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PREFACE
The workshop on Model-Orisnted Data Analysis was organized by t.he Int.erna­

tional Instit.ut.e for Applied Syst.ems Analysis and t.he Karl Weierst.rass Instit.ut.e for
Mat.hematics of t.he Academy of Sciences of t.he GDR.

The main t.opics were

Optimal experiment.al design

Regression analysis

Model t.est.ing and applications.

Under t.he t.opic Optimal e:z;perimental design new optimalit.y crit.eria based
on asympt.otic properties of relevant. st.atistics were discussed. The use of addi­
tional rest.rictions on t.he designs was also discussed, inadequat.e and nonlinear
models were considered and Bayesian approaches to t.he design problem in t.he non­
linear case were a focal point. of t.he special session. It. was emphasized t.hat.
experiment.al design is a field of much current. int.erest..

During t.he sessions devot.ed to Rsgression analysis it. became clear t.hat.
t.here is an essential progress in statistics for nonlinear models. Here, besides t.he
asymptotic behavior of several est.imat.ors t.he non-asympt.ot.ic properties of some
int.eresting statistics were discussed. The dist.ribution of t.he maximum-likelihood
(ML) estimat.or in normal models and alternat.ive estimat.ors t.o t.he least.-squares or
ML estimat.ors were discussed int.ensively.

Several approaches to resampling were considered in connection wit.h linear,
nonlinear and semiparamet.ric models. Some new results were report.ed concerning
simulat.ed likelihoods which provide a powerful t.ool for statistics in several t.ypes
of models. The advantages and problems of bootst.rapping, jackknifing and relat.ed
met.hods were considered in a number of papers.

Under t.he t.opic of Model testing and applica.tions t.he papers covered a
broad spect.rum of problems. Met.hods for t.he det.ect.ion of out.liers and t.he conse­
quences of t.ransformations of data were discussed. Furt.hermore, robust. regres­
sion met.hods, empirical Bayesian approaches and t.he st.abilit.y of estimat.ors were
considered, toget.her wit.h numerical problems in dat.a analysis and t.he use of com­
put.er packages.

From our point. of view t.he t.opics in t.he workshop are of broad int.erest. in sta­
tistical data analysis. Some of t.he papers have more a survey charact.er, ot.hers
are direct.ed to original results on special problems. We believe t.hat. t.hese
proceedings will give stimulating hints for st.atisticians and dat.a analyst.s bot.h in
t.heoretical and in practical aspect.s.

We would like to t.hank t.he members of t.he Program Commit.t.ee: O. Bunke, GDR;
J. Dupa60vl!1, Czechoslovakia; F. Pukelsheim, Federal Republic of Germany; and
H.P. Wynn, UK, for t.heir const.ructive cooperation in t.he time before and during
t.he workshop. It. is difficult t.o overestimat.e t.he cont.ribution of t.he organizing
commit.t.ee, led by Ms. E. Herbst.. IIASA, and Dr. F. Auert., GDR, t.o t.he success of t.he
workshop.

July, 1967
V. V. Fedorov

H. Laut.er
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OPTIMAL EXPERIMENTAL DESIGN





AN APPROACH TO EXPERIMENTAL DESIGN FOR GENERALIZED LINEAR MODELS

Kathryn Chaloner
School of Stat 1st ics
University Of Minnesota
St. Paul MN 55108, U.S.A.

I. INTRODUCTION

A detailed discussion of a Bayesian approach to design for nonlinear prOblems Is
given In Chaloner and Larntz (1986). In that paper a theory of Bayes Ian des ign for
concave criteria Is discussed and then applied to a logistic regression model. This
model is an example of a generalized linear model as defined by McCullagh and Neider
(1983). Generalized linear models are a large class of mOdels which include many
important special cases. In this paper we describe how this approach to design can be
implemented in any generalized linear model and look at a logistic regression example.

In linear design problems the Bayesian approach is similar to the non-Bayesian
approach (see e.g. Fedorov 1981, Pi Iz 1983, or Chaloner 198<1). In problems other than
I inear problems, however, the Bayesian approach can yield very different designs.

2. GE NERAL IZED LINEAR MODELS

In a general ized linear mode I independent measurements, y1'" "Yn' are taken. The

distribution of the y's depends on unknown parameters. The density of an observation y
Is of the following form:

p(y;>..,'r) = exp{[ a(y) >.. - b(>..) l! c(t') + d(y.t')} (1)

for some>.. and t' and for some funct ions a, b, c and d. If t' is known the distribut Ion
Is in the exponential family and has natural parameter >... If t' is unknown this
distr ibut ion is generally not a member of the exponent lal f am Ily.

The first two moments of a(y) are:

E(a(y)I>..,t') = Jl = b'(>") and var(a(y)I>..,t') = b"(>") c(t'),

where primes denote differentiation with respect to >...
In a generalized linear model the mean of a(y), Jl. dependS on k explanatory

variables, possibly inclUding a constant term. The values of the k explanatory

variables. for the ith observation. are denoted by ~i = (xi1.xi2 .....xik)T. We suppose

that the values of x can be chOsen f rom a set X wh ich is a compact subset of
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k-dimensional Euclidean space. The distribution of y is related to these explanatory
variables through the link function g. This function Is a monotone function of ~ and is

I inear in 2S.. For an observat ion y at 2S. we have g(~) = ~T Jl .
This class of models. described In McCullagh and NeIder (1983), includes many

frequently encountered models. Special cases include linear. logistic and probit
regression models. Linear models are given when y has a normal distribution and the
link function Is the Identity, that is g(~) =~. Logistic regression models are given
when y has a Binomial distribution. a(y) Is the proportion of ·successes·, ~ Is the
probability of success and the link function is g(~) = 10g(~/(1-~».

3. BAYESIAN OPTIMAL DESIGN

Suppose our interest is in the est imat ion of the set of parameters JlT=(Jlj ..... Jlk),

or functions of these parameters. and 'I: Is a nuisance parameter. We can choose n
values of the explanatory variable ?5. at which to observe independent measurements
y j ........yn. Suppose that the values of 2S.1 must be chosen from some compact set X. To

chOose the values of the design points we treat the problem as a decision problem and
choose the points to maxi mIze our expected ut IIity. Exact calculat Ions are usually
difficult to implement so we use an asymptotic approximation to our expected utility
as our criterion to be optimized. The approximation is based on the approximate
normality of the posterior distribution. as described, for example, In Berger (1985)
page 22"1. We denote the fUll set of parameters as 6 = (Jl,'I:)T. If the density for an
observation YI at .lS.i is P(Yi;6,KI) then the (r.s) entry of the expected Fisher

informat Ion matrix Is:

n

Irs (6.2S.j""2S.n) = - E 2: ~ log P(Yi;6.2S.j) .
i= j S6rS6s

The expectation is over the sampling distribution of y given 6.
In design problems a common approach is to solve the approximate design problem

of chOosing a prObability measure on X rather than n particular points. Such an
optimal design measure can be rounded systematically to give n design points. Under
the approach of thinking of a design as a measure Tl on X, the expression (3) can be
written as:

Irs(6, Tl) = - E n J s2. log p(y;6,K) Tl (dK) .

S6rS6s

The posterior distribution of 6 is approximately normal with variance covariance
matrix H6, Tl)-j.
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Note also that If the model Is linear in the natural parameters A, and the scale
parameter t' Is known, then the expected Fisher information matrix is also the actual
value of the second derivative of the log likelihood. Both linear and logistic
regression models correspond to this ·canonical" I Ink funct ion.

3.J The Information matrix for a generalized linear model

The information matrix for a generalized linear model has a special form because
of the form of the density (I). If the scale parameter t' is known then e = $ and the
(r,s) entry of the k by k information matrix for a design taking observations at

~1''''''~ is given by:

n

I (var(a(Yi) I~i' A, t' r 1 ~ 2 xir xis .
i= I dUl

(5)

where Ul = g(Jj). This expression is der ived. for example, in McCullagh and Neider
J983. page 33. The structure was also used in Zacks (1977) without the scale
parameter t'. Note that the dependence on t' is only through a multiplicative factor
from the var lance of aCyL

If the scale parameter t' is unknown then the Informat ion matrix He,1"() is (k+ I)
by (k+1) with entries corresponding to differentiation with respect to t'. The expected
information matrix matrix Is block diagonal. with the off diagonal entries for
differentiation with respect to $1 and t' being zero. The inverse information matrix is

therefore also block diagonal. The approximate posterior variance of $ is given by the
Inverse of the k by k matrix with entries given by (5). This matrix just depends on t'

through a mUltiplicative factor. We denote this matrix as 1$(e,1"(), and its inverse as

1$(e.1"()-I, Irrespective of whether t' is known or unknown.

We further simplify (5) by defining

w(~.$) = (b"( A(~T$) )r 1 iUJ. 2.

dUl

Then for a design measure, 1"(, using expressions (2) and (6) we can write

3.2 Criteria for design

(6)

(7)

We will use two criteria for design which correspond to two different utility
functions. The first criterion is to choose a measure 1"( on X that maximizes
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(8)

The expectation is over the prior distribution on e. The measure T[ is to be chosen
from the set H, the set of all probability measures on X. This criterion corresponds
toO-optimality in linear problems.

The second criterion is that of minimizing the approximate expected posterior
variance of the specific parameters of interest and corresponds to A-optimality in
linear problems. The design measure is chosen to maximize

(9)

The matrix B($) is a square symmetric matrix of weights representing what functions
of $ are to be estimated. If linear combinations of $ are of interest B($) is a matrix
of known weights. If nonl inear funct ions of $ are of interest then B($) dependS on $.
We call this criterion ~2-optimality and it corresponds to A-optimality in linear

problems. This criterion requires that the quantities to be estimated or predicted are
precisely specified and possibly weighted. We express this criterion as maximizing
the negative of the variance so that both ~1 and ~2 are criteria to be maximized.

Other criteria could also be used. Tsutakawa (1972.1980), L'auter (1972.1974),
Dubov (1977), Zacks (1977), Cook and Nachtsheim (1982) and Pronzato and Walter
(1985) use these and re lated cr iter ia.

3.3 The theoru of Baueslan design

The theory used in Chaloner and Larntz (1986) is for criteria which are concave on
H, the set of probability measures on X. In that paper we did not specifically consider
nuisance parameters, such as 't'. but their presence presents no addit ional dift icult ies.

If, for each e. the function log det 1$(9.T[) and the function -trB($)I$(9,T[)-1 are

concave functions on H. the set of prObability measures on X. then the functions ~1 and

~2 are therefore also concave functions on H jf the expectations exist and ~ Is well

defined. As we assume that x is compact there must exist a prObability measure in H
that maxi mizes the cr iter ion funct ion.

The concavity of the criterion function over H enables the equivalence theorem of
Whittle (1973) to be applied assuming certain regularity conditions are satisfied.
using this theorem a design is optimal if and only If its directional derivative in the
direction of all single point designs Is everywhere nonposltive. If a design Is optimal
then the roots of this derivative function are the support points of the optimal design
measure.

One advantage of haVing a concave criterion is that to verify a particular design Is
optimal we need only examine the derivative function in the direction of one point
designs and show that it is nonpositive over X.
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3.<:1 Design for generalized I jnear models

For a generalized linear model the information matrix is given by (7). Thus. if the
values of .8 were known the design problem would be equivalent to a linear problem. If
the approaCh were taken of des ign ing to be opt i rna I for a best guess of the unknown
parameters (as In Silvey. 1980, Chapter 6, or. Chernoff, 1953) we could apply the
methods of linear design. If the parameters are unknown and have a prior distribution
both ~/Tl) and ~2('Tl) are concave over H.

We may note that if our prior distribution is such that .8 and t' are independent
then we may replace the factor that depends on t' by its expected valUe. Thus if we
have this prior independence we may ignore the fact that t' is unknown in considering
optimal design. We may. therefore. take c(t') as identically equal to one in the
Subsequent discussion.

Because the information matrix takes the particular structure in (7) the
directional derivatives for a design 'Tl in the direction x take a similar form for any
generalized linear model. For ~l-optimality the directional derivative for a design 'Tl

in the direction x is

( 10)

Where the expectation is over the prior distribution on $ and k Is the dimension of x.
For ~2-oPtima1ity with a weight matrix B($) the directional derivative for a design 'Tl

in the direction x is

(11 )

The expectation is again over the prior distribution on $.

<:I. AN EXAMPLE

A logistic regression model corresponds to a binomial sampling distribution for y
and a loglt link function. Specifically for ni observations taken at Xi' the single

explanatory variable. the response Yi is binomial with nl trials and prObability of

success. a(Yi) = y/n i• and J.l = p(xl.e). There is no unknown scale parameter and $ =

($O.$I)T. The mean of a(Yi) is related to x by

For a design 'Tl the information matrix, 1(.8. 'Tl). Is
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where ~T = (LXI)'

In Chaloner and Larntz several examples of design for the loglst ic regression model
are given for a variety of criteria and prior distributions. We take just one prior
distribution here and describe the design in detail. We also compare the design to that
using a design which is optimal for a best guess of the parameter values.

The prior distribution is specified in terms of the slope $1 and the ratio 1f =

$01$1' This ratio, 1f. is the value of x at which the probability. p(1f.$). is one half.

We take $1 and 1f to be independent and both have a uniform distribution over an

interval. Specifically. $1 is uniform on [6.81 and 1)' is uniform on [-1.11. Numerical

methods of finding designs for particular criteria are given in Chaloner and Larntz.
The criterion and derivatives must be evaluated using numerical integration and the
designs found using numerical optimization methods.

~.1 -'tl-optimalitu

For ~ I-opt Imallty a design on seven points was found in Chaloner and Larntz The

design is displayed graphically as a prObability measure in Figure 1.

l1(x)

0.1

0.0 I I

-l.0 0.0

x

l.0

FIGURE 1 The ~1-optimal design. 'll.1'

The design space was taken to be that where the explanatory variable x lay in the
interval [-1.2.1.21. To verify that the design above is indeed close to optimal the
der ivat ive funct ion (l1) can be exam ined. A plot of the der ivat ive funct ion is given in
Figure 2 and the derivat ive does indeed appear to be nonposit ive everywhere. As the
derivative is nonpositive outside the interval [-1.2.1.21 the design cannot be improved
upon by enlarging the design space.

We examine this design further by comparing It to the locally optimal design
Which maximizes the determinant of the information matrix at the best guess of the
parameter values. A natural choice of best guess is the prior mean of 1)' and $1' that

Is 0 and 7 respectively. The locally optimal design is a two point design with half the
mass at .2205 and half at -.2205.
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-0.2

-0.4

-1. 0 0.0
x

1.0

FIGURE 2 The derivative function for the design. Ttl shOwn in figure 1.

To compare the two designs we can look at a plot of the value of 10g<letl($.Tt) for
the design measures. Figure 3 is a perspective plot of this surface for the ~ I-optimal

design with seven support points and Figure 4 is the corresponding plot for the locally
opt imal two point des ign. The surface is plotted over the support of the pr ior
distribution as a function of ~ and $1 and is on the same scale in the two figures.

We see, not surprisingly, that the locally optimal design is better than the
~ I-opt Imal des Ign at the pr ior mean of the parameters In the center of the region.

The locally optimal design is. however. extremely inefficient for values of ~ far from
the prior mean of zero. The value of the funct ion in Figure 3 ranges from -6.36 to
-3.81 and in Figure 4 from -14.9 to -2.99.

1.0

B.O
y=O.O

-1.0 6.0

FIGURE 3 The value of logdet 1($, Tt) for the ~ I-opt imal design. Ttl'
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y=o

FIGURE 4 The value of logdet 1($,1\) for the locally optimal design, 1\2'

To compare tMse designs numerically we can calculate the sample sizes required
to give the same efficiency under the ~1-oPtlmality criterion and the locally optimal

criterion. The locally optimal design, 1\2' gives a criterion value ~1(1\2) = -6.951

compared to an optimal value of ~1(1\I) = -4.578. For the locally optimal design to be

as efficient under the ~I-optimal criterion approximately 3.3 times as many

observations would be required. Conversely, at the prior mean for (1,$1) of (0,7) the

value of logdet 1($.1\1) is -4.036 and logdet 1($.1\2) is -2.993. So only 1.7 times as

many observations in the 1\1 design are required for 1\1 to be as efficient as 1\2 in

terms of local opt i mal ity.
Thus. the ~I-optimal design. 1\1' is Quite efficient In terms of local optimality

wheras the locally optimal design. 1\2' is very inefficient in terms of ~I-optjmality.

4.2 ~2-optimalltu

We now very briefly give an example of a ~2-optimal design for the same prior

distribut ion. For this criterion it is necessary to specify exactly what is to be

estimated. The example chosen here is that of estimating 1. The ~2-optimal design

found by Chaloner and Larntz Is displayed in Figure 5 and has 6 support points.
The locally optimal design that maximizes -tr B($) J($.1\r 1 for the prior mean

of the unknown parameters puts all mass at the single design point X=1f and is
therefore not of much practical use. A comparison with the locally O-optimal design.
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"l2' as described in the section 4.1. is made as this design is sometimes recommended

as a useful all purpose design.

n(x)

0.2

0.0

-1.0

I

0.0

x

1.0

FIGURE 5 The ~2-optimal design for estimating If. "l3'

The locally D-optimal design. "l2' gives a criterion value ~2("l2) = -83.035

compared to an optimal value of ~2("l3) = -.356. This striking contrast is due to the

gross inefficiency of "l2 for If close to -lor +) and $1 close to 8. For the locally

optimal design to be as efficient under the ~2-optimal criterion approximately 255

times as many observations would be required. Conversely. at the prior mean for
(If.$I) of (0.7) the value of tr BUI) 1($."l3)-1 is .326 and tr B($) J($."l2)-1 is .141.

So only just over twice as many observations in the "l3 design are required for "l3 to

be as efficient as "l2 In terms of local optImality.
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MINIMUM BIAS ESTIMATION - DESIGNS AND DECISIONS

Norman R. Draper and Elizabeth R. Sanders
University of Wisconsin-Madison. U.S.A.

1. INTRODUCTION

Response surface analysis concerns the empirical investigation of an un­
known functional relationship. n = n(x l .x2••••• xk). between a response vari-

able nand k coded predictor variables ~' = (xl.x2••••• xk).

The function n is. typically. approximated over some region of interest
R by a low order polynomial

(1.1)

where the Pl x 1 vector ~l contains terms needed to produce a polynomial of

degree dl ; ~l is the corresponding Pl x 1 vector of parameters to be esti­

mated. R is contained in an operability region O. a region in the x-space

in which experimental runs can be performed. (It could happen that R = O.
as is typically assumed when the criterion of D-optimality is involved.)
The standard approach is then to assume that ~u = ~iu~l + EU' where

u = l.2 ••••• N denotes the observations available. where Yu is the observed

value of n at the conditions that give rise to the vector ~iu' and where

E = (E p E2••••• EN)' , N(O.lo2). and then to estimate ~l by least squares.

If we define ~l as the N x Pl matrix whose uth row is ~iu and write

~ = (yl' y2•••• 'YN) I. then the least squares estimate of ~l is ~l =

(~i:l)-l:i~. and the vector of fitted values is y(x) = ~'~l.

There are two sources of error in such a procedure: sampling error E
in observing y and bias error due to the difference between the approximat­
ing polynomial and the true function. We shall assume that n(~) is a poly-

nomial of degree d2

(1. 2)
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where the P2 x 1 vector ~2 contains the remaining terms needed for the full

polynomial of degree d2 and ~2 is the corresponding P2 x 1 vector of para­

meters.
Let w(x) be a weight function over O. and n-1 = fa w(~)d~. Define ~11'

~12' and ~22 via

Woo = n fox 0 x'ow (x) dx (1. 3)
~'J ~'-J - -

where the integration is performed individually for each element of the
matrix. The ~ij are the moment matrices of the weight function w(~) over

the operability region. The design criterion to be first considered is
that of minimizing J. the integrated mean square error. defined as

(1. 4)

(1. 5)

This can be written as the sum of the integrated variance V. and the inte­
grated squared bias B. the latter arising from terms of order greater

than d1 omitted from y(~):

A 2 A 2 2
J Nn fa V{y(>:)} w(>:)d>:!cr + Nn fa {Ey(x) - n(x)} w(x)dx!cr

v + B.

For details. see Box and Draper (1959. 1963).
In various investigations seeking to minimize J in various experimental

circumstances. one fact always emerged. Unless a was restricted and not
much bigger than R. the bias contribution B played a much larger role (in
J) than did V. and so it was prudent in general circumstances to choose a
design slightly expanded from the all-bias design. The all-bias design was
the one that minimized the contribution B alone and it tended to "crouch"
somewhat within the region R and its points were not on the boundary.

This fact prompted Karson. Manson and Hader (1969) to suggest use of
minimum bias estimation. that is. to estimate ~1' not by least squares. but

by minimizing B. If the bias that arose from terms of orders (d1+1) •••••d2

were modest. running a full design of order d2 could be a waste of re­

sources. By fitting a minimum bias order d1 model. one might be able to

protect against bias while using fewer runs than required by a higher order
design. and yet obtain a satisfactory fit. As shown by Karson. Manson and
Hader (1969). the minimum bias estimator is given by

~m = (~1~11-1~12)~ = ~~. (1.6)

say. where ~ = (~,~)-1~,~ is the vector of estimates obtained by fitting

model (1.2) by least squares where ~ = (~1'~2) and ~2 is the matrix whose

uth row is ~~u. the value of ~~ with the uth observation values substituted.
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The necessary and sufficient condition for obtaining a minimum bias esti­
ma tor is tha t

~ -1
E( ~m) = (~1~1l ~12) ~ = ~~'

The minimum value of B is then

(1.7)

(1. 8)

We see. from equation (1.6). that to get the minimum bias estimator of
order dl • we need to combine least squares estimators of order ~ dl with

those of orders (d l +l) ••••• d2•

and Hader (1969). we do not need
the coefficients of order> dl •

However. as pointed out by Karson. Manson

to be able to estimate individually all
Among questions we might ask are:

1. What designs. as far as seems possible. provide only those combina­
tions of estimated coefficients that are needed. for the cases (d l .d2) =
(1.2) and (2.3).

2. For a given set of data. which method of estimation should we use?
(a) Least squares of order dl ; (b) minimum bias of order dl ; least squares
of order d2?

Aspects of minimum bias estimation that will not concern us here. will
be found in Cote. Manson and Hader (1973). Ellerton and Tsai (1978). Karson
(1970). Karson and Spruill (1975). Khuri and Cornell (1977). Liu and Karson
(1980). Ott and Cornell (1974). and Thompson (1973). For related work see
Evans and Manson (1978).

2. DESIGNS

The questions asked above can be tackled at various level s of gener­
ality. Here we discuss the case where R is spherical and of unit radius in
the coded space. and where W(x) = 1 over R and is otherwise zero; this im-

plies a uniform interest within R and none outside R. We summarize some of
the results given by Draper and Sanders (1987).

2.1. Case dl = 1. d2 = 2.

First order designs are used to fit a k-dimensional hyperplane
y = 8

0
+ 81xl + + 8kxk + E to the response variable. Use of the mini-

mum bias hyperplane estimator minimizes the bias B arising from neglected

2 2second order terms 811xl + ••• + 8kkxk + 812xl x2 + ••• + 8k.k-lxkxk-l.

The only non-zero region moments of orders < 4 are

1J 2 = n J xid~ (k+2)-1 and

31J4 n 4 3n J x~x~dx = 3{(k+2)(k+4)}-I. (2.1)J x· dx =, - , J -
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A A

Evaluation of (1.7) shows that 8lm ••••• 8 km are all unbiased but that

(2.2)

where the summation is from i = l ••••• k. Note that only the sum of the
pure quadratic components occurs in (2.2) and not the individlUlr 8 •. 's.

11

It is not necessary to fit the full second order model to the data to ob­
ta in (1. 6).

Consider a 2k factorial design (+a.+a ••••• +a) or a 2k- p fractional
factorial design of resolution ~ 5. possibly replicated. with a total of nf
points. plus no center points. Let y(=80) be the overall average response

and let Yf and Yo denote the average responses at the factorial points and

center points respectively.

E(y) = 8 + (n
f
a2/N) L8 ••o 11

(- - ) 2E Yf-Yo = a L8ii •

Then

(2.3)

(2.4)

Thus. if there are no center points. so that Y =Yf and nf = N. (2.2) is

satisfied by taking a2 = ~2 and 80m = 80, the least squares estimator.

This is a special case of the general fact pointed out by Karson. Manson
and Hader (1969. PP. 465. 466) that designs which satisfy the condition

-1 I -1
(XiXl) Xl X2 Wl1W12 (2.5)

always achieve a minimum for B using the least squares estimator. However.
we cannot estima te LBi i separa te 1yin thi s ca se.

With no > 0 center points. we use

with

(2.6)

B (2.7)

to achieve minimum bias. Note that we have spent our additional runs wise­
ly. obtaining an estimate of L8ii via (2.4). Moreover we see that the

minimum bias estimator sensibly combines Y. a biased estimator of 80 with

Yf-Yo' an estimator which provides information on how large that bias may

be. This is a recurring feature of the minimum bias estimator. By choice
of design we can. in general. decide how much detail in the bias we wish
to estimate.

Having achieved minimum B we can now (if no > 0) choose the values of a
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and no/n to minimize V which. for the present case. reduces to

2 2Vm = 1 + k~2/~2 + (~2-~2) /(.4-~2) (2.8)

where ~2 amd .4 are the second and fourth order design moments given by N~2

L:uXiu' N.4 = L:UX~u' The conclusions are that. if we restrict the design to

the unit sphere. and if we use one factorial replication. the best design
values of a and no are as given below. All the non-central points lie on

the unit sphere R.

k
a
no

1 2
1 0.70
2 2

3
0.57

2

4
0.50

3

5
0.44

2

6
0.40

4

7
0.37

3

8
0.35

5

2.2 Case d1 = 2. d2 = 3.

Second order designs are used to fit a k-dimensional quadratic surface
to the response variable. Use of the minimum bias estimator would reduce

third order terms. L:iSiiixi +

The only non-zero region moments of

the bias B arising from neglected

2
L:iL:jSijjXiXj + L:iL:jL:~Sij~Xixl~'

order < 6 are those in (2.1) and
6 2 4

15~6 = n J xidx = 5 n J x.x.dx
- 1 J -

15{{k+2){k+4){k+6)}-1.

22215 n J x.x.xndX
1 J '- -

(2.9)
A

Evaluation of (1.7) shows that Som' and all Sijm are unbiased but that

(2.10)

where the summation is from j = 1••••• k. Note that it is not necessary to
estimate individual third order s's to get (1.6).

We assume use of a response surface design for which
q

N.q' for q 4. 6.l:uXiu

N~2' for q 2. (2.11)

and we write

L: x~ x~ = N. (2.12)u JU JU pq

for p = q = 2 and for p = 4. q = 2. All odd design moments up to and in­
cluding order six are assumed to be zero. It follows that. if the third
order model is true. the least squares estimators for the coefficients of a

second order model are unbiased except for 8i for which
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(2.13)

Now let c3i be the contrast obtained by taking the {xi} column vector.

orthogonalizing it with respect to {xi} to give a vector xiii say. and then
computing the normalized form

(e.g •• see Box and Draper. 1987. pp. 454-458. 472-474). It can be shown

3
tha t ~i i i = {xi} - (4)4/ >"2){x1} and

4>42 - 4>44>22/ >"2
E(c3i ) = 8iii + 2 E8ijj • (2.15)

4>6 - 4>4/ >"2

For a standard composite design. this reduces to Eq. (13.8.14) of Box and
Draper (1987. p. 458).

Note that. if the design is rotatable. 4>4 = 34>22 3>"4' say. and if we

also choose ~4/~2 = >"4/>"2' then (2.10) is satisfied by the least squares

estimator (2.13). Once again. this is the special case of designs that
satisfy (2.5). Otherwise. we set

8im 8i + BC3i

where. to satisfy (2.10).

(2.16)

(2.17)

These equations provide a condition on the design moments and a value for
B. For example. for a complete factorial design. nc points at locations

(,:a.,:a •••••,:a) plus star (,:aa.O ••••• 0) ••••• (0.0 •••••.!.aa) plus no center

points. in k dimensions. (2.17) leads to the design condition (for a spher­
i ca 1 region)

a2 ~4( a2+2)/(3~2a2)

(i+2)/{(k+4)i}

whereupon

(2.18)
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3 i+2 nc + 20
4

B=~ {3-- }
302 n + 202

c

This result was obtained by Manson in unpublished lecture notes via the

application of the condition W(X'X)-X'X = W. See Karson, Manson and
Hader (1969, p. 465). - - - - - -

If we wish to estimate 8.•. and l:8,. 'J' in (2.15) separately, additional
", J

data points are needed. For example, we can add a second, non-replicated
set of axial points, as detailed by Draper and Sanders (1987); see that
paper also for other design suggestions.

3. DECISIONS ON MODELS

3.1. Lower order least squares versus lower order minimum bias

Whenever the integrated mean square error of the lower order (d1) mini­

mum bias estimator is less than that of the lower order (d1) least squares

estimator, the minimum bias estimator will be preferred to the least squares
estimator. This was discussed by Karson, Manson, and Hader (1969, pp. 468­
474) and generalized by Seheult (1978). We can write

(3.1)

-1 I -1 I

where q = ~11~12' ~ = (:1:1) (~1~2)' ~2 = ~2/(0/1N) is the vector of

standardized coefficients, and ~ = (~2~2-~2~1(~1~1)-1~1~2)-1. Thus if

(3.1) is positive, minimum bias estimation is preferred, while if it is
negative, least squares estimation is preferred.

3.2. Lower order minimum bias versus higher order least squares

For larger biases, fitting a lower order approximation of any kind to
the response surface is inadequate. When is ~2 large enough to require the

fitting of a higher order polynomial? We can argue that there is too much
bias present in either lower order fit when we would reject, at a specified
level of significance, 0, the null hypothesis

versus (3.2)

where ~'~ = !'~~~q~. The estimator T = ~ 'q~2 follows the multivariate

normal distribution with mean vector ~'q~2 and variance-covariance matrix

l'QMQ'li/N; see Searle (1982, p. 190). The variance 0
2 is estimated via

the residual mean square error obtained from the analysis of variance table
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used in fitting the coefficients needed to estimate ~m' From this infor­

mation. the null distribution of ~I~ can be derived and used to test the

hypothesis in equation (3.2). In general. the deci sion rule will be to re­
ject the null hypothesis whenever

(3.3)

where v is the degrees of freedom for the residual mean square error and
FO. v. a) is the upper a poi nt of an F di stri buti on with 1 and v degrees
of freedom. We would choose to graduate the response surface with the
higher order least squares estimation whenever equation (3.3) is satisfied.

3.3 General procedure

Combining the two results above suggests use of:

(a) lower order least squares estimation if (3.1) < o.
(b) lower order minimum bias estimation if (3.1) >-0 and (3.2)

is not rejected
(c) higher order least squares estimation if (3.2) is rejected.

3.4 Application to rotatable designs. spherical R

For the special case of rotatable designs of order d1 set in spherical

regions of interest. it turns out that 9 = q1~ and ~ = q2~' where q1 is a

function of the region moments. q2 is a function of the design moments. and

Z is a matrix of constants specific to the order of the terms guarded

against. In the present case. ~'~ = !'~~2~2~'! and C
2 = ~'~~~'~. When

ZMZ' consists of diagonal blocks. with each block associated only with a set
A A

of correlated terms in ~2 (such as. for example. the set aUl' a122 •••••

;lkk)' our rule becomes: Use
A A 2

(a) lower order least squares estimation when !'! 2 C •

(b) lower order minimum bias when ~I~ > c2 and ~I~ < C2F(1.v.a).-- - --
(c) higher order least squares estimation when ~I; > C2F(1.v.a).

Note that the assumption of rotatability does not imply that (2.5) is
satisfied.

For some example data to which this method has been applied for d1 = 2.

d2 = 3. see Derringer (1969. p. 8); the same data appear in an exercise in

Box and Draper (1987. p. 266. 7.28).
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3.5 Comments

When the above test is applied. for example as in Section 3.4. some
practicalities become evident. For dl = 1. d2 = 2. for instance. the test

involves only one measure of curvature. Lbii • Any decision made is correct

as far as that measure is concerned. However. it would be possible for.
say. bll to be large and positive. and b22 to be large and negative. and

yet Lbii to be small. It would also be possible for one or more of the

bij • i * j. to be large. Thus the test for model type needs to be in­

telligently supplemented by other information on curvature. if any is
available. Usually. in first order designs. the interactions can be esti­
mated. either individually or in small groups. Often. information on in­
dividual bii is not readily available. However. typically. the bii are of

the same sign in practical cases; saddles tend to occur less frequently.
Similar difficulties could arise in a dl = 2. d2 = 3 situation where

the test involves combinations like (3biii+Ljbijj). Supplementary informa­

tion on other combinations of third order coefficients might then be
sought. See. for example. Box. Hunter and Hunter (1978. p. 523).

In summary. it must be remembered that the test recommended here ex­
amines only one facet of lack of fit. and must be used in conjunction with
other available lack of fit measures. The virtue of our suggested test
procedure. however. is that it enables consideration of minimum bias poly­
nomial estimators together with. and as alternatives to. the least squares
hierarchy of polynomial models.
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EXPERIMENTAL DESIGNS WITH RESTRICTED MEASURES

V. V. Fedorov
IIASA, A-2361 Laxenburg, Auslria

1. lNiRODUCTION
In lhis paper lhe numerical procedures of lhe "exchange" lype for conslruc­

lion of conlinuous oplimal designs wilh reslricled measures (see definilions in
Fedorov, 1966, Wynn, 1962) are mainly considered. The "exchange" lype pro­
cedures are based on lhe simple heuristic idea: al every subsequenl slep lo delele
''bad'' (less informative) poinls and lo include "good" (mosl informative) ones.

Before giving lhe malhematical formulation of lhe problem and lo illuminale
lhe place of lhe results in experimenlal practice, lel us slarl wilh lwo simple
hypolhelical examples.

Ezample 1. Lel X be an area where N observational slations have lo be
localed. An optimal (or al leasl, admissible) localion depends upon models describ­
ing a syslem: "objecl under analysis - observationallechniques".

The regression models:

(1)

are commonly used in experimenlal practice. Here V( is a result of an observation
of lhe i -lh slation, 11(Z,") is an a priori given function, " is a veelor of parame­
lers lo be estimaled and £( is an error which one believes lo be random (more
delailed specification will be given laler). The oplimal localion of slations has lo
provide lhe minimum of some measure of devialion of estimales .a from lrue values

of ".
For sufficiently large N lhe location of slalions can be approximalely

described by some dislribulion function t(dz) and one needs lo find an oplimal
f (dz). If X is nol uniform, lhen one comes lo lhe reslriction lhal lhe share
N(AX)I N of slations in any given parl AX cannol exceed some prescribed level. In
lerms of dislribulion functions, il means lhal

(2)

where '1' is defined by an experimenler. Here is lhe crucial fealure of lhe problem
considered in lhis paper.

Ezample 2. Lel some characlerislic V( be observed for members of a sample
of size N. Every i-lh member of lhis sample can be chosen from a group labelled
by variables z(. If lhe sampling is randomized, lhen lhe observed characleristic
V( can be described by some dislribution f (V I z( , ").

In many cases, after some manipulations, lhe inilial model can be reduced lo
(1), where 11(Z(,") is an average characleristic of an i-lh group and £( reflecls a
variation wilhin lhis group. The size of any group (or number of unils available
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for sampling) is normally bounded. When applied lo a continuous version of lhe
design problem one can easily repeal lhe considerations of lhe previous example
and come lo model (1), (2).

In whal follows, il will be assumed lhal in model (1), (2):

a response function is a linear funcllon of unknown paramelers, I.e.
1J(x,") =,,1'/ (x) , "ERm and funcllons / (x) are given;

errors £1. are uncorrelaled and E[e;J=1 (or E[e;J=X(x1.) ' where X(x) is
known, lhis case can be easily lransformed lo lhe previous one).

As usual, some objeclive function ~ defined on lhe space of m Xm informalion
malrices

M(~)=f /(x)/1'(x) Hdx)
X

will describe lhe qualily (or accuracy) of a design ~ (M -1(0 as a normalized
variance-covariance malrix of lhe leasl square eslimalors of paramelers ".

The purpose of optimum design of experimenls is lo find

(4)

(3)f Hdx)=1,
X

i'(dx)=Q~1

(=in/ ~[M (OJ ,
f

~(dx )Si'(dx) , J
X

Conslrainl (4) defines lhe peculiarily of lhe design problem wilh respecl lo
slandard approaches. Similar lo lhe momenl spaces lheory (compare wilh Krein
and Nudelman, 1973 Ch. VII), a solution of (3) and (4) will be called "(~ , i')-oplimal
design ". In practice, i'(dx) reslricls lhe number of observations in a given space
elemenl dx (see lhe examples).

Optimization problem (1) and (2) were considered by Wynn, 1982 and Gaivoron­
sky, 1985. To some exlenl, lhey lranslaled a number of classical resulls from
momenl spaces lheory lo experimenlal design language. Gaivoronsky also analyzed
lhe convergence of lhe ilerative procedure for oplimal design conslruclion based
on lhe lradilional idea of sleepesl descenl (see, for inslance, Ermakov (ed), 1983,
Wu and Wynn, 1976)

(5)

(6 )

~S+1=(1-as)~s+ds~s '

~s=Argmin~[(1-as)M as)+a M(~)J,
f

where ~ has lo satisfy (4) and some additional linear conslrainls:

f q(x)~(dx)sC .
X

Wynn briefly discussed a number of heuristic numerical procedures based on some
resulls from lhe momenl spaces lheory.

General properties of optimal designs are discussed in Section 2. Section 3
deals wilh lhe formulation and basic analysis of lhe ilerative procedure and ils
modifications. In Section 4, lhe possibilily of applying similar procedures lo lhe
slandard design problem is considered, while in Section 5 a comparatively simple
numerical example is presenled.



25

2. CHARACTERIZATION OF (~ , i')-OPTIMAL DESIGNS

In lhis section, lhe properlies of optimal designs will be discussed only lo lhe
exlenl sufficienl for lhe analysis of lhe proposed ileralive procedures. More
delails can be found in Wynn, 1982.

The sel of assumplions used laler is lhe following:
a) X is compacl • XER I ;

b) I (x) ER m. are conlinuous funclions in X ;

c) i'(x) is alomless;

d) lhere exisls c <00 such lhal

:::c (i') = It: ~[Ma)l ~ c < 00 .te::::(i') I ~ ¢ ,

where :::('1') is lhe sel of designs salisfying (4);

e) ~(M) is a convex funclion of M ;

f) t[(1-a)M(tl ) + aM (t2)] = t [Mal)] + a J <p (x,t l ) t 2 (dx)+o(a) ,
X

c') i'(x) has a conlinuous densily "/t(x) ;

f') derivalives :: = t exisl and are bounded for all designs salisfying (d).

Lel Z(i') lo be a sel of measures t which eilher coincide wilh 'I' or equallo O.

Theorem 1-. If assumptions (a) - (e) hold, then there exists an optimal
design ( e:Z ('1').

Pro01. The exislence of an optimal design follows from (d)-(e) and lhe com­
paclness of lhe s6l of information malrices. The compaclness of lhe laller is pro­
vided by (a) and (b). The facllhal alleasl one oplimal design has lo belong Z(i') is
lhe corollary of Liapounov's Theorem on lhe range of a veclor measure (see, for
inslance, Karlin and Sludden, 1966. Ch. VIII, Wynn. 1982).

Note 1-. Liapounov's Theorem leads lo anolher resull which can be useful in
applications: for any design t lhere is a design te:Z(i') such lhal M a) =M (t>.

A function <p(x .t) is said lo separale sels Xl and X2 if lhere is a conslanl C
such lhal <p(x,t),sC (a.e. '1') on Xl and <p(x,t)~C(a.e.'1') on X2 • (a.e. '1') means
"almosl everywhere wilh respecllo lhe measure '1'''.

Theorem Z. If assumptions (a)-(f) hold, then a necessary and suJ'j'icient
condition that (e::::(i') is (t, i')-optimal is that <p(x.() separates two sets:
X' =supp ( and X\X·.

This lheorem was firsl formulaled by Wynn. 1982. In Fedorov. 1986, a more
accurale proof was given which is more illuminalive for lhe formulalion and
analysis of lhe numerical procedures.

If inslead of (c), one uses (c '), lhen a necessary and sufficienl condil1on can
be formulaled in lhe form of lhe following inequality:

max <p (x. f),s min <p (x, f )
:r: EX· :r: eX\.X·

(7)
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If (0 is complemenled by (f'), lhen

rp (x,t> = 7 (x,t> - tr ~ (t) M(t) ,

where 6(x, t) = f T(x) ~ (t) f (x), and (7) can be converled lo

max 7 (x, f) s; min 7 (x •f)
:rEX· :rEX'X·

3. NUMERICAL PROCEDURE OJ' EXCHANGE TYPE

(8)

(9)

Theorem 2 gives a hinl on how lo conslrucl optimal designs numerically: if for
some given design t one can find a couple of sels:

Dc supp t and E c X \ supp t ,
J rp(x,t) i'(ax»J rp(x,t> i'(ax) ,
D E

J i' (ax) = J i' (dz)
D E

lhen il is hoped lhallhe design t wilh

supp t = supp t \ DUE

will be "beller" lhan t. The repetitions of lhis procedure can lead lo an optimal
design.

A number of algorilhms based on lhis idea can be easily invenled. In lhis
paper one of lhe simplesl algorithms is considered in detail and il is evidenl thal
lhorough consideration of olhers from lhis clusler is routine lechnique.

In whal follows, lhe fulfillmenl of (c') is assumed.

Algorithm. Lel

-lim 6s = 0 , lim L: 6s = 00 and lim L: 6; = Ie <00 •

s -.. s .... s =1 S"'· s
(10)

Step a. There is a design ts E::;:(i'). Two sels D s and E s wilh equal measures:

J jI (x) ax = J jI (x) ax = 6s
D. E.

and including, correspondingly, poinls:

x 1s = Argmax 6 (x,ts ) and x 2s = Argmin 6(x.ts ) . (11)
:rEXu :rEX.

where X1s =supp ts and X2s =X\Xts ' have lo be found.

Step b. The design ts +1 wilh lhe supporting sel

supp ts +1 = X 1(s +1) = X 1s \Ds UEs

is conslrucled.

Iterative procedure (10)-(12) is based on lhe approximation (6-+0):

J rp(x,t) jI(x) dz ~ rp(x.t> 6. XEQ , J jI (x) ax = 6,
Q Q

(12)
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The analysis of lhe ilerative procedure becomes simpler if

(g) for any design te:Z(i'):

1M WI ~ ~ >0 .

This assumption is nol very reslrictive. If, for inslance, 1/I(x)~q>0 and lhe
functions f (x) are linearly independenl on any open flnile measure subsel of X,
lhen (g) is valid.

For mosl oplimalily crileria, (g) leads lo lhe fulfillmenl of lhe following ine­
qualities:

at a2t
t :SKl < 00 -- :SK2 < 00, :SK3 <oo,

, aM a~ aM a~ aM a6

l:Sa , (J , 6 , 6 :S M ,

for any te: :::('1'). Olherwise (17) is supposed lo be included in (g).

Theorem 3. If assumptions (a), (b), (c'), (e)-(g) hold, then It3 1 converges
weakly:

lim
s -+-

(14)

Proof. The approach is slandard for optimization lheory (in lhe slatistical
lileralure see, for inslance, Wu and Wynn, 1978). Therefore, some elemenlary con­
siderations will be omilled.

Expanding (see (g) and (17» by a Taylor series in 6s gives:

t[M (ts+ l )] = t[M <ts )] + 6s [?'(x2s ,ts ) - 7(X 111: ,ts )] + 6:Ks ' (15)

where IKs I :S K 0 = K o(K1,x2,K3)' Due lo lhis inequalily and (10) lhe sequence
S2s = I~ Ks 6:1 converges. By definition:

s

and lherefore lhe sequence:

Sls =~ 6s [7(x2s,ts ) -7(xis,ts )]
s

monolonically decreases.

From (g) and (15):

K l ~ t[M(t2+1)] = t[M(to)] + Sis +S2s ~ t'"

leads lo lhe boundness of Sis'

Subsequently, lhe monolonicily of ISis 1provides ils convergence and lhe con­
vergence of It[M <ts )J1. Assume lhal

lim t [M<t s )] = t l ~ t'" + a,a > O. (16)
s --

Then, from Theorem 2 and assumptions (b), (c') il follows lhal

7(x 2s ,ts ) - 7(x ls ,ts ) :S b < 0

and

lim Sls :S b lim ~ 6s = -00

S --+- S --to_ S

lim t[M <ts )] :S -00 •

s --

(17)
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The conlradiction belween (16) and (17) proves lhe lheorem.

Note 1. In (10)-(12), lhere is some uncerlainly in lhe choice of D s and E s '

Somehow lhey have lo be localed around x Is and x 2s' When "/I(x) = consl (and one
arrives allhis case by lhe lransformation dx ="/I(x )dx), lhen x Is and x 2s could be
lhe "geomelrical" cenlers of D s and E s '

Note Z. The ilerative procedure can be more effective (especially in lhe firsl
sleps) if lhere is a possibilily lo easily find

D; = Arg max J 7(X'~s)"/I(x)dx
D.dl• D.

and

(18)

subjecllo

(19)

(20)

Note 3. When 6s is sufficiently small and

J /(x)/T(x)"/I(x)dx ~/(X1s)/T(X1s)6s '
D

J /(x)/(x)"/I(x)dx ~/(X2s)/T(X2s)6s
E

lhen lhe calculations can be simplified if one uses lhe following recursion formula
(see, for instance, Fedorov, 1972):

6 -1/T
(M ±6 // T)1 = (1+ M J ) M-1

1±6/™-1/

= (I+6M-1// T)M-1 + 0(62).

