,, what kinds of changes in f can result ?

The first of these is the guestion of Lamarckian inheritance, while the second
addresses problems of mutation. We consider only the Lamarckian question here,
deferring a treatment of the second, vastly more complicated question to a future
paper.

rom the diagram

f Py Bs
0 —-T — KO D) — J( H, T,

it is evident that
Pef(w) = 1 = [Br (D] (f(w))
Suppose we have a change of environment w — w’. This results in a change
vy =f(w) — (o) =9’. Assume that
Pe(») =P () =1,
i.e. the repair mechanism is capable of correcting for the environmental change.
Then we have
(g 0 Pp) (M) = (B 0o Pp) () = Py,

implying that the replication operation is unaffected by the environmental change.
That is, Lamarckian-type changes in B; cannot occur under any type of environ-
mental change that can be corrected by the repair operation P,. Theorem 3
characterizes just what sorts of changes fall into this category.

Under Rosen’s scheme, il is shown in [7] that no environmental change of any
sort can lead to Lamarckian changes in &, a vastly stronger result but, as noted,

under extremely restrictive hypotheses.



=30 -

6. Linear (M,R)-Systems : a Summary

Our development of the realization theory for linear (M,R)-systems has been
somewhat lengthy, in order to allow considerable commentary on the basic set-up
and properties of these objects. Here we summarize the entire development in the

following diagram.

f
(Metabolism): N — T
[Ay, Ag...i
@ = fugy, Ug,... — ¥ = (Y4, ¥pu.rl) , U, € RT
0 Ugrened A € RO 1 Y2 1
t-1 .
Yy, = [AGY 1 AR L A S (w) L = 1,2,...
i{=0
. ] |
A, 0 O , Ay Ao Ag
P,
(Repair): T — H(OTD)
iRl' R?’ « .. ;
7 = (ylv }'27-) I_"-’ f ~ zAl, AZ"";
R;ERP‘?m
= o 2
A, = S RO IRE - I RPIISEGY, T=12,..
i=0
- . ~ I

—

L
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B
(Replication): H(Q, 'Y — H(T, H(D, T)

Uy Ug e
f = (A, Ay -+ ] = P, = [R, Ry..]|
U:ERpxp
oc—1
Rp = o U TUE | - ju s@), =12,
i=0
s, 0 0 -] lu, U, U
1 1 2 3
ﬁf = EUI, U2'¢1~g N U2 U1 0 st ~ Uz U3 U4

f: = ol |

Assuming that the metabolic component has a finite-dimensioned realization, so do
the repair and replication components, and these canonical realizations can all be
computed by means of Ho's Algorithm. Furthermore, the dimensions of the realiza-
tions for the repair and replication systems will be no larger than that of the
metabolic subsystem. Thus, any finitely realizeble metabolism can be a

metabolism-repair system using the constructions detailed here.

7. Discussion

The formalism given here for linear (M,R)-systems generates a long list of
questions, problems and exiensions of the classical "metabolism-only” Newtonian
framework meriting further study. High on this hst are problems concerned with
networks, mutation and nonlinearity. Here we only touch upon a few of the major

issues.

A, Networks - we began in Section 2 with a discussion of (M,R)- netwerks,

emphasizing the role of the repair mechanism as an object whose inputs generally
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come from other cells in the network. In particular, we noted that a repair com-
ponent needed to receive all of its inputs in order to function, so that if one of the
inputs was from its own associated metabolism, then the removal of that metabolism
would also incapacitate the repair subsystem. We then immediately shifted atten-
tion away from networks and considered only a single (M,R)-unit. This clearly
involves a different interpretation of how the repair and replication components
interface with the metabolism. As we have noted above, instead of imagining the
metabolism to be removed, we consider what happens when there is an environmen-
tal change or when the metabolic machinery acts, but imperfectly. These con-
siderations bring us up against the question of just how to interpret the action of

the serially-connected metabolism-repair-replication subsystems.

Naively, we could imagine that the time-scales of operation of the subsystems
are so disparate that the systems operate non-concurrently. In other words, the
metabolic subsystem first processes w into 7. When this operation is complete, the
output 7 is processed by the repair system and, finally, when the repair operation
terminates, the replication process begins. 0Of course, real cells never operate in
this fashion and this simple scheme can only be thought of as a convenient approxi-

mation when the time-scales are such that At << AT << Ac.

More realistically, the three subsystems operate concurrently with the differ-
ences in time-scales introducing time-lags into the repair and replication opera-
tions, relative to metabolic time. In this cﬁse, we must drop the mathematical fic-
tion of infinitely long input and/or output sequences and assume that @ is of finite
duration, with the metabolic output ¥ = f(w) also of finite length. In these situa-
tions, the mathematical formalism requires the full machinery of the so-called Par-
tial Realization Problem and its attendant version of Ho's Algorithm [14,16]. Since

