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PREFACE 

Many of today's most significant socioeconomic problems, 
such as slower economic growth, the decline of some established 
industries, and shifts in patterns of foreign trade, are inter- 
or transnational in nature in a variety of ways. Through 
analyses we attempt to identify the underlying processes of 
economic structural change and formulate useful hypotheses con- 
cerning future development, as some scholars argue that fore- 
seen changes can not be precipitous. The understanding of 
these processes and future prospects provided the focus for the 
IIASA project on Comparative Analysis of Economic Structure and 
Growth. 

This paper was mainly written during the stay of E.Yu. 
Khodjamirian at IIASA in the YSSP 1985. The authors present 
a model of the investment process and the results of its simu- 
lation under different assumptions on parameters, which charac- 
terize real problems of resource allocation over time and 
across industries in the construction sector. 
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INTRODUCTION 

One o f  t h e  main d i s t i n c t i v e  f e a t u r e s  o f  t h e  dynamic models 

o f  economics i s  t h e  d e s c r i p t i o n  o f  i n v e s t m e n t  p r o c e s s e s ,  i . e .  

o f  t h e  mode o f  d e l a y  c a l c u l a t i o n  between c a p i t a l  i n v e s t m e n t s  

and commissioning o f  p r o d u c t i v e  funds  i n t o  t h e  r e s p e c t i v e  

b ranches .  The c h a r a c t e r i s t i c  f e a t u r e  o f  some models i s  t h e  

t a s k  of  d e t e r m i n a t i o n  o f  t h e  dependence ( u s u a l l y  l i n e a r )  be- 

tween c a p i t a l  i n v e s t m e n t s  and commissioning o f  funds .  Many 

known modes of  d e s c r i p t i o n  o f  inves tment  p r o c e s s e s ,  t h a t  t a k e  

an  obv ious  d e l a y  i n t o  a c c o u n t ,  a r e  i n  t h i s  c a s e  i n t r o d u c e d  i n  

t h e  s o - c a l l e d  "normat ive"  approach [ I  ] . It i s  supposed t h a t  

t h e  c o n s t r u c t i o n  o f  new funds  i n  model b ranches  i s  f u l f i l l e d  by 

a  g i v e n  a  p r i o r i  f i x e d  p r o j e c t .  

The p r e s e n t  p a p e r  d e a l s  w i t h  t h e  d e s c r i p t i o n  o f  t h e  i n v e s t -  

ment p r o c e s s  a s  a  c o n t r o l l e d  p r o c e s s ,  which means t h a t  t h e r e  i s  

a  p o s s i b i l i t y  t o  suspend t h e  p r o c e s s  o f  c o n s t r u c t i o n  i n  t h e  

g e n e r a l  s e n s e  o f  t h e  word. A s  opposed t o  t h e  t r a d i t i o n a l  ap- 

p roach ,  t h e  d e s c r i p t i o n  o f  t h e  inves tment  p r o c e s s e s  a s  con- 

t r o l l e d  p r o c e s s e s  makes it p o s s i b l e  t o  f o r m a l i z e  and i n v e s t i g a t e  

on a  q u a l i t a t i v e  l e v e l  t h e  q u e s t i o n s  r e l a t e d  w i t h  t h e  problem 

o f  non-completed c o n s t r u c t i o n ,  e f f i c i e n c y  of  c a p i t a l  inves tment  

d i s t r i b u t i o n ,  and f r e e z i n g  o f  c o n s t r u c t i o n  i n  t h e  b ranches .  



DESCRIPTION OF INVESTMENT PROCESSES 

The fund dynamics will be described in discrete time 

periods, and a year will be conventionally taken for the time 

unit. Let's suppose that all commissioning projects are 

characterized by the same (or sufficiently close) c0nstru.c- 

tion time T, and the parameters ys, ps (s = ) that set the 

laws for investment entry into the construction and accretion 

of capacity volumes, respectively (see Figure 1). 

Figure 1. The laws for investments and comissioning of 

funds. 

