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PREFACE

This paper deals with experiments when only some average values (over time
or space intervals) can be measured. This kind of experiment can be encountered
in the areas of remote sounding of atmosphere, spectrometry, sample surveys, ra-
dicactivity analysis, ete. In these cases, the optimal experimental design means
that the choice of intervals of observation (sometimes referred to as "windows')
and corresponding shares of totally available time {(or expenses) will maximize the
final experimental information.

Formalization of the problem leads to a special class of optimization problems
closely related to the classical "Markov's moments"” problem. This paper contains
new analytical and numerical results, together with a short but illuminative survey
of previous researches.

Prof. M.A. Antonovsky
Environmental Program
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DESIGN OF EXPERIMENTS WITH
SPATIALLY-AVERAGED OBSERVATIONS

Valeri Fedorov

1. INTRODUCTION

A number ol pubilcations concerning opumai aesign ol experiments when con-
trols belong to some functional space were published in the late 1970's. Now it is
evident that the basic ideas behind these theoretical approaches are the same as
in traditional experimental desipn theory {(e.g., Fedorov, Uspensky 1377, Mehra
1874; Kozlov 1881; Pazman 1986). The differences become tangible in the applica-
tion of general theoretical results Lo specific experimental problems.

In this paper these differences will be traced for experlment.s with spatially-
averaged observations.

The simplest statistical model describing at least a part of the above men-
tioned experiments is the foliowing one:

yg =¥z ve,, L =1N (1)
where 9€R™ is a vector of unknown paramet.ers £; are independent random values
with zero means and finite variances cri {a more detailed assumption wiil be formu-
lated later); T stands for transposing. Variabies x; are defined by the integral

= [rwh (wiav . (2)
4

F{v) is a vector of given basic functions; h{v) are some functions which can be
chosen {controlled) by an experimenter, 0sh <1, In some cases integral (2) must
be a Lebesque one. Function A(v) describes the physical nature of an experiment
and most typical examples will be given below in Section 2. If the least squares es-
timators

. N
¥ =Arg min Y o, %fy, =97z, |?
3 4=
are used to analyze experiments deseribed by (1), then the quality of these estima-
tors is defined by their dispersion (variance-covariance) matrices
D =E}(%—v,) (theta —=9¥,)7|, where the subscript 7 stands for true values. It is
well known (see Fedorov 1972) that in regular cases

- N
Dr=M=) o fz(h))x"(h,) (3)
i=1
where o< could depend upon A (t) also. Matrix M is usuaily calied "information ma-
trix.”
The objective of optimal experimental design is the search for controls h.i'('v)

providing better dispersion matrices or (more accurately) some functions of them
(see Sections 3, 4).



2. EXPERIMENTAL PROBLEMS

Example 1. Spectromeiric Experiments

In these experiments the measurement tools (e.g., a spectrometer, a radiome-
ter, etec.) have a finite spectral resolution and can measure only a spectrum (of ab-
sorbtion or radiation) averaged over some frequency interval which is defined by
the so-called "slit” function. Formally the model of a measurement process can be
described in the simplest case (when Beer's law is still working and the spectrum is
lineariy dependent upon concentrations of components) by the following model:

- The total spectrum intensity linearly depends upon the spectrum intensities of
any component

n(v, %) = 37f (v)
where v is frequency; ¥7 = (%, ...,9,y) is the vector of concentrations.
- The observed signal y,; is a linear functional of the spectrum under analysis

[compare with (2)]

Yy =f"-’(”"'3)h1 (vidv +&; (4)
14

where h, (v) is a slit function (or resoiution function) of the i-th observation;
V¥ is the frequency interval available for observations; g, is the error of ob-
servation.

Usually a slit function can be satisfactorily approximated by

r Vi SY Sy + 4 —
L. " T i=TE 5)

hi‘ - 10, 'U('Uij -7 if + Aj

- Errors ¢; are assumed to be random, independent for different i and their
variance o‘f can depend upon A, (v) and upon the time f; spent on the i-th ob-
servation. In practice one can face several possibilities. For instance,

(@) af=c® (b) af =d?[fh(v)dv]
V .
(c) ef =d*t; (@) of =c?t, [fhy(v)dv] (6)
14

The latter two cases correspond usually to the situation when an experimenter can
choose the duration of an observation. 1If instead of y; (these values can be called
"total radiation™) one considers average values ("average radiation™):

