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PREFACE 

This paper deals with experiments when only some average values (over time 
or space intervals) can be measured. This kind of  experiment can be encountered 
in the areas of  remote sounding o f  atmosphere, spectrometry, sample surveys, ra- 
dioactivity analysis, etc. In these cases, the optimal experimental design means 
that the choice o f  intervals o f  observation (sometimes referred to  as "windows") 
and corresponding shares o f  totally available time (or expenses) will maximize the 
final experimental information. 

Formalization of  the problem leads to  a special class of  optimization problems 
closely related to the classical "Markov's moments" problem. This paper contains 
new analytical and numerical results, together with a short but illuminative survey 
of  previous researches. 

Prof .  M.A. Antonovsky 
Environmental Program 
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DESIGN OF EXPE7UkiIENTS WITH 
SPATIALLY-AVERAGED OBSERVATIONS 

VaLeri Fedorov 

1. INTRODUCTION 
A numner 01 puDllcaLlons concerning oprimal aesign or experimenLs wnen con- 

t ro l s  belong t o  some functional space  were published in t h e  la te  1970's. Now i t  is  
evident t h a t  the  basic ideas behind these  theoret ica l  approaches  a r e  t h e  same a s  
in tradit ional  experimental  design theory  (e.g., Fedorov, Uspensky 1977; Mehra 
1974; Kozlov 1981; Pazman 1986). The differences become tangible in the  applica- 
tion of general  theoret ica l  r esu l t s  t o  specific experimental  problems. 

In this paper  these  d i f fe rences  will be  t r aced  f o r  experiments with spatially- 
averaged observations.  

The simplest s ta t is t ica l  model describing a t  leas t  a p a r t  of the  above men- 
tioned experiments is  the  foliowing one: - 

yf = firzf + r i  , i = 1.N (1) 

where +€Rm i s  a vec to r  of unknown parameters ;  ti a r e  independent random values 
with z e r o  means and finite var iances  uf (a more detailed assumption wiil be  formu- 
lated l a t e r ) ;  r s tands  f o r  transposing. Variabies zi a r e  defined by t h e  integral  

f ( v )  is  a vector  of given basic functions; h ( v )  a r e  some functions which can be  
chosen (controlled) by a n  exper imenter ,  Oshsl.  In some cases  in tegral  (2) must 
b e  a Lebesque one. Function h ( v )  descr ibes  the  physical n a t u r e  of a n  experiment 
and most typical examples will be  given below in Section 2. If the  l eas t  squares  es- 
timators 

N 
6 = Arg min z u;2)Yf +Tzi 12 * i = 1  

a r e  used t o  analyze experiments described by ( I ) ,  then the  quality of these  estima- 
t o r s  is_ defined by t h e i r  dispersion (variance-covariance) matrices 
D = E)(fi-.IPt) ( t h i t a  - T Y ~ ) ~ ] ,  where t h e  subscr ipt  r s tands  f o r  t r u e  values. I t  is  
well known (see Fedorov 1972) tha t  in r e g u l a r  cases 

where c? couid depend upon h ( t )  also. Matrix M is  usuaily called "information ma- 
t r ix .  " 

The objective of optimal experimental design i s  t h e  s e a r c h  f o r  controls h i ( v )  
providing b e t t e r  dispersion matrices or (more accurate ly)  some functions of tinem 
(see Sections 3, 4). 



2. EXPERIMENTAL PROBLEMS 

Example 1. Spectrometr ic  Experiments  
In these  experiments the  measurement tools (e.g., a spectrometer ,  a radiome- 

ter, e t c . )  have a f inite s p e c t r a l  resolution and can measure only a spectrum (of ab- 
sorbtion o r  radiation) averaged o v e r  some frequency in terval  which i s  defined by 
t h e  so-called "slit" function. Formally t h e  model of a measurement p rocess  can be  
described in t h e  simplest case  (when Beer ' s  law is still  working and t h e  spectrum i s  
linearly dependent upon concentrations of components) by t h e  following model: 
- The tota l  spectrum intensity l inearly depends upon t h e  spectrum intensities of 

any component 

where v is  f requency;  Br = (B1, . . . . r9,) i s  t h e  v e c t o r  of concentrations.  