Then the capital investments K(t) during the year--period 

t--and capacity commissioning for this year AF(t) may be 

written in the following way (1 ) : 



whereV(t) is the total value of the projects, the construction 

of which started at the beginning of the year t and is assumed 

to continue to the end of the year t+~-1; xs = 
- 

Ys Ys-1 is the 

share of the complete cost of the projects requiring capital 

investments in a time period s-1 from the beginning of the con- 

struction; q = ps - Os-1 is the share of the project cost 
commissioned to the end of the year s-1 from the beginning of 

the construction. The values x and q, in their economic sense, 

should satisfy the folloLing limitations : 

Depending upon the forms of the graphs, and from the re- 

lations of equation (1) one can obtain other known models for 

the description of investment processes, where an obvious 

delay is taken into account (see Appendix 1). 

To describe the controlled process of investment we shall 

have to link two periods of time with the construction process: 

the first one: calendar (current) time of construction t, and 

the second one: pro?er (active) tire of construction sf i.e. 

the time span during which the project has actually been con- 

structed. It is evident that s < T. The value of s as - 
differing from the calendar time means the possibility of 

freezing (suspending) the construction and allows us to intro- 

duce additional control into the model. 

Let's denote by qs(t) the volume of s-year capacities in 

the branch for the beginning of the year t. Let's also intro- 

duce the value Us(t) as the volume of capacities that have 

been in the process of active construction from the beginning 

of the year t (s-1 year) and are still in the construction 

process in year t. 



Let's first consider the case when the process of con- 

struction proceeds strictly according to the project without 

freezing, i.e. the active time of construction coincides with 

the current one. In this case the construction process 

dynamics should be written in the following way: 

the value Ul (t)--the volume of the foundations laid for con- 

struction--being the only control here. It is clear that in 

thiscase U (t) coincides with the value of U(t) introduced pre- 1 
viously in the relation (1 ) . 

Now let us assume a possibility of freezing of the projects 

that are at various stages of completeness. In this case the 

volume of the construction frozen in the branch during the 
-- 

year t will show the difference qs(t) - Us+l (t) , s = I ,,-I. 
Then the following ratio of the dynamics of capacities, taking 

account of the construction process control, may be written: 

Ws (t+l) = Ws(t) - Us+l (t) +us(t) , s =  1,r-1 

( 4 )  

The fulfillment of the following restrictions is also 

evident: 

where the value of Ul (t) - > 0 is the volume of the set-up con- 

structions being non-restricted in principle by the above 

mentioned correlations (4) and (5). 



BRANCH DEVELOPMENT PROBLEM WITH THE CONTROLLED PROCESS OF CON- 

STRUCTION 

In order to estimate the efficiency of capital investment 

distribution as well as that of construction freezing within 

the framework of the proposed description, let us formulate the 

problem of branch development with the controlled process of 

construction. To facilitate the task of further discussion 

we will pass over to the vector designations: 

where 1 i f i = j  
( 

6ij = / 
O i f i f  j 

Let the investments vP(t) during the whole plan period T 

be known. Then the following problem for optimal planning of 

the branch may be written: 

'I 

q(t) U(t) -t max . 
t=O 



Here the correlations of capacity dynanics (6) and in- 

equality (7) coincide with (4) and (5) ; inequality (8) shows 

the limitedness of the supplies of investments. The function 

of the problem has a rather general form since the values of 

@ (t) and U (t) are simply bound by the difference equation (6) . 
If we suppose that q (t) = c (t)CQ(E-B) , then according to (1 ) 
the function acquires the senseof the total cost of capacity 

increment AF (t) = T(E-H) U (t) calculated in a price variable 

with time c (t) . 
The problem (6) - (9) is the problem of linear dynamic 

programming in discrete time and its optimal conditions are 

obtained directly from the theory of linear programming [2]. 

The main results of this problem investigation are given in 

Appendix 1. 

The formulation of the optimum conditions--in terms of 

local time problems bound by dynamic correlations, e.g. in 

terms of the maximum principle--decomposes the problem in 

accordance with the specificity of the dynamic problem and 

proves convenient for qualitative analysis. 