The modified version of lhe algorilhms, presenled in Nole 2, gives a hinl for
lhe conslruction of

Algorithm Z.

Step a. The same as (18) bul inslead of (19)

J "/I(x )dx = J "/I(x )dx
D. E.

(no conslrainls on lhe sizes of D s and E s !).

Step b. Coincides wilh slep b of algorilhm 1.

This algorilhm seems lo be ralher promising for changing lhe slruclure of an
inilial design ~o rapidly. bul allows some oscillation regimes, al leasl principally.
The aulhor failed lo prove ils convergence. Probably some combination of bolh
considered algorilhms (for instance, the majorization of (20) by some vanishing
sequence 6s ) could be useful.

Il musl be noted lhal lhe sequences 16s 1 defined by (10), for inslance,
16s =(s+m)-11 give lhe slow convergence of Itsl where t s = t[M(~s)] is close
enough lo t[M(f)]. Empirically, il was found lhal if 6s is reduced when t sH ~ t s
lhen lhe ilerative procedure converges fasler lhan for olher choices of 16s I.
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4. EXCHANGE ALGORITHM IN THE STANDARD DESIGN PROBLEM

The possibilily of using lhe algorilhms similar to (10)-(12) for design problem
(3) (wilhoul conslrainl (4» was somehow overlooked in lhe design lheory.

The simplesl analogue can be formulaled as follows:

step a. There is a design (s' Two poinls

x is = Arg max !p(x '(s) and x 2s = Arg min !p(x '(s) ,
:r a. :r EX

where Xs =supp X have lo be found.

step b.

(22)

where «x) is a design wilh one supporting poinl x .

The sequence Ic5s I can be chosen as in (10). The convergence of lhe algorilhm
can be proven similarly lo Theorem 3.

Il is worlhwhile noting lhal lhe convergence of procedures (21), (22), in lhe
discrele case (when c5s = KIN, where K is inleger and N is lhe lolal number of
observations) is questionable, because proof of Theorem 3 is essentially based on
lhe facllhal c5s -+ O.

5. EXAMPLE

Algorilhm (14)-(16) becomes particularly simple when y;(x) == consl (using lhe
appropriale lransformation of X' axes, any problem wilh lhe continuous y;(x) can
be lransformed lo lhis case and sels Ds and Es are elemenls of some regular grid
Gs ' Furlher simplification is possible when lhe dimension of X is small (say nol
more lhan 3). Then lhe grid Go can be chosen ralher dense al lhe very firsl slep
and one can execule compulations wilh 15 = y;(x)li, c5s == 15, Gs == Go' where Ii is a
volume of one elemenl of Go'

In Figures 1 and 2 and Tables 1 and 2, lhe resulls of lhe compulation for D­
crilerion and for lhe lwo dimensional polynomial model are presenled. The form of
X is ralher irregular and corresponds lo some region where an observation nel­
work has lo be chosen lo analyze lhe concenlration of pollulanls.
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6.236
0.235 24.28B
9.864 7.370 53.942

13.531
22.317 llU80
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5.245

-I.m
-17.323
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-7.B53
-o.m
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Table 1. Initial design
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Figure 1. Initial design:
X - boundary points, 0 - design points
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FINAL COVARIANCE MATRIX
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Table 2. Final design
characteristics

• X

x X

• X

X

• X I 0 0
xxx xxO

x
. x

• x

. .
. 0 0 0 .

o
x • 0 0

x X

ox

X •

o . x
o0

1.00 !
0.92 I

0.83 !
0.75 !
0.67 !
0.58 ,
0.50 !
0.42! X

0.33 !O •
0.25 !O •
0.17 !O .
0.08! 1 X X

0.00 !
-0.08 !
-0.17 !
-0.25 !
-0.33 !
-0.42 !
-0.50 !
-0.58 !
-0.67 I

-0.75 ! X X
-0.83 I X

-0.92 ! X • X • 0
-1.00 I 0 00

-------------------I-------------------)
Xmin : -1.000 X.ax: 1.000

Figure 2. Final design:
X - boundary points, 0 - design points



NUISANCE PAPAMETER EFFECTS IN BALANCED DESICNS

Johan Fellman
Swedish School of Economics and Business Administration, Helsinki, Finland

1. INTRODUCTION

In experimental design the linear model often contains extra parameters,
in which the experimenters are not interested. Usually the elimination of
these "nuisance" parameters reduces the precision of the estimators of the
main parameters. i.~., in block designs the parameters measuring the block
effects are nuisance parameters. Ehrenfeld (1955) studied the effect of the
nuisance parameters. He studied the design matrix and his main result was
that in a non-singular model the nuisance parameters are without effect if
and only if the columns corresponding to the nuisance parameters are or­
thogonal to the columns corresponding to the main parameters. Later the
nuisance parameter problem has been studied in a more general framework and
results have been obtained for the singular case (Fellman, 1976, 1978, 1985,
Baksalary 1984).

2. NOTATIONS AND THEORETICAL RESULTS

In the 1940's Rao (1945 a, b) studied the estimability of parametric
functions under singular linear models. His method was later developed by
Fellman (1974). The core of this method is the following results.

Consider the 1inear model (Y ,Xa,a 2 I). The parametric function e = c 'a
is estimable if and only if there exists a solution vector p of the equation

X'Xp = c. (2.1)

The corresponding estimator is e p'X'Y and Var(e) p'X'Xp. These results
are used in this study.

We consider the linear models

(2.2)
and

(Y,X11,a 2 I) (2.3)
where Xl is an N x k ma tri x,

X2 is an N x m matrix and their elements are assumed to be known and
both matrices may be rank deficient,

1 is a k-dimensional vector of main parameters and
S is an m-dimensional vector of nuisance parameters.

The model (2.3) is obtained from the model (2.2) by the simpl Hying assump­
tion that the nuisance parameters are lacking.

Using the partition X = (Xl ,X2) the information matrix of model (2.2)
can be written
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[
Xi xl Xi x21 r~]

M= X'X = x2X
l

x2x£J = lB'fD (say) (2.4)

The matrix A is the intormation matrix of the model (2.3).
We shall also use the following notations. The column-space (range) of

a matrix H and the orthogonal complement of this space are denoted C(H) and
C~(H), respectively. If a( Rk+m then we introduce the (k+m)-partition

- 0a' (a',a' ) .
If e = ~'T is estimable with respect to (2.2) then the optimal estimator

is e = p'X'Y, where p is a solution of the equation

r·lp = c (2. 5 )
,

and c' = (c',o). The variance of the estimator is Var(e) (J2 p 'Mp.
We have the following theorem.

has a solution rand

p 'Mp 2. r' Ar , (2.7)
with equal ity if and only if r = (r' ,0)' is a sol ution of the equation ~,lr = c.

It is easily seen that a necessary and sufficient condition for equality
in (2.7) is that

(2.8)
The inequality (2.7) indicates that the optimal estimator with respect

to model (2.3) is never inferior to the optimal estimator with respect to
model (2.2). If equality is obtained in (2.7) then the parametric function
e is said to be estimable with maximal accuracy with respect to model (2.2).
Necessary and sufficient conditions that an estimable parametric function is
estimable with maximal accuracy are given elsewhere (Fellman, 1976, 1978,
1985) .

3. APPLICATIONS

Balanced 2-way design. Suppose that we have performed a balanced ex­
periment with k treatments and m blocks. If additivity holds, we have the
model

(i l, ... ,k)

(j = 1, ... ,m)

where i,j are the treatment and block subscripts, respectively, T i ,8j , and

~ are fixed unknown parameters and n·· have the mean zero and the variance
lJ

(J2. Using the matrix notation Y = Xa + n
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matrix

y

I\part from the

0 0 1 0... 0 1
0 0 0 1. .. 0 1

.... .. I.

a .. ~ ..

X 0...000 ... 1"1

o 0 1 1 0... 0 1
1
00 10 1. .. 01

~ ~ i 0 0 ... 1 1
factor 0 2 the infor~ation

• C!

r
Tll

: I
r1111

IT kI 1112
n (3.1 )

~:j, Lll km

(3.2)r· ~. :.~]
L B': 0

X'XM

mO 0.1 1... 1 m1
o m O:l 1•.. 1 m.... .. ..
.... .. ..
.... .. ..
00 ...m:11. .. 1m................................
1 l. .. l:k 0 0 k
1 1... 1:0 k O k
.... ........ .. ..

I~ ~ ~~~ 6 ~ ~
lm m m: k k k km

We are interested only in the parameters Tl .....Tk and consider Sl ... · .Bm
and ~ as nuisance parameters. Only contrasts between the parameters
Tl'" .• Tk are estimable. On the other hand. every contrast between Tl •...•Tk
is estimable.

Let c be an arbitrary contrast. then the equation Ar = c has the sol-
ution r = A-lc =~. Now

ll: C 'jB'r=~lc= :' =0
m l: c,

It: c~
J.. '

and the presence of the nuisance parameters Sl •...• Sm and ~ does not affect
the precision of the estimate of any contrast of the T'S.

Balanced incomplete block design. In this case. not every treatment
block combination is performed. The model (3.1) can be used if we only can­
cel some of the observations. The design is balanced if we require that
every treatment occurs equally frequently and that every pair of treatments
occurs equally frequently in the same block.

If the number of treatments is k.
the number of blocks is m.
the number of cells per block is b.
the number of replications of each treatment is u.
the number of times any two treatments occur in the same block is A,

then the incomplete block design is balanced if ku = mb and A(k-l) = u(b-l)
(Kempthorne. 1952. p. 530).

The information matrix is
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u 0 0 ull u12 ulmu
0 u 0 u21 u22 u2mu

0 0 u ukl uk2 ukm u
..............................

o b

o b

M ull u21 ·· uk 1 b 0

u12u22 ·· uk2 0 b

ul mU2m' . ukm 0 0

u u ... u b b

b b

b bm

where uij = 1 if the treatment i is in the block j and uij = 0 if the treat­

ment i is not in the block j. The distribution of zero's and one's in B de­
pends on the chosen design but every block contains b cells and every treat­
ment is replicated u times. From this it follows that

k
L:

i =1
u.. = band
lJ

m
L:

j=1
u.. = U.
lJ

Only contrasts between the parameters '1 •...• 'k are estimable. Analogously
to the randomized block design it can be proved that every contrast is esti­
mable.

Consider an arbitrary contrast e = c',. The equation Ar = c has the

solution r =~. The contrast is estimable with maximal accuracy if and
only if u

B'r = O. (3.3)
Such a contrast must satisfy the conditions

k
L: u.. c. = 0 (j = 1•...•m) .

i =1 lJ 1
(3.4)

If the equation (3.3) is premultiplied by B we get the equation
BB I r = 0 (3.5)

In the product

F BB'

the element

m {2 if i .J. J'
f oo = E 2 A + u ~
lJ t=l uit Ujt + u = u + u2 if i = j

If we study a balanced incomplete block design A < u and
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[" +

l A +
2 A + lu

F 2 U2 2A + u u + A + u

A 2 A + 2 ... u + U+ U U

is of full rank and the equation (3.5) has only the trivial solution r = O.
Hence. no contrast satisfies the necessary condition and no contrast is es­
timable with maximal accuracy.

We observe quite contrary results for complete and incomplete designs.
Therefore it may be of interest to study how much the nuisance parameters in
BIBD reduce the efficiency of the estimates of the contrasts of the main
(treatment) parameters.

Consider an arbitrary BIBD and an arbitrary contrast 8 = CiT. The in­
troduced method indicates that we have to solve the matrix equation

Mp = c (3.6)

where M is given in (3.2), c' = (c'.O) and Li~l ci = O. If we define
p' = (p' .0' .6) then the equation (3.6) is decomposable into the equations

m
up,. + L u· .0. + u6 = c. l ..... k (3.7)a

j=l 'J J ,

k
L uij Pi + boo + b6 0

i =1 J
j 1•.•••m (3.7)b

k
u L

i=l
Following

o.
J

m
Pi + b L o· + mb6 = 0

j=1 J

Kempthorne (1952 p. 80) we obtain

1 k
-6 - - L u P

b i=l ij i
j 1••.••m

(3.7)c

If this result is sUbstituted in (3.7)a we get

up,. + ~ u,' J' [-6 - -b
l ~ u .P ] + U6 = c· 1•...• k

j =1 s=1 SJ s ,
2If we observe that L

J
' u.. = u. L. u' j = b. L:. u.. u and L. U.. u . = A

, J " J' J J , J SJ

for s f i and if we introduce R = !i~l Pi and H = u - (u - A)/b we obtain
p. = AR/bH + c./H. Furthermore. Var(§) = p'Mp = p'c = p'c = c'c/H. If we, ,
could estim~te 8 = C'T without any nuisance parameters we should obtain the
variance c'c/u. Hence the efficiency can be written (cf. Kempthorne. 1952.
p. 533)

E = 1 - (u - A)/bu. (3.8)
We observe that for incomplete designs A < U and E < 1. This formula indi­
cates that. in general. BIBD with great values of A should be used.
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TABLE The efficiency of some designs given by Kempthorne (1952).

k b u m l- E (%)

3 2 2 3 1 75
7 3 3 7 1 78
7 4 4 7 2 88

15 3 7 35 1 71
15 7 7 15 3 92
15 8 8 15 4 94
31 3 15 155 1 69
31 7 35 155 7 89

40 4 13 130 1 77
21 5 5 21 1 84
31 6 6 31 1 86
57 8 8 57 1 89

6 3 5 10 2 80
10 5 9 18 4 89
28 7 9 36 2 89
14 7 13 26 6 92
8 4 7 14 3 86

Kempthorne p. 529

Kempthorne p. 530

Kempthorne p. 539

These efficiences can also be interDreted in another way. Consider that
we have to estimate k treatments and ourBIBD consists of m blocks with b
cells each. Assuming that the experimental cost per cell is constant then
we can compare our BIBD with a complete design with mb cells. Now each block
has to contain k cells and the number of blocks is u = mb/k and the variance
of the estimate is c'c/u. Hence the efficiency in (3.8) can also be inter­
preted as the efficiency when we compare a BIBD design with a complete design
having the same number of cells.
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ADMISSmILITY AND OPTIMALITY OF EXPERIMENTAL DESIGNS

Norbert Gafl'ke and Friedrich Pukelsheim
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1. INTRODUCTION

In this paper we study the relation between admissiblity and optimality of experimental
designs. While it is standard decision theoretic reasoning that a statistical procedure
which is uniquely optimal will necessarily be admissible, we here prove a converse to
the effect that an admissible design is uniquely optimal with respect to the E-criterion
and a specific choice of the parameter system of interest. The general equivalence
theory may then be employed to obtain necessary conditions for admissibility.

As usual we choose the experimental conditions from a compact k-dimensional
experimental domain X C Ric:. We assume that under experimental conditions x E X
the real observation Y(x) follows a linear model

Y(x) = x'8 + ue(x)

with uncorrelated errors e(x) of unit variance. A design eis a probability distribu­
tion with finite support on the experimental domain X, determining allocation a,nd
proportion of the experimental conditions.

The performance of a design eis determined through its k x k moment matrix

M(e) = Ix xx'de·

Let M be the feasible set of moment matrices, assumed to be a convex and compact
subset of nonnegative definite k x k matrices.

We shall study admissibility of a candidate matrix M in the set M. It is illuminat­
ing to first discuss the case when the full parameter 8 is of interest (Section 2). Before
turning to the more general case of an s-dimensional parameter system K'8 (Section
4) we derive some intermediate results on information matrices (Section 3).

2. ADMISSmILITY FOR THE FULL PARAMETER SET

Suppose M E M is a moment matrix whose admissibility properties we wish to in­
vestigate. We call M admissible for 8 in M when no moment matrix A E M satisfies
A ~ M and A ::f:. M, relative to the Lowner ordering ~. To avoid trivialities we assume
M::f:.O.
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We shall show that every admissible moment matrix is E-optimal, i.e. it maximizes
the minimum eigenvalue of an appropriate information matrix. However, the parameter
system for which E-optimality is obtained is related to the candidate matrix M in an
intrinsic manner: We choose the system H'8 from a full rank decomposition

M=HH',

where with r = rank M the k x r matrix H has full column rank r. An E-optimal
moment matrix for H'8 in M is one which maximizes .\mln(CH(A)) over A E MnA(H),
where A(H) is the convex cone of all nonnegative definite k x k matrices whose range
contains the range of H, and

We need an auxiliary lemma before turning to admissibility.

Lemma 1. Let A E M be a competing moment matrix. If A is E-optimal for H'8
in M then A ~ M.

Proor. By construction the range of M contains (actually coincides with) the range
of H, and we have

CH(M) = (H'M- H)-l = (H'(HH')- H)-l = I,..

Optimality of A yields 1 = .\min(CH(M)) ~ .\mln(CH(A)). Therefore I,. ~ CH(A),
and pre- and postmultiplication with Hand H' gives

M = HH' ~ HCH(A)H' ~ A,

where the last inequality may be found for instance in Pukelsheim & Styan (1983, p.
147). 0

We are now in a position to establish the relation between admissibility and unique
E-optimality as announced above.

Theorem 1. The moment matrix M is admissible for 8 in M if and only if M is
uniquely E-optimal for H'8 in M.

Proor. Suppose M is admissible. From Theorem 2 in Pukelsheim (1980, p. 344) we
know that there exists an E-optimal moment matrix A for H'8 in M. By Lemma
1 we have A ~ M, and admissibility of M forces A = M. This establishes unique
E-optimality of M.

Conversely suppose M is uniquely E-optimal. Let A be a competing moment
matrix satisfying A ~ M. Due to monotonicity A will also be E-optimal. But then
uniqueness forces A = M, i.e. admissibility of M. 0

Lemma 1 and Theorem 1 are closely related to Corollary 8.4 of Pukelsheim (1980,
p.359). Next we tum to the classical Theorem 7.1 on admissibility of Karlin & Studden
(1966, p. 808), investigating the existence of a nonnegative definite matrix N =F 0 or a
positive definite matrix N satisfying the system of normality inequalities

trace (AN) ~ trace (MN) for all A E M.

Employing customary notions of convex analysis we shall call a matrix N which satisfies
this system of inequalities to be normal to M at M.
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Theorem 2. (i) IfM is admissible for 8 in oM then there exists a nonnegative definite
k x k matrix N =I 0 which is normal to oM at M.
(ii) If there exists a positive definite k x k matrix N which is normal to oM at M then
M is admissible for 8 in oM.

Proof. (i) From Theorem 1 we know that M is E-optimal for H'8 in oM. The general
equivalence theory provides a necessary and sufficient condition of optimality in the
following form, see Theorem 8 of Pukelsheim (1980, p. 356). Optimality holds if and
only if for all A E oM

trace (H'GAG'HE) :5 >'m&X(H'M-H) = 1/>'miD(CH(M)),

for some generalized inverse G of M and some matrix E E conv S. Here cony S
denotes the convex hull of all r x r matrices of the form zz' such that z is a normalized
eigenvector of CH(M) corresponding to >'miD(CH(M)). However, we have seen above
that CH (M)) = Ir , and so E actually is an arbitrary nonnegative definite r x r matrix
with trace equal to 1.

Define the nonnegative definite matrix N = G'H EH'G. Then

trace AN :5 1 = trace M N for all A E oM.

Hence N cannot be 0, and it satisfies the normality inequalities.
(ii) Let A be a competing moment matrix satisfying A ~ M. Then 0 :5 trace {(A - M)
N}. On the other hand the normality inequalities yield trace {( A - M) N} :5 O. There­
fore trace {(A - M)N} = 0, and positive definiteness of N forces A = M. Thus
admissibility is established. 0

Our proof provides the additional information that in Theorem 2(i) we can choose
N so as to satisfy 1 :5 rank N :5 r = rank M.

Note that rank 1 matrices M = ee' may well be admissible for the k-dimensional
parameter 8. By Theorem 1 admissibility then holds if and only if M is uniquely
optimal for e'8 in oM, and then. Theorem 2(i) admits a rank 1 choice N = dd'.

Admissibility for a subset of the full parameter system admits a similar develop­
ment, with slightly more technical input concerning information matrices.

3. INFORMATION MATRICES

Consider a fixed s-dimensional parameter system K'8 given by some k x s matrix K
of full comlumn rank s. Admissibility for K'8 concentrates on the s x s information
matrix for K'8 which, if A E A(K) with A(K) defined as in the preceeding section, is
given by

CK(A) = (K' A-K)-l.

Recall that for the full parameter case a rank deficient moment matrix M may be
admissible. Similarly a rank deficient information matrix CK(A) may prove admissible
for K'8, provided we exercise some care when extending the matrix function CK from
A(K) to the convex cone N N D(k) of all nonnegative definite k x k matrices. The
appropriate definition for an arbitrary matrix A E NND(k) is
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Then CK(A) is nonsingular if and only if A E A(K) and in this case

CK(A) = (K'A-K)-I,

see Lemma 2 in Muller-Funk, Pukelsheim &; Witting (1985, p. 23). Another represen­
tation of the extended matrix function CK was used in Gaffke (1987), namely

CK(A) = minLKAL~,
Lx

where the minimum is taken over all left inverses LK of K (i.e. LKK = I.) and is
carried out relative to the Lowner matrix ordering. That the minimum exists is a
consequence of the Theorem in Krafft (1983). It can also be seen using the Gauss­
Markov Theorem, as follows.

Consider a linear model with expectation K{3 and dispersion matrix A, where
{3 E R· is the unknown parameter vector. The set {LK} of left inverses of K defines
the set of linear unbiased estimators for {3, and the BLUE for {3 corresponds to a
particular member LK such that LKAL~ is a minimum. We will call such a matrix
LK a left inverse of K minimizing for A, i.e.

Equivalently one could say that L~ is a minimum A-seminorm generalized inverse of
K', see Rao &; Mitra (1971, p. 46).

Both expressions for CK(A) coincide, as shown next.

Lemma 2. For all nonnegative definite k x k matrices A we nave

lim(K'(A + d)-I)-I = minLKAL~.
£10 Lx

Proof. Since for E > 0 the matrix A + d is positive definite, we know from the
Gauss-Markov Theorem that

min LK(A + d)L~ = (K'(A + d)-I K)-I.
Lx

Let LK be a left inverse of K minimizing for A. Then

T~nLKAL~ ~ T~nLK(A+ d)L~ ~ LK(A + d)L~,

and letting E --+ 0 the assertion follows. 0
With the extended definition of CK a moment matrix M E oM is called admis­

sible for K'8 in oM when no moment matrix A E oM satisfies CK(A) ~ CK(M) and
CK(A) "I CK(M).

Again we wish to study a fixed moment matrix ME oM. However, we now choose
a full rank decomposition of its information matrix (which we assume to be nonzero)

CK(M) = HH',

where with t = rank CK(M) the s x t matrix H has full column rank t.
We shall have to investigate the parameter system H' K'8. The information ma­

trices relative to the representations (KH)'8 and H'(K'8) satisfy the following decom­
position rule. The matrix functions CKH and CH are defined as above with KH and
H instead of K and with domains NND(k) and NND(s), respectively.
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Lemma 3. For all nonnegative definite k x k matrices A we have

CKH(A) = CH(CK(A)).

Proof. When A is positive definite then

CKH(A) = (H' K' A-I KH)-I = CH«K'A-I K)-I) = CH(CK (A)).

Now take a nonnegative definite matrix A. For € > 0 then CK(A) ~ CK(A+€I). Since
A + €I is positive definite we obtain CH(CK(A)) ~ CKH(A + €I). The right hand side·
becomes CKH(A) when € -+ o.

For the converse inequality let LH be a left inverse of H minimizing for CK(A),
and LK be a left inverse of K minimizing for A. Obviously LH LK is a left inverse of
KH, and by Lemma 2

CKH(A) ~ LHLKAL~L'n= LHCK(A)L'n = CH(CK(A)).

The two inequalities force equality, and the proof is complete. D
An analoguous decomposition rule holds for left inverses of K H minimizing for A.

Lemma 4. AleftinverseLKH ofKH is minimizing for A ifand only ifLKH = LHLK
for some left inverse LK of K minimizing for A and some left inverse LH of H mini­
mizing for CK(A).

Proof. We first note that if LK is a given left inverse of K, then the set of all left
inverses of K is the linear manifold LK + B where B may be any 8 x k matrix with
BK = o. From this it is easy to see that LK is minimizing for A if and only if
LKAQK = 0, where QK denotes the orthogonal projector onto the nullspace of K'.
Similarly a left inverse LKH of K H is minimizing for A if and only if LKH AQKH = 0,
where QKH is the orthogonal projector onto the nullspace of (KH)'.

To prove the direct part of the lemma let LKH be a left inverse of KH minimizing
for A. Consider the matrix equations

LKHKX = LKH , and X 0 [K, AQKI = [I., 0].

Obvioulsy each of them separately has a solution. Moreover they have a common
solution for X, by Theorem 2.3.3 in Rao & Mitra (1971, p. 25). In order to apply this
theorem we must verify LKHK[I.,O] = LKH[K,AQK], but this holds true in view of
LKHAQKH = 0 and QK = QKHQK. Setting LK = X and LH = LKHK, we have a
left inverse LK of K minimizing for A, a left inverse LH of H, and LHLK = LKHo In
fact, LH is minimizing for CK(A) since by Lemma 3

LHCK(A)L'n = LHLKAL~L'n = LKHAL~H = CKH(A) = CH(CK(A)).

The converse part is immediate: Evidently LHLK is a left inverse of KH, and
LHLKAL~L'n = LHCK(A)L'n = CH(CK(A)) = CKH(A). D

We shall now use these intermediate results for our discussion of admissibility and
optimality.

4. ADMISSmILITY FOR PARAMETER SUBSETS

Let M E M be a fixed moment matrix. We resume the discussion of M being admis­
sible for K'f} in M. Assume that CK(M) =/: 0 and choose a full rank decomposition
CK(M) = H H' as in Section 3. We first present a result similar to Lemma 1.
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Lemma 6. Let A E M be a competing moment matrix. If A is E-optimal for H' K'()
in M then CK(A) ~ CK(M).

Proof. By construction the range of CK(M) contains the range of H. Applying
Lemma 3 we obtain

Optimality of A yields 1 = ,xmin(CKH(M)) ~ ,xmin(CKH(A)). Therefore It ~ CKH(A),
and pre- and postmultiplication with Hand H' yields

Note that CH(CK(A)) = CKH(A) is nonsingular and hence CK(A) E A(H). IJ
The following theorem on admissibility and E-optimality parallels Theorem 1.

Theorem 3. The moment matrix M is admissible for K'() in M if and only if M
is E-optimal for H' K'() in M and for any other E-optimal moment matrix A E M for
H'K'() in M wehaveCK(A)=CK(M).

Proof. Follow the proof of Theorem 1, with Lemma 1 replaced by Lemma 5. Use
Lemma 3 for the converse part. 0

We are now in a position to present our main result: A proof based on E-optimality
of Theorem 2 of Gaffke (1987).

Theorem 4. (i) If M is admissible for K'() in M then there exists a nonnegative
definite s x s matrix D 1= 0 and there exists a left inverse L K of K minimizing for M
such that LkDLK is normal to M at M.
(ii) If there exists a positive definite s x s matrix D and a left inverse L K of K
minimizing for M such that LkDLK is normal to M at M then M is admissible for
K'() in M.

Proof. (i) By Theorem 3 the moment matrix Mis E-optimal for H' K'() in M, and
as shown above CK H (M) = It. The general equivalence theory tells us that

trace (H'K'GAG'KHE) ~ 1 for all A EM,

for some generalized inverse G of M and some nonnegative definite txt matrix E with
trace equal to 1. Define the matrix N = G'KHEH'K'G. Then

trace (AN) ~ 1 = trace (MN) for all A EM,

and 1 ~ rank N ~ t. The matrix L KH = H' K'G satisfies LKHKH ::;: H' K'GKH
= (CKH(M))-l = It and LKHMLkH = H' K'GMG' KH = It = CKH(M), and thus
is a left inverse of KH minimizing for M. Lemma 4 then ensures that L KH = LHLK
where L K is a left inverse of K minimizing for M. Setting D = L~ELH we obtain
the desired representation
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(ii) Let A be a competing moment matrix satisfying CK(A) ~ CK(M). Then

0;:; trace {(CK(A) - CK(M))D}

;:; trace{(LKAL~ - LKML~)D}

= trace {(A - M)L~DLK} ;:; 0,

and because of positive definiteness of D therefore CK(A) = CK(M). 0
The proof gives the aditional information that in Theorem 4(i) we can choose the

8 x 8 matrix D so as to satisfy 1 ;:; rank D ;:; t = rank CK(M).
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1. INTRODUCTION

The paper considers a simple block model and assumes that the errors
wi thin the blocks are correlated according to a stationary first order
autoregressive process wi th known lag one correlation coefficient A.. We
restrict attention to the case A. ~ 0 and try to determine an optimal block
design. The set of all block designs with v treatments and b blocks with k
plots per block is denoted by 0 b k' The position of the plots within the

v, •
blocks is determined by the design. If design d € 0 b k is applied then we

v .•
assume that the vector of the measurements on the u-th block fulfills

(1)

where f3
u

is the effect of the u-th block. Tdu is the treatment design

matrix in the u-th block. l
k

is the k-vector of ones and eu is the vector

of the errors in the u-th block. The covariance matrix of e is
u

1 A. A.2 A.k- 1

SA.
2

A. 1 A.u

A.2 A. 1

A. 1 A.
A.k- 1

A.2 A. 1

where 2 > 0 is unknown and A. ~ 0 isu

and if x is the Kronecker product of

known. If we define Td=[Td1 .· .. ,Tdb]'

matrices and I
b

is the unit matrix of

size b. then the vector of all measurements can be written as

(2)

Since we assume that the measurements on different blocks are uncorrelated.
we have a covariance matrix of e which equals I

b
x SA.. For a fixed design d

the information matrix for the estimation of T equals



'e
d

b

l
u=l
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b

_ (l'S-ll )-1 '\
k A. k L

u=l

(3)

The information matrix is the Moore-Penrose generalized inverse of the co­
variance matrix of the best linear unbiased estimate for the vector T ­

(T'l /v)l . It is the idea of optimal design therefore to search for de-
v v

signs which maximize some one-dimensional criteria of 'ed . We consider the

class of ~p criteria which are based on the eigenvalues ~d1 ~ ... ~ ~dv-1 ~ 0

of 'ed . For p E rn, p ~ 0 we have

v-I

~p('ed)
1 l -p -l/p

(v-1 ~di)

i=l
v-I

~O('ed)
(IT ~ .)1/(v-1)
i=l dl

and

~oo('ed) = ~dv-1

Then ~O is the well-known D-cri terion, ~1 the A-cri terion and ~oo is the

E-criterion. The criterion ~-1 is the trace of the information matrix. A

design d* is ~p-oPtimal if it maximizes ~p('ed) over a set of designs.

The 'ed-matrix for every d E flv , b, k has constant row and column sum

zero. This implies that a design for which all off-diagonal elements of 'e
d

are equal has ~d1 =... = ~dv-1' It is easy to see that a design d* for which

~d*l =... = ~d*v-1 and which maximizes treed over a set of designs is

~ -optimal over this set for all p > O. that is for all ~ -criteria which
p - p

are of statistical relevance. To determine such a design it is necessary to
make some definitions.

For a design d E fl b k define rd' as the number of appearances of
v, , 1

treatment i in the design. For 1 ~ u ~ b let ndiu be the number of appear-

ances of treatment i in block u. Further define e
diu

as the number of ap-

pearances of treatment i at an end plot of block u and e
d

" = \b led' . Note
1 Lu= lU

that ediu is either 0,1 or 2. The matrix with entries e
diu

is the incidence

matrix of a block design with b blocks of size 2. This design is called the
end design of d. For treatment i and j the number m

d
" . counts how often the
IJ

treatments appear adjacent to each other in the same block. The design d is
called neighbor balanced if all m

d
.. , i~j, are equal and all m

d
.. = O. The

IJ 11

diagonal elements of 'e
d

equal

(4)
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and the off-diagonal elements are

(5)

see Kunert (1987). In the following we want to determine optimality proper­
ties of certain block designs in the cases v = k and v < k.

2. E-OPTIMAL BLOCK DESIGNS IN THE CASE V = K

It was shown in Kunert (1987) that a design with

b

l ndiundju
bk(k-1) for all i I- j
v(v-1)

u=l

mdij
2b(k-1) for all i I- j
v(v-1)

b

U~l(ndiUedjU
4b(k-1) for all i I- j

+ ed · nd · ) v(v-1)IU JU

b

l 2b for all I- jediuedju v(v-1)
u=l

(6)

(7)

(8)

(9)

in the case k ~ v and A > 0 has maximal tr~d and all off-diagonal elements

of ~d equal. Consequently such a design is optimal. Since it takes a great

number of blocks to achieve condition (9) we consider designs which fulfill
condi tions (6), (7) and (8) only. Kunert (1987) has shown that they are
highly efficient under each ~ -criterion. We want to determine exact E-op-

p
timali ty properties of some of them. Designs with properties (6), (7) and
(8) were introduced by Kiefer and Wynn (1981).

In the case v = k condition (6) is fulfilled by every complete block
design. Condition (7) means neighbor balance and condition (8) is fulfilled
by every complete block design with neighbor balance.

We can construct complete block designs with neighbor balance whenever
b is a multiple of v/2 and v is even, and whenever b is a multiple of v and
v is odd, see, for instance, Gill and Shukla (1985). The cases b = v/2 and
b = v are now considered in more detail. If v = 3 then the complete block
design with neighbor balance d € 03 3 3 also fulfills (9). However, for

v ~ 4 it is impossible to fulfill (9) with only v or v/2 blocks. We there­
fore restrict attention to the case v ~ 4. We also restrict attention to
the case A ~ 0, since we know that for negative correlations there are
nonbinary designs which perform even better that the designs fulfilling the
whole set of conditions (6),(7),(8) and (9).

THEOREM 1 If A > 0 and b = v/2 where v is even, then the neighbor balanced
complete block design d* € 0 /2 is E-optimal over 0 /2 .V,v ,v V,v ,v
Proof: It was shown in Kunert (1987) that the smallest nonzero eigenvalue
~d*v-1 of ~d* fulfills



~ v (I+A2 ) - 2A2 - 2f < 0 .
(iv) Assume d is equireplicate,
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2 3b(k-l) k-(k-4)(A-A +A )
~d*v-l ~ f = {v(v-l)}{ k-(k-2)A }

We now show that ~d -1 ~ f for every d € n 12 . If Xd 1: = 'ed - fI +v v,v,v,~ v
(f/v)lvl~, then the eigenvalue ~dv-l of 'ed is less than f if 2' xdf2 < 0 for

a v-vector 2, and ~dv-l ~ f if 2'xdf2 ~ 0 for a v-vector 2 with 2'1v = O.

Let xdij denote the (i,j)-th entry of Xd,f"

(i) Assume the design d has one treatment i such that r di ~ v/2 - 1.

Then
< v-2 (1 A2 ) I-A v-2 (1-A)2 _ v-I 1: < 0

xdii - T + - v-(V-2)A 2 v ~

and, consequently, ~dv-l < f·

(ii) Assume the design is equireplicate but one treatment appears at
least twice at end plots. Then

v 2 2 I-A v-4 2
xdii ~ 2 (I+A ) - 2A - v-(V-2)A {T (I-A) + 2} - f (v-l)/v < 0

and, consequently, ~dv-l < f·

(iii) Assume the design is equireplicate and all edi = 1 but there are

treatments i and j which never appear adjacent to each other. Then

Xdii + Xdjj - 2Xdij = cdii + Cdjj - 2cdij - 2f

b

= v(I+A)2 - 2A2 - I-A \ {n (1 A) + ~ n (1 A)v-(V-2)A L diu - ediuA - dju -
u=1

all ed . = 1 and all md ." = 1, i #- j.
1 IJ

For each treatment i there is one treatment j #- i, such that i and j appear
at the opposite ends of the same block. Consider the vector 2 with i-th and
j-th entry (v-2)/v and all other entries -2/v. Then 2'1 =0 and

v

2 2v(l+A ) - 2A - 2A

b
I-A \

v-(V-2)A L
u=1

{end" + nd " ) (I-A)
IU JU

2
+ (ediu + edju)A} - 2 (v-2) f/v .

For the block u* with ediu* + edju* = 2 we have

(ndiu* + ndju*)

Since l {(ndiu
consequently have

(I-A) + (ed " + ed . ~) A > 2 "
IU* JU~ -

+ nd · )(l-A) + (ed " + ed " )A}
JU IU JU

(v-2)(I-A) + 2, we



48

2 ~ v(I+~2) - 2~2 - 2~ -c
dii

+ C
djj

+ C
dij

A A A

I-A 2
v-(V-2)A {2(v-2)(I-A) + 4}

2(v-2) E/v .
This completes the proof.

We now turn to the case b = v. Remember that there always is a neigh-
bor balanced complete block design d* € 0 , and that Md* 1 ~ E. How-v,v,v v-
ever, not all neighbor balanced complete block designs in 0 performv,v,v
equally well. What is more, there are designs which are not complete block
designs and which perform better than some neighbor balanced complete block
designs for some A. As an example consider the designs in Table 1.

TABLE 1 Three designs in 0
4,4,4

4 1 2 3
a

143 2 124 1
h 123 4 f 432 1 g 2 4 1 2

341 2 1 243 3 1 3 4
234 1 3 1 2 4 4 3 2 3

~ake columns as blocks

It was shown in Kunert (1985) that f performs better than h if A ~

0·7. Note that f is not a complete block design, but that it is neighbor
balanced and that the end design of f is connected while that of h is not.

We now define a non empty set 11 CO, which contains the
v,v,v v,v,v

neighbor balanced complete block designs in 0 , and which contains the
v,v,v

E-optimal design. Let 11 be the set of all d E 0 such that
v,v,v v,v,v

d is equireplicate, (10)
d is neighbor balanced, (11)
no treatment appears at both end plots of the same block. (12)

Remember that (10) and (11) imply that every treatment appears at
exactly two end plots. It was shown by Azzalini and Giovagnoli (1987) that
(10) and (11) are necessary and sufficient for optimality in a simpler
model without block effects. The designs in Table 1 are all in 11

4
,4,4'

THEOREM 2 Assume b k = v ~ 4. If 0 ~ A < 1 and if a design d € n is
v,v,v

E-optimal over n then d € 11
v,v,v v,v,v

Proof: We know that there is a neighbor balanced complete block design d*
in 11 and Md* 1 ~ E. We now show that for every d € n which isv , v , v v- v, v , v
not in 11 we have Md 1 < E.v,v,v ,v-

(i) Assume there is a treatment i such that r
di

~ v-I. It was shown in

case 1 of Theorem 3 of Kunert (1985) that then

223
xdii ~ [(v-l){-I+A+A (I-A)} - edi {2A+(v-3)(A -A )}]/{v-(V-2)A}

It can easily be seen that consequently
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xdii ~ (v-l)(A2-1)(I-A)/{v-(v-2)A} < 0

for all A < I, and not only for A ~ 4/5 as stated in Kunert (1985).
(ii) Case 2 of Theorem 3 of Kunert (1985) solved the situation that

edi L 3 for an i.

(iii) Assume there is a treatment i and another treatment j such that
mdij ~ 1. Then

2f + 4A (I-A)/{v-(v-2)A}, we get that

2
~dt-l ~ f + 4A (I-A)/{v-(v-2)A} - A < f .

(iv) Assume there is a block u such that treatment i appears at both
ends of this block. It follows that

c ~ r
d1

.(I+A2 ) - 2A2 - I-A {(r
d1

.-2)(I-A)2+4}.
dii v-(V-2)A

Since r di v we have

2{v-(V-2)A} xdii ~ 2(I-A)A - 2(I-A) < 0

This completes the proof.

If we exclude non-binary designs from the competition then Theorem 2
implies that the E-optimal design must be a neighbor balanced complete
block design. For all neighbor balanced complete block designs d we have

that ~df{v-(V-2)A}/(A2_A3) is the information matrix of the end design of d

in the block model wi th uncorrelated errors, see Kunert (1985). The end
design of such a d is equireplicate and has v blocks of size 2. It is well­
known that there is essentially only one connected block design in 0 2v,v,
and this design has second-smallest eigenvalue 2-2cos (2~/v). This implies
that for every complete block design d € 0 we havev,v,v

2 3
~dvl ~ f + 2(A -A ) {1-cos(2~/v)}/{v-(v-2)A}

and the bound is attained if the complete block design d* has neighbor ba­
lance and the end design of d* is connected. Such designs exist for all odd
v, see Kunert (1985).

I have so far neither been able to show that these d* perform better
than all nonbinary d € 0 for all positive A < I, nor' have I been ablev,v,v
to find examples of nonbinary designs which actually perform better or
equally well.

There is one exception. If v = 4 then the design g in Table 1 is a
complete block design with neighbor balance and connected end design, and
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E + 2{1-cos(2~/v)}(A2_A3)/{v-(v-2)A}

E + 2(A
2

-A3 )/{v-(v-2)A}

Now take an arbitrary design d E °444. It can only perform as well

as g if d E A4 ,4,4. Then there are two treatments i and j which do not

appear together at the opposite end plots of any block. It follows that

c
dii

+ C djj ­

b
I-A '\

v-(V-2)A L
u=l

2 22v(1+A )-4A +4A -

2
{end· -nd · )(l-A) + (ed · - ed . )A}IU JU IU JU

The fact that k = 4 and that no treatment appears adjacent to itself for
all d E A implies that no treatment appears twice in a block unless it

v,v,v
appears at an end plot. This implies that

since there are four blocks where either i or j appear at an end plot.
Consequently,

2 3
I-ldv-1 ~ E + 2(A -A )/{v-(v-2)A} = I-lgv-1 .

We thus have shoWll that g is E-optimal over °4 ,4,4. Note that the arguments

in the proof do not hold for v ) 4. However, Theorem 2 of Kunert (1987)
shows that for v ~ 5 every complete block design with neighbor balance for
every 0 < A < 1 and every ~ -criterion has an efficiency of more than 99 %.

p

3. THE CASE V < K

-1 , -1 -1 -1 .-1
Define WA = SA - (l kSA 1k ) SA 1k1kSA
us consider one single block u. Then the

equals

b

. We get ~d = 2u=1 TduWATdu· Let

i-th diagonal element of TduWATdu

nd . (1+A2 } - e . A2 - ~-A) {nd . (I-A) + ed . A}2IU dIU v- v-2 A IU IU

Restricting attention to the case A ) 0 we realize that, for fixed ndiu and

edi , then cdii is maximal if treatment i appears only at end plots of such

units where ndiu is small.

As an example consider the case k = v + 1. Then
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Since ~ ~ {ndiu (I-A) + ediuA} = b(v+l)(I-A) + 2bA, an upper bound for the

trace is attained if n
d

. = 1 + l/v and ed . = 2/v for all i and u. This
lU lU

clearly is impossible. The maximum attainable trace is reached if ndiu €

{1,2} and ediu € {O.I}, ediu being 1 only if ndiu = 1. The design f in

Table 2 thus has maximal trace for A > O. Calculating c f .. with formula (5)
IJ

we can see that f is ~p-oPtimal over 04.12.5 for every p ~ O.

TABLE 2 A design for k = v + 1

111 234 342 423
4 2 3 423 423 1 1 1

f 2 3 4 111 234 234
423 423 423 1 1 1
342 342 111 342

If k is becoming larger the situation gets more difficult. Note that
TduWATdu is the information matrix of a design consisting of a single

block. Kunert and Martin (1987) show that for A > 1/2, trTduWATdu is not

maximal if every treatment appears equally often in block u. As an example
consider the case v = 4 and k = 8. For b = 12 C0mpare the two designs f and
g € 04.12.8 in Table 3. For small A f performs universally better than g.

Note that f is neighbor balanced and is a balanced block design. However.
for A > 1/2 the design g becomes better. The design g also is neighbor ba­
lanced but it is not a balanced block design. Note by comparing the traces
that the gain in efficiency is not high. It seems logical therefore to re­
strict the competing designs to be balanced block designs.

TABLE 3 Two designs for k = 2v

4 1 2 3 4 3 1 2 423 1 4 123 4 3 1 2 423 1
1 234 3 1 2 4 2 3 1 4 123 4 3 1 2 4 2 3 1 4
3 4 1 2 243 1 142 3 3 4 1 2 243 1 1 423

f 234 1 1 243 3 1 4 2 g 1 234 1 234 231 4
4 123 4 3 1 2 423 1 3 4 1 2 243 1 142 3
1 2 3 4 3 124 2 3 1 4 1 234 3 1 2 4 2 3 1 4
3 4 1 2 243 1 1 423 3 4 1 2 2 4 3 1 142 3
234 1 124 3 3 142 234 1 1 243 3 142

tr'€f 95 (1 + A2 ) _ 24A2 tr'€ 95 (1 + A2 ) _ 24A2
g

4(I-A) {48 - 72A + 30A2} 4(I-A) {50 - 108A + 54A2}8-5A 8-5A
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CHAP}\CITP.IZl\TlotiS l'iJI' EXNTLES eF OPI'H'VIL ETEPI:1D,,"rs WITH
OUALI'l"'ATIVE ArID CUAlITITATIVE FACTORS

Viktor G. Kurotschka

1 • CONDITIONAL REPRESENTATIOO OF EXPERIMENTS WITH QUALITATIVE AND
QUArITITATIVE FACTORS

1.1 conditioning and linearization of the rrodel equations

we will denote by X the experirrental region, Le. the set of all
experirrental condition x under which an experirrent can be alternatively
performed. 'Ihe experimental region of an experirrent which is influenced
by, say K1 qualitative factors each being able to operate at, say I k levels

(k = 1, ... ,K1l can be represented by

K
X = ;~1:= xk:1{1, ••• ,~} (1)

and a single experir.ental condition by

x 1 = (i1 ' ••• ,~ ) ~ F {1, •.• , I k } k = 1, .•• ,K1
1

The experirrental reqion of an experiment \-:ith K
2

quantitative factors of

influence IrBy be d.escribed. by some convex set

K
X = ;:2 CJP'.K2 with some non errpty xk~1 (a,b) C X

2
(2)

'Ihe experiments considered in this paper are those \-lith K
1

c:ualitative and

K2 quantitative factors and can be defined by having

K
1

X = X1 x X2 = xk =1{1, •.• ,I
k

} x X2 (3)

as their experimental region.
The true response of the experiment to the experimental condition

1l: X :3 x -+ 1l (xl f JR
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is usually rrodeled as a ].ccation EXJ.rameter (expected value in the oara­
metric and shift parameter in the nonpararr.etric set up) of the observation
Y(x) which is asssurned to be a random variable.

