Working Paper

STABILITY AND SENSITIVITY ANALYSIS IN
CONVEX VECTOR OPTIMIZATION

Telswzo Tanino

March 198¢
WP-86-15

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria




NOT FOR QUOTATION
WITHOUT THE PERMISSION
CF THE AUTHOR

STABILITY AND SENSITIVITY ANALYSIS IN
CONVEX VECTOR OPTIMIZATION

Tetsuzo Tanino

March 1986
WP-86-15

Working Fapers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only limited
review. Views or opinions expressed herein do not necessarily
represent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria



Preface

In this paper stability and sensitivity of the efficient set in convex vector op-
timization are considered. The perturbation map is defined as a set-valued map
which associates, with each parameter vector, the set of all minimal points of the
parametrized feasible set with respect to an ordering cone in the objective space.
Sufficient conditions for the upper and lower semicontinuity of the perturbation
map are obtained. Because of the convexity assumptions, the conditions obtained
are fairly simple if compared with those in the general case. Moreover, a complete
characterization of the contingent derivative of the perturbation map is obtained
under some assumptions. It provides a quantitative information on the behavior of
the perturbation map and allows to investigate the sensitivity of the efficient set
with respect to the perturbations of the problem parameters.
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STABILITY AND SENSITIVITY ANALYSIS IN
CONVEX VECTOR OPTIMIZATION

Tetswzo Tanino

1. Introduction

In this paper we consider a family of parametrized vector vptimization prob-

lems:

{P—minimize f@uw)=Fzu)..folz.u)
(1.1)

subjectto  z eXx(u) c R™

Here z is an n-dimensional decision variable, @ is an m-dimensional parameter
vector, f; (i =1,...p) is a real valued objective function on R™ x R™, X is a set-
valued map from R™ to R™, which specifies a feasible decision set and P is a
nonempty pointed closed convex ordering cone in ®P. We can define another set-

valued map Y from ™ to RP by
Y(u):={y €RPly =f(z,u), z €X(u)} . (1.2)

Y(u) is the parametrized feasible set in the objective space. The cone F induces a

partial order $p on RP, that is, we define the relation $p by
vy Spy oy —y €P for y,y €RP . (1.3)

This relation §p is reflexive, antisymmetric and transitive. In the problem (1.1),
we aim to obtain all the minimal points of the feasible set Y(w ) with respect to the
order §.P In other words, the solution set in the objective space to the problem

(1.1) is given by
HinpY(uw) = |y € Y(u) | there existsno vy # 7 suchthat y S ¥,

=iy € Y(u) | (Y(u) —9) n(=P) = {0}} (1.4)
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Therefore, we can define another set-valued map ¥ from the parameter space F™

to the objective space RP by
W(w) = MinpY(u) . (1.5)

W is often called the perturbation map for {(1.1).

In usval scalar optimization where p =1 and P = R, { =the set of nonnega-
tive real numbers) # is at most single-valued and so it can be identified with the

function
w(w) :=min {f(z,uv)lz e X(u)] . (1.6)

And the stability and sensitivity analysis in scalar optimization is mainly a study of
continuity properties and derivatives of the function w. In case of vector optimi-

zalion, we investigate the behavior nf the set-valued map ¥.

Some results for general vector optimization problems from this point of view
can be seen, for example, in [2], [7] for stability and in [6] for sensitivity. In this
paper we consider the case in which convexity is assumed. It is shown that the
convexity assumption considerably simplifies the sufficient conditions for the sem-
icontinuity of the perturbation map W and also makes it possible to characterize

the contingent derivative of W completely.

2. Convexity assumption and prelimipary results

Throughout this paper we assume the following convexity on the feasible deci-

sion set map X and the objective function f.

Convexity Assumption {(CA)

(1) The set-valued map X is convex, i.e., the graph of X which is defined by
graphX = {{u.,z)!z € X(u)! (2.1)

is a convex set in #™ x #™. In other words, for any ul,uz € F™ and any

a, 0%afl,

aX(ul) + Q-a)X(u?) cX(aul + 1-a)u® . (2.2)
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(2) The function f is P-convex, i.e. for any (zl,ul), (z%,u?) € R™ x R™and

any a, 0 Sa $1,
af (zlul) + Q-a)f (z%u?) € flazl + 1-a)zlaul + 1—a)u?) + P

Lemma 2.1. If P is a pointed closed convex cone and f is P-convex, then f is

continuous.

(Proof). Since P is a pointed closed convex cone, the interior of the negative
polar cone P° of P is not e-mpt.y.Jr It is easy to prove that —< w,f(x,u) > is con-
vex as a function of (z,u) for u € P°. Hence < wu.f (,’) > is continuous ([3], Corol-
lary 10.1.1). Take & € int P°® and & + e’ € P° for sufficiently small § > 0, where
e' is the i¢th unit vector in RP. Then both < L.f(-,') > and < & + &e*'f(-,") > are

continuous and hence f,(-,") is continuous (i =1,...,p). Namely f is continuous. @

Proposition 2.1. Under the convexity assumption {(CA), the set-valued map ¥

defined by (1.2) is P-convex, i.e., for any v 1, u? € R™ and a, 0 Satl,
a¥(ul) + 1-a)¥(u? c Y(aul + 1-a)u?) + P . (2.3)

In other words, the graph of the set-valued map ¥ + P is convex. Here Y + P is
defined by

(Y +P)u):=Y(u)+P foreach u € R™ . (2.4)

(Proof). This proposition can be easily proved. |

Now we introduce concepts of semicontinuity of set-valued maps. Let F be a
set-valued map from R™ to RF hereafter in this section.