THE LOCAL (ONE-STEP) PROBLEM 

The local problem of the maximum principle (see Appendix 1) 

is the problem of the investment distribution for capacity 

construction of various types of s, and if the vP (t) is of 

scalar quantity, it assumes an analytic solution. It should 

also be noted thatin practice the plan solutions are frequently 

obtained on the basis of a one-step problem (6)-(9), which is 

entirely equivalent to the local problem. 

The solution of the local (one-step) problem is given in 

Appendix 2. During the solving process we have seen that the 

efficiency of the investment distribution in construction is 

defined by the behavior of function rs = qs+l/xs+l. 

Provided that s = arg max rs, the distribution of the 
S 

investments in the construction of starting projects (capaci- 

ties) is optimal. In case of non-fulfillment of this condition, 

noncompleteness of starting projects proves to be advantageous, 



this increases the actual duration of the construction as well 

as the volumes of noncompleted construction in the current 

year. 

ASYMPTOTIC PROPERTIES OF OPTIMAL TRAJECTORIES 

The experience of solving the problems of economic dynamics 

shows that the structure of their optimal solutions is rather 

complicated. In this connection it is of great importance, in 

order to understand the peculiarities of the behavior of opti- 

mal trajectories and the construction of effective numerical 

methods of solution, to investigate the asymptotics of the 

solution at great intervals of planning. It is well known 

that for a wide class of dynamic models of the economy optimal 

trajectories are most of the time close to some outlined 

stationary trajectory that is called the turn-pike. 

The investigation of stationary trajectories of the branch 

development problem is given in Appendix 3. We assumed that 
P t the economy develops at the a rate, i.e. v (t) = a v, 

q(t) = a-tq. This suggests a hypothesis that the economy on 

the whole, as a unit consisting of a great number of branches, 

is of a stable nature and the processes that occur in a 

separate branch do not essentially influence this development. 

During the process of solving the stationary problem we 

have seen that the optimal stationary trajectory is defined 
- 

-k 
by the function RS = a qk/ 1 . The solution of the problem 

k= 1 k= 1 
corresponds to the uniform construction of capacities from the 

zero stage to the s stage. From the contextual point of view 

the function Rs provides efficiency conditions for uniform con- 

struction from the zero stage to the s stage: R_ equals the re- 
3 - S 

-k lation i a kqk (the cost of capacity increment) to 1 a xk 
k= 1 k= 1 

(the cost of expenditure calculated with due regard to dis- 

counted prices). 

The simplest form of the turn-pike theory for the problem 

has been proved in [3], i.e. the turn-pike theorem in a weak 

form which ascertains the proximity of the optimal trajectory 



to the Neiman boundary. For the given problem the fulfillment 

of inequalities in (6)-(9) as equalities corresponds to the 

Neiman boundary. The proof of the strict form of the turn- 

pike theorem, i.e. of the proximity to the isolated stationary 

trajectory for linear problems, is based on the analysis of 

the behavior of trajectories within the Neiman boundary. The 

availability of the turn-pike qualities has been shown to 

their full extent by the results of numerical experiments that 

are discussed here. 

THE RESULTS OF NUMERICAL EXPERIMENTS 

It was also the aim of the numerical experiments carried 

out to detect the qualitative features of the problem of 

branch development with the controlled process of construction. 

The calculations were made on the basis of conventional in- 

formation according to the problem (6)-(9) at the values 

T = 50 and 95 years. To make the comparison more vivid, the 

examples are brought out under one and the same conventional 

project of construction characterized by (see Figure 2)*: 

All the calculations have been conducted at $ O  = 0, v = 3 

and different a and T (in the problem with the variable turn- 

pike a depends upon t). The values E, $ correspond to the best 
stationary development defined for the stationary problem 

(Appendix 3, (A 19) . 

*The values of investment parameters y and p are not standard- 
ized for a greater representation of the graphs given below. 



Figure 2. Conventional proj.ect of construction. 

Example 1 (Figure 3) : 

In the given example s = arg max Rs = 5. It is seem from 
S 

Figure 3 that in this case a uniform construction of all types 

of capacities is observed; generally speaking, the value of qs 

is non-defined since there is an accumulation of completed 

construction. 