Defining th.e error of the observation by

e(x):= Y(x) - nIx)

one obtains the following observation equations

Y (x) = f1 (x) + e (x) x (C X (4)

Restricting oneself to eX?eriments with only finite many observations,
say N , an experimental design can be described by

(x
I (1)

d - l
U(x(ll )

x(2) .•• x(I)

l1(x(2)) •••N(X(N))

x (i) r X , i = 1, ••• , I
(5)

indicating that 11 (x (i)) observations should be performed at experimental

condition xli) , i = 1, ... ,1 .

If X = Xl

all experimental

~1 (xl) being zero

also appendix) :

h 1
x
k

=l {1, ••• ,Ik } Le. if X is in particular finite, then

conditions Xl C Xl can be listed in a design admitting-

for some Xl ( Xl qetting the following representation (see

where

~=l, ... ,Ik
d = t112 ...

K1
:= (I';(il""'~Zl); ) = (N(x1) ;x1 (Xl)

k=1, ..• ,K
1

(6)

tJ(x
1

) = N(i
1
,··.,L) E {O,l, ••• ,N} , L EX n(x

1
) = K

K Xl 1

has the same rneaning as before. The corresponding observation rrod.el (rrod.el
of the experiment) in vector form

with components

n

i

1 , ••• ,t1(x (i) )

1 , •.. , I
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will be considered under standard conditions, Le. for each design d

X
Xd has a distribution P d (" {Pd,e;e EO 8}

under which all single observations are (stochastically) independent and of
equal precision, i.e.

e E 8

~~e further will only consider response functions n with a finite linear
parametrization

Le. for which there exist a: X 3 x .... a(x) F:lR so that for all x E X and
alleE8 r

r TnIx) = n(x,e) = L ,a (x)E (e) = a (x)E(e)
p= p p

If X = X, as in (') then every response function n has a finite linear para­
rretrization (see also appendix), the corresponding linear models are known
as A1.10VA experirrents.
If X = X2 as in (2) then finite linear parametrizations are rrotivated to
sorre part by theoretical a priori knowledge about the experiment taking in
consideration also sorre suitable transfonr.ation of the observation, to some
part because the response function is a regression of a nonnal distributed
variable on a nO:IT.1al distributed randan vector and to another part that the
linear parametrization canes fran a fO:IT.1al approxir.ation of the unknown re-
sponse function by so~ systew. of (known) functions a" ,ar on X2
(Chebychev systeHlS, systems of splines) with B = (E" ,Er ) representing

the (unknown) expansion coefficients. The corresponC'.ing linear rrodels for
X = X2 are often called general regression expeririEIlts.

If X = x, x X2 as in (3) a finite linear parametrization can be rrotivated

by the follC1.oiing alrrost natural conditioning of the observation equations (4):

?or each x, C X, let

Yx ,(X2):=Y(X"X2) , nX,(x2):= n(x"x2) , £x,(X2):= £(x"x2)

then for each x, E X,

are experirrental equations defined on X2
tional response functions nx, , x, f X, a

be rrotivated as in the case X = X2 :

so that for each of these condi­

finite linear parametrization can
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a..~ (x
2

) Bx
1

x
1

(7)

with

T
(Bx 1,···,Bx ( ))

1 1r x 1
T

= (ax 1,···,a ( ) )x
1
r x

1

By suitable arrangements and aggregation of the so defined partial regression
mcx:lel equations indexed by x 1 EO X1

T
Yx (x2) = aX (x2)Bx + EX (x2)

1 1 1 1

on nay obtain the linear lTlOC3.el equations on the carplete set X =X1 x X2 :

where of course the fonn of a and B highly de~ds on the kind of inter­
action ....hich might exist between the qualitative and the quantitative
factors.

The t ....u extreme but also the two Il'Ost irrportant classes of m::x:els
classified by interaction of the two kind of factors are treated in
section 2 respectively in section 3.

1.2 Conditional representations of designs

The conditioning of the rrDdel equations alrrost naturally suggests also
a conditioning of a design an X = X1 x X2 ' naI!'.ely the follO\lTing represen­
tation:

Q = (N12 K ,d(N12 K))
• •• 1 • •• 1

where N12 ...K
1

= (N(x1) ,x1 f X1) is defined as in (6) and assigns the

number t~ (x1) of observations to each individual regression rrodel (7) in­

dexed by x 1 E X1 .

represents the system of ti1e designs d(x
1

) for the individual regression

IIDdels (7) indexed by x 1 (X1 ' namely

(8)

where obviously ~ represents the level of the k'th factor present at the

n'th replication of x 1 f X
1

.
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This conditional representation of exact designs together with the
conditioning of the mcx:1el I have suggested to Dr. J. IZoster, to Dr. J. Lopez­
Troya and to Dr. vI. v:ierich who succeded to characterize optimal exact
designs for serre first basic rrroels (see Koster (1976), Lopez-Troya (1982a)
and (1982b), Kurotschka and ~ierich (1984), Wierich (1984) and (1985)).

A rrore general approach introducing conditional generalized designs
has been presented in Kurotschka (1981). The present paper deals with this
rrore general approach taking into account rrore recent contributions in par­
ticular those of Dr. Wierich v.nich will be explicitely cited.

In terms of generalized designs ~ defined as probability rreasures on
P(X

1
) ~ (X

2
n~ ) the representation (8) correslXlnds to conc.itioning pro­

2
bability rreasures on prcx:1uct spaces (desintegration of measures) :

(9)

( 10)

~1 = v = L (X v({x1 })E
Xl c_ 1 Xl

is a probability measure (a generalized design) on (Xl' P(X1)) assigning

l~ . v ({xl}) = N(xl) observations to Xl E Xl and generalizing !\12 K and
• •• 1

is a [varkov kernel from (Xl' P(Xl)) to (X2 ,X2 n ~ ) representing for each
2

Xl E X1 a generalized design ~2'1 (xl) = o(x1) of the individual regression

rrroel indexed by Xl ( X assigning how the r~ (xl) observation should be distri­

buteo on X2 and so generalizing d (xl) .

v'Jith this conditional representation of ~ the inforrration matrix for
T

B = (B
1

,B2) has the following form:

T
IB(~):= fa(x)a (x)~(dx)

= LX1(X1V({Xl})fx2a(Xl,X2)aT(Xl,X2) o (dx2 ,x1)

which for different rrroels, i.e. for differently aggregated a and B simpli­
fies the design problem substantially.
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2. EXPERmmrs nTH QUALITATIVE !>lm QUAHrITKJ.'IVE FlCI'OPS ll:rrERACTn;r,

2.1 Ceneral Intra Class Experiments

The extreme case of corrpletely interacting factors can be describeC by
the following definition:

Definition

An experiment with K1 qualitative and K2 quantitative factors will

be called an experiment \dth c~letely interacting factors v,hen the n\.lITrer
of unkno,,;TI, parameters of the finite linear parametrization of its resl)()nse
function

( 11)

;:>recisely r

x
1

f X
1

•

The statistical analysis of tMu s~le examples of such experiments
have been discussed in Searle (1979) and referred to as intra class re­
gression experir.ents.
;)- and A-optimum inteaer valued designs for such basic Ii'Odels had been
characterized in Kurotschka and Wierich (1984)).

Here "''e follo,,; the rrore general approach of Kurotschka (1 981) ",11ich not
only gives ready to apply solutions to the I1'ain design problerrs accociatee:
",:ith such experiment but also throughs some light on same specific d.iffe­
rence betwerm A- anJ. C-optimality criterion for a design.

According to the definition (2.1) the response function n of such an
experiment with corrpletely interacting factors "'hich from now on will be
called a general intra class regression experiment has the follo,,;"ing aggre­
gated finite linear pararretrization:

with

where 1, } is an indicator function on X2 assiging a as regression vector
l. X 1 x1

to the response function when the level combination ~ of the qualitative

factors is present.
This aggregated forT.1 of the finite linear parar:letrization of n shows

immidiately that

Il3lE:1 €I E: 2 11) = I(v e 6)

Qiag(v ({x
1

}) 1 3 (6 (x1)); x
1

E: X
1

)
x

1
"'here
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T
lEX, (o(x,) = JX2aX, (x2)a

x2
(x2)0(dx2 ,x,)

is the infomation rratrix of the design °(x,) of the individual rearession

nodel indexed by x, <: x, for the parameter vector Bx
The problem of finding D- and P-.-optirnurn designs' E; for B can Imo.v be

solved conditionally by detennining v and 0: The IT'aXimization of

r (x,) • (0 ( ) )n EX v({x,}) aet 113 x,x, , x,
and the minimization of

-, -, -,
trace 113 (E;) = trace 113 (v @ 0) = L (~r (trace In (0 (x )) /v ({x})

J x, '-', lOX,

with respect to v anG °has been solved in Kurotschka ('981) wit.h the follo­
wing results:
E;C = Vo 0 00 is D-optirnurn for the whole parameter vector 13 in the class of

all generalized designs iff for each x, E X,
') 0D (x,) is a D-optimum design of the individual rearession experirrent

indexed by x, E X, for the parameter vector Bx ,

2) Vo (x,) = r (x, ) /L
X

rx r (x,) , where r, (x,) is as before the number of

components of 13 "x,
E;A = VA @ 0A is A-optimurrl for the "mole parameter vector r:: in the class of

all generalized designs iff for each x, f X,:

') 0A (x,) is an A-optirnurn design of the individual regression experirT'.ent

indexed by x, E: X, for the parameter vector Bx , .
I -, ~---:;-,--

VA (x,) = Vtrace IS (<h(x, ) ) /L
X

I ex Vtrace 113 ,( '1>.(x,) )x, , , x,
Besides the fact that these results for general intra class eh'P€riJnents re­
duce the design problems to pure regression type experirrents (so that cata­
logues of existing literature on regression experirrents can be used to
provide examples) they also sho,,; ho.v different the D- and the l'.-criterion
judge the difficulty of a statistical analysis of a regression experirrent,
namely the D-criterion by the nU!t'ber of unkno.vn parameters the A-criterion
by the square root of the min:inal achievable sum of variances of the Gauss
l1arkov est:inators for the unkno.vn parameters. °

Note that if one is only interested in a subset {B ,x, (X eX} ofx,
the parameters than the corresponding D- and A-optir;al designs can be ob­
tained. by the above Characterization of E;o respectively E;A replacing every

X, by X~ in the above characterization, because for 13°:= (Bx iX, ( X~) one

obtains det I o( E;) and trace 1-6 (E;) fran ( ") by substitutJg )~~ for X, .
B B
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2.2 Experiments with partially interacting factcrs

~~though the class of all intra class experiments is rather large and
highly relevant for practical :>urposes (one has only to think of processes
rrodeled by the individual regression setups indexed by x1 f X1 indicating

that they are highly depending on a combination x1 of qualitative factors
influencing the performance of the considered processes) it may ~ickly be
left in particular if one statistically analyses such experiments dis­
covering that not all canponents of B depend on x1 so that for further

x
1

investigations optimal designs are necessary which take into account that
the factors are not completely interacting.

The case when qualitative and quantitative factors do not interact at
all and ~nich will be referred to as general analysis of covariance rrodels
will be treated in the next section in rrore detail. The case of partial in­
teraction will here be only indicated by examples \<;hich I recently sug­
gested for investigation:

Let X1 = {1 I ••• ,I} I Le. consider one quantitathefactcr with I cUffe-·

rent levels and let X2 = [-1 1+1] a standard region for one qualitative

factor and consider experiments with response function (x1 = i I x2 = t)

n1 (i/t) Bi 1
2

+ D2t + B
3

t

n2 (i/t) Bi 1
2

+ B
i2

t + B
3

t

n3 (i/t) 3i 1
2

+ B2t + B
i3

t

n4 (i/t) Bi 1
2

+ Bi2t + BDt

where n2 /n3 define the intennediate m::x:lels between the analysis of covariance

type experiment with n = n1 and the intra class regression experiment with
n = n4· (Further interesting rr.odels one gets for Bi1 = B

1
) •

l~ote that also the following practically highly relevant Il'CC.el is not
an intra class regression with

n(i1/ i 2/ t) = 50 + B!1) + B!2) + B!1~2)t + .•• + B!1~2)tr
1

1
1 2 1

1
1 21 1

1
1 2r

Eere the interaction between the two qualitathe factcrs is described being
dependent on the level t of serne quantitative factor.
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3 • GEr'.""ERAL ANOCA EXPERLMENI'S

3.1 Analysis of the design problem and first ort~ality results

Tracitionally one \o,uuld say (in analCXjy to the notion in AIDVA) tr.at the
qualitative and quantitative factors do not interact with each other iff
the response function 11 splits into two additive parts, one representinCJ
the effects of the c:cualitative the other those of the quantitative factors:

In tenrs of the conditional representation and linearization of the r..mel
equation this can be expressed by the following conditions on

Ta (x
2

)Bx
1

x
1

namely

and

a 2' ... , a ( ) and. 13 2' ... , B ( ) are inde~dent of x1 ( X1x
1

x1r x 1 x
1

x1r x 1
so that

Ey the following renumbering

and by taking into account that any 11 1 (x1) : = D
X

1 on X
1

has a finite (suit···
1 m

able, se~ appendix) linear parametrization, say 31 = (13
11

"" ,J3 1r ) 1

one obtarns:

( 13)

note that the representation 11 = 11 1 + 11 2 here is uniCTUe by the re:lliirerrent

that 1 and 0.21 "" ,a
2r2

are linearly independent on X2 which follows iff one

restricts oneself to "Jte-taLi.\Juy miMmal -U-neM pMame.;tJUzcU:ioVL6" of the con-·
ditional r.odel equations,that is to linearly independent systems of func-
tions a 1""'0. .x 1 x

1
r

This anc. the restriction to non degenerate designs has been I1E.de through­
out the "'hole made paper without loss of too I1Uch generality but hopefUlly
with sufficient win in basic understanding (altI1Oucrh I CIT" a\o:are that gene­
ralized inverses have sa:-etimes an unresistable attracLion) .
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The conditional representation of il generalizec1. (but also an integer valued
concrete) design E; = E;1 €I E; 2 11 allor.vs now the following representations of

the relevant informa.tion matrices:

(14 )

\\nere

T T
1

131
(E;1) = IX1a1a1dE;1 = L

x1f
..X,a1 (x1)a1 (x1)v({x1 })

is the infonna.tion rnatrix for E
1

of t.~e design E;1 = v (the rn.rginal of E; on

x
1

) of the NDVA experiment with response function n (x1) = a~ (x1) E
1

'

T
I B (E;2) ~ Ix a 2a 2dE;2

2 2

is the informa.tion matrix for E2 of the c.esign E;2 =L
X1

r-h
1

E;211 (x1) v ({x1})

(the nlarginal of E; on X
2

) of the regression experiJrent v.'ith response function
Tn(x2) = a
2

(x
2

)3
2

and

(15)

Ane: from here one sees that

IE (E;) = IE (E;1)
-1 T

- I
12

(E;)I
B

(E;2)I 12 (E;)
1 1 2

IE (E;) = IE (E;2)
'l' -1

and- I
12

(E;)I
E

(E;1)I
12

(E;)
2 2 1

(16)

T -1
det IB(E;) = det IE (E;1)det(IE (E;2) - I12(E;)IS1(E;1)I12(E;))

1 2

= det I
B1

(E;1) 0 det I
B2

(E;) = det I
n1

(E;) • det I
B2

(E;2)
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-1 T det IE (EJ
det 1

31
(EJ = det(I

31
(E';1) - 1 12 (E,;) 1

32
(E,;2)I12(E,;)) "'....".de---ct:--=I,--3

2

--;-:(E,;-2·)

T -1 T det I 3 (E,;)
det 13 (U =det(IB (E,;2) -I12 (E,;)I

31
(E,; )I12 (E,;)) =det 1

3
(~)

22
1

and

Because for any design E,;* with

it follows that

I (E,;*) = I (E,;* ® E,;*)
3 3 1 2

Le. the design E,;* has the sane infon:ation rratrix as the ?roduct of its
rrarqinals and

(17)

I (E,;*) ~- I (E,;~)
B. 3. 1

1 1

i=1,2, ... (18)

Le. the design E,;* has the sane inforrration matrix for the parameter vectors
31 ane: 32 as its corresponding rnarginals q res~tively E,;2 one obtains

inmed.iatly the following theoretically rather trivial but practically very
useful characterization of optirrruIr. desi<;n (v,hich has been used in Kurotschka
(1981) to oorstruct exariple, but not m~licitly formulated. because of its
obvious valiciity) :

Theorem

If a design E,;2 of the regression experirrent v,ith response function
Tn2 = a 232 has the property

JX2a2(x2)E,;2(Ox2) = 0 (~: "SljmmeVlIj 06 E,;2 w.r.t. a 2"

then (the following three staterrents follow fran ( 18)):

(1) Iff a design q of some AFJOVA experiments with response function

n1 = a~31 is ~-optimal within some class 111 of designs for some vector 1J!1

of linear independent functionals of 31 then the product E,;* = q ® E,;2 is a

~-optimum design of the AlD:A experlirent characterized by the response

function n = a~B1 + a~32 for 1J!1 in the class of all designs E,; of the ~1OCA

experi..'TeJ1t for which the rrarginal E,;1 E 111 .



64

(ii) Iff t:2 is in addition ep optimal for some vector 1ji2 of linear indepen­

dent functionals of B2 in some class ~2 of designs of the above regression

experirrent then for any design t: 1 of the NJCJI1A experirrent the product

t:* = t:
1

181 t:2 is a ep-optimum design of the corresponding ANCCA rrodel in the

class of all designs t: of the AlICCA experirrent for which the rrarginal
t: 2 F ~2 .

(iii) The prcxiuct design t:* = q 181 t:2 is ep-aptilPal for 1ji = (1jJ1 ,1jJ2) T in the

class of all designs t: of the N.:JCCA experiJn.ent for which the rrarginals
t:1 C ~1 and t: 2 F ~2 iff t:; and t:2fullfill above condition (i),respectivelY(ii).

note

1) In the above statements ¢-optirral stands for any optilPality criteria
based on (the inverse of)theinforrration matrix of a design.

2) I am awBre that classically the name NiCX:~ (Analysis of Covariance) is
referred. to experiJrents where response functions Tl 2 are constitutee. by con-'
cawitant variables.

LJevertheless the use of this nacre for the more general experir..ents as
regardea here is equally justified by the same formal arguments as in
classical literature.

3) The above statements hold for generalizecJ. as v.-ell as for concrete designs.

4) The validity of the theoreT:. is due to (18) and. is obviously not entailed
by the design t:* being a product design, Le. ( 17 ). The role of :Oroc'uct
desigrnv.;ill be discussed in the next section.

J'.rrlications of the theore."" (ExaI1\Dles)

1) If a 2 is the vector of one dinensional projections on X
2

and X
2

is suffi-

ciently synmetric around. 0 , such as a sphere, a cube, a sirrplex centrec': in
zero then C- anc, A-optir:urr. c~esic:;ns for 52 are knCJV,TI ".-hich are syrrmetric

'{{.r. t. a 2 (see J11UltidiJnensional linear regression in Feo.orov (1972) , note

that the examrle in Kurotschka (1981) is of tbis t:vre).

2) i·;ore generally a series of "higher order factorial rearession" experi-

1'1 1):2
I!El1ts with regression function a

2p
(x

2
) x

21
• ••• •X

2K2
of cxld

':U1ers P1 + ••• + PK constitute a large class of exaJ'Dles where in

rarticular [)-D?til:al Designs which are syrrrrretric w.r.t. a
2

exist.

3) The syst~. a 2 of trigorametric functions constitute popular mo6els

....here the equidistant anc' equiv.leighteC: c.esigns are D-· and l',-ont:i.rnur:l and.
syrrmetric w.r. t. a 2 and. therefore define classes of ND::.J:". nndels as exarrples
for the above theorer...
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3.2 The role 0:: product C',esign and. further opti.Tt'ality results

To analyse the optimality of prcduct designs, i.e. d.esigns E; for which
E;211 is independent of x1 E X1 ' i.e. E; '" E;1 @ E;2 it seems to me suffici-

ently essential to concentrate on experiments with

(A) 1 qualitative factor and

(E) K qualitative non interacting factors (see appendix for justification) .

In my paper 1981 I expressed my conviction (argueing heuristically) that a
restriction of optirrality considerations to product designs is adr.lissible.
'!he first fonnal proof was published. by Dr. t':ierich (1986b) for the case (A).
In the rreantirne there exist several rather general proofs justifying the
restriction to prcduct designs (including the case (E)) at least when opti­
nality criteria are invariant with respect to linear repararretrizations of
the AUOVA pararreters B1 (such as uniform optimality, D-cptimality and several

minirrax-cptimalities). Therefore it seems to be relevant to look closer at
my results on prcduct designs in (1981) and Sc::ilE of its obvious extensions:
According to the general formulas (16) one obtains rrore or less il:Fediately,
after simplifying

for the

IIB1 (v)

lJa 2d6Ja~dv
fa ,d'fa;d"

I
B2

(6) J

CASE (A): n1: X1 = {1, ... ,I} 3 x 1 = i -+ n1 (i) = B
U

CIP.

If j
i=1, ... ,I]

v(i)6ii , - c(6)v(i)v(i') "=
, 1 1, ... ,1

with

(1 - c (6) )det I B (v)
1

(19)

d.et I
B

(v @ 6) (1 - c(6) )det I B (v)det IE (6)
1 J 2

det I B (v @ 6) = (1 - c (6))det I B (6)
2 2

Si.rnilarly si.'Tl[lle one gets

-1 I
trace I B (v @ 6) = I . c(6)/(1 - c(6)) + Li=11/v(i)

1
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Cbserving that

and that

is the infonration ma.trix of a design 0 of the regression experirrent with
response function

which Dr. Wierich called the pure regression part (and I preferably the
"au;rrrented regression experirrent") one gets Dr. Wierich's alternative
representation (see (Wierich (1986b) and (1987)):

det IE (v €I 0)
1

o
IE (o)det IE (v)

o J 1

(20)

and

det IE (v €I 0)

-1 0 0 -1
trace IE (v €I 0) = (1 - IE (o))/IE (0) + trace IE (v)

1 0 0 1

Both representations shaw that prcx:luct designs reduce the general design
problems to problems of designing pure ~OVA and pure regression experiments
but one has in addition to minimize c (0) = 1 - 18 (0)

o
also trace I~1 (v €I 0) is easy to determine as direct calculations shaw:

2

IE (v €I 0) = fa2a~do - fa2a~do = I~ (0)
2 2

Consequently one has

-1
-1 I~ (0) (21)trace IE (v €I 0) trace

2 2

-1 I
1
C(0) -1-1 I~ (0)trace IE (v €I 0) trace + 1 - c(o) + trace IE (v)

2 1
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The validity of ( 21) is in genera:!. equivalent to

which is true tmder general conditions on a 1, sufficient conditions which

can be generalized are given in Wierich (1987). For experiments with K1 non
interacting qualitative factors, i.e.

K1 K1 (k)
CASE (B): n1: X1 == ~==1 {1, ... ,Ik } :3 x 1 -+ n1 (x1) Lk==1a~ f.:R

with control paranetrization identified by aik ) == 0 , k == 1, ... ,K1 - 1
k

one can easily prove the validity of ( 20 ) directly and so obtain the sane
formulas ( 19 ), ( 20 ) and ( 21 ) for this case only IE (v) replaced by

1
( 23 ) from the appendix. Here the formulas (21 ) for the traces of product
designs are less relevant because A-optiIral product designs (in contrary to
the D-optim..lm) need not to be A-optimum arrong all designs.

Exarrples and COtmter exarrples investigated by Kiefer's and Fedorov I s
equivalence theorem may be fotmd in Wierich (1987).

4. APPENDIX: On optimum design of MDVA experiments

The notions and results of this section represent (tmless otherwise
explicitely stateG) a short surnncrry of may papers (1967) and. (1972) which
have been republished by parts in (1971) respectively (1978) and are in­
cluded here because of their restricted access and their relevance to the
discussed problems.

To study design problerrsin terms of the information matrix the follo­
wing two ANCNA mcdels seem basic to rre:

CASE (A): Experiments with one ~litative factor.

Because an experiment with K qualitative factors corrpletely interacting has
the sane nUITber of essentially tmknaNIl pararreters (number of pararreters of
a relatively minimum pararretrization) as the nUITber of different experi-

rrental conditions x1 E X1 == {==1 {1, ... ,~} such an experiment can be looked

upon (by renUITbering the level canbination using for instant lexicographical
identification) as one factor experiment with 1 1 0 1 2..... I

K
different

levels. The design problems remain essentially equally trivial.
By similar reasons and argurrents one can justify the inportance of the

less trivial

CASE (B): Experiments with K noninteracting qualitative factors.

If in an experiment with K factors one pair of factors (say the first two)
interact then to the 1

1
. 1 2 different level canbinations there correspond

1 1 0 12 unknown (essential) pararreters which can be looked upon as effects

of one factor having 1
1

. 12 different levels, the rrerged rrodel is then a

(K - 1) factor experiment without interaction. The sane rrerging of inter­
acting factors can be done if two or IIDre disjoint pairs (or tripels and so
on) of interacting factors exist reducing the rrodel to one with less but non
interacting factors. The consequence for optimum design will be seen to
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be obvious.
It is convenient to use a nonsyrnretric control pararretrization not only

because of their practical importance but also because it best discriminates
between the two basic optimality notions: D- and A-optimality, also because
of technical reasons, it is a relatively minimal pararretrization:

n: x~=1{1, ... ,Ik} 3 x1 -+ n(i1,i2""'~) = ~=10~) f:JR

(k) }with the identification conditions: 0I = 0 , k E {1, ... ,K-1
Here we have k

and

(1)
, .•. ,0I -1

1

(2)
'°1 ' ...

(K)
, °1

(K)
, ... ,o~

which are coordinate functions (1-dimensional projections) on X1 so that
Taa is a matrix of two dirrentional projections so that it follaYs that

TI B(v) = faa dv depends on v only through

its t\\D dirrensional marginals vkt 1 < k < t < K .

Identifying the number N(i1 ' ... ,~) of observations at the level canbination

x1 = (i1""'~) with N . v({i1""'~}) one obtains ~orN . v ~ritten as
K

N12 ...K = (N(x); x E X = ~=1{1, ... ,K}

. .
NtK ~~. 'b

K
j

(23)

where the NR,k are matrices of the "second order totals" NR,k(it,ik ) , Le.

the total numbers of observation with the t I th and k' th factor acting at
level it' respectively ~ , with bars on the Ntk indicating the deletion

of the last rows and colUIm1s subject to the control pararretrization, and
the I\ are diagonal matrices having the "first order totals" l\ ' Le. the

total numbers l\(ik ) of observations with the k'th factor acting at level ~

Here too, in all of the I\ except DK ' the last raY and colUIm1 is deleted

subject to control parametrization.
By partial inversion fonnulae for matrices one obtains for 1jJ (B) =

(1) (1 )
°1:= (°1 , .•. ,oI_1):
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ri2
'1

lN~Kj

and by Lagrange multiplier rrethods the rrain result:
A design N'2 ...N is an uniformly optirral design for 01 in the cl~ss of

all designs with fixed first order totals N
l

' iff the second order totals

N'k ' k = 1, ... ,K of :.1'2 ...K satisfy

* . , _ Nl (il )Nk(ik )
Nlk (ll,lk) - N ' i l = 1, ... ,1 1 , i k = 1, ... ,Ik , k = 2, ... ,K

i.e. if N'2 ...K has p~opo~onal ~econd o~d~ tot~ Nlk ' k = 2, ... ,K ,

Le. if v* has proportional 2-dimensional rrarginals (to the l-dirrensional v,)

v lk ' k = 1, ... ,K

Le. if the 2-d.imensional mrrginals of v* of the first factor are product rreasures.
Note if the model results fran rrerging 2 (or rrore) interacting factors

to one then the corresponding uniform optirral design will have 3-dimensional
mrrginals which are proportional to the two dimensional corresponding to the
two rrerged factors (see Kurotschka (1972/78)).

For uniform optirral designs for a l ' Le. those with proportional

N'k ' k = 2, ... ,K , one has an infomation rratrix for °1 :

Jcx..(N*12 ...K) = «Nl (i)ol'l" - N (i)N (i,))~~~,···,I)
I 1 1 1 -1, ... ,1

therefore 0- and A-optirral designs ill the class of all designs of total

sarrple size N one gets if the second order totals Nlk are proportional

to "D-optirral" first oLder totals defined by N, (i) = N/I respectively to

"A-optirral" first order totals, defined by

N/(v'I l - 1 + 1
1

- 1) i l 1, ... ,1
1

- 1

lJ,(i l ) = {
N/v'I-,-=-r + i l = 1 1

<lJserve that all these properties concerned with 01 are carpatible with the

analogue properties for 02""'~ so that one can speak of uniform optirral,

D- and A-optirral designs for the first L factors. But such staterrents are
obviously concerned with optirrality properties of I (v), .•. ,I (v) not

°1 ~

with ITT T T ' v,hich has to be considered if one is 6ealing with
(°1 ,°2 " •• ,~)

statistical procedures based on joint information rratrix rather then the
partial. For the A-optirrality this stronger result (rrinirnizing the trace
of the joint inforrration rratrix) follc:ws imnediatly fran the partial results,



70

for all ;J < K - 1 . The main nelll contribution of ~'1ierich (1986) is that the
D-optimurn design is one which is discribed above as a D-optimurn for the
first L factors, namely the design with proportional second order totals
1~9- ' 1 ::: k ::: L , k ::: 9- ::: K and balanced first order totals Nl' •• "~ ,

L = 1, ... ,K , or expressed in tenns of v:
v has unifonn 2-dimensional marginals vk 9-' 1 .2 k < 9- < L and

v
k

= v·~ V n , 1 < k < L < 9- < K9- ~. ~ - - -

A last remark on critics and polemics against generalized designs in N:JOVA
experiments:
It is in contrary for ANOVA-experiments reasonable and infonnathe to adrnit
generalized designs, because N(xl) , Xl ( Xl are seldom in practical problems

interpreted as number of repetitions, but rrore often as size of the experi­
rrental unit (size of the field, arrount of material of sare given quality,
extension of sone region or space, and so on) and implicitely detennines
the unrestricted optimal allocation not disturbed by cc:mpra:Ii.ses of providing
intervalued l-J (.) , see for rrore details Kurotschka (1972b).
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DESIGN AND ANALYSIS IN GENERALIZED REGRESSION MODEL F

M.B. Maljutov
Moscow State University. Moscow. USSR

Classical regression analysis has two appealing features from the point of
view of applications:

1. Nonparametric nature: only two moments of measurements are supposed
to be known instead of rarely known distributions.

2. Linear or iterative linear estimates are used which are easy to compute
and analyze and which have some optimality properties.

Among numerous generalizations of classical regression methods (generalized
linear models. minimal contrast estimates. etc.) we wish to point out one model
which preserves both useful features of the classical model and at the same time is
much more flexible in applications. I mean the following F-model which - as an
intermediate step - appeared in estimating parameters of exponential family distri­
butions (Barndorf-Nielsen. 1978). as an asymptotic principal part of errors in
variable model (Fedorov. 1974). and was called "fitting expectations" in (Jennrich
and Ralston, 1979).

It will at first be introduced in its simplest form without some technical condi­

tions. Let measurements V1 ER1 have distributions p:iO. Zt EX. i =l .....N.
such that

E",Vt =71(Zt,")

Va.r Vt = v(Zt.")

"E8cRP

where 71(-) and v (.) are smooth bounded functions of Z .". The only available
results are asymptotic when N ~ 00. Thus we need a condition of the weak conver­
gence of the design measures:

eN:= N-1!:f=1 :l%i(')==>e (3)

where e is a probability measure on X.

The important asymptotic identifiability condition of " via 71('.") is crucial
which excludes situations where a certain part of "'5 components has influence
only on yO. e.g .. in the variance components model. The global identifiability con­
dition is as follows:

R(","') :=J(71(Z,") -71(z,,,,))2 e (dz) >0 (4)

when" ;l "'. e is compact.
When investigating the local behavior of estimates with a good prior guess

available it is sufficient to demand only the following condition

JrpT (z.")v -1(z. ")rp(z. ")e(dz) : = m (") (5)

is uniformly non-degenerate in 8. rp(') = d71(-)1 d".
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N
In general "leasl squares" (LS) estimale arg min" L: (Yt - T](%t ,,,))2v -1(% ,")

t =1
is nol even consislenl for F-model. bul lhe slighl generalizalion of lhe ileralive
Newlon-Gauss algorilhm (NEGA) of evaluating LS estimale. namely lhe well-known
ilerative reweighled NEGA (IRNEGA) reaches lhe lower bound of lhe local asymp­
lotically minimax (AM) quadratic risk which we will slale below.

We also give lhe lower bound for lhe procedure's (Le. design combined wilh
estimale) performance and lhe procedures reaching lhis lower bound asymploti­
cally are given.

Now we shall oulline a general scheme for which our resulls are valid.

1. We consider multivariale measuremenls Yt E R m fulfilling conditions
analogous lo lhose indicaled previously. This MF-model includes lhe variance com­
ponenls (YC) model mentioned earlier (see Luanchi, 1983), estimation of grouped
dala (Luanchi and Maljulov. 1984). elc. Lel us explain e.g. lhe connection belween
YC- and F-models. Lel Y = XfJ + I;I=lUtet. e t be mulually independenl nCveclors
of LLd. componenls, Eat =O.Ee/=OZ. ThenEy =XfJ.Covy =I;[=lUtUtaf. Lel
lhe lhird and fourlh momenls of y be lhe functions of fJ.af • ... •a; (which is lhe
case when lhe combined veclor (y T, Vec yy T) T is described evidenlly by lhe MF­
model.

2. Almosl all lhe asymplotic resulls for lhe MF-model are available for
sequential design (SD). The necessily of such a generalization was emphasized in
Silvey (1980). An informal description of SD is as follows. After each measuremenl
Yn we gel a decision based on yr := (y1 ..... yn) whelher lo slop (N = n) experi­
menls. In lhis case a decision on lhe underlying dislribution~ (in our case - an
estimale of ") is laken. Olherwise we choose a design poinl %n +1 (yr) E X and
make lhe following measuremenl Yn + l' We shall survey here only lhe case where

%
lhe conditional dislribution of Yn + 1 for given yr is P "n+1 depending only on
%n+1(yr). It is clear lhal yr is no more an independenl sequence. bullhe mar­
Ungale lechnique (Maljulov, 1983), using consecutive cenlerings provides us wilh
sufficienl information on lhe asymplotic behavior of estimales. including asymp­
lotic confidence bands.

We omil here an accurale description of lhe measure P~ on yN corresponding
lo SD-s (see Maljulov. 1983). Some nolations are needed:

N" =E~N.j~ =ff%(y)~(dy).

The static projection rrJO of s is a measure on X such lhal for all fJ C %(a­
fieldofX's subsels)rrJ(B) =&;1I;t=lP~(%1: EB.k :!!.N).

The predictable projection of s is a random measure on (X. %) such lhal for
all B C %

nJ(B) = &,,-1 I;f=11.(%1: E B)

1.(A) is an indicalor of lhe evenl A. The sequence sn of SD-s is called asymptoti-
s

cally nonrandom (ANR) if n"n converge weakly lo lhe nonrandom measure rr"
(now we suppose X lo be a complele separable melric space). The example of a
sequence of SD-s nol being ANR is lhe following.

Lel Y = (y (1). y(2»),X = 10!. yA1) be Li.d. P" and yA2) be a probabilily of
jumping from n lo n ± 1 is 1/2 ± 1/3sgn n. Irrespectively of lhe initial position
yJ2) -+ ± 00 wilh probabilily 1/2. Now lel N 2m =2m + msgn yJ,2). Thus N =3m or
m. n"IO! =3/2 or 1/2 wilh probabilities 1/2. If bolh lhe slopping lime and con­
lrols do nol depend on noninformative chaotic variables and a sequence of SD-s is
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adaptive lhen usually we have an ANR sequence. Limil lheorems' expressions for
such cases usually depend only on 7TJ. Asymplotic normalily (AN) of common esti­
males is usually lrue. Olherwise limiting information malrices are random and lhe
asymplolic dislribution of common estimales is nol normal.

The following lwo useful formulas generalizing the well-known Wald identities
for SD are exlensively used in proving our resulls.

Lemma 1. i) If sup Jlg:r (y )IP~ (dy) < "" and sup ii" < "" lhen

E~E::=1g:rn(yn)= ii"Jii; 7TJ(SX)

ii) If sup J (g;;, (y»2~ (dy) < "", sup ii" < "" and

lhen

Lelting " lo vary over 9 (e.g., being an initial guess, we denole by"· the lrue
value of". SD for F-model is described by the equations

E~. (Yn Iyf -1) = 7](Xn , ".) )

C S ( I n -1) _ ( _Q.) a.e. when N ~ n .
DV". Yn Y1 - v xi' lJ'

and regularily conditions from Maljulov, 1983. The lower bounds oblained lhere
are accurale for ARD sequences and may be made higher olherwise. To derive
such improved lower bounds we need the exlra condition:

sn".... weakly converge random measure n"
-s

We normalize SD sm by the condition N,,": =m and consider lwo lypes of lhe
lower bounds for the quadratic risk. The firsl one is valid for the cerlain class of
ilerative estimales and for any dislribution ~ satisfying (2). The second lype is
over any estimales bul the additional supremum over cerlain class of dislribulions
P; is inlroduced.

Lel us formulale the firsllower bound. For any li E: R p • Ai > O. i = 1 .....p lel
us inlroduce

where

is an arbilrary linear in residuals correlation for " •. Lel

and

R(T) = lim lim sup mR
s

.... (,,)
C"~ m ..~"EB(clm)

Theorem 1. Under regularily conditions oullined

R(T) ~ E t At ltml t
t =1
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where m is the random information matrix:

m =f ~T(z,""')v-1(z,""')~(z,""')n.,,"'(dz)

and the expectation is over distribution of n" ....
Let us consider any estimates T of " ... such that

sup EIITI12 < 00

over class K(TJ.v) of distributions P~ with the conditional means TJ(-) and covari­
ances which are smaller in Loewner sense than v ('). Let

l?s (c) = sup mE~'" 2; At (l[(T - ,,»2
"EB(c 1m) t =1P

Theorem 2. Under regularity conditions outlined

lim lim l?s", (c) O!: E ~ At l[mlt
c .... oom ... 1lO t=l.JJ

Our last lower bound concerns procedures i.e., combined design and estimate.
We fix differentiable function 41 of information matrices m. which is convex in
m -1,41 .... + 00 when m approaches A degenerates matrix, 4l(m) O!: ~(m ') if m ~ m'
in Loewner sense and 4l(am) = a-1 41(m), a> O.

As a consequence of theorem 1 we have

Theorem 3. Under regularity conditions outlined

lim lim m sup 4l(E~~[(T("")-"... )(T(',") -"... )Tr1 O!: 4l(mo) = min 4l(m)
~~... "EB(clm)

This theorem justifies the intuitively obvious fact ~-optimal static design is
also the best among SD-s. There is certainly a version of this theorem which
corresponds to theorem 2.

The usual two-step procedure:

- The first I: m experiments (0 < I: < 1) are planned statically to provide (4)
which is sufficient for vm-consistency of the LS-estimate ';'0 for "... Jennrich
(1969).

- The remaining (1-I:)m experiments are planned statically with normalized
information matrix m 0(';'0)' The first IRNEGA-estimate will provide us with
(1 - I:)-efficlent estimate for " ....

I will not touch here asymptotic theory of IRNEGA-estimates for F-models
which is developed In Maljutov (1963). The only remark Is that this theory is the
application of limit theorems for random fields, which is unavoidable when the esti­
mates are interated.

The participation of R. Matos Marino Is acknowledged in proving Theorems 1
and 2.
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1. INTRODurnON

The design of experiments for parameter estimation gives rise to two different problems: first one has to
define the criterion to be used to compare experiments, second one has to optimize it. The availability of
algorithmic procedures intended to solve this optimization problem in a reasonably simple way thus appears as a
preliminary requirement for the practical use of experiment design. Classically the definition of the optimality
criterion is based upon the well-known asymptotic properties of maximum likelihood estimators. The most
commonly used criterion is the determinant of the Fisher information matrix, and an experiment that maximizes
this determinant is said to be D-optimal . This maximization can be carried out by using a specific algorithm
when one is interested in a design measure (Fedorov 1972, Silvey 1980), or by resorting to classical nonlinear
programming algorithms when one wants to optimize a discrete design.

When the model response is a nonlinear function of the parameters to be estimated, both approaches lead to
an experiment that depends on the (unknown) value of the model parameters. The most traditional approach
consists then in designing a D-optimal experiment for some reasonable nominal value of the parameters. An
important consequence of such an approach is that the uncertainty on this nominal value is not taken into account.
This has raised some doubts among experimenters about the practical interest of optimal experiment design.
Several approaches have been proposed to overcome this difficulty. One of them consists in designing experiments
in a sequential way by alternating estimation of the parameters and experiment design. Each estimation procedure
improves the information available on the parameters, to be used during the next experiment design. Sequential
design has been widely studied and applied in many situations (see e.g. Box and Hunter 1965, Fedorov 1972,
D'Argenio 1981, DiStefano 1982), and when feasible it can be considered as an efficient answer to the problem
raised by nonlinear models. However one is often faced with situations where a single experiment has to be
performed. Moreover, any sequential design can be considered as consisting of a series of single experiment
designs that have to be performed as best possible given the available information on the parameters. These two
reasons give a particular importance to nonsequential approaches, that aim at designing single experiments while
taking into account some characterization of the parameter uncertainty. For that purpose two methodologies seem
particularly attractive.

The first one is Bayesian and assumes the knowledge of the prior distribution of the parameters. The criterion
to be optimized is then the mathematical expectation of some classical non-robust criterion over the possible
values of the parameters (Fedorov 1972, 1980, Goodwin and Payne 1977). Each evaluation of such a criterion
requires the computation of a mathematical expectation, and this seems a tremendous obstacle to the practical use
of this approach. To design discrete optimal experiments, we propose a stochastic approximation algorithm that
enables Bayesian criteria to be optimized almost as simply as classical non-robust criteria would be. However such
an approach may lead to very poor experiments for some particular values of the parameters associated with low
values of the prior probability density function. When such a situation is unacceptable. one may prefer to
optimize the worst possible performance of the experiment over the admissible domain for the parameters
(Fedorov 1980, Silvey 1980, Landaw 1985). This minimax (or maximin) design only assumes that the
parameters belong to some prior domain, without any hypothesis on their distribution. Here again the
computational burden generally involved in minimax optimizations is an obstacle to the practical use of the



78

approach. For that reason we describe some tools for designing discrete minimax optimal experiments at a
reasonable cost

Section 2 briefly states the problem and defmes the notations to be used. Section 3 presents some criteria of
optimality related to Bayesian design, some properties of the corresponding optimal experiments, and a stochastic
approximation algorithm intended to optimize Bayesian criteria. Section 4 defines the minimax criterion to be
used when Bayesian design is unacceptable. The particular case of exponential regression models, widely used in
the biosciences. is considered. An algorithmic procedure for the optimization of minimax criteria is described.

2. PROBLEM STATEMENT

Denote by Y.. the N-dimensional vector of all available measurements on the process• .e the p-dimensional
vector of the parameters to be estimated, and l< the n-dimensional vector describing the experimental situation (e.g.

sampling times, control variables...). Suppose that the measurement noise £." is additivewhite with zero mean and

a distribution f(£.") independent from the value of .e. Denote by Y..m(fl.,e) the output vector of the model with

parameters.e.. associated with the observations Y... If there is no error in the model structure. a "true value" .e." for
the parameters exists. such that

Y..=Y..m(fl." &> + £.... (1)

Under some regularity conditions, the maximum likelihood estimator of .e based on Y.. is asymptotically normally

distributed N(fl....MF-l(fl... ,e). where the Fisher information matrix MF(fl.&> can be written as

where

X(fl.,e) = aY..m(fl.,e)/a2t•

and

(2)

(3)

(4)

If the noise is also supposed to be white, then ~W is diagonal and one obtains the well-known expression

N

MF(fl.&> = ~ (l/wi).aYmi(fl.&>!a.e.· aYmi(fl.,e)/a.e.t, (5)
i=l

where Ymi is the ith component of Y..m. and where Wi is the ith diagonal term of~W (for an additive white noise

N(O.a2). Wi=a2). When Ymi(fl.,e) is a nonlinear function of fi, the Fisher information matrix depends on fi, and the

classical D-optimal design consists in maximizing the criterion

(6)

with respect to l< for a given nominal value of 2. The uncertainty on this nominal value is not taken into account.

The methodologies described in the following sections aim at removing the dependence on .e. by using some prior

knowledge on the possible values of 2. Because of the large acceptance of D-optimality. we will focus our
attention on criteria based upon the determinant of the Fisher information matrix.

3. BAYESIAN DESIGN

3.1. Cri.lma

In order to describe the prior parameter uncertainty. the parameter vector .e. is supposed to be distributed

according to a known probability density function p([). The knowledge of p@ may result from previous
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experiments, or may simply express our uncertainty on the location of fl". Bayesian criteria of optimality then
correspond to the mathematical expectation of some functional of the Fisher information matrix (Fedorov 1972.
1980, Goodwin and Payne 1977. Pronzato and Walter 1985, Walter and Pronzato 1985, 1987. Chaloner and Lamtz
1986). Among the possible criteria that can be deduced from (6) consider the following ones.