Definition 2.1. 1) F is said to be upper semicontinuous at 4 € R™ if

k

uk » 4 ,y* e F(uk)and y*¥ -+ § all imply that ¥ € F(dG).

2) F is said to be lower semicontinuous at @ € R™ if u®f -4 and ¥ € F(d)
imply the existence of an integer ¥ and a sequence [y*] c RP such that
y* e F(uf)for k 2 Kand y* -~ 7.

3) F is said to be continuous at = € ™ if it is both upper and lower semicon-

tinuous at « .

Remark 2.1. F is upper semicontinuous on R™ if and only if graph F is a

closed set in R™ x RP.

TP®={u€RP < u.d > S 0foralld € P|, where < *," > denotes the {nner product.
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We shall provide lemmas concerning the semicontinuity of convex set-valued

maps. Given F and ¢ € RP, we define the function p from R™ to F v {+={ by
plu) = dist(Z . Fw)) = inf thy—vlly eFr@)) . (2.5)

If Flu) = ¢, let p{ue) = +o The domain of the set- valued map F is defined and
dencted by

dom F :=lu e R®F(u) # ¢{ . (2.6)

Clearly dom p = ju € R™ |p(u) < +oo] = dom F.
Lemma 2.2. If F is convex, then the function p defined by (2.5) is a convex

function.

(Proof). Let ul,u® € dom p, which is a convex set, and 0 £ a £1. Since F is

COnvex,
aF(ul) + 1-a) F(u?) cFlaul + (1—a)u?)
and hence
plaul + Q-a)yu?) =ins fy v lly eFlaul + Q-a)u?)

Sinf ly—glly earl) + L-a)F(u?)}
=inf flay! + Q-a)y? -7yl e Fuh), y? e Fu?)
Sing jalyl=g t+ - 1y2—f liyle FuY), 2 e F(u?))
=ainf iy!l—g lly! e Ful)] + L-a) ins thi-glly? e F?)

= ap(ul) + (1-a) p (u9

Lemma 2.3. If F is convex and @ € int(dom F), then F is lower semicontinu-
ous at ©.

(Proof). Let u* -4 and ¥ € F(&). Define the function p by (2.5). Then,
from Lemma 2.2, p is a convex function and domp = dom#. Since 4 € int(domp)

and u® - 1, there exists a number X such that u® € domp for any £ 2K For

each u*(k 2 K), from the definition of o(uk), there exists y* € F(u*) such that
[k =3 | £y 4 L
y* -y Il <pu®) + "

Since the convex function p is continuous at 4@ € int (domp) and p{d) = 0, by tak-

ing the limit of the above inequality, f:'g,,"t -9 | 40 as & - . Namely y* - ¢.
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Therefore F is lower semicontinuous at 1.
[ ]

Remark 2.2, Since the spaces considered here are all finite dimensional, the
assumption in Lemma 2.3 is weaker than in the result of Aubin and Ekeland ([1], p.

131), where F is assumed to be not only convex but also upper semicontinuous.

Remarx 2.3. The following example illustrates that the c¢ondition
U € int(domF) is essential in Lemma 2.3. Let F: R® 2 R be defined by

fy €R|y2a{ if (ul—a)2+(u2)2=a2 for a >0,u # (0,0)
Fu)=ly eRly 20{ if w =(0,0)
¢ olherwise

Then, for u* = (1 —cos%. sin %), Fuk) =jyly 21} for all & =1,2,...,. Clearly
uf o (0,0). However, by taking 0 € F(0,0), we can easily see that F is not lower

semicontinuous at ¢ = (0,0).

Lemma 2.4. If F is convex, u € int(domF) and F (1) is a closed set, then F is
upper semicontinuous (and therefore continuous in view of Lemma 2.3) at & .

(Proof). Let uk - u, y" EF(u") and yk -+ 7. Define p as in (2.5). Then pis
a convex function from Lemma 2.2. Hence p is continuous at

1 € int(domF) = int(dom p). On the other hand, taking the limit of the inequality
0Spub) iyt -5 1,
as k —» o, we can prove thal p(@) =0. Since F(&1) is a closed set, this implies

% € F(1). Hence F is upper semicontinuous at . [

Remurk 2.4. 1t is easily understood that the closedness of F(1i) is very impor-
tant in the above lemma. The following example illustrales the inevitabilily of the

condition @ € int(dom F). Let F : R 3R be defined by

fyly 20] if u >0
Fu)=1{lyly 21} if w =0
¢ if w <0
Then, for u* = % v =0eF@®) (k =1,2,...,). However, the limit 0 of {y*{is

nol. contained in F(0),
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3. Upper semicontinuity of the perturbation map

In this section we shall consider sufficient conditions for the ﬁpper semicon-
tinuity of the perturbation map W. First we provide sufficient conditions in terms

of the feasible set map Y.

Theorem 3.1. If the following three conditions are satisfied, then the pertiur-

bation map W is upper semicontinuous at & € B™:
(1) u €int (dom YY);
(2) Y is upper semicontinuous at % ;

(3) W(u) =w—MinpY(), where w—MinpY (i) is the set of all weakly P -

minimal points of Y(u ), i.e.
w=MinpY(d) := ty € Y(@) | (Y(2) —y) n(~intP) = ¢} . (3.1)

(Proof). Let uf* - 4, y* e W(u*) and y* -+ ¥. Since Y is upper semicontinu-
ous at %,y € Y(d). Hence, if we suppose that ¥ & W(u) = w—MinpY(d), then
there exists v €Y(u) such that Y —y €int P. Since
U € int(domY) = int{dom (¥ + P)) and Y + P is convex, ¥ + P is lower semicon-
tinuous at 4 from Lemma 2.3. Namely there exist a sequence {¥*} cRP and a

number X such that

yk-'i and ¥* e Y(u*)+ P for k2K

since y* — 7% - ¢ — 7 € intP, y* — 7* € intP for all k sufficiently large. How-
ever, this contradicts that y*‘ € W(uk) = MinPY(uk) = MinP(Y(u") + P). (See
Proposition 3.1.2 in [5]). Therefore §y € W(i ), as was to be proved. .

