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PREFACE

Optimization is of central concern to a number of discip-
lines, Operations Research and Decision Theory are often consi-
dered to be identical with optimization. But also in other
areas such as engineering design, regional policy, logistics
and many others, the search for optimal solutions is one of the
prime goals, The methods and models which have been used over
the last decades in these areas have primarily been "hard" or
"crisp", i.e. the solutions were considered to be either fea-
sible or unfeasible, either above a certain aspiration level or
below, This dichotomous structure of methods very often forced
the modeller to approximate real problem situations of the
more-or-less type by yes-or-no-type models, the solutions of
which might turn out not to be the solutions to the real prob-
lems, This is particularly true if the problem under considera-
tion includes vaguely defined relationships, human evaluations,
uncertainty due to inconsistent or incomplete evidence, if na-
tural language has to be modelled or if state variables can
only be described approximately.

Until recently, everything which was not known with cer-
tainty, i.e. which was not known to be either true or false or
which was not known to either happen with certainty or to be
impossible to occur, was modelled by means of probabilities.
This holds in particular for uncertainties concerning the oc-
currence of events, Probability theory was used irrespective
of whether its axioms (such as, for instance, the law of large
numbers) were satisfied or not, or whether the "events" could
really be described unequivocally and crisply.

In the meantime one has become aware of the fact that un-
certainties concerning the occurrence as well as concerning the
description of events ought to be modelled in a much more dif-
ferentiated way. New concepts and theories have been developed
to do this: the theory of evidence, possibility theory, the
theory of fuzzy sets have been advanced to a stage of remarkab-
le maturity and have already been applied successfully in nu-
merous cases and in many areas. Unluckily, the progress in
these areas has been so fast in the last years that it has not
been documented in a way which makes these results easily ac-
cessible and understandable for newcomers to these areas:
text-books have not been able to keep up with the speed of new
developments; edited volumes have been published which are very
useful for specialists in these areas, but which are of very
little use to nonspecialists because they assume too much of a
background in fuzzy set theory. To a certain degree the same
is true for the existing professional journals in the area of
fuzzy set theory.

The editors of this book have succeeded to avoid this
weakness by starting with an introductory section which provi-
des - even for the newcomer to this area - the necessary back-
ground to understand the contributions of the following sec-
tions.

xi



xii PREFACE

Section II of this volume focuses on methodological advan-
ces in the areas of optimization and decision making. Three of
the most relevant topics in this area have been chosen to il-
lustrate modern tools and techniques using fuzzy sets and pos-
sibility theory: preference theory, decision theory and multi-
criteria decision analysis.

The editors can be congratulated on the selection of
authors they have succeeded to convince to contribute to these
sections. They are all internationally well-reputed and lead-
ing scientists in their respective areas,

The same is true for the two subsections of this chapter
which are of a slightly different character. One treats fuzzy
approaches to location and distribution problems. This will
certainly be of particular interest to people working in logis-
tics, The second subsection introduces the reader into the most
modern area of knowledge-based decision support systems which
links past experience and available optimization models to
future developments as they will be needed, for instance, in
the 5th Generation Computer Technology.

One of the frequently asked questions is: "Can fuzzy sets
be used in practice?" At the start of any new theory this ques-
tion is particularly hard to answer. Nevertheless the editors
of this book give an answer by presenting in the third chapter
of the book five descriptions of the use of fuzzy sets in solv-
ing real world problems in quite diverse areas such as regional
policy, water resource allocation and hydrocracking processes.
They could not have thought of a better and more convincing
conclusion of their book.

Altogether this volume is a very important and appreciable
contribution to the literature on fuzzy set theory. The editors
have succeeded in presenting a well composed selection of con-
tributions by leading scientists from all over the world. They
have also provided enough background information to make the
book selfcontained and valuable to newcomers to this area as
well as to specialists. It can only be hoped that it will be
read in all parts of the world. It really deserves it!

H.-J. Zimmermann
President
International Fuzzy Systems Association

Aachen, June 1986
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NEW PARADIGMS IN SYSTEMS ENGINEERING: FROM "HARD" TO "SOFT"
APPROACHES

Brian R, Gaines

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4

Abstract. Developments in fuzzy sets theory are
considered in relation to those in expert systems.
It is suggested that these are not just mathema-
tical and technological advances but also repre-
sent major paradigm shifts in system theory. The
main shift is away from the normative application
of technology to change the world to be theoreti-
cally tractable, and towards increasing model rea-
lism. The limitations of classical "hard" system
theory when applied to natural systems are the im-
petus behind the development of modern "soft" sys-
tem theory, its foundations in fuzzy sets theory
and its application in expert systems.

Keywords: systems theory, systems engineering,
fuzzy sets, expert systems.

1. INTRODUCTION

Lotfi A, Zadeh first discussed the need for a "mathematics
of fuzzy or cloudy quantities™ in a paper entitled "From circuit
theory to system theory" published in 1962. This led to his
publishing his seminar paper, "Fuzzy sets", proposing such a
mathematics in 1965. A comprehensive bibliography for the first
decade shows an increase from 2 papers published in 1965 to
over 227 in 1975 with a cumulative total in 1975 of some 620
items (Gaines and Kohout, 1977) and in 1979 of some 1400 items
(Kandel and Yager, 1979). The number of papers a year and cumu-
lative total fit well to exponential growth at 60% a year for
the first decade. However, it is now almost impossible to track
the growth of a literature which has grown from the output of
a small group of specialists to that of an international commu-
nity involving almost every nation and discipline. The growth
rate of the dissemination of knowledge about, interest in, and
work on fuzzy sets theory (FST) and its applications has been
spectacular.

Why has there been this tremendous growth of interest in
the past twenty years in the mathematics of fuzzy or cloudy
quantities? What changes have occurred in systems engineering?
This paper suggests that there has been a shift in the modes of
thinking and problem-solving for a significant community of
theoretical and applied scientists and technologists. The "hard™

3



4 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

systems approach that has proved so powerful in the development
of man-made systems is far less useful in developing models for
the management of natural systems, or coupled man-made and na-
tural systems. A "soft" systems approach has become necessary to
extend our science and technology to systems engineering for ma-
jor ecological, social and economic processes.

Nowhere is the significance of this change more apparent
than in the development of expert systems (ESs) where a soft
systems approach has been taken to the encoding of human exper-
tise for computer-based systems (e.g. Michie, 1979; Gevarter,
1983; and Reitman, 1984), This is an interesting area, not only
for its high intrinsic value, but also because it enables us to
contrast differing aspects of the role of FST in modern informa-
tion science. Expert systems development leads to requirements
for reasoning with imprecise data where FST provides an alterna-
tive paradigm to those of classical logic and probability theo-
ry. The most well-recognized breakthroughs in ESs such as MYCIN
(Shortliffe, 1976) were not based on FST, but on heuristic me-
thods that turn out to closely resemble FST. Other early break-
throughs such as linguistic process controllers (Mamdani and
Assilian, 1981) were based directly on FST.

The next section outlines the development of ESs and the
role of FST, and the following section considers the paradigm
changes involved.

2. EXPERT SYSTEMS AND FUZ2Y SETS THEORY

The computer simulation of people in the roles of experts
on some topic has become an important application of interactive
computer systems. It has generated a new industry based on crea-
ting expert systems to make the practical working knowledge of
a human expert in a specific subject area such as medicine or
geology widely available to those without direct access to the
original expert (Reitman, 1984). Programs now exist that have
made practical achievements in medical diagnosis, interpreta-
tion of mass spectroscopy results, analysis of geological sur-
vey data, and other problems where one would normally go to a
human expert for advice.

One of the first ES developments was the fuzzy logic con-
trol system developed in 1974 by Mamdani and Assilian. The sy-
stem accepted human knowledge of control strategies expressed
verbally and encoded it directly as computer programs which
acted on the environment (Mamdani and Assilian, 1981). This
work was undertaken as part of a study of machine learning in
process control and the system controlled was a small steam
engine, The verbal rules were of the form shown in Fig. 1.

IF the pressure error is positive and big and the
change in pressure error is not negative medium
or big

THEN make the heat change negative and big
Fig. 1, Rule from a fuzzy logic controller

What was surprising at the time and made the 1974 results
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a recognized breakthrough was that the control rules derived
from the verbal statements were extremely effective. They com-
pared favorably with those derived by tuning a standard PID
(proportional-integral-derivative) controller for optimum per-
formance. It was also found that the learning machine then pro-
ceeded only to learn less effective strategies. Hence interest
switched to the process whereby human expression of verbal rules
that appear vague can lead to highly effective control strate-
gies, In the past ten years Mamdani and Assilian’s results have
been replicated in many different countries for many different
control processes, including a number of significant industrial
processes such as pig iron smelting where effective automatic
control had been thought to be impossible (Mamdani, @stergaard
and Lembessis, 1984).

The concept of an ES was not prevalent at the time of the
initial fuzzy control studies and their significance as examples
of early ES development was noted only later., In parallel with
the controller development, other rule-based ESs were being de-
veloped for completely different domains, The system widely re-
cognized as an early breakthrough, MYCIN, is a medical diagnosis
ES which aids a clinician to act as a consultant on infectious
diseases (Shortliffe, 1976). It uses rules of the form shown in
Fig. 2,

RULE 50
IF 1) the infection is primary-bacteremia, and
2) the site of the culture is one of the sterile
sites, and
3) the suspected portal of entry of the organism is
the gastro-intestinal tract,
THEMN there is suggestive evidence (.7) that the identity
of the organism is bacteroides

Fig. 2., A MYCIN rule

These rules are obtained from specialists in microbial in-
fections and their application to particular data is fairly
simple data processing, The rules are validated through their
application to many cases and revised when they fail to give
the correct diagnosis, MYCIN is designed to interact with a
clinician in order to make a diagnosis and suggest therapy for
a particular patient with suspected microbial infections, It
first gathers data about the patient and then uses this to make
inferences about the infections and their treatment.

Note that the MYCIN rule of Fig. 2 involves an assertion
that is evidential rather than true, Shortliffe found it neces-
sary to encode rules of inference that were imprecise and could
not be encoded simply in terms of truth and falsity. He ascribed
a verbal label, "suggestive evidence", and a numerical truth
value, "0,7", to a rule and developed a calculus for combining
such truth values in chains of logical inference. Thus, lingu-
istic reasoning and multivalued logics were key components of
early ES developments although the MYCIN developers were ini=-
tially unaware of FST and the linguistic controller developers
were initially unaware of ES concepts,
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It was also discovered that the rule-based approach to know-
ledge encoding could be applied to high-level capabilities such
as learning processes through the use of metarules. Mamdani,
Procyk and Baaklini (1976) found that learning could be introdu-
ced effectively in the steam engine controller through metarules
that expressed the way in which the basic rules should be chan-
ged as a result of performance feedback. The learning level of
their controller operated on rules of the form shown in Fig. 3.
This was sufficient for the fuzzy controller to acquire a con-
trol strategy similar to that induced through verbal rules from
a human expert.

IF time is small and error is negative big
THEN desired change is big

IF time is big and error is positive zero
THEN desired change is zero

Fig, 3. Metarules from a fuzzy learning controller

Metarules were also introduced independently by Davis to
aid the debugging of MYCIN. It was difficult to set up the
MYCIN rules initially and also difficult to trace errors in the
deductions. To overcome these problems TEIRESIAS (Davis and
Lenat, 1982) was added as an auxiliary ES with expertise about
MYCIN to explain MYCIN’s decisions and help the clinician amend
the rules when they lead to incorrect conclusions, TEIRESIAS
uses a similar rule-based approach to reasoning as does MYCIN
but the rules are now rules about the forms of rules and the
use of rules. A typical such metarule is shown in Fig. 4. Where-
as MYCIN’s rules are specific to microbial infections, those of
TEIRESIAS are more general and can be used in other domains.
Davis (1983}, for example, shows TEIRESIAS being used as an in-
vestment decision system for clients of a stockbroker.

METARULEOQOQO3 :
IF 1) there are rules which do not mention the
current goal in their premise
2) there are rules which mention the current
goal in their premise
THEN it is definite that the former should be
done before the latter

Fig. 4. A TEIRESIAS metarule

One of the important features of MYCIN/TEIRESIAS that has
become an essential characteristic of ES is their capacility to
provide explanations of the deductions given. "Why?" gquestions
are accepted as responses when data is requested and are inter-
preted as a request for the rule to be shown that requires the
data requested. A "why?" question may also be asked when con-
clusions are drawn and this is interpreted as a request for the
complete chain of logic used in arriving at that conclusion to
be shown. The facility to answer such questions make ES accoun-
table for their behavior and conclusions. This is itself a major
new feature of systems programmed for computers.

Another important feature of ES is that they are not sta-
tic representations of knowledge but can continue to acquire
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knowledge as they are used, Essentially, the use of metarules
allows ES to be programmed interactively by their users. From
one perspective the metarules of the fuzzy learning controller
and TEIRESIAS can be seen as an important development in auto-
matic programming. From another they can be seen as a way in
which a machine acquires knowledge through interaction with its
environment or with a person. These are analogous to the funda-
mental ways in which people acquire knowledge (Gaines and Shaw,
1984a) . For such applications computational logics capable of
dealing with the uncertainties of imprecise data and fallible
hypotheses are essential.

Since the early success with fuzzy logic control and MYCIN,
a very wide range of ESs have been developed. Gevarter (1983)
has summarized some well-known expert systems and their appli-
cations but the numbers and domains have since increased so ra-
pidly that it is now impossible to make any accurate count. Most
universities have some activity in this field and many indus-
trial ESs are regarded as highly proprietary. ESs are a pragma-
tic example of the success of a soft systems approach based on
linguistic reasoning with uncertain rules and data (Gaines and
Shaw, 1984b). They contrast with previous unsuccessful approach-
es to similar problems based on the development of precise ma-
thematical models and their use in the development of optimum
control and decision algorithms,

The next section considers the significance of this change
of approach.

3. SHIFTS IN SYSTEMS PARADIGMS

The previous section has shown how the early applications
of FST to control and decision systems paralleled the develop-
ment of early expert systems in the use of linguistic rules,
fuzzy reasoning and metarules. This role of FST, significant as
it is in itself, is only an indication of the deeper paradigm
shifts from which FST and ES both stem. The classical approach
in decision and control system design is shown in Fig. 5. This
positivistic paradigm underlies the methodologies of the physi-
cal sciences and technologies based on them. It has the merit
that it has been extremely successful in engineering much of
the technological infrastructure of our current civilization.

However, this paradigm is successful only to the extent
that the systems under consideration are amenable to instrumen-
tation and modeling. Its greatest successes have been where
this amenability can be achieved normatively, that is in cases
where the system to be controlled is itself a human artifact.
For example, linear system theory has not become a major tool
in systems engineering because most natural systems are linear
- they are not. The implication is in the opposite direction:
that linear systems are mathematically tractable and that we
design artificial systems to be linear so that we may model
them readily.

The application of "a linear model with quadratic pefor-
mance criterion" to natural systems is often attempted but, in
general, it does not work. We have done so not because the tool
was appropriate, but because it was the only one we had. How~
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STEF 1
Thoroughly instrument the system to be controlled or
about which decisions are to be made

STEP 2
Use the instrumentation to gather data about the
system behavior under a wide variety of circumstances

STEP 3
From this data build a model of the system that
accounts for this behavior

STEP 4
From this model derive algorithms for decision or
control that are optimal in terms of prescribed
performance parameters

Fig. 5. The hard systems approach

ever, the use of a hammer to insert screws, although partially
effective, tends to distort, destroy, and generally defeat the
purpose of using a screw, Similarly, the use of an inappropria-
te system theory to model a system may give useful, but limited,
results when we have no other, but it distorts reality, destroys
information and generally defeats the purpose of modeling that
system.

Much of our current technology succeeds to the extent that
it is normative., In agriculture we reduce the complexity of a
natural ecology to a comprehensible simplicity by the use of
pesticides, herbicides and chemical fertilizers (Gaines and
Shaw, 1984c). We reduce the system to one which is amenable to
our modeling techniques. That simpler is not necessarily better
and that re-engineering nature to impose uniformity destroys
variety which is itself valuable have only been realised in re-
cent years,

The four shifts in perspective that we see in FST and ES
are shown in Fig., 6. The last three perspectives all stem from
the first., The importance of this first perspective to Zadeh is
apparent in his 1962 paper where he discusses the fundamental
inadequacy of conventional mathematics for coping with the ana-
lysis of bioclogical systems, noting also that the need for a
new mathematics was becoming increasingly apparent even in the
realm of inanimate systems.

The second perspective is that which lead to FST. Optimal
control theory was regarded as the peak achievement of system
theory in the 1950s and 1960s, However, it proved limited in
application because it demanded precision in system modeling
that was impossible in practice. It was too sensitive to the
nuances of system structure expressed through over-precise sy-
stem definition,

The third perspective is that which led to the success of
linguistic fuzzy controllers and later ESs. Hayes-Roth (1984)
has noted the many problems that have been felt to require human
management are now amenable to ESs. Modeling the way the expert
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PROBLEM 1
The models available are inadequate to capture the system

OLD APPROACH: PROCRUSTEAN DESIGN
Change the world to fit the model - normative technology

PARADIGM SHIFT: MODEL REALISM
Use system methodologies and information technology that
enable the natural world to be modeled without
distortion and destruction

PROBLEM 2 . )
Optimal control is over-sensitive to system uncertainties

OLD APPROACH: SUB-OPTIMALITY
Use a sub—optimal controller that is robust

PARADIGM SHIFT: MODEL UNCERTAINTY
Model the uncertainty as part of the system

PROBLEM 3 )
Data is unavailable or inadequate for modeling

OLD APPROACH: MANAGE o
Do not automate - leave to human decision/control

PARADIGM SHIFT: EXPERT SYSTEMS
Model the person as a decision-maker or controller

PROBLEM 4 )
Neither a human nor an automatic system alone is adequate

OLD APPROACH: AD HOC SYSTEM DESIGN o
Use a mixture of automatic and human decision/control

PARADIGM SHIFT: ACCOUNTABLE INTEGRATION
Integrate automatic and human activity - make the
automation accountable ("Why?" in ES)

Fig. 6. Paradigm shifts in systems engineering -
from the hard to the soft systems approach

performs the task rather than modeling the task itself is the
primary characteristic of an ES.