Ty = vy | fhy(w)avi™
y

or

¥y =y bty fhy(w)dw ™t (7)
14

then their variances will be correspondingly equal:

{a) cw'f:cr2 &) a’f=o‘zifh.i(v)dvi"1
14

or

() of = *t,t  (d) of = Pt fh (v)dvi™? (8)
14
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and variabies z; wiil be defined by the following formulae:

z, =_{f(v)hicv)dux{hiw)dv4‘1

or

4

; = _ff (U)hi ('U)d‘U iti J’.hi ('U )d‘U *—..
4 14

In what follows below, the notation ¥y, will be used everywhere and the structure of

variances o’f and vaiues z,; will define the case.

Example 2. Remote Sounding of Atmosphere

The salellite measurements of the outgoing radiance in the infrared spectrum
band become routine for distanlL retrieval of different physical parameters of the
atmosphere (for instance, the vertical profile of temperature, humidity, ozone
concenitration, etec.; see Condratjev and Timofeev 1970, Strand and Westwater 1968,
Twomey 1966). In a simplified form, the measured radiation u (v ) depends upon the
vertical temperature profile T'(z), where z is an altitude, and the transmittance
function of the atmosphere p(v ,2z):

Z
w{v)=Biv,T{O)p(v,0) + IB?'U.T(ZH 52(‘5vz,z)dz
0

where 7 corresponds to the altitude of a measurement tool; B{(v,T) is the Planck's
function. Both p(v,z)and B(v,T) are assumed to be known.

The most crucial assumption is the possibility Lo approximale Lhe function
T{z) by some parametric function T{z,9) with subsequenl linearization of Lhe in-
tegral equation in the vieinity of an initial estimate of Lthe temperature profile
T{(z) so that

Z -
w(w) 977 (v) = 9TV 0)p(v.0) + [ W(w,2) 22 E) gy
0

and integration with a weight function A (v ) over feasible frequency band V leads
to the model described by (1), (2), (6) or (7)and (B8).

3. OPTIMIZATION PROBLEMS IN EXPERIMENTAL DESIGN PROBLEM

Following Section 1, let us try to formalize a design problem for experiments
from Section 2. As with Lraditional design theory (see above cited publications},
the set of values

(. =lpyzy i, Zpy =1, (9)

where the weights p, are the shares n; /N of tolal number of measurements (or
the shares £, /T of Lotal Lime available), which have to be done under the condi-
tions z; (or at the supporling poinis z; ), will be called a design (of an experiment).
In the traditional case, the set X€R™ of feasible conirols (operability region) is
explicilly given. In the considered case, X is the mapping of a feasible set # (in
some functional space) of controls A, (v), and usually the construction of X (say,
its boundaries) is a problem of great difficulty. Therefore, it could be useful to
consider designs in the original space aiso:

£, = Epi-h-f_('v)f (10)
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From (3) it is evident that for model (1), (2) the information matrix (and subse-
quently dispersion matrix) depends upon the iocation of the supporting points z,,
and if at some points several measurements n, are done, then on functions k,; also,
but does not depend upon the results of measurements. In other words, the infor-
mation matrix M depends upon a design £, (or £,).

Due to this fact, the design problem can be formulated as the following minimi-
zation probiem

¢ =Arg m:n S 1M (¢)) {11)

where £ can have both possible subscripts. The function ¢ (optimality criteria)
describes the objectives of an experimenter.

If the whole set of parameters present some interest, then it is reasonabie to
minimize the volume of the ell_ipsoid_of concentration which is proportional to
1M (&) ~1/2 and one can use M) = |M(&E)] _1/2(everywhere jA ! means the deter-
minant of matrix A).

If it is necessary to know a behaviour of some linear function of ¥: ¥ (z )%,
then it is reasonable to minimize the average variance of this function over some
region of interest. In this case

o[M] = [ (2 (&)v(z)dz
Z

Rather detailed lists of the most popular optimality criteria can be found in
Fedorov 1972; Silvey 1980.

In the future it is reasonable to distinguish between two types of desipgns:
continuous and discrete ones.