Femark 3.1. We can guarantee the upper semicontinuity of W under the fol-

lowing conditions without the convexity assumption {(CA) ([7]):

(i) Y is continuous at % ;

(i) W(@) =w—-MinpY(Q).

If we compare these conditions with Theorem 3.1, the following can be ob-
served: we can replace the lower semicontinuity condition of ¥ by the weaker con-
dition ¥ € inf{domY) under the convexity assumption.

Now we shall derive sufficient conditions for the upper semicontinuity of W,
which are described in terms of the feasible decision sel map X and the objective

function f. For the purpose we shall introduce a set-valued map X from B™ x RP

to R™ as follows:
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fuy)i=fz ex(u)' f(zu)=vy] . (3.2)

The following proposition provides sufficient conditions for the upper sem-
icontinuity of Y al @ .

Proposition 3.1. If 4 € int(domX), if X(& ) is a closed set and if the map X is
uniformly compact near ({I.g})T for any ¥ € {y | (@,y) € cl{graph V)|, then Y is
upper semicontinuous at i .

{Proof). Let uf a4 .y“' € Y(u"") and 'yk -+ 4. Then there exists a sequence
fz¥{ ¢ R™ such that z* Ef{"(u".y“') for all £ = 1,2,.... Since X is uniformly com-
pact near (2,7 ), {z*{ has a convergent subsequence. By taking the subsequence
if necessary, we may assume that {z* | converges to some £. From Lemma 2.4, X is
upper semicontinuous at & and so & € X(&). On the other hand, since f is continu-
ous from Lemma 2.1, f(z.,2) = ¥. Thereforey € Y(u) and Y is upper semicontinu-
ousat 4, "

Remark 3.2. If X is uniformly compact near @, then X is clearly uniformly

compact near (it,y) for any ¥ € RP.

Now we can prove the following theorem.

Theorem 3.2. If the following four conditions are satisfied, then the set-
valued map ¥ is upper semicontinuous at 1 :

(1) 4 €int(domX);

(2) X(u)isa closed set;

(3) X is uniformly compact near (4 ,%¥) forany ¥ € {y |(d.y) € ¢l (graph?)i;

(4) W) =w—-MinpY(u).

-~

{Proof). From (1), u € int{domY). From (1) - (3), in view of Proposition 3.1,
Y is upper semicontinuous at 7. Hence W is upper semicontinuous at @ by
Theorem 3.1. -
Remark 3.8. The following examples illustrate that each condition in the

above theorem is essential.

1) Take £ in Remark 2.3 as X and let f(z,u)=zx and P =R,. Then
u =(0,0) £ int{domX) and

fal I (ug —a)2+(u2)2=a2 for « >0, u # (0,0)

Wiu) =1{0f if u = (0,0
¢ otherwise

tA set-valued map F is seld to be uniformly compact near U 1If there exists s nelghborhood N of
U suchthat ¢l | F'{u) is a compacl get.
ueN
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which is not upper semicontinuous at (0,0).
2y Letm =p =n =1, P =R, f(z,u) =z and

fzlz 20] if u #0
X(uw)=lizlz >0y it u=0

Then W{w ) = {0]if u # 0 and W({0) = ¢. Hence ¥ is not upper semicontinuous at 0.

3) Letm=n=p =1,P=R,and X(u) = &k for any u €R. Let C be a con-
vex set in R X R defined by

C=fu,z)uz 21, u > 0]
and f be defined by
Flzu) =d{(u,z),C) =inf lu,z) — (u,z) (w.z") € ¢

Then f is P-convex and

Yin) = fy eR'y 20§  if u >0
(u) = fy eRly >~ if u £0

Hence

{0y if w >0
W) =lg it u <0

which is not upper semicontinuous at 0.

4. Lower semicontinuity of the perturbation map

In this section we consider sufficient conditions for the lower semicontinuity

of the map W. First we should introduce several concepts.

Definition 4.1. A set S in RP is said to be P-minicomplete if
S CMinpS + P . (4.1)
Remark 4.1. Since MinpS C S, if S is P-minicomplete,
S +P =MinpS +F . (4.2)

Definition 4.2. For a nonemply set S in RP, its recession cone S* is defined
by
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S* = {y € RP |there exist sequences {A,| C K and {y*} c RP such that

Ag >0, A, 0, \ow* >y and y* €S forall ki . (4.3)

Remark 4.2. 5% is a closed cone which contains the origin. Moreover, if S is

a nonempty closed convex set, St coincides with the set 015 which is defined by
0*tS =fy €RP |y + Ay €Sfor ¥A 20, V7 €5) (4.4)
=y eRPIlS5 +y c 5}

and therefore it is a closed convex cone ([3] Theorem 8.2).

Lemma 4.1. (Sawaragi et al. [5], Lemma 3.2.1.) A nonempty set S is bounded if
and only if S* = {0].
Lemma 4.2. (Sawaragi et al. [5], Lemma 3.2.3.) Let 5, and 5, be nonempty

closed sets. If S;* n (=S5 ) = {0}, then S, + 5, is also a nonempty closed set.

In view of the above two lemmas, the following concept plays an important role

in this section.