- The observed sicnai yi i s  a l inear  functional of t h e  spectrum under  analysis 
[compare with (2)J 

where hi ( v )  is  a s l i t  function ( o r  resolution function) of t h e  i - th  observation; 
V i s  t h e  frequency in terval  avaiiable f o r  observations;  E, is  t h e  e r r o r  of ob- 
servat ion.  

iisually a sl i t  function can  b e  satisfactori ly approximated by 

- E r r o r s  E ,  a r e  assumed t o  b e  random, independent f o r  d i f fe ren t  i and t h e i r  
va r iance  a: can  depend upon hi ( v )  and upon the  time ti spent  on the  i - th  ob- 
servat ion.  In p r a c t i c e  one  can f a c e  severa l  possibilities. For  instance,  

(a) a: = c? ( b )  a: = c? [ j h , ( v ) d v ]  
v 

( C  ) a: = S t ,  ( d )  a: = a2ti [ j h i  (v )dv 1. (6) 
v 

The l a t t e r  two cases  correspond usually t o  t h e  situation when a n  exper imenter  can 
choose t h e  duration of a n  observation.  If instead of yf (these values can b e  called 
"total radiation") one considers average  values ("average radiation"): 

= yi l j h f  ( v ) d v  I-' 
v 

then the i r  var iances  will b e  correspondingly equal: 

(a) of = 02 ( b )  a: = g!Jhf ( v ) d v  1-I 
v 

o r  

( c )  a: = ( d )  a: = d?t,-'!Jhi(v)dv 
v 



and var iabies  zi wiii be  defined by the  following formuiae: 

In what follows below, the  notation y i  will be  used everywhere  and the  s t r u c t u r e  of 
var iances  of and vaiues zi will define t h e  case.  

Example 2. Remote Sounding  o f  Atmosphere 
The sate l l i te  measurements of t h e  outgoing radiance in t h e  i n f r a r e d  spectrum 

band become rout ine  f o r  d is tant  r e t r i eva l  of d i f ferent  physical pa ramete rs  of the  
atmosphere ( fo r  instance,  t h e  ve r t i ca l  profi le of t empera tu re ,  humidity, ozone 
concentration,  e tc . ;  see Condratjev and Timofeev 1970, S t rand  and Westwater 1968, 
Twomey 1966). In a simplified form, the  measured radiation u ( v )  depends upon the  
ver t ica l  t empera tu re  profi le T ( z ) ,  where z i s  a n  alt i tude,  and the  transmittance 
function of t h e  a tmosphere  p(v  , z ) :  

where Z corresponds t o  the  al t i tude of a measurement tool; B ( v  ,T)  is  t h e  Planck's  
function. Both p(v  , z )  and B ( v  ,T) are assumed t o  b e  known. 

The most crucia l  assumption i s  t h e  possibility Lo approximate t h e  function 
T ( z )  by some parametr ic  function T(z.19) with subsequent linearization of t h e  in- 
Legral equation in t h e  vicinity of an initial estimate of t h e  t empera tu re  profi ie 
T ( z )  s o  t h a t  

and integration witin a weight function h ( v )  o v e r  feas ible  frequency band V leads 
t o  t h e  model descr ibed by ( I ) ,  (2), (6) o r  (7) and (8). 

3. OPTIMIZATION PROBLEMS IN EXPERIMENTAL DESIGN PROBIJW 

Following Section 1, l e t  us  t r y  t o  formalize a design problem f o r  experiments 
from Section 2.  A s  with tradit ional  design theory (see  above cited publications), 
t h e  set of values 

where t h e  weights pi are t h e  s h a r e s  ni / N  of total  number of measurements ( o r  
the  s h a r e s  ti / T of to ta l  Lime available), which have t o  be  done under  t h e  condi- 
tions zi ( o r  at the  supporting points z i ) ,  will b e  called a design (of a n  experiment). 
In the  tradit ional  case ,  t h e  set XERm of feasible controls (operabil i ty region) is  
explicilly given. In t h e  considered case ,  X i s  the  mapping of a feasible set H (in 
some functional space)  of controls  h i  (v ), and usually t h e  construction of X (say, 
i t s  boundaries) is a problem of g r e a t  difficulty. Therefore ,  i t  could b e  useful  t o  
consider designs in t h e  original  s p a c e  aiso: 



From (3) i t  is  evident t h a t  f o r  model ( I ) ,  (2) the  information matrix (and subse- 
quently dispersion matrix) depends upon t h e  location of the  supporting points zi, 
and if a t  some points severa l  measurements ni are done,  then on functions hi also,  
but does not depend upon the  resu l t s  of measurements. In o t h e r  words, the  infor- 
mation matrix M depends upon a design (, (o r  (,,). 