The fourth perspective is an important one for both ES and
FST. They are knowledge-based systems because they make provi-
sion for explaining the decisions reached in terms of the data
and inferences used. It is interesting to note that logics of
uncertainty that aggregate evidence, such as probabilistic lo-
gics, do not provide a simple mechanism for explanation. Expli-
cable logics have to be truth-functional and non-aggregative;
fuzzy logic satisfies these requirements (uniquely among those
logics satisfying the weak axioms of a standard uncertainty
logic (Gaines, 1983)). It is also interesting to note that the
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capability to give explanations is seen by some philosophers of
science as a key difference between models that make accurate
predictions and scientific theories that in addition provide
causal explanations (Salmon, 1984). The "why?" question has im-
portant implications for both the practical and theoretical sig-
nificance of ESs and the logics on which they are based.

4, CONCLUSIONS

FST was from the outset an attempt to create a new mathe-
matical system theory that corresponds to Paradigm Shift 1 and
fits the realities of the world without distorting them. It was
created by a person who had extended the boundaries of current
system theory, attempted to encompass in generality the key con-
cepts of applied systems engineering (Zadeh, 1956, 1957, 1963
and 1964), and recognized the failure of that theory in this
task. Developments in ES have shown the practical significance
of this paradigm shift in enabling systems to be engineered for
problems previously considered intractable. FST and ESs, and the
application of one to the other, are not just mathematical and
technological advances but also represent major paradigm shifts
in system theory. This has involved fundamental changes in sy-
stem philosophy and technology, shifts from a positivistic, nor-
mative approach to a more realistic and naturalistic approach.
These shifts are apparent throughout science and technology and
its application to our world and society,

Fuzzy sets theory cannot be either right or wrong. It is
applicable mathematics tested by its uses. However, the rationa-
le behind it, the systemic principles involved, can be right or
wrong. They are right for our time, for the objectives of deal-
ing adequately with a complex universe and extending the capa-
bilities of the person with computer enhancements., The soft sy-
stems principles involved do not replace hard systems princip-
les but extend the domain of systems theory to encompass both.
The re-development of system theory is not yet complete and the
seminal notions of stability, adaptivity, modeling, and so on,
still need adequate expression. However, we now have the founda-
tions on which to build a system theory that combines realism
with power and provides applicable mathematics for our knowled-
ge-based society.

The papers in this volume present the state-of-the-art of
soft systems engineering based on FST, mainly in a decision
making and optimization context, and its application to a wide
variety of practical problems.
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INTRODUCTION TO FUZZY SETS AND POSSIBILITY
THEORY

Mario Fedrizzi
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Abstract. The purpose of this introduction is
to discuss the essence of fuzzy sets and pos-
sibility theory in order to make the interes-
ted reader familiar with the basic elements of
these growing fields of research. Thus such
issues as basic definitions and properties of
a fuzzy set, fundamental operations, fuzzy re-
lations, the extension principle, fuzzy num-
bers, linguistic variables and some basic ele-
ments of possibility theory are briefly re-
viewed.

Keywords: fuzzy set, fuzzy relation, fuzzy
number, linguistic variable, pos-
sibility distribution

1. INTRODUCTION

The purpose of this paper is to provide the reader with an
introduction to fuzzy sets and possibility theory. Mathematics
is used only instrumentally, that is, as .a tool; no proof ap-
pears explicitly in the paper and no specific mathematical pre-
requisite is required.

To see fuzzy sets in a proper perspective, let us notice
that analysis and modelling of any real world phenomenon or
process must take into account an inherent uncertainty. In many
cases this uncertainty is not due to randomness but to some
imprecision whose formal treatment cannot be performed inside
the mathematical framework of probability theory. Ve could say
that such an imprecision may be: ambiguity, i.e. the associa-
tion with a given object of a number of alternative meanings,
generality, i.e. the application of the symbol’s meaning to a
multiplicity of objects, and vagueness, i.e. a lack of clear-
cut boundaries of the set of objects to which the symbol (mean-
ing) is applied. Notice that all the above imprecisions, and
more particularly vagueness, may be viewed as an effect of na-
tural languages used by humans.

In 1965 Zadeh (1965) provided the first tools, i.e. fuzzy
sets, specially devised for dealing with this last form of im-
precision, vagueness, and by now more then two thousand works
dealing with this topic have been published, and hundreds of

13



14 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

researchers all over the world are still working ©n the theory
itself or on its application,

The theory of what Zadeh called fuzziness also stimulated
a constructive debate on the several forms of uncertainty
(Gaines, 1976), and on their mathematical representation (among
others, Shafer, 1976; H8hle and Klement, 1984).

2. BASIC DEFINITIONS

In mathematics, sets are used to formally represent a con-
cept, For instance the "integer numbers which are greater than
4 and smaller than 12" may be represented by the set A = 5,6,
7,8,9,10,10 or by its characteristic function @, : X »{r0,1}.
Here X 1is the universe of discourse (the set o% integer nu-
bers), ¢A(x) = 0 means that x does not belong to set A,

while ¢A(x) = 1 means that x belongs to it.

Some difficulty arises when we want to use set theory to
characterize vague concepts, say "numbers more or less equal to
8" which do not present a clear-cut differentiation between the
elements belonging and not belonging to the set.

Zadeh (1965) suggested the replacement of the characteris-
tic function by the so-called membership function Bpt X [o,1]

which associates with each element of the universe X its gra-
de of membership in a fuzzy set A, belonging to the interval
{0,1), Thus, pA(x) = 0 means that x does not belong to A,

p(x) = 1 means that x belongs to A, while 0 < p{(x) < 1 means
that x partially belongs to A.

For example, a fuzzy set A = "numbers more or less equal
to 8" may be represented by the membership function pA(x)
shown in Fig. 1.

pA(x)
1

Fig. 1

Let us notice that the membership function is in this case
in fact discrete but it is represented in the figure in a con-
tinuous form to make it more illustrative. We could also notice



FUZZY SETS AND POSSIBILITY THEORY 15

that the form of membership function is subjective due to the
fact that a statement such as "number more or less equal to 8"
contains some inherent subjectivity.

For instance, as another example, consider the set X of
roses growing in a garden, and the subset A of X including only
red roses. Of course, some roses of X will be definitely red,
others definitely not red, but there will be borderline cases.
The more an element of X belongs to A, the closer to 1 is its
membership grade. The membership grades are obviously subject-
ively assessed and reflect an ordering of the universe X with
respect to the vague predicate, i.e. the fuzzy set A.

Formally, we can now give the followipg definition: a fuz-
zy set A in a universe of discourse X = fxs, A ¢ X, is defined
as the set of pairs

A - {(pA(x),x)}, x € X (1

where uy t X - [0,1] is the membership function of A and pA(x)
is called the grade of membership of x € X in A.

Generally, for the sake of brevity, fuzzy sets are equated
with their membership functions and so we can say "fuzzy set
pA(x)" instead of "fuzzy set A characterized by membership fun-

ction pA(x)".
Usually the pair (pA(x),x) is also denoted by pA(x)/x and
the following notations are introduced:
n
A = pA(x1)/x1+,_.+pA(xn)/xn = 121 pA(xi)/xi, when [X| = n

A= n, (x)/x, when X is a continuum
X

and "+" and "I" are in the set-theoretic sense.

For example, the fuzzy set whose membership function is
shown in Fig, 1 may be written as

A =0.1/5+ 0,3/6 + 0.8/7 + 1/8 + 0.8/9 + 0,3/10 + 0.1/11,

In order to simplify the exposition, only finite universes
of discourse will be used, even if membership functions will be
graphed in a continuous form to make them more illustrative.

We must underline some facts here: first, the range of
values of the membership function may be generalized, for in-
stance to some lattice (see, e.g., Goguen, 1967); second, the
exposition of fuzzy sets theory could be axiomatized even if
some attempts of axiomatization, e.g., Chapin, 1971; or Novak,
1980, are not generally accepted.

Before concluding this section we will introduce other
useful definitions.

The support of a fuzzy set A ¢ X is defined as

supp A={x € X : pA(x) > O}
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Example. If X :{2,4,6,8,10:}and A= 0.2/2 + 0.1/4 + 0/6 +
+ 0/8 + 0.3/10, then supp A ={2,4,1o}.

The a-level set (a-cut) of A g X 1is defined as

Aa ={x € X : pA(x) > a}
Example. If X ={1,3,5,7,9) and & = 0/1 + 0.6/3 + 0,7/5 +
+0.9/7 + 1/9, then A , ={3,5,7,9:}, Ay s ={3,5,7,9:},
ATy ={ 7.9}
Let us observe that supp A and Aa are conventional (nonfuzzy)
sets,

The height of a fuzzy set A g X is defined by

hgt(A) = sup pA(X)
x€X

Example. If X = {1,2,3,4,5} and A = 0.3/1 + 0.5/2 + 0.6/3 +
1/4 + 0/5, then Hgt(a) = 17

Following Dubois and Prade (1979b) we could say "hgt(a)
evaluates the possibility of finding in X at least one element
which fits the predicate A exactly".

e close this section defining two fundamental relations
between fuzzy sets, i.e. equality and containment.

The fuzzy sets A,BgX are said to be equal, written A = B,
if and only if pA(x) = uB(x), for each x€X,

This definition seems, however, to contradict to some
extent a "soft" character that the equality of two fuzzy sets
should have. Bandler and Kohout (1980) introduce a degree of
equality of two fuzzy sets suggesting some "indexes" for the
measurement of such a degree.

We say that A is a fuzzy subset of B or, alternatively,
that A is contained in B, written AcB, if and only if pA(x) <

pB(x), for each x€X.

Bandler and Kohout (1980) have suggested the use of a
degree of containment in this case too (see also Dubois and
Prade, 1980).

3., SET OPERATIONS AND THEIR PROPERTIES

All the definitions of the basic operations of the algebra
of fuzzy sets will be given, as usual, in terms of the respec-
tive membership functions.

Given the fuzzy sets A, BgX the following basic operations
are defined:

union: uAUB(x) = pA(x) v pB(x) for each x€X (2)
intersection: pAﬂB(x) = Pa(x) A pg(x) for each xe€X (3)
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where "v

and "A" are the maximum and minimum operators, res-
pectively.

Example. If X = ;},2,3,4,5}, A= 0.2/1 + 0.4/2 + 0,2/3 + 0.5/4 +
0.8/5 and B = 0,3/1 + 0.6/2 + 1/3 + 0.1/4 + 0/5, then:

AUB = 0,3/1 + 0.6/2 + 1/3 + 0.5/4 + 0.,8/5
ANB = 0.2/1 + 0.4/2 + 0.2/3 + 0.1/4 + 0/5,

Graphically the union and intersection may be portrayed as
in Figs. 2 and 3.

A i) A n(x)

pA(x) PB(X) pA(X) pB(x)

%
xV

Fig. 2, Union Fig. 3. Intersection
The complement of a fuzzy set AgX is defined as
pA(x) =1 - pA(x) for each x€X (4)

Example: If X = 1,2,3,4} and A = 0.8/1 + 0.6/2 + 0.3/3 + 0.1/4,
then A = 0.2/1 +0.4/2 +70.7/3 + 0.9/4,

Graphically, the complement may be illustrated as in Fig. 4.

Mz(x)

A\ 4

Fig. 4. Complement
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These operations were originally defined by Zadeh, and
many more were proposed later. Their definitions and properties
may be found by the interested reader in, i.e., Dubois and
Prade (1980), Kaufmann (1975), Mizumoto and Tanaka (1981) and
Mizumoto (1981).,

Let us conclude this section by pointing out a problem
crucial for the theory of fuzzy sets, i.e. the adequacy of
basic operations on fuzzy sets. This problem is still somewhat
open and several approaches were proposed for studying it. Some
exposition of these approaches may be found by the interested
reader in, e.g., Bellman and Giertz (1973), Fung and Fu (1975),
R8dder (1975), Yager (1980}, and Kacprzyk (1983).

4, FUZZY RELATIONS

The concept of a relation plays a key role in mathematics,
The same is true for a fuzzy relation in fuzzy mathematics. For
the sake of simplicity the exposition will be restricted here
to fuzzy binary relations.

Given two (nonfuzzy) universes X and Y, a (binary) fuzzy
relation R is a fuzzy set in the Cartesian product X x Y, hence

R = {(pR(x,y)/(x,y)}, for each (x,y}€X x Y (5)

The membership grade p_(x,y) may be considered an estimated
value of the strength "of the link between x and y.

Example, If X = {John, Paul, Ronald} and Y = {Richard, Jim},
the fuzzy relation R labelled "resemblance" may be, e.g., de-
fined as follows:

R = 0.5/(John, Richard) + 0.4/(John, Jim) + 0.7/(Paul,
Richard) + 0.,3/(Paul, Jim) + 0,9/(Ronald, Richard) +
+ 0.1/(Ronald, Jim).

Any fuzzy relation (in a finite X x Y)may be represented
in a matrix form. The following matrix corresponds to the above
relation "resemblance"

Richard Jim
John 0.5 0.4
Faul 0.7 0,3
Ronald 0.9 0.1

As ordinary relations, fuzzy relations can be composed,
and the most important composition is the so-called max-min
composition.

Given two fuzzy relations Rg X x ¥ and S g Y x Z, such
a composition, written R o S, is defined as follows

pRoS(x,z) = gz;(pR(x,y) A ps(y,z)), for each x€X, z€Z (6)

Example. If X ={1,3}, Y ={2,4,6}, z ={1,2,3},
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0.2 0.3 0.1

-0 O
s

then

Fuzzy binary relations satisfy a set of properties in an
analogous way as nonfuzzy finary relations do. For example, a
fuzzy binary relation R € X x X is said to be:

(i) reflexive iff pR(x,x) = 1, for each x € X;
(ii) symmetric iff pR(x1,x2) = pR(xz,x1), for each
x1,x2 € X;

(iii) min-transitive iff pR(x1,x3) > pR(x1,x2) A pR(xz,x3),
for each X r¥XysXg € X,

A fuzzy binary relation satisfying (i) - (ii) is called
a proximity relation. A proximity relation satisfying (iii) is
called a similarity.

Fuzzy (binary) relations play the same fundamental role
in decision analysis under fuzziness as nonfuzzy (binary) re-
lations in decision making in the conventional (nonfuzzy) set-
tings, e,g., for preference modelling. Hence fuzzy partial
ordering, preordering, etc. are defined and used to find, e.g.,
nondominated sets of elements in ordered structures. The in-
terested reader may find an exhaustive exposition of such
topics in, e.g., Ovchinnikov (1981) and Orlovsky (1978). For
a detailed discussion of fuzzy relations, see Kaufmann (1973,
1975) .

5, THE EXTENSION PRINCIPLE AND FUZZY NUMBERS

The extension principle, introduced by Zadeh (1975}, is
one of the most important and powerful tools in fuzzy sets
theory. It addresses the following fundamental problem: if
there is some relationship between nonfuzzy entities, what is
its equivalent between fuzzy entities? Owing to this principle,
models and algorithms involving nonfuzzy variables can be ex-
tended to the case of fuzzy variables.

The principle may be so stated: given some fuzzy sets

1 < X1"°"An < Xn and a (nonfuzzy) function f: X1X...xXn - Y,

A
y = f(x1,.,.,xn), the fuzzy image B £ Y of A1,...,An, through
£

~

, has the following membership function
n
pB(y) = max A

(xi), for each YE€Y
(x1,...,xn)€A1X..,XAﬁ i=1

n
Ay (7)

Yy = f(x11n=-1xn)

where the Cartesian product A x...xAn is defined as

1
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[XesexA = / min(pA1(x1),...,pAn(xn)/(x1,...,xn)

X1X...KX2

Example. TIf X, ={1,2,3}, X, ={1,2,3,4}, f is addition, i.e.
y = x1+x2, A1=0.1/1+0.6/2+1/3 and A2=0.6/1+1/2+0.5/3+0.1/4,
then

B = A1+A2 = 0,1/2+0,6/3+0.6/4+1/5+0.5/6+0,1/7
Notice that we use here "+" both in the arithmetic and set-
theoretic sense,.

The proposed example pertains to a very important applica-
tion area of the extension principle, i.e. to real algebra. In
fact a composition law "*" in the set of real numbers, R can
be extended, according to (7) to a composition law " in the
set of fuzzy numbers.