Definition 4.3. A nonempty set S in RP is said to be P-bounded if
5* n(=P) = {0} (4.5)

Lemma 4.3. (Sawaragi et al. [5], Theorem 3.2.12.) If & C RP is a nonempty

closed convex set, the following statements are equivalent:
(1) S is P-bounded.
() Minp5 # ¢.
(3) 5 is P-minicomplete.
Lemma 4.4. Suppose that F is P-convex, © € int (domF), and F(&) is P-

bounded. Then there exists a neighborhood N of % such that F(w) is P-bounded

forallu € N.

(Proof). If the conclusion of the lemma were not true, there would exist se-

quences {u*} ¢ R™ and {d*{ ¢ RP such that u® -» &, &% # 0 and
—d* e [Fuk)]* n(-P)

Since I]""('i.c")]+ n {(—=P) is a cone, we may assume that gkl = 1 for all k. By taking
a subsequence if necessary, we may assume that {dki converges to some d. Since
P is closed, € € P. Moreover, lg t= 1and sod #0. Since —df € [F‘(u")]*', there

exist sequences [A,{ C R, gkt ¢ —F(u*) such that Agg >0,
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)\tt - 0 and Aﬂd“ +dkasl + o

If we take [ sufficiently large,

By choosing those A, and d¥ as )-\,: and d* respectively, we can construct se-

quences iiti and iaki satisfying
—df eF(uk), 0 <X, <kili,cé’= ~akl<

When k& -’oo,ik =+ 0 and X,:Ek +d. Now take an arbitrary ¥ € F(iZ). Since

k

24 —u® » ¢ and F + P is lower semicontinuous at 2 by Lemma 2.3, there exist a

sequence [fit { and a number X such that
~k o~ ~k ~ .k >
v ~y and ¥ €FEu —-u*)+ P for k 2K

Since F is P-convex,

-;-(:&"‘ —d*)eF@)+Pfork 2K

Morseover, 2Xt . %(it - c-i—t) + —d. This implies that —d € [F(u) + P1* and hence

[F(Z) + P)1* n(—=P) # [0}. In view of Lemma 3.2.4 of [5], this means that F(«) is

not P-bounded, which is a contradiction. Hence F(u)} is P-bounded for all u in a

certain neighborhood of 4 . .

Now we can obtain sufficient conditions for the lower semicontinuity of ¥.

Theorem 4.1. If the following the conditions are satisfied, then the perturba-

tion map ¥ is lower semicontinuous at 4 :
(1) 4 €int(dom Y).
(2) Y + P is upper semicontinuous in a neighborhood of @ .

(Proof), If W(Z)=+¢, the theorem is trivial. Hence we suppose tLhat
W(i) # ¢. Let u* -4 and ¥ € (). From Lemma 2.3, ¥ + P is lower semicon-

tinuous at & and hence there exist a sequence [yt { and a number K, such that
£ .~ k k >
Yy  +yandy” €Y(u")+FPforalk 2K,

Since Y(u) + P is a nonempty closed convex set and
Minp(Y(i) + P) = W(d) # ¢, Y(u) + P is P-bounded from Lemma 4.3, Therefore,

in view of Lemma 4.4, Y(u) + P is P-bounded for all © in a certain neighborhood N
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of ¥. (Note that ¥ €int{dom Y)). From Lemma 4.3 and Remark 4.1, this implies
that

Wu)+P=Fu)+P)+P=Yu)+P

in a neighborhood of . Hence there exist a sequence Eﬁki and a number X, pd Ky

such that
y€ - ¢* € Pand g* e w(u*)for k 2k,

First we will show that iﬁti is bounded. If this were not the case, from Lemma 4.1,
we can take a subsequence of [ﬁki , for which there exist a sequence I)\k{ of posi-
tive numbers and a nonzero vector ¥ such that A, +0 and )\ty-k -+ 4. Since
AWk —9%) € P and y* + . the limit —F of (A, (y* —F*)} is contained in P.
Take an arbitrary ¥ € Y(i2} + P. Then there exist a sequence iﬁk | and a number

K3 2 K, such that
—k -— -—k ~ _ _k >
Y- ,yandy” €Y@u —ut)+Pfork 2K3 ,

since Y + P is lower semicontinuous at 4. Then, from the convexity of ¥ + P,
%(ﬁ" +75)eY@)+Pork 2K;

Moreover, A, (7* + 7%) > 4. This implies that 7 € [¥(:Z) + P]* and hence leads to
a contradiction to the P-boundedness of Y(i) + P. Therefore |%*{ must be bound-
ed. Hence [¥*] has a cluster point, which is denoted by ¥’. Since y* — 3% e P
and y*¥ 9.9 -y €P. Since Y+ P is upper semicontinuous at
u,y’ € Y() + P. Recalling that ¥ € W (1), we can conclude that ' = %. In other
words, % is the unique cluster point for the bounded sequence [ﬁki -+ 7. There-

fore %% -+ %, which indicates that W is lower semicontinuous at 4. |

Remark 4.3. We can generate the lower semicontinuity of W under the follow-

ing conditions without the convexity assumption (CA) ([7]):
(i) Y is continuous at i,
(ii) Y is uniformly compact near i,
(iii) Y(u) is P-minicomplete for every u near u.
Theorem 4.1 considerably simplifies the above result.

The following proposition shows that ¥ + P is often upper semicontinuous

when ¥ (1) is not empty.
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Proposition 4.1. If X(u) is a nonempty closed set for every u near
4,W(d) # ¢ and X(&,7) is bounded for some ¥ € W(i), then ¥Y{(u) is a P-bounded
closed set in a neighborhood of ©. In this case Y{(uw) + P is also a closed set by
Lemma 4.2 and therefore the set-valued map Y is upper semicontinuous in a neigh-

borhood of .