Due t o  this f ac t ,  the  design problem can be  formulated as t h e  following minimi- 
zation problem 

(' = A r g  min @@(()I 
t 

where can nave both possible subscr ipts .  The function @ (optimality c r i t e r i a )  
descr ibes  the  objectives of an exper imenter .  

If t h e  whole set of pa ramete rs  p r e s e n t  some in te res t ,  then i t  i s  reasonable  t o  
minimize t h e  volume of t h e  ellipsoid of concentration which is  propor t ional  t o  
iM((); -'I2 and one can use  @[MI = M ( ( )  1 -'/'(everywhere / A  I means the  de te r -  
minant of matrix A). 

If i t  is  necessary  t o  know a behaviour of some l inear  function of T9: +?(z)T9, 
then i t  is  reasonable  t o  minimize the  average  var iance of th is  function o v e r  some 
region of in te res t .  In th is  case  

Ra ther  detailed l i s ts  of the  most popular optimality c r i t e r i a  can b e  found in 
Fedorov 1972; Silvey 1980. 

In t h e  fu tu re  i t  is  reasonable  t o  distinguish between two types  of designs: 
continuous and d i s c r e t e  ones.  

In t h e  f i r s t  case ,  weights pi can vary  continuously between 0 and 1. This 
t akes  place  when the  weight is  propor t ional  to the  time of measurement. We can  go 
f u r t h e r  and assume t h a t  any probabil ist ic measure (, = ( ( d z )  or tH = ( ( d h )  
descr ibes  some design. In experimental  p rac t i ce ,  i t  could b e  impossible t o  real ize ,  
f o r  instance,  continuous measures.  But fortunately f o r  any design with continuous 
measure,  i t  i s  possible to find the  design with t h e  same information matrix,  but with 
measure concentra ted in the  final  number of supporting points. I t  i s  easy t o  see 
tha t  in t h e  considered si tuation 

In what follows below, the  subscr ip t  z o r  h will b e  omitted without any comments if 
i t  will not lead t o  confusion. 

Assuming tha t  @(NM) = a(N)*(M) (and i t  i s  t r u e  f o r  t h e  majority of optimality 
c r i t e r i a  used in p rac t i ce )  minimization problem (11) can be  replaced by 

#' = A r g  min *[M (() 
t 

(12) 

where no values depend upon the  toLa1 time o r  the  to ta l  number of available meas- 
urements. This means t h a t  a continuous optimal design does not depend upon them 
also. 



This useful p roper ty  i s  not valid in the  d i sc re te  c a s e ,  

4. CONTINUOUS OPTIMAL DESIGNS 
For  t h e  sake  of simplicity in th is  section and all  subsequent sections only t h e  

case  when 

*[Mi  = M - ' 1  and (' = A r g  m a x M I  
t 

will be  considered.  Other  c r i t e r i a  can b e  handled in a similar way (see Fedorov 
1980; Silvey 1980). I t  i s  most convenient t o  start with continuous version of 
designs (, defined by (9). Then t h e  ceiebrated Kiefer-Woifovitz equivaience 
theorem (see  Fedorov 1972) can b e  used and only one assumption i s  necessary  f o r  
i t s  fulfillment: 

(a) Operability region X i s  compact 

Theorem 1 

(1) There  exis ts  a n  optimal design (; containing no more than m ( m + 1 ) / 2  
supporting points. 

(2) The following problems are equivalent: 
- maximization of / M ((, ) I .  
- minimization of max X ( z ) d  ( z  ,(,), 

zEX 
- m a x X ( z ) d ( z . ( , ) = m ,  

z4Y 
where X(z,) = mi2and  d ( z , ( , )  = Z ~ M - ~ ( ( , ) ~ .  

(3) A t  t h e  supporting points of a n  optimal design (; t h e  function d ( z  ,(,) ap- 
p roaches  i t s  maximum. 

(4) The set of optimai designs is  convex. 

In a number of comparatively simple situations Theorem 1 gives a chance t o  
const ruct  optimal design analytically. For  more compiicated models i t  helps  t o  
develop numerical p rocedures  and t o  understand some general  f ea tu res  of optimal 
designs. 