In the first case, weights p, can vary continuously between 0 and 1. This
takes place when the weight is proportional to the time of measurement. We can go
further and assume that any probabilistic measure ¢, = &dz}) or &g = &dh)
describes some design. In experimental practice, it couid be impossibie to realize,
for instance, continuous measures. But fortunateiy for any design with continuous
measure, it is possibie to find the design with the same information matrix, but with
measure concentrated in the final number of supporting points. It is easy to see
that in the considered situation

M(E) =N[zz ¢(dz) = NM(¢;)
X

or

H(t) =Nfz(h)z™(R)E(ah) = NM(tg)
H

In what foliows below, the subscript £ or 2 will be omitted without any comments if
it will not lead to confusion.

Assuming that #(NM) = a(N)¥(M) (and it is true for the majority of optimality
criteria used in practice) minimization probiem (11) can be replaced by

£ = Arg min ¥iM ()] (12)
¢
where no values depend upon the toizl time or the total number of availabie meas-

urements. This means that a continuous optimal design does not depend upon them
also.
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This useful property is not valid in the discrete case.

4. CONTINUDUS DPTIMAL DESIGNS
For the sake of simplicity in this section and all subsequent sections oniy the
case when

YiMi= M7 and ¢ =Arg max|¥|
¢

will be considered. Other criteria can be handled in a similar way (see Fedorov
1980; Silvey 1880). It is most convenient to start with continuous version of
designs ¢, defined by (9). Then the celebraled Kiefer-Wolfovitz equivaience
theorem (see Fedorov 1972) can be used and only one assumption is necessary for
its fuifiliment:

(a) Operability region X is compact.

Theorem 1

(1) There exists an optimal design f; containing no more than m(m+1)/2
supporting points.

(2) The following problems are eguivalent.:
- maximization of |HM(£.)],

- minimization of max A (z)d (z,£;).
TEX
- max A {z)d (x, =m,
max ) £)

where A(z;) = 01—2 and d(z.¢,) =z M (¢ )z,
(3) At the supporting points of an optimal design .{_.; the function d (z ,£{,) ap-
proaches its maximum.
(4) The set of optimal designs is convex.

In a number of comparatively simple siluations Theorem 1 gives a chance io
construct optimal design analytically. For more compiicated models it helps to
develop numerical procedures and to understand some general features of optimal
designs.

For instance, if one manages to prove that operability region X is compact,
then he can be sure that (see point (3) of the theorem) ail supporting points of an
optimal design E; are some boundary points of X.

Example 1
Let
fTw) =), |v|sil, ¥M)=|M|1/Z
1 1

v(z) = const, z, = fh,(v)dv. z, =fvh. (v)dv
-1 -1

The set X can be easily construcied because of the simplicity of integral (2) and its
boundary is deseribed by the following curves:

z,= :tf% ~(z,-1)2/ 2}, Oz <2



-6 -

From point 2 of Theorem 1 it follows that the supporting points of an optimal
design must coincide with the points where the ellipse £™H '1(#,_‘.;).: is tangent to X.
This ellipse must have the least area (or |M |) between all ellipses containing X.
The simple caleulations show that the points with coordinates (2;0),
(V5-1, 2v5—~4), (V5-1, 4—-2V5) could be supporting ones.

From symmetry of X and point 4 of Theorem 1 it follows that the weights of the
two last points must be equal. Straightforward maximization of the determinant
(M| gives

P, =p;=05(v5-1)"1, p, =1-2p,

Finally, from the simple intepgral equations defined at the beginning of the example
it is easy to find that
[ . . [l vevh-2 R ];
: _rien=1 W=l J3Vee RI@ITRA iy
l 0.19 D.405 0.405

with the information matrix
_12 0
M= {0 0.18}

For compariscn of the traditional design with two A-windows at the points v=+1,
the same matrix equals

f

M=1A 0]

0 AZI'

This means the ratio of standard errors will be 0.5A {for 131) and 5.54% {for 132). So
the optimal design is essentially more effective than the traditional approach,
especially for small A.

Example 2.

The characteristics of optimal designs (for instance, the location of support-
ing points) essentially depend upon the chosen basic function. To illuminate this,
let us consider the regression problem formulated in the previous example with a
new basic function f7{v) = (sinnmv, cosmv). It can be proved that for any slit func-
tion & {v) the vector (Krein, Nudelman 1973, VII:3)

1 1
zT = Ifh.(u )sinTvdvy fh(v JeosTudvy §
-1 -1

must belong to the circle L’(’:zl2 + z% =21{.