(Proof). a) First we shall prove that Y{(w) is a closed set in some neighbor-
hood of ©Z. If this were not true, we can consider sequences ju¥] and fy k1 such

that
uk o+ 4 and y*¥ eclY(@wE)\Y@k)

Corresponding to each ¥k, there exists a sequence [z} c X(u*) such that
S (z* uk) 5> y*¥ as [ + o Take k sufficiently large so that X(u%) is closed. If
kKt ;l =1,2,... has a convergent subsequence, the limit zk of it is contained in X('u,k).
Since s is continuous, f (z%,u*%) = y*, which contradicts that ¥* g ¥Y(u%). Hence,

if & is sufficiently large, 53“‘1:1.2.... has not a convergent subsequence and so
kl

H]
k

some £ as [ » = Furthermore, since Izl = 1 for all k, we may also assume

converges to
{=1,2,...

lzktl 5 + was I » . We may assume that the sequence [

without loss of generality that {Z%] converges to a vector Z. In this case [£/ =1,
ji.e. £ #0. From the assumptions, we can take ¥y € W(4) for which X(&.,¥) is
bounded. Let £ € X{(&,¥). Since X is lower semicontinuous at % from Lemma 2.3,

there exist a sequence !fki and a number X such that

k

£ 22 and £F ex(uX) for k 2K

a

ke &t

Let £ 2K. For an arbitrary a 20, 0 £

<1 for all £ sufficiently large, for

ke®!| 5 + wasl » ». Since X is convex,

[«

]

~k 24
z" + hﬂl

zkl e X(u*)

Taking the limit when [ + =, we obtain from the closedness of X(u‘t).

£+ az® e x(u®), for all ksufficiently large . (4.6)

z
Since f is P-convex,

[«

]

~k & ki, ..k
)F-- +L~'“|z uk)

Fa(e!
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a

< l—ﬁl}(fk,uk) + ﬂa:‘:”_;"(:t:":",u‘:)

P

Let I —+ . Then, since f(z* u¥) - y*,
F(Z* + azk u*) < pr(£* . uk) for k sufficiently large . 4.7)

Take the limit of (4.6) and (4.7) as & - o. Then, since X is upper semicontinuous at
% from Lemma 2.4 and f is continuous, £ + af € X(%) and
S +azx,u) Lpfi{z.ad)

]

-~

Since ¥ € W(iZ), these imply that (£ + aZ,4) =¥, i.e., £ + aT € X(4.¥) for all
a go. However, this contradicts the boundedness of X(i %), Hence Y{u) must be

a closed set for every u# in a certain neighborhood of i.

b) Next, we shall prove that Y(:I) is P-bounded. Let y € [Y{(&)]* n (—=P).
There exist sequences [A.{ C R and fzt| ¢ X(1Z) such that Ay >0, A, 0 and

A f(x*.2) » y. Then, for all k sufficiently large, )\tz" + (1-A. )2 € X(&) and
FOLzF +(1-AE,4) Sp A F(2h.T) + Q-2 F(£.4) (4.8)

due to the P-convexity of f. The right-hand side of the inequality (4.8) converges
to ¥ +%. First we assume that i)\kzk{ has no convergent subsequence. Then

zk
—t—i converges to a

)\kla:” -+ + =, We may assume without loss of generality that }l f
X i

a

[}

vector £ with l=1. For any @ 20,0 ¢ €1 for all k& sufficiently large and

S0

+ (1—=29% e X&)

ke €l

a k
—_
I &t
from the convexity of X(). Since X{(i¢) is a closed set, the limit of the above rela-

tion implies that £ + af € X({). Moreover, since f is P-convex,

f(ﬁz" +Q ﬂ:::')f.ﬁ) p ﬁkkf(x",ﬁ) + (1TI‘1—],)_;°(EIQ)
k

for all & sufficiently large. Thus, as the limit of the above inequality, we have
FE+aEd) Sy

Since ¥ € W(d), f (£ + af.2) =% . This implies that £ + aZ € X(&4,7) for all
a 20, which contradicts the boundedness of X(&.¥). Hence E?\kz"( necessarily

has a convergent subsequence whose limit is dencted by . We may assume that
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Akzk +z from the first. Since X(&) 1is closed, from the limit of
?\kz" + (1-A.)& € X(ii), * +& € X(1t). Therefore the limit of the left-hand side

of (4.8), which is f (x + £ ,% ), belongs to ¥(1Z). Since (4.8) leads to
Jx +24) v +y
whenk »+ =, ¢y € —Pand ¢y € W(i&), ¥ must be equal to the zero vector. Thus ¥Y(&)

is P-bounded.

¢) Finally, the result proved just above and Lemma 4.4 imply that ¥(u) is P-

bounded in a neighborhood of ©. This completes the proof of the proposition. [ |

Now we can immediately obtain the following result by combining Theorem 4.1

and Proposition 4.1.

Theorem 4.2. If the following conditions are satisfied, then the perturbation

map W is lower semicontinuous at 1:
(1) © € int(domX),
() X(u)is a closed set for every uw near 1,
(3) When W(i) # ¢. X(&.¥) is bounded for some §§ € W(i).

Remark 4.4. The following examples show that each condition in the above

theorem is essential.

1) Consider the case in Remark 3.3, 1). Then we can easily understand that

the condition % € int(domX) is essential.

Z2) Letm =n =p =1,P =R,

fz eRlz >u?] if w20
Xw) =iz erlz 200 if u =0

and f(r,uw)=x. Then

¢ if w=0
W) =10y if w =0

which is clearly not lower semicontinuous at i@ = 0.