For  instance,  if one manages t o  prove t h a t  operabil i ty region X is  compact. 
then he  can b e  s u r e  t h a t  (see point (3) of the  theorem) all  supporting points of a n  
optimal design are some boundary points of X. 

Example 1 
Let 

f T ( v )  = ( 1 . ~ ) .  v < I ,  *(M) = I M I - ' " ,  

The set X can be  easily const ructed because of the  simplicity of in tegral  (2) and i t s  
boundary i s  descr ibed by the  following curves:  



From point 2 of Theorem 1 i t  follows that  t h e  supporting points of a n  optimal 
design must coincide with the  points where the  ellipse zrM-l((;)z is  tangent to X. 
This ellipse must have t h e  l eas t  a r e a  ( o r  IM I )  between all  ellipses containing X. 
The simple calculations show tha t  the  points with coordinates (2;0), 
( 6 - 1 .  2 6 - 4 ) .  ( 6 - 1 ,  4 - 2 6 )  could be  supporting ones. 

From symmetry of X and point 4 of Theorem 1 i t  follows tha t  the  weights of t h e  
two las t  points must be  equal. Straightforward maximization of t h e  determinant 

i M i gives 

Finally, from t h e  simple integral  equations defined at t h e  beginning of the  example 
i t  is  easy t o  find t h a t  

with t h e  information matrix 

For  comparison of the  tradit ional  design with two A-windows at t h e  points v =*I, 
t h e  same matrix equals 

This means t h e  r a t i o  of s tandard e r r o r s  will be  0.5A ( f o r  GI) and 5 . 5 ~ ~  ( f o r  Z,). So 
t h e  optimal design i s  essentially more effective than t h e  tradit ional  approach ,  
especially f o r  small A. 

Example 2. 

The charac te r i s t i c s  of optimal designs ( for  instance, the  location of suppor t -  
ing points) essentially depend upon t h e  chosen basic function. To illuminate this,  
l e t  us consider t h e  regress ion problem formulated in t h e  previous example with a 
new basic function f l ( v )  = ( s innv ,  cosnv) .  I t  can b e  proved t h a t  f o r  any s l i t  func- 
tion h ( v )  t h e  vec to r  (Krein, Nudelman 1973. VII:3) 

must belong t o  t h e  c i r c l e  {x:z: + zZ2 ~ 2 1  

The optimal designs f o r  th i s  operabil i ty region and response function 
v rz  = 1 9 ~ 2 ~  + v2z2  can b e  easily constructed.  For instance,  optimal design can 
consist of t h e  supporting points coinciding with al l  ve r texes  of any regu la r  polygon 
refined to t h e  c i r c l e  X and t h e i r  weights must b e  equal. One of t h e  simplest optimal 
designs is  

To find out  t h e  corresponding optimal design in sl i t  function space  t h e  in tegral  
equations 



1 1 

zii = Jhi ( v ) s i n r v d v  and zit = Jht ( v ) c o s r v d v  
-1 -1 

must be  solved. One of the  solutions is  

and 

I t  i s  worthwhile t o  note  tha t  the  widths of s l i t  function "windows" have the  same 
o r d e r  as intervals  of typical variat ions of basic functions. 

5. NUMERICAL METHODS 
If assumption (a) holds and t h e r e  is  a way t o  find X then the  following numeri- 

c a l  can be  used f o r  optimal design construction (Fedorov 1972): 

Cs = (1-a, )C, + a, t (z ,  ) (13) 

where t ( z s )  is  the  design concentra ted at the  single point 

zs = A r g  maxX(z)d ( z  .(,) 
S E X  

(14) 

where 

d (2  . t s )  = z r M  ) z  

The sequence la, j can  be ,  f o r  instance: 
s =' X(z,)d (z, , ts)* 

(a) z a , = -  , lim a, =O ( b )  as = 
s =o s -.- ~ ~ < ~ , ) d ( ~ , , t ~ ) - l ~ m  

Both of them guarantee  tha t  

lim M(C)l =min  M(C)l 
2 -.' t 

More sophist icated versions of th is  method are discussed in Ermakov 1983; 
Fedorovand Uspensky1975. 

In spi te  of t h e  formal simplicity of i tera t ive  p rocedure  (13), (14), i t s  p rac t i ca l  
usefullness i s  r a t h e r  res t r i c ted :  one must find out  t h e  way t o  const ruct  X before  
using th is  p rocedure .  