Figure 3. Optimal t r a j e c t o r i e s  q and U t o  Example 1. 



The turn-pC.earea  o f  o p t i m a l  t r a j e c t o r i e s  i s  a l s o  seen  i n  

t h e  f i g u r e .  

Example 2 ( F i g u r e  4 )  : 

H e r e  5 = 2 .  I n  t h i s  c a s e  o n l y  t h e  c o n s t r u c t i o n  of  one- 

and two-year p r o j e c t s  t a k e s  p l a c e .  

Example 3 (F igure  5 )  : 

T = 95;  a ( t )  = 1 + A t ,  A = 0,005 

The example r e f e r s  t o  t h e  c a s e  w i t h  t h e  v a r i a b l e  t u r n -  

p i k e  t r a j e c t o r y ,  and E ( t )  c o r r e p s o n d s  t o  t h e  approx imat ion  of  

t h e  c a l c u l a t e d  dependence of  upon t of  t h e  s o l u t i o n  o f  

problem ( 1 9 ) .  The f u n c t i o n  of  Rs depends upon t ( s i n c e  a  

depends upon t )  and i t s  maximum changes  w i t h  t i m e .  One can  see 

i n  F i g u r e  5  t h a t  i n  t h i s  c a s e  t h e  c o n s t r u c t i o n  of a l l  t y p e s  of  

p r o j e c t s  t a k e s  p l a c e  f i r s t  and one- and two-year p r o j e c t s  

s t i l l  remain;  c l e a r l y  s e e n  i s  a l s o  t h e  a r e a  of e x i t  t o  t h e  

t u r n - p i k e  a s  w e l l  a s  t h e  t r a n s i t i o n  a r e a  c o r r e s p o n d i n g  t o  t h e  

maximum s h i f t  R s ,  and a g a i n  t h e  t u r n - p i k e  a r e a  f o r  one- and 

two-year p r o j e c t s .  



Figure 4. Optimal trajectories I$ and U to Example 2. 



F i g u r e  5 .  O p t i m a l  t r a j e c t o r i e s  t o  Example  3. 

Example 4 ( F i g u r e  6 )  : 

T = 9 5 ;  a ( t )  = 1  + A ( 1 0 0 - t ) ,  A = 0 , 0 0 5  

- 
s = 2 a t t < 3 3  - 

- 
s = 5 a t t > 3 3  

- A A 
U ( t )  = 1 , 5 ( 1 + T ( 1 0 0 - t ) ;  l - T ( l O O - t ) ;  0 ;  0 ;  0 )  a t  t - < 33  

- 
U ( t )  = 0 ,6 (1+2A ( 1 0 0 - t )  ; 1+A(100- t )  ; 1 ;  1 -A(10Q- t )  ; 

1-2A ( 1 0 0 - t )  ) a t  t > 33.  



Figure  6 .  Optimal t r a j e c t o r i e s  t o  Example 4 .  

A r e v e r s e  p i c t u r e  i s  observed i n  t h e  given example: here  

a dec reases  and, cor respondingly ,  one- and two-yesr p r o j e c t s  

a r e  cons t ruc t ed  f i r s t  and then  t h e  c o n s t r u c t i o n  of a l l  s t ypes  

of  p r o j e c t s  i s  undertaken.  

The given examples have shown t h a t  a  long-term opt imal  

dynamics of t h e  problem has  turn-pike p r o p e r t i e s :  t h e  op t imal  

t r a j e c t o r y  i s  most of t h e  t ime c l o s e  t o  t h e  opt imal  s t a t i o n a r y  

t r a j e c t o r y ,  which, a s  has  been e s t a b l i s h e d  i n  Appendix 3 ,  is  

de f ined  by t h e  Rs f unc t ion  behavior .  

CONCLUSIONS 

L e t ' s  no t e  aga in  t h e  n o s t  i n t e r e s t i n g  and, from our  p o i n t  

of view, profound moments of t h e  i n v e s t i g a t i o n  t h a t  a r e  r e l a t e d  

wi th  t h e  c o n t r o l l e d  process  of c o n s t r u c t i o n  of new c a p a c i t i e s .  