Definition 3.1.
An experiment l:ed is said ED-optimal if it is associated with the maximum value over the admissible

experimental domain E of the criterion

(7)

where jd(fl&) is given by (6), and where Ee (.) denotes the mathematical expectation over the possible values of fl.

Definition 3.2.
An experiment l:eid is said EID-optimal if it is associated with the minimum value over lE of the criterion

In what follows the admissible experimental domain is supposed to be defined by

eimin SCi S Cimax. i = 1•... , n.

(8)

(9)

It must be noted that, except when the Fisher information matrix does not depend on fl or when p(fJ.) reduces to a
discrete measure with one point of support. ED- and EID-optimality are not equivalent. An ED-optimal
experiment maximizes the average value of a scalar measure of the information to be gained from the experiment,
whereas an EID-optimal experiment minimizes the average value of a scalar measure of the asymptotic parameter
uncertainty. As far as reducing parameter uncertainty is concerned, EID-optimality should be preferred to
ED-optimality (see e.g. (Walter and Pronzato 1985. 1987, Pronzato 1986) for a comparison between these two
criteria).

3.2. Prooerties

Linearity with respect to some parameters. Even if they are nonlinear in the parameters. model outputs often
are linear in a subset of these parameters. The following theorem then extends to EID-optimal design a
well-known property of D-optimal design.

Theorem 31.
If the following hypotheses are satisfied:

HI: the model output satisfies

with
fl =(flIt. fln1t)t,

H2: the noise is additive. White. and distributed independently from fl,
H3: the linear parameters fll are distributed independently from the nonlinear parameters .enl,

then the EID-optimal experiment can be obtained with all components of fll fixed at 1.

~.

From HI and HZ the Fisher information matrix can be written (Pronzato 1986)

(10)

(11)
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(12)

(13)

where Ip is the pxp identity matrix, Op is the pxp null matrix, JIp is the p-dimentional vector with all entries

equal to 1, D( fil) is the diagonal matrix diag( elj, j =1,... , p). Taking H3 into account, one has

p

jeidW =E!!I( n (eIF 2}. E!!nl(deC 1MFWp,!!nl&)).
j=1

The linear parameters fil only appear in (13) as multiplicative terms that do not depend on~. The ElD-optimal

experiment can therefore be obtained by minimizing Efinl (det- 1Mp(u.p,!!nl&)) with respect to ~.

Reparameterization of the model. Among the attractive properties of D-optimal design is the fact that a
D-optimal experiment is invariant with respect to any non-degenerated transformation applied to the model
parameters. Unfortunately this property generally does not hold true for ElD-optimai design. To prove it, consider

a repararneterization of the model defined by .MID. The ElD-optimality criterion for the estimation of fi can be

written as

(14)

which generally differs from Efi (det-2(al.tJaID) .Efi(det- 1MpQ.<ID&)). Consequently the ElD-optimal experiment

for 1.. generally differs from the ElD-optimai experiment for fi.
lk!llil!:k. ElD-optimal experiments are nevertheless invariant under any linear transformation (such as a

change on the units in which the components of fi are expressed), for then a1..t/afi is not a function of fi.

Replicated experiments. It is well known that D-optimal experiments often consist of replications of
observations made under the same experimental conditions. This property has received a great deal of attention (see
e.g. (Box 1968, Wynn 1972, Landaw 1980». The following theorem indicates that ElD-optimal experiments can
also be expected to consist of replications of some minimal experiment (see (pronzato 1986) for examples).

Theorem 3.2.
Subject to regularity conditions, any experiment ~* that corresponds to a stationary value of the criterion jeid

can be associated with a parameter value ileid~*) such that ~* also corresponds to a stationary value of the

criterion jdceeid~*)&).

frQQf.
Deriving (8) with respect to ~, one gets

ajeid~)/a~ I~* = J!! a(1/jdce,tl)/~) I~*·p([)·dfi, (15)

which implies the existence of ileid~*) such that

ajeidW/~ I~* =a(l/jd<ileid~*)&)Jatll~*' (16)

The stationarity of jeidW at ~* therefore implies that of jd<ileid~*)&). Consequently when the ElD-optimai

experiment is obtained for a stationary point of the criterion (8), this experiment is also a stationary point for the

D-optimality criterion for some value ileid of the parameters. Whenever this stationary point corresponds to the

optimum of the criterion (6), the ElD-optimai experiment will present the same properties of replications as a
classical D-optimal experiment

3.3. Algorithm

Stochastic approximation algorithms (Dvoretsky 1956, Poliak and Tsypkin 1973, Saridis 1974) are
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especially attractive for the optimization of criteria involving the computation of mathematical expectations. They
permit to avoid any evaluation of such expectations and thus to save a considerable amount of computational
time. The classical Robbins-Monro procedure, described here for the minimization of the criterion jeid' can be

written as

a
l<(k+I) = l<(k) - A(k) - (del" I Mp(!!(k). l<)Il< = l<(k). (17)

al<

Whenever l<(k+ I) does not belong to E as defined by (9), it is projected on its boundary. At each iteration k, !l(k)

is randomly selected according to the prior probability density function p([) and A(k) must satisfy some well

known conditions that are fulfilled by the harmonic sequence A(k)=aJk. Since it is well known (and easy to check

experimentally) that the convenient choice for a is highly problem dependent, we have proposed a scaled

stochastic gradient algorithm, where the scalar A(k) is replaced by the diagonal matrix

1 k a
A(k)= A(k)diag (ejmax -ejmin)!(- L[-(det- IMp(!!(i)&»Il<=l«i)]2)1/2,j=I,...• nl (18)

k i=1 aej

Note that A(k) can be computed iteratively. This scaling policy ensures a greater independence of the behavior of
the algorithm from the problem considered. It implies that

-----=±a, i=I ...., n.
eimax - Cimin

(19)

The convergence properties of the scaled stochastic gradient can be related (Pronzato 1986) to those of
pseudogradient algorithms, which are studied in (poliak and Tsypkin 1973). The convergence can be accelerated by

changing the value of A(k) only when the product of the gradients at iterations (k-I) and k has a negative value
(Saridis, 1974). Examples illustrating the behavior of the algorithm can be found in (pronzato and Walter 1985,
Walter and Pronzato 1985, 1987). Note that this algorithm could also be used to optimize other criteria based
upon the mathematical expectation of non-robust criteria over the possible values of the parameters. The choice of

the prior distribution p([) can be made freely as long as one is able to generate parameter vectors !l(k) according to

pal).

4. MINIMAX DESIGN

4. 1. Criterion

The approach described in Section 3 designs experiments that are good on the average but can reveal very

poor for some particular values of the parameter vector associated with very low values of p([). One might thus

sometimes prefer to optimize the worst performance of the experiment over the admissible domain e for the

parameters. This minimax (or maximin) policy has already been proposed (Fedorov 1980, Silvey 1980, Landaw
1985), but the complexity of minimax optimization appears as a tremendous obstacle to the practical use of such
criteria An algorithm intended to optimize these criteria in a reasonably simple way will be described in Section

4.4. The prior information on !l is limited here to the knowledge of the admissible domain e. No hypothesis is

made on Pal). A possible criterion for optimality that can be deduced from (6) is given by

jmmdW = min [jdal&)].

!lEe

Definition 4. (Pronzato 1986, Walter and Pronzato 1987)
An experiment l<mmd is MMD-optimal if it maximizes the criterion jmmdW over E.

Equivalently, l<mmd satisfies

(20)



l<mmd = Arg [ max [jd~mmdW,()]],

J<EE

with

~mmdW = Arg [ min [jd~,()]].

~Ee

4.2. PrOJlWi!<S
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(21)

(22)

As we shall see. MMD-optimal experiments can be shown to possess some properties that are similar to
those obtained for EID-optimal experiments.

Linl<arlty with reswct to soml< parameters.
Theorem 4.1.

If Hypothes!<S HI and H2 of Theorem 3.1 are satisfied. and if

H4: The admissible space for the parameters is such that the constraints on .el are independent from those on .enl•

then the MMD-optimal experiment can be obtained with all components of .el fixed at I.
lIoof,
Taki?g HI an~ H2 into account. the Fisher information matrix can be written as in (12). From H4. the

MMD-opumal expenment can therefore be ob~ed by
p

l<rnmd = Arg[ max [min [ IT (all]. min [ det MFWp..e.nl,()lJ], (23)

J< EE .el j=1 .enI

which implies

l<mmd = Arg [ max [ min [ det Mp(yp, ~nl, il]]]. (24)

l< E Ja .enl

The search for a MMD-optimal experiment can thus be conducted in a parameter space reduced to .enl . This will
result in appreciable savings of computational time when using a minimax optimization algorithm such as that
described in Section 4.4.

Rl<Paraml<Wrization of the modl<l. Contrary to classical D-optimal experiments, MMD-optimal experiments
are generally changed when a non-degenerated transformation is applied to the model parameters. To prove it,

consider a repararneterization of the model defined by t,®, and assume e transforms into A.When estimating .e,
the MMD-optimality criterion (20) can be wriuen as

jmmdW = min [det2(at,t/am.det MF<M.e),()]

.eEe
(25)

and, unless the transformation 2.® is linear, the experiment maximizing (25) generally differs from the

MMD-optimal experiment for the estimation of t" that maximizes min [det Mp(t.,()].

2. EA

Rl<plicated l<xreriml<nts.
Theorl<m 42.
(i) If the following hypothesis is satisfied

H5: .emmdW as given by (22) dol:S not depend on J<,

then the MMD-optimal experiment is D-optimal for this value of .e.
(ii) If the following hypothesis is satisfied

H6: l<mmd is stationary and cOIT!<Sponds to a saddle point of the D-optimalily criterion where jd is stationary in.e.

then !<mmd corresponds to a stationary value of the criterion jdce.mmd(l<mmd),()'

~
(i) Trivial from (21)-(22).
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(ii) Since~md is supposed stationary.

ajd<.emmdW &) / a~ I = 0..
~md

with e.mmdW given by (22). Equation (26) can also be written

a!l.mmdtW / a~I .aMe..~md) / afl.1

~md fl.mmd~md)

+ ajd<.emmd~md)&) / a~I = 0..
~mmd

Since~md is by hypothesis a saddle point solution where jd is stationary in e.. one has

ajd(!l..~md) / afl.1 = Q..
!!mmd~md)

and (27) reduces to

ajd<.emmd~mmd)&) / a~I =0..
~mmd

(26)

(27)

(28)

(29)

(31)

(30)

As a consequence of this theorem. MMD-optimal experiments will present the same property of replications
as D-optimal experiments do when the condition of pan (i) applies. When the conditions of pan (ii) are satisfied.

this will also be true whenever the stationary solution for jd(Jlmmd~mmd)&) corresponds to the optimum.

The computational burden involved in minimax optimizations is a major obstacle to the practical use of
minimax criteria for the design of experiments. However it is sometimes possible to take advantage of the model
structure and the parameter constraints to transform the minimax design problem into a simple D-optimal design
problem. Such a situation is met when theorem 4.2 pan (i) applies. and the MMD-optimal experiment is then

obtained by maximization of the D-optimality criterion jd<.emmd&)' For a given model structure and a given

admissible domain e. the first question to be answered therefore is whether or not H5 is satisfied. We shall see in

the next section that this is true for a large class of exponential regression models.

4.3. Exponential regression models

Exponential regression models play an important role in physics and in the biosciences. For that reason the
results that we recall now seem of special importance.

Theorem 4 3. (Melas 1981)
Suppose that hypothesis H2 of theorem 3.1 is satisfied as well as

87: the ith model output is given by

P
~i(fl.&) = 1: elj exp (- enljoCj).

j=1

where Cj is a scalar characterizing the experimental situation for the ith measurement (for instance the ith sampling

time).
88: the admissible domain for the nonlinear parameters e.nl is given by

""nl_ {ani jRP I enl enl enl . enl . >'. '-1 }
'0 - .ll E r<; max' f J+l - "-]' J- ..... p •

where e nlmax and the Aj are known.

then for any experiment ~ with atleast2p measurements e.mmd given by (22) is such that

p-l

e.nlmmd = (enlmax' enlmax- AI' enlmax- (AI+ ~) ..... e
nl

max - 1: Aj)l. (32)
j=1

If the conditions of theorem 4.3 and H4 are satisfied. then theorem 4.1 applies. Consequently theorem 4.2 pan (i)
applies too. and the MMD-optimal experiment is obtained by maximization of the classical D-optimality criterion
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for the parameter vector {Y/' frnlmmdt)t, where frnlmmd is given by (32). Note that this MMD-optimal

experiment wiu present the same property of replications as those observed on D-optimal experiments.
If for some exponential regression models it is posssible to transform MMD-optimal design into a

conventional problem of D-optimal design, the minimax optimization problem has generally to be handled as
such. Next section presents an algorithm intended to optimize minimax criteria at a reasonable cost.

4.4. Optimization of minimax criteria

There are rather few general-purpose algorithms for solving minimax problems. Most of them are restricted
to situations where one of the two vectors involved belongs to a finite set of values. They therefore do not apply

here where both.ll. and ~ belong to infinite sets. Shimizu and Aiyoshi (1980) have proposed a relaxation procedure

involving the iterative construction of a set of representative values for one of the two vectors (here .ll.), and the

solution of a series of minimax problems where .ll. is restricted to this finite set of representative values. The
initial minimax (here maximin) problem (21)-(22) can be viewed as the maximization, with respect to k, of the

scalar ~ subject to the constraint

min [ det MF<..!l.&)) :2:~.

.ll.Ee

Inequality (33) is equivalent to

det Mp(.ll.&) :2:~, \f .ll. Ee,

(33)

(34)

and the maximin problem is an optimization problem with respect to ~ subject to an infinite number of
constraints. The procedure relaxes the problem by taking into account a finite number of constraints only. The
algorithm can be summarized as follows:

Step 1: Choose an initial parameter vector .ll.(I), and define a first set of representative values

S(l) =( .ll.(l)j, (35)

set k=l.
Step 2: Solve the current relaxed problem

~(k) = Arg [max [min [det Mp(.ll.&)))). (36)

kElB frES(k)

Step 3: Solve the minimization problem

.ll.(k+l) =Arg [min rdet MF<..!l.&(k»))). (37)

frES

Step 4: if

det MF<..!l.(k+l), ~(k»:2: min [det MF<fr&(k») - 6, (38)

fr ES(k)

where 6 is a small predetermined constant, then stop and consider (.ll.(k+ I), ~(k» as an approximate solution

of the maximin problem. Else, include .ll.(k+I) into the set of representative values,
S(k+l) =S(k) U{ .ll.(k+I)j, (39)

increase k by one, and go to step 2.

Shimizu and Aiyoshi have shown (1980) that the procedure terminates in a fmite number of iterations when
the following assumptions (often satisfied for minimax design problems) hold:

H9: det Mp(.ll.,~ is continuous in.ll., differentiable with respect to~, and with partial derivatives continuous in ~,

HI0: the admissible experimental domain lB is compact, and such that

lB = {~E lRN I ciW"; 0, i=I, ... , qj, (40)

where the ci are differentiable with respect to 1<, with partial derivatives continuous in ~.

H11: the admissible domain for the parameters is nonempty and compacl
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It must be noted that if one has to stop the procedure before the terminating condition (38) is satisfied, an

approximate solution is nevertheless obtained, that satisfies a condition similar to (38) with a constant 0' '2: O.
Steps 2 and 3 require an optimization to be performed. Since the functions involved are not necessary unimodal
(and it is possible to find very simple examples where they are not), their global optimum must be determined.
The use of a global optimizer is therefore necessary. The implementation of such an algorithm, based upon an
adaptive random search strategy, is described in (Pronzato et aI. 1984).

5. CONCLUSIONS

EID- and MMD- optimal designs appear as two complementary answers to the problem of experiment design
for estimating the parameters of a nonlinear model.

If it is acceptable to perform poorly for some unlikely values of the parameters, an EID-optimal experiment
can be chosen, which will ensure good performances on the average. The representation of the prior uncertainty on
the model parameters must then be probabilistic. If poor performances are unacceptable, MMD-optimality is to be
preferred. This requires a deterministic representation of the prior uncenainty on the parameters.

A stochastic approximation algorithm has been described for the optimization of the EID-optimality
criterion: it makes EID-optimal design almost as simple as classical D-optimal design. There are special cases of
importance where MMD-optimal design transforms into D-optimal design. For other situations where the
minimax optimization problem cannot be avoided a relaxation procedure has been described: an approximate
minimax solution is obtained after a reasonable amount of calculations.

Both methodologies could be extended to the design of discriminating experiments, and to sequential design.
For the later problem the method for updating the information after each estimation phasis would depend on the
methodology chosen. When EID-optimality is used, each estimation phasis should provide a more accurate
description of the distribution p(ID of the model parameters (see e.g. (S teimer et al. 1984, Sheiner and Beal 1980)

for a procedure for updating p(ID). On the other hand, when MMD-optimal design is used, each estimation phasis
should provide a more accurate description of the admissible domain for the parameters. Methods recently
developped for membership set estimation could be used for that purpose (Belforte and Milanese 1981, Walter and
Lahanier 1986).
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OPTIMAL DESIGN FOR NONLINEAR PROBLEMS

D.M. Titterington
Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland

1. INTRODUCTION

This paper provides a brief overview of some of the difficulties that
arise in the implementation of optimal designs for nonlinear problems. The
major source of difficulty is that the optimal design itself is a function
of the true values of the unknown parameters, e. As a result, the correct
optimal design cannot be specified at the outset. In practice, a variety of
strategies might be attempted, including the following:
(i) Choose a static design that is optimal for some prior guess at the
values of the parameters.
(ii) Implement a sequential design, in which the allocation of later obser­
vations is modified on the basis of up-to-date estimates of the unknown
parameters. Within this class of designs, it is convenient to distinguish
between batch-sequential designs, in which the design strategy alters at
comparatively infrequent intervals, and fully-sequential designs, where the
parameter estimate and design strategy are updated after every observation.

One of the main points we shall make concerns the difficulty of valid­
ating interval estimation procedures within sequential design procedures.

The plan of the paper is as follows. Section 2 gives a taste of the
scope of nonlinear problems, Section 3 outlines the optimal design theory
that betrays the difficulties, and Section 4 comments on the problems of
inference based on data from sequential design. A problem involving the
estimation of a nonlinear function of the parameters in a linear model is
discussed in Section 5 and Section 6 reports on part of a larger simulation
study.

Although many references are cited later in the paper, it is appropr­
iate to refer to Ford et al (1987) for a much more extensive review of the
topic.

2. THE SCOPE OF NONLINEAR PROBLEMS

The starting point of our discussion lS the regression model

Y = n(e;x) + E , (1)

in which Y is a response variable, n is the regression function, e contains
k unknown parameters, x is a set of design variables and the error E has
zero mean and variance 0 2 • Errors on different observations are assumed
uncorrelated and, in some circumstances, 02 = 02(e;x).

A canonical form of the usual linear regression model has constant 02
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So far as optimal design is concerned, the following all constitute
nonlinear problems.

2.1. Nonlinear response function

This class of problems, in which n(S;x) is a nonlinear function of S,
is exemplified by many of the models used for reaction rates in chemical
kinetics. For example, with k=2, the formula

n(S;x) = Sl{exp(-S2x ) - exp(-Slx)}/(Sl- S2)

is used by, among others, Box and Lucas (1959), to model a reaction of the
form A + B + C. In the model, x represents time and n the concentration of
substance B.

2.2. Linear regression with nonconstant variance

In this class, n(S;x) = STx , but 0 2 depends on Sand x.

2.3. Linear regression, but interest concentrated In a nonlinear function
of the parameters

An example of this, studied by Ford and Silvey (1980), is provided by
the quest for the stationary point in a "quadratic" regression model. To
be specific, we have

2
Y = Slu + S2u + £, -1 ~ u ~ 1, (3)

with constant 0 2 , and interest is concentrated In

g(S) = -Sl/2S2 .

Another example is provided by the problem of lnverse regression In simple
linear regression.

2.4. Quantal response

In the simplest version of this, binary response, we have

F(STx ), in which F is the
linear logistic model. In its

Sl + S2 x . For this case, interest may lie in

in, say, the pth quantile of n(S;x), defined by

Y = 1 with probability n(S;x)
= 0 otherwise.

Specialising further, the case n(S;x) =
logistic distribution function, provides the

. . T
slmplest verSlon, S x

estimating S per se, or
-1 -1

up = S2 {F (p) - SIL

Finally, in this Section, we comment that the broad areas of the
identification of econometric models (Papakyriazis, 1978) and dynamic
systems (Titterington, 1980) are also sources of nonlinear problems, in
context of this paper.

the

3. OPTIMAL DESIGN THEORY

We start by introducing some notation. We define I(S;x) to be the
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Fisher Information matrix associated with an observation Y at x, and we
denote by M(e;~) the per-observation information matrix associated with a
design measure ~ on the design space *. Thus

M(e;~) = J I(e;x)~(dx).

*For exponential family problems with the structure given In (1),
2 -1 T

I(e;x) {a (e;x)} Vn Vn
T

where (Vn) (an/ae l , ... , an/aek ). In the case of (2), of course,

I(e;x) o-2xxT (4)

For the binary response problem,
-1 T

I(e;x) = {n(l-n)} Vn(Vn) .

We denote by ~ the class of all design measures on *.
The relative merits of different designs are typically judged on the

basis of a scalar criterion, ¢ (.), defined on the class, 1ft, (e), of informa­
tion matrices. In what follows, we suppCl3e that ¢ (.) is a real-valued,
concave, isotonic, positively homogeneous function, defined on NND(k), and
that ~(. ,.) denotes the Frechet derivative associated with ¢. Specific
choices for ¢(.) are associated with D-, A-, E- and c-optimality (Silvey,
1980, Pukelsheim and Titterington, 1983). The following general equivalence
theorem provides alternative characterisations of a ¢e-optimal design, which
is a design, ~*, such that M(e;~*) maximises ¢(M), for M 6 ~(e).

Theorem (Whittle, 1973, White, 1973)
The following are equivalent

(i) ¢{M(e,~)} is maximised at M(e,~*).

(ii) ~{M(e,~*),M(e,~)}~o forall~E_

I~ also, ¢ is differentiable at M(e,~*), (i) is equivalent to
(iii) ~{M(e ,~*), I(e ,x)} ~ 0 for all X.4i: *.

In principle, the theorem is useful for checking whether or not a
proposed design is optimal, and for motivating sequential design procedures.
In terms of the latter, two possible algorithms are as follows. In both of
them {S } denotes a sequence of estimators of e, where 8 is based on n

n n
observations, at Xl' ... , x , which constitute a design ~ .

n n

Algorithm A Choose xn+l to maxlmlse ¢{M(8n'~n+l)}'

Algorithm B Choose x
n

+l to maximise ~{M(8 ,~ ); 1(8 ,x l)}' (Steepestn n n n+
ascent direction.)

The need to base sequential design on up-to-date estimates of e betrays
the fundamental difficulty created by nonlinear problems, namely, the depend­
ence of the correct optimal design, and the applicability of the Theorem,
on e. Only in the linear case (c.f. (4)) does e disappear. Of course,
non-sequential designs can be used, by assuming a prior guess, 8 , for e,
or by adopting a prior density, n(e), for e, and then basing allOanalysis
on the averaged optimality criterion ¢n' where

¢n(~) = J ¢{M(e,~)} n(e) de;

see Lauter (1974).

4. GENERAL QUESTIONS ABOUT SEQUENTIAL DESIGNS
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Given that we resign ourselves to the need to choose the sites of our
observations sequentially, thereby creating a sequence of design measures,
{~ }, and an associated sequence of estimators {S }, based on, say, maximum

n n
likelihood estimation, three crucial general questions arise.

->- 8
T

, the true value of 8, in any sense?

M(e ,~ ) ->- M(8T'~*)' where ~* is a correct optimal
n n

8
n

M
n

does

does

As n ->-Ql.

Q2. As n ->­

design?
Q3. Suppose there is, in the case of prespecified (non-sequential) design,

a procedure for generating exact or approximate interval estimates for
8, or functions thereof. Can the procedure be used safely with data
generated by sequential design procedures, thereby effectively ignoring
the fact that the design was generated sequentially in such a way that
data Yl' ... , y largely dictate the choice of x I?

n n+
With regard to Ql and Q2, the crucial question is Ql, in that, if e

is consistent, then Q2 will generally follow by a continuity argument. n
To illustrate the non-t~iviality of Q3 consider the very simple example

of linear regression through the origin. (Although this is clearly not a
nonlinear example, it adequately brings out the present difficulty.) Thus,

Yi = 8xi + Ei' i = 1, 2, '" (5)

with E. ~ N(O,l), independently for each i. Let 8 be the least squares (or
l n

maximum likelihood) estimator of 8, based on n observations. Thus

e = LY.X./LX. 2 (6)
n l l l 2

and, if the x. are determined independently of the data, 8 ~ N(8, l/Lx. ).
l n l

As a result, exact confidence intervals for 8 are easily obtained.
Suppose, however, we generate the x. by the sequential design algorithm:

l

x = 1, x. = Y. l' i = 2, Then (6) still provides the maximum likeli-1 l l- ---

hood estimator for 8, but the distributional result for 8n is no longer true

exactly. Of course, the combination of model (5) along with the above
design algorithm constitutes an AR(l) model: our problem can therefore be
regarded as one of making inferences for stochastic processes; see Lai and
Siegmund (1983), and Ford et al (1985) for a parallel discussion in the case
of a more general Normal linear model.

For this example, we have remarked that the sequential nature of the
design does not affect the identity of the maximum likelihood estimators,
but it does, or might, affect interval estimation. Ford et al (1985)
comment on another parallel to be drawn, in terms of this phenomenon, with
the problems of making inferences from incom~lete data (Rubin, 1976).

In these problems the distribution of 8
n

, conditionally on the design

achieved sequentially, is typically quite unlike its distribution were the
design prespecified: see Ford and Silvey (1980) for empirical results and
Ford et al (1985) for very sim~le examples. In many cases, however, the
unconditional distribution of 8n does appear to allow the use of standard

approximate interval estimation recipes. In fact, it does not seem appropr­
iate, from a fundamental point of view, to make inferences conditionally on
the sort of sequential design we envisage using. After all, we hope that
the limiting design might be the correct optimal design. As such, the
design itself should tell us something about 8 and is therefore not
ancillary.

The answers to questions Ql-3 have as yet not been obtained in any
general sense. However, we now present some reassuring evidence for the
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cases of Sections 2.3 (for which theoretical and empirical results are
available) and Section 2.4 (for which much of the work has been empirical).
Other results, related to Section 2.4, appear in Wu (1985a).

5. LINEAR REGRESSION, WITH INTEREST IN A RATIO OF PARAMETERS

where M lS the per-observation information matrix
n

from n observations. Wu (1985b) points out that, provided the errors {Ei}

form a martingale difference sequence, conditions on {Mn } laid out by Lai

and Wei (1982) are sufficient to guarantee (7). Unfortunately, the nature
of these conditions makes them difficult to verify in practice. That they
are not necessary conditions is illustrated by the fact that they do not
hold in the example of Ford and Silvey (1980)!

We recall Ford and Silvey's (1980) interest in estimating the turning
point of the quadratic response curve subsumed in (3). The objective is to
minimise the a~proximate variance (generated by the usual, Taylor-expansion
argument of g(8 ), where g(8) = -81 /28. It turns out that this leads to a

n 2
c-optimality criterion, in which the vector, c, is Vg(8) and is proportional

Tto (1, 2g) . Thus, the optimal design depends on the ratio 81/8 2 , Whatever

value this ratio takes, the support points of both the optimal design and
the sequential design generated by Algorithm B are concentrated at u = + 1.
The nonlinear nature of the problem makes itself apparent in that the
optimal weights depend on 8

1
/8 2 , When 181/821 = 1, the optimal design turns

out to be degenerate, concentrated on a single point (u = +1 or u = -1).
Ford and Silvey (1980) provide confirmatory answers to questions Ql and Q2.
SO far as Q3 is concerned, they provide encouraging empirical results in the
form of coverage rates, for the obvious asymptotic 95% confidence interval
for g(8), in Monte Carlo experiments. However, theoretical backing was
provided later, in Wu (1985b), to confirm that, asymptotically, at least,
the answer to Q3 was indeed "Yes". It is important to remark that the key
to the theoretical results in both papers was to concentrate on the pure
error process {E.} and to use standard limit theorems.

l

In an attempt to answer Ql-Q3 at a more general level, Wu (1985b)
considered the estimation of a nonlinear function, g(8), within the linear
model defined by (2), but without the Normality assumption. The validity
of standard, asymptotic interval estimates follows provided

n(e - 8)TM (8 - 8) + a2X2(k),
n n n

In distribution, as n + 00,

6. EMPIRICAL RESULTS FOR THE "DILUTION SERIES" MODEL

In this Section, we outline the main findings of a Monte Carlo study
that was designed to compare the performances of various design strategies.
More extensive discussion is provided in Ford et al (1987) and in the
unpUblished, University of Glasgow, Ph.D. Thesis of C.P. Kitsos.

The study is based on the "dilution series" model of Fisher (1922).
We treat it simply as a binary response model, with

p(Y = l\x) = exp(-8x) = l-p(Y = Olx).
Estimation of 8 is the objective of the experiment.
The optimal design is a degenerate measure at x = 1.59/8. We report

results for a set of 1000 simulations, with sample size N = 100 in each run.
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in the present paper.
x = 1.59/8 , where 8 lS an

o 0

p4

P2

The following design procedures are compared
PI Static design, with all observations at

initial guess for 8.
Batch-sequential design, with two batches of 50 observations, and
e obtained by maximum likelihood.

n
Batch-sequential design, with four batches of 25 observations, and 8
obtained by maximum likelihood. n
Fully sequential design, following an initial batch of 5 observations,
and with 8 updated by the appropriate version of the following general

n
stochastic approximation algorithm at each stage:
, , '-1 '
8 +1 = 8 + {nM(8 ;~)} U(y llx 1,8 ).n n n n n+ n+ n

Here, U(ylx,8) is the score function associated with a single
observation.
When the level

adopted was to take

P3

x is altered in methods P2, P3 and p4, the procedure
x 1 = 1. 58/e .n+ n

The true value for the parameter was ~T = 3.18 and comparison was made
among three choices for the initial value 8 , namely, 2.20, 3.18 and 7.15.

o
To avoid divergence in p4, e was constrained within the interval (1.37,

n
199.70): for detailed explanation, see Ford et al (1987, Section 7).

The Table presents the sample average, e, of the 1000 realisations of
eN' the estimated mean squared error (EMSE) of eN' the "asymptotic" approx-

imation to var(eN) and the empirical coverage rate (ECR) of the standard,

approximate, 95% confidence interval for 8.

TABLE Results of simulation study (true 8 3.18)

Procedure e 8 EMSE var( eN) ECR
0

PI 2.20 3.24 0.20 0.17 0.950
3.18 3.20 0.17 0.16 0.952
7.15 3.00 0.20 0.20 0.952

P2 2.20 3.25 0.22 0.17 0.945
3.18 3.20 0.15 0.16 0.950
7.15 3.24 0.20 0.20 0.955

P3 2.20 3.24 0.20 0.17 0.946
3.18 3.19 0.16 0.16 0.950
7.15 3.23 0.19 0.20 0.946

p4 2.20 3.21 0.16 0.17 0.955
3.18 3.21 0.15 0.16 0.960
7.15 3.24 0.17 0.20 0.953

In general, the results were reassuring, with acceptable coverage
rates and EMSE's close to the values ~n the var(eN) column. It has to be
said that two of the runs for P2 and 8

0
= 2.20 were discarded because of

"divergence" and that, in this case, the sample skewness and kurtosis of eN
indicated clear non-Normality. The simulation study reported on in Ford
et al (1987) is much more extensive, but reinforces these general remarks.
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PART II.

REGRESSION ANALYSIS





LEAST MEDIAN OF SQUARES FOR UNMASKING IN TRANSFORMATIONS AND MULTIPLE

REGRESSION

A.C. ATKINSON, IMPERIAL COLLEGE, LONDON, U.K.

1. INTRODUCTION

The purpose of this paper is to summarize some recent work on the use
of robust regression for detecting multiple outliers and groups of
influential observations. The two situations studied are multiple
regression and transformation of the response in a linear model.

Methods based on the deletion of single observations are effective if
there is only one outlier. But sometimes when there are several outliers,
single deletion methods fail to reveal all, or even any, of these. In such
examples, the outliers are said to be masked. Of course, if the presence
of several outliers is suspected, it is theoretically possible to consider
deletion of all m-tuples of a given size. However the combinatorial
explosion of possibilities rules out an exhaustive search. For example, if
th£L~umber of observations n=30, deletion of all sets of 4 observations
leads to evaluation of 27 405 combinations.

As a tractable alternative for a regression model without transformation,
Atkinson (1986a) suggested a two-stage procedure. The first, exploratory,
stage uses least median of squares regression, a robust method which resists
nearly 50% of contamination in the data, to identify potential outliers and
i~fluential observations. As a result of the robust analyst the data are
provisionally divided into n-m 'good' observations and m 'bad' ones. In the
second, confirmatory, stage, standard single-deletion regression diagnostics
are used to check the n-m good observations. To investigate the properties
of the m deleted observations Atkinson (1986a) developed addition diagnostics
which measure the effect on the analysis of the data of reintroducing deleted
data points one at a time. These methods are described slightly more fully
in Section 2.

The extension of this two-stage procedure to transformation of the
response in a linear model is described in Section 3. The example studied is
the parametic family of power transformations indexed by a scalar parameter
A. For the explora,tory stage Atkinson (1986a) suggests the use of least
median of square regression over a grid of A values. Plots of the robust
residuals as A varies are informative about departures from the model. The
confirmatory stage is concerned with the influence of individual
observations on inferences about A. The two measures used are the
approximate score statistic for the transformation (Atkinson, 1973) and the
quick estimate of the transformation parameter (Atkinson, 1982). Examples
of addition and deletion versions of both statistics are given in Section 3.
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2. LEAST MEDIAN OF SQUARES REGRESSION

In this section a brief description is given of the exploratory use of
least median of squares regression for the detection of multiple outliers.
A book length treatment is provided by Rousseeuw and Leroy (1987).

Suppose that the majority of the observations follow the standard linear
regression model

E(Y) = X8,

Where the n x p matrix X consists of the known values of the p carriers
which are functions of the explanatory variables. The errors are assumed
additive and independent with constant variance 0 2

•

For the parameter value b let the residual r i = Yi - xiTb. Then two

criteria for the choice of bare:

Least Sum of Squares Regression:

Least Median of Squares Regression:

min L r. 2

b l

min median r. 2

b l

The intention of least median of squares regression in the presence of
outliers is to fit a line to the 'good' observations whilst revealing the
'bad' observations as such.

The numerical method used to find b is a form of random search. If the
rank of the regression model is p, samples of p observations are taken, to
each of which, except for singular samples which are abandoned, the
regression model can be fitted exactly. Such samples are called 'elemental
sets'. Sampling with calculation of the median of the non-zero residuals
continues until either a stable pattern of residuals emerges, or until there
is a specified probability, for a given level of contamination, of obtaining
at least one elemental set which consists solely of 'good' observations.

For the Jth elemental set let the residuals be r'
J

at least p of which
l ,

will be zero. If the elemental set giving rise to the minimum median squared
resldual is denoted by T, then

(2 )

where NT and NJ are the number of non-zero residuals, usually n-p. As an

estimate of 0
2Atkinson (1986a) suggests ;2 = r T. The estimate is used to

provide standardized least median of squares residuals ;. = r.T/;.
l l

Fig. 1 is an index plot of the standardized residuals r. for the stack
l

loss data introduced by Brownlee (1965, p.454). There are 21 observations
and 3 exploratory variables, to which a first order model is fitted. To
obtain Fig. 1, 1,000 elemental sets were sampled. The four observations
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r.
1

o 5 10 15 20 25 30

fIGURE 1

Observation Number

Brownlee's stack loss data: index plot of standardized least
median of squares residuals r i

forming the resulting optimum elemental set are marked in the figure by
crosses. The plot clearly indicates that observations 1, 3, 4 and 21 are
outliers and raises doubts about observation 2. This analysis agrees with
that of Andrews (1974) and with the least median of squares results of
Hampel et al (1986, pp 330-2). Atkinson (1986a) illustrates, for this
example, the evolution of the robust residuals with the number of elemental
sets sampled. A very full analysis of the stack loss data is given by
Daniel and Wood (1980, Chapter 5). Atkinson (1985, § 12.4) summarizes this
and other analyses.

The result of Rousseeuw (1984) and of Atkinson (1986a) show that least
median of squares is an excellent exploratory tool. However, the estimates
of the parameters of the linear model have poor properties and a second,
confirmatory, stage is required. Rousseeuw (1984) uses the least median of
squares estimate as a starting point for robust regression using M estimators.
To check the n-m 'good' observations Atkinson (1986a) uses half-normal plots
of deletion residuals and of modified Cook statistics to which simulation
envelopes are added. These least-squares regression diagnostics are
described in the books of Belsley, Kuh and Welsch (1980), Cook and Weisberg
(1982), Atkinson (1985) and of Weisberg (1985, Cap. 5 3nd 6). The addition
diagnostics for the effect of adding back in each of the m deleted
observations are described by Atkinson (1986a).· Examples are qiven, for thp
stack loss data, of the analogues of residuals and of modified Cook
statistics.
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3. TRANSFORMATION OF THE RESPONSE

Quite different diagnostic methods are required when transformation of
the response is investigated. Again the strategy is in two stages, explora­
tory and confirmatory. As an example we consider the parametric family of
power transformations analysed by Box and Cox (1964). In normalized form
this is

Z(A) = (/ 1 )/( Ay A-l)

= ylog Y

(A i 0)

(A = 0)

(3)

where y is the geometric mean of the Yi' The hope is that there is some

v~lue of the parameter A for which the transformed observations will satisfy
the linear model (1) to an adequate degree.

For the normalized transformation (3), with the assumption of normal
errors, the loglikelihood of the observations, maximized over the parameters
of the linear model, is given by

L (A) = -(n/2)[1 + log{2nR(A)/n}].
max

In (4) R(A) is the residual sum of squares of the Z(A) given by

(4)

H)z(A) , (5)

where the hat matrix H = X(X TX)-l XT. The maximum likelihood estimate of A

is the value A for which the profile loglikelihood L (A) is maximized.max
To unmask information about the dependence of the estimated

transformation on several outliers. Atkinson (1986a) uses a plot of the

least medIan ot squares resIduals ot ZlA), denoted; (A), calculated for 21
1

values of A between -1 and 1. Changes in the pattern of the residuals as A
varies are indicative of potential outliers and leverage points. Fig. 2
is such a plot for an altered version of the poison data analysed by Box and
Cox (1964). The original data consist of the results of a 3x4 factorial
experiment with 4 replicates per cell, in which the response is survival
time. There is strong evidence of the need for a transformation and the
inverse transformation is indicated. To show the effect of a single outlier
we fellow Andrews (1971) and alter Y20 from 0.23 to 0.13. As a result, the

likelihood analysis indicates the log, rather than the reciprocal,
transformation.

Fig. 2 shows that the effect of the changed observation is not apparent
from the robust analysis at A=l. The largest least median of squares
residuals belong to the largest observations. But, as A approaches -1, the
robust residuals all become small, with the exception of that for the altered
observation 20 which increases in magnitute to -17.13. The next greatest
residual in magnitute is -3.99 for observation 35. The plot clearly
indicates the anomalous nature of observation 20.
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FIGURE 2 Altered Box and Cox poison data: plot of robust residuals ;.(A)
against A. o altered observation 20. I

As a result of the exploratory plots of ;.(A), of which Fig. 2 is an
I

example, up to m observatIons may be suspected of being outlying. The
influence of these observations on inferences about A is checked in the
second, confirmatory stage of the analysis.

Hypotheses about the value of A can be tested using the approximate
score statistic T (A) introduced by Atkinson (1973). For confirmatory use,

p
the statistic is evaluated from a fit of the model to the n-m 'good'
observations. To check the effect of deletion of each of these observations,

the statistic Tp(i)(A) can be used, in which the effect of deletion is

estimated. Similarly, the effect of adding back into the analysis each of
Lhe 10 deleted observations can be estimated from the addition diagnostic

Tp[i](A) described by Atkinson (1986a). Related addition and deletion

diagnostics for I, the quick estimate of the transformation parameter, are
described in the same paper.

As an example of the confirmatory stage of the analysis we use the
record times for 35 Scottish hill races listed by Atkinson (1986b),
together with the distance of the race, in miles, and the climb in feet. For
the calculations in this paper, the time for race 18, which is 3 miles long,
has been corrected from 1 hour 18 minutes to 18 minutes.

Analysis of the transformed data using least median of squares shows
that observations 7, 11, 33 and 35 have large positive residuals. The plot

of ;.(A) against A given by Atkinson (1986a) shows that, initially, the
I

residuals decrease as A decreases. The score statistic for all 35
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observations and the plot of the profile loglikelihood L (A) both suggestmax
that the square root transformation, A=0.5, is appropriate. However, the
confirmatory analysis reveals the importance for this conclusion of some of
the suggested outliers.
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Observation Number

FIGURE 3 Corrected hill racing data: index plot of approximate score

statistic Tp(i)(l).

Fig. 3 is an index plot of the deletion estimate of the score statistic

Tp(i)(l) for the hypothesis of no transformation. For all observations

Tp(l) = -6.24 and there is strong evidence of the need for a transformation.

However, the_plot shows how important observation 7 is to this conclusion.
If observation 7 is deleted, T (1) = -3.17, close to the value of the

p
estimate in Fig. 3. Fig. 4 shows the index plot of the quick estimates

I(i)(l) and A[i](l), collectively called I i (l), which is centred
around 0.79. The plot reveals not only the importance of reintroducing the
deleted observation 7, but also the importance of observation 33,. which was
previously masked. The implication is that if both observations 7 and 33
are deleted, there will be no further evidence for a traFlsformation. Fig. 5,
in which both observations have been deleted, does indeed show that all the
evidence for the transformation, as measured by the approximate score
statistic Tp(l), depends on observations 7 and 33. The same conclusion
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Corrected hill racing data: index plot of quick estimate X.(1);
observation 7 deleted. I
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Corrected hill racing data: index plot of approximate score
statistic Tpi (1); observations 7 and 33 deleted.
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follows from the plots of the profile loglikelihood as observations are
deleted given in Atkinson (1986a).

These examples show the use of the two-stage procedure in which an
exploratory analysis using robust regression is followed by a confirmatory
analysis based on least squares diagnostic methods.

Further examples involving transformation of the response are given by
Atkinson (1986a). Atkinson (1986b) gives plots of profile loglikelihoods
for several examples, including those of the present paper. In these
examples the plot of the robust residuals as A varies is more informative
than the plot of least squares residuals as a function of A. But, when the
observations come from a balanced design, established diagnostic methods
based on least squares provide the required information with appreciably
reduced computation. These methods, for transformations, include those
based on added variable plots (Cook and Weisberg, 1982, § 2.4; Atkinson,
1985, Chapters 6-9) and on measures of the effect of deletion of single
observations (Cook and Wang, 1983; Atkinson, 1985, § 12.3).
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CONDITIONED ESTIMATORS OF NONLINEAR PARAMETERS

Henning Liuter, Berlin IGOR)

1. !~IBQRUg!!Q~

The estimation of nonlinear parameters is of special
interest in different fields. Mostly in nonlinear estimation
problems it is tried the statistical methods known for linear
parameters to use in a direct way also for nonlinear problems.
We point out that it is necessary to include the special form
of the nonlinearities into the estimation procedure. We
discuss the conditioned estimators derived by L~uter (1986)
and give a computational procedure for these new estimators.

Let P be the distribution of a variable YE R n On the
basis of an observation of y we will estimate the parameter

A I P) •

As examples for ~ we mention:

1. Let Pi
be positive
we define

, ... 'P
k

be distributions in R P and m1

integers. For a function f and for P=IPi
, ••• ,m k

, ••• ,P )
It.

k m

lTTT
i=l j=l

p. Id>: .. ).
L L j

(1)

For instance th€'~ error rate for misclassification in the
discriminant analysis is of this type ILiuter (1985» •

" For the variable YE RI'l. the representation....
y=X(8)+ f B( Rk

holds where X depends nonlinearily on 8. Here ),IP)=8 is to be
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estimated. Especially growth curve models are of this type,
e. g.

i=1, ... ,no (2 )

3. For the variable y~ Rn the linear model

y=X8+ E , 8 ( R"

holds and
estimated.

)'(P)= ~(8) for' a nonlinear functionf- is to be

form. Especially in nonlinear regression one computes
"squares estimator (l.s.e.) 8 for 8 by

~(P) • In
implicite
the least

There are several principles for estimating ~(P). One of
the frequently used methods is the substitution procedure.

" ""Here one estimates F' by F'n and A(F'",) is the estima~e for
some other cases one defines an estimator 1 in an

" J,ly--X(8)1 =min
8

z.I y-X(8) I
,. A.

and one uses 8 or jJ-(8) as the estimator for ).. (P). In some
other situations one takes the U-statistics as an estimator for
)'(P). For this we assume that in (1) ,is symmetric in each of

the k tLlpels >:i1 , ••• '>:i,m." i=1, ... ,k. For samples y. , ... ,y,
of the distribution P. , ~.~m, we define i1 ~ni.

~ ~ ..
, ... ,y., ,y, , ... ,y L

.. I. m1 Z. J.. It ..... k

where the summation goes on all indices with

<: i Wi '
1

,1" " 1<" l. <" ••• ', on ..