A fuzzy number is defined as a normal and convex fuzzy set
A g R, i.e. a fuzzy set satisfying the two following properties:
i) uA(x) = 1, for at least one x € R

ii) pA[’Ax1 + (1—Z)x2] > pA(XW) A pA(xz), for each x1,x2€R,
and QA€f{0,1]
Then, if A and B are two fuzzy numbers, A () B is defined as

pA@B(Z) = . Ta);=z (Bp(x) A uB(x)), for each z€R (8)

Thus, for example, if A,BgR are two fuzzy numbers with
respective membership functions pA(x) and uB(x), the four

basic extended arithmetic operations, i.e., addition, subtrac-
tion, multiplication and division give, for each x,y,z€R, the
following results:

pA®B(Z) = XT;):z (pA(x) A pgly)) (9)

Pa@s'? = XT;}:Z iy () A pgly)) (10)

pAGB(z) = x::t;zz (uA(x) A Hg y)) (11)

= 1
uA@B(Z) xl}l;}:z (hy X)) A ppity)) (12)
y#0

An exhaustive treatment of all extended operations and
their properties may be found in bubois and Prade (1978, 1979,
1980) who also suggest an efficient approach for computing the
membership grades of the resulting fuzzy members, It consists
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in assuming the fuzzy numbers to be given in a standard form,
i,e. the so-called L-R representation, characterized by three
parameters, All the extended operations are performed only on
these parameters,

Formally, a fuzzy number A 1is said to be an L-R type
fuzzy number iff:

L({a - x)/a) for x.€ a, a > 0
uA(X) = (13)
R((x - a)/B) for x > a, B > O,

L and R are the so-called left and right reference, respec-

tively, while a is the mean.value of A and a and P are
called the left and right spreads, respectively,

Symbolically, we write
A = (a,a,B)LR

and graphically A may look like in Fig. 5.

ﬂ\ p(x)

Fig. 5, An L-R type fuzzy number

6., LINGUISTIC VARIABLES

As the complexity of a problem increases, the ability of
the conventional mathematical tools to precisely yet signifi-
cantly represent it diminishes, says the principle of incompati-
bility formulated by Zadeh (1973).

The solution suggested by Zadeh leads to the use of a
linguistic description in order to provide a simple but often
adequate tool to describe even the most complex situations and
to provide an extraordinary information aggregation.

Such an approach, called the linguistic approach, was de-
veloped by zadeh (1973, 1975) starting from the notion of a
linguistic variable, i.e., a variable whose values are not
numbers but words or sentences in a natural or artificial
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language. For example "small", "high", "around 4", "a little
less than high", are values of linguistic variables.

In fuzzy set theory, the values of linguistic variables
are equated with appropriate fuzzy sets, For example, a variab-
le such as "Age" may be viewed as a linguistic variable which
takes its values in a so-called universe of discourse, e.g.,

U = young, not young, very young, not very young, quite young,
old, etcgz, and each of these values may be represented by a
fuzzy subSet of the universe of discourse X = [0,150].

Generally, as suggested by Zadeh (1981) the values of a
linguistic variable such as "Age" can be built up applying the
so-called fuzzy hedges together with conjunctions and disjunc-
tions to a set of primary terms, e.g.,"young"” and "old", The
interested reader may see Zadeh (1975, 1981).

A fundamental problem to be solved in the linguistic ap-
proach is how to characterize a relationship (dependence) be-
tween linguistic variables.

Usually a fuzzy conditional statement is used. For instan-
ce, 1f L and K are linguistic variables taking on fuzzy
values A g X and B g Y, respectively, then a dependence
between L and K may be given by a fuzzy conditional state-
ment IF(L = A) THEN (K = B), or, shorter, IF A THEN B.

It is usually assumed that
IJF A THEN B = A x B (14)

i.,e. is equated with the Cartesian product A x B being a fuzzy
relation,
And similarly, for more complex fuzzy conditional statements

IF A THEN B ELSE C = A x B x A"x C (15)
IF A, THEN B, ELSE IF A, THEN B, ELSE ... ELSE IF
A  THEN B = A, xB +A,xB,y*..s+A xB_ (16)

An immediate problem associated with the use of fuzzy con-
ditional statements is: if L takes on a value, what is the
value of K implied by the dependence between L and K?

The answer gives the compositional rule of inference: if
R & X x Y 1is a fuzzy relation representing a dependence between
L and K (a fuzzy conditional statement), L is taking on a value
A, then the induced value of XK is

pB(y) = max (pA(x) A pR(X,Y)) for each yE€Y (17)
x€X

which evidently corresponds to the max-min composition (7).

Example. Let the fuzzy conditional statement be

IF (L is "low") THEN(K is "high") = IF("low") THEN("high")



FUZZY SETS AND POSSIBILITY THEORY 23

= ("low") «x ("high")

which, for "low" = 1/1 + 0,7/2 + 0,3/3 and “high" = 0.2/1 +
0.,5/2 + 0,8/3 + 1/4, corresponds to
Y
1 2 3 4
1 0.2 0.5 0.8 1
R = ("low") x ("high") =X 2 |0.2 0,5 0.7 0.7
3 (0.2 0.3 0.3 0.3
If now L = "medium" = 0,5/1 + 1/2 + 0.5/3, then
K = ("medium") o R = 0.2/1 + 0.5/2 + 0.7/3 + 0.7/4.

For more details, see the source papers by Zadeh (1973, 1975).

7. POSSIBILITY DISTRIBUTIONS

Zadeh (1978) in his seminal paper wrote: "... the mathema-
tical apparatus of the theory of fuzzy sets provides a natural
basis for the theory of possibility, playing a role which is
similar to that of measure theory in relation to the theory of
probability...".

Even if Zadeh”s concept of possibility does not state a
clear difference between probability theory and fuzzy sets
theory, it undoubtly offers some tools to represent most of the
imprecision intrinsic in human decision processes.

Let us start with the following non-fuzzy proposition p:
p 24 is an integer in the interval [1,61],

which asserts that it is possible for any integer in the inter-
val [1,6] to be a value of u.

Without any other information it seems natural to say that
p induces a possibility distribution which is uniform, i.e.
the poussibility wvalues are defined as

1 for
Poss{u=x} =
0 for

Here Poss{ u=x} means "the possibility that u may assume
the value x" and usually it is also written as

1T xgK 6

x < 1T or x > 6

Poss{u = x}: o (x) (18)
Now, let us fuzzify the proposition p in this way:
q 2 X is a small integer,

where "small integer" may be considered as a label of a fuzzy
set, for example

"small integer" = 1/1 + 0,9/2 + 0.7/3 + 0,5/4 + 0.3/5+0,1/6.
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In this case we may write:

Poss{u =1 }= 1

Poss¢ u = 2 ) = 0,
Possg u =3»= 0,7
Poss{ u =4 ;= 0,
Poss{ u=5>»= 0,
Poss{ u==6)»=0,

Poss{ u = x} =0 for x < 1 or x > 6.

More formally, if u 1is a variable which takes values in
X and A 1is a fuzzy subset of X, the proposition

q 4 X is A (19)

induces a possibility distribution T(X = u) which is equal to
A, i.e.

M(u=x) = S(x) = pA(x), for each x€X (20)

Given n , the possibility for x +to0 belong to a non-fuzzy
set E 1is défined as

M(u€E) = sup " (x) (21)
xex Y

According to Dubois and Prade (1979) we could say that
such a definition is consistent with our intuition of the pos-
sibility of any one of several events (3x€E, u = x) as the pos-
sibility of the most possible one.

Starting from the concept of possibility distribution, we
can define, in the framework of possibility theory, something
analogous to the probability measure in the framework of pro-
bability theory,i.e. a possibility measure.

In fact, if the normality condition sup m _(x) = 1 is sa-
x€X
tisfied, a possibility measure is defined as a function
m: P{X) » [0,1], such that:

i) n{@g) =0, n(X) =1
ii) n(g Ai) = Supn(Ai), for any collection Ai of sub-
i

sets of X

Zadeh (1978) points out that it seems natural to think
that "what is possible may not be probable and what is impro-
bable need not to be impossible", This principle, known as the
consistency principle, gives rise to a deep discussion and a
consequent portion of papers which aimed at developing a better
understanding of the interplay between possibility and proba-
bility.
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Details on this problem may be found, e.g., in Dubois and Prade
(1980), Hisdal (1982), H8hle and Klement (1984), Lindley (1982),
Nahmias (1978), Prade (1979).,

8. CONCLUDING REMARKS

The aim of this introduction was to make the interested
readers, and especially those not yet exposed to fuzzy sets,
familiar with the relevant elements of fuzzy sets and possibi-
lity theory. We hope that the exposition was facilitated by the
illustrative examples which should also help the readers find
pog<sible applications of fuzzy tools in their specific areas
of work.
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INTRCDUCTION TC DECISION MAKING UNDER VARIOUS KINDS
OF UNCERTAINTY

Thomas Whalen
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Atlanta, GA 30303, USA

Apstract. All interest in decision making proces-
ses stems from uncertainty: when we are certain
what course of action is best, we simply perform
it without further consideration. Unfortunately,
many obstacles exist which can prevent us from
having this ideal certainty. Section 1 of this
chapter surveys some of these obstacles, together
with the paradigmatic problems that arise from
each obstacle in its pure form. Section 2 presents
a unifying framework, the general multiple facet
optimization problem, which exploits some important
isomorphisms among these problems. In Section 3,

a fairly simple two-stage decision problem is
viewed at several different levels of information,
ranging from a mere incomplete ordering to an ap-
proximate statistical specification, in order to
illustrate a number of different techniques for
decision making that have been developed for the
various levels of information. Finally, Section 4
summarizes the results presented in this chapter
and discusses some promising areas for future
research.

Keywords: uncertainty, decision making under un-
certainty, optimization

1. OBSTACLES TO CERTAINTY

In order to know for certain what to do, we must satisfy
three conditions. First, we must comprehend all of the alterna-
tive courses of action from which we can choose. Second, we
must know all the consequences of each alternative course of
action. Third, we must know which set of consequences is prefe-
rable to any other achievable set.

1.7. Uncertainty About Alternative Courses of Action

Comprehension of the set of alternative courses of action
can be limited in three ways: failure of imagination, immensity
of choice, and imprecision of specification.

Failure of imagination simply means that relevant alterna-
tive courses of action exist which we are unaware of. The
advance of technology provides a simple example of this.
Engineering design choices that not so long ago were limited to
choosing between metal and wood construction are now enriched,
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but also complicated, by the availability of many new plastics
and ceramics. Unless we can be certain that all possible alter-
native courses oi action have been enumerated, we cannot be
certain that the one we select is indeed optimal.

Sometimes it is possible to specify all available choices
in an abstract (intensive) way, but the resulting set is too
large to be extensively listed, or at least too larce to be ex-
haustively evaluated. When this immense set of alternative
courses of action can be represented as a continuum of real
numbers or vectors, there are many well-known tools such as
mathematical programming to proceed more or less efficiently
to an optimal solution. However, in other cases the large num-
ber of alternative courses of action is due to a combinatoric
explosion rather than a real continuum. To take an examnple
widely advertised to be unsolvable in the remaining lifetime
of the universe, cracking a public-key cryptogram requires
selecting correctly from a set of pairs of very larce prime
numbers, If such combinatoric groblems are to be solved at all,
heuristic methods of search must be used. These heuristics
typically do not afford proofs of optimality, so a decision
made in this manner is uncertain.

Wnen a iforeman on a job site decides which order to give
to a laborer, the foreman knows what the demanded course oif
action is; the laborer may perfiorm well or badly, but the
foreman”s decision alternatives are clear, On the other hand,
when a senior executive chooses a policy directive for a large
business, governuent, or voiuntary organization, the policy
must be interpreted and fleshed out by successive layers of
intermediate decision makers before it is eventually carried
out by the operative personnel (Dimitrov and Driankova, 1977).
Thus, the senior executive does not really know exactly what it
reans to choose one policy rather than another; the policy de-
cision is by nature fuzzy, and thus uncertain.

The process of limiting and coping with uncertainty in the
set of alternative courses of action has not generally been the
focus of paradigms for decision making under uncertainty. As
part of Simon"s (1977) "intelligence" phase of problem solving,
the requirements ior this process vary more sic¢nificantly from
problem to problem than uncertainty about conseguences or about
preferences.

1.2. Uncertainty About Consequences

When we cannot predict with certainty what outcome will
foliow from a given course of action, we usually model this
situation using the concept of "states of the world". (For an
alternative approach see Fishburn, 1960). We hypothesize that
the outcomes of our actions depend on two things: on which
course of action we select and on the current values of one or
more variables called "state variables". If we knew the values
of the state variables, we would know the outcomes of each
alternative course of action; if we do not know these values
for certain, we must make an uncertain choice.

Much analysis and specific background knowledge of the
domain of the decision in guestion are necessary to enunerate
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the relevant set of states of the world. Once these are enumer-
ated, the next step is to marshal whatever information is
available regarding the relative likelihood of these states.
Several levels of information have been studied. The lowest
leveli of information we shall consider is when the states of
the world are specified but no information about their relative
degree of possibility or probability is known. With more infor-
mation we reach the second level, in which some states of the
world are known tO be more possible than others (incomplete
order); a third level is reached when states can be put in a
complete weak order from most to least possible, so that for
any two states we can either say which one is more possible
than the other or else we can say that they are of exactly equal
possibiiity. The fourth level of information is when we can
specify approximate statistical probabilities for all states of
the world using fuzzy real numbers, and the fifth level is when
we can specify the probability distribution over states exactly,
using (crisp) real numbers. Game theory can be viewed as a
sixth level of information, in which our opponent”s actions,
while unknown in advance, will be determined by our own actions
and the payoff structure of the game.

Because the nature and amount of information about the
relative possibilities of states of the world that can be use-
fully applied to decision making depends strongly on the nature
and amount of information about preferences that is available,
the paradigmatic problems for each of the above levels will be
discussed in the context of uncertainty about preferences.

1.3. Uncertainty About Freferences

The most generally accepted view of preferences among
economists is that utilities are measurable by a complete weak
order. In other words, an individual will always either be able
to specify one of a pair of outcomes as better than the other,
or else be strictly indifferent between the two. In this view,
it is meaningless to assign numbers to the utilities of out-
comes, and hence no arithmetic can be performed on them. From
an informatlon content point of view, it is clearly equivalent
to talk awout ordinal gains, in which the best outcome ranks
first, and ordinal losses, in which the worst outcome ranks
first. A more sophisticated view of ordinal utilities postulates
that it is not a static position that is valued, but rather the
gain or loss between a prior position and a subseguent position.
On this pasis, well substantiated by studies of human behavior,
it is possible to talk about an ordinal theory of regrets in
the context of decision making¢ under uncertainty. The regret
associated with a particular (state-action) pair is defined by
the difference between the outcome of that particular (state -
action} pair and the outcome of the best possible action for
that particular state.

A weil-established minority view, however, holds that
meaningful nuwmeric measures of an individual”s utilities for
outcomes can be generated. The most sophisticated varieties of
this theory derive from the work of von Neumann and Morgenstern
(1947) . In these approaches, utility is measured on an interval
scale anchored by specific, context-dependent "best" and "worst"
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outcones, and utilities for intermecdiate outcomes are determined
by betting preferences. More recently, work has been done using
fuzzy numbers rather than crisp numbers to represent these
utilities (Watson, Weiss and Donnell, 1979; Freeling, 1980);
this can be a very valuable way to handle the fact that some of
the hypothetical choices between bets are much easier than
others in the von Neumann - Morgenstern methodology. Fuzzy
utilities come into play even more directly when the outcomes
themselves are only vaguely known in advance. When utilities
are measured by crisp or fuzzy real numbers, it is possible to
conpute regrets by subtracting the utility of the outcome of
eacl: (state - action) pair from the utility of the best pos-
sible action for that particular state.

In the following two subsections, we examine in detail
some of the paradigmatic problems which arise from specific
combinations of information about states of the world and about
utility; first we examine cases that arise when utility is
ordinal, then cases which require crisp or fuzzy real numbers
to measure utiiity.

1.3.1. Ordinal Utilities

NO KELATIVE POSSIBILITY INrfORMATION. When we have no in-
formation about the relative likelihood of the various states
of the world, we must make our decision on the basis of the
utilities oif the outcomes of the various (state - action) pairs
together with a fundamental choice of philosophies. The
"optimistic" philosophy in such a situation is to choose the
course of action whose best possible outcome is better than
that of any other (maximax algorithm). The "pessimistic"
philosophy, on the contrary, seeks to cut losses by choosing
the course of action whose worst possible outcome is better
(or less bad) than the worst possible outcome of any other
course of action (minimax loss algorithm).

The minimax regret approach steers a course between the
extreres of optimism and pessimism. Outcomes are ordered in
terms of regret rather than actual gains or losses, and that
course of action is selected for which the worst possible re-
¢gret is less bad than the worst possible regret for any other
course of action. This approach has the effect of focusing our
attention primarily on those states of the world for which our
choices have the greatest effect, whereas minimax focuses on
the most dangerous states of the world and maximax on the most
promising ones.

ORDINAL POSSIBILITIES., If only ordinal information about
utilities is available, then whatever information is available
about the relative possibility or probability of the various
pQ0ssible states of the world is also most appropriately express-
ed in an ordinal manner. The Commensurate Ordinal Decision
Analysis algorithm (Whalen, 1984a) uses two distinct ordinal
scales, one ior disutility (loss or regret) and the other for
possibility. These scales define three L-fuzzy sets (Goguen,
1967) : the set of poor outcomes, the set of possible states of
the worid, and the set of risky exposures. aAn "exposure" is an
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ordered pair consisting of an outcome and the state of the
world in which that outcome occurs; its membership in the set
or risky exposures is also defined by an ordered pair consist-
ing of the poorness of the outcome and the possibility of the
state.