Tf t h e  nunher of s t e p s  i n  t h e  dynamic problem i s  equa l  t o  

one ( a  one-step prob lem) ,  then  t h e  op t imal  d i s t r i b u t i o n  of 



capital investments into projects that are at various stages 

of construction is simply defined by some function of capital 

investment efficiency. Different types of requirements of the 

projects under construction in terms of investments are being 

satisfied with efficiency decrease. 

A long-term optimal dynamics of the problem has asympto- 

tic properties. The optimal trajectory is most of the time 

close to the best stationary trajectory. The latter is also 

defined by some efficiency function of capital investments, 

differing however from all the above-mentioned ones by the 

fact that-the projects, where the investments are more effec- 

tive in a one-step problem, turn out to be completely frozen 

in long-term optimal plans of the branch development. The 

investments on the indicated stationary trajectory are dis- 

tributed in such a way as to provide to some extent uniform 

construction of projects from the initial stage up to the state 

of maximum efficiency. 



APPENDIX 1.  ANALYSIS OF THE BRANCH DEVELOPMENT PROBLEM 

L e t c s  b r i e f l y  f o r m u l a t e  t h e  main r e s u l t s .  Applying t h e  

s t a n d a r d  Lagrange F u n c t i o n  i n  d i r e c t  and d u a l  form 

+ y  ( t)  (y  ( t )  - H U ( t )  + w ( t )  (vP ( t )  - K U ( t )  ) I  = 

where p  ( t)  , w ( t )  , y (t)  a r e  v e c t o r  l i n e s  o f  t h e  a d e q u a t e  dimen- 

s i o n s ,  w e  o b t a i n  t h e  d u a l  problem t o  ( 6 ) - ( 9 )  : 

y ( t ) ~  + w ( t ) K  2 q ( t )  + p ( t )  (E-H) ; y ( t )  , w ( t )  - > 0 (A2 

compr i s ing  t h e  dynamic e q u a t i o n  (Al)  o f  d u a l  phase  v a r i a b l e s  

p  ( t)  , t h e  l i m i t a t i o n s  (A?) on d u a l  c o n t r o l s  y  ( t)  , w ( t )  , t h e  

f u n c t i o n  of t h e  d u a l  problem (A3) and t h e  c o r r e l a t i o n s  of com- 

p lementa ry  n o n - r i g i d i t y :  



Y (t) [VJ (t) - HU (t) 1 = w (t) [vP (t) - KU (t) 1 = 

= [q (t) + p (t) (E-H) - (tlH - 

The existence of 6 (t) , (t) , (t) satisfying (A1) - (A3) , 
A 

together with j (t) , U (t) the correlations (All), is the necessary 
and sufficient optimum condition of the functions j(t) , 6(t) 
in (6)-(9) [ 2 ] .  

It is obvious that the correlations (A4) are valid if and 

only if $(t) and (t), G(t) are the solutions of the pair of 

local dual tasks: 

.q (t) + 6 (t) (E-H)U + max 

y$ (t) + wvP (t) + min 
t 
YH + wK 2 6 (t) (E-H) + q (t) ; w,y 2 0 , 

or of a saddle point of the function 

+ Y (j (t) - HU) + w(vP (t) - KU) 

on the set U > 0; w,y - - > 0. 



APPENDIX 2 .  SOLUTION OF THE LOCAL (ONE-STEP) PROBLEM 

Thus, l e t ' s  c o n s i d e r  t h e  l o c a l  problem (A5) assuming t ,  

G ( t )  and $ ( t )  t o  be f i x e d .  W e  s h a l l  f i r s t  s o l v e  i t s  d u e l  

problem t h a t  may be w r i t t e n  a s  f o l l o w s :  

min { + t )  + w P ( t ) :  w,y 2 O ;  y~  + WK - > g l  = 

P = min {mv ( t)  + min Y $ ( t )  I , 
w > o  - Y 20 

y  H+wK>g 

A 

where g  = p ( t )  (E-H) + q ( t ) .  Taking i n t o  accoun t  t h e  non- 

n e g a t i v i t y  o f  y  it i s  n o t  d i f f i c u l t  t o  c a l c u l a t e  t h e  i n t e r i o r  

minimum on t h e  r i g h t - h a n d  s i d e  of  t h e  e q u a t i o n :  