P rocedure  (13), (14) can  be  replaced by equivalent p rocedures  in the  space  
of functions h ( v ) .  For  tha t  one has  t o  rep iace  t h e  vec to r  X1"(z)z with the  vec- 
t o r  [ h ( v ) f ( v ) d v  ( for  cases (a),(c)  from (6) and (a)), and with the  vec to r  

v 

Jh (v)f (V / 4 7  ( for  cases (b).(d) from (6) and (8)) 
v 

For  t h e  sake  of simplicity, t h e  i tera t ive  p rocedure  will be  considered f o r  the  
f i r s t  cases when i t  can  be  presented in the  following form: 



t,.l = (1-a,)(,  +a , t (h , ) .  

h, = Arg max d ( h  ,( , ) ,  
h€H 

where 

d ( h , [ , )  = jjh(~)h(v~)f~(v)M-~(t,)f(v')dvdv', 
v v 

Unfortunately, maximization problem (17) is more complicated than (14). One o f  
the simplest could be the following one: 
- discretisize the set V (and therefore VxV' also), say with interval A; 
- collect all points v j  on the corresponding grid which positively contribute to  

the sum 

d ( ~ , )  = z f ( ~ ~ ) ~ - ~ ( [ , ) f ( v , , )  (18) 
jd' 

- put h ,  ( v j )  = 1 i f  v j  was chosen on the previous stage; otherwise h , ( v j )  = 0 
- the fulfillment o f  the inequality (which is corollary to Theorem 1 )  d (t,h,)zzm 

tests that h ,  can be used in (16). 

This procedure is admissible for applications, for  instance, when V is one- 
dimensional and that is the case for a number o f  applied problems (see Section 2) .  

N o t e  1. 
Iterative procedure (16) will converge in sense (15) ( f o r  both original and 

discrete versions) i f  instead o f  (16) only the inequality 

d(h, , t , )>m 

will take place on every step. 

N o t e  2. 

The sequences i j  ! and f j ' j  must be identical. Therefore i f  j = j o  is included in 
sum ( l a ) ,  then j '= jo  must be included also. 

N o t e  3. 

When the slit function h ( v )  can change its value at the modes o f  A-grid, then 
one can tell about A-optimal designs (ti) which can be considered as some approxi- 
mation o f  optimal designs defined by (12). The iterative procedure (16),  (17) and 
(18) guarantees that 

The idea o f  A-optimal designs can be advanced further. As it was observed in 
Example 2,  the widths o f  slit function windows were related to the intervals o f  vari- 
ation o f  basic functions. Therefore, it is reasonable to  decompose the set V into a 
comparatively moderate number o f  subsets Aj ( j = G ) ,  for  instance, coinciding 
with the most typical fluctuations o f  basic functions. Assume that integrals 



can be  calculated (numerically or analytically). Then the  operabil i ty region X can 
b e  approximated by XA with elements 

where F=(F1 ,..., F, ), u = ( u l ,  . . . . uk ) c U A  and u j  = 1, if h ( v ) = l ,  v €Aj, and 
u . =0; otherwise,  j =l.k. Observing tha t  drz =grPu. =o,u and t h e  information ma- J 
t r i x  equals 

where ( ( d u )  descr ibes  a design f u  with supporting points in UA , one can conclude 
tha t  r ank  F must b e  equal t o  m (number of estimated parameters) .  Therefore ,  t h e  
decomposition of V should contain at leas t  m subsets  A j  ( k a m ) .  

When k =m and of course  IF I +O, then 1 M i =IF 1 1 M, 1 and the  design problem 
is reduced to the  maximization of 1 M, 1 .  The l a t t e r  problem coincides with t h e  rou- 
tine problem of "optimal weighting," (See Ermakov 1983) 

If k >m then i t e ra t ive  p rocedure  (13),(14) can b e  used with the  repiacement 
k 

of the  vector  A ~ ' ~ ( Z ) Z  with t h e  v e c t o r  Pu. [or  Pu. / / u , ;  compare with comments 
j =1 

t o  (16), (17)]: 

u, = A r g  max u F T M  -'((,)Fu. 
U 

(20) 

The maximization probiem (20) is  a d i s c r e t e  one and at every s - th  s t age  i t  demands 
no more than 2' calculations of uFrM-'((,)Fu . 