this is a matter of some delicacy, we defer its treatment to a later paper.
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~ Returning to the problem of (M,R)-networks, as soon as we couple several
(M,R)~units as in Section 2, we immediately encounter a new set of mathematical
questions surrounding the operation and behavior of the network. For example,
each unit of the network has its own characteristic time-scales for its metabolic,
repair and replication operations. How do these time-scales interact to produce
the global network behavior ? Also, there may be transport delays in passage of
input materials from one cell to where it's needed for another’'s repair system. If
this delay is too great, the receiving repair system mey fail to operate. How can
we build this type of delay into the mathematical formalism ? Finally, we encounter
questions about the overall stability of the network. The principal questions of
concern involve the ‘'viability” or "resilience’” of the network to various types of
local perturbations. One such local disturbance might involve the breakdown of
the metabolic-repair-replication sequence of a group of cells. Another class of
disturbances would arise when we consider the dynamical behavior of an individual
cell. We know from Theorem 1 that there must exist cells that cannot be repaired
and that if there are only a "small” number of such cells, the removal of the non-
repairable cells will result in the couﬁpse of the entire network. How small is
"small” ? It's at least 1, but can it be larger ? The answer seems to involve the
connective pattern in the network. Also, how can we identify the non-
reestablishable elements ? And how resilient is the network to mutations, in which
the metabolism just changes, rather than dies ? These are typical questions of the
type we cazn only begin to adéress if we have a good mathematical formalism at hand

for characterizing the (M,R)-networks.

B Mutations and Selection - we have already noted that a change in the
replication map 8, corresponds directly to what in biology is termed a "mutation”.
It is al this point that by incorporating a selection mechanism into our set-up, we

can use the (M,R)-framework to study the evolutionary behavior of either z single
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(M,R)-cell or, more appropriately, a network of such cells. The identity

adaptation = mutation + selection

allows us to talk about various types of gozal-oriented behaviors (via directed
mutations and/or modified selection processes), thereby incorporating anticipa-

tory behavior into our set-up in a2 mathematically and physically natural fashion.

From a technical perspective, the problems of mutation and selection pose
several challenges. The first just involves tracing out the effects on the metabol-
ism of any particular change in the replication process g8, — 51:. Since 8. does
not act directly upon f, but only upon the genetic repair map P,, there is an added
level of difficully involved in ascertaining the precise relationship between §; and
f. In Nature it is usually assumed that mutations arise from random events imping-
ing upon the system from the outside; viewing the (M,R)-set-up as a metaphor for
social and behavioral phenomena, this assumption is usually not tenable. Very
likely, we will need to consider directed mutations arising either within the sys-
tem itself (by feedback, say), or imposed upon the system by an outside controller.
In the first case, we have the problem of incorporating the relevant feedback
loops into the mathematical formalism; the second case is formally equivzalent to
the case of naturaily-induced mutations, but emphasizes the importance of deter-
mining a direct path from B; to f. This represents a new type of control process,
not yet dealt with in the literature.

The second half of the above 'adaptive identity” necessitates the superposi-
tion of 2 eriterion of "goodness” upon the behavioral output of our (M,R)-network.
Formally this problem is a typical one faced in control theory: determination of the

system objective function. However, for (M,R)-networks we have a2 very different
situation insofar as the interaction between the controls and the system behavior
is concerned. First of all, there may be many different types of controls acting

simultaneously (environmental changes in w, mutations in &, changes in metabolism
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f, etc.). In addition, the primary goal of living systems is not really optimality, but
rather viability. Somehow, the selection process has to be developed to serve two
conflicting needs at once: the need to specialize to exploit a particular eco-niche,
and the need to generalize in order to remain viable under a variety of unknown,
and probably unknowzatle, environmental disturbances and random mutations. The
framework given above provides us with a vehicle for the detailed exploration of

such questions.

C. Nonlinearily - our treatment has focused upon linear metabolic, repair
and replication maps. It's fair to ask to what degree the results and conclusions
we have drawn rely upon this obvious physical fiction. The answer: it depends. At
the level of absiract input/output maps and their abstract realization by canonical
dynamical systems, there is no problem. Relatively recent results in nonlinear sys-
tem theory assert the existence of such objects under very weak hypotheses on
the input/output behavior. However, at the level of the actual construction of the
relevant state-space and dynamics (the Ho Algorithm level), much depends upon
narrowing down the Lterm "nonlinear”. For large classes of nonlinear maps (multil-
inear, polynomial, linear-analytic, piecewise-linear,...), various extensions of Ho-
type algorithms are possible; however, a general nonlinear f is just oo general for
any kind of specific construction. So, the degree to which we can actually carry
out the operations outlined in Section 3 for nonlinear behaviors depends upon the
degree to which we can precisely specify the type of nonlinearity involved and the
degree to which that nonlinearity deviates from a linear structure. A reasonably

up-to-date account of these matters is found in [15,20].

D. Applications - we should not fail to mention some of the applications to
which a decent theory of (M,R)-systems can be directed. Leaving aside the obvious

biological questions which motivated Rosen’s original introduction of the (M,R)-
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concept, there are numerous social and behavioral settings that appear to fit
nicely into the overall (M,R)-scheme. For example, in [21] there is a treatment of
technological development within a network of industrial firms using t.be (M,R)-
ideas. While this work is preliminary, il appears to hold promise for shedding light
on a number of issues currently of interest in the general area of flexible
manufacturing systems. In another direction, the biologically-based arguments we
have presented seem to be completely in line with recent trends in economics, in
which an evolutionary view of economic processes has been promoted by Boulding
[22], Nelson and Winter [23] and others as a means of breaking out of the
Newtonian-based equilibrium-centered economic paradigm. Finally, there are the
various approaches to an evolutionary view of social organizations, starting with
Spencer and the Social Darwinists, and continuing on through Spengler and Toyn-
bee and on down to the present-day work of Jantsch [24], Weidlich and Haag [25],
Axelrod [26] and others. The (M,R)-paradigm holds out the promise of offering a
formal structure within which to state and address many of the most pressing ques-

tions standing in the path of a deeper understanding of these areas.
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