The optimal designs for this operability region and response function
vz = Y,T, + vz, can be easily constructed. For instance, optimal design can
consist of the supporting points coinciding with all vertexes of any regular polygon
refined to the circle X and their weights must be equal. One of the simplest optimal
designs is

¢ = f(0;2) (2:0)]
z = 1 05 05

To find out the corresponding optimal design in slit function space the integral
equations



1 1
Ty = fh.i (v)sinmvdvy and =z, = fh't (v)cosmudy
-1 -1

must be solved. One of the solutions is

s {1, —0.5=v=<0.5,

h1(W) =10, v<—0.5, v>05,
and
nr =10, —0.55vs0.5,
2 1, v<—0.5, v>0.5.

It is worthwhile to note that the widths of slit function "windows" have the same
order as intervals of typical variations of basic functions.

2. NUMERICAIL. METHODS

If assumption (a) holds and there is a way to find X then the following numeri-
cal can be used for optimal design construction (Fedorov 1972):

fs v = (A—ag)é; + agb(zg) (13)
where £(z.) is the design concentrated at the single point

z, = Arg Tg?\(z)d (z.&g) {(14)
where

diz.t) =x"M ez

Mz a M ez x TH L)

M = (L—a )1 Mt
(b5 41) = (X=as) 1—ag +A(zg)agd (zg. &5 ) (¢5)
The sequence lag { can be, for instance:
5= ?\(zs)d(xs.{s)-—m
a a, = ,  lima,=0 b =
( ) SE=0 s L Ml o s ( ) as U\st)d(xsufs)_lim
Both of them guarantee that
lim |[M{&)1 = m;n | M (&) (15)
5 o

More sophisticated versions of this method are discussed in Ermakov 1983;
Fedorov and Uspensky 1975.

In spite of the formal simplicity of iterative procedure (13), (14), its practical
usefullness is rather restrictea: one must find out the way to construct X before
using this procedure.

Procedure (13), (14) can be replaced by equivalent procedures in the space
of functions h (v). For that one has to replace the vector AL 2z )z with the vec-
tor fh. (v)f(v)dv (for cases (a),(c) from (6) and (B)), and with the vector

¥V
fh. (vif(v)dv/  / f h(v)dv (for cases (b),(d) from (6) and {B)).
4 ¥V

For the sake of simplicity, the iterative procedure will be considered for the
first cases when it can be presented in the following form:
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§5 41 = (I—ag)és + agé(hy), (16)
hg = Arg ng(h,és), (17)

where

d(h.&) = | [h@)h@w)r ()M ()7 (v)dvdy".
VV

Unfortunately, maximization problem (17) is more complicated than (14). One of
the simplest could be the following one;

- discretisize the set V (and therefore VXV alsa), say with interval A;

- collect all points vy on the corresponding grid which positively contribute to
the sum

d(é5) = 3 f ()M () (vy) (18)
5Je
- put A, (vj) =1 if vy was chosen on the previous stage; otherwise A g (vj) =0

- the fulfillment of the inequality (which is corollary to Theorem 1) d (é,hs)=m
tests that A; can be used in (16).

This procedure is admissible for applications, for instance, when V is one-
dimensional and that is the case for a number of applied problems (see Section 2).

Note 1.
Iterative procedure (1B8) will converge in sense (15) (for both original and
discrete versions) if instead of (16) only the inequality
d(hg.t5)>m

will take place on every step,

Note 2.

The sequences }j{ and {7’} must be identical. Therefore if j =7, is included in
sum (18), then 7'=j, must be included also.

Nate 3.

When the slit function A{v) can change its value at the modes of A-grid, then
one can tell about A-optimal designs (ED which can be considered as some approxi-
mation of optimal designs defined by (12). The iterative procedure (16), (17) and
(18) guarantees that

lim M (g) | = M)

The idea of A-optimal designs can be advanced further. As it was observed in
Example 2, the widths of slit function windows were related to the intervals of vari-
ation of basic functions. Therefore, it is reasonable to decompose the set V into a
comparatively moderate number of subsets Aj (7 =1,k), for instance, coinciding
with the most typical fluctuations of basic functions. Assume that integrals

Fy = [ f(v)dv (19)
by
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can be calculated (numerically or analytically). Then the operability region X ecan
be approximated by X, with elements

z =Fu ,

where F=(F1,...,Ft),_u'r=(u1,...,uk)EUA and u; =1, if h{v)=1, v €4y, and

u;=0; otherwise, j=1,k. Observing that ¥z =¥"Fu =w,u and the information ma-
trix equals

M=F [uuT¢(du)FT =FM (&, )FT
Up

where ¢(du) describes a design ¢,, with supporting points in I/, , one can conclude
that rank F must be equal to m (number of estimated parameters). Therefore, the
decomposition of ¥V should contain at least m subsets Aj (ka=m).