The c denotes the number of such different sets of indices:

I::).
The asymptotic behaviour of these estimators is investigated
extensively. Ibragimov & Khasminski (1981> and Lauter (1985)
proved the asymptotic minimax property of the substitution
estimator and the U-statistics for functionals (1). The l.s.e.
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in nonline~r regression is strongly consistent under general
conditions. Jennrich (1969) and Bunke & Schmidt (1980), Wu
(1981) showed this for a compact space for the nonlinear
parameter. L~uter (1987) gave results for unbounded nonlinear
parameters. The nonasymptotic behaviour is of special interest.
A simple example was given by L~uter (1986). We considered

Ll.d. normally dist.ributed variables y.f , ... ,y" with Yi'"
N(8, 1 ) and )'(P)=e ~ is to be estimated. The maximum
likelihood estimator (m.l.e.) is

has
the

is a

,.
have E e ~ =e ~WE;,'==y •

n1
l\ ~8= - Y.

...
n i =1 .... -1

sufficient and complete statistics the.\ e r- -"In.", ) is
best unbiased estimator for ).(P). Moreover- ). =e ~ - Ii\

,.
the minimal mean squar'ed error in the set f reP: j E H"!. In
this case we see that l has a smaller variance than e ~ and
additionally l: is unbiased. Therefore in some situations the
usually used m.l.e. or l.s.e. can be improved as in the
variance as in the bias.
We mention as another example an exponential model. We assume
the model (2) with £ .... N(O, lS'),.). One finds by simulations

!'to .......,..

that the m.l.e. 8" ' rjl. ' 8 3 yield biased estimations for 8-4'
8 1 ' 8 3 • As an example we give the values for n=6, t 6 =-t" =

=5, t s =_·-t;t, =<5, t if =-~t 3 = 1 ,
1

1
l) = -

4

.... ...
. ::;:;. One gets E8t .873, Erj L

,. ~ ... ~

=2.11, E8 3 =-.301, var' 8-\= .35, var 8,t .52, var 8 J '= .004..... ,.
The quite large bias of the 8 4 and 8£ is disturbing. But
how one can improve these estimators? The problem consists in
the general definition (Jf an appr-opriate estimator in nonlinear­
situations.

3. ~Q~Q!I!Q~EQ E§I!~eIQR§

The concept of conditioned estimators gives a good approach
for nonlinear parameter estimations. The idea to this method
comes from some stability demands on the estimators .

Def i nit i on 1 :
estimator w.r.

...
The estimatDr >. is called conditioned unbiased

'" "-to ).= ),(y) and tz if

- '1 is a random variable in R n with E( '1. I y)=O,
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for- all Rn. ther-e is - R" \"Ii thYo E a Yo ~

{
1\ (y Y=Yo ~

J\

E: ~ + '1. ) >. (y.)
0 0

( 3)

....
the estimator ~ is defined by

...
Definition 2: The estimator- ~ has a conditioned minimal mean
squared error if all conditions in definition 1 ar-e fulfilled,
only (3) is r-eplaced by

f ... A
=10 i n E 1( ). (z + ~ ) - ). (F') ) ( ). (~: + '1. )- ). (F') )' ,

zE: F~n

(4 )

conditioned
E!stilllator·s 'i

mean sqLlared

E>: amp I e: We consi der- c:~s :bov~ Yi =B+ E. e. '" N(0,1 )
i=1, ..• ,n and :.\(P)=e~," =e~ Let'l be indE~pendent of Y

.... " ..and ",."N(O,I) then). =eHp(B -- - ) is a conditioned unbiased
l '" 1.1\..... 3

estimator- w.r-. to ). and). =e>:p<B _.- ~ ) has a
minimal mean squar-ed er-r-or. We remember that these
and i were best unbiased reap. optimal in the
distance. Moreover it holds

E(X·--eP)2. <E('i.-·-e~)" E ( '). --e Il)l. <: E ( ). .-e f1 ).a. •

In this example we see that these conditioned estimators are
better than the m.l.e. We remar-k that for linear estimators in

~

linear models the BLUE ~ coincides with the conditioned
estimators.

For the co"~utation of the conditioned estimators it is
convenient to approximate the conditions (3) and (4). For

instance we appro>: i mate E {~( Yo + 'l) , y=Yo} by
1 1

E { ~ (Yo + ~ ) I Y=Yo1% - 2=. ~(yo + 'l1i.1

1 i=1

(4/ \11when q , ... , ~ are realizations of ~ Sometimes one
substitutes Yo +a instead of Yo and then we have

1 I"
E { ~ (Yo + ~ ) I y=Yo}~ - L. ).(Yo +a+ ~ \"). (~5)

1 i=1
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Up to now the distribution of '1 was known but not fi>:ed. In
general this distribution should be data dependent. For y+,
describes points around y the conditioned estimators include

" .....the behaviour of l around )(yl.

We pointed out that for estimating ~ (PI the substitution
,,," "-

method gives the estimator l= l(p~ I. Now we generate
subsamples of the given sample and denote the corresponding
estimat.ions of P by P" (41 , ••• ,P" tLI. If y+a is consider·ed

instead of y then the estimations of P~ (distribution of y+al
are P" (4) , ••• , P" I U .

a. Q.

Definition
w.r. to ~

1 1

r:::
i=1

3: A data fitted conditioned unbiased
is )'(P_ I where a fulfils th{"'! condition

Q.

A
1= A(PI.

estimator

(6)

1\0
Here we study the variation of A in the neighbourhood of P

without any additional conditions on random variables. By re­
."sampling we generated "new" distributions around P and insofar...

this ).(P_ I is a data fitted conditioned estimator.
~

Example: We consider y. =8+ £.. , t,"N(O, c;-l I, i=1,2 and ')'(PI=eja.
~ "

If we use the subsamples Yi ;y." ;Y1 ,yz, then the data fitted
estimator is defined by

l.­
3 e 'I

).=
e 'f~ +e 'I,. +e Y·

One finds O<E(e Y _. )(PI I"

f or I 8 I - lID

... a.
-E ( ). _. ,). (P I I and this tends to •

A general
proved that
estimator.

result was given by L~uter

the U-statistics is a data

(19861.
fitted

There was
conditioned

5. ~Q~E~!e!IQ~ QE e Re!e El!!~R ~Q~RIIIQ~~R ~§!I~B!Q8

A." .
Now we use the representat ion ), (y \ d 1= ,). (P" \ ~) I where y HI

is the sample generated by our resampling method. Then (61
goes over in the condition
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L.
i=l
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(7 )

M
For the determination of a we use a modified Gauss-Newton-

procedure.
steps:

We "denote .J4(a)= .L
ola.

A

A (a) and follow the ne>:t

1. Starting with
1

a
1

=:at/ +1 [L
i =1

an initial vector a o ' compute

1 ~. +
P.(yti.l+ao) t-1 f"(yIJ)-f- a o )] .

1 1

L ;. (y t') +a
o

)[ ~ (y)-

i=l 1

2. Determi ne T., such that

1
(­

1

1

L
i=l

=min
J

.::...

4. Repeat the steps 1. to 3. with a
1

instead of a and s. o.
o

Here A+ denotes the Moore-Penrose-Inverse of the matrix A.

For this computational method it is possible to prove a
convergence result (similar to Hartley (1961». The so con­
structed sequence a ,a~ , ... converge and a· -+ ~, ~ fulfils

o ~ ~

(7). This procedure yields a data fitted conditioned estimator...
if 1 is given explicitely.
Some modification is necessary if we will find a data· fitted
estimator in nonlinear regression. We assume that the
regression model depends on the particular subsample:

( 8)
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denote the l.s.e. or-

d
.A'\ ILl8(yH ). With G (El)=-

d8

we compute

1
r L G IiI, d1 ll1 ) Gill <13 Ill)

i=l

and let;1 be the eigenvector- of r to the lar-gest eigenvalue.

Then we deter-mine such ~ that

1
(­

I

and put

1

L
i == 1

=min

Now we denote by 8 IL)
0.

such par-ameter- which fulfils

G I i)
,..

IU ) (y iii +a-X In A
I L\(El W ) ) =0

0. 0.

and define

1

r(a)=,L ill A ILl ) G III
A IIIG '(El (El ) .

0. 0.
i=l

Then let ;L be the eigenvector- to the lar-gest eigenvector- of

r(a~) and we deter-mine such rl, that:
1 1

r A It I ...... ~
(- L r~(y +a

1
+~a1. )-I3(y» '=min

1 i=l ~

holds. Now we put

and r-epeat this pr-ocedur-e by r-eplacing d& instead of a
1

Again the conver-gence of this pr-ocedur-e can be pr-oved.

E>:ampl e: We consi der- the e>:ponenti al model (2) wi th the speci al

values for- 13~ ,8%, ,133 and t
1

, ••• ,tt> given in section 2. Her-e
one obtains

~=(.7329, .2532, .0505, -.0265, -.0486, -.0485)'
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The mean squared error (MSE) of the l.s.e. computed with the
corrected observations y+~ is about 15 % less than the MSE of
the usual l.s.e. This shows the large statistical advantage in
using the conditioned estimates in such exponential models.
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Resampling Codes and Regenerated Likelihoods

S.-M.Ogbonmwan, University of Benin, Nigeria
R.J.Verrall, University of London, Goldsmiths' College, England

H.P.Wynn, City University, London, England

1 Introduction

This paper continues the work by Ogbonmwan and Wynn on the use of resampling
and restricted reference sets to obtain simulated likelihoods for complex statistical
models. These are particularly relevant when distributional properties are poorly
specified but some parametric modelling is required. Comparisons are made with
the normal theory likelihood for some simple autoregressive models.

In a previous paper Ogbonmwan and Wynn, 1987 (OW) sketched a theory of
likelihood generation in semi-parameter models which showed itself applicable to
two sample, regression and autoregressive models. We introduce here, along with
the method in that paper, a further method in which whole alternative sample
paths may be generated. We shall give some examples comparing the two methods.
Relevant recent work is by Davison, Hinkley and Schechtman (1986).

2 The Likelihood

The technique in OW is as follows. Starting with a data set

we assume that there is some parameter dependent transformation

If 0 is a 'true' value of the parameter we assume a kind of exchangeability
assumption. That is, we look at all y. vectors in a 'reference set' 8(0, obtained
from the original '!lJ by 'expansion'. Thus 8(0) may be all bootstrap samples or all
versions of'!lJ obtained by sign change.

For each y. E 8(0) we compute a statistic T{y·) or alternatively resample from
8(0) to obta.iJJ. a resampled set of T{y·) values:- This set will have an empirical

distribution Fr(t), which may, if so req~red, be smoothed to obtain a density ir(t).
The hat in both cases denotes the fact that we have used empirically generated
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values. The likelihood, which we denote by L 1 (a second version will be given later)
IS

L1 (0) = idi)
where i = T(lb) is the statistic evaluated from the transformed raw data.

The rational for this is that if t is a rough sufficient statistic whose distribution
given () is reflected by iT(t) then indeed L 1 will be roughly proportional to the
true likelihood (by Neymann factorization). This method is reconstructive with the
engine of reconstruction being the assumptions about S(O). Special choices of S(O)
are referred to as resampling codes.

For certain models a more objective version of the process may be given by trac­
ing backwards from S(O) to reconstruct alternative samples for ~. Thus relabelling
S(O) as S,(O) alternatively construct an S3'(O) by an inversion. IT y. is a typical
member of Sy (0) we reconstruct ~. by an inversion -

• --1(.)
~ = g II

The tilde over g denotes the fact that g-1 may not be the precise inverse of g in all
cases. The reversion may lose dimensions, or some entries in ~. may be fixed. This
will become clearer in the examples. The~· are to be considered as alternative
samples that 'might have been produced' if 0 were the true value of the parameter.
For each ~. we then compute the value of a statistic, T(~·), and procede as above
to construct idt) and the alternative likelihood

L2 (0) = idt),

where i is now T(~), the value for the raw data. We assume that g-l(g,(~)) = ~,

so that the raw data can be reconstructed precisely and that therefore ~ E S3'(O).
The ease with which one can reconstruct the sample ~. depends on computa­

tional efficiency and also any initial assumptions fed into the construction of g-l.
The implementation of the procedures (to construct L = L 1 or L 2 ) has as its

starting point storing 0 on the computer and procedes to construct L(O) for the
stored value. The technique, in the construction of L 2 particularly, is thus similar
to that of Diggle and Gratton (1984) for implicitly defined likelihood. It differs
from more traditional bootstrap methods in that simulation takes place for a range
of 0 values rather than at an estimated value O. Method 1 (Ld is particularly
powerful for large complex models which allow some degree of exhangeability alter
a parameter-dependent transformation and also a data reduction implied if the
dimension of II is much less than the dimension of~. We believe that a likelihood
is a proper output for a large scale simulation in which different input parameter
values for 0 are used.

If the y. are chosen uniformly from S(O) then the reconstruction gives a distri­
bution for-the ~. which is uniform on SAO) = g-I(S,(O)). The construction of an
exact low dimensional sufficient statistic is hampered by the discrete nature of this
distribution and the finiteness of its support. The full randomisation likelihood is
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Usually this is equal to ! since g-I(l) = ~ and is therefore uninformative. We wish
to replace this by

Prob(t(~·) = t(~)la)

with the probability now evaluated over fT' Thus the summary statistic t and the
smoothing step become critical. In non-parametric theory the smoothing step is
not used (see discussion in OW).

3 The Autoregressive Model

We revisit the autoregressive model considered in OW. The ARO) is written

X t - aXt - 1 = Ct, t = 1, ... , n.

Here the {Ct} are usually assumed to be an independent sequence with constant
variance. Suppose now we have observations Xo, ••• , X n • We 'store' a and generate

Yt =Xt - aXt-1, t = 1, ... , n.

If a is the true a then the {Yt} are a set of true residuals. We perform resampling
on the btl (for the stored value of a) to produce B vectors

. (. .)la = YI"'" Y,. •

Notice that the dimension of t. is one less than the dimension of ~ = (xo, ... , X,.)
We may consider examples of the two methods described above. In OW we look

at
,\,,. . .

T ( .) - wi=1 Yi-IYi
I l - '\'';' I( !')'

wl=1 Y,

The alternative is to produce sample paths by constructing

X~ = aX~_1 +yr (i = 1, ... ,n)

This is the i-I transformation mentioned above. We then calculate

,\,n • •
1'0 ( .) - wi=1 Xi_IXi
'l - '\''.' I(X!')' .W,=1 ,

In either case we can construct a likelihood by looking at a (smooth) distribution

j,·(t.-!a), i = 1,2

and setting
L i(a) = fi(iila), i = 1,2.

Notice that i, is merely
A L::i=1 Xi-IXi
a = ,\,n-I , ,

wi=1 Xi

the usual maximum likelihood statistic.
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In the examples below we resample by simple bootstrap with sign changes giving
(2")! possible samples. We smooth by merely letting

~ 1
fi(t) = B#(t - d $ t~ $ t + d),

for the range of stationarity -1 < t < 1. Here d is a suitably chosen constant and
data was generated by sampling the €c from a normal distribution with n=32.

We compare LI(o) and L,(o) with the exact Normal theory likelihood, L(o).
The regenerated likelihood L, exhibits better behaviour. The likelihood L I behaves
strangely outside the interval [-1,11 showing that TI may not be the appropriate
statistic. Both TI and T, are approximately sufficient for 0 for large samples and
show robustness for non-normal errors. It would be fairer to compare L I and L,
with the likelihood based on the asmptotic distribution of a, which is normal or the
more accurate saddlepoint approximation given in Phillips (1978) (see also Durbin
(1980)). This will be the subject of a further paper.

The following figure compares the cumulative versions of the likelihoods LbL,
and L for one data set:

X10-1
12

10

4

L
2

____ 0 L1

-- _L2

0
-10 -5 0 5 10

X10-1

8

s



118

The following table compares the behaviour of L 1 and L, outside the [-1.1] range:

0' L1 L,
-2.0 0 0
-1.9 0 0
-1.8 0 0
-1.7 0 0
-1.6 1 0
-1.5 1 0
-1.4 0 0
-1.3 0 0
-1.2 0 0
-1.1 0 0
-1.0 0 0
-0.9 0 0
-0.8 1 0
-0.7 0 0
-0.6 1 0
-0.5 1 2
-0.4 0 1
-0.3 3 1
-0.2 5 2
-0.1 6 7
0.0 11 11
0.1 10 11
0.2 5 8
0.3 6 3
0.4 5 4

0' L1 L,
0.5 3 0
0.6 5 2
0.7 3 1
0.8 3 1
0.9 1 0
1.0 2 0
1.1 2 0
1.2 2 0
1.3 4 0
1.4 3 0
1.5 2 0
1.6 2 0
1.7 3 0
1.8 3 0
1.9 3 0
2.0 5 0
2.1 5 0
2.2 2 0
2.3 5 0
2.4 1 0
2.5 7 0
2.6 2 0
2.7 3 0
2.8 6 0
2.9 4 0

4: Conclusions

The likelihoods L 1 and L, in the general case are seen as alternatives to both the
exact distribution theory likelihoods and likelihoods based on bootstrapping a single
fit. For complex problems basing the statistic T on a transformed data set may be
the most convenient. For simpler problems we advise reconstructions of alternative
sample paths (method 2) and use of approximately sufficient statistics. The latter
is an open problem as is the choice of statistic for method 1.



119

5 References

l.Davison,A.C., Hinkley,D.V. and Schechtman,E. (1986) Efficient Bootstrap Simu­
lation. Biometrika 79 555-566.
2.Diggle,P.J. and Gratton,R.J. (1984) Monte Carlo methods of inference for implicit
statistical models. J. Roy. Statist. Soc. B ./6 109·££7
3.Durbin,J. (1980) Approximations for densities of sufficient statistics. Biometrika
67911·999
4.0gbonmwan,S-M and Wynn,H.P. (1987) Resampling Generated Likelihoods. IV
Purdue Symposium on Decision Theory and Related Topics, ed. S.S. Gupta Aea­
demie PreBB, New York
5.Phillips,P.C.B. (1978) Edgeworth and Saddlepoint approximations in the first­
order noncircular autoregression. Biometn'ka 65 91·98



FLAT GAUSSIAN NONLINEAR REGRESSION MODELS

Andrej Pazman
Mathematical Institute SAS, CS-814 73 Bratislava,Czechoslovakia

1. INTRODUCTION

ln the paper presented we consider gaussian nonlinear
regression models, close to linear ones but still evidently
nonlinear. Such models are called flat models. Every univaria­
te nonlinear model becomes flat after a suitable reparametri­
zation (Proposition 3); there are also many nontrivial examp­
les of multivariate flat nonlinear models. The aim of the
present paper is to show that nonlinear least squares estima­
tes have in flat models very good nonasymptotic statistical
properties.

1.1 The model

be observed data and let us denote by
vector. The considered nonli­
form

Let Yl , .•• , YNTY = (Yl , ••• , Yn ) the observed
near regression model is of the

(1)

Y = f(~) + v
L ..., N( 0, I:)

O,@eRm

where ?(B) is the systematic part of the model (= the mean
of y), e. is the gaussian error with the variance matrix .r:. ,
B is the vector of m unknown parameters 01'··.' Dm•

Regularity assumptions:

i) The variance matrix r. is nonsingular.

ii) The parameter space ~ is connected and it is open
min R • N

111) The response function ~ :G) .... R has continuous second
order derivatives t>2p(9)/ ~9i d9j for every lJeGJ.
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iv) The vectors d?(f})/dlJl , ... ,)p(f})/JDm are linearly
independent for every DEe.

The (Fisher) information matrix M(8) is equal to

It is nonsingular because of the assumption iv).
The model is linear iff~(B) is linear in the variables

91 , ••• Om. Evidently, M(9) does not depend on 9 in linear
models. The last property motivates the following definition.

Definition 1: The model (1) is flat iff the information
matrix M(9) does not depend on D. ----

Under a reparametrization of the model (1) we understand a
twice continuously differentiable mapping P(B) which is defi-
ned on G) and which is regular (Le. det {c)j3/~8T] '# 0 ;( DE G»)).

Definition 2: The model (1) is potentially flat iff it is
flat after a sui table reparametrization.

2. PARAMETRIC PROPERTIES OF FLAT MODELS

Another equivalent definition of flat models is connected
with the ~encov - Amari ~-connections presented in Amari
(1985). It can be easily shown that the coefficients of
~-affine connections given in Amari (1985) Eq. (2.27) do not
depend on ~ in the model (1), and they are given by the expres­
sion on the left-hand side of Eq. (3) given below.

Proposition 1. The model (1) is flat iff

-1

L !li!l = 0
~8k

(i, j, kE {I, ••• , m} ) ())

j, ke{l, ••• , m}). Here ek are
tangent plane to the expectation

for every (IE G> •
The proof can be obtained by differentiating the right­

hand side of (2).
To measure the influence of the choice of the para-

meteFs on the nonlinearity of the model, Bates and Watts (1980)
introduced a three-dimensional array measuring the parameter
effect nonlinearity,
r· 2 T 1 -1l~ 'l (9)/d8i d9j L- ek ; (i,

orthonormal vectors in the
manifold

~ :={,(f}) : 8~QJ,

(cf. also Ratkovsky (1984), chpt. 2.4).
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Proposition 2. The model (1) is flat iff the array of
the Bates and Watts measures of the parameter effect nonlinea­
rity is zero.

Proposition 3. Every univariate model (dim 9 = 1) is flat
after a suitable reparametrization.

The proof is based on the simple differential equation
for the new parameter f

dpld 9 = I df( 9 ) I d 9 ".r .
2 T-l

Here Uan~ .- a 1:. a. Evidently, M(~) = 1
pro~osition 4. Let A be a nonsingular

(1) is f at, then it is flat also after the
ft = A9.

The proof follows from Definition 1.
pro~sition 5. Model (1) is potentially flat iff for

every BE." and every i, j ,h, k we have

where

pe :==~ M-1 (e) anT(e) -1 (5)
ae T ae l:

(the projector onto the tangent plane to t ).
The proof follows from a statement from differential

geometry, according to which every potentially flat model has
a zero Riemannian - Christoffel curvature (cf. Eisenhart (1926),
p. 25~ We note that flat models in Amari (1985), p. 46 corres­
pond to our potentially flat models. We chose our definition
from classical differential geometry (Eisenhart (1926» becau­
se it has a better statistical interpretation.

3. STATISTICAL PROPERTIES OF L. S. ESTIMATES

This section is based on the extension of results on the
nonasymptotical probability density of nonlinear least squares
estimates presented in Pazman (1984) and Pazman (1987).

By the L. S. estimate we unde~tand the estimate

9:= 9(Y) := arg min I/y - 1)(8) II~ . (6)
9f €> C 4,

Let 'i be the true (though unknown) value of 9 • Take r > 0 and
denote by

G( r) : =lYE R
N

: Ry - r (i )Ilr< r }

the sphere in the sample spacre which is centred at rei). We
shall suppose that 'I,r are such that there is a solution of
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(6) for every Y~ G( r). Denote by

G(r) := {elY) : YEG(r)}

a subset of the parameter space G) • The number r should be
smaller than the radius of curvature of any geodesic curve on t
or at least on the surface t( r) := l 'f (8) : If. €)( r)j (cf.
pezman (1987) for details). ...

proP~ftiO~~ The probability density of 8 is approxi-
mated on ~y the formula

q(9(9) .- detm~k;!ih2 exp [- ~ Ilperf(;) - f(J)] 1I~2J (7)
(2~) det M(i)

,.
where pe is given in Eq. (5) and where

T -1 9 d 2 (;)
- ,(9)] r:. (I-P) 'j~ ;1 ..

1. J

If the model (1) is flat, then

= )2 f ~ II ,,(8) _ "(idl~}
aii a'j l.::: ( (

" -If the model (1) is potentially flat, then q(9/8) is equal
(up to a mUltiplic~tive norming constant) to the exact proba­
bility density of , obtained from a reduced sample space con­
taining the set G(r) as its inner part.

The proof follows from Pazman (1987). Especially the
last statement follows from Eq. (21) there, after applying our
definition of potentially flat models.

A ... _

Proposi tion 7. If (J is distributed according to q(SI9)
on G)(r) and if the model is flat, then the vector of random
variables

(i = 1, ••• , m)

according to a truncated normal distributionis distributed
N( 0, M).

In case of m = 1 the proof is in Section 1 of Pazman
(1984), in case of m> 1 it is included in the proof of'
Theorem 2 of' the same paper.

Proposition 8. If the model is potentially flat, then
the set

[ '" JT -1, r '" - j{D: ? (8) - r(In .r: P lr( 9) - f un] < c (8)
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is a confidence region, supposing that it is a subset of ~(r).

Here c is either a quantile of the ~2-distribution (if ~ is
known), or of the F-distribution (if r = 102r and G is unknown,
but estimated independently). The level of significance of the
region is the level of the quantile plus the probability
of the "lost part" of the sample space. This probability is
bounded above by

1 - P [x~< r
2J.

The proof of the statement is an extension of Theorem 2
in Pazman (1984).

3.1 Possibility of numerical computations

The verification whether a regression model is flat or
pot~ntially flat, the computation of the probability density
of B and the computation of the radius of curvature (cf. Paz­
man (1984), Appendix B) require the computation of first and
second order derivatives of "1(1) in every point B~G:> as well
as some additional simple matrix computations. To obtain
the confidence region '3) we need to compute these derivatives
only at the point 9 •

However, the necessity of computing first and second
order derivatives of 7(0) is not new in nonlinear regression,
because standard programs for computing L. S. estimates
usually need such derivatives.

More details concerning the proofs and other details
should be included in a subsequent paper prepared for the
journal Statistics.
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ASYMPTOTICS FOR INADEQUATE NONLINEAR MODELS WITH HETEROSCEDASTIC
VARIANCES

Wolfgang H. Schmidt
Humboldt-University, Berlin, GDR

1. INTRODUCTION

Several asymptotic results for the nonlinear regression
model with heteroscedastic variances are presented. Special
attention is paid to so-called inadequate models for both the
vector of the unknown expectations as well as for the vector
of the unknown variances. It is wellknown that fitting the
data by inadequate models with only few parameters can lead to
smaller .ean squared errors than fitting by adequate models
whereas the latter are known rather seldom only.

The construction of the estimators utilizes the Least­
Squares approach following a method introduced by Jobson and
Fuller (1980) for the linear regression model.

The proofs of all the results in this paper will be
published elsewhere.

We consider observations

Yj - f j + ~j lj' j-1,2, ••• ,n, •••

where f j , j~1 are real numbers and ~j' j~1 are positive numbers,

both being unknown. The sequence (tj)j~1 constitutes a se­
quence of independent and identically distributed random

variables wi th E £ 1 = 0 and E £ ~ = 1. The problem under con­
sideration is the estimation of the vector of expectations
f = (fj)j~1~ Roo or more presicely of a suitable chosen
functional thereof. Given a parametric model for f

l-{g(~) = (gj(~»p!1,""E.91, 6)C.RP, 9 closure of e,
which mayor may not be true (f E:.1-, or f ¢ 1)
we introduce the projection parameter

:J. min t.- (n) (f (",»2f - arg e j-1 u j j-gj

where (u~n»j=1, ••• ,n is an array of weights.
Choosing the weights corresponds to fitting charac-
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teristics of the regression function well. E.g. it might be of
interest to have an approximation of the regression function
in a special interval with high precision not neglecting the
information contained in the observations outside of the inter­
val. For that purpose we introduce weighted Least-Squares
estimators

~ = arg min.! i=w~n)(y._g.(",,»2 + r (y,.:J')
n Q n j=1 J J J n

(n) (n)() .where wj = wj Y1""'Yn are random welghts such that

w~n)_ u~n) tends to zero in probability for n tending to

infinity and rn(Y'~) tends to zero in probability as well.

Special cases are for rn(Y'~ = 0

(i) w~n) = u~n) = 1, ordinary LSE
J J
(n) 1\ 2 "

(it) wj = ~ j , two-stage LSE where G'j denotes a consistent

estimator of 6 j' Such estimators can be easily

der ived if E) j = 6' j (~t")
depends besides on :t on a fini te dimensional parameter
't" ~ 't c. Rq only.

We use the following denotations:
For vectors x,y,ZE. Roo

1 n
(x,y)z = ii j~ Zj x j Yj

and

Ixl
2

= (x,x)Z·Z
Further let P

6"j
be the distribution of Yj' j =1, •••

f j ,
00

Then Pf,6 =X P is the distribution of the sequence
j=1 f j ,6'j

(Yj)jh'
We use the symbol g~ for the vector (gj(~)j~1'

2. WEAK CONSISTENCY

We set up the following assumptions:
A1: E It1\k< 00 for some k ~ 2

A2: The f~nctions gj are continuous on e and for every co.pact

~ c e there is a d >0, a constant c <. 00 and an integer no

such that for all n~n ,:J E. L, :t' ~ e with 11"'- ""'n <. cf
it holds 0

I g(~') - g(~) lu " c II~~""II.

A3: sup Ig j (~) 1< 00 for every co.pact ,e c. e.
j ,,,,,",, ~
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A4: For every compact £; Co ethere are a nondecreasing function
Af~ : (0,00) ---. [0,00) being positive on_ (0,00) and an

integer n such that for all ~E.£, ""'E:. Sand n il: no it
holds 0

19(~') - g("")I~ ~ "f£(lh'-""l).
In case e is unbounded ~~ fulfils

"f..,(t)~ 00
f4 t ..... oo

In what follows1t and! are fixed compact subsets of Roo.

AS : sup if. i <:. 00
j , f€ Clt J

A6: ~f exists is uniquely determined and belongs to some

compact ~c G for all sufficiently large n.

A7: For some integer k :l! 2 and every cf>° it hoI ds
sup P

f
6 (sup/w~n) - u~n)l>d) = 0(n-(k-2)/2).

f~ '«-,6(. C ' j J J

A8: For some integer k ~ 2 and every positive d and ~,all
compact ;;e C G it hoI ds

sup Pf 6' (sup Ir (y ,"')/ >'aC.) = o(n -(k-2)/2).
f(.. 'l< ,66 'E ' 1I-J'':'''-r ll >O n

Theorem 2.1 Under the assumptions Al, ••• A8 we have for
every positIve J

sup P (1\'; - ::t Il~d) = 0(n-(k-2)/2)
ff:.1!les€~ f,o n f

in case that ~ = \,5_E.R OO
J §" 6 j "6, j=l,2, ••• 1

for some §: >° and 5 ~ 00.
This theorem generalizes results by Malinvaud (1970) and
Ivanov (1976).
(Remark: It was proved by Huet (1986) and Maljutov (1982) that

. (n) ~-2the weIghts wj = Q j lead to inconsistency whenever

OJ = hj(~) depends on ~.)

2 ~ow it is our aim to estimate the unknown variances
6 j , J=l,2, ••••

Suppose there is given a model for 6'2 = (6~) '~1' namely_ J-

£J= {h(-0',1:) = (hj(~'''C))p''l''''E. e ,"tE.1:}
Which mayor may not be true (ff 2e ..'lJ or62~.:f»). Again we use
the Least-Squares approach to estimate ~, i.e •

.r.= arg min 1. f s ~n) (~~ _ h. (';,'t'))2
~ n j~i J J J

1\2 '" 2with e j .. (Yj-gj(~))
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and s~n) are random weights approaching nonrandom weights v~n~
Then it can be proved under some Lipschitz conditions on h
that

"2 ( ..... 2 2 "" ),2Ie - h ~,'t")ls =Ie - h(1'~ Is + rn(Y'~)

where rn(Y'~) fulfils A8 and e~ = (Yj-gj(~f))2.
Therefore the Theorem applies again and yields especially

A Pf E5'
't'- 'i:' ' .. 0 uniformly in f e 'K. and 6'e: C with

f ,0

'r = arg m!n !6"2 +l:J.2 - h(.J'f,1-H v
2

f,,, 2 • 2
and Aj = (fj-g'(~f)) , j ~ 1 denotes the model error for f.

J ....
Now it is natural to estimate 6~ by hj("",-t), j ~ 1 and one
gets

with
"'2 ..<OJ = h j ('IIf ,'tf ,S)·

From this point of view it becomes clear that the model ~ is
always a model for <0 2 + A,2.

Now the procedure might be applied again to obtain two­
stage estimators namely

~

~= arg min I y - g(")/ ~
• 1\ " " -1wIth wj = hj(~''t)

and * . ~2 " 2
't = arg mIn Ie - h(""S)/ ~
~2 't" ~ 2

with e j = (Yj-gj(~))

" " 4 "2 "2 "-1and Sj = (es j(~4-1) + 4fS j A j + 4~3Aj) •

Here ~3 and ~4 are the third or the fourth moment of E, 1
" " "-respectively andA j . = f j - gj("').

The consistency of f can be proved in case of a repeti tion
model

Yij = f i + 0ijE.ij , i=1, ••• ,m
j=1, ••• ,n i

for n i ~oo for i=1, ••• ,m and fixed or slowly increasing m.

3. STRONG CONSISTENCY

For simplicity let us assume from now on that we have
adequate models for both f and 6', i.e. ~f =:J" and 't"f,e! = 't"' for
some ~t. e and 't"t: 1: . Using the technique established by
Jennrich (1969), which was extended by Jobson and Fuller (1980),
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1\ 1\

the strong consistency for ~n and ~n can be proved. For this
purpose we need the following assumptions:

A9: There are constants 6> 0 and 6<. 00 such that for all j" 1
6' 6· ~ ~ • -
- J

AI0: Sis _compact and the functi ons g j (-') are continuous in
r:J' E. 6) for every j ~ 1.

All: For all functions l,ke'K.= {(g{"'))j~l,"'e.e}

there are real numbers (l,k) such that

sup 1(I,k) - (I,k)! n ~OJ O.
l,k~1( n

A12: Ig""-g",,,\= 0 implies ~=~I.

Theorem 3.1 (Bunke,Schmidt (1980)). The assumptions
A9, ••• ,A12 together with A7 for k = 2 ensure

~ a.s. ""v-n --'> -v-.

A suitable adaption of the same technique leads to the
following result:

Theorem 3.2 The following assumptions together with A9
and A7 for k = 2, w~n) = s~n), u~n) = v(n) entail

J J J j

A13:
A14:

A15:

A16:

rrna.s.)'i:':

4
E E. 1 <. 00.

Sand 1: are compact and there is a constant c <. 00 such
that

Igj(~)-gj(""')l' c U",,-""'I\ for all j ~ 1
and

Ih{"','t')-hj(~,'t")I' c l1't"'-'t'1l for all j~l and all "e€).

For "Xl = {(hj(~''t ))jl!ll'''t E.'Tl it holds

sup \(I,k,)v - (I,k)l n ..,..~ 0 for real numbers (I,k).
l,kE.'at 1

I h - h 1= 0 implies tt= «t' •
't" '"t'

4. ~-CONSISTENCY

Now we give conditions under which
J""' " 1\
In(~n-~) = 0p(l) and fn(~n-~) = Op

are fulfilled.
Theorem 4.1 (Bunke,Schmidt (1980)).

assumptlons A9, ••. ,A12 let the following

A17: It holds All with ~ replaced by

(1 )

Besides of the
conditions be fulfilled:
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., €. 9; i, k • 1, ••• I P }.

Here it is assumed that the function gj(~) are twice

continuously partially differentiable with respect to ~.

A18: a) The limits

C = lim ! t 6~ u
2
J
. "do,.. gJ'(~) ~a"" gJ.(~)T

n -.00 n j=l J OJ"\) r7'\J

and

A = lim
~oo

1 n ~ ~ T
- .;;- u. ~ g.("') - 9 .(~)
n f;i J 'd--" J a", J

h.(~,'t» '~l,::J€.e,'tE.1,i=l, ••• ,p,
J J-

k,l=l,···,ql

exist and are regular.

b) ::J belongs to the interior of G.

c) It holds n-1/2 ± (w~n)_u~n» £). l gJ'("') Eo
J
' = 0p(l).

j=l J J J a.J'
Then we have

;£ (-rn'(~ -,:)'» --. N(O,A-1CA-1).
n A

In the next step in (~n-T) = 0p(l) is established. For

this aim we introduce the following assumptions:

A19: Let the condition All with d(replaced by

~3 ='K 1lJ 'K2lJ f(;'l:'k hj(~,'r»j~l' (a~: 8"t
1

hj(-0\rr»j~l'

d 2

( a""i d't'k

be fulfilled.

A20: There is a constant c ~ 00 wi th

@ d II o'r
k

hj(~''t) - ~'tk hj(~' ,'t")I~ cll""-"""

and

l<'d~k h j (",'t'»2 -(O~k hj(.J'~'l:"»)12f c11~-~'1I

for all j ~ I, 't E. 't , k =I, ••• I q •
A21: The li mi ts

o = lim 1 t.. v(n).:2.- h.("','t) d hj(J'/i:')T
n-,> 00 n j=l j Gl't" J ~

and

1 n (n) a 2
= lim - LV. ~.....".- h J' ("', rr), k, 1=I, ••• I q

n-. 00 n j =1 J ~<t'k 'd"t'l
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exist and D is regular.
Theorem 4.2 The conditions of Theorem 3.2 together with

A19, A20 and A21 ensure ~(~n-~) - 0p(l).

5. ASYMPTOTICALLY EFFICIENT ESTIMATORS

Here we use the estimators ""n and ~ n as ini ti al
estimators for defining an one-step Gauss-Newton generalized
iteration. We proceed according the lines in ~obson and Fuller
(1980). Let us introduce the vector of the residuals and the
centered squares of residuals

"Yl-gl(""'n)

z =

and

with
x(~) = ( d g (~».

~""i j J=l,. •• ,n,
l=l, ••• ,p

H1 (~,'t) = ( aa,. k. h j (.j',ct"» j =1, ••• , n
k.-l, ••• ,q

H2(~'~) = (~ hj(~'~»)=l, ••• ,n •
l=l, ••• ,p

Then the one-step version of the Gauss-Newton iteration
pr~cedur~ is defined to be

(
ltn) (<!\n) T 1\" -1"" "A. -1 T" " -1 1\ 1\oO'n = "'h + (H (""'n,tt"n)"t' (~n,tt"n)H(~n't"n» H ({)\n,<t"n)"t (~8'n)Z

Theorem 5.1 Let the assumptions of Theorem 4.1 and
Theorem 4.2 be fulfilled. Moreover, assume that the matrices

In(~"CC") = ~ HT(~,Ci;)"t'-l(~,rr)H(~,Cj;')
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tend uniformly in (..1',"C)€. exT to regular limits I (V'-,'r) •
Then we ha~e

~ -~

~(1rr(i_~» ~ N(0,I-1 (""'<r».
n

Notice that I(~,~) is the limit of the average Fisher­
information matrix if the observations Yj are normally distri-
buted. Therefore, using the local asymptotic normality of the
family of probability distributions, it follows that the one­
step version is asymptotically efficient. Similar results have
been obtained by Maljutov (1982) for the special case
hj(~''t") = hj(~). Maljutov (1982) also proves the local
asymptotic minimaxity for sequentially designed experiments.

The preceeding result can be utilized for the construction

of an asymptotic l-oc. confidence region for the vector (~),

n••~;~: ) In~=:)T In(~n'~n) (t:}X ~+q; 1-0< I
Further it can be used for the construction of an asymptotic
oc.-test for testing

H: r(~,rr:) =10
for a given parametric

~ £\ 11: L XC'--'>R •

The hypothesis is to be rejected if
~ R: T" 1\ -1"" T"" -1 ~ ~

n(t(""n,tt"n)-~) (C(~n,'t"n)In (~n,tt'n)C (""n,'t"n» (l(~ ,'t'n)-'(o)

>Xi,l-«. .
Here C(~, 't) denotes the Jacob i an of t wi th respect to ~ and ~.
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ERRORS IN THE FACTOR LEVELS: PARAMETER ESTIMATION OF HETEROSCEDASTIC MODEL
AND ROBUSTNESS OF THE EXPERIMENTAL DESIGNS

I.N. Vuchkov and L.N. Boyadjieva
Department of Automation, Higher Institute of Chemical Technology, Sofia

1. INTRODUCTION

In the course of the planned experiment the selected factor levels are
often established with errors. Then the correct model is

y = zS + v

instead of the model

y = xS + v

( 1)

where y is an (nXl) vector of observations, Z=(1,f
2

(z) ,f
3

(z) , .•• ,fp(z) and

X=(1,f
2

(x) ,f
3

(x) , ... ,fp(x)), are the true and the selected (nXp) matrices

respectively, S is a (pXl) vector of coefficients to be estimated and v is
a (nXl) vector of the random response disturbance. At that f, (x)=(f, (xl)'

J J
f,(x

2
), ... ,f,(x)) " where f" j=2,3, ... ,p denotes given function of the

J J n J
factors and the (qXl) vectors of selected Xi and true zi factor levels are

connected with relation zi = xi+e
i

, e
i

being the (qXl) vector of factor er­

rors in the ith trial, i = 1,2, ... ,n, q ~ p.
Usually the following assumptions are accepted conserning the distur­

bance v and the matrix of factor errors £ = (e
1

,e
2

, ... ,e
n

) ':

E(v) 0, D(v) 0, D(e)
(

var(e,), i=j,
cov(e~e,), i,.lj

~ J
(2)

where E and D indicate expectation and covariance matrix respectively. It
is also assumed that all errors are independently distributed among the
runs.

As the true design matrix Z is unknown, the model (1) has been transfor­
med (Box, 1963) into a model having a design matrix X and modified responce
disturbance, caused by the real response disturbance v and by the errors in
the factor levels transmitted to the response. For linear in factors models
it has been proved that the modified response disturbance has zero expecta­
tion and equal variances in all design points, thence the least squares es-

timate (LSE) b=(X'X)-l x ,y is unbiased and efficient. For nonlinear in fac­
tozsmodels the modified disturbance has nonzero expectation and different
variances in all experimental points depending on selected factor levels,
which result in biased and nonefficient LSE b.

That is why special methods must be used for estimation of nonlinear in
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factors models with errors. An iterative procedure (Fedorov, 1974) ensures
consistent and asymptotically normal estimate of 8 for given second order
moments of the factor errors and of the disturbance v. The procedure conver­
ges if initial estimate of 8 is close enough to the true vector 8. But this
condition may not be always be met if substantial errors occur in the factor
level settings. In addition to this it is difficult to estimate the moments
of disturbance v separately - for example the variance 0 2 in presence of
factor errors. 0

Another possibility to estimate the nonlinear in factors models is the
following transformation (Vuchkov and Boyadjieva, 1981) of the model (1)

y = F8 + r ( 3)

where F=F+Ee(G), r=v+(G-E
e

(G))8, Ee(G) denotes the expectation of the mat­

rix G=Z-X with respect to the factor errors.
The design matrix F in the model (1) is nonrandom and known provided

the moments of the factor errors are given. The disturbance r has a zero
expectation and diagonal covariance matrix

D(r) = D·{y)

with elements

2 2
0. = ° + 8'A.8 + c., i = 1,2, •.. ,n
~ 0 ~ ~

(4)

where Ai (5)

c. 2E (v. 8' (g. -E (g.)),
~ v,e ~ ~ e ~

and g~ is the ith row of matrix G. If the disturbance v. is independently
~ ~

distributed by e
i

in a given run, then c
i

= 0, i = 1,2, ••• ,n.

The terms 8'A.8 and c. in (4) are due to the factor errors and
~ ~ 2 2

they increase the response variances from 00 to 0i. In linear in factorsmo-

dels this increase is equal with all design points as Ai and c
i

depend on

error moments only. In addition F=X, as Ee(G)=E(£)=O. For nonlinear with res­

pect to factors models c
i

and the elements of Ai-matrices depend on Xi as

well, which causes variance heteroscedasticity.
Thence, for known factor error moments, the estimation of nonlinear mo­

dels is reduced to estimation of model (3) with heteroscedastic variances.
The best linear unbiased estimate (BLUE) for 8 is provided by the weighted
least squares method:

(6)

Since the elements of matrix L depend on the unknown parameter 8, the esti­
mate

(7)

doesn't coincide with b
s

. While BLUE b L allways

the estimate bL
in more accurate

are available.
2

0.

2
s.
~

results

of b L if some estimates s~ of

true variances O~ differ from
~

can be applied instead

But as far as the
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-1
model, in comparison to LSE b=(F'F) F'y the properties of b

s
depend on va-

riance estimation method. As compared to b,b
s

is proved to be really more

efficient if the variances are precisely estimated and their heteroscedasti­
city is substantial.

2. HETEROSCEDASTIC VARIANCE ESTIMATORS AND PROPERTES OF THE ESTIMATES b
S

The properties of the estimates b
s

will be investigated when the fol­
lowing four methods discussed in (Horn, Horn, 1975) are used as variance es­
timators: MINQUE (Minimum Norm Quadratic Estimate), AUE (Almost Unbiased
Estimate), ASR (Average of the Squared Residuals) and SV (Sample Variance) •
It as assumed that m replications are carried out in each of the n design
points. The model for Ith replication of the design is given by (3) with in­
dices (1) added to denote the corresponding replication

(1) (1)
Y =FS+r ,1=1,2, ••• ,m.

The model for all m replications is expressed as follows:

y = FS + r,

with corresponding formulae to (6) and (7) of the form

(8)

(9)

- --1- -1- --1-
(F'L F) F'L y

- --1- -1- --1­
(F'S F) F'S Y

-1 -1 -1­
(F'L F) E'L y,

-1 -1 -1­
(F'S F) F'S Y

( 10)

( 11 )

The unknown variances
222 2

vector s = (sl,s2, •.• ,sn)

methods mentioned above:

(1)' (2)' (m)' , - -1 m (1)
where y (y ,y , ..• ,y ) is an (mnX1) vector, y=m L

l
=l y is an

(nX1) vector, F=(F',F', ••. ,F')' (m times) is an (rnnXp) matrix,
- (I)' (2)' (m)'
r=(r ,r , ..• ,r ) I is an (rnnX1) vector with (rnnXmn) covariance mat-
rix D(;) = =diag(L,L, •.. ,L) (m times) and S=diag(S,S, ... ,S) (mtimes).