6. STRUCTURE OF SLIT FUNCTlON 
In t h e  previous sections,  i t  w a s  assumed t h a t  t h e  s l i t  function can equal 1 or 0.  

Some "physical" arguments were behind this assumption. The compactness of oper-  
ability region X (see  Section 4) w a s  a l so  a n  essential  assumption which was done t o  
slimplify al l  final resul ts .  If one re fuses  this assumption, then instead of optimal 
designs, so-called optimal sequences (see,  f o r  example. Ermakov 1983) must be  
considered and tha t  leads t o  some technical  difficulties. The following resu l t s  
(which are s t r a i ~ h t f o r w a r d  coro l l a r i es  of well-known resu l t s  from classical  ap- 
proximation theory ;  see ,  f o r  example, Karlin and Studden 1966, Chapter  VIII) il- 
luminate t h a t  both above mentioned assumptions a r e  not very  res t r ic t ive .  For  t h e  
s a k e  of simplicity, w e  consider a one-dimensional case  (V€R1): 

Assume now that :  

(a)  OSh ( v ) S l ,  f o r  any v € (a  , b )  

(b) Functions f ( v )  consti tute a Tchebysheff system on t h e  open in terval  (a ,b) .  
where a and b are possibly infinite. This assumption r e q u i r e s  t h a t  t h e  func- 
tions J' ( v )  b e  continuous on (a,b) and t h e  determinants 

J '~( t rn)  I 
. . .  J '~ ( t rn )  I 
. . .  ' I 

I ' 
. . . ' I  

' I 
i.rm(t,) f m ( t z )  . . . J'm (tm 1 I - 

t , € ( a . b ) ,  i = l , m  

a r e  positive. 



Theorem 2. 

The operabil i ty region 
b 

x = lz = f f ( v ) h ( v ) d v :  O s h ( v ) s l j  
0 

is  a c o m ~ a c t  convex set in Rm . 

From Theorem 1 i t  is  c l e a r  tha t  a l l  supporting points of any optimal design 
must be  boundary points of X. Therefore ,  only these  points had t o  be  considered in 
t h e  previous sections,  and f o r  them t h e  following resu l t  t akes  place: 

Theorem 3. 
The necessary  and sufficient condition f o r  z t o  be  a boundary point of X i s  the  

fulfillment of t h e  condition 

h ( u )  [ l - h ( v )  j = 0 (21) 

almost everywhere  in (a ,b) .  

Let h ( v )  be  a function satisfying (21) and le t  I ( z )  be  t h e  number of s e p a r a t e  
nondegenerate intervals (windows of a sl i t  function) where h ( v ) = l  with t h e  special  
convention t h a t  a n  in terval  whose c losure  contains point a o r  b,  i s  counted as 1/2 .  
For  any point z CY. I' ( z )  stands f o r  the  l eas t  possible I ( z )  ( i t  could b e  severa l  dif- 
f e r e n t  functions h ( v )  g i v i n ~  the  same z ) .  

Theorem 4. 

A necessary  and sufficient condition tha t  z belongs t o  t h e  boundary of X i s  
tha t  I ' ( z ) s ( m  -1)/2.  Moreover, every  boundary point corresponds t o  a unique 
h ( u )  with I ( z ) = I ' ( z ) .  

Theorems 3 and 4 allow f o r  t h e  development of a comparativeiy simple algo- 
rithm of optimal design construction.  

Let ;=(a .v l , . .  . .urn b ) ,  where a i v l S  . . . Sum - lsb .  According t o  Theorem 4, 
t h e r e  exis t  optimal designs with al l  supporting points (in the  operabil i ty region H )  
which have t h e  following s t ruc tu res :  

a n d h ( v )  = 1 - h ( v ) .  

That aliows f o r  t h e  modification of the  i tera t ive  p rocedure  (16).(17) Lo t h e  
p rocedure  with maximization in s p a c e  which dimension is  less  o r  equal (m - l ) ,  
where m is a number of basic functions: 

h, = Arg max d (z7,(,),  7=1,2 ,  (23) 
7.1 



and 

P r o c e d u r e  (22),(23) in a computational sense coincides with i tera t ive  pro- 
cedures  used f o r  tradit ional  design problems and can be  handled with software 
deveioped f o r  t h e  latter one (see Fedorov. Uspensky 1975). 
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