L I A 

min y $ ( t )  = 1 min y  $J ( t)  = 
Y'O 

S S s= 1 Y 
yH+wK>g 

YsLgs+ 1 -WXx+ 1 

where 

The v a l u e  p r o v i d e s  t h e  minimum on t h e  set  w > 0 o f  t h e  con- - 
vex f u n c t i o n  

i f  and o n l y  i f  t h e  d e r i v a t i v e s  %(w) a t  t h e  p o i n t  i n  t h e  

d i r e c t i o n s  assumed by t h e  l i m i t a t i o n s  w - > 0 a r e  non-negat ive .  

By c a l c u l a t i n g  t h e s e  d e r i v a t i v e s  one f i n d s  f o r  .:- = 0 



and for 3 > 0 

h 

3(0,h) = h(vP (t) - 1 x ~ + ~  vs (t) - > o vh - > o 
x )>O s: @S+l s+l 

n 
3{ii,h) = h(vP (t) - 1 .s+1 vs (t) > 0 ~h < 0 . (A7) - - 

LI 

s: (gs+l -WXs+1 120 

It is seen from (A6) that the resource has a zero esti- 

mation ? if and only if it is sufficient for the continuation 

of all the constructions with positive values g s+ 1 > 0. Other- 

wise, fj is chosen from the correlations (A7) which, for con- 

venience, may be rewritten in the following form: 

where 

It is these correlations that define the structure of 

the solution: the needs of constructions with high values r 
S 

are fully satisfied; the requirements of constructions with 

small rs are not satisfied and only partially satisfied at 

r = fj (see Figure A1 , where the shaded area is equal to vP) . 
S 
In this case % > 0 is chosen such that the resource should 

be spent completely. Since in a one-step problem gs+l - - 
- 
- %+I = C(P,+~ - P ) is the capacity increment cost during 

S 
the construction of s+l unit volume, and x ~ + ~  is the expenditure 

on this construction, the function rs may be interpreted as 

efficiency of the fund-formation resource distribution in the 



F i g u r e  Al.  D i s t r i b u t i o n  o f  t h e  fund-format ion  r e s o u r c e  i n  a  

one-s tep  problem. 

c o n t i n u a t i o n  of  t h e  c o n s t r u c t i o n  from s t a t e  s i n t o  s t a t e  s + l .  

The f u n c t i o n  rS i s  a l s o  i n  f u l l  agreement  w i t h  t h e  l o c a l  prob- 

l e m  of  t h e  maximum p r i n c i p l e , b u t  i n  c u r r e n t  d u a l  p r i c e s  
h h 0 

g  (t) = q (t) + p  (t) (E-H) f o r  t h e  c o n s t r u c t i o n  volumes of  v a r i o u s  

t y p e s  s.  



APPENDIX 3. ANALYSIS OF STATIONARY TRAJECTORIES 

For further consideration we shall introduce new (dis- 

counted) variables: 

and replace balance equalities by inequalities, which actually 

provides the possibility of destroying the constructed capa- 

cities. Formally the substitution of equalities for in- 

equalities may enlarge the set of solutions, but because of 

the speci'fjc character of the problem, the new statement 

appears to be completely equivalent to the old one. Further, 

we will use only the new variables, omitting the "N" index. 

Besi'des, we shall assume, as before, the one-dimension of 
P v (tj that would enable us to carry out a complete analytical 

research of the problem. Then, with the new variables, the 

problem (6) - (9) and its dual problem will take the following 
form : 

Direct problem: 

E qU(t) + nax . 
t=O 

Dual problem: 



y.Ct)H + w ( t ) ~  q(t) + p (t) (E-H) 

T 
1 w(t)v + p(-l)qO + min . 
t=O 

During the analysis of the asymptotics of the optimal 

solutions the stationary trajectories play an important role. 