The inputs to the algorithm are a (complete or incomplete)
rank ordering of the poorness of all possible outcomes, and a
separate rank ordering of the possibilities of all possible
states of the world., It is also necessary to speciiy, by means
of a decision tree in normal form, which outcomes go with which
states of the world and which strategies. The algorithm then
automatically determines the fuzzy set of risky exposures and
uses this to eliminate suboptimal strategies using a series of
aoninance criteria which are successively more powerful but
less robust. These criteria, discussed below in turn, are com-
plete dominance, global riskiest-states dominance, and pair-
wise riskiest-states dominance. Typically, commensurate ordinal
risk minimization alone will not be sufficient to narrow the
range of alternative strategies to just one, but it can be very
useful as a preliminary screen. Given the results of a commen-
surate ordinal decision analysis, we are better prepared to
seek additional information about those states and actions
identified as critical or to use informal/intuitive methods to
pick a final course of action from the "short list".

Complete Dominance. A strategy o is completely dominated by
another strategy o~ if for all possible states of the world ,
the disutility D(«al|€) arising from stratecy a when § is the
actual state of the world is worse than or equal to the
disutility D(o”16) arising from stratecy o in the same state
of the world 6§, and the inequality is strict for at least one
6. This is essentially the Pareto rule; a strategy is dominated
by another if it is possible to improve one criterion of the
outcome without worsening any other criterion. The different
criteria in this case are the conditional outcomes given the
different possible states of the world. Note, however, that
mixed strategies are undefined when utilities are ordinal; a
strategy can only be dominated by a specific other strategy,
not by a convex combination of two or more as is possible in
numerical utility theory.

Global Riskiest-States Dominance., For each alternative strateay
o, let R equal (The set of all & such that (p(67) > »(F))
implies (D(ol67) < D(al6)) . For any strategy a, R, is the
(nonfuzzy) set of states § such that, if another state 6 is
more possible, then the outcome of a when state 6' is in ef-
fect is less poor than the outcome of o under state 6. R, is
referred to as the set of riskiest states for strategy «,

since any state not in Ry 1s either less likely or leads to a
less poor outcome for a than any state in Ry+

(o

Let R = UG(RG)' the set or states of the world which
belong to the set of riskiest states for any strategy. R~, the
set of states not in R, is thus the set of states which are
neither very possible nor ever very poor regardless of what
strategy is selected.
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The "global riskiest-~states dominance criterion” is
evaluated by deleting the states in RC from consideration and
eliminating any strategies which are completely dominated on
just those states in R. A strategy o 1is global-riskiest-states
dominated by another strategy of if D(al€) » D(a’l6) for all o
in R and the inequality is strict for at least one & in R. In
effect, we are saying that o completely dominates a if we
ignore the "unimportant™ states of the world in RC.

Pairwise Riskiest-States Dominance. For each pair of alterna-

tive strategies a and a’, let R__, be the set union of R, and

Ryt , the set of states of the world which are in the riskiest
set for either of the two strategies a and a. Then strategv o

is pairwise riskiest-states dominated by strategy o’ if

D(al€) > D(«|6) for all 6 in Ryor and the inequality is
strict for at least one 6 in Rgg’. The argument in this casc
is that two strategies can be compared taking into consideration
only those states which are risky ones for one or the other ac-
tion, ignoring any states which may be risky for some extraneous
third alternative as well as the unimpurtant states in RC,

Clearly, any strategy which is completely dominated is
also dominated according to the global riskiest-states criterion
and any strategy which is dominated according to the latter is
also dominated according to the pairwise riskiest-states crite-
rion. Nevertheless, it is useful to know the most robust crite-
rion under which a specific strategy can be eliminated, since
each of the three criteria differs from its predecessor by
making stronger assumptions and discarding more information as
"unimportant".

The assumptions of the L-Fuzzy Risk Minimization algorithn
(Whalen, 1980) differ from those of the Commensurate Ordinal
Decision Analysis algorithm by allowing, on one hand, direct
comparisons between the grade of membership of an outcome in
the set of bad outcomes and, on the other, the grade of member-
ship of a state of the world in the set of possible states. The
riskiness of an exposure is equal to the minimum of the poor-
ness of the relevant outcome and the possibility of the corres-
ponding state of the world. As in the Commensurate Ordinal De-

cision Analysis algorithm, the incompletely ordered lattice
structure of the L-fuzzy risk minimization algorithm allows
many comparisons to remain undefined, concentrating our atten-
tion on just those few comparisons which actually affect the
course of the decision making process. Furthermore, the user
has the option of refusing to make any given requested compa-
rison. In this case, the algorithm continues to pass through
the decision tree, and in many instances, the difficult compa-
rison which the user has declined to make can be rendered most
by further analysis. If the user’s refusals to make a final
solution impossible, the algorithm will identify several alter-
native unresolved pairs of memberships such that at least one
of these difficulties must be resolved by the user before
analysis can continue. Symbolically, the strategy selected by
L-Fuzzy risk minimization is the one for which max[min[D(al§),
p(6)] is least.



DECISION MAKING UNDER UNCERTAINTY 33

FUZzY OR CRISP NUMERIC PROBABILITIES. When utilities are
known on an ordinal scale only, there is no meaningful way to
weight them with numeric probabilities. If probabilities are
known, thev should be rescaled to ordinal possibilities, perhaps
after applying a cutoff to eliminate extremely unlikely states
of the worlia.

GAME THEORY. The literature of game theory will not be re-
viewed in detail here; in brief, ordinal payoff information
allows us to evaluate only pure strategies. A pure strategy is
one in which, if identical circumstances occur repeatedly, we
will predictably take the same course of action each time
rather than attempting to keep our opponent guessing.

1.3.2. Fuzzy or Crisp Numeric Utilities

when the utility of the outcome of each alternative course
of action under each possible state of the world is specified
by a real number, we can combine these utilities with numeric
probability measures to compute expected values and choose of
action for which the expected value is best. If the utilities
and/or the probabilities are only known aproximately, we can
represent them as fuzzy numbers and calculate fuzzy exmected
utilities by the extension principle of fuzzy mathematics;
this process reduces to ordinary arithmetic when the operands
are crisp.

NO RELATIVE POSSIBILITY INFORMATION. With numeric utili-
ties, minimax loss and maximax gain approaches are simple
nmatters of numeric comparisons, while the regret measures need-
ed for the minimax regret approach can be found by subtracting
the utility of each outcome from the best utility obtainable
in the relevant state of the world. Another approach, unique
to the situation with numeric utilities and no information
about relative possibilities, is the maximum entropy approach.
In this approach, we treat all possible states of the world as
equally probable in the absence of information to the contrary;
operationally, this means simply taking the average across
states of the world of the utilities which might arise from
each alternative course of action, and choosing that course of
action for which this averace is best.

ORDINAL FOSSIBILITIES. If by "ordinal possibilities" we
mean only that some possibilities are known to be greater than
others, there is little advantage to combining this information
with fuzzy or crisp numeric measures of utilities. However, if
we also know just a little more, for instance that one state
has a probability of more than .5 or that state 6~ is more
than three times as likely as state &, these constraints allow
neaningful bounds to be placed on the expected value of the
outcome of each alternative course of action. Smith”s (1980)
"textured sets" approacia demonstrates how linear programming
technigques can be used to find the maximum and minimum possible
expected values of each alternative course of action subject
to linear constraints on the probabilities of the possible
states of the world. Any course of action whose maximum expect-
ed utility is less than the minimum expected utility of another
can then be eliminated from further consideration.
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FUZZY OR CRISP NUMERIC UTILITIES. The most commonlv dis-
cussec technique for decision making under uncertainty is
statistical decision analysis (kaifra, 1968). In this technigue,
tre inperfect information about the state of the world is re-
presentea by a probability distribution over the set of such
states, and the utility of each strategy c¢iven each state of
the world is expressed on an interval scale after the manner of
von lleunann and Morgenstern (1947). The expected value oI each
stratecy is found by multiplying the corresponding utilities
anu prowvabilities and adaing the products; the stratecy whose
utiiity is greatest (or, equivaiently, whose disutility is
least) is the one that is chosen.

Sometimes it is possible to specify the utility and proba-
oility information required by statistical decision analysis,
but oniy in an approximate way. If the degree of imprecision
in the estimates of probability or of utility is relatively
small, statistical cdecision analysis provides for the use of
sensitivity analysis, in which the numerical inputs are "per-
turbecd" about their original values and the analysis re-done
to see whether the final decision chances.

Fuzzy statistical decision analysis as presented by Watson,
Weiss and Donnel (1979) and by Freelinc (1980) can be viewed as
an extension of sensitivity analysis to the case where the
degree and cgualitative shape of the imprecision need to be
considered throuchout the entire analysis of a decision. A
najor ¢oal of this approach is to represent the imprecision of
each value exjiicitly, ana to manipulate these imprecise values
in such a way as to determine the dec¢ree and nature of the re-
sulting imprecision in the final decision.

Iin order to accomplish this, fuzzy decision analysis uses
1inguistic and graphical techniques to elicit probabilities and
utilities in the form of fuzzy numbers (Dubois and Prade, 1979).
A fuzzy number is a set of numbers, some of whose members are
considered to have higher degrees of membership in the set than
other niembers do, along a scale rancing from total membership
to total nonmembership. For example, the number 11 has a lower
mempership in the fuzzy number "around a dozen" than the number
12 Goes, but a higher membership than the number 10 does.

The "extension principle of fuzzy mathematics" (Zadeh,
1965; Dubois and ¥Prade, 1979) allows any mathematical opera-
tions that can be performed on real numbers to be performed on
fuzzy nurioers as well. Fuzzy statistical decision analysis
riakes extensive use of this principle to compute a fuzzy number
representing the statistical expected value of each alternative
course of action given the fuzzy probabilities and utilities
in the input. The course of action for which this fuzzy number
is highest is chosen; the method also specifies the degree of
confidence that this action is actually the best, by measuring
the degree to which the highest expected utility is clearly
hicher than the next-highest as opposed to the degree to which
these two iuzzy numbers overlap. (It is in the assessment of
conficence that Freeling differs from Watson, Weiss and Donnel).
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GAME THFORY. When the payoff table is expressed in terms
of numericcl utilities, there exist situations in ¢ame theory
in wiicn our opponent could gain an advantace over us il our
penhavior were too predictable. In these situations, solving
the ajppropriate linear equations for a maximum payoff to us
resu.ts in a convex conbination of strategies rather than a
sin¢le strategy. The interpretation of this is that, on each
"play" of the game, we should rancomly select one of those
strategies with a propability pErogortional to the weicht ¢iven
to that stratecy in the mathematical solution to the game
eguations. A faniliar example of this is seen in the strategy
of biufling in the yame of goker; a player who is known never
to biuff or one who is known always to bluiff will ao iess well
than one whose bluffs are random.

2. GENERAL MULTIPLE FACET OPTIMIZATION

The above discussion centerea arouna problems which
satisfy two iwportant simplifvincg features: first, the amount
ol information about states of the world was fixed throuchout
tne course of the cecision making process rather than increa-
sing at later decision stages as a result of what is learned
at earlier ones; and second, the utility of any single possible
outcome was viewed as a unit. ke will now relax each of these
simplifying assumptions, and state a unified theoretical frame-
work for the resuiting broader class of problems.

2.1, Multistage Decision Making

A very important and widely-studied class of problems
arises when it is possible to break a decision process down
into stages so that later decisions are made in the light of
information gained in earlier stages of the process. In fact,
we may often choose to perform experiments or otherwise take
actions designed deliberately to obtain information about the
states of the world; typically this information is both
imperfect and costly, so that a major part of our burden as
decision makers is knowing when to seek information and when
to make a substantive decision on the basis of what we already
know.

For analytic purposes, however, it is convenient to trans-
form a multistage problem into an equivalent single-stage
problem in "normal form" (Raiffa, 1968). A multistace problem
can be ciagrammed by a decision tree with alternating choice
and chance nodes: at each choice node that we encounter in
working through the tree we nust pick one of several alterna-
tive action branches, while at each chance node that we en-
counter, the unknown state of the world will determine which
one ot several possible outcome branches we will observe.

The first step to convert the problem into normal form is
to define all possible "strategies" for moving throuch the de-
cision tree, To specify a stratecy, begin by selecting one
alternative action at the first decision node of the decision
tree, This action branch will lead to a chance node, each of
whose branches in turn will lead to another choice node. For
each of these possible second choice nodes, we must specify
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what action branch our strategy would dictate, and so on
through the tree. “he normal form decision tree will have only
one choice node, with one branch for each possible strategy
derived from the original tree. (A multistace specification of
a decision problem and its corresponding tree are called the
"extenced form" to distinguish them from the normal form speci-
fication of the same probilem.)

The second step in normalization is to resgecify the set
of possible states of the world. To do this, we must enumerate
all possible combinations that can be formed by selecting one
outcome branch from each chance node. Knowledce of the back-
¢rounu of the speciiic probliem-situation is essential here to
avoia a compinatoric explosion; while the total number of com-
binations is likely to be unmanageably large, many combinations
wiil be physically impossible because of identity or dependency
between the variables being observed at the corresponding chance
noces.

The last step in converting a problem into normal form is
to cetermine the utility of each stratec¢y defined in step 1
under each state of the world defined in step 2. This involves
working throuch the extended form of the tree for each (stra-
tegy - state) pair, using the strategy to decide all choice
branches and the state of the world to decide all chance bran-
ches, and accunulating all the gains and losses associated with
the various partial actions and outcomes. The result is a
shorter but wider tree; a satisractory or optimal solution of
the structuralliy simpler normal form of the problem is guaran-
teed to yield a satisfactory or optimal stratecy for traversing
the extended form of the problem.

2.2. Compound Measures of Utility

The current literature on utility theory devotes much
concern to conditions which make numeric utility measurements
or even ordinal utility comparisons difficult. These conditions
include: multicriterion or multiattribute decision making, in
which outcomes are valued along several dimensions; discount
theory, in which costs and benefits occur over a lon¢ period
of time aiter the uecision is made; and social decision making,
in which several different stakeholders interests must be
respectea.

These problems, along with the problem of uncertainty
about the state of the world, can be subsumed in to a general
mathematical structure, which I will call the general multiple
facet decision problem. In this abstract problem, we have a
number of possible courses of action to choose from; the value
of each strategy depends on a number of different facets, some
of which may be more important than others.

In rmulticriterion or multiattribute decision making, e¢ach
facet is one of the criteria or attributes that different
chioices are being judged on, and the relative importance of
each facet depends on the importance weight given to that
attribute or criterion. “he multiple facet approach can be
viewed as an extension of wulticriterion decision making to
situations which have traditionally been viewed as distinct
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topics.

In discount theory, each facet is the net cost or benefit
accruing at a particular point in time, and the relative im-
portance of each facet is the degree of discount to be applied
to events at that point in time; the further into the future an
event is, the more it is discounted and thus the lower the re-
lative importance of the facet.

In social decision making, the various facets of an alter-
native course of action are the utility assessments of that
course of action by the various interested individuals and
groups, and the relative importance of each facet may be asso-
ciated with the "cloyt" of each interested party. In a pure
democracy, the clout of a facet depends on the number of
persons it represents; in other situations, it may mean rhetorical
skill, financial resources, or political or military power, de-
pending on the circumstances and mores surrounding the decision
making process.

In the problems considered in Section 1 above, the dif-
ferent facets of a given course of action consist of the out-
cone of that course of action under the different possible
states of the world, and the relative importance of each facet
depends on the relative possibility or probability of the cor-
responding state of the world.

Obviously, treating these different decision making
problems under a single theoretical framework closely resembling
traditional views of multicriterion decision making does not
remove the need for considerable situation-specific work in
unraveling these and other difficulties in any specific situa-
tion, However, recognizing the structural commonalities between
the problems will allow any methodological advance in one field
to be readily transported to the others,

A fruitful area for future research will be to use the
multiple facet approach for problems where two or more of the
above sources of complexity interact; for example, many pressinc

problems in economic and energy policy revolve around social
decisions with uncertain outcomes distributed over a long
future. When we must combine such fundamentally different kinds
of information as social, financial and engineering, the result
tends to be less precise than the least precise individual class
of information. Thus, the "soft optimization models" discussed
here and elsewhere in this book can be of great usefulness.

3. EXAMPLE

The following example, adapted from a classic text in
statistical decision analysis (Raiffa, 1968), will serve to
illustrate the operation of some of the algorithms discussed in
Section 1. The problem illustrates the normal form of analysis,
with simple utilities dependent on the selected strategy and on
the state of the world; as discussed in Subjection 2.2, these
algorithms can be extended to other types of multiple facet
problems., The algorithms illustrated are: the commensurate
ordinal risk minimization algorithm, L-fuzzy risk minimization,
and fuzzy statistical decision analysis.
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The example concerns an oil wildcatter”s decision whether
to drilli an exploratory well at a new site, and whether to per-
form a seismic experiment to get additional information about
the site before making the drilling decision, The seismic
structure of the area, revealed by the experiment (if it is

performed) may be "No structure," "Open structure," or "Closed
structure," (N,0 and C, respectively, in Tables 1-11) and the
0il content may be "Dry," "Wet,", or "Soaking." (D, W and S,

respectively, in Tables 1-11), The three seismic structures
together with the three o0il contents generate 9 possible states
of the world, ranging from dry-no structure (DN) to soaking-
closed structure (SC). Ten strategies are possible: strategy 1
is to do nothing (NO) and strategy 2 is to drill without expe-
rimentation (DRILL), while strategies 3 through 10 prescribe
drilling only if the experimental outcome is in a particular
subset of the three seismic structures. Table 1 shows the dollar
profits, in thousands, of each of the ninety possible outcomes
generated by pairing each strategy with each state of the world,
and the numeric probabilities of each state of the world, taken
from the original text.