2 2 2 2 .
a (Ol'02, •.. ,On) are est~mated through the

with one of the following forms depending on the

2
sMINQUE

2
sAUE

-1
Amu,m~l, (12 )

(13 )

u, m ~ 1,
2

sASR

2 -1 m (1) *2 -1 m (1) *2
ssv = (m-l) (L l =l (y ) - m (L l =l Y ) ), m ~ 2,

where

(14 )

(15)

( 16)

-1K = F(F'F) F', lKJ..
~J

k ij' i, j 1,2, ... ,n (17)
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1,2, ... ,n (18 )

-1 m ~(l) *2
urn = m Ll =l (r ) , u i

( 19)

and [(.) *2~ [(·w· .
~J

where Q

The (nX1) vector u elements are the average values of the squared re­
siduals from replicated trials in the design points. The (mmX 1) residual
vector is calculated by means of the LSE b for S:

~(1) I ~(2)' ~(m) I -

(r ,r , ... ,r l'=y-Fb= (I-Klr=Qr (20)

- - - - - -1-
(I-K), K = F(F'F) F'and

b (21 )

Two modifications are envisaged for the MINQUE method. A preliminary
given positive number (in the first one) and the average of the squared
residuals (in the second one) are substituted for the negative values of
variance estimates which is possible to be obtained by MINQUE method in some
of the design points.

The estimates of the b s type: bMINQUE,bAUE,bASR and b sv ' the proper-

ties of which will be discussed are calculated with the aid of (11) where
the weighted matrix S is determined through the elements of the vectors
(12)-(15) respectively. The discussion is based on the investigation related
to bMINQUE and b sv made in the appendix of (Rao, Subrahmaniam, 1971).

2.1. Unbiasedness of b
s

Theorem 1. The estimates of the b s type bMINQUE,bAUE,bASR and bsv are

unbiased, i.e. E(b ) = S (if E(b ) exists), provided the disturbance; is
s s

symmetrically distributed.
Proof. The following theorem of (Kakwani, 1967) will be used: Every

estimate §, the deviation of which from S has the form of H(;); is unbiased

i.e: E(S) = S (it is assumed that the mean E(S) exists), providedH(;)=H(-~))
and ~ is symmetrically distributed.

The deviation of b from S, obtained through (11) and (9), takes the
following form: s

b - S = (p I S-1p)-lp,s-1;.
s

Therefore in compliance with Kakwani's theorem, the estimates bare unbi-
_ - --1- -1- --1 s

ased, provided the matrix H(r) = (F'S F) F'S doesn't change as r is rep-

laced by -~. which in the event of nonrandom matrix F is reduced to the

establishment of the condition S(~) = S(-~), i.e. to

2 - 2-
s (r) = s (-r) (22)

where s2(r) is determined by means of one of the relationships (12)-(15).
For the first three variance estimators.it is clear that only vector u
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depends on r as the matrices Am and B
m

are nonrandom according to (16)-(18).

Consequently the test of (22) boils down to the verification of

(23)

The formula for the element u
i

of u can be obtained using (20) in

order to present the vector r(l) and its ith element in the form

,,(1) - 0)-
r Q r, 1 = 1,2, •.. ,m

" (1) ,_
r

i
qi r, (24)

(1) (1) I

where [Q 1.. = [Q]l .. , i = 1,2, .•. ,n, j = 1,2, ... ,mn and qJ.' stands
J.J +J., J (1)

for the i-th row of the matrix Q . The square of the residual in the lth
replication at the ith design point from (24) is given with the following
quadratic form:

,,( 1) 2
r.

J.
-, (1) (1) '­
r qi qi r

Thence

,,(1)2(-) =~~1)2(_r).
r i r J. ( 25)

Consequently from (25) and (19) it becomes clear that the condition (25) is

fulfilled for the estimates bMINQUE' bAUE and b ASR '

The fulfilment of (23) with the estimate b V can be established direct-
ly by rewriting (15) in the following form: S

2 () = (m_1)-1L:m (r(1))*2 _ -l(L:m ( (1))*2
s SV r 1 =1 m 1 =1 r ,

where it is taken into account that from (8)

(1) -1 L:m (1)
y -m 1=1 y

Consequently if the assumptions of Kakwani's theorem are met, the esti­

mates bMINQUE' bAUE' b ASR and b sv are unbiased.

2.2. Consistency of b
s

(Demidenko, 1981). The LSE b for heteroscedastic

for S, provided A . (F'F)
mJ.n

nimal matrix eigenvalue) .
(ii) Theorem 2.4 from

This property will be discussed assuming that m + m, with nand p
being-fixed. Further on it is necessary to use the following:

(i) Theorem 2.3 from (Demidenko, 1981). The estimate bL: is consistent
2

+ 00, m + 00 and maxO. ~ d ~ 00 (A. stands for mi-
i J. mJ.n

model (9) is consistent for S provided A (F'F) + 00 m + 00 and
min '

0 2 < d _$ 00max . =
i J.

The consistency of b can be stated with the following
2 s

Theorem 2. Let s can be determined by means of one of the vectors
(12)-(15). Then b (see (11)) is consistent estimate for S provided

s
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A . (F'F) + 00, m + 00 and maxa
2 ~ d ~ 00

m~n i i
Proof. (Throughout the proof it is assumed that all probability limits

plim (.) are taken for m + 00). The comparison of b[ and b
s

from (10) and
(11) shows that if

2 2
plim s = a ( 2b)

plim u,

::::then b
s

b[, m + 00, and according to the theorem, mentioned in (i), b
s

is

a consistent estimator for S. Consequently, establishing the consistency of
b

s
means a verification of the relationship (26), i.e. verifying whether

MINQUE, AUE, ASR and SV methods consistenly estimate the unknown variances.
For the first three estimators it can be written using formulae (12)-(14)

2 -1 -1
plim sMINQUE = plim Am plim u = (plim Am) plim u = plim u,

2
plim sAUE

2
plim sASR = plim u,

since from (16)-(18) it follows that plim Am and plim B
m

are identity
matrices:

1, i = j,
plim[ B )., =

m ~J

I
plim(1-2m-lkii+m-lk~i) = 1, i

Plim(m-lk~j) = 0, i ~ j,

-1 -1
Jplim( l-m k

U
)

lO,i~j,

j ,

Therefore for MINQUE, AUE and ASR methods the condition (26) is reduced to
a consistent estimation of variances by means of the vector u, i.e.

1
, 2

P ~m u = a ( 27)

_ (1) (2) (m) I

Yi-(Y i 'Yi '···'Yi ) ,

( 1)
of (nXl) vectors rand

Seeking for the elements of plim u, we use the following (mXl) vector
of residuals from the replications at the ith design point:

" "(1) "(2) "(m) I "
r i = (r i ,r i , ••. ,r i )' = Yi-Yi = FiS +r

i
-Fib= Fi(S-b) +r

i
(28)

_ (1) (2) (m) ,
where ri-(r

i
,r

i
, ... ,r

i
) ,

(1) (1)
r

i
'Y

i
are the ith elements

is LS estimate (21) and F
i

is an (mXp) matrix with equal rows of ~he form

(f i1 ' f i 2 ' •.• ,f iP) I, f i j F i j' i = 1, 2 , .•. ,n, j = 1,2, .•• , p.

Therefore u
i

can be presented by (19) and (28) as

= m-
1

[m i:~1)2 = m-l;~;. = m-l((S-b)'F~ + r~)(F.(S-b) + r.))
u i 1=1 ~ ~ ~ ~ ~ ~ ~
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Thence

(S-plim b) 'plim (F~F,/m) (S-plim b) +
~ ~

+ 2plim(r~F,/m) (S-plim b) + plim(r~r./m)
~ ~ ~ ~

(29)

The frist term in the right side of (29) is a quadratic form having vector
(S-plim b) = ° (as according to the theorem mentioned in (ii) plim b = S)
and matrix with bounded elements, according to the determination of F

i

[plim(F~F./m)] = O:m
l

__
1

f, f. 1m) = f. f, , r,s = 1,2, ••• ,m.
~ ~ rs ~r ~s ~r ~s

Consequently, this term equals zero. The second term of (29) is zero too,
since plim(r~F./m) cam be regarded as a vector of probability limits of the

~ ~

covariances between the elements of r
i

and F
i

, which are zeros, F
i

being

a nonrandom matrix. Thence (29) reduces to

, . m (1) 2 2
plim u i = plim(riri/m) = pl~m(Ll=l r

i
1m) 0i·

Regarding the estimation of 0
2

through SV it is well known (Gramer,
1946, § 27.4) that this method provides unbiased estimates for Of

2 2
E(SSVi) = °i

whit variances of the form:

2 -1 2
var (sSVi) = m ~4 - 0i (m-3)/(m-1)m,

(1) (1) 4 2 2 .
where ~4 = E(Yi E(Yi»; Therefore var(sSVi) + 0, m + 00. Thence sSVi ~s

consistent, i.e. Plims~Vi ai' i = 1,2, .•• ,n, as an estimator who is

unbiased and with variance tending asymptotically to zero (Johnston, 1972,
§ 9.1). This complets the proof.

2.3. Efficiency of b
s

: Monte-Carlo simulations

The comparison of the efficiency of the b
s

type estimates, b
L

and b is

usually based on sample covariance matrices, obtained by means of Monte­
Carlo tests (Rao, Subrahmaniam, 1971) since attaining an approximation to
the covariance matrix of b is still to be done. Summarized results from

s

~~~~~a~.tests for estimates bMINQUE' b AUE ' b ASR ' b sv and b are given in

The aim is to investigate these estimates in the case of small number
of replications and without replications. The comparison is carried out
through the value of the ratio between sample covariance matrix determinats

for the estimates b
s

and b, Le. ID(b
s

) III D(b)l. If the ratio is smaller

than 1, the estimation by means of b
s

is more efficien than the one, obtai­

ned through LSE b. The nearer this value is to the minimal one (determined

by ro (b
L

) I I ID(b) I, the closer in efficiency sence the estimates b are to the
2 2 s

b~. The heteroscedasticity is preset from maxO, Imina. = 1.31 to 19.46 vary-
/., i ~ i ~
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ID(~) [/[D(b) I
....

TABLE 1 The values of for estimates S
of the type MINQUE, AUE, ASR, SV and BLUE.

2/ . 2
n max . m~n

i m MINQUE AUE ASR SV BLUE
i ~

1,31 1 7.641 2.738 2.436 0.976
3 2.485 2.077 2.039 5.668 1.007

1 3.710 1.262 4.321 0.320
2 1.374 1.052 1. 118 4.423 0.293

9 13.30 3 1.092 0.933 0.939 1.835 0.341
6 0.628 0.599 0.599 0.726 0.327

10 0.445 0.439 0.439 0.452 0.298

1 3.354 1.194 1.568 0.261
19.46 3 0.944 0.801 0.811 1.324 0.273

6 0.505 0.485 0.487 0.574 0.261

1 2.593 1.132 3.396 0.633
8 6.41 2 2.075 1.595 1.532 32.173 0.673

3 1.299 1.166 1.152 1.895 0.615
6 0.947 0.920 0.920 1.032 0.706

ing error moments. The number of replications m is 1, 2, 3, 6 and 10, the
sample size is 400. The models are two with coefficients
S = (5.8,1.3, -8.5, 4.7, 5.5, -3.2)'and S = (9.5, -6.5, 2.4, -2.4, -2.1,

21.8, 5.7)' whose elements correspond to the terms 1, xl' x
2

' x
1

x
2

' xl and

x;. They are estimated with two different design with n = 9 (-1,-1, 1,-1,

-1 , 1, 1, 1, 1, 0, -1, 0, 0 , 1 , 0 , -1, 0, 0 ) and n = 8 (-1, -1, 1, -1, -1, 1, 1, 1, 1, 0 ,
0,1, 0,0, 0,-1) points (for every point the values are given for xl and x

2
respectiveiy. The two modifications of bMINQUE' mentioned in 2 are calcula­

ted. The second modification prove to be more inefficientii in the case
with m = 1 and more efficient than the first one with increasing number of
replications. In Table 1 the values for MINQUE method in all cases with
m = 1 are obtained by means of the first modification (a number 0.01 is
substituted for negative variance estimates). All cases with m ~ 1 corres­
pond to the second one with the average of the squared residuals used in
substitutions.

The results shown provide for the following conclusion. If replications
are lacking, the estimates bMINQUE' b

AUE
' b ASR and b sv are less efficient

than the LSE b. However with a moderate number of replications the estima­
tes bMINQUE' b

AUE
and b

ASR
grow more efficient than b with the heterosce-

dasticity increasing. The use of b sv with moderate number of replication is

risky because it can be less efficient than b. The b sv efficiency becomes

comparable with this of bMINQUE' b AUE and b ASR for a large number of rep­

lication (m ~ 10). Best results have been obtained by the use of b
AUE

'

3. ROBUSTNESS OF EXPERIMENTAL DESIGNS TO ERRORS IN THE FACTOR LEVELS

Depending of the specific circumstances various requirements might be
appropriate in the choice of experimental design. (Box, Draper, 1975). One
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of these requirmentsis the good behaviour of the design in presence of er­
rors in the factor levels. It is assumed that S in the model (3) will be

-1
estimated by LSE b = (F'F) F'y rather than by BLUE b

L
which leads to an

efficiencv loss dependinq on the variance heteroscedasticitv.
This heteroscedasticity varies from design to design with a given

model and factor error moments. Thence the criteria seeking for the robust
design to factor errors can be formulated in a way that the design would
ensure the least possible efficiency loss. Alternatively such criterion
should select from several designs the one providing estimate b with impro­
ved covariance matrix caracteristic as compared to the others. Seeking such
criteria one faces heteroscedasticity of variances and particularly their
dependence on S which causes serious difficulties.

An attempt to alleviate these difficulties is made in (Vuchkov, Boyad­
jieva, 1983) where two criteria for robust design are proposed. In addition
to (2) it is accepted that vi is independently distributed by the factor

errors e. in each run. The first criterion use as a measure of heterosce-
J.

dasticity the quantity

2 n 2
a = mfxoilLi=10i

2
where 0i is calculated using (4) with c

i
= O. The criterion is formulated

as a difference between superior limitofaafter S and the minimum value of

a = a n-
1

attainable when no errors occur:
n

supa - a
S n

It is shown that ys can be calculated by means of

-1
ys = n (maxA. - 1)

i J.
( 30)

if the following assumptions about diagonal elements of the matrix A. from
-1 n J.

(5) and A = n Li =l Ai are fulfilled

1,2, ... ,n. (31 )

In (30) maxA.. is the maximal root of the characteristic equation IA.-AI = 0
i J.J. J.

The fulfiment of (31) can be assertained in many practical cases with given
factor error moments and some initial estimates of vector S norm S'S and

2
for °

0
• Consequantly if the conditions (31) are met then the maximum hete-

roscedasticity of variances after S with the design applied, can be esti­
mated through supa while its deviation y from a becomse a mesure of effi-

S s n
ciency loss and thence a measure of robustness of the design to factor er­
rors.

The second criterion chooses design that will provide for the smaller
covariance matrix trace of estimate b. It implies a better design Xl than
X

2
provided the following inequality is fulfilled:

T = (tr(D(b»)2 - (tr(D(b»)l < 0 ( 32)
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where (tr(D(b))), denotes the covariance matrix trace for the design X"
~ ~

i = 1,2. It is shown that (32) can be reduced to

T = S'~RS + a2~a < 0
o

-1
k
ii

(F(F'F) FI)ii and the indeces 1 and 2 correspond to the design Xl

and X
2

. Criterion makes it possible to compare some designs regardless of S
as the ellements of6Rdepend on the points of the design to be compared and
on the factor error moments, while the quanti ty ~a depend on the design
points. This possibility depend on ~Rmatrix definitness and the sign of ~a.

Comparable design in sence of criterion t are those one for which the
matrix ~R is positive definite and ~a;;:O. Incomparable designs in the sense
oftare those ones, for which the matrix ~R is not defined.
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DATA-SMOOTHING AND BOOTSTRAP RESAMPLING

G.A. Young
Statistical Laboratory, University of Cambrid~e,

16 Mill Lane, Cambridge CB2 1SB, U.K.

1. INTRODUCTION

This paper reviews aspects of the smoothed bootstrap approach to stat­
istical estimation.

The basic problem underlying the bootstrap methodology is that of pro­
viding a simulation algorithm which produces realisations from an unknown
distribution F • when all that is available is a sample from F The
bootstrap of Efron (1979) simulates, with replacement, from the observed
sample. The smoothed bootstrap, discussed by Efron (1979, 1982) and Silver­
man and Young (1987), smooths the sample observations first and hence
effectively simulates from a kernel estimate of the density f underlying
F. This is achieved, without construction of the kernel estimate itself,
by resampling from the original data and then perturbing each sampled point
appropriately.

The bootstrap and smoothed bootstrap will be considered as competin~

methods of estimating properties of an unknown distribution F. Given a
general functional a , which may relate to the samplinr, properties of a
parameter estimate, it is required to estimate on the basis of a set of
sample data the population value a(F) of this functional.

The standard bootstrap estimates a(F) by a(F
n

) F
n

denoting the

empirical c.d.f. of the sample data. The smoothed bootstrap estimates a(F)
by a(F) ,where F is a smoothed version of F

n
The simple idea under-

lying the bootstrap estimation, therefore, is that of usin~ F or F as
n

a surrogate or estimate for the unknown F In many circumstances the
bootstrap estimate will itself be estimated by resampling from F or F

n
though as yet unpublished work by Davison and Hinkley points in the direction
of 'bootstrap resampling without the resampling'.

Though conceived by Efron (1979) as a means of tackling complex estim­
ation problems, for a discussion of smoothing there is some advantage in
studying the very simplest case where the functional a is linear in F .
Relevant questions to be considered are:

(i) When is it advantageous to use a smoothed bootstrap rather than the
standard bootstrap?

(ii) How should the smoothing be performed? Is there any advantage in
simulating from a 'shrunk' version of the kernel estimator, with the
same variance structure as the sample data?

(iii) Is it possible to define data-driven procedures which will choose the
degree of smoothing to be applied automatically?
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2. SMOOTHED BOOTSTRAP PROCEDURE

(2.1)
f (x)
h,s

Suppose Xl"'. 'X
n

are independent realisations from an unknown r­

variate F. Assuming F has a smooth underlyinp, density, f a convenient
smoothed bootstrap is obtained from the kernel estimator f

h
of!

defined by ,s

(1+h 2)r/ 2 f {(1+h2)~x}
h

Here K is a symmetric probability density function of an r-variate dis­
tribution with unit variance matrix. Operationally V is taken as the
variance matrix of the sample data and h is a parameter defining the
degree of smoothing.

Realisations generated from f
h

have expectation equal to X, the

mean of the observed sample, but smoothing inflates the mar~inal variances.
Silverman and Young (1987) give a number of simple examples which show that
smoothing of this type can have a deleterious effect on the bootstrap estim­
ation: see also section 3. The kernel estimator f

h
is therefore 'shrunk'

to give an estimator f with second-order moment properties the same as
h,s _ 2 ~

those in the observed sample. Note that the mean of f is X/(I+h) .
h,s

3. LINEAR FUNCTIONALS

(3.1)w*(X. )
1.

For a linear functional a(F) = f a(t)dF(t), the smoothed bootstrap

estimator is d (F) = f a(t)f (t)dt This estimator may be written
h h, s

I n

n L
i=l

where

Using a Taylor expansion of a
K , the mean squared error of

and the assumptions on the kernel function
dh(F) may, for h small, be expanded as

(3.2)

Here we have assumed that V

matrix and

rvij] is a fixed positive definite symmetric

Co = ~ f {a(t) - ~}2 dF(t) ,

I f {a(t) - ~} a*(t)dF(t) ,
n
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C
2

1
[ 2 J {a(t)-IJ} aU(t)dF(t) + 1: J li*(t)2dF (t)

n 4

1 (n-l) { J a*(t)dF(t) }2 ]+ "4

where lJ J a(t)dF(t) ,

a*(t)

a**(t)

toVa(t) ,

3 1 tTH t8 toVa(t) + 8 a

Here Dya(t) = I
1
.I

J
. y .. 6

2
a(t)/6t.6t. ,

1J 1 J

See Silverman and Young (1987) for details of the manipulations.
The expansion (3.2) immediately gives the result:

Lemma

Provided a(X) and a*(X) are negatively correlated,
error of the smoothed bootstrap estimator dh(F) of a(F)

than that of the unsmoothed estimate &O(F) = J a(t)dFn(t)
h > 0 .

the mean squared
will be less

, for some
o

The corresponding result for the bootstrap estimator

J a(t)fh(t)dt , constructed from the unshrunk kernel estimator, requires

a(X) and Dya(X) to be negatively correlated.

As a simple example, suppose F is the univariate standard Gaussian
distribution and let a(t) = t 5 . With y = 1 we have,

cov{a(X),a*(X)} < 0

cov{a(X),Dya(X)} > 0

so that smoothing, with shrinkage, is of potential value in bootstrap estim­
ation of the fifth moment.

The lemma above states that if C
l

< 0 in (3.2) some small de~ree of

smoothing at least is worthwhile. If also C
2

< 0 we might speculate that

some larger degree of smoothing may be appropriate. If both C
l

> 0 and

the appropriate bootstrap estimator is the unsmoothed estimator

Otherwise, the optimal smoothing parameter, in the sense of minim-
2 4 Jt

ising the approximate MSE Co + Clh + C2h is given by h = (2Icll/4C2)- .

The quantities C
l

and C
2

depend on the unknown underlying distrib­

ution function F , and in general will be complicated functions o~ the
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moments of F A possible strateey would be to choose h with reference
to a standard distribution, such as the standard r-variate Gaussian. In
circumstances where the sample data do not sup,p,est any sensible statistical
model, C

l
and C

2
can be estimated, for example by substitution of the

sample moments.
Given estimates C

l
,C

2
for C

l
,C

2
an entirely data-driven strategy

for choosing the degree of smoothing would be to take h = 0 if C
1

' 0 ,

h if C
1

< 0 and C
2

< 0 and h = (2IC11/4C2)~ otherwise. The case

h corresponds to Efron's 'parametric bootstrap' (Efron, 1979).
Rather than choosing h by reference to (3.2), which gives an expan­

sion for h in the neighbourhood of zero, the representation (3.1) of the
estimator can be used in conjunction with computer algebraic manipulation to
obtain an exact expression for MSE{ah(F)}. This expression can then be

minimised in h to obtain the optimal value of the smoothing parameter.

4. EXTENSION TO NON-LINEAR FUNCTIONALS

1Vhen an explicit bootstrap procedure is being used the functional a
is unlikely to be linear. The ideas of Section 3 can be applied to bootstrap
estimation for more general a ,provided a admits a first-order von Mises
expansion about F of the form

a(F) ~ a(F) + A(F - F) , (4.1)

for F 'near' F. The functional a is linear and hence representable as

an integral, A(F) = J a(t)dF(t) , and to first-order the sampling properties

of the bootstrap estimator

estimator A(F) of A(F)
-1

(4.1) will be Open ) .

5. EXAMPLE

a(F) of a(F) are the same as those of the

Provided suplF-FI is op(n-~) , the error in

Let F be an unknown univariate distribution and consider estimation
of the skewness,

a(F)
EF(X - E

F
X)3

{E
F

(X-E
F

X)2}3/2

Simple manipulations, easily performed by computer aleebra, show that the
linear approximation (4.1) is defined by

4 2 3 6~ 3w - 2 2 2 2 2
aCt) (t(-2W1

t + 3~1 w2
t + 6W 1 ~2 + 4~1 ~2t 3~1 ~3t1 3

- 3~ ~ 2 t _ 6~2
3 2 2 6 4

1 2 6W1~2~3 + - 2W
2

t + 3~2W3t»/2(W1 - 3W 1 ~2

3 2 2
~23)/(W2 _ ~ 2)+ ~1 ~2 1
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where
r

IJ r = EFX .

The bootstrap estimator ,\(F) is given by;

3X
-3
X

In the
of the

'\ (F):

special case of
function aCt)

F standard Gaussian, computer algebraic manipulation
gives a closed form approximation for the MSE of

6
(5.2)

and gives C
l

= -18/n, C
2

36/n. These values sug~est, misleadingly,

h = .!
2 •

In the general case, the formulae for C
l

and C
2

are complicated

functions of the moments of F. With a manipulation packa~e such as REDUCE
it is straightforward to write FORTRAN subroutines to evaluate these coeff­
icients: th~ m~ments of the observed sample are then substituted to yield
estimates C

l
,C

2
The formula for MSE{dh(F)} , of which (5.2) is a special

case, amounts to hundreds of lines of code, If IJ
I

= 0 it reduces to the

simpler form:

MSE{&h(F)}

622 422 4 2 2 4 2
+ l6h nIJ

2
1J

3
+ 24h nIJ

2
1J

3
9h 1J

2 1J 3
+ 9h 1J

3
\1

4

222 36h21J 5 2 3 2 2 2
+ 20h nIJ2 1J 3

+ - 24h 1J
2

1J
4

- 22h 1J
2

1J
32

2 2 2 2 2 2 5 3
+ 4h 1J

2
1J

6
+ l8h 1J

3
1J

4
+ 8nIJ

2
1J

3 + 361J 2
241J 2

1J
4

(5.3)

X. -> X +C
1 i

Centre
Then

Invariance of the estimator (5.1) under the transformation

(i = l, •.. ,n) suggests the followinE procedure for choice of h
the observations Xi by calculating Y

i
= Xi - X (i = 1, ... ,n)

n-1 I'n r
substitute Li=l Y

i
for IJ

r
(r = 2, .•• ,6) in (5,3). This Eives an

estimate of the mean squared error of the bootstrap estimator as a function
of h Use a numerical routine to minimise this and use the minimisin~

value of h for the bootstrap estimation itself.
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For each of four underlying distributions - standard Gaussian, uniform
on [-l,lJ , Beta (5,3) and standard exponential - and two sample sizes,
n = 5 and n = 50 , 1000 datasets were generated. Table 1 shows, for each
combination, the mean squared error over the 1000 replications of the boot­
strap estimators &h(F) ,when h is chosen by various strategies. Strategy

A takes h = 0.0 always, Strategy B takes h = 0.5 always, Strategy C
estimates C

1
,C

2
and chooses h according to the estimated values, as

described in Section 3, while Strategy D is the procedure described above,
based on (5.3).

Table 1 : MSE of bootstrap estimators, skewness example.

Distribution

a(F)

N(O,l)

0.0

ur-1,l]

0.0

Beta(5,3)

-0.310

Exp (1)

2.0

n

5

50

Smoothing
Strategy

A
B

C
D

A

B

C
D

0.3607 0.3566 0.3889 2.4497
0.1847 0.1826 0.2341 2.7557
0.2977 0.2950 0.3629 2,5674
0.0912 0.0869 0.1554 3,0748

0.1092 0.0450 0.0650 0.4930
0.0559 0.0230 0.0435 0.8661
0.1066 0.0446 0.0649 0.5331
0.0596 0,0218 0.0589 0.5490

The results of the simulation disappoint in that they do not provide
concrete evidence in favour of any particular smoothing procedure. Automatic
application of a small amount of smoothing can lead to substantially less
accurate estimation: see the figure for the exponential simulation, n = 50
Strategy C is unlikely to make the estimation dramatically worse and gener­
ally leads to some improvement over the standard bootstrap. Strategy D can
lead to considerably greater accuracy in the bootstrap estimation but, as
the exponential simulation makes clear, may also lead to quite inappropriate
choice of h, Errors in the linear expansion (4.1), which is the basis of
strategies C and D, may, even for moderate sample size, be quite appreciable.

Automatic procedures for choosing the degree of smoothing should be used
with caution. It is probably advisable to examine the sample data, using an
estimator of the form (2.1) say, and then to choose h with reference to
some suggested parametric family of distributions.
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Model- and Method-Oriented Intelligent Software for Statistical
Data Analysis

S.A. Aivazyan
Central Economics-Mathematical Institute of
the USSR Academy of Sciences
Moscow, USSR

1. Introduction

This paper deals with intelligent applied statistics software developed at CEMI

(Central Economics-Mathematical Institute of the USSR Academy of Sciences). Every

component of the software system under consideration represents a branch of applied

statistics implemented as a comparatively small expert system (SES, 400-500 rules in the

knowledge base). This is why the system is called a series of Method-Oriented Statistical

Expert Systems, version 1 ("MOSES 1" is the abbreviation used officially, but in this

paper "M1" will be used).

Every SES of the series:

(1) guides the user through the available literature, and methodological and

software information related to specific features of the problem at hand;

(2) informs you which initial assumptions on the nature of the data to be processed

and also the form of the model which should be used;

(3) assists in constructing a chain of statistical procedures and algorithms which

have to make up the basic program and its automatic implementation;

(4) helps in interpreting intermediate and final results of statistical analysis and (if

necessary) in generating additional control statements for continuing the pro­

cess of statistical analysis;

(5) assists in choosin~ the form in which the results should be presented.

Basically, it is assumed that system Ml will be used mainly by statisticians. How­

ever, for comparatively simple statistical problems Ml can also be useful to economists,

sociologists, physicists, engineers, etc, who are familiar with probability theory and statis­

tics at the level of the graduate student of an economics or engineering department.
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2. Method-Oriented Statistical Expert Systems: brief description of
their structures

The series of Method-Oriented Statistical Expert Systems consist of a number of

SES which can be used for solving problems arising in different areas (economics, sociol­

ogy, health-care, technology, etc). Each specific expert system realizes statistical tech­

niques of a branch of statistical analysis: a regression analysis SES, a classification SES,

an exploratory statistical analysis SES, etc, and thus can be viewed as a model-oriented

system.

The components of the series are compatible in the following sense:

(a) they are oriented toward the same user intelligence level (perhaps it would be

more accurate here to use "intelligence interval").

(b) they are based on the same methodological principles of computer-aided aSSlS-

tance;

(c) there is a possibility of cross-references (when interacting with the computer,

the user of the regression analysis SES can be advised that he should be con­

sulted, say, by the classification SES, to solve his problem).

We now describe in brief the functional structure of the series of Method-Oriented

Statistical Expert Systems Ml:

(1) TSA is an expert system for time series analysis. The numerous planning and

management bodies at the different levels of an economy constantly face the

necessity of real-time analysis of changing indices, characterizing the state and

dynamics of a system (economic, technological, etc). Similar problems arise in

a number of research activities. There are the problems of smoothing of time

series, their decomposition into a trend, periodic and random components, their

extrapolation (prediction), locating the time and character of structural

changes, etc.

(2) EDA is an expert system for exploratory data analysis. Unfortunately, there

exists an unpleasant tradition in statistical studies: no attention is paid to the

key stage of formulation and justification of the initial assumptions underlying

the basic models of statistical data generation. Usually a statistical investiga­

tion begins as follows: "We assume that (or it is reasonable to assume that)

the regression under consideration is linear and characterized by independent

normally distributed random parameters. Then ...". In reality, statistical data

to be processed may be non-normal, dependent, heteroscedastic and so on. Sta­

tisticians have had to put up with such unjustifiable initial assumptions.

Exploratory analysis has developed extensively in the past 10-15 years and, in
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particular, projection pursuit methods aimed at investigating initial data to

formulate adequate assumptions concerning their probabilistic and geometric

nature and the mechanism of data generation. Only a few software systems

exist which use these techniques (for example PS-ISP 1986), but no expert sys­

tem is referenced anywhere. This is one of the reasons for EDA to become a

component of Ml.

(3) REG RAN is an expert system for regression analysis. The corresponding sta­

tistical techniques enable us to reveal and describe the dependence of a result­

ing response upon a set of explanatory variables. Regression analysis is prob­

ably the most widely used statistical approach. When using these techniques,

the man-machine interaction is of paramount importance since there are vari­

ous weakly formalized stages such as the choice of the general form of the

model, the study of the collinearity phenomenon, the analysis of outliers, etc.

The interaction with the SES and its advice are most valuable for a user at this

stage. In fact this area of applied statistics can be considered basic for ,a

number of other statistical approaches, and a large number of references from

other components of Ml are related to REGRAN.

(4) CLASS is an expert system for classification of objects and patterns. Along

with regression analysis, the corresponding statistical classification methods

(pattern recognition, discriminant analysis, automatic classification, cluster

analysis, etc) are the techniques widely used in applications and, first of all, in

economics and social sciences. The problems of studying typology and type­

generating features, diagnostics in technology and health care, preliminary data

array processing to single out homogeneous portions of information, and many

other problems are handled by this cluster of the statistical software. The

advances of Soviet scientists in this field ensure the possibility of the creation of

market competitive programs (at least in their functional contents).

(5) SEE is an expert system for solution and analysis of simultaneous econometric

equations. The simultaneous econometric equations arising in the theory and

practice of economic-statistical modeling are interrelated regression equations

and identities in which the same variables in different equations can be both

responses and explanatory variables. The interrelations under consideration

can involve variables corresponding to lagged moments as well as the current

one. SEE is intended to help a user to choose the model structure, to make it

identifiable, estimate the coefficients of equations involved, etc.
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(6) PROF is an expert system for construction and analysis of production func­

tions. The production functions give a compact mathematical description of

the relations between the final product outputs and resources. In particular,

these functions are very helpful in the analytical study of resource efficiency

and the involvement of a resource in production, in the prediction of the output

level, etc. The functions are constructed and analyzed by using regression

analysis and time series analysis.

3. Who is the User of Ml and how intelligent is Ml?

Ml is intended for both the statistician and the user who, on the one hand, has his

problem posed and knows his ultimate goal, and, on the other hand, is trained in applied

statistics (i.e., knows basic concepts and definitions of regression models, regression

analysis, time series and trend, classification with and without learning samples, mul­

tivariate observations and their projection on a plane, etc). Thus, among the users of Ml

there are both statisticians (with different levels of knowledge) and non-statisticians

(economists, sociologists, engineers, etc) having elementary knowledge in statistics.

To explain how Ml works, we decompose the possible statistical study into elements

as follows:

Element 1: (formulation): refinement of the formulation of the problem and final objec­

tives of the study.

Element 2: (methodology): the choice of appropriate statistical techniques, including the

set of statistical procedures and the order of their performance for data processing.

Element 9: (computation): realization of the chosen set of statistical data processing

techniques.

Element 4: (interpretation): discussion of intermediate and final results of statistical data

proceSSIng, and derivation of conclusions, including recommendations for further investi­

gation.

Among these four major elements of practically any statistical study only the last

three can be partly automated and provided with computer-aided assistance in the frame

of Ml. Primarily, we consider how to help the user to choose adequate preliminary

assumptions (hypotheses) concerning the geometric and probabilistic nature of data to be

processed and to describe the model which generates these data (EDA is entirely intended
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for solving these problems, while in other components of the senes these problems are

thoroughly analyzed). The general idea of 'user-computer' interaction in Ml 's com­

ponents follows the traditional principle "from general description to more and more

method-oriented notions".

Thus, if one applies the three-level classification of intelligent software (see Hahn,

1985), Ml has to be placed at the second (middle) level.

As mentioned before, every component of Ml interacts with a knowledge base con­

taining at most 400-500 rules and assertions. It is thus possible to realize the project on

the IBM-XT or IBM-AT PC (or any compatible 16-digit PC).

The basic algorithmic languages are C-language, FORTRAN-77, and some other (ad

hoc) languages.
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ASSESSING THE PERFORMANCE OF ESTIMATES WITHOUT KNOWLEDGE ON
THE REGRESSION FUNCTION, THE VARIANCES AND THE DISTRIBUTIONS

Olaf Bunke
Humboldt University, Berlin, GDR

1. INTRODUCTION

In this paper we want to show, how the performance of
estimates and models may be assessed without knowing the
regression and variance functions and the distributions of the
observations. It is only assumed, that there are independent
obs:rvations Yij (i=l, ••• ,m; j=l, ••• ,n i ) with means and
varIances

2E Yij = f(X i ) = f i , D Yij = v(X i ) =oi' (1)

which are determined by the values of unknown regression and
variance functions f and v for fixed "design points" xi. Many
different parametric or nonparametric estimates of these
functions and estimates of parameters in approximative models
for them have been proposed in the literature and are widely
applied. Their bias, variance or more generally a risk

(2)

for such estimator& &w.r.t. a loss function L give a
description of their performance. The risk depends on the un­
known distributions Pi of the observations Yij' assumed to be
the same for j=l, ••• ,n i • The MSE in estimating by a parametric

model, say, by g6' is a special case of (2) and is a descrip­
tion of the performance of the model g6.
The performance of the estimator may be assessed with an esti­
mate of the risk (2). For this we need estimates of f,v and
Pi leading to a "plug-in" risk estimate

(3)

Thus we are confronted with the semiparametric estimation
problem of estimating the vectors

! = (f1 , ••. ,fm), v = (01, .•• ,6m) (4)

and the distributions Pi. As the calculation of maximum

likelihood estimates turns out to be too complicated, we
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propose to derive Bayes estimates with respect to standard
prior distributions, which in their noninformative limit case
are identical to MLE's in some simple special cases. In this
way we obtain some sensible structures of estimators, possibly
being admissible by their Bayes property, and we could adapt
the parameters of the priors trying to get accurate estimates
of f, v or P. or of the risk (2).

- - 1
In general it will be impossible to calculate explicitely

the risk estimate (3) and it will be approximated by a smoothed
"bootstrap estimate" (see Efron (1982»

r = t.. l[ c:f(/k»,f,~ JI B, (5)
k=1

where for each k y(k) is a sample of observations yf~)simulated
under the distributions ~i.

A survey of methods derived under this approach is given
in Bunke (1987).

2. BIVARIATE REGRESSION WITH KNOWN HOMOGENEOUS VARIANCE

For an illustration of the basic ideas we will discuss the
special case of univariate real explanatory and dependent
variables xi and Yij' that is, of bivariate regression, assuming
that all variances are known and identical: 6 2 = DYij.

We want to include in the prior a possible smoothness of
the regression function, which may be described by a small
value of its second order difference ratios, that is (see
Silvermann (1986) or Titterington (1985» of

2T(f) = L I(f. 1-f i)(x. 1-x .)-(f.-fi 1)(xi -x. 1)/ 1
i 1+ 1+ 1 1 - 1- (6)

1 (xi+1-xi)(xi-xi_1).

Additionally to a probable smoothness of f we will assume,
that its "mean" f = L f./m and "global slope"

i 1

b(f) =L: (f.-r)(xi-x)/L: (xh-x)2 = c'f (7)
i 1 h -

are "probably bounded" in the sense of a prior density

p<'O oC exp [-( I f2 +tb (f)2 + '- T( f) )/2] (8)

wi th some (possibly small) constants! '1" and a constant?. ,
which characterizes the "degree of smoothness". These constants
will be adapted later.

We assume that the "errors" eij • Yij-f i are i.i.d. with
distribution P. The prior distribution of f,P is then assumed
to give independent! and P, the density oT f being (8) and
the distribution of .~ being the Dirichlet distribution QK with

index measure 0(, = a N(o, 6 2) (see Hartigan (1983». The pr ior
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mean of P will be the normal distribution N(o,o2), while a
characterizes the ·dispersion· of the random distribution P
around its mean.

The posterior means of f and Pi are Bayes estimates w.r.t.
a square loss function. The results in Bunke (1985,1987) give
the estimates

/\ -! = E(!ly) = Q y
/\ /\ 2
Pi = E(PiIY) 1\= k N(f i , 8 +qii) +

(l-k) L. N(fi+ehj,qii+qhh)/n,
h, J

where y is the vector of means Yh =~ yhj/n h ,
J

Q = «qih» = [r m- 21l.1l'+rec '+ ~H+ 6-2N]-l,

(9)

(10)

(11)

N = Oiag [n1 , ••• ,nm], " ..Q = b'-- QN (12)

(13)

(14)

(15)

H is the symmetric matrix of the
f'H f), e h . denote the ·Bayes
- - J

(h=l, ••• ,m; j=l, ••• ,n h), k=a/(a+n) and

~ is the vector of one's,
quadratic form (6) (T(f) =. "residuals Yhj- f h
n =L: nh •

h
The density of thehdistribution (10) is a mixture of a normal
density with mean f. and a kernel density estimate based on the

1 1\

·pseudoobservations· Yihj = f i + e hj with normal kernel and

local bandwidths Aihj = .yqii+qhh i. /\

A simulation of i.i.d. r.v.'s Yij(k) under Pi' as required in
(5), is easily performed in a sequential manner. At first, a
o-l-variable with k=P(O) and 1-k=P(1) is simulated. If the
result is 0, then a value Yij(k) is simulated under

N(f i , 6 2+qii). If the result is 1, then an index h is generated

under the uniform distribution P(h) = 11m and afterwards an
index j under p(j) = 1/n h • Then a value Yij(k) is simulated

under N(Yihj,qii+qhh).
If the main interest is in estimating f, the constants

! , "t ' 'A may be adapted by minimizing an estimate R of the
weighted MSE

1\ 2 2
R(!, 't,'A) = E U!-!"w (zw = z'W z).

Such an (unbiased) estimate is

~(r, 1" ~)= lIyU2
- 6

2 tr V(Q),
B(Q)

B(Q)=(I-Q)'W(I-Q),V(Q)=W QI N-1Q_B(Q).

A numerical simplification is reached, if the matrix inversion
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in (11), which would be needed for all admitted combinations
S'1" A, is calculated using the spectral decomposition of H:

H =~fi uiui (~·1~f2=<Y-:fl·••~fm)' (16)
1

where u i are orthonormal eigenvectors corresponding to the

eigenvalues ~i. We asslIme identical n i = n.

We may usc u i = m-1/2 11. and

u2 = tc, t 2 =L(X.-x)2
i 1

and therefore we have:

(17)

(18)
- (~-1 -2)-1 , ( -2 -2)-1Q= ~m +nS' u1u1 + yt +nES

m -2 -1 •
+ ~ (Afi+n$ ) uiu j •

1=3

If the main interest is in estimating the risk (2), then the
constants may be adapted~by minimizing a bootstrap estimate ~
of the mean error M = E/r-rl

B
M= L I~(k)_~ I /B. (19)

k=l
" 1\For (19) we need preliminary estimates! and Pi' e.g. (9)

and (10) wi th ! = "t = 0 and A chosen by minimization of (14).
Then r would be the risk estimate (3) calculated with the
preliminary estimates, while ~(k) would be calculated in the
same way, but replacing the original sample y by a sample
y(k) simulated under the distributions ~i.
The "semi-noninformative" choice '5' = 1'= 0, which simplifies
the calculation of risk estimates, will be sufficient in many
cases. But if we try to derive a sayes estimate of the risk
(2) in place of the plug-in estimate (3), then one should
allow posi tive constants r ' 1', as it can be learned from the
disadvantages of a Bayes estimate of the square of a normal
mean w.r.t. an improper prior. Intuitively, the Bayes
estimate r = E(rly) will be more accurate than the plug-in
estimate (3) in the region of interesting regression functions
and distributions described by the prior, because it minimizes
the prior mean of EI~_rI2. But it requires a high computational
effort in general, although for moderate n the sequential
simulation proposed in Bunke (1987) may be realizable.

Bayes, best linear unbiased (with a linear model) and
nonparametric spline, kernel and nearest neighbor estimators
of ! are linear or affine: ! = A Y+ b.

The unbiased estimator of the quadratic ris~ (12), which
under a normal distribution P is best unbiased (see Bunke and
Droge (1984», is then

R = lIyl\~(A) - 2b'W (I-A)y+6 2 tr V(A)+ IbQ;, (20)
while the Bayes estimate would be
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'"R = E(Rly) =

- 2 b' (I-A) Q

- 2
UQ yIlB(A) + tr Q

y + II bl/; + 6' 2 tr

B(A)-

W A N-l A' •
(21)

Example. To
A

estimate f = Q Y
xi = i, 81 =

give an impression of the form of the Bayes

we have calculated Q in the case

210, ni = 1, x = 0.1, r=r-= 0,6' = 1. (22)

While H is a band matrix with elements

.77

(23)

.41

.29

.40

.24

.09

.01

-.01
-.01

-.01

.40

.25

.09

.01

-.01
-.01

-.01

.00

.41

.24

.09

.01

-.01

-.01
-.01

.00

.00

.39

.24 .39

•• 09 .24 .40
.01 .09 .25 .40

-.01 .01 .09 .24

-.02 -.04 -.04 .04
A

We see, that the estimates f i are smoothing the observations

nearly like moving averages with varying weights.

hii = 1 (i=l,m), 5 (i=2,m-l), 6 (3~i~m-2)

hi i+l = -2 (i=l,m-l), -4 (2~i~m-2)

hi i+2 = 1 (i=l, ••• ,m), hij = 0 otherwise,

the inverse (11) is approximately (we give only the lower
triangUlar part):

.77

.29

.04

- .04
- .04
- .02

- .01
.00

.00

.00

3. THE GENERAL CASE

The general case (1) with unknown heteroscedastic vari­
ances may be treated in an analogous way as the special case
considered in section 2. The prior density for f,v would now
include a term T(v) describing the smoothness 07 the variance
function v, so that recalling the standard noninformative
prior for variances (see Hartigan (1983)) one may assume a
prior density

p(!>~)cC p(f) 1[61"1 exp[- s>T(V)/2J, (24)
1

where we use the density (8). _
From Bunke (1987) we have a normal N(Q y,Q) as the

conditional posterior distribution of f under a fixed v,
where Q = Q(!) is given by (12), but 6~2N being replac;d by
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( ) [
-2 -2,

L V = Oiag n
1

6
1

, ••• ,n G j.- m m
The marginal posterior density of v is of the form

(25)

(26)

(30)

(31)

(32)

with the product of inverse Gamma densities
-l-n i 2 2

q(vly)c:ClT6'. exp[- LIY"'-Y'\ 126.] (27)
- i 1 j I) 1 1

and a residual factor s of relatively complicated structure
(see Bunke (1987)). The Bayes estimates of f and v may be (k)
calculated approximatively, simulating independenT values v
under the distribution (26) and taking

f ~~ Q(v(k)Yys(v(k)1 y) 1 ~ s(v(h), y), (28)
- k - -, h-

G~~ LCO~k) s(v(k),y) 1 Ls(v(h)/y). (29)
1 k 1 - h-

The Bayes estimate of Pi is the posterior mean (w.r.t. the
density (27)) of the distribution

" 2.k N (f., 6' . +e . Q (v) e.) + (l-k) L. W. h)" ,
111- 1 h" 1

where ,)
'" A

Wi h j = N (f i + (yh j - f h) 6 i 1 6 h' ai hQ(y) a i h),

e ik =dik' a ih = e i -( 6'i /6 h)eh •

An approximation may be calculated by simulation as described
in (28), (29). Another more crude approximation may be obtained
replacing v by some nonparametric estimate 0, e.g. one of
those proposed in Bunke (1987): -

h ~ ~

!.~Q(y) Y ,Pi ~(30) with v = v. (33)

Such estimates would be 'empirical Bayes estimates' calculated
as Bayes estimates assuming v to be known and then replacing
y by an estimate. -
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Kllperimental Design Technique in the
Optimization of a Monitoring Network

V. Fedorov, S. Leonov, S. Pitovranov
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Laxenburg, Austria

I. Introduction

The following main assumptions are cruciallo the approach.

The optimal design of an observational network is model oriented. It is
assumed that the observed values can be (a~ least approximately) described
by a regression model containing unknown parameters.

All uncertainties (observational errors, fluctuations of processes under
investigation, small irregularities, deviations of the model from the "true"
behavior, etc.) are absorbed by additive errors, which are assumed to be
random.

All objective functions (both in analysis and design) are formulated as expec­
tations of some deviations of estimators from the "true" values. Most fre­
quently it is the variance of an estimator or the variance-covariance matrix
and some functions of it in multidlmension cases.

The algorithms presented in this paper are oriented to the case where errors
of observations are uncorrelated: E[E(Ej ] =q2).-1(z()c5(j' where ).(z) is the so­
called "effectiveness function" reflecting the accuracy of observations at the
given point z. It is assumed throughout this paper that the observed value 'II( Is a
scalar. The generalization for more complicated situations, for instance 'II( either
a vector or a function of time, is straightforward (compare with Fedorov, 1972,
Ch.5; Mehra and Lainlotis, 1976).

One can apply the method to a vector case when the concentration of several
pollutants have to be observed. If the dynamics of some environmental charac­
teristics are of interest then it becomes necessary to consider responses belong­
ing lo some functional space.

n. Optimality Criteria

This paper comprises two main types of optimality criteria: the first is related
to the variance-covariance matrix of estimated parameters, while the second is
based on variance characteristics of the response function estimators. Details can
be found in Fedorov, Hrf2; Silvey, 1980; Atkinson & Fedorov (lo be published).

Table 1 contains optimality criteria which can be handled with the help of the
software described later. Formal definitions of optimality criteria are in the
second column of the table and the corresponding dual optimization criteria are
formulated in the third column.

Theoretically all of the algorithms discussed are valid for the case of linear
parametrization: 7J(z,") = "TJ(z) , where J(z) is a vector of given functions.
How to handle nonlinear models will be considered in Example 3.
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Table 1.

Opt.lmallt.y ~(D) )..(x)fl'(x)D~Df(x)-tr~D=-rp(x ,0
crlt.erla

D-crlt.erlon ln IDI )..(x)d(x,O - m ,

generall zed
lnlATDA I )..(x)fT(x)DA[A TDA r 1A TDf(x)-s ,D-crlt.erlon s =rankA

A-crlt.erlon tr D )..(x)fT(x)D2f(x)-tr D ,

linear tr AD, A~ )..(x)fT(x)DADf(x) - tr AD,
crIt.erlon

a -crlt.erlon Jd (x, Oc.>(x )dx A =Jf (x)f T(x )c.>(x )dx ,
z Z

ext.rapolat.lon d(xo.O )..(x >1f T(x )Df (xo>l2-d (xo,O, A =f(xo)fT(xo).

The following notations are used in Table 1:

D = D (0 = ND(J), where D = D(O is a normalized variance-covariance
matrix, D(J) is a variance-covariance matrix of the least square estimator iJ.

n
D -1(t) = M (t) = ~ Pt )..(xt)f (xt)f T(Xt ).

t =1
t is a design, i.e., t = !Pt ,Xt If=1 ' where Pt is a fraction of observations which
has to be located at a point Xt; Pt could be the duration, frequency or the
precision of observation;

m is a number of unknown parameters (dimension of ") ;

~ =a~/ aD = !a~/ aD a /lI:'/l=1 ;

d (x .0 = f T(x )Df (x) is a normalized variance of the estimator TJ(x, J) at a
given point x ;

X is a controllable region, x t E: X ;

A is a utility matrix, usually reflecting the significance of some parameters or
their linear combinations;

c.>(x) is a ulility function, usually reflecting the interest of a practitioner in
the value of the response function at a point x.

The existence of a nonsingular optimal design is assumed for all optimality
criteria in Table 1. Singular optimal designs (I.e. an information matrix M (f) is
singular, 1M «() I = 0, in the regular case D(t) = M -1(t» can occur when rank
A < m. In practice one can easily avoid singular designs applying to the regular­
ized version of the initial problem (see Fedorov, 1986, section 2):

~p[D(t)] = ~U<l-p)M(O + pM(to>l-1] , (1)

where IM (to) I ~ O.

Objective function (1) can also be used in cases where it is necessary to com­
plement existing networks defined by to by some new observational stations. D- and
A-criteria are usually used when all unknown parameters are equally of interesl.
The first one is preferable, being invariant to linear transformation of unknown
parameters (for instance when one needs to rescale some of them). usually chosen
diagonal with elements A aa(a = 1, m) reflecting the significance of the
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corresponding parameters "Q(a = 1.m ).

The last two criteria can be used when an experimenter is interested in the
explicit estimation of a response function 1l(:Z: ''')- For instance. if there are points

:z: 1 :z: 2 '" ':Z:j of special interest. then w(:z:) = 1: c5(:z: -%1:)' where c5(:z: -:z:') is c5-
• • I: =1

j
function. and t(D) = 1: d (:Z:I: ,t>.

I: =1

m. Find.-Order Iterative Algorithm

III-1. The algorithm

We start with the iterative algorithm of the following form (for details see
Fedorov 1986):

(2)

where

n.
ts is a current design on a step s. ts = (:Z:ts '''ts. i =l.ns I. 1: "ts =1 •

t =1

Xs = (:Z:ts; i =l,ns 1is a supporting set of the design;

t(:z:s) is a design with the measure totally located at a point :z:s

The algorithm provides so-called forward and backward procedures. In the back­
ward procedure. the ''least informative" points are deleted from the current
design. while conversely the forward procedure includes the new, "most informa­
tive" ones.

III-2. Selection o/(:z:s 1 and las I·
For the forward procedure::z:s =:z:/ =Argmin ql(:Z:, ts) , as =7 s .

:r€.X

For the backward procedure: :z:s = :Z:s- = Argmax ql(:Z: .ts ) •
:r €.X.

_ { -7s ."j ~ 7 s
as - • / (1 ')' ,,,; =" (:Z:sJ is a weight for a point :Z:s-'-Ps -Ps. Ps < 7 s

The algorithm provides three choices of gain sequence 17s I:
1

(a) 7 s = --- . s =1.2.... ; no is a number of supporting points in an initial
no+s

design. With this choice of 7 s • one can simulate the subsequent inclusion
(deletion) of the most (least) informative stations.

(b) 7 s is defined by the steepest descent method, which provides the largest
decrease of the objective functions in the chosen direction t(:z:).

(c) 7 s == Co' where Co is a small constant (0.01 -7- 0.1) which is defined by a user.
This sequence does not satisfy traditional conditions
lim 7 s =0, 1: 7 s =00, 1: 7; < 00 , which are usually implied to prove the con-
s"'. s s
vergence of the iterative algorithms. but may be useful for the construction
of the discrete designs.

Numbers of steps (length of excursion) for the forward and backward pro­
cedures are defined by the user.
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III-3. D-criterion.

The algorilhm "DOPT" is orienled for the conslruction of D-oplimal designs
providing the minimum of the delerminanl \D(") I, D(") is a covariance malrix of
lhe paramelers' estimalors. Simullaneously the algorilhm minimizes sup X(z)d (z ,t)

zeX
(see Table 1) securing an effective eslimalion of the response funclion over sel X.
Moreover, in the case of normally dislribuled errors £t D-optimal design ensures
lhe besl value of the noncenlralily parameler when the hypolhesis
~~ 1]2(z,"t) :!: 6 , 6 > 0 , is lesled (see Fedorov, 1986).

The formulae for ilerative recomputation of the covariance malrix and lhe
delerminanl are

The slruclure of a veclor of basic functions J(z) musl be sel in the corresponding
subrouline. If the effectiveness funclion X(z) is nol constanl, lhen inslead of J(z)
lhe functions X1I2(z)J(z) have lo be programmed.

III-4. Some notes on the algorithm.

Stopping rule. The calculalions are lerminaled if:

(a) the convergence crilerion is altained for the forward procedure:
m -1. 1 tp(z/) 1 < 6, where 6 is defined by a user (lhis means lhal the value of
lhe direclional derivative is small enough and, subsequently, ts is close
enough lo the oplimal design).

(b) a given number of ilerations is altained.

Merging oj supporting points in the JOMJJard procedure. Lel h t be a size of
lhe k-lh grid elemenl defined during the mapping of X, lc =l,L; L is a dimension of
conlrollable region X. If

IZt,t -zs:t 1 < C mer ht; Zt EXs ' lc=l,L,

lhen a poinl Zt is merged wilh a poinl z/ ' constanl Cmer being defined by a user.

Deleting oj points with small weights in the JOMJJard procedure. If for
some i, Pt ,s < 6, lhen a poinl Zt ,s is deleled from the design and
Pj ,s +1 = Pj ,s I (l-Pt ,s)' j;ii. Bolh laller procedures help to avoid designs wilh
a large number of supporling poinls.

IV. Optimization Algorithm of the Exchange Type

The algorilhm has the form t s +1 = t s + as t(zs) where as can be eilher posi­
tive or negative.

From a computalional poinl of view, the main difference in lhis algorilhm from
lhe one described in Seclion 3 is lhal the whole design is nol recompuled al each
slep'; all modificalions concern only newly included (as > 0) or deleled (as <0)
poinls, which explains the origin of the lerm "exchange" in the title of the algo­
rilhm (see also Fedorov, 1986). The various modificalions of the "exchange lype"
algorilhm are parlicularly useful when some subsel of an initial design has lo be
included in the final design (some prescribed observational slations have lo be
included in the final observational nelwork). The algorilhm can be easily adapled
lo solve the regularized versions of the originally singular design problems
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conserving some "regular" fractions of an initial design.

The presented software contains three modifications of the exchange pro­
cedure.

Deleting the least informative points Jrom the initial design. The back­
ward procedure is executed (some points are deleted) with as = -1/ no and
:z:s =Argmax fP(:z:.ts )' no Is the number of points in the Initial design

rEX.
A number of steps for deleting is chosen by a user. All points In the final design
have equal weights. This procedure can be used. for Instance. when It Is necessary
to find and remove a given number of the least Informative stations

Inclu.sion oj the most informative points. The forward procedure Is exe­
cuted with as = 1/ no • and:z:s = Argmln fP(:Z: .ts )·

rEX
A number of steps for inclusion is chosen by a user.

For both of the above procedures, the normalization of the covariance matrix
Is carried out during the last step.

Normalization is not executed during the intermediate steps In order to make
tangible either the decrease of the determinant ID<ts)1 due to the deletion of the
observational stations or Its increase due to the inclusion of stations.

Standard e:z:change procedu.re. Forward and backward procedures are eXEl­
cuted subsequentlally. the Initial procedure being chosen by a user. The number
of steps for the forward and backward procedures are equal.

The choice of l:z:s 1is as described above.

{
7 s • forward procedure

as = -min(7s .p;). backward procedure

There are two variants for the choice of gain sequence 17s I:
1

(a)7s = l' s=1.2•... ; [l] Is an Integer part of (s-1)/2nn
no+ +l

7 s changes after executing both forward and backward procedures. I.e .• it is
a ''large Iteration";

(b) 7 s = Co ,Co is a constant defined by the user. The popular Mitchell algo­
rithm (Mitchell. 1974) can be considered as a particular case of this version.
The Mitchell algorithm does not generally converge to an optimal solution.

VI. Linear Optimality Criteria

Algorithms LINOPT and LINEX are Intended for the construction of linear
optimal designs providing minima of the value tr AD(ts )' where A is a utility
matrix chosen by the user according to his needs.

The major difference in the algorithms LINOPT (first-order Iterative algo­
rithm) and LINEX (optimization algorithm of the exchange type) from nOPT and
nOPTEX respectively. Is that the function fP(:z:.t s ) has the following presentation:

-fP(:z:.ts ) = X(:z:)JT(:z:)D<ts)AD(ts)J(:z:)-tr AD(ts )'

More detailed Informalion on software can be obtained from IIASA's Computer
Service. see also Fedorov et al. 1987.

VII. Examples

E:z:ample L. Linear parametrization, D-criterion.
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To illustrate the possibilities of the proposed software, let us consider a com­
paratively simple example based on air pollution data from Modak and Lohani,
1985. The particular example we shall use is shown in Figure la, which gives iso­
pleths of monthly mean values of S02 concentration for 9am in Taipei City, Taiwan.
The original network contains eleven observing stations (see Figure lb). The
underlying model was chosen as a polynomial of the second degree with uncorre­
lated random additive errors:

Yt ="1 +"2XU + "3X lt +"4X U +"5X~t +"6X U X U +l:t '

where (xU,xu) are coordinates of the i-th station. Of course, this model is too
simple for a good approximation of the pattern presented in Figure la, but because
of its simplicity one can easily understand the main features of the software.

The optimality criterion was taken equal to the normalized determinant of
variance-covariance matrix (D-criterion).

(a) Completely new network. The purpose of this algorithm is to find the
''best observation" network under the assumption that there are no constraints on
the number of stations and their locations except that the stations have to be
within the city's area.

Tht ratio of determinants for the original and optimal locations is greater
than 10 (see Table 2). One can observe (Figure lb) a typical (for the conventional
optimal design) location of observation stations: most of them have to be on the
boundary of the area and only a few (in our case only one) inside it. This should be
compared with the result by Modak and Lohani, 1985, p.14, based on the so-called
"minimum spanning tree" algorithm, where observing stations are mainly located
inside the area. However, a comparison of results is conditional since the authors
did not report the model used for the monthly averaged concentration of S02'

For illustrative reasons both nOPT and nOPTEX programs were used to con­
structthe optimal allocation of observation stations and naturally they led to the
same (up to computational accuracy) results. The optimal network consists of
seven stations (the model contains six unknown parameters). Usually the number
of observing stations is equal to the number of unknown parameters. The seventh
point appears here due to some peculiarities in the controllable region. The vari­
ances of aU parameters (except the intercept whose variance does not depend
upon the allocation of stations) are reduced 10-20 times, see Table 1.

Theoretically the optimal design assumes that the accuracy of observations at
the various points is different. Sometimes this demand is not realistic in practice
but it is easy to verify theoretically that the design characteristics are quite
stable under variation of weights (see Fedorovand Uspensky, 1975, p.56). The cal­
culations confirm this fact for our example. For instance, from the optimal design,
point 1 with small weight ( "'0.054) was removed from the design and for all others
the weights were chosen equal 1/6 (so called saturated design: number of observa­
tion = number of unknown parameters). The ratio of the determinants of the
variance-covariance matrices for the newly constructed design and D-optimal
designs was found to be equal to ~1,2. In terms of variances, the discrepancy
(",6v"1,2) is negligible.

(b) Optimal observation network containing some stations with fixed posi­
tions. When creating a new observation network, one can face the necessity of
including in it some No (for instance, well equipped) existing stations. If the total
number N of stations is given, then one has to consider the following design prob­
lem
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Figure la: Monlhly average (January,
19B1) concenlrallon of 502
(In 0.1 ppm) for Taipei Cily and lhe
exisllng observalion nelwork.

Figure lb: A - exlsllng slallons,
• - new nelwork, D-crllerion.

Table 2: New Nelwork, D-erilerlon
usu.... .......... FINAl DESIGN ••••••U ••••

2.664
0.193 10.418
0.632 4.113 19.606

11.718
0.982
5.9S3
8.524

coordinates
-0.5789 0.7500
-0.6842 -0.5833
-1.0000 0.3333

1.0000 -0.4167
O. 3684 -1.0000

-0 .0526 1.0000
0.0526 O.

3.492
1.419
0.922

-0.314
3.628

Ileight
0.0S4
0.172
0.130
0.162
0.157
0.165
0.159

FINAl COYARIANCE "ATRIX
6.006
0.176

-6.221
-0.155
-6.452
-2.738

point
I.
2.
3.
4.
5.
6.
7.

INIHAL DESIGN

INITIAL COYARIANCE "ATRIX
6.145
5.487 30.m

-21.406 -7.068 123.469
13.228 39.l69 -39.831 83.318
5.754 38.872 -23.188 74.240 96.087

29.515 89.311 -98.286 i67.743 144.397 401.~

DETERMINANT Of INITIAL INFORMATION MATRIX

8.08280e-09

VALUE OF THE DET£R"INANT
1.13645e-04

t; =Arg min t[(l-NoIN}t + (NoIN}toJ.
t

where to describes lhe localion and accuracy of an exisling slalion required lo be
in lhe planned nelwork. The resulls of lhe calculallons for D-crilerion are
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presented in Table 3.

Table 3: D-optimal observation network with fixed stations.un...... FIlIAl. IIESIIiII .m........
point lIl!itht coordinates FIIW. CMAlIAJI:E "ATRIX

1. 0.091 -0.5789 -O.SOOO 5.579
2. 0.091 -0.4737 O.SOOO 0.298 3.941
3. 0.891 -0.05~ -0.8m -6.583 1.466 14.476
4. 0.091 0.1579 -0.3333 0.335 0.960 0.565 U411
5. 0.091 O.~ O. -6.736 -0.286 7.m 0.413 12.716
6. 0.143 1.0000 -0.4167 -un 5.138 13.120 1.043 5.575 29.5297. 0.106 -0.0526 1.0000
8. 0.110 -0.61142 -0.5833 VAUI OF TIl IlET£RIIIIIAIIT
9. 0.094 -1.0000 um 5.26021e-05

10. 0.093 O.~ -1.8000

Example Z. Linear parametrization, A -criterion. Theoretically the optimal
location of observational stations depends upon the chosen criterion of optimality.
In practice the dependence is usually negligible. To confirm this fact, let us con­
sider the A -criterion when the quality of a location is characterized by the aver-

n
age variance of the parameter estimators: • =m -1 :E D aa =m -ltr D. The

a=1
results of the calculation (program LINOPT) are presented in Table 4. The alloca­
tion of all observation stations coincides. The major traceable difference is in the
"weights": the points which are closer to the origin have the greater weights (i.e.
the accuracy (or number of repetitions) of observations has to be greater for the
"central points").

Table 4: A -Optimal network ........... FIIW.IESIliII ..tutmm
rlNAl COVARIANCE KATRIX

poilt ..eight coordinltes 4.112
1. 0.240 -0.6842 -D.5833 0.777 4,710
2. O.IIM -8.5789 0.7500 -4.269 1.014 12.164
3. 0.128 0.1579 0.91'7 0.211 1.132 U93 3.169
4. 8.123 0.3684 -1.lIOlIll -4,730 -0.857 2.951 -0.519 10.331
5. 0.051 -1.0000 0.3333 -1.6&1 U75 6.991 1.302 3.228 18.299,. 0.117 1.0000 -0.4167
7. 0.237 -0.052' O. ¥ALlE Of TIl: I£TEIlIIIAIT o.llOOll68a

VALlE • TIl: ClIT£IIM - trICe ( lITlt , • )
52.7150

Example 3. Nonlinear parametrization, D-criterion.

Let us assume we have a single source of pollutant and geographically homo­
genous region with spatial scale approximately 100 )( 100km. A widely used model
for the study of dispersion of various pollutants on this scale are Gaussian type
models.

The concentration distribution from a single release is given by the Gaussian
Puff Model as
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where n is the concentration, x 1- axis is in downwind direction, x 2 axis in the
horizontal crosswind direction, x3 - axis in the vertical, t is the travel time, "1 is
the total amount of material released at time t=O a1' a2' a3 are the standard devia­
tions of the Gaussian distributions in the x1' x2 and x 3 direction, u is the mean
wind speed directed along x 1 - axis and "2 is the effective release height.

The time integrated surface concentration is given by the Gaussian Plume model as

"1 x~ "l7}(X,") = ----=--exp [-1/2(- + -)]
al al

(3)

There are different parametrizations of standard deviation a2' a 3 ( BerUand,
1985). We use one of the simplest

- 112 - 1/2a2 =(C2 X l /u ) ,a3 =(C3 X l /u ) .

For obtaining some averaged (monthly, seasonal and annual) field of concen­
tration it Is necessary to formulae (3) averaged over climatological data for wind
direction and wind speeds.

The physical problem can be formulated as the network design for monitoring
of total amount of released material and effective release height.

In this example, unlike the linear case, we have to be concerned with the
values of the parameters' estimates. The reason that in the linear case the
variance-covariance matrix does not depend upon estimated parameters while in
the nonlinear case (see Fedorov and Uspensky, 1975) this matrix (or more accu­
rately its asymptotic value) depends upon the true values of the unknown parame­
ters "t: lim ND(JN) =M-1("t,t>. where M(",t) =!(",x)!T(",x)t(dx),!(",x) =

N--

B7}~~") ,N is the number of observations and t is a limit design. Optimal designs

formally defined as in linear case also depends upon "t ,and is sometimes called
locally optimal.

In this situation the following procedure is recommended: a user has to choose
some probable (reasonable, admissible, etc.) values of " and define intervals which
will almost certainly contain true values of unknown parameters; for boundary
points of these intervals, optimal designs have to be computed with the help of one
of the above described programs; if the corresponding designs differ greatly from
each other, an "average" design has to be constructed. Fortunately optimal
designs are rather stable to the variation of parameters and therefore the latter
procedure can be avoided.

The square area with the 50 )( 50 mesh scale was used for computations. the
source of pollutant was located in the origin. It was assumed that the wind's speed
and frequency are equal for each direction of wind rise. The optimal design for
this symmetric case are two consecutive circles if the operability region is suffi­
ciently large. Otherwise the location of supporting points will depend upon the
boundary shape. The dependence of the circles' radiuses on the value of assessed
parameter of effective height can be seen in Figure 2. The dependence of optimal
design on wind speed can be seen in Figure 3.
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OPTIMAL DESIGN (SPEED 5 m/s)
!!O

46

40

E J6

t.
z

JO!:!
II
0

I
26

2D

1Ii

'0

6

lOll 150 2DD

0 _US ,(....)
26D JOD J6D 4DII

I£IQHT OF IlElDSE (...)
+ ~2(1om)

Figure 2: Dependence of the allocation of the optimal design stations on the
height of pollutant release (wind speed is assumed constant in all
directions and equal to 5m/sec).

OPTIMAL DESIGN ( HEIGHT 250 m).

4 5 6

Figure 3: Dependence of the allocation of the optimal design stations on wind
speed which is assumed uniform in all directions. (The weight of pol­
lutant release is assumed constant and equal to 250m).
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TESTING FOR OUTLIERS IN LINEAR MODELS AND BONFERRONI SIGNIFICANCE LEVELS

Stratis Kounias
University of Thessaloniki, Greece

1. INTRODUCTION

Consider the 1inear model Y=XI3+£ with uncorrelated observations and common

variance i. Then the vector of residuals is e-= Y-X~ where X'X& =X'Y. An
observation which differs "very much" form the fitted value has a large
residual and is considered to be an outlier. Removing or adjusting residuals
simplifies the description of the rest of the data because in the null case
of no outliers, the residuals do behave much like a normal sample.

One approach is practical and subjective by plotting the residuals or the
observed and the fitted values and examining the plot.

A suggestion (J. John and N. Draper 1978, J. Gentleman and M. Wilk 1975)
is to replace the observation with the largest residual with its missing
value, which is estimated from the remaining observations and continue simi­
larly for the remaining outliers. They proceed to replace the k largest re­
siduals and provide a statistic Qk which is the difference between the sum

of squares of residuals for the original data and the sum of squares of re­
vised residuals resulting from fitting the basic model to the data remaining
after omission of k data points.

When one outlier is present, the direct statistical treatment of residuals
provides a complete basis for data-analytic judgments. When two or more out­
liers are present; the resulting residuals will often not have any noticeable
statistical peculiarities.

The statistic commonly used to detect an outlier is the maximum normed

residua-l zi= e;lle'e i=1, ... ,n (C. Daniel 1960, W. Stefansky 1969). The

joint distribution of a set of k normed residuals has the form of an
inverted t distribution with n-p-k degrees of freedom. (C. Quesenberry and
H. David 1961, H. Raifa and R.Schlaifer 1961, W. Stefansky 1972). Since the
associated distribution is very complex, exact p values are difficult to
obtain. These are evaluated either by using simulation or applying Bonferroni
upper and lower bounds. The aim of the present paper is to demonstrate impro­
vements of the Bonferroni bounds.

Let P. = P( IZ • I>d) , P.. = P( Iz ' I>d, Iz. I >d) i t- j etc, then use the, , 'J , J
notation:

n
S1 = 2 P," $2 = 2 2 P.. , $3=222 P"k' etc

i =1 i <j , J i <j <k ' J

where Sk is the sum of all k-fold intersections.
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Our problem is to evaluate the critical value d i.e. P(maxlzi I>d)=a and

the distribution of maxlz. I is very complicated.
1

The first order upper Bonferroni bonnd is

R(maxlzil>d)$Sl (1)
and for a given d, P(lzii>d)=P i is easily computed. With more effort we

can compute Pi j and Pi j k and use the lower and upper bound to approxi mate

d.
Setting Sl= a we solve for d and this gives a conservative estimate

(overestimate) of the actual critical value. In the case where all IZ i Jhave
the same distribution we find d from

P(Z~ > d2) = a/n (2)

for a given significance level a.
Actually we evaluate the left hand side for different values of d and

find the one with the given probability a/no
The second order lower bound is

Sl - S2 $ P(maxlz i I> d) (3)
and equating Sl-S2 with a we find a non-conservative estimate (underestimate)

of the critical value d.
These values have been tabulated for the two and three-way layouts by

using the first and second Bonferroni bounds (W. Stefansky 1972, R.Cook and
P. Prescott 1981, J.Gaplin and D. Hawkins 1981). The last paper uses third
order bounds.

2. IMPROVED BOUNDS

either
order.

thenetc,S2= 2 P(A.A.)
i <j 1 J

The accuracy of the Bonferroni significance level can be improved
by taking higher order bounds or by sharpening the bounds of a given

It is known (W. Feller, vol I, p 110) that if
n

A = U Ai
i=l

(4 )

PtA) ~ Sl-S2+",+Sm when m is even
are called Bonferroni inequalities of order m.

In the outlier problem we have Ai={lzil>d}, A={max\zil>d}

We present here two improvements
i) When the events are exchangeable i.e., when the residuals are equally
correlated. This happens in orthogonal two level factorial designs, in ba­
lanced designs etc.
ii) When the events do not follow a specific pattern.

For the first case (i) the improved upper and lower bounds up to the third
order are:

Upper bounds

PtA) $ Sl

PtA) $ Sl - 2Szln (5)
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P(A) ~ S((2(2k-1)/k(k+1)S2 + (4/k(k+1)) S3

where k= [3 S3/ S2] + 2

Lower bounds
P(A) ~ S/n

P(A) ~ (2/k(k+1)(kS1-S2) where k=[2S/S 1]+1 (6)

P(A) ~ ((2n+k-1)/n(k+1))S1-(2(n+2k-2)/nk(k+1))S2+(6(nk(k+1))S3

where k=[2((n-2)S2-3S3)/((n-1)S1-2S2)]+1

with [x] denoting the integer part of x.
The proof is done through the indicator random variables.These are improve­
ments of the Bonferroni bounds (4) which are derived from (5) and (6) by set­
ti ng k=1.

Although the bounds (5) and (6) are quite satisfactory for practical
problems, they can be improved in the case (ii) where the events are not ex­
changeable. This is the case of two and three-way layouts and in most regres­
sion problems.

D.Hunter (1976) gave the following second order bound:
n

P(A) ~ ~ P.- ~ P.. (7)
i=1 1 T 1J

the last summation is for all edges of the tree T.
The best bound is given by the maximum spanning tree using for example

Kruskal 's algorithm. In practice neighboring points have higher probabilities
and then (7) becomes:

n n·1
P(A ) ~ ~ 'P. - ~ P, . +1 (8 )

i=1 1 i=1 1,1
In a two-way layout factorial design, let p" denote the correlation between

1J
e1· and e., then P,.= P(lz.l>d) is an increasing function of P1'J"

J 1J 1
If the design has R rows and C columns, then

P1j = -1/(C-1) between residuals in the same row

P1j -1/(R-1) between residuals in the same column

Pij -1/(R-1)(C-1) between residuals otherwise

If R~ C the maximum spanning tree is formed by linking all residuals in
each row and then linking columns (K.Worsley 1982)

Inequal ities (8) can sti 11 be improved
n n-1 n-2

P(A)~ ~ P.- ~ P.. + ~ P.. . (9)
i=1 1 i=1 1,1+1 i=1 1 1+1 1+2

and also the lower bound of ordpr two i.e.

P(A) ~ (2/k(k+1)(kS 1-S2 + ~~ Pi ,i+1,j) (10)
j~i+2

this improves the bound of D. Dawson and D. Sankoff (1967) and S. Kwerel
(1975).
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3. APPLICATION

If we have Bernoulli trials with probability of succes p and we are inte­
rested in testing for randomnes~ a statistic is the longest run of successes
in n trials (Schwager 1984).

Let the events be:
Ai = { There is a run of k successes starting at trial i=l, ... ,N, N=n-k+1}

A = {There is a run of k successes in n trials}

TABLE 1. Comparison of bounds

n k P L1 L2 L3 EXACT U1
'U2

300 10 .5 .08884 .12382 .12382 .13351 .14232 .14258
1500 10 .5 .33264 .20593 .36361 .51918 .72711 .72852
300 15 .5 .00292 .00436 .00437 .00437 .00438 .00438

1500 15 .5 .56336 -5.19094 .57095 .88559 2.08708 2.11978
100 10 .7 .34910 .01535 .39393 .58008 .73580 .79093
300 10 .7 .62667 -6.93128 .63397 .93526 2.27401 2.48578

where:
L1 The second order improved Bonferroni bound

L2 The lower bound of Worsley (1985) using hypertrees

L3 The lower bound (improved) given in (10)

U1 The uppewr bound given in (9)

U2 The upper bound of Hunter given in (7)

Observe that in all cases the bounds L3, U1 perform better and are quite

accurate in probabilities just above zero.
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STABLE DECISIONS IN DISCRIMINANT, REGRESSION
AND FACTOR ANALYSIS

J. L~uter, Academy of Sciences of the G.D.R.,
Karl Weierstra8 Institute of Mathematics

.!-,_ INIt3QQt!GIIqN
Two concepts will be treated to stabilize the multivariate

analysis in high-dimensional applications:
(i) A method fitted to one-factor covariance structures. For

the one-factor structure and for certain prior distributions

of the parameters, the corresponding Bayes decision rules will
be deter-mi ned. Accor-di nq to thE?i r constr-uct i on, these r-ul E?~~

are admissible decisions.

(ii) If special multiple-factor structures are considered, the
invers(~ matri:-: G-1 of thE"? matrL: of sums of product~;;, G, can

be replaced by a suitable diagonal matrix T. To improve this

approximation in certain cases, an expansion by an infinite
series

G~ =T+(T-TGT)+(T-2TGT+TGTGT)+ ...

will be proposed. By stepwise adding of terms of this series,

a hierarchy of models is formed which can be applied for the

optimization of solutions in practice.
The classical multivariate methods are usually constructed

under the assumption that the parameters are known. Afterwards

the parameters are replaced by their maximum likelihood esti­
mates. For prognostic decisions, this two-step approach is
often unstable and unreliable. High correlations of the vari­

ables, multicollinear"ity, and "over"fitting" res;ult in er-rone-­

ous estimates. It will be seen that equalizing and smoothing

methods lead to improved decisions. The known procedures of
selection of variables, the partial annihilation of informa­

tion, represent also an aid for stabilizing the results, but
they are not the best and not the adequate way to overcome the

dif"ficulties.
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?~ !U~ Q~~=Ee~!QB ~Q~eB!e~~~ §!BV~!VBE

~~!~ Ri§£cimiD~Dt An~l~§i§

Let us start from two normally distributed learning
samp 1 E?~; ,

yljl '\j N (rlj) !
t; 11 ' -

and an observation which has to be assigned to one of both
populaticlns,

( 1= 1 ,;:>; t. >0) • (2)

ThE' unknown pari,),metE~rs of the decision problem an:? Mitl, ",,{tl,

l and I, where I denotes the unknown population. Vari~ble t
dl~~sct-ibes the precision of vectol- yeel which is to bE? assignE?d.

By introducing t we shall recognize a close connection between
the different forms of discrimination rules (substitution
rule, maximum likelihood rule).
The considered one-factor structure is defined by

where K is a positive definite diagonal matrix and w is a
nonnegative number. This structure includes an algebraical
relation between the mean values and the covariances which was
also investigated by Sdrbom (1974) and in program LISREL

t
·, ,

(,Jdre!okog and Sdrbom (1984». In pr-actice observations y 1 of
this kind result from an only non-observable primary variable
y~il by adding indepE~ndent distLwbance~; v'i> :

(j=1,2),

), v {{J.~ Nfl «(I, K) •

(3a)

(5b)

~ and 8 are vectors of scale constants.
In the following we want to construct discrimination rules

which depend only on the statistics

, G. (4 )

yCl) are the samplE~
•products,

means, and G is the matrix of sums of

(5 )

,
II

I,.i,[
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These rules are even those which are invariant under transla­
tions.
For a fixed t=to we define according to S. DasGupta 119651

Let

t n) '" I I n (I) +t t I / n m IiI'/.

Y = --t It} >: (n +t It) >: (1.) ,

11=1,21, 161

(7)

{o if j=l Irightl
LIl,jl'" 181

'\ 1 if j 't 1 (-falsel

be the given loss function where 1 is the actual population
11=1,21 and j is the result of t.he df~Li=;ion Ij\=I,21. By the
following theorem the admissibility of a special discrimina­
tion rule is obtained.

Ib~Qr.:§!IT! .:U_ For' fi>:ed positive t=t· c ' cl' £Z li=I, .•• ,pI with
c;t + ... + c~t <1 and the 0-1 loss function 181, the rule which
decides for the population j with the minimal value

Ij=I,21 (9)

is admissible in the class of rules that are invariant under
translations Icf. 1411. Here C is the pxp diagonal matrix

1 1C=Diaglc;lay. +bz,' +g., +~i». ~ . - ~~ . li'."I, •.• ,p), (10)

a'''alt o l'''t
O

!12t l f) tit) ItW t(l) --1»,

b=blt c l=t c /12t IO t(U It W t.lt) +1)1.

(11)

(12)

J_ I Y (0 +y (2) I I >0
l' I

113 )

Yi and z& are the components of y and z.
The proof was submitted on conference DIANA2 IJ. L~ut.er

11986a». There a special prior distribution of the parameters

is precribed, and the corresponding Bayes rule is constructed.
The admissibility results from the fact that the Bayes-rule is
essent.ially unique. In practice the following limit rule can

be applied: IJ') 1
j= {I if IY." -y (t )' IC-Gt Iy foJ -

2 other,wi se,
where C=Diag Ip I In (1/ n (1) / In W +n U) » Iy}~j -Y.(!) )1 +g., ) I and

..~. h
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appears instead of

C-G has very large
of the high stabili-

Ii) \1) <H Cl.)
y. , y. are the compC::lnent~5 o·f y. ' y. .
~. ~.

In the customary discriminant analysis, G
matrix C-O. In the rules (9) and (13),
diagonal elements which is a typical sign
ty.

In the ne:·:t
desi gned f or­

inversion of a

theorem a rule is provided
independent variables. In
diagonal matrix appears.

which is especially

this rule only the

Itl~Qr.~!!l~: For- fi>:f~d positive t=t c ' c, • t', li=1, ..• ,pI thE?
rule which decides for the population j with the minimal value

is

t\ljJ lylnL_y (Ii), c- f lyCOL_yCJI )

n qi +t
p

' •

admissible in the class of rules that are invariant

(14)

under·
translations. Hl:"?r-e C is definf?d by (10), (11). (12).

For practical applications the limit rule

(15)i(ylU+yli) »>0
1 •j= {1 if

2 otherwise ,j (4) U. iI
is offered where C'~Diag I In(lln 1t / InW+n W » Iy. _.y. I ) +g., ).

..~. h
Examples of application and simulation experiments

contained in J. Liuter 11986a,b,c).