3) Letm =n=p =1P =R, X(u)=Fk,and

0, ifu=0
J@u) =4 T
ule ' if w0

Then
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0 if w=0
Y(w)=liylo <y Sl] it u =0

and so

(01 if w =0
W) =lg i w =0

f(0,0) = R,, which is not bounded, and W is not lower semicontinuous at ¢ = 0.

3. Contingent derivative of the perturbation map

In this section we will show some quantitative results concerning the behavior
of the perturbation map by using the concept of contingent derivatives of set-
valued maps. The author has already provided an "inner"” approximation of the
contingent derivative of the perturbation map for general multiobjective optimiza-
tion problems {[6]). In this paper, a complete characterization of the contingent
derivalive will be obtained under the convexity assumption (CA) and some addition-
al conditions.

First we briefly review the concept of contingent derivatives for sel- valued
maps.

Definition 5.1. Let S be a nonempty subset of R? and ¥ € R?. The set Te(7)
defined by

Tg(¥) := v € RY| there exist sequences [k} C }5+ and fvk] c RY
such that &, -+ o,v¥ »v and ¥ + h.l,:'u1|£ € Sfor all k} (5.1)

is called the contingent cone to S at ¥.

Definition 5.2. Let F be a set-valued map from E™ to RP and ¥ € F{%). The
set-valued map DF (u,y) from R™ to RP defined by the following is called the con-

tingent derivative of F at (i, ¥ ):
v €DF(u.y) (w) iff (u.y) € Tggppr(t ¥) (5.2)

In other words, v € DF{(w,y)(u) if and only if there exist sequences

bhy ! c}s+. fuf| c R™ and {¥*{ ¢ RP such that h, +0, uf 2y, y* »y and
g+ hey® €eF(Z +h ut) for vk,

where }§'+ is the set of all positive real numbers.
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The purpose of this section is to provide a complete characterization of the
contingent derivative of the perturbation map. Throughout this section let ¥ be a
P-minimal point of ¥(2Z), i.e. ¥ € W(i). First we can simplify Theorem 3.2 in [6]

under the convexity assumption (CA) as in the following theorem.

Theorem 5.1. If Y(u) is P-minicomplete for every w near 4, then

MinpDY(d,7) (u) CDW(Z,7) (u) for Wu € R™ . (5.3)

(Proof) Let ¥ € MinpDY(u.y) (u). Since y € DY(u,y ) (u), there exist se-
quences (A, ] C}§+. Euki c ™ and Ey‘:i C RP such that h, - 0, uf su, yf oy

and
¥ +heyt €YD +heuf) for Wk

Since Y(u) is P-minicomplete for every u near 1, there exists a sequence

fyk ) ¢ RP such that
g+ hy* ewW(d +h,ut) and y* - P (5.4)

for all £ sufficiently large. We may assume (5.4) for all £. Suppose that !'Eti has
no convergent subseguence. Then ||'_J‘t|| -+ + . There exist sequences {z%{ and

{Z*] in R™ such that

| £ +h 2k eX(@ +huk)
F(E +hzt, G +huk)y=¢ +h y*

{ £+ h zF €X(d + hgut)

FE +hZ% 4 +huf)=9g +h pt
For any a satisfying 0 £ a £1, we have
£ + h(az® + 1-a)Z%) e X(Z + A u®)
from the convexity of X. Moreover, from the P-convexity of f,
- k = - k kN - k
Y rhyt(a) = f (@ +hy(az” + (Q-a)z”), u +hgu”)
T + Ay layg + (1-a)FF)
< a7 k
SpY¥ *hiv
And, since f is continuous,

Y +hvf(a@) + 7 + Ryt as a0
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TRyt » 5 +h iyt as a1
Since |l7 %] » + ® and ¥* - ¥, by taking a; appropriately close to 1, we have
ehy SWG + hey* —F + Rev*(a )l € Ry, for ‘vt sufficiently large

where £ is a fixed number such that 0 <& <1, Taking this 'yt(ak)as :J". we see
that

e < vt - 5% <1 for ‘wk sufficiently large

Since y* - v, the sequence E?}'k; is bounded and so we may assume without loss of
generality that [§%] converges to a vector 7. It is clear that § € DY(&, §) (u).
Since |ly* — 7*| 2 ¢ for all & sufficiently large, llv = %) 2 ¢, that is, ¥y = 7.
Since y* —g* e P, y —4¥ € P. However these contradict the assumption that
Y € MinpDY (42 ,y) (u). Therefore i7% | always has a convergent subsequence.
Hence we may assume from the first that y"c -y, Then
Yy € DW(Z.¥) (u) € DY(4.¥) (u) and y -k -y -7 eP. Since
y € MinpDY(,y) (v), v =¥ . This implies that y € DW(Z,¥) (u), and completes
the proof of the theorem. |

Remark 5.1. We can see from the example in Remark 4.4, 3) that the P-
minicompleteness condition is essential for Theorem 5.1. There, DW{(w.y) (u) = ¢
for u=07v=0 and u #0. However DY{(u,v){(u)=[0,u] and
MinpDY(4,y) (u) = 10{ for u #0.

Next we consider sufficient conditions for the converse inclusion of (5.3).