Kowever, the numbers in Table 1 come from a specific
example in a book published in 1968. Changes in prices and
technology will have altered the dollar amounts, and the proba-
bilities will be different at a different class of site. Even
so, it is reasonable to assume that the ordinal structure of
the problem remains the same; if one outcome was more profitable
than another in 1968 it is probably more profitable than the
other today although the exact ratio between them will have
changed, and if a state of the world is more probable than
another in one situation it will be more probable than the
other in a broader class of similar situations than the class
where the two probabilities remain unchanged. Thus, it is ap-
propriate to see what can be deduced from only the ordinal data
contained in Table 1, abstracting from its numerical details.

3.17. Commensurate Ordinal Decision Making

The first step in analyzing the problem ordinally is to
view the outcomes as regrets rather than as profits and losses.
In Table 2, this is done in terms of the numeric values given
by Raiffa; in Table 3 the more stable ordinal relations among
the regrets and among the probabilities are abstracted from the
specific numbers appropriate to Raiffa”s example, To help us in
using the information on the relative possibilities of states,
Table 4 shows the same information as Table 3 with the columns
representing the more possible states listed before those re-
presenting the less possible states, and Table 5 shows the rows
representing the ten strategies sorted by regrettability, using
regret under the most possible state (Dry-No structure) as the
primary sort key, regret under the second-likeliest state as
the second key, etcetera.

Lxamination of Table 5 shows that strategy 10, which is to
experiment but drill regardless of the outcome, is worse than
strategy 2, to drill without experimenting, regardless of the
state of the world. Similarly, strategy 3, to experiment but
not drill regardless of the outcome, is always worse than stra-
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tegy 1, to do nothinc. Thus, stratecies 10 and 3 are completely
dominated. In Table 6, these two strategies are eliminated from
Zurther consideration.

Tables 7 through 9 demonstrate the global riskiest-states
dominance criterion. In Table 7, the set of riskiest exposures
Zor each strategy are marked with an asterisk. Thus, any expo-
sure not so marked is either less regrettable or less possible
(or both) than any marked exposure in its row. At the top of
Table 7, states which are in the set of riskiest states for any
strategy are also marked with an asterisk. These states form
the global riskiest set R, and those not marked are the states
in R®, In Table 8, the states in K¢ are eiiminated. Considering
only the states in R, we can see that strategy 8 (experiment;
Grill if No or Open structure) 1is always worse than or equal to
strategy 2 (drill without experimenting), that strategy 7 (ex-
periment; drill if No structure) is always worse than or equal
to strategy 9 (experiment; drill if No or Closed structure),
and that strategy 5 (experiment; drill if Open structure) is
always worse than strategy 6 (experiment; drill if Open or
Closed structure) ., The only exceptions to these dominance rela-
tions are under the states of the world in RC, which are neither
very possible nor ever very regrettable and thus may be ignored.
Table S shows the result of eliminating strategies 8, 7, and 5,
which are dominated according to the global riskiest-states
criterion,

Table 10 shows the pairwise comparisons involved in
evaluating the pairwise riskiest-states criterion. Consider a
pair of strategies a and o, Rgg” is the set of all states which
are in the riskiest set for either o or o~ or both. A state
is entered into Table 10 in the row corresponding to strategy «
and the column corresponding to strategy o if § is in R .,
and D(a|€) is worse than D(o”|§). States for which the outcomes
of the two strategies are tied are ignored; thus, the main
diagonal cells are automatically empty, The asterisks in the
strategy 9 column of the rows for strategies 2 and 4 indicate
that there were no states of the world satisfying the above
conditions when o is 2 or 4 and o~ is 9. Strategy 9 is worse
than or equal to strategy 2 for every state in R and worse
than or equal to strategy 4 for every state in R4’9, SO we say
that strategies 2 and 4 each dominate strategy 9 By the pair-
wise riskiest-states criterion.

Table 11 shows the four remaining nondominated strategies.
No further reduction is possible using only commensurate ordinal
comparisons, but we have reduced ten original strategies down
to a "short list"™ of four reasonable candidates. This short
list would then be subjected to some more information-intensive
decision analysis technique to arrive at a final decision.

3.2. L-Fuzzy Risk Minimization

'n order to apply the L-fuzzy risk minimization technique
(Whalen 1980, 1984b) let us make the following assumptions:
(1} The truth value of the statement "State SC is very possible"
is intermediate between the truth values of the statements
"OQutcome B is very regrettable" and "Outcome F is very re-
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grettable."

(2) It is truer to say "State DO is very possible" than to say
"Qutcome C is very regrettable,”

(3) The truth value of the statement "Outcome E is very regret-—
table" is intermediate between the truth values of the
statements "State WO is very possible" and "State SO is
very possible."

according to the L-fuzzy risk minimization algorithm, the
disutility of each of the ten candidate strategies is:

D(2) = max{DAP, DAQ, HAR, HAS, HAT, HAT, HAU, DaV, HAW}
= max{D, D, 4, H, H, H, HAU, V, sAw}= D

D(6) = max{gAP, CAQ, GAR, gAS, EAT, gAT, gaU, CaV, AAW}
= max{gl C, ey g, E, g gal, U, W }: c
D(4) = max{gAP, gaC, EAR, gAS, EAT, gAT, AAU, CaAV, AAW}

= max{gl Sy B, G E, g, U, U, W }= E
D{1) = max{HAP, HAQ, TAR, BAS, FAT, FAT, BAU, HaV, EAW}
= max{ﬁ, %, ¥, S F, F, U, HVY,W } =

Since outcomes C and D are more regrettable thar outcome E, we
can eliminate stratecies 2 and 6. This allows us to concluae
that strategy 4 is preferable if it is truer to say "Outcome E
is very regrettable" than to say "State SC is very possible,"”
and that strateqgy 1 is preferable otherwise. (Note that our as-
sumptions do not allow us to conclude whether it is truer to
sav "g is regrettable" or to say "U is possible", and similarly
for H and U, H and V, and H and W, but none of these comparisons
are necessary to arrive at a final decision,) See Whalen (1984a)
for an evaluation of these ordinal results, using a lMonte Carlo
simulation sampling from the space of all probability and
utility distributions meeting the ordinal constraints.

4]

3.3, Fuzzy Statistical Decision Analysis

To illustrate the use of fuzzy statistical decision
analysis for this problem, let us make the following assumptions:

{1) The cost of the seismic study and the cost of drilling are
fixed by contract at 10 000 and $70 000 each.

(2) The conditional probabilities of No structure, Open struc-
ture, and Closed structure given Dry, Wet or Soaking o0il
content are known to be as follows:

P(N|D)=.6, P(OID)=.3, P(CID) 1,
P(N|W)=.3, P(O[W)=.4, P(CIW)=.,3,
P(N[S)=.1, P(OlS)=.4, P(CIS)=.5.

(3) The probability of a Dry well is 1 minus the sum of the
crobabilities of Wet and Soaking.

(4) The revenue from a Dry well is zero.

{5} Our knowledge of the probability of Wet is given by a
triangular fuzzy number with support running from .25 to
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.35 with a peak at .30 .

(6) Our knowledge of the probability of Soaking is given by a
triangular fuzzy number with support running from .25 to
.35 with a peak at .20 .

{7) Our knowledge of the revenue from a Wet well is given by a
triangular fuzzy number with support running from g70 000
to $170 000 with a peak at $120 000.

(8) Our knowledge of the revenue from a Soakinc well is given
by a triangular fuzzy number with support running from
$170 000 to 370 000 with a peak at $270 000.

Assumptions 1 through 4 are exactly as given in Raiffa (1968),
while assumptions 5 through 8 are fuzzifications of the Raiffa
data.

The goal of fuzzy statistical decision analysis is to find
a strategy whose expected profit is not less than any other
strategy. We compute expected values by exactly the same
formula as in statistical decision analysis, applying the ex-—
tension principle of fuzzy mathematics to perform the required
muitiplications and additions of fuzzy numbers. Fic. 1 shows
the graph of expected profit versus possibility for the four
nondominated strategies.

Possibility
(e}
©

v

-30 -10 0 10 30 50 70 30
Exvected Profit

—-s—'— Drill

-—==" Eo}
E: o,c}

Fig. 1. Fuzzy statistical decision analysis
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If we restrict our attention to only the top 2.6 percent
of membership grades in Tig. 1 (memberships ¢reater than or
equal to .974), then the lowest expected value for strategy 6
(test; drill only if Open or Closed structure) is higher than
the nighest expected value for strategy 2 (drill without test-
ing) or for any other strategy. Thus, by this very tight stand-
ard of possibility, we can say that the expected value of
strategy 6 1is strictly greater than the expected value of
strategy 2. Watson, Weiss and Donnell (1979) sucggest that the
strength with which we can make this statement, its "truth
value", is given by the complement of the lowest membership
grade above which the statement is true; thus the statement
"Strategy 6 1s strictly better than strategy 2" has a truth
value of ,026.

For membership grades above .803, there may be overlap
between the range of possible expected values of strategy 6 and
strategy 2, but the highest possibility for strategy 6 is high-
er than the highest possibility for strategy 2 and the lowest
possibility for strategy 6 is higher than the lowest possibi-
lity for strategy 2. Thus, the truth value of the statement
"strategy 6 is at least as good as strategy 2" is 1-.803 or .197.

Strategy 6 also outperforms the other two nondominated
strategies; the statement "strategy 6 1s strictly better than
strategy 4" has a truth value of .184, the statement "strategy
6 is at least as good as strategy 4" has a truth value of .595,
and the statement "strategy 6 is strictly better than strategy
1" has a truth value of .586. Since no statement asserting that
any of the strategies is better than strategy 6 has a positive
truth value, the fuzzy statistical decision analysis algorithm
advises us to select strategy 6; unlike the crisp statistical
approach discussed in Raiffa, it also tells us how much confi-
dence we are entitled to have in the superiority of the chosen
strategy as a function of how much confidence we have in our
data.

4. CONCLUSION

One of the most important parts of making a decision is
the early choice of what formal model (if any) will be used to
structure the remainder of the decision process. Different
decision models make different assumptions about the nature of
the alternative actions, goals (utilities) and other considera-
tions for evaluating the alternative actions. Early choices
among models, made on the basis of the general appropriateness
of their assumptions to the case in point, further determine
the way in which the relevant data will be collected and de-
fined.

Because of this effect on the way a decision will be
structured, it is important to have a wide variety of techni-
ques with differing assumptions, Furthermore, these technigues
need to be classified within an integrative framework according
to the nature of their assumptions. Only then can we be confi-
dent of choosing a model which makes the most effective possibie
use of the available data without introducing the distortions
which result from a mismatch between the data and the algorithm
(e.g., treatinc nominal or ordinal scale data as if it were
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measured on a ratio scale).

The methodologies discussed in this chapter constitute a
subset of the various possible assumptions about the kind of
information that can be obtained and used. Once a new practical
decision problem has been identified as belonging to the general
class of decision-tree tvpe problems, the quality and quantity
of the data associated with the new problem can be compared
with the information presented herein to select the best model
around which to structure the processes of estimating numeric
probabilities or relative possibilities, assessing utilities,
and arriving at a final decision,

The goal is to maximize the efficient use of whatever in-
formation is actually available while minimizing the need for
introducing arbitrary assumptions or spurious precision. For
example, if the information actually available in a given
problem situation were just sufficient to satisfy the require-
ments of the L-fuzzy risk minimization algorithm, then to use a
less information-intensive algorithm such as minimax regret
would require ignoring real information which might be critical
to an optimal decision, while using a more information-intensive
technique such as statistical decision analysis would require
introducing arbitrary assumptions about cardinal measurement
scales which might distort the solution enough to lead to a
suboptimal decision. In general, a problem situation will not
fit the assumptions of any one model exactly. In such a case,

a good strategy might be to bracket the problem by comparing

the results of using two techniques: the most information-inten-
sive technique whose assumptions are completely satisfied by

the situation (but which does not use all the available infor-
mation); and the least information - intensive technique which
uses all the available information (but which also requires

some additional assumptions). If the two "bracketing" techniques
agree on a single decision alternative, that alternative may be
adopted with some confidence; if the two techniques disagree,
their respective recommendations may be compared more intensive-
ly as a "short list" from which the final action is to be
selected.

Further advances in the field of enriching and guiding the
choice of methodologies for soft optimization can take three
separate directions; development and refinement of individual
techniques; systematic comparisons of their characteristics and,
development of tools to aid in the selection of appropriate
techniques for a particular problem.

One advantage of the conceptual framework used in this
chapter is that it can suggest important gaps in the spectrum
of techniques, and thus serve as a stimulus to the development
of additional techniques which may fit some practical problems
better than the ones currently in place. Examples of useful
potential additions include hybrid systems combining information
at different levels such as ordinal and real numbers, and an
extension of the L-~fuzzy risk minimization technigue based on
wholistic comparisons between commensurate pairs of (possibili-
ty, utility) tuples to eliminate the conceptually difficult com-
parisons between a possibility on one hand and a utility on the
other. In addition to investigation of the technical efficiency
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of new and existing technigques, research is also needed regard-
ing their potential for user acceptance; any decision making
methodology which imposes major conceptual shifts on its intend-
ed users will be accepted only very slowly, regardless of its
other merits, as witnessed by the histories of Bayesian statis-
tics and, more recently, fuzzy mathematics.

The framework of this chapter provides a starting point
for the systematic comparison of techniques in terms of their
basic assumptions regarding uncertainty. However, in order to
provide really effective guidance as to what techniques ought
to be used in a particular situation, it is also necessary to
have a bocy of knowlecdge comparing the difficulty of use and
the quality of results using each technique in a variety of
situations, Such a body of knowledge exists only in fragmentary
form at present, and needs to be expanded and systematized
using both axiomatic analysis and experimental studies with
realistic problems and user populations.

As the number of techniques in the collection and the
number of criteria for selection become large, the difficulty
of choosing a technique using printed reports such as this one
becomes greater. This suggests a third avenue of research: the
development of an "intelligent index" to help a decisionmaker
to find the technique which best matches his perception of his
pProblem, Since the choice of technigue must be made very early
in the decision process, at a time when the problem is still
relatively ill-structured, a fuzzy ordinal approach to such an
index seems most appropriate.
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TABLE 1: PROFITS AND PROBABILITIES

DN DO DC WN WO WC SN j=10] sC

1 10 0 0 0 0 0 0 0 0 0
2 DRILL -70 =70 =70 50 50 50 200 200 200
3 E{ } -10 -10 -10 =10 =10 -10 =10 =10 =-10
4 E{c} -10 -10 -80 -10 =10 40 =10 =10 190
5 E{o} -10 -80 -10 =10 -40 -10 =10 190 =10
6 E{ogc} -10 -80 -80 =10 40 40 =10 190 190
7 E{n} -80 -10 -10 40 -10 -10 190 -10 =10
8 E{n,o} -80 -80 =10 40 40 -10 190 190 =10
9 £{n,c} -80 -10 -80 20 -10 40 190 -10 190
10 E{n,o,c} -80 -80 -80 40 40 40 190 190 190

PROBABILITY .30 .15 ,05 .09 .12 .09 .02 .08 ,10

TABLE 2: REGRETS

DN DO DC Wl WO WC SN 50 sC

1 NO 0 0 0 =50 -50 -50 ~200 =200 -200
2 DRILL -70 =70 -70 0o 0 o0 0 0 0
3 EL } -10 -10 =10 -60 -60 -60 ~210 -210 -210
4 E{c} -10 =10 -80 -60 =60 =10 =210 =210 =10
5 E{o? -10 -80 =10 -60 =10 =60 -210 =10 =210
6 E{o,c -10 -80 =80 -60 -10 -10 =210 =10 =10
7 E{n} -80 =10 -10 =10 -60 -60 -10 -210 =210
& Efn,0} -80 -80 -10 =10 -10 -60 —10 -—10 -210
$ E{n,c} -80 -10 -80 =10 =60 =10 =-10 -210 =10

10 E{n,0,c} -80 =80 -80 -10 -10 -10 =10 =10 =10

PROBABILITY ,30 .15 .05 .09 .12 .09 .02 ,08 .10

TABLE 3: ORDINAL REGRETS
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TABLE 4: SORT STATES BY POSSIBILITY

DN DO WO SC WN WC SO DC SN
1 NO E H F B F F B H B
2 DRILL D D H H H H H D H
3 E{ } g g E A E E A g A
4 E{c} g [t E g E g A C A
5 E{fo} g C g A E E g g A
6 Efo,c} g C g g E g < C A
7 E{n} C g E A g E A g g
8 E{n, o} C C I )Y g E g g g
9 E{n,c} C g E g g g A C g
10 E{n,0y¢} ¢ C g9 g g g g C g
POSSIBILITY P Q R S T T U v W
TABLE 5: SORT STRATEGIES BY REGRET
(MOST POSSIBLE STATE = PRIMARY KEY)
DN DO WO SC WN WC SO DC SN
8 E{n,o} ¢c ¢ g9 A g E g g g
10 E{n,o,c} C C g g g g g C g >2
7 E{n} C g E A g E A g g
9 E{n,c} C g B g g g A C g
2 DRILL D D H H H H H D H
5 E{o} g C g A E E g g A
6 E{o,cl g ¢ g g E g g C A
3 E( } g g E A E E A g Aa>1
4 Ef{c} g g E g E g A C A
1 NO H H F B F F B H B
POSSIBILITY P ¢ R S T T U vV W
TABLE 6: ELIMINATE COMPLETELY DOMINATED STRATEGIES
DN DO WO SC WN WC SO DC SN
8 E{n,o} c cC g A g E g s g
7 E{n} C g E A g E A g g
9 E{n,c} ¢ ¢ E g g g A C g
2 DRILL D D H H H H H D H
5 E{o} g ¢ g A E E g g A
6 E{o,c} g ¢ g g E g g C A
4 E{c} g g E g E g A C A
1 NO H H F B F F B H B
POSSIBILITY P Q R S T T U v oW
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TABLE 7:

IDENTIFY WORST-SET EXPOSURES

E{n,o}
E{n}
E{n,c}
DRILL
F{o}
E{o,c}
E{c}
NO

— O U N ~J 00

POSSIBILITY

*

DN
C*
Cc*
C*
D*
g*
g*
g*

H*

P

*

=
@]

HHQQ T HEGg
* ok

o

*
SC
L*
A*
g9
H
A*
g

a

]

B*

S

TABLE 8:

FOR EACH STRATEGY

WN

3 I Sl 5l o e o1 o JTo IV}

H]

*

*

WC SO DC SN
E g9 g g
E A g g
g a* C g
H H D H
E g g A
g g C a*
q A* C A
13 B H B
U \Y W

DELETE STATES WITH NO EXPOSURE IN WORST SET

E{n,o}
E{n}
E{n,c}
DRILL
E{o}
Efo,c}
E{c}
NO

L - R * AN S IEVGREN ¥ a.0]

POSSIBILITY

DN
C*
C*
C*
D*
g*
g*
g*
H*

P

=
o

HEoOoQ T mEe
*

o)

sC SO
A* g
A* A
g A*
H H
A* g
g g
g A*
B* B
S U
TABLE 9:

ELIMINATE STRATEGIES DOMIUNATED

9 E{m,c}
2 DRILL
6 E{o,c}
4 E{fc}

1 NO

FOSSIBILITY

DN
C*
D*
g*
g*
H*

P

DO

g
D
C
g
H

e

*

Vo
E
H
g
E*
F*

R

SC
g
H
*

S
g
B

S

SO
A*
H
S
A*
B

U

SN
g >2
g >9
g
H

A >6
A*
A
B

W

ON REMAINING STATES
SN
9
A*
A
B

W
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TABLL 10: DPAIRVISE COMPARISONS

(States listed are in riskiest set for either row strategy or
column strategy, and have a worse outcome for row strategy than
for column strategy.)

9 2 6 4 1
DY DN DN DN
9 E{n,q} SO ) WO
SO
2 DRILL * DN DN DN
SN DN
6 E{o,g} DO DO DO DO
SN
WO WO WO
4 E{;} * S0 S0 S0
DN
WO WO
1 NO sc sc sc sc
TABLE 11:

ELIMINATE PAIRWISE WORST-SET DOMINATED STRATEGIES

DN DO WO sC 50 SN

2 DRILL D* D H H H H
6 Efo,c} g* C* g g g A*
4 E{c} g* g E* g A* A
1 NO H* H FP* B* B B

POSSIBILITY P Q R S U W
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Abstract. Some general concepts and ideas re-
lated to fuzzy optimization as, e.g., a fuzzy
constraint, fuzzy goal (objective function),
fuzzy optimum, etc. are introduced first. A
general fuzzy optimization problem involving
these elements is formulated and solved. The
cases of single and multiple objective func-
tions are dealt with., Secondly, basic classes
of fuzzy mathematical programming are discuss-
ed, including: fuzzy linear programming (with
single and multiple objective functions), fuz-
zy integer programming, fuzzy 0-1 programming
and fuzzy dynamic programming. Finally some
newer, knowledge-based approaches are mention-
ed. An extended list of literature is included.

Keywords: fuzzy decision making, fuzzy optimi-
zation, fuzzy mathematical program-
ming.

7. INTRODUCTION

The book focuses on optimization problems which belong to
a much wider class of decision making problems.

Decision making has always played, and is playing, a cru-
cial role in human life, In fact, any human activity is a suc-
cession of decision-making-related acts. A growing complexity
of social, economic, technical, military, etc. problems faced
by human decisionmakers has finally led to a necessity of using
some formal (scientific) tools. This has stimulated the deve-
lopment of modern mathematical tools and techniques for that
purpose,

The analysis of a real decision making situation is vir-
tually based on two types of information:

- information on feasible alternative decisions (options,
choices, alternatives, variants, ...).

- information making possible the comparison of alternative
decisions with each other in terms of "better", "worse",
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"indifferent", etc.

To apply mathematical tools and techniques, these two ty-
pes of information should be adequately gquantified and formali-
zed in the form of some mathematical models.

Having such models, diverse, more or less formal analytical
methods may be used by the analyst to derive a rational choice
(s) to be recommended to the decision maker. Evidently, the ap-
plicability of analytical methods at the analyst”s disposal de-
pends in a straightforward way upon the form of the model em-
ployed to represent a real decision making situation.

If a model of a decision making situation is not adeguate
enough, then the results of analysis may be misleading. This
may also occur in case of unreliable or inaccurate data.
Unfortunately, in many cases - above all in economic, social etc.
systems where human judgments, preferences, etc., play a crucial
role - information on a particular decision making situation
must be elicited from human experts. It is therefore full of sub-
jectivity and of ambiguity or vagueness which stem from the use
of a natural language that is the only fully natural means of
human communication. And it is our ability to adequately incor-
porate this type of information in an analytical mathematical
framework that is crucial for enhancing the applicability of
mathematical methods in real-world decision making situations.

Optimization problems constitute a wide class within deci-
sion making. Basically, information on the preferences among
alternatives is in them described by some utility (objective,
performance, ...) function that maps a given set of feasible
alternatives into the real axis; this allows one to compare the
alternatives with each other in a straightforward way through
their numerical evaluations as, e.g., the greater the value of
that function, the better the corresponding alternative,

The set of feasible alternatives in an optimization pro-
blem is frequently described by a system of eguations and/or
inequalities., In such a case the problem is referred to as one
of mathematical programming.

Methods and techniques of optimization, or - more specifi-
cally - those of mathematical programming have been successful-
ly used for years in various problems involving, and related
to, technical systems of relatively well-defined structure and
behavior, the so-called "hard" ones. This has allowed the for-
mulation of corresponding optimization problems with precisely
specified constraints and objective functions soclvable by well-
developed and quite efficient traditional analytical and compu-
tational means,

That success has motivated a direct application of the
same traditional approaches to the modeling and analysis of what
is often called the "soft" systems in which a key role is play-
ed by human judgments, preferences, etc. Unfortunately, the
progress in this direction has been much less than expected,
which has even raised doubts whether traditional mathematical
tools are at all applicable to problems with relevant human-
releted elements,

It seems, however, that a more justified viewpoint is pro-
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bably such that to be able to successfully use optimization
methods in complex systems, which are "soft" in the above
sense, a "technological change" towards "softer" approaches is
needed, toward approaches that would make it possible to incor-
porate fuzziness (imprecision) of information into optimization
models and into methods of dealing with them. This need for
"softer" approaches in broadly perceived systems analysis and
systems engineering has been articulated and advocated for a
long time (e.g., Rapaport, 1970; or Checkland, 1972) and has
recently gained impetus in view of advances in knowledge engi-
neering (see Gaines  paper earlier in this volume).

As already mentioned, a major "obstacle" in the applica-
tion of traditional modeling and optimization tools in "soft"
economic, social, environmental, etc. systems is the subjective
nature of available information and its predominantly imprecise
(fuzzy) form due to the use of a natural language. A rapid de-
velopment of fuzzy sets theory over the last two decades gives
more and more evidence that this theory provides useful means
for a more adequate modeling of "soft" information and for the
development of analytical approaches that make possible an ade-
quate processing of such information to finally arrive at a
realistic decision. It is in this sense that we say fuzzy sets
theory is a promising tool for "softening" traditional optimi-
zation models and techniques.

»

In this introductory paper we briefly review some basic
developments in the field of "soft" optimization via fuzzy
sets and, to a lesser extent, possibility theory. We present
various existing approaches to the formulation of fuzzy opti-
mization problems, and methods of their solution. In principle,
in all of them a fuzzy optimization problem is transformed into
some equivalent nonfuzzy problem which,in turn, can be solved
by using some traditional techniques (e.g., mathematical prog-
ramming) and widely available commercial software packages.

2. APPROACHES TO FUZZY OPTIMIZATION WITH AN EXPLICITLY SPECI-
FIED FEASIBLE SET

As it has been already mentioned, the formulation of an
optimization problem contains two essential elements: (1) a
set of feasible alternatives, and (2) an objective function
whose values serve the purpose of comparing the alternatives
with each other. The optimization problem itself lies in deter-
mining some "best" (in a sense) alternative(s).

The description of both the objective function and fea-
sible set may be fuzzy. In this section we consider formula-
tions in which the feasible set is explicitly specified by its
corresponding membership function whose values indicate the de-
grees of feasibility of the particular alternatives. In further
sections we also consider formulations in which the feasible
sets are described by systems of fuzzy equations and/or inequa-
lities, and refer to such formulations as to fuzzy mathematical
programming, Paranthetically, let us mention that some of them
are based on extracting an explicit specification of the fea-
sible set in the form of a membership function,.

The class of problems considered in this section can be
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stated as follows. Let X ={_x} be a set of relevant alterna-
tives (options, choices, decisions, ...).

The objective function is generally defined as a mapping
r : X =» L(R) where L(R) is a class of fuzzy subsets of the
real line R. The value of F for x€X, F(x), 1is a fuzzy num-
ber which represents a "soft" evaluation of the alternative
X€X.

The feasible alternatives are those "belonging" to a fuz-
zy set C g X described by its membership function
no X - [0,1]. The alternatives may therefore differ in their

degrees of feasibility represented by the values of uc(x).

In traditional terms, our "soft" optimization problem can
be written as

f(x,r) - "max" (1)
xgp
to be read as to "maximize" (the quotation marks mean that maxi-

mization is not understood in the "hard" traditional sense but
in a "soft" one, i,e. to attain "possibly great" fuzzy values
of f(x,r)) the objective function £f(x,r) with respect to x
"belonging" to the fuzzy constraint C; r 1is a parameter.

We will outline now two approaches to solving the above
general formulation of a fuzzy optimization problem.

2.1. Attainment of a fuzzy goal subject to a fuzzy constraint:
Bellman and Zadeh s approach

In this approach by Bellman and Zadeh (1970) which forms
the basis of an overwhelming majority of fuzzy decision-making
~-related models, the underlying assumption is that besides an
explicitly formulated fuzzy set of feasible alternatives C ¢ X,
called a fuzzy constraint, we also have an explicitly specified
fuzzy set of alternatives that attain a goal, denoted G £ X and
called a fuzzy goal,

The value of uG(x), the membership function of G, indi-

cates the degree to which an alternative x€X satisfies the
fuzzy goal G. For example (see, e.g., Kacprzyk, 1983a), the
membership function pG(x) may be defined as

1 for fix) » £ -
kg (x) = g{x) for £ < f(x) < f (2)
0 for fi(x) ¢ f
to be read as: we are fully satisfied (uG(x) = 1) with the

values of x for which our objective function f(x) is not
below an aspiration level f, we are less satisfied
(0<g({x)<1) with x7s for which £ < f(x) < f, and we are fully
dissatisfied with x”s which do not exceed a lowest possible
level £, i.e. such x"s are unacceptable.

The problem is now generally stated as
"satisfy C and attain G" (3)
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i.e. satisfy the fuzzy constraint G and attain the fuzzy goal G.

If we introduce a fuzzy set D g X which solves this pro-
blem, and is called a fuzzy decision, then (3) can be written
as

D=ChnGaG (4)

where " N" is an intersection operator corresponding to "and"
in (3).

In terms of membership functions, we can write (4) as
pD(x) = pC(x) * uG(x) for each x € X (5)

where "x" is an operation corresponding to " A",

Most frequently, "«" is assumed to be a minimum denoted by
A", i.e. a A b = min(a,b), and then (5) is

Hp(x) = v (%) A pg (%) for each x € X (6)

This form of fuzzy decision may be viewed as a fuzzily
specified instruction (which x to choose), the execution of
which ensures the achievement of the fuzzy goal subject to the
fuzzy constraint. Evidently, the fuzziness of this instruction
is implied by the fuzziness of the problem formulation,

In the above form of fuzzy decision there still remains
some uncertainty as to its execution, i.e. the choice of a spe-
cific x. A number of approaches are possible here (see,e.qg,,
Zadeh 1968; Bellman and Zadeh, 1970,or Sommer and Pollatschek
1978). One of the most popular is to choose an alternative
"belonging” to D to the maximum extent, that is to choose
x*€X such that

*
p.(x ) = max p.(x) (7)
D x€x P
In case of multiple fuzzy goals, G1""’Gn c X, and fuzzy

constraints C,,...,C_ < X, (6) becomes
1 m

-~

pD(x) = Mg (x) (8)

(x)A.e.ApG (x) A e (X)An..ApC
1 n 1 m
for each x € X
*
and we seek x €X such that (7).

Moreover, if the fuzzy constraint is defined as a fuzzy
set in X, C g X, and the fuzzy goal in Y, G £ X, and a
function vy = w(x) is known, then (6) becomes

pD(x) = pC(x) A uG,(w(x)), for each x € X (9)

where G~ gX 1is a fuzzy goal in X induced by G g ¥; (7)
remains the same.

Finally, let us notice that within Bellman and Zadeh™s ap-
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proach other forms of trade-oifs between the degrees of feasi-
bility and goal satisfaction are possible (see, e.g., Bellman
and Zadeh, 1970; Kacprzyk, 1983a; Kacprzyk and Straszak, 1984;
Yager, 1978, 1979); the choice depends here on the specifics of
the problem considered.

We will now outline the application of Bellman and Zadeh”s
approach to the analysis of our optimization problem (1). First,
we assume that our goal is to attain, by choosing an appropria-
te feasible alternative, some fuzzily specified value of the
objective function. We assume this desired fuzzy value to be
described by the membership function of a fuzzy goal,

Bg ¢ R~ [o,11.

Consider first the case when the objective function is
precisely defined, i.e. f: X » R. To use Bellman and Zadeh's
framework, we first determine the subset of alternatives provi-
ding for the satisfaction of our fuzzy goal. Clearly, this sub-

set is the inverse image ﬁG of He under the mapping (objec-
tive function) £ : X - R, that is
ﬁG(X) = pg(f(x)) for each x € X (10)

Now, our problem is of type (6) with ﬁG(x) replacing pG(x)

as the fuzzy goal, and with pc(x) as the fuzzy feasible set
(fuzzy constraint).

The fuzzy solution of the problem is now of type (9), i.e,

pD(x) = pc(x) A pG(f(x)) for each x € X (11)
*

For determining x €X, such that

*
Hn(x ) = max p_(x) (12)
D x€X b

some well-known methods of mathematical programming can be used
(see, e.g., Tanaka, Okuda and Asai, 1974, or Negoita and
Ralescu, 1975).

Let us now consider a more general case with fuzzily speci-
fied values of the objective function, i.e. £ : X x R - [0,1].
As before, we assume that pc(x) is the membership function of

the fuzzy feasible set in X (fuzzy constraint), and pG(r),

r€R, 1is the membership function of the set of satisfactory
values of £ (fuzzy goal).

To apply in this case Bellman and Zadeh”s framework, we
can introduce (Orlovski, 1981) the following equivalent defini-
tion of a solution to the problem of fuzzy goal satisfaction.

A fuzzy decision D ¢ X in our problem is a maximal (with
respect to the containment of two fuzzy sets - see Fedrizzi's
paper earlier in thi.. volume) fuzzy set satisfying:

1. D c C (feasibility of the solution),
2, Do f cG (attainment of the fuzzy goal),
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where D o f is the image of D under the fuzzy objective func-
tion f : X x R~ [0,1], and "c" is the containment of two fuzzy
sets,

It can be easily verified that for the above case of a
precisely defined objective function, this definition of D is
equivalent to (11).

Following Orlovski (1981), we introduce now the following
sets:

N ={(x,r): (x,r) € XxR, f(x,r) > uG(r)} (13)
N, ={r: r € R, (x,r) € N} (14)
x° ={x: x € X, NX;‘(Z)} (15)

Then, the membership function of the fuzzy solution to our
problem is

uC(x) A inf uG(x) for x € XO
pD(x) = rENx (16)

pC(x) otherwise

It can be easily seen that for the conventional (nonfuzzy)
objective function, f:X -+ R, this boils down to (11).

As before, we can seek an alternative yielding the maximum
value of pD(x), and use for its determination computational

methods of mathematical programming.

2.2. The use of a-cuts of the fuzzy feasible set

While the approaches outlined in the previous subsection
use the concept of goal satisfaction, there also exist appro-
aches that use in a more explicit manner the concept of maxi-
mization, As an illustrative example, we will outline here an
approach by Orlovski (1977).

The problem is as (1), that is

f(x) - "max" (17)
x€C

where f:X - R 1is an objective function and C g X is a fuzzy
constraint characterized by its membership function pC:X*[0,1],

The first problem is to introduce some concept of a solu-
tion. We will present two of them; both define the solutions
as some fuzzy sets.