When &£ =m and of course |F'| 0, then |M|={F] 2}M,_,I and the design problem
is reduced to the maximization of |M |. The latter problem coincides with the rou-
tine problem of "optimal weighting." (See Ermakov 1983)

If £ >m then iterative procedure (13},(14) can lze used with the repiacement

of the vector )\1/2(.1: Jx with the veclor u [or Fu / E u;; compare with comments
J=1
to (16),(17)]:

u, = Arg max wFTM 1(¢ Fu. (R0)
u

The maximization probiem (20) is a discrete one and at every s-th stage it demands
no more than 2% calculations of w7 ™M —1($s Yu .

6. STRUCTURE OF SLIT FUNCTION

In the previous sectijons, it was assumed that the slit function can equal 1 or 0.
Some "physical’ arguments were behind this assumption. The compactness of oper-
ability region X (see Section 4) was also an essential assumption which was done to
slimplify all final results. If one refuses this assumption, then instead of optimal
desipgns, so-called optimal sequences (see, for example, Ermakov 1983) must be
considered and that leads to some technical difficulties. The following results
(which are straighiforward corollaries of well-known results from classical ap-
proximation theory; see, for example, Karlin and Studden 1966, Chapter VIII) il-
luminate that both above mentioned assumptions are not very restrictive. For the
sake of simplicity, we consider a one-dimensional case (Vek1):

Assume now that:
(a) 0=h (v)=1, forany v &(a,b)

(b) Functions f(v) constitute a Tchebysheff system on the open interval (a,b),
where a and b are possibly infinite. This assumption requires that the func-
tions f (v ) be continuous on (a,b) and the determinants

7yt Filty) L £ilty)
ra(ty) Falty) .. Salte))

. . .
N SO
) Fm(tp) 0 Fulty)]

t,€(a.b), i=1m

are positive.
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Theorem 2.
The operability region

t
X=lzr=[f(wh(v)v: 0sh(v)sl]
a

is a compact convex set in £™.

From Theorem 1 it is clear that all supporting points of any optimal design
must be boundary points of X. Therefore, only these poinis had to be considered in
the previous sections, and for them the following resull takes place:

Theorem 3.

The necessary and sufficient condition for z to be a boundary point of X is the
fulfillment of the condilion

h(v) f1=h(v) ] =0 (21)

almost everywhere in (a,b).

Let A {v) be a function satisfying (21) and let /{z) be the number of separate
nondegenerate intervals (windows of a slit function) where A (v )=1 with the special
convention that an interval whose closure contains poinl a or b, is counted as 1/2.
For any point z €X, 7’ (z) stands for the least possible 7(z) (it could be several dif-
ferent functions i (v ) giving the same z).

Theorem 4.

A necessary and sufficient condition that £ belongs to the boundary of X is
that 7' (z)=(m —1)/2. Moreover, every boundary point corresponds to a uvnique
h{(v) with I(z)=/"(z).

Theorems 3 and 4 allow for the development of a comparatively simple algo-
rithm of optimal design construction.
Let v=(a,vq,....¥Uyp 4, b), where a<v,;s - =<v_ _;<b. According to Theorem 4,
there exist optimal designs with all supporting points (in the operability region #)
which have the following structures:

h(v) ={Lve(@,vy)0, ve(w,vy)il, ve(vavy) * - |
andé h(v) = 1—h (v).
That aliows for the modification of the iterative procedure (16),{17) to the

procedure with maximization in space which dimension is less or equal (m -1),
where m is a number of basic functions:

bs o1 = (I—ag)ég + agtlhy), (22)
hy = Arg max d(z?,és), ¥y=1,2, (23)
T
where a =v,s ' * ' v, _41=b,

b
z,= [1h(v)dy
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and
b
z,= [F(@)hv)dv.
a

Procedure (22),(23) in a computational sense coincides with iterative pro-
cedures used for traditional design problems and can be handled with software
developed for the latter cne (see Fedorov, Uspensky 1975).
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