Definition 5.3. Let S be a nonempty set in RP and ¥ € FP. The normal cone

Ng(?) to S at ¥ is the negative polar cone of the tangent cone Tg(75), i.e.
Ng(D) = [Tg(D)]° = {u €RP| < v > <0 for W € To(D)} . (5.5)
When S is a convex set and ¥ €5,

Ne(¥) =€ RP| < ¥ >2 < v > for W €5{ . (5.6)

Definition 5.4. Let S be a nonempty P-convex set in FF. If a point

¥ € MinpS satisfies the condition
Ng,p(¥) cint P° v 0] . (5.7)

then ¢ is called the normally P-minimal point of S.
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Remark 5.2. A point ¥ € 5 is said to be the properly P-minimal point of S if
Te.p (@) N (—P) = (037 (5.8)

If % is a properly P-minimal point of a convex set, there exists a vector
i ENg,p(¥) nint P°. The relation (5.7) is a stronger requirement than the ex-
istence of such u as long as % € HMinpS. In other words, the normal P-minimality
is a stronger concept than the proper FP-minimality. From the geometric
viewpoint, the latter implies the existence of the supporting hyperplane to S at %
with the normal vector u in int P? and, on the other hand, the former implies that
all the normal vectors of the supporting hyperplanes to S at ¥ belong to int PC.

(The existence of such a hyperplane is guaranteed by the fact that 7 € MinpS).

Remark 5.3. It is not difficult to show that the normal P-minimality of ¥ to a

convex set S is equivalent to the following condition:

int Tg,p(¥) VO] DP . (5.9)

Theorem 5.2. If u € int(dom Y) and ¥ is a noermally P-minimal point of ¥ (1),
then -

DW{u,y) (u) C MinpDY(,y) (u) for Wu € R™ (5.10)

(Proof) Let v € DW{&.,y) (u). Of course ¥ € DY (& ,¥) (u). Hence if we as-
sume that y & MinpDY(w,¥)(u), there exists ¥ € DY(d,¥) (u) such that
Yy —% € P\ {0]. Since ¥ € DY(u,§) (u), there exist sequences
fhy ) C}i‘;,r, {Zk] c B™ and {7} ¢ RP such that k; -0, zf 2u, 7* » ¥ and

¥+ heTF €Y +h,a5)  for

On the other hand, since ¥y € DW{(u,7) (u), there exist sequences

fhel € R, juf] c ™ and jy* | c RP such that h, - 0, u* +u,y* >y and
v +ht‘yk € wW(u +htu") for vk

Since h, - 0, we may assume that h, < Et by taking a subsequence if necessary.
Since ¥ + h.kyk e Wi + htut). (v + htu"\ u o+ h.ky‘t) is a boundary point of
the convex set graph (Y + P). Hence there exist a vector (AfF,u*) € R™ x RP
such that

T There are several definitions of the proper P-minimality (see, e.g. [5]). However they colncide
under the convexity assumption.
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<A G rhuf >+ by rh Y > 2 <A u > F <l gy >
for Y(u',y')€ graph (Y +P) (2.11)

for each k. Since we may normalize these vectors so that (A%, ub)|| = 1, we may
assume that {(A%¥,uf){ converges to a nonzero vector (A, u) € R™ x RP. By taking
Lthe limit of (5.11)as k — o, we see that

CAU >+ <Y >2<Au’ >+ < uy >
for V(u',¥") € graph (Y + P) . (5.12)

Since & €int (dom Y), i # 0. Take an arbilrary § € Y{(&) + P. From Lemma 2.3,
the set-valued map Y + P is lower semicontinuous at ¢ and so there exist a se-

quence {7¥] ¢ RP and a number X > 0 such that 7€ + § and
vk ev(d +hu*)+P for k2K . (5.13)

From (5.11), for k 2 X

k k

<A R uk > H <Y +hyE S22 <R + Rt > <P >
Letting & — o, we have that
<y >2<uy >

This implies that wu € NY(GHP(?;)' Since y is a normally P-minimal point of Y(i),
w€int P° Sincey -7 € P\ {01

<puy ><<uy > (5.14)
Recalling that ¥ + A,7* € Y(& + hy "), ¥ € Y(1) and h, 2 h;, we obtain that
g+ h gt eV(d +h,Tk)+P
from the P-convexity of ¥. Hence, from (5.11),
<M +hub >H < Y ARyt > 2 <G A EE >+ < Wk Y +hTE >
i.e.

k

<Ak uk >+ kgt > 2k Tk s < T >

v

By taking the limit as & —+ «, we have that

<Au >+ <uy >2<Au >+<uy >
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i.e,
<py >2Z<my >,

which contradicts (5.14). Therefore y € MinpDY(il,%) (1), as was Lo be proved. @

Remark 5.4. The following examples show that the conditions in Theorem 5.2

are essential.

1) (u € int (dom ¥)). Letm =2, n=p =1, P=R,,

zhe 20] If u;20,up>0
X(u) =zle 2u,) If u, 20uy,=0

¢ otherwise
and f{(z,u) =2 ThenY(u)=X(u)and

jo; if u320,2,>0
Wiw) = qlu, if uy 20, u, =0

& otherwise

Let 2 = (0.0) # int(dom ¥), § =0 and u =(1,0). Then DW(d .y){u) = (0,1}
and DY(d,)(u) = {yly 20}. Hence DW(d,§) (w) & MinpDY(d,¥) ().
2) (¥ is not normally P-minimal). Letm =1, n =p =2, P =R?,
x1 .

2 Tl
@ <R, 20,2, 2lule M)

X = .
() fx ERzlzl 20, z, 204 if w=0

and f(u,u) = (z4,2;). Then Y(u) =X(u)and

W) = 50,0y

Let ¢« =0and ¥ = (0,0). Then % is not a normally P-minimal point of ¥{11), though
it is properly P-minimal. In this case (0,0) € DW(d,y) (0) < DY(1,3) (0) and
(1,0) € DW (12,5 ) (0). Hence DW (u,§ }{0) ¢ MinpDY (.5 ) (0).