In the_first solution goncept, we employ the a-cuts of C,
i.e. Ca = {xEX : pc(x) by aj, a€(0,1]. For each a, such that

Ca # @, we introduce the (nonfuzzy) set

M) ={x € X : £{x) = sup f(z)}
zECa
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By solution 1 to the problem (17) we now mean a fuzzy set
S, € X, such that

1=

sup a for x Eu N (o)
xEN(a) a>0
Bg (x) = =
i 0 otherwise
B (x) for x €\_J N(a)
c x>0
= (18)
0 otherwise
we say that solution 1 exists if an only if there exists a>o,
such that N(a) # @.
Next, we define the fuzzy maximal value of f(x) over
pC(x) as
pf(r) = sup ps (x) = sup sup for each r€R (19)
x€£ Ny ! x€£” V() xEN(a)

Notice that the choice of a single x as a final solution is
not simply based on taking the x with the highest Hg (x)
1
but also on the value of f(x) corresponding to that x. Na-
mely, the greater r, the smaller the value of Hg (x}) for
1

X=X such that f(xo) = r . A compromise is therefore need-

e}
ed,

Solution 2 to the problem (17) is based on the concept of
the Pareto optimum. Namely, for the two functions f(x) and
pC(X) we first define P, the set of Pareto maximal elements,

i.e. the (nonfuzzy) subset P of X, such that x€P if there
exists no ye€X for which either:

fly) > £(x) and  p.ly) 2 p.(x)
or
fly) » £(x) and pC(y) > B (x).
Solution 2 is now defined as a fuzzy set 52 < X such that
pC(x) for X € P
bg (x) = (20)
2 0 otherwise

As shown in Orlovski (1977), this solution gives the same
fuzzy maximal value of f(x) over pC(x) as solution 1 in (18),
i.e.

pf(r) = sup Hg {x) = sup sup o for each re€rR
-1 2 -1 xeN (a)
x€f " (r) xef '(r) (21)
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Solution 2 explicitly suggests therefore that we should
consider as rational choices only those x”s which cannot be
simultaneously improved in the values of both f (x) and pc(x)e

Moreover, notice that P < U N(&) which implies PS (x) g
a>0 2
< Hg (x) for any xeX, i.e. solution 2 is a subset of solu-
1
tion 1.

Among other approaches to fuzzy optimization with a sepa-
rate treatment of f(x) and pc(x), some of which employ and

extend Orlovski™s (1977) ideas, we should mention, e.g.,
Negoita, and Ralescu (1977), Ralescu (1979, 1984) or Yager
(1979) .

2.3, The case of multiple objective functions and fuzzy
constraints

The problem is now basically as follows., We have n ob-
jective functions, fi(x), i=1,44.yn, and m fuzzy constraints

*
pc (x),...,pC (x). We seek x €X, such that
1

n
(f.I(X),...,fn(X)) _’I—n§( (22)

subject to He (x),.“,pC (x)
1 m

where max 1s maximization in the sense of Pareto.

Similarly as in case of a single objective function, we
can apply the approaches outlined in subsections 2.1 and 2,2.

Here we will sketch another approach based on Orlovski
(1980, 1981, 1983, 1984) which is intuitively appealing and
efficient,

First, let us assume a more general case when the objec-
tive functions are not real valued as before but take on fuzzy
values Fi(x) % X; the real valued functions are here evident-

ly special cases. Thus, the membership grade of a value of
fi(x) = r in Fi(x) is pFi(x,(r).

Through B (x) we obtain, using the extension principle,
1
n fuzzy nonstrict preference relations over the set of alter-
natives X, 1i.e. p; ¢ X x X > [0,1], given by

p.({x,,x,) = sup(p (z) Ap (y)) i=1,...,n (23)
i1 72 23y Fi(x1) Fi(xz)

The next step is to define a way of comparing alternati-
ves using these n fuzzy preference relations. We define a
fuzzy strict preference relation pi:x x X » [0,1] correspond-

ing to p; as
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s = -
Py (x,,x5) = 0 v (p; (xy,x,) p;(x5,%0)) (24)
where "v" is maximum, i.e. avb = max{a,b). Then
S N S
PTOxyaxy) = A Py (xgax,) (25)
i=1
is the degree to which X, is strictly preferred to X5 where
N oA, = a.A...Aa_.
. i i n
i=1

Next, we introduce a fuzzy subset of nondominated alterna-
tives

n
PND(X) = 1 - sup ps(y,x) =1 - sup A pi(y,x) =
ye€X yeEX 1i=1
n
=1 -sup A (p;ly,x) - p;(x,¥)) (26)
yEX i=1

The value of (x) is a nondominance degree of alterna-

PxNp
tive x. Thus, if pND(x) » a, then x may be strictly domi-

nated by some other alternative to a degree smaller than 1-«.

As the second element of the approach, we define a degree
of feasibility of alternative x with respect to the fuzzy
constraints C1,.g°,Cm. This can be done for instance as fol-
lows:

pFS(X) = PC1(X)A.°.APCm(X) (27)

The solution of the optimization problem (22) is now meant
to find an alternative x*€X for which

pND(x*) > Q and (x*) > B (28)

Prs

where a is a desired degree of nondominance and 8 is a desired
degree of feasibility. In fact, a compromise between o and B
is soucght.

In Orlovski (1984) some conventional (nonfuzzy) optimiza-
tion problems equivalent to (22) are described.

Among other approaches, most of them also being based on
some degree of nondominance , we should mention, e.g., Takeda
and Nishida (1980), Leung (1982, 1983, 1984), Yager (1980) and
Carlsson (1982).

3. BRIEF INTRODUCTION TO FUZ2Y MATHEMATICAL PROGRAMMING

The point of departure is here a general mathematical pro-
gramming problem written as
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f(x) - max

X
subject to (29)
gi(x) < by i=1,,04,m

where x = (x1,...,xn) € R” is a vector of decision variables,

£:R" » R is an objective function, gi:Rn -» R are constraints,
and bi € R are the so-called right-hand-sides. Evidently,

maximization and "§" can be easily transformed into minimiza-
tion and ">".

Specific forms of the decision variables, objective func-
tion and constraints lead to specific types of mathematical
programming as, e.g., linear, quadratic, nonlinear, integer,
0-1, dynamic, etc.

In the following we present some basic approaches to in-
troducing fuzziness into the general mathematical programming
problem (29), Emphasis is on fuzzy linear programming, which,
as its nonfuzzy counterpart, is of particular relevance from
the practical viewpoint.

3.1, Fuzzy linear programming

The problem of conventional nonfuzzy linear programming
may be written as

n
f{x) = £ ¢, x, - max

) i 7i

i=1 X
subject to: (30)
n
T a.. X, € b. 3=1) eee,m
i=1 34 J

xi > 0 i=1,sa.,n

"Softening" of this problem may proceed along two main
lines, First, we may "soften" the rigid requirement to strict-
ly maximize the objective function and to strictly satisfy the

constraints. Second, we may allow the coefficients, i.e. c s,
ai’s, and bj"s, to be fuzzy numbers. We will sketch now thé

two approaches.
3.1.1., Fuzzy linear programming in the setting of Zimmermann
The first attempt to fuzzify a linear program is due to

Zimmermann (1975, 1976).
To show its essence, we first rewrite (30) as

n
I f(x) = ei X = min
i=1 X
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| subject to

n
.{ aji X, € bj j=1,...,m (31)
i=1
Xy » 0 i=1, cesyn
where, evidently, e, = - ¢y.

The fuzzy version of this problem is now written as

X

i=1 1

n

¥ a.. x., £ b, j=Tseee,m (32)

o 31 1N Py J ' '

X2 0 i=1,.4.,n
n

which is read as: the objective function f(x) = i§1 ey Xy
should be "essentially smallernthan or equal to" an aspiration
level %, and the constraints i§1 aji Xy should be "essential-
ly smaller than or equal to" the right hand sides bj or, in

another words, should be possibly well satisfied.

The above "essentially smaller than or equal to", written

'§" is formalized as follows. First, we denote by H = [hki]’
k=1, 44e,m+1, i=1,...,n, the matrix obtained by adding to the
matrix A = [aji] tge row vector [ei] as the first row of A,
We denote (Hx), = ¥ h . x,, and define the function
k i=1 ki 7i
1 for (Hx)k < W
(Hx)k - wk
fk((Hx)k) = 1 - ____H;____ for wk<(Hx)k\(wk+dk (33)
0 for (Hx)k > wk+dk

where wk’s are the original right-hand-sides b. s and the as-
T_ T
me1) “(ZiBgreas b))

and dk”s are some subjectively chosen admissible violations of

piration level 2, i,e. wT = (w1,...,w

the constraints.

We wish to satisfy all the constraints of (32), hence the
new objective function of the fuzzified linear programming
problem, i.e. the fuzzy decision (see (8)), is

m+1

pp (%) = k/=\1 £, ((Hx) ) (34)
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*

* *
and we seek an optimal solution x = (x1,...,xn), such that
m+1
/A £ ({Hx) ) - max (35)
k=1 K K = ( )
= X =X s e Xy
or, by substituting L wk/dk and (Hx-‘)k = (Hx)k/dk and
dropping 1 in (2).
m+1
A (wo - (Hx)D) = x = max (36)
k=1 K k

x=(x1,._.,xn)

It is easy to show (see, e.g. Negoita and Sularia, 1976)
that this is equivalent to

A - max
aelo,1]
subject to:
NS W - {(Hx) K=1, ces,m+1 (37)
xi > 0 1=1,cee,n

in the sense that an optimal solution to (37) is also optimal
to (32).

While using a fuzzy linear program the decision maker is
not forced to state the problem in precise terms, required by
the mathematics involved but possibly strange from the prac-
tical point of view. This is a serious advantage.

7Zimmerman s approach has found numercus applications in,
e.g.: designing the size and structure of a truck fleet
(Zimmermann, 1975), designing of a parking place (R&dder and
Zimmermann, 1977), media selection in advertising (Wiedey and
Zimmermann, 1978}, air pollution regulation (Sommer and
Pollatschek, 1978), determination of agricultural policies
(Kacprzyk and Owsinski, 1984; and Owsirski, Zadrozny and
Kacprzyk later in this volume).

The model was also a point of departure for some exten-
sions, as, e.g., the transportation problem (Oheigeartaigh,
1984; Verdegay, 1983; but particularly Chanas and Kotodziej-
czyk, 1984; and Delgado, Verdegay and Vila later in this volu-
me}; fuzzy linear programming with constraints given as fuzzy
relations (Nakamura, 1984), fuzzy stochastic linear program-
ming {Luhandjula, 1983), etc.

Let us mention that for fuzzy linear programming in
Zimmermann's setting there are some works on duality (Hamacher,
Leberling and Zimmermann, 1978; but particularly Verdegay,
1984a and Llena, 1985) sensitivity analysis (Hamacher, Leber-
ling and Zimmermann, 1978), derivation of the whole fuzzy de-
cision (34) using parametric linear programming (Chanas, 1983;
and Verdegay, 1982) etc.

The presented approach can also be employed for solving
multiobjective linear programming problems (see, e.g.,
Zimmermann, 1978, Hannan, 1981a, 1981c).
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Moreover, attempts to develop fuzzy goal programming (e.g.,
Hannan, 1981b; Narasimhan, 1984; Llena, 1985) are relevant.
Interactive approaches to a practical solution of multiobjec-
tive problems, also in a nonlinear case, have been developed
by Sakawa and collaborators (e.g., Sakawa, 1983, 1984a, 1984b;
Sakawa and Seo, 1983; Sakawa and Yumine, 1983).,

3.1.2. Fuzzy linear programming with fuzzy coefficients

The first attempt to solve linear programs with fuzzy
parameters is due to Negoita, Minoiu and Stan (1976). Basical-
ly, they consider the problem

n
f(x) = Z c. xi - max

i
i=1 X

subject to:
x,K, t...+ x_ K <K (38)

Xy 2 0 i=1, 4.4,

where Ki‘s are fuzzy sets, By using a-cuts of Ki“s, i.e.

Ra(Ki) ={:x€X H pKi(x) > a}, they replace (38) by

n
f(x) = ¢ Cc.X. = max
- i%i
subject to: (39)

X1R0(K1)+"'+Xan(Kn) < RG(K)

Xy P i=1,...,n for each a € (0,1]

which, for (x)€{a,, .0, 2, is a finite set of the so-called
Hy 1 p

set inclusive linear programs solvable by conventional linear
programming techniques (see, e.g., Soyster (1973) for details).

It should be noted that the above approach has some
serious drawbacks which are often prohibitive in its practical
use., First, "<" is the conventional fuzzy set inclusion (see
Fedrizzi”s paper earlier in the volume) of a "yes-no" character
which makes the problem unnecessarily rigid, The use of a less
rigid definition of containment of two fuzzy sets to a degree
(cf. Kacprzyk, 1983a) could help, although presumably at the
expense of analytical tractability. Moreover, even if pK(x)

takes on a finite number of distinct values, this number is
usually high so that we obtain a high dimensional equivalent
conventional linear program. Several approaches have appeared
to overcome this difficulty. In one of them, due to Orlovski
{1984b) fuzzy information on coefficients in a fuzzy mathema- _
tical programming problem is used to extract a fuzzy preference
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relation over the set of alternatives, and then to use this
relation for determining nondominated alternatives as solutions
to the problem.

Many approaches assume fuzzy coefficients to be some spe-
cific numbers., For instance, Dubois and Prade (1980) use the
so-called L - R representation of fuzzy numbers, and Tanaka
and Asai (1984a) and Tanaka, Ichihashi and Asai (1984) use
fuzzy numbers with triangular (pyramidal) membership functions.
The latter approach makes it also possible to obtain a fuzzy
or nonfuzzy optimal solution. It seems to be quite promising
as it has been successfully applied to designing agricultural
policies (Owsinski, Zadrozny and Kacprzyk s paper later in this
volume). Some more information on approaches to using some spe-
cific representations of fuzzy coefficient numbers can be found
in Stowiniski”s paper later in this volume.

3.2, Fuzzy integer and 0-1 programming

Although mathematical programming problems in which deci-
sion variables are required to take on discrete values, inte-
ger or 0-1, as opposed to real values in the previous problems,
are of utmost importance in many fields, e.g., in all opera-
tions - research - and management-related ones, not much work
has been done on fuzzification of those models., We will sketch
below some attempts.

3.2.1, Fuzzy integer programming
Almost all of the progress in the field is due to Fabian
and Stoica (1984). They start from the conventional nonfuzzy

integer program

f(x}) - max

X
subject to:
g(x) € 0 (40)
X = (X1""'Xn)‘ X, 2 0, X; - integer

where f(x and g(x) are real-valued functions, This prob-
lem (40) is now fuzzified as follows:

—~—
f{x) - max

X
subject to:
g(x) g o0 (41)
. Pt
xi > 0, xi - integer
—~ *
to be read as: find a "possibly maximal" (max) solution x

which satisfies the constraints to a "possibly high" degree,
and whose components, xi‘s, are "almost" integers. Let us no-
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tice that the last requirement does not force the solutions to
be exactly integers which may be a source of serious numerical
difficulties in conventional large integer programs.

Basically, by choosing appropriate fuzzy sets to represent
fuzziness in (40) concerning an approximate optimization, con-
straint satisfaction and integral values of the decision varia-
bles, an equivalent nonlinear mixed integer program is derived,
and a procedure for its solution is given.

The model has found application in some production schedu-
ling problems.

A solution technique for solving fuzzy integer programming
models with multiple criteria appeared in Ignizio and Daniels
(1983) .

3.2.2. Fuzzy 0-1 programming

Practically, the only works on fuzzy 0-1 programming are
those of Zimmermann and Pollatschek (1979, 1984)., They extend

Zimmermann s fuzzy linear programming model (cf. Section 3.1.1)
by adding the requirements xi€zo,1}, i.e.
n
iE1 el Xl\S Z
n
2
x,€{0,1} i=1,¢vu,n
Then, following in principle the line of reasoning (33) - (36),

a conventional (nonfuzzy) equivalent of (42) is derived., A
branch-and-bound procedure for its solution is developed.

3.3. Fuzzy dynamic programming

Dynamic programming is an effective approach to solving
a variety of optimization (decision making) problems of multi-
stage (dynamic) character. The first attempts at the fuzzifica-
tion of dynamic programming appeared very early (Chang, 1969;
Bellman and Zadeh, 1970). Their essence may. be best seen_by
using the following framework, Let: X =€x}={s1,...,sn} be

a state space, U=={u} ={c1,...,cm}'be a control space, the

temporal evolution of a dynamic system under control be des-

cribed by its state equation Xiq f(xt,ut), where Xeo
a1 € X are states at times t and t+1, respectively, and
u, € U 1is a control at time t. Xq € X 1is an initial state

and N 1is a fixed and specified termination time.

For simplicity, we assume that for each t = 0,1,...,N-1,
a fuzzy constraint pct(ut), and only for t =N a fuzzy goal

pGN(xN) are defined. The problem is to find an optimal sequ-
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* *
ence of controls uO,...,uN_1, such that

* *
uD(uO,...,uN_1le) = maxu pD(uO,...,uN_1|xO) =
Voreesrty—1
= max (pco(uo)A..eApCN—1(uN_1)ApGN(XN) (43)

UgressrlUy g

where, f(xt,ut), t=0,1,...,N=-1.