~~~~Er.~~i~iiQQ in B~gr.§§§iQQ eQ~!~§!§ ~itb

B~gr.~2§'Qr.§

We start from a learning sample

\ = (Yolt : .~ Nl.r (r:') .(::' ;)l y~ . ~ L
Ik=1, ... ,n; n=p+2) and a further observation Y=ly~

the same population. We want to predict ~ by means
other p components of Y under the information of the

116)
y') o·f

o·f the
lear·ning

samp IE?

(17)

The spE.~cial covariance structure used here is I' =K+w rOrbl
IK positive definite diagonal matrix, wlO). We shall consider

only prediction rules which are invariant under translations.

These are r-ules that predict :·:0 =YG --Ye. by mea.ns of

"=Y-Y, :. :r:\ :~d7::- :') = (g,., )=kt, <Y, -v. ) <Y. -Y, )
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are the mean vector and the matrix of sums of products of the

learning sample. Let L(yo 'Yc)=(Yo-y;j)2.:::(\., -:-(0)1 be thE?

d t · 1 f d' t· ~ ~qua ra lC oss 0 a pre lC lon )':o==Yo -y~.

n1§lQr.:t~m ~: For- f i)·: ed c, (c L>,0; i =0, ... ,p; c'~'1 + ... +c.pi <1) and
£, «(:i >0; i=l, ... ,p), for n~p+2, the predictor'

is admissible in the class of all

invariant under translations. Here

predictors that are

(20)

(21)

Under the conditions of theorem 3, the

c,(C:C-1»0 hold. Therefore this predictor
compared with the classical predictor

C==Diag(c· «n/(n+1»)·:·2. +g .. +~, » <i==l, ... ,p). (19)
~ ~ - ~~ ~

x~ are the components of x.
In the special case of one regressor variable (p==l) we

obtain
.... 1. - ~
:-:a=g(', (b(I:l!(n+1>):-:1 +(b+1> 9 i1 +C{ (cQ-1>~1) :-:f

where b=c~c1-cc-c1

inequalities b>O and

implies a shrinkage
t> -"'g g --1 v
?, 0 - . 011 ".\'
In the next theorem a prediction rule is offered in which only

the inversion of a diagonal matrix appears.

Ib.~Q!:~!!! 4: For fi:-:E?d positive c., ~~ (i=l, ... ,p)
with ci1+ ... +cf.1<l, for n~p+2, the ~redic:tor'

... -1 -11 -1
:-:o=(1-(n/(n+1»)·:'C :-:) g~ c)·:

is admissible in the class of all predictors that
invariant under translations. C is defined by (19).

In the case of one regressor variable (p=l), predictor

are

(22)

the same predictorsresults. For varying values of c~ und £1
arise as in (20).

In practice all predictors of this section are also design­

ed for stable smoothing of data and for stable replacing of
missing values.

~~~~ §t§~l~ E~£tQr.: BQ§1~§.i2

The factor analysis serves the recognition of the structure

of covariance matrices of p-dimensional variables y. We start

from the Wishart distributed matrix of sums of products
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generated by n p-dimensional observations,

G"W Wll ( L ,n-1), (23)

-f ft
and we use the one-factor structure defined by r == n - VV'
wher'e J\='Diag( ),.i) is a positive de'finite diagonal matri:-:,

~ ==(Ve) is a vector.
In the following ~ is to be estimated. Vector Y is needed

for forming a linear function of the observation y which has

maximum correlation with the supposed factor variable Yo (cf.

(3a), C3b»: ~\: == \ty. Let L= II~~'--v,,' /12 be th~? loss function
where hXll := ( r r :-:~. )'1/2. is t.he Eucl i dean matr·i;·: nor"m.

i j \1

ItH=qr::~I}}~: For fi:-:ed positive c~, E~ (i=1, ••• ,p) with
c 1-

f + •.• +C:~p1 <1, for n~p+1, eln admissible estimator' of Y is
'" -1obtained as the eigenvector- Ij of matri:-: ([;'-G) cor-r-espondinq

to the largest eigenvalue ~ which fulfils the additional" .~nor-malization If'V ,,,,(.I,:

-1 ~
(C-G) 'V '=

" .\ '\II (V'V). (24)

Here C is defined by C=Diag (c~ (q~~ + Ei », i==1, ..• ,po

A disadvantage of this result is the missing invariance

under linear scale transformations of the single variables.

Therefore a further estimator assigned to the loss function

is to be constructed.

(i=1, •.• ,p) with

and for the 1055 function
Ih~gr::§m ~: For fixed positive c(, Ei

-1. -1 .... 1 f· ~. ( 1 C')c1 4 ••• +C , ~, or n-mln p+ , ~ ,

(25), an admissible estimator of 'V
following way: Compute

obtai nl~d in the

-1 ··1
D=<Diag(g~,+c,» B=(C-'-G), t==(n'--3)/2,

A==D-1!l(B+.i Diag(B»I)-l/l;t· .
determine vector x which maximizes

(26)

;,.':-' • A:-' -- (v ':-, /'.- J... I) i ag (v v • ) v •- . . ". t" . "" ",

compute V=DVZ:-:. Matri:-: C is de'fined as in theor-em 5.

<:27)

I

Iii'I
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This result has a close connection with the known principal

component analysis. If the terms associated with tare
neglected, that is, n is considered to be very large, and if

fi... =0, ci =c... (i=1, ... ,p), then ~ is the solution of
G,,=Diag (G) V ~ corr"esponding to the lar-gest eigenvalue of, which
fulfils the additional normalization

(cV'Wiag(G»-1~ --1)/i'Wiag(G»-1~ =-d.,. (28

Hence under the mentioned neglects, the principal component
method appears as the solution of the factor problem with
minimal Bayes risiko. Thus the essential difficulty in
estimating the specific variances of the variables vanishes in
factor analysis.

~~ BEEBQ~I~BI!Q~ QE IH~ l~YF:B§~ ~QYBBIB~C~ ~BIBIX

In former papers (J. L~uter (1986b,c» we have shown that
the diagonal matrix

-1 ~fTo = Wi ag (G Wi ag (G» G» (29)

can be considered as a stable substitute for G-i if certain
multiple-factor structures are assumed. To improve this
approximation in applications with relatively large samples,
an expansion of 8- 1 can be used the first term of which is

even To or a multiple T=cTo If we put

it follows that (cf. Faddejev and Faddejeva (1963»

.. t ··1 1. ~
A =(I-B) =I+B+8 +B + .•• ,

G-1 =T+T,,/1.(I--A>T1I2+Ttl1(I-A)1 T'l/1+ ... ,

-1G =T+(T-T8T)+(T-2TGT+TGTGT)+ ...

(30)

the

(32)

The shrinkage factor c is determined in such a way that
maximal module of the eigenvalues of B is minimized:

c=2/ ().Il\.<A.l+~m.ld.). Here l",,&~ and tlr\~h, ar-e the ma:dmal and
the minimal eigenvalue of AO . Then the arising series (31)
converges for any positive definite G.
In practical applications the partial series can be used:

G (0\ =T

G \il =2T-TGT
G U.) =3T-::nGT+TGTGT
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They are also applicable in cases with a singular covariance
matrix G. Cross-validation can be employed to decide which
level of this hierarchy of models should be preferred.
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ANALYSIS OF DATA WHEN CONSTRUCTING AN ADAPTIVE REGRESSION MODEL

Lukaschin,Y.P.
Academy of Sciences of the USSR
Institute of World Economy and
International Relations, Moscow

1. INTRODUCTION

Here we shall consider the discrete-time processes which evolve over
time. The background of ordinary discrete-time regression analysis is a hy­
pothesis that the behaviour of the underlying process may be approximated
using a linear equation model with constant coefficients, which reflect the
intensity of relation of the endogenous variable,y, and exogenous variables,
xi' i=1,2, ••• ,p. The regression equation is

p
yt =~ a i xit + et (1)

1=1
where e t is an error of the model, t is time, t=1,2, ••• ,T, or in matrix
notation

y = Xa + e (2)

where X is a (Txp) matrix, y and e are (Txl) vectors, a is a (pxl) vector of
coefficients to be estimated.

As it is well-known the estimate of the parameter vector under the least
squares of the errors criterion is

a = (X'X) -lx'y . (3)
However the intensity of interrelation of the variables is not constant often
over time. Thus, the coefficient estimates obtained under the above hypothesis
are only the average ones for a sampling period and it is doubtful that they
could allow to make time analysis properly and to obtain good forecasts.

Besides the evolution of the underlying processes there are some other
reasons to suspect that the parameters of many regression models are not
stable over time. It is possible to note four of them, Sarris (1973). Many of
regression equations are not correctly specified, i.e. they don't contain some
important variables, which should be included. A nonlinear relationship,
approximated with linear one, is also a source of parameter changes. The other
sources are the substitution of a true variable with another one (due to an
ertor or absence of statistical data) and the procedure of aggregation and
using of the composite time-series which often leads to loosing of a homoge­
neity of time-series due to a revision of the methodology of its calculation.

Thus, the multiple regression (1) with constant coefficients is too rigid
in many cases. And it is often quite desirable to incorporate a tool of adap­
tation of the coefficients in model (1) to correct their values as soon as a
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new observation of time-series become available. This would allow to outline
the changes of the coefficients over time, to enlarge the economic inter­
pretation of the results, to give an idea about tendency of movement of the
process, to determine the perspective directions of model reconstruction.

The most known tool for this aim is the Kalman filter originally used in
engineering. It was developed in Kalman (1960), Kalman and Sucy (1961), Mehra
(1972). Then Cooley and Prescott (1973,1976) have proposed an adaptive regres­
sion model for economic applications under the hypothesis of Markoff motion of
the coefficients. A survey of the papers on time-varying coefficient regres­
sion analysis may be found, for instance, in Raj and Ullah (1981). The common
shortcoming of these approaches when they are applied to economic research is
the necessity to have a priori same information which can't be obtained from
anywhere, such as the knowledge of the covariance matrix of nonobservable
random variables or coefficients; in other cases it may be a hypothesis about
the transition matrix in Markoff scheme for the coefficients, etc. As a result
the application of these approaches comes across the difficulties. In Luka­
schin (1979) the attempt is made to overcome these difficulties by improving
of the procedure of Wheelwright and Makridakis (1973), in which an antigra­
dient direction is used for adaptation of the coefficients. One shortcoming of
the gradient approach may be a weak convergence, the other one is a high cor­
relation of the coefficient corrections, because all of them are proportional
to forecast error and therefore have the same sign if the value of endogenous
variables are positive.

In Lukaschin (1986) a method of adaptation of the regression coefficients
is proposed using exponentially-weighted moving average (EWMA). This is the
method which we are developing here in Section 2. Section 3 is devoted to ana­
lysis of data when the adaptive regression model is constructing using this
method.

2. ADAPTIVE REGRESSION MODEL

2.1. General ideas

Let us consider a regression equation with time-varying coefficients,
which is of the form

p
Yt = ~:::::>itXit + et (4)

1=1

Let us examine the estimates of the parameters given by least-squares method
under the hypothesis of constancy of the coefficients. After a simple rear-

ranging tlie estimate of the parameter vector a may be written in terms of the
sample averages of the cross products of the observations of the endogenous
and exogenous variables taken in pairs, i.e.

a = (X'X) -lx'y

(5)
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1 T
where miJ' = - ~XitX't' i=1,2, ••• ,p, j=1,2, ••• ,p+l and for generality

T t=l J
of notation it is admitted that Yt=xp+l,t.

In what follows the attention will be paid to behaviour of the mij.
A key to the problem of practical development of an adaptive regression model
wi th time-varying coefficients is apparently in finding of a good tool for up­
dating of the estimates of time-varying averages mij.

It is proposed to substitute in (5) the whole period averages mi' by
ci' t' which should be the estimates of local (or current) averages of the
cr6ss products of the regression variables taken in pairs. There are many dif­
ferent ways to obtain ci' t. For example, in context of a moving regression
analysis Cij t are comput~d as moving averages. The weights in this case are
taken equal fo lin, where n is the extent of the average. Actually unequal
weights may be used in moving averages. Say, more recent points in the extent
of the average can be taken with greater weights, and first points with less
ones. Such approach is more appropriate for a forecasting problem. It is pos­
sible as well to seek for a presence of time trends in the cross products and
to approximate them with known functions of time or any other models.

As it was already noted, in most approaches to an adaptive regression
analysis the equation of the dynamic coefficients' motion and sometimes even
the values of the parameters of this equation are to be postulated a priori.
But it is hardly realistic to think such a choice valid, for the coefficients
are themselves nonobservable. The approach outlined here is based only on
examination of the dynamics of the average values of the cross products of
paired observable variables. These products form time-series, which can be
presented on graphs and analized visually or using some analytical means. All
these graphs in common show the structure and dynamics of the process under
study. They allow to localize the points of suspicious changes. Thus, at the
stage of analysis a multidimensional problem is decomposed into p(p+3)/2 uni­
dimensional ones. However, uni-dimensional analysis shouldn't be carried out
in isolation from analogous parallel studies. All uni-dimensional problems
must be agreed, submitted to one global aim, to one criterion. Any interme­
diate, particular or indirect criterion may lead away from the main aim. That
is why such criteria play only an auxiliary role at the initial stage of the
model construction.

2.2. Case 1: Variables haven't time trends

In previous paper, Lukaschin (1986), we have treated in details the
simplest case, when all the variables of the regression equation (4) haven't
any visible trend. In this case it was proposed to substitute the arithmetic
means mij in formula (5) by the EWMA Sij t. The EWMA is widely used in the
adaptive analysis and has become a base of many procedures. In that case Cij,t
will be renovated at each moment t as follows

ft,Sij,t-l + ac!,(xitXjt)

Sij,t

(6)

(7)

where i=1,2, ••• ,p, j=1,2, ••• ,p+l, ot is a smoothing constant, which is taken
in general from the interval 0<.x.<1, .c =1- cl.

The formula (5) with Cij t substituted for mij gives the estimates of the
model coefficients ai at moment t. To start the calculations using the
recurrent type expression (6) it is necessary to have some starting value
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Sij 0 at moment t. It was proposed to determine it as the arithmetic mean of
the' first r observations of time-series, i.e.

1 r
Sij,o = ~ I}ikXjk (8)

k=l
To simplify the procedure r and smoothing parameter oG were assumed the same
for all pairs of i and j. Their best values were seeking for by minimizing the
mean squared error of the one-step ahead forecasts

1 T 2
Q(.,l"r) = - Leo (9)

T i=l 1

where et+l = Yt+l - Yt+l is an error of the forecast,

"Yt+l = X't+lat is the one-step ahead forecast,

at is an estimate of the parameter vector at moment t.
An interesting result was obtained in Griese and Matt (1973), from which it
follows an important property of the outlined procedure. It turns out that
application of the EWMA for smoothing of the cross products gives at each
moment t (when t is great enough to neglect the influence of the starting
values) the estimates of the parameters ~i' which minimize exponentially­
weighted sum of squared residuals of the regression

(10)

2.3. Case 2: Variables have time trends

If some regression variables have time trends then the cross products
will have them too, and the EWMA may not catch the mean level of the product.
An attempt may be made to transform the original equation to obtain one with
variables without trends using, for example, chain indices, rates of growth,
differences of the proper order etc. If such transformations are not desirable
then it is necessary to find satisfactory way to take trends into account. In
particular, when the cross products have approximately polynomial trends we
propose to present their motion using adaptive polynomial models of R.G.Brown
(1963), which are based on multiple exponential smoothing.

As it is well-known the EWMA of order p is obtained by exponential
smoothing of the EWMA of order p-l, that is

S
[pl
t -

S[p] +
t-l

[p-l]
St ' (11)

h 1 2 [0] 0 h 0 0 1 0 •were p= , , ••• , St IS t e orIgIna tIme serIes.
Brown has developed a procedure of renovation of parameters of a

polynomial of order q, in which these parameters are known linear functions of
the EWMA of order 1,2, ••• ,q+l and vice versa.

Thus, one needs a subroutine, which if necessary would allow to calculate
the EWMA, say, of order 1,2 and 3 to construct the adaptive polynomials of
order 0,1,2. In particular problem the adaptive regression model must be deve­
loped taking into account the dynamic properties of the cross products of the
regression variables. To choose a proper set of orders of the adaptive polyno­
mials it is necessary to carry out some special preliminary analysis of data.
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3. ANALYSIS OF DATA

When a set of variables is chosen and a form of a regression equation is
determined the analysis of data may be carried out in three stages.

At the first stage it is worth-while to begin with examination of the
regression equation with constant parameters and testing the hypothesis of the
parameters' stability. It may be realized by different ways. For example, the
substitution of a coefficient ai by (aj+bit) and testing of significancy of
the parameters may confirm or reject the stability hypothesis. Then it is
possible to divide a sample into two subsamples and to compare the estimates
of the corresponding coefficients in both, to apply test of Chow (1960). It is
useful to estimate the regression equation with constant coefficients itera­
tively, starting from the sample size p and consecutively increasing it by 1.
It gives the graph of the estimate against the sample size, which may be in­
formative. Testing the constancy of the regression relationships over time may
be carried out by examination of the errors of one-step ahead forecasts using
CUSUM- or CUSUM of squares techniques proposed in Brown, Durbin, Evans (1975).
If these or other tests indicate that regression coefficients are apparently
time-varying then the analysis of data may be continued.

At the second stage the attention must be paid to dynamic properties of
the regression variables and their cross products. It is reasonable to test a
homogeneity of movement of the time-series, suspicious change-points etc. An
annotated bibliography on statistical analysis of structural change may be
found in Hackl and Westlund (1985). If nothing prevents from application of
multiple exponential smoothing the further aim of preliminary analysis of data
is to establish the proper order of adaptive polynomials to approximate the
movement of the cross products. It may be carried out separately for each
time-series (xix')t by trying and comparing different orders.

At the thIrd stage it is necessary to determine some good initial con­
ditions to start the recurrent calculations. Our experiments show that the be­
haviour of the model and results it gives including the optimal value of the
smoothing constant are sensitive to initial values of the renovating quanti­
ties, i.e. of the EWMA of order 1,2,3 for each cross product.

Having carried out the data analysis one may proceed to synthesis and
joint estimation of the adaptive regression model, using any global criterion.

4. CONCLUSIONS

In this paper some general questions of the adaptive regression analysis
are considered, an approach to construction of an adaptive linear regression
model with time-varying coefficients is presented. Adaptation of the coeffici­
ents is proposed to be realized by means of the decomposition of a multidimen­
sional problem into some uni-dimensional ones and the following synthesis of
the partial results into united system of estimation. In particular, Brown's
adaptive polynomial models are proposed to be used for analysis and treatment
of data in uni-dimensional space.

OUr experiments show that a treatment of the adaptive regression model is
considerably simplified if its variables (endogenous and exogenous) haven't
any significant time trends and ordinary EWMA is enough to take into account
the dynamics of their cross products. That is why it is worth-while to do
one's best to reformulate if necessary the model in such a way. In some other
cases the application of Brown's models may be useful for investigation of the
coefficients' movement.

It may be noted that multicollinearity may cause agreed motion of two or
some parameters in different directions. It is necessary to keep such situa-



194

tions under the control. Serious danger of this type comes from log-transform­
ation, after which the variables used to be linearly dependent and correla­
ted. To avoid the influence of the multicollinearity it is reasonable to
consider the adaptive regression model preferably with small numbers of exo­
genous variables. Sometimes the adaptive regression exposed here may be con­
sidered as a tool of a preliminary analysis of the interrelation of the data.
Then the obtained results may be used for formulation of a more sophisticated
hypothesis about coefficients' movement to take it into account directly by
reconstruction of the model.

Finally, it may be noted that extraction of more and more information
about movement of the process under study from the same data is not inde­
finite, of course. More deep knowledge demand creation of more sensitive
model. But such model may be unstable and work worse. Therefore in every case
a researcher must find the reasonable level of investigation of the coef­
ficients' dynamics.
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DEVELOPMENT OF A COMPUTER SYSTEM FOR MODEL SELECT ION

Y. Nakamori
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1. INTRODUCTION

Data fitting of the regression type often used in econometric modeling
requires trial-and-error methods in selectiong a set of explanatory
variables. The stepwise or all-subset techniques implemented on a computer
reduce our burden to some extent. But the interpretation of the results is
still a large task because of difficulties in checking the validity of the
hypothesis testing and in giving meaning to regression coefficients.
Rethinking of the obtained equations is not feasible when the number of
equations is large and the cause-effect relationships between variables are
not known exactly in advance. Moreover, statistical reliability does not
necessarily ensure applicability. Model building in uncertain environment
calls for carft skills that are the mixture of science and art.

This paper introduces a computer system called the Interactive
Modeling Support System (IMSS) that helps model building for those systems
which are methodologically undeveloped in the sense that neither analytical
nor statistical methods are adequate for dealing with. It aims at
reflecting the practical knowledge and experience of experts on the models,
at the same time, developing their ideas and exercising thier judgment and
intuition. The computer system consists of a combined modeling techniques
of statistical and graph-theoretical approaches, and related multi-stage
man-machine dialogues. One of the main advantages of using this system is
the facility for the structuring of both mental and mathematical models,
that facilitates the model understanding and confidence.

After a brief description of the modeling system, its application to
the modeling and simulation of NOx concentration is presented.

2. MODEll NG METHODOLOGY

The modeling procedure of using IMSS requires the following three
types of information:

(a) A set of variables S={Xi} to describe the system under study.
(b) The corresponding measurement data table X=(Xi j).

(c) A cause-effect relation B, on the product set S~S, or equivalently,
the adjacency matrix A=(ai j) with ai j=1 if and only if (Xi ,xj)EB.

The objective of the modeling is to obtain a set of linear equations
that describes the underlying system and is capable of predicting the
behavior of the system.

The modeling process consists of
stages of dialogues. The first stage
of the modeling, including input of
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version of cause-effect relation on the set of variables, transformation of
variables, data screening, and refinement of the cause-effect relation by
referring to the statistical information.

The second stage dialogue is devoted to finding a trade-off between
the measurement data and the modeler's knowledge about dependencies between
variables. Based on the measurement data and the initial version of the
cause-effect relation, using the option of regression method, a linear
model and the corresponding digraph model are found. The modeler can
modify the new relation referring to these computer models and his or her
knowledge. The process continues repeatedly until no change occurs or the
modeler is satisfied with the modified relation.

The third stage dialogue is related to model simplification and
elaboration. Model simplification is based on the use of equivalence
relation, and model elaboration is an application of regression analysis
including the hypothesis testing on estimated coefficients, and examination
of the explanatory and predictive powers of the model.

The first craft required is the selection of descriptive variables.
The variable set S can include nonlinear reexpression or time-delayed
variables of the initial variables. Following the traditional usage, we
use the term "linear model" to describe a set of equations whose structural
parameters are embedded linearly. Reexpression and time-shifting enable us
to analyze nonlinear relationships and multiple autoregressive processes.

At the second and third stages, the corresponding data set is required
to be complete in the sense that it is screened enough to avoid the
influence of outliers or the problem of multicollinearity. This does not
imply that the data should be measured absolutely correctly. Soft
obsevation Is allowed to compensate for lacking or extraordinary data.
Hereafter, we use the term "observation" instead of "measurement", meaning
that observation can include data estimated or modified by the modeler.

Because both the complexity and ambiguity of an object depend on the
interests and capabilities of the Individual, the introduction of a
cause-effect relation Is also a craft work. But in-depth considerations
are not required initially; the remaining ambiguities are resolved after
some iterative modeling sessions. In applications, it is often difficult
to make the clear-cut distinction between input variables, output variables
and intermediate variables. The purpose of the modeling also has an
influence on the model. The flexibility in determining the model structure
is most emphasized. However, for a complex system, to determine the model
structure is often a hard task. Therefore, the pairwise cause-effect
relationships are required first and then the validity of the total model
structure is examined. This process is the most important part to reflect
human mental models on the computer model.

In the second stage, the regression methods are used to obtain linear
models and graph-theoretical techniques are used for man-machine
interactions. The required human input is knowledge of the structural
image of the system. This stage includes part of the model verification,
because the modeler should judge whether the model behaves as he intends.
Even the experts can hardly tell whether the obtained model is appropriate
or not because the coefficients of a linear model do not necessarily have
practical meanings. Therefore, the structure of the model is extracted and
shown in the form of digraphs to help the understanding and modification of
the computer model.

The third stage is concerned with judgments about the validity of the
model in terms of its explanatory and predictive powers. But data
concerning the results of policies not implemented are generally not
available, so scenario analysis is prepared. Here, both cumulative
experience and deep insight into the system are required.
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3. INTERACTIVE ~ODELING SUPPORT SYSTE~

The Interactive ~odeling Support System (I~SS) is a highly user­
friendly software providing for an interactive person-computer dialogue
facilitated by the use of advanced techniques to communicate directly
graphic information to the computer and receive graphic output. The
total modeling process of using I~SS is shown in FIGURE 1. The following
main advantages of its use are emphasized:

(a) The data-screening features provide a powerful tool for debugging
the data-set.

(b) The structural modeling features are helpful for organizing one's
thinking with respect to the system under study.

(c) It enables rapid access to the set of relationships comprising the
statistical model.

(d) It makes possible rapid validation and easy refinement of the
statistical model.

model building, hypothesis testing, residual plots,
multicollinearity checking, extrapolation

FIGURE 1 The total modeling process of using I~SS.
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The modeling information (S,X,A) is put into the computer at the first
step. IMSS has several facilities to read and preprocess the data set.
The facility for data transformation makes it possible to analyze time-lag
effects or functional relationships. Data transformation is also needed to
make distributions of variables symmetric because, according to Hartwig and
Dearing (1979), non-symmetric distributions and nonlinear relationships
often exist together. If every distribution of variables is roughly
symmetric, then we will have a high chance to obtain a linear model.

If at some step the modeler want to check distributions or outliers of
the data for some variables, IMSS assists him by showing the list of
candidates of outliers, histograms or scattergrams. The modeler can
designate the case numbers which he does not want to use in the modeling.
IMSS also checks and displays pairs of variables which have high
correlation coefficients. To avoid the problem of multicollinearity and
also to simplify the model, it is recommended that one of the pair is set
aside when they are supposed to be linearly dependent. The modeler can be
referred to the condensed basic statistics and scatter plots.

The manner of filling the adjacency matrix A should be negative. Here
negative means that the modeler should enter the computer a part of his
knowledge, putting O's at the right places. The rest of entries will be
filled with Its by the computer. The underlying idea is that the modeler
should inquire into strength of relationship between every pair of
variables except those which are definitely irrelevant. An extension of
binary relation is allowed in filling the matrix A=(aij):

a i j =
if Xi certainly influences Xj
if Xi might influence Xj
if Xi never influences Xj

(1)

There is no difference between 1 and 2 in the structural modeling, but they
are treated differently in the statistical modeling, i.e., the variables
indicated by 2 are regarded as the core variables and those indicated by 1
the optional variables.

lMSS has another option of filling the matrix A. The relation
considered is the cause and effect that is not necessarily transitive. But
it may be quite feasible to employ the assumption of transitivity to
develop a linear model. The modeler can choose the option of a transitive
embedding method that is a modified version of that in Warfield (1976).

STRUCTURAL MODELING

HIERARCHICAL ORDER •••••••

9r.w.end lIIols.end evap.pol cap.rlse

1eakage drainage oS to. loss 5prln.ls

runoff sprln.19 sub.lrrl gr.w.beg

lIol5.beg evap.acl preclpll I rr. capa

I INTERACTIVE MDDELING

TRANSITIVE EMBEDDING

SKELETON DIGRAPH

Press return key.

FIRST STAGE DIALDG~

FIGURE 2 An example of developed digraph model.
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The advantage of this method is that it can reduce the number of pairwise
comparisons remarkably. One caution in using this method is that the
modeler should consider indirect cause-effect relationships as well as
direct ones. IMSS provides the digraph of hierarchy based on the adjacency
matrix A, taking its transitive closure and extracting the skeleton. The
interactive modification facility helps the refinement or rethinking of the
relation. FIGURE 2 shows an example of developed digraph model.

After the first stage dialogue, the set of variables Sand
matrix X are fixed and will be used In the subsequent stages as
The adjacency matrix A is alone open for further modification.
of the second stage Is to elaborate the cause-effect relations
summarized in A.

At the beginning of the second stage, the modeler must choose one of
the options of regression methods with self-selection of explanatory
variables. The options of these include:

(a) the forward selection procedure,
(b) the backward elimination procedure,
(c) the all possible selection procedure, and
(d) the group method of data handling.

The last one can be used when the number of data points is very small. It
is a modified version of the original one (Ivakhnenko, 1968), i.e., the
partial description is written in a linear form with respect to variables.
FIGURE 3 shows the opening menu of the second stage dialogue.

VV SECONO STAGE DIALOGUE vv

I Forward Selection Procedure
o

2 Backward Ellmlnatlon Procedure

3 All Possible Selection Proc.

o
LI NEAR MODEL

o
o

o
DIGRAPH MODEL

o

o
o

REPETITION
o

o

o
o

CAUSAL RELATION
o

4 Group Method or Data t1andllng

5 Interaction In Second Stage

o Enler a ~ethod number •• >

o
o

o

o
o

INTERACTION
o

o
o

o

FIGURE 3 The opening menu of the second stage dialogue.

Let us denote by C = (CB,C), where CB is an n-column vector and C an
n~n matrix, the coefficient matrix of a set of linear equations which the
computer will search from now on:

x = CB + Cx wit h c i i = 0 for a 11 i. (2)

estimate
can have

finds a

where x denote the n-column vector whose components correspond to the names
of variables Xl ,X2, .,. ,Xn.

By the selecte~ automatic modeling method, the computer will
the row vectors of C one by one referring to the matrix A that
been converted into a reachability matrix. Thus the computer
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I i near mode I :

~c = ( S. C) or x = Ca + Cx. (3 )

Then the adjacency matrix A and the corresponding relation B will be
modified in an apparent manner.

Let us introduce a digraph D defined by
D=(S.B). (4)

where the elements of S are identified as vertices and those of B arcs.
The vertices are represented by points and there is a directed line heading
from Xi to Xj if and only if (Xi. Xj) is in B.

Let Bdenote the transitive closure of B. and suppose the variable set
S can be divided into m cycle sets el.e2.···.e.; here ep is defined by:

Xi, Xj E ep if (Xi, Xj), (Xj, Xi) E B. (5)

Then we can define new sets:

S =
B"=

el, e2.···. e. }

(ep. eq) ; some (Xi. Xj) E B. Xi E ep. Xj E eq }

(6)

(7)

matrix operations In
the digraph model:

(8)

the condensation digraph.
which is a minimum arc

removal of any arc would

MD = (S. D).

and the corresponding digraph (S.B") is called
Finally we introduce the skeleton digraph D
subdigraph of the condensation digraph. for which
destroy reachability present in the relation.

Actually the above process is carried out by some
the computer. After all. the computer will have found

that is a visual version of the linear model ~c" If the modeler is
satisfied with the model structure. the modeling process will proceed to
the third stage. Otherwise. the second stage will be repeated again after
amendments of the digraph model MD. The modification facility of the
digraph is one of the most fascinating parts of IMSS; but the detai I
description is omitted here. FIGURE 4 and FIGURE 5 show the dialogues in
the second stage.

~RONG COMPONENTS MODIFICATION MDDE

LEVEL 3 GROUP

.... components .....

3 10 II 12 15

Level division? (yin) ".)

••• SECOND STAGE DIALOGUE ••• ADJACENCY STRUCTURE

FIGURE 4 The modification module to the cycle sets.
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Return key ter.lnate5 .edificatIon .ode.
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2

3

4

5

6

7

8

ADJACENCY MATRI~

123 4 5 8 7 8

2 J

I

1

2 2
3

2 2
1 1

14

13

12
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MODIFICATION MODE

6

5

999 SECOND STAGE DIALOGUE 999 OIAGRAPIl MODEL

FIGURE 5 The modification module to the adjacency matrix.

Even an expert can hardly tell whether the obtained linear model is
appropriate or not because of the difficulties of checking validity of the
hypothesis testing and giving meanings to regression coefficients. The
most emphasized point of using IMSS is that the refinement of the
statistical model can be done by the modification of the structural model.

The third stage dialogue consists of two modes: model simplification
and model elaboration. Model simplification is based on the use of
equivalence relation and model elaboration is applications of regression
analysis and scenario analysis. The simplification mode is prepared for
reducing the obtained model into an optimization or simulation model. IMSS
prepares most of the classical procedures in regression analysis including
the hypothesis testing on the estimated coefficients, and the examination
of explanatory and predictive powers of the model with the aid of graphic
facilities of the computer. FIGURE 6 shows an example of regression
result, and FIGURE 7 shows an example of obtained model equation.

RESULT 2 Regre"and •• ) variable X12 RankIn" I I I

variable coeff 1cl ent 5tandard error t-ratl 0 correlation

~I -.21940+01 0.83820+00 -.26170+01 0.5314

X2 -.20510-01 0.64280-02 -.31910+01 -.4480

X3 -.15830+01 0.81500+00 -.25730+01 0.4364

X7 0.10090-01 0.46730-02 0.21590+01 0.3787

XII 0.39670-01 0.50770-02 0.78150+01 0.6658

~15 -.65870-01 0.17320-01 -.38040+01 0.4786

con"tant 0.89560+01 [ hIt return)

Oe"ree5 of Freedo•• 21 Adjusted R-Square • 0.7893

S.D. of Residual' 0.24440+00 F-Ratlo • 0.1785d+02

TI.21 • 0.05 J • 2.0796 Fl 6 • 21 • 0.05 J • 2.5727

FIGURE 6 A result of linear modeling.
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••• CURRENT LINEAR MOOEL ••• peel07 •••

--- equallon lor variable .ols.end ---

_ol •• end· 2.67510+02 -1.27390'02 gr.w.end -1.4655-02 preclpll

3.47230-02 .prln.lg -6.77540-02 evap.pol

5.84020-01 .ub.lrrl

hit return

FIGURE 7 An example of obtained model equation.

The more detail description of IMSS and its application to the
simplification of a comprehensive grounwater-crop production model are
found in Nakamori et al. (1985) and Van Walsum et al. (1985), respectively.

4. APPLICATION TO AN ENVIRONMENTAL PROBLEM

As an example of using IMSS, let us bUild a simulation
predict NOx concentration. The selected variables are shown in
For each variable, we have three years data (1977, 1980, 1983)
cities in Japan; 66 data points in all.

model to
TABLE 1.

from 22

TABLE 1 The list of selected variables.
(Every item represents the value in a defined area.)

Notations

NOx
pop.tota
pop.dens
pop.chen
pop.hous
farmland
building
traffic
ind.tota
ind.heav
ind.ligh
trade
temperat
wind. vel
dic.sea
die. moun
altitude
cities20
cities40
traf.car
traf.bus
traf.str
traf.btr

Contents

yearly and spatially averaged NOx concentration
total population in the area
population density
changing rate of the population
average population in a family
percentage of the land use for agriculture
percentage of the land use for buildings
percentage of the land use for traffic
total amount of the shipment from the industries
shipment from the heavy industries per unit area
shipment from the light industries per unit area
amount of the wholesale and retail sales
annual mean temperature
annual mean wind velocity
distance between the area center and the seashore
distance between the area center and the mountains
altitude of the area
the number of cities within 20 km
the number of cities within 40 km
traffic volume of cars
traffic volume of buses
traffic volume of small trucks
traffic volume of trucks
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An expert from the Japan National Institute for Environmental Studies
introduced the initial version of cause-effect relation which is summarized
in a digraph as shown in FIGURE 8.

pop.tota
pop.dens

FIGURE 8 The initial version of cause-effect relation.

After the modeling sessions with the computer, we obtained the
following set of equations and the corresponding model structure is shown
in FIGURE 9.

NOx = 2.5067e+Ol -3.3672e-Ol building -1.2098e-07 ind.tota
+3.2710e-05 ind.ligh +2.3460e-Ol cities40
+2.082ge-03 traf.car +2.8620e-04 traf.btr

pop.hous = 3.3246e+00 -5.1593e-07 pop.tota -5.5840e-05 pop. dens
+7.0042e-03 building

building = 2.3243e+Ol -3.968ge-05 pop.tota +5.4968e-03 pop.dens

ind.ligh = 2.0992e+04 +2.4290e-03 ind.tota

= 4.1107e+04 +6.1321e-03 pop.tota -1.3588e+00 pop.dens
-1.3967e+04 pop.hous +9.2540e+Ol farmland
+2.366ge+02 building

cities40 = 6.7757e-Ol +3.2292e-03 pop.dens +1.8973e+00 cities20

traf.bus = 5.5582e+03 +1.2763e-03 pop.tota -1.6272e+03 pop.hous
+6.4841e+OO building -1.3082e+Ol cities20
+1.2884e-Ol traf.car

traf.str = -1.lOOOe+03 +3.9610e-Ol pop. dens +1.4023e+Ol building
+2.480ge+Ol cities40 +1.0873e+OO traf.car

traf.btr = 4.1327e+03 +1.645ge+OO pop.dens
-1.4051e+02 traffic
+6.5000e-03 ind.ligh

-1.5634e+02 bUilding
+2.235ge-02 ind.heav
+7.9807e-Ol traf.str



Simplification of a
analysis. WP-85-92.
Analysis, Laxenburg,

FIGURE 9 The model structure obtained after the modeling sessions.

6. CONCLUSION

The interactive modeling support system is a tool for enlightening
both the modeler and the computer about the underlying system. The main
point is how effectively extract reality from human mental models and also
from measurement data with computer assistance. One of the fascinating
application is to design a decision support system coupled with I~SS,

because model building is the most important part in decision making.
Moreover, we are developing an intelligent modeling system by adding a
knowledge base system to I~SS.
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ON THE ESTIMATION OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS
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1. INTRODUCTION
The class of stochastic models to be examined here is representative of doubly

stochastic processes. This lauer term is used to denote processes which consist of an
underlying process, in this case a Markov chain. which is not directly observed but which
can be observed through another stochastic process. Models of this type are particularly
appropriate for describing a seemingly very different problem: that is, the statistical
problem of estimation from incomplete data (Dempster et al. 1977). In this latter case the
output of the 'true' but concealed process is thought of as conditioning a second process
which censores the input and produces the observed data. Both processes are considered to
be parameterized and the problem is to determine the parameter set from the observations.

If the assumption is made that the underlying process is Markovian in the sense that
its value at any time depends on only a finite interval of its immediate history then this
restriction defines the partially observed Markov model. If the unobserved process is
further restricted to be discrete it becomes a Markov chain and is the situation dealt with
here.

For the class of ergodic partially observed Markov chain (POMC) models, the method
of maximum likelihood (MLE), based on the likelihood of the observation sequence. is
known to provide consistent parameter estimation (Baum and Petrie 1(66). Baum's
algorithm was originally proposed (Baum and Eagon 1(67) as an iterative procedure for
constrained maximization of homogeneous polynomials with positive coefficients. It has
desirable numerical properties. including guaranteed local convergence with monotonic
function improvement.

The algorithm has been generalized to a larger class of functions (Uporace 1982)
and (Rabiner et aI. 198~). It has been applied to parameter estimation problems involving
polynomial likelihoods. Examples of this include estimation of linear learning models
(Proscha 1976), continuous key space approIimations in cryptanalysis (Andelman and
Reeds 1982). and in qUality control (Whiting 198~n. Statistically. Baum's algorithm is an
emmple of the E-M (eIpectation-maximization) method for maximum likelihood estimation
when sampling with incomplete information (Dempster et al. 1977). Numerically. it can be
regarded as a form of fiIed point iteration derivable from the necessary conditions for a
local eItremum (Whiting 198~).

Proof of convergence of the iterative method rests on the equivalence between the
set of critical points of the likelihood function and the fiIed points of the iteration. When
the iteration is derived from the zeros of the gradient of the likelihood function under the
parameter constraints. convergence to a local maximum will typically be linear (Whiting
and PickeU 1984).
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To improve this slow convergence rate, an eltention of the secant method, known as
Steffenson's method can be applied directJy to the iterates provided by the Baum algorithm.
This method typically elhibits superlinear convergence (Whiting 198:i)

The sUbsequent organization of the paper is as foUows: a description of Baum's
algorithm is given in Section 2. for the case of the POMC with discrete observations; the
relation between Baum's algorithm and the E-M method is shown in Section 3; the problem
of model order estimation is addressed in Section" where the properties of a criterion due
to Akaike (1974) are investigated; an elperiment involving the 'sensitivity' of this model
order estimation criterion is reported in Section :i; the results of an application of
malimum likelihood estimation and model order estimation to qUality monitoring in
manufacturing are discussed in Section 6.

2. IMPLEMENTATION OF MLE WITH BAUM'S ALGORITHM
Let IT • (1(0), I(J), .... ,X(T), yT • (YO), ... , yen} denote the state (unobserved) and

observation sequences from a POMC. respectively. Here XH) E Sx and yet) E Sy where
SI-(l .... , N) and Sy - (0, 1. ... , M-l) are discrete state and observation spaces. The process
state is not observed directJy: it serves to index the conditional distribution of the
observation process yet).

The stochastic process X(t) is an ergodic Markov chain, with N x N transition matrix
P·(Pij) and state transition probabilities:

where i. j E Sx

The initial state distribution vector p- (Pi), is the probability that X(t) • i, i E SI at some
arbitrary time taO.

Given the value of the process state X(t). the random variable yet) is independent of
aU other X(t'), y(t'), r ..t. The conditional distribution of yet) as a function of the
unobserved state I(t) is given by R-(rik) where:

rit. '!!! PrCYW - t. I ICt) - j) . for i E Sx. t. E Sy and al1 t.

The POMC is fully specified through the N(N • M • I) components of p, P. and R. Let

aE Adenote an N(N • M • I), vector formed from these elements. There are
N'· N(N • M -I )-1 independent parameters determined by the constraints

N
I Pi - I ·0
i-I

N
I Pij - I ·0
j-I

M-I

I rit. - I - 0
t.-o

i E Sx . (I)

Baum's algorithm is based on a state enumeration representation of the likelihood
function The likelihood, as a function of ~, is denoted U~;yT) - Pr{yT;~) State

enumeration yields U~; yT) • I Pr{XT, yT;~) where

XT

T
Pr{XT, yT; !U •PX(O) IT PX(t-1 )X(t) rX(tlY(t) .

t-I
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The polynomial form of L( !!; yT) is revealed by eIpressing the above in an alternative
fashion. Define the following:

T

U(XT, i. j) - 1: ~(t-l), i ~(t). j
t-l

T

V(XT. yT. k,j) - 2 ~Y(t). k ~(t), j
t-I

where i. JESX. kESy and Si.j is the Kronecker delta. Summation over iESX or kESy will be
denoted by ......

U is the count of the number oftransitions from state i to j appearing in XT, and V is
the number of times outcome k and state j occur together Note that U and V constitute
sufficient statistics for estimating !l in the case of a completely observed system. Equation
(2) can now be written:

N M-J N
Pr(XT. yT;[} - PX(O) n( n rjkV(X:- y~ It,j» n Pij U(X:i.j)

j-l k-o i-l

This is a polynomial of degree 2T + 1in the elements of!l.
Baum's algorithm may be derived using an aUIiUary function approach (Baum et

&I. 1970). A more direct derivation is obtained by constructing the necessary conditions for
a constrained eItremum (using (1) and (4», and deriving a HIed-point iteration from these
conditions. Using this approach, the necessary conditions evaluated at the 'current'

estimate~ yield:

1: Pr(XT. yT; ~} ~(O),j

XT

Pj -
Pr(yT; ~)

I Pr(XT. yT;~} U(XT. i,j)

XT

Pij - (:5)

I Pr(XT. yT; ~} U(XT. i..)

XT

I Pr(XT. yT;~) V(XT. yT. It,p

XT

rjIt -
I Pr(XT. yT;~} U(XT. e,j)

XT
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In a filed-point iteration. the left side of (:5) defines the n.U!. estimate. an.l. This
iteration is Baum's algorithm for the POMC. Evaluating the right side is accomplished
using the forward-backward algorithm. described in the following.

Baum and co-workers proposed a numerical procedure for evaluating successive
iterates of the algorithm given by (5). The so-called forward-backward algorithm «6) and
(7) below) involves processing of observations in both the order observed ("forward"
direction) and in reverse order ("backward" direction).

As originally proposed, the forward-backward algorithm reqUires both the
"forward" probabilities:

for i E SX;

and the "backward" probabilities:

~i(t) - Pr(Y(t.l).... ,y(nIX(t)-i ; ful}. for i E SX·

These are computed using the forward and backward recursions:

N
0j(t) - L 0i(t-l )Pij rjYhl . t-2 ..... T ; j E Sx

i-I
and (6)

N
~i(t) - L 0j(t.l )Pij rjY(t.l) . t-T-l, .... 1; i E Sx .

i-l
If the above are evaluated at the current iterate from Baum's algorithm. !in ' then the nelt
iterate is given by:

T-l
L 0i(t) Pij fjY(t) Pj(t.O

t-t
(7)

T-l
L 0i(t) ~i(t)

t-l

T
I 0j(t) Pj(t) aY(t), k .

t-l
i. jE Sx ; kE Sy,

T-l
L 0j(t) Pj<t)
t-l
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N
where pr(yT;!tn } ~ I Qi(t) (.L(~; yT)). Note that these expressions require storage of

i-I
the pos. i.e. an Nxl vector sequence of length T. As well. computation is delayed until all T
observations become available. Implementation of Baum's algorithm with the forward­
backward algorithm requires on the order of TN2 and TN2M flops for the parameters of P
and R. respectively.

l RELATION TO THE E-MALGORITHM
The approach suggested by Baum and co-workers for the parameter estimation

problem can be considered as a special case of the E-M algorithm applied to a doubly
stochastic process. To show this relationship it is assumed. as before. that the observed data

yT are a realization from Sy and the corresponding X I: Sx are observed only indirectly

through Y. The process is completely specified by the parameter!! .
Each iteration of the E-M algorithm involves two steps. the expectation (E) step and

the maximization (M) step. After k iterations of the algorithm. the E-step estimates the
current value of the sufficient statistic 1(x) as:

til: =E(t(X) I yT, !!t)

given the current value of the parameter !!to This is followed by the M-step in which a

new value !!t~ lis obtained as a solution to:

E(HI) l.!it) = tt.

Further iterations of this two step procedure yields increasingly better estimates of!t.
for the partially observed Markov chain. sufficient statistics are counts of the

frequency of occurrence of state-to-state transitions; as weU as state and observation joint
occurrences. These correspond directly to the sufficient statistics occurring with a fuHy
observed Markov chain (BiHingsley 1961).

Application of the E-M algorithm to the POMC first involves using the forward and
backward recursions (6) to obtain the eJ:pected value of the sufficient statistics (the E-step)
from the process (X(t). y(t)}. t I: 1.... T. This requires the determination of the foUowing
values:
ai - likelihood of the observation sequence yT given that the initial state is state i.

a - likelihood of the observation sequence yT.
bij - expected number of transitions from state i to state j. given yT.

bi - eJ:pected number of transitions out of state i. given yT.

cill: - expected number of occurrences of the outcome k while in state j. given yT

Cj - expected number of occurrences of state j. given yT
New estimates of Pi. Pij. rill: are obtained as foUows (the M-step):

Pi • a/a. P·· - b··/b,I' I' I' r'lI: - c'lI:/c,I I J.

These estimates have been shown by Baum et al. (970) to increase the value of the
likelihood function over the value achieved in the preVious iteration. furthermore these
investigators have shown that repeated iterations wiH converge to a local muimum of the
likelihood function.
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4. MODEL ORDER ESTIMATION
The POMC model offers a flexible, dynamic representation of discrete state processes

which are observed in the presence of noise. In practice, it is important to ascertain
whether or not the basic model structure can be recovered from observation sequences.
The most fundamental parameter of a POMC model in this regard is the dimension of the
unobserved process state. Model order estimation criteria have been proposed which
attempt to identify the number of independent model parameters, which is equivalent to
the dimension of the process state in the absence of other restrictions.

Let kj denote the model order (number of independent model parameters) of a POMC
process with state dimension j. The value of kj is given by: kj • j (j-O + j (M-O, where the
first term represents the number of independent parameters in the transition matrix P,
and the second is the number required to specify the output distribution, Le. the number of
parameters in R. Missing from this expression is the number of parameters in the initial
state distribution, which is not considered because of the assumption of stationarity which
is made when examining consistency of estimation criteria.

The model order criterion investigated here is known as Akaike's information
criterion, or AIC (Akaike 197.f). The criterion can be simply stated: choose the model j
which minimizes:

AIC (kj). -2 log Pr (YT;~) + 2kj

L\..
where kj is the number of independent parameters (defined above), and ~ is the maximum
likelihood estimate of the kj model parameters. Note that calculation of AIC over a range of

model orders, j, requires calculation of the MLE t for each value of j. In practice, this
represents a significant effort since it requires numerical optimization, e.g. using Baum's
algorithm.

The AIC criterion has been shown not to be a consistent estimator of model order in
many different settings (e.g. Katz (1981». As outlined briefly below, the AIC criterion is
also not consistent when applied to the POMC model. However, it has been demonstrated
with observations from a simulated POMC process, that AIC performs better than other,
consistent criteria for moderate length samples (Whiting 198~H.

To show that AIC is not consistent. convergence of the likelihood ratio may be
employed. This convergence is established in Baum and Petrie (1966), extending similar
results for fully observed Markov chains, reported in Billingsley 09(1).

The criterion AIC(kj) would be consistent if. in the large sample limit. its minimum
value occurs for j-q. where q is the 'true' model order. Equivalently, the following must
hold for i) q and j (q (Wax and Kailath 198~):

Consider the case j >q, so that kj >kq. The above can be wrilten:

(8)
where:

X(yT, .kj' .kq) - 2 ( max log Pr(yT;!V - max log PdyT; ~})

!l r Akj !l r Ak'f,

and A~j' At,.are the sets of model parameters ([l having kj and kq independent elements,
respeclJvely.
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The latter term in equation (S) has an asymptotic X211:' _ kq,distribution in the large
sample limit. This is a statement of a result given in Baum ~d Petrie (1966). This result
was established under the assumption that the models in the sets At· and AII:'!. possess an
ergodic property. This property can be shown to hold when the uno~servedMarkov chain
I(t) is ergodic and the matriI R contains no zero elements.

As a consequence of this asymptotic convergence. the right-hand side of equation
(S) is negative with non-zero probability. i.e. with the probability that X211:' _ II: > 2(krkq).
in the large sample limit. The AIC criterion therefore has a non-zer; pro\ability of
overestimating the true model order. so it is not a consistent criterion.

A number of criteria have been proposed which are similar to AIC. eICept for a
weighting factor applied to the number of parameters that is an increasing function of T.
Simulation evidence indicates that the tradeoff involved in using a consistent criterion is
reduced sensitivity in the case of moderate sample lengths. In Section 6. a demonstration
of the application of MLE to model identification from a sample of production data is
provided. with AIC used in the estimation of model order.

~. Ale SENSITIVITY EXPERIMENT
Some evidence of the "sensitivity" of the AIC criterion for moderate length samples

is provided by means of the following simulation study. Three 'true' models were simUlated.
with model orders 1. 2 and 3. The sample data length was ~OOO samples. with the output
distributions restricted to two values (i.e. binary observation. Y<t> • °or I). Muimum
likelihood estimates for models of order 1. 2 and 3 were obtained for each of the three 'true'
models (model order I represents a single constant state. for which the MLE is the mean of
the observations). The AICwas calculated for the nine resulting combinations. The entire
eIperiment was replicated twice. and the results are summarized in Table 1.

TABLE 1: Model Order Estimation Using AIC

True Order of Estimated Model AICwith
Model Order Replication Order 1 Order 2 Order 3 true model

Order 1 1 ~ 13,S.3 1363.3 13~H
2 ~ 1409.3 1414.3 1407.0

Order 2 1 1431.2 1426.6 1431.4 1428.'
2 14'0.3 1444.2 1448.1 144'.3

Order 3 1 148'.7 1473.2 1476.9 1478.S
2 1481.1 1467.9 14nJ 1474.0

Note: a) Values tabulated are 1/2 AIC.
b) Underlined item indicates model order selected by AIC.
c) Run length· '000 samples (binary observations).
d) Last column shows value of AIC with true model parameters.

The table indicates that model order estimation for moderate length samples is
questionable. The order I and 2 models were correctly identified. but the order 3 model was
mistakenly identified as order 2. This behaviour is not surprising in view of the sample
size; the full information MLE (i.e. with the model states observed) showed significant
errors. The "sensitivity" of the AIC is evident from the table. In the case of true model
order 3. the AIC value for estimated order 3 was smaller than for order 1. i.e. although an
error was made. the true model order was clearly the second choice in both replications.
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6. MODEL IDENTIFICATION: AN APPLICATION
To illustrate the flexibility of the POMC model, and the use of MLE and the AlC model

o..de.. estimation criterion on "real" data, the following application is described.
Observations we..e obtained f..om an incandescent lamp manufacturing p..ocess,

which can be chlU"8.cte..ized as a high speed (..oughly 3000 units pe.. hour) transfe.. line.
Two seplU"8.te points were monitored in this line, with binary observations indicating
acceptable 0.. defective subassemblies. Results of the analysis of th..ee sePlU"8.te one hou..
samples at each of the two monitoring points are ..eported here.

POMC models of o..de.. 1. 2 and 3 we..e estimated f..om each sample seplU"8.tely. Seve.raJ
starting values for P and R we..e considered to ensu..e a global muimum of the likelihood
was found. using a variation of the Baum algorithm discussed earlie...

The results of the application of the AIC criterion, and machine performance
statistics (p..opo..tion of acceptable items fo.. each model state; and. du.ration of each state as
obtained from the estimated transition matrix) are repo..ted in Table 2. Geneta11y, the
model of o..de.. 1 (co....esponding to a constant state. 0.. "statistical control") was not
indicated. The exception was the first sample from monitor 1. where the AIC was
app"olimately equal fo.. the o..de.. 1 and 2 cases. Note that the model of o..de.. 2 identified
from this sample shows the second state as transient (state two was the indicated state in
the initial distribution).

TABLE 2: Model Identification Results

Monito..
Number

Sample
Length

Observed Mean
Performance

Model
O..der (AIC)

Pe..fo..mance Level
By State

2 3

Mean Duration
By State

2 3

U50 .91 2 .91 .81
or 1 .91

26~0 .90 2 .91 0

2600 .81 3 .98 .83

2 2400 .89 2 .92 .83

2~0 .90 3 1. .91
01' 2 .~ .87

26~0 .88 2 .93 .82

.'58

.87

0" 111..
~OO ~

19 12'5 12

333 167

37 12'5 '500
167 333

12~ 111

Note: a) The first sample for monitor 1and second for monitor 2 showed two AIC values
which were approximately equal.

b) "Performance" implies proportion of good items p..oduced in each state.

c) "Duration" is in units of machine cycles (items produced).

Several gene.raJ conclusions can be made regarding this study: (1) significantly
different performance levels can be discerned from production dl&ta. using the POMC model;
(2) temporary shifts in perfo..mance, representing both deterioration and improvement in
product quality, are clearly evident, indicwng the dynamic structure of the POMC model is
of definite value in quality monitoring; (3) the structure of the Ma..kov chain estimated
from production dl&ta. offers some insight into the