Now we can consider the case in which every objective function f, is differen-

tiable,

Depinition 5.5, Let F be a set-valued map from R™ to RF and i € F{(w). F is
said to be upper pseudo-Lipschitzian at, (u,y} if there exist neighborhood ¥, and

N, of & and ¥ respectively, and a positive number M such that
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Flu) nN, CF(u) + My —4llB  for Wu €Ny . (5.15)

Proposition 5.1. If X({) is a closed set and X(1,7 } is bounded, then X is uni-

formly compact near (U 7).

(Proof) Suppose that the conclusion of the proposition is not true. Then
there exist sequences {u*}cR™, (y*| cRP and {zF|CcR™ such that

uf s d, y* s y* 57, zF|| » + and

z* €X(uk) and f(::k.uk) ='y‘: for vk

k
We may assume without loss of generality that § ‘xt” | converges to a nonzero vee-
x
tor z. Let a >0. Since |lz%| » + e, 0 < ":::” <1 for all k sufficiently large.
Hence, from the convexity of X,
[0 - [ k o -~ [ k
(1- x + z* € X((1 Yu + —u*) | (5.16)
llz llz* | 2%l liz* |

Since X is upper semicontinuous at ¥ from Lemma 2.4, by taking the limit of (5.16)

as k - =, we see that
z +azx €X(@)
Since f is P-convex,

2_yz,2) + ==

RCARTED!
liz® || iz ]

o ~ o~ [ 4
ix,u) +
ll* | el

(z*.u*)) Sp1-

71

Letting &k - o, we have

~

f(£ +az,i) Lpy

Since ¥ € W(i).f(£ +az i) =7 . Hence £ + ar € X(4,7) for any « >0. How-
ever this contradicts the boundedness of f(ﬁ ). Therefore X is uniformly com-

pact near (2,v),

Proposition 5.2. If X(4) is a closed set, if X(4,7) is a singleton, i.e.

X(4.¥) = {£} and if X is upper pseudo-Lipschitzian at (4,3 .Z), then
DY(e.y)(u)=V,f(z,2) DX(,£)(u) + Y, f(£,4) u for Wu € R™5.17)
(Proof} It has been already proved that

DY(d,y){(u)>V f(&2) DX(2,£) + VY, f(2.4) u
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([6], Proposition 4.1). So we shall prove the converse inclusion here. Let
v €DY(d,¥)(u). Then there exist sequences k| < }§+, juk} c R™ and
fv*l ¢ RP such that hy =0, uk sy, y* 2y and ¥ +h.ky" e Y(d +hku") for

all k. Hence there exists another sequence {z%} ¢ R™ such that
Z +hzt eX(@ +huk g +hyF) for Wk

From Proposition 5.1, the sequence ihkzki is bounded and so has a convergent
subsequence. We may assume from the first that hkz" +x € R™. Since X is upper

semicontinuous at ¥ and f is continuous,
T +z €X(1,¥)

Since X(Z.9)={£},z =0. Namely hkz" +0. Since X is upper pseudo-

Lipschitzian at (i.,% ,£), there exists M > 0 such that, for any k sufficiently large,
|12 + hpzk —£] S MG + hyuk, § +heu®) — (@9
i.e.
izkl € Ml .y *)l

Since u* » u and y* -+ 'y,f:c"i is bounded. Hence we may assume that zf - Z.

Then clearly £ € DX(4,¥) (u) and

ik o 1y F(E+h zk G+h, uk) — £(£.4)
Y = limy*= lim

k += k4w h'k

=V f(E8) T +V,f(E D) u

Therefore y €V, f(£,4) DX(2.x)(u) +V,f(£.4) u. This completes the

proof. "

Thus, from Theorem 5.1, Theorem 5.2 and Proposition 5.2, we have the follow-
ing theorem which provides a complete characterization of the contingent deriva-

tive of the perturbation map W.

Theorem 5.5. If the following conditions (1)-(5) are satisfied, then
DW(L,9) () =Minp[V . f(Z.2) DX(Q.2) (u)+ V  f(z,0) u] (5.18)

for “wu € k™
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(1) 2 €int(dom Y,

(2) ¥ is a normally P-minimal point of Y (),

(3) X(u)isa closed set for every u ina neighborhood of 4,
(4) X(@.9)isa singleton, i.e. X(4,¥) = [£},

5) Xis upper pseudo-Lipschitzian at (2,7 ,2).

Finally we briefly mention sufficient conditions for the pseudo-Lipschitzian
property of X. The following proposition can be obtained by applying Theorem
4.12 in Rockafellar {4].

Proposition 5.3. If the following two conditions are satisfied, then X is

(upper) pseudo-Lipschitzian at (i ,% ,£):

(1) X(u)is a closed set for every u in a neighborhood of i,

@ 1 ﬁlai V71 (@.) + v =0 for some (\,¥) € Nyyqpp x(i.&), then

a, =0fori =1,..,pand A =0. (5.19)
Remark 5.5. When X(u ) is specified by inequality constraints as
X(u) =fz eR™g(z) S ul

the above condition (5.19) is nothing but the Mangasarian-Fromovitz constraint

qualification at £ for the set
X@ §)=tz eR™f(z,4)—¥ =0,g(z) —4& £0]

In view of Proposition 5.3, we can replace the condition (5) in Theorem 5.3 by

(5.18).

6. Conclusion

We have obtained sufficient conditions for the upper and lower semicontinuity
of the perturbation map, which provides the set of all cone minimal points depend-
ing upon the parameter vector, in convex vector optimization. It has been shown
that the convexity assumption considerably simplifies the results in the general
case. We have also provided a complete characterization of the contingent deriva-

tive of the perturbation map when the nominal point is normally minimal.
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