X
t+1
It is easy to see that this problem can be solved by dyna-
mic programming through the following set of recurrence equa-
tions

B on-i(Byoi) 7omax AR gy g (ug s lap N-1+1 Fnoie?)
G uy_, C G

(44)
X141 Flxygqruyg_y) i=1,...,N

This basic formulation can be considerably extended, main-
ly with respect to: (1) the type of termination time: implici-
ty given by entering a termination set of states, fuzzy, and
infinite, and (2) the type of system under control: stochastic
or fuzzy. For an excellent short review, see Esogbue and Bell-
man (1984), and for a detailed analysis - Kacprzyk (1983a).

Among numerous applications of fuzzy dynamic programming
we should mention those for: research and development control
(Esogbue, 1983), health care systems, clustering, water sy-
stems (for all, see Esogbue and Bellman, 1984}, and regional
development (Kacprzyk and Straszak, 1984).

4. REMARKS ON SOME RECENT KNOWLEDGE-BASED APPROACHES

Recently, some newer approaches to fuzzy optimization
have appeared. Basically, they try to further "soften" the
models presented in the previous sections by representing some
commonsense perceptions., In fuzzy multicriteria optimization
an optimal solution is sought that best satisfies, e.g., most
of the important objectives (Yager, 1983, Kacprzyk and Yager,
1984a, 1984b) as opposed to that satisfying all the objectives
in the conventional models. In the multistage case an optimal
sequence of controls is sought that best satisfies the goals
and contraints at, e.g., most of the earlier control stages
(Kacprzyk, 1983b; Kacprzyk and Yager, 1984a, 1984b). The ap-
proach may also be used in other problems, as, e.g., in group
decision making (see Kacprzyk (1985a) for a review). The above
approaches employ Zadeh”s (1983a, 1983b) representation of
commonsense knowledge equated with a collection of disposi-
tions (propositions with implicit linguistic quantifiers)
handled by using fuzzy logic.

The above may be seen as attempts to develop what might
be called knowledge-based optimization and mathematical pro-
gramming models as opposed to the data-based conventional
ones. This should eventually lead to an expert-system-based
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decision support for optimization which should greatly enhance
implementability of optimization tools and techniques in real
world problems.

5. CONCLUDING REMARKS

This paper is a brief introduction to fuzzy optimization
and mathematical programming and a survey of the main contribu-
tions in these fields. An interested reader, who has not yet
been exposed to the subject, will here find a body of basic
knowledge needed to be able to read both the following artic-
les in the volume and other literature. For other readers, the
paper can be a source of basic contributions in the field.
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1+ INTRODUCTION

In many decision making problems, the preference relations
in the set of alternatives are of a fuzzy nature, reflecting
the imprecision of experts’ estimates or uncertain aspects of
preferences.

The literature on non-fuzzy preference relations is rather
rich and deals with structures called complete or partial orders
and preorders, semiorders, interval orders, etc, These defini-
tions can be extended to the fuzzy case in different ways.

Sections 2 and 3 deal with the basic properties of binary
fuzzy relations using the min and max operators. Related a-cuts
and nested families of crisp relations are emphasized,

Section 4 investigates three different strict preference
concepts and determines the logical relationships between the
transitivity properties of these preference relations,

Sections 5 and 6 introduce different tools to solve the
ranking and choice problems: utility functions, domination
concepts, etc,

Section 7 presents a short survey on multiple criteria
decision making methods using fuzzy outranking relations.

2. SOME PROPERTIES FOR A BINARY FUZZY RELATION

We consider a binary fuzzy relation S in a finite set A,

77
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that is a mapping pg from A x A to [0,11; pgla,b)  will de-
note the image of the ordered pair (a,b) by this mapping. A bi-

nary fuzzy relation S is said to be:

reflextive if ps(a,a)=1, Va€A;

irreflexive if pS(a a)=0, Va€A;

symmetric if ps(a b) =p S(b a), Va, bEA

weakly antisymmetric if mln[ps(a b),ps(b a)](— Va,b€A, a#b;

weakly complete if max[ps(a,b),ps(b,a)])2,Va,bEA,a#b,

antisymmetric if min[ps(a,b),ps(b,a)]=0,Va,bEA,a#b;

complete if max[ps(a,b),ps(b,a)]=1,Va,b€A,a#b;

saturated if min[ps(a b),ps(b a)1>0,va,b€An,a#b;

transitive if ps(a c))mln[ps(a b),ps(b c)l, Vaéb

negatively transitive if (a c)(max[ps(a b),ps(b c)l, Va b

linear if ps(a b)>ps(b c)apS(a d),ps(b d),
VYa,b,c,d€n;

probabilistic if pS(a,b)+pS(b,a)=1,Va,b€A, a#b.

Some of these properties naturally follow from the equiva-
lent crisp relations if we adopt the following usual concepts,

S and T being two fuzzy relations on A:

ScT iff pgla,b) € ppla,b),va,ber;
PS”T(a,b) = min[ps(a,b),pT(a,b)];

pgyrlarp) = max{ps(a,b),pT(a,b)];
pS-T(a,b) = mix min[ps(a,c),pT(c,b)];
pS\T(a,b) = max[O,pS(a,b)—pT(a,b)];
pg-(a,b) = pg(b,a) : S~ is the converse relation of S;
K C(a,b) = 1—ps(a,b) : s€ is the complementary relation
of S;
d

n d(a,b) = 1—ps(b,a) : S is the dual relation of S.
S

For example, the crisp antisymmetry is defined as
sns” nof(a,), atb}= 0.

Dealing with a fuzzy relation, we obtain the definition presen-
ted here. It is also the case of transitivity and negative tran-
sitivity which, for a crisp relation, are defined as S,Sc S and
s€.s% < 5%, respectively.

On the other hand, the reader will easily verify the follow-
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ing proposition, generalizing the crisp situation.

Proposition 1. The dual relation of a reflexive (resp. irrefle-
xive, symmetric, weakly antisymmetric, weakly complete, anti-
symmetric, complete, saturated, transitive, negatively transi-
tive and probabilistic) relation is irreflexive (resp. reflex-
ive, symmetric, weakly complete, weakly antisymmetric, complete,
antisymmetric, non-saturated, negatively transitive, transitive
and probabilistic).

The previous properties are common and were used for in-
stance by Zadeh (1971) to define concepts like fuzzy orderings,
preorderings, partial orderings, weak orderings and linear or-
derings.

3, -CUTS OF A BINARY FUZZY RELATION AND NESTED FAMILIES OF
CRISP RELATIONS

» For each fuzzy relation S, a nested sequence of crisp re-
lations {Sa,a€(0,1]}, called a-cuts, can be defined as follows:

a Sb iff rgfa,b) 3 o .

A natural way of defining a property P of fuzzy relation
consists in asking that all its a-cuts have this property P.
As an exercise we leave the proof of the following proposition
to the reader.

Proposition 2. A fuzzy relation § 1is reflexive (respectively:
irreflexive, symmetric, antisymmetric, complete, transitive and
negatively transitive) iff every a-cut of S has the corres-
ponding crisp property.

Conversely, given a family F :{:S),)€(0,1]} of crisp re-
lations on A such that

S c 8 ,
2 )2

m1 > }2 -

we obtain a fuzzy relation S given by

ps(a,b) = mgx psa(a,b).

It is clear that the family of a-cuts of S coincides with the
initial family F. So,it is equivalent to study properties of
fuzzy relations and of nested families of crisp relations (for
a more complete and rigorous proof, see DOIGNON, MONJARDET,
ROUBENS and VINCKE, submitted).

Now, giving a fuzzy relation S, it may be interesting to
determine the crisp relation which is, in some sense, the near-
est to 5. Using the Hamming distance, we have:

Proposition 3. Given a fuzzy relation S on A, the 0.5-cut of
S minimizes
d(s,T) = lng(a,b) - ppla,b) I’
a,b€A

among the set of all possible crisp relations T on A.
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Proof. d(S,T) will be minimum if pT(a,b)=1 when ps(a,b)>.5,
and uT(a,b)=O when ps(a,b)<.5.

4. FUZ2ZY PREFERENCES

Suppose that ps(a,b) represents the degree to which the
proposition "a is not worse than b" is true so that S may be
considered a fuzzy preference relation, It is reasonable to de-
fine fuzzy indifference I and fuzzy incomparability R as in the

crisp situation, i,.e.

I=s5ns",

R = (S u s,

that is
prla,b) = min[pg(a,b), nglb,all,
pR(a,b) = 1—max[ps(a,b),ps(b,a)].

Now, several possible expressions exist to define the
strict preference P. We give three of them here, The first one
is an extension of the crisp definition

that is
By {a,b) = min[ps(a,b), o d(a,b)].
1 S
The second one is from ORLOVSKY (1978) and consists in conside-
ring the so-called antisymmetrized relation of S given by

upz(a,b) = max[0, ngla,b) - ps(b,a)]

corresponding to the crisp definition P2 = S\s .
The third one is by OVCHINNIKOV (1981):

n.(a,b) if p (a,b) > n,(b,a),
by (a,b) = S s s
3 0 if ps(a,b) £ ps(b,a).
The last definition is also obtained in considering the nested
. . d
family of crisp preferences{.sa n Sa’ a € (0,1]}, where Sa
are the oa-cuts of S.

The following proposition summarizes the main properties
of all these fuzzy relations.
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Proposition 4. We have:

(1) S reflexive » I reflexive, R, P P P_ irreflex-

17 72 73
ive;
(ii) I and R are symmetric;
(ii1) S antisymmetric or complete - P1 antisymmetric;
(iv) S weakly antisymmetric or weakly complete - P

1
weakly antisymmetric;

(v) P2 and P3 are antisymmetric;

(vi) S=P,I iff ps(a,b)+ps(b,a)<1,f'a,b;
(vii)  s%-P. iff ng(a,b)+ng(b,a)>1, Ta,b;
(viii) S=P,=P., iff S is antisymmetric;

(ix) S ciis; - P1:P2:P3;

(x) S transitive -+ I transitive;

(xi) Sd transitive {(i.e. S negatively transitive) - R
transitive;

(xii) S and Sd transitive - P1 transitive;

(xiii) S or Sd transitive - P2 transitive;

(xiv) P1 transitive - P2 transitive;

(xv) S transitive - P3 transitive;

(xvi) S transitive # P1 transitive;

(xvii) P1 transitive 5 P2 or S transitive;

(xviii) P2 transitive 4 P1 or P3 or § transitive;

(xix) P3 transitive s P1 or P, or S transitive,

2
Proofs, (1) to (ix) are easy:;

(x) to(xii) result from I=SNS , R = Sdﬂ(sd)_ and P d

.= SNS™ and

from the fact that the intersection of two transitive rela-
tions is also transitive; given two transitive relations S
and T, we have

psnT(a,c) = min[ps(a,c), pT(a,c)]

v

min[min[ps(a,b),ps(b,c)],min[pT(a,b),pT(b,c)]yb

min[min[ps(a,b),pT(a,b)],min[ps(b,c),pT(b,c)]yb
= min[psnT(a,b) (b,c) 1,vb.

(xiii) see ORLOVSKY (1978}

'Pgnp

(xiv) results from (xiii) and from the fact that for each a,b:
Ps(alb) - lls(b,a) = PP1 (a,b) - IJP1 (b,a);

indeed, if ps(a,b) IS 1—ps(b,a), then ps(b,a) < 1-ps(a,b)
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so that uP1(a,b) = us(a,b) and uP1(b,a) = ps(b,a); if
us(a,b)>1—us(b,a), then ps(b,a)>1—us(a,b) so that

upl(a,b) = 1-ps(b,a) and pp](b,a) = 1—ps(a,b)
(xv) see OVCHINNIKOV (1981).

(xvi) consider ps(a,b)=.7, ps(b,a):,7, ps(b,c)=.7, PS(C,b)=-7,
pgla,c)=1 and pglc,a)=.8

(xvii) consider ps(a,b)=.8, ps(b,a)=.5, ps(b,c)=.8, ps(c,b)=.3,
us(a,c)=.6 and ps(c,a)=.2

(xviii) consider us(a,b)=.4, us(b,a)=.2, pS(b,c)=06, ps(c,b)=.4,
ps(a,c)=.3 and ps(c,a)=0

(xiv) consider us(a,b):.z, ps(b,a)=0, ps(b,c)=a7, ps(c,b):.S,
pS(a,c)=.5 and ps(c,a)=.4.

5. THE RANKING PROBLEM

Many decision problems in which preferences between alter-
natives from a given set are described by a single preference,
consist in providing a ranking of the alternatives from the best
to the worse,

The most usual tool used to solve the ranking problem is
provided by the definition of a utility function g which is a
real-valued function calculated for all the alternatives of the
set A due to, e.g.,

91(6) = MAX n(a,b)
beA

gz(a) = I pla,b)
bea

gsla) = = [nia,b)-pib,a)]
bea

where p is considered as Hg or Hg.
The ranking is obviously obtained by the rule:
a is better than b (a>b) iff g(a)>g(b).
The definition of 9qs where p(a,b) = pp(a,b), is linked

to the concept of dominance which was introduced by ZADEH (1971)
in the context of fuzzy partial orders (reflexive, antisymmetric
and transitive fuzzy relations) and was also studied by BLIN
(1974), DUBOIS and PRADE (1980), ORLOVSKY {1978), SISKOS et al.
(1984) , TAKEDA and NISHIDA (1980}, etc.

The non-domination degree n, _(a) - see ZADEH (1971) and
ORLOVSKY (1978) - and the non-dominance degree uNd(a) for an

alternative a in A are respectively defined as:
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Hon{(a) = 1 - MAX p, (b,a)

ND bea P2

py.f{a) =1 - MAX p, (a,b) = 1-g,(a)
Nd bEA P2 1

The real valued function g 1is then provided by ) (or
1—de) and the alternatives can be ranked according to the de-
creasing values of Hyp ©F the increasing values of Pya*

One can also obtain a crisp partial preorder S on set A

according to the following rules:

a P b iff pND(a) > (b),

HnD
a I b iff pypla) = pND(b),

a P n iff pg.fa) < pq(b),
al b iff de(a) = de(b).

The preference structure (P,I,R), where S = PUI, corres-
ponds to

s = (pTurth) n (pTUIT)

with: aPb iff a P' b and a P~ b,

or apP'bandar b,
P b and a I" b,

+ -

aIb iff a I b and a I b,

or

[

aRb otherwise,
S is obviously reflexive and transitive,
The function 9, is used by KACPRZYK (1985) in the probabi-

listic situation with P=P, and is called "strength of (strict)

preference"”, ?

The function 93 is called the score when p(a,b) = us(a,b)
and will be used in section 6.

Another possibility is to find the ranking (complete order)
which is "the nearest" to the fuzzy preference relation. This
implies the choice of a distance which is as subjective as the
choice of g in the previous method,

Some more sophisticated methods have been proposed like the
"distillation algorithm" of ROY in ELECTRE III (1978).

In any case, there is a lack of theoretical basis allowing

the comparison of the results of these different approaches and
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an axiomatic justification of a choice. However, let us mention
some works which could be useful in this respect,

HASHIMOTO (1983) and ZADEH (1971) have extended to the
fuzzy situation the well-known SZPILRAJN’s theorem allowing one
to complete a partial order to obtain a complete order. The re-
sulting fuzzy relation implicitly contains a natural complete
order given by

a better than b iff p(a,b) > 0.

Some results on the numerical representation of a fuzzy
relation can also be useful in this context, as for example:

Proposition 5, The necessary and sufficient condition for the
existence of a real-function g such that, Va, b€a

ugla,b) > 0 ~» gfa) 2 g(b) + pgla,b)
is that the valued graph (A,S ) does not contain any circuit of
positive value.

This proposition is a immediate consequence of theorem
VIII.1 of ROY (1969).

In the probabilistic situation where ps(a,b)+ps(b,a)=1, for
all a#b, and ps(a,a) = %, for all a, FISHBURN (1973) introduced
some stochastic transitivity conditions. One of these conditions
is called "strong stochastic transitivity", briefly SST, and
corresponds to:

MIN[pS(a,b),pS(b,cﬂg % - ps(a,c)iMAX[pS(a,b),ps(b,c)],

Va,b,c€A,

Due to the probabilistic situation, transitivity and nega-
tive transitivity are equivalent and

S probabilistic and transitive -
MIN[uS(a,b),ps(b,c)]gps(a,c)gMAX[pS(a,b),ps(b,c)],Va,b,CEA.

We then have

Proposition 6. There holds:

(i) = S probabilistic and transitive - SST
{(ii) = S probabilistic and SST # S transitive.

Proof, If S is probabilistic, transitive and MIN[pS(a,b),pS(b,c)]
1 1
23 5 ¢ ugla,c) = MAX[pg(a,c), pglb,c)l

In order to prove this, suppose that ps(a,c)<MAX[pS(a,b),
ps(b,c)] with us(a,b) 2 ps(b,c) (the proof is still valid in
the complementary situation), We thus obtain % < ps(a,c) <

< ps(a,b). Transitivity implies that ps(a,b) < MAX[uS(a,c),
1 1 .
ps(c,b)]. ps(b,c) 2 7 ps(c,b) <3 and ps(a,b) < ps(a,c) which
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is impossible.

As pointed out by ROBERTS (1979), SST is related to some
functional representations. The interested reader will find in
ROUBENS and VINCKE (1984) characterizations of fuzzy relations
leading to a representation by real intervals for the probabi-
listic case, Generalizations of these results and applications
to other fields than preference modelling are presented in
DOIGNON, MONJARDET, ROUBENS and VINCKE (submitted).

6., THE CHOICE PROBLEM

In this section we consider decision problems for which
we wa