By saying stationary here we mean: 

While passing on to t+l one may formally discard 

9 (t+l) - 9 (t) and repeat the transition from t+l to t+2. The 

inequality 9 Ct+l ) - > 9 (t) corresponds to the accumulation of 

the completed construction. 

In terms of function (9) the best stationary trajectory 

in the plan interval [O,T] will be the trajectory with the 

maximum value of qU. Let's formulate the problem of the best 

stationary development in the branch: 

qU + max , 

its dual 

wv + min , 

and the correlations of complementary non-rigidity: 



p [) + (E-H) U - a) ]  = y ()-HU) = w (v-ICU) = S v F  = 

L e t t s  so lve  t h e  problem (A1 1 ) . ConsiZer t h e  a u x i l i a r y  problem 

Any assumed s o l u t i o n  ( p , y , ~ , 5 ~ ~ 5 ~ )  of t h e  problem ( A l l )  gener-  

a t e s  an assumed s o l u t i o n  (p,w,S = SU + HS ) of t h e  problem 
'4J 

(A13). And v i c e  v e r s a ,  g e n e r a l l y  speaking,  t h e  s o l u t i o n  of 

t h e  problem (A1 3)  i s  r e s t o r e d  by any assumed s o l u t i o n  (p,w,SJ 

of t h e  problem ( A l l ) ,  e .g .  (p,w,y = ( a - l ) p ,  SU= S t  5 = 0 ) .  
4' 

Therefore  t h e  v a l u e s  of t h e  f u n c t i o n s  i n  t h e s e  problems coin-  

c i d e ,  and by t h e  op t imal  s o l u t i o n  of t h e  problem (A13) a t  l e a s t  

one opt imal  s o l u t i o n  of t h e  problem ( A l l )  may be r e s t o r e d  i n  

a t r i v i a l  way. 

W e  s h a l l  r e w r i t e  (A13) i n  t h e  form: 

- 
j = min Cwv:p s t S s t w  0; Ps - - aPs-l + W X  - q - E s t  

S 

By s o l v i n g  t h e  d i f f e r e n c e  equa t ion  f o r  p w e  f i n d  s 

s 
j = min C W V : W , ( ~  > O; ps = as [  1 a -k 

.- (wx,-s,-S,) 1 , 0; 
k= 1 

- -k > s = l , r }  = min {wv:w,SS - > 0; w 1 a xk - 
k= 1 



From t h e  l a s t  e x p r e s s i o n  w e  o b t a i n  t h e  fo l lowing  p r o p e r t i e s  of  
- - -  

t h e  op t ima l  s o l u t i o n  (w,p,S) : 

- 
w + R- = max Rs , 

S - 

where 

F u r t h e r ,  suppose t h e  un i - ex t r ema l i t y  of t h e  f u n c t i o n  Rs .  Then 

- - -  
and among t h e  op t i ru l  sets (w,p,S) t h e r e  a r e  such a s :  

and 

- - - 
By means of  t h e  o b t a i n e d  se t  (p,w,S) w e  may r e s t o r e  t h e  

- - - - 
s o l u t i o n  ( p , w , y , S U , ~ )  of t h e  problem (A1 1 )  . For t h i s  pur- 

pose it i s  n e c e s s a r y  t o  choose 5 s o  t h a t  
4' 

Due t o  t h e  i n e q u a l i t i e s  (A16) among t h e  s o l u t i o n s  of  t h e  prob- 

l e m  (A1 1 )  t h e r e  a r e  such t h a t  



and any s o l u t i o n  accord ing  t o  (A14), (A15) s a t i s f i e s  t h e  c o r r e -  

l a t i o n s  

Using t h e  o b t a i n e d  s o l u t i o n  of  t h e  problem ( A l l )  and t h e  

c o r r e l a t i o n s  of  complementary n o n - r i g i d i t y ,  we f i n d  t h a t  t h e  

s o l u t i o n  of  t h e  problem (A10) shou ld  s a t i s f y  t h e  system: 

Hence we f i n d  t h e  complete d e s c r i p t i o n  o f  t h e  set  o f  s o l u t i o n s  

(A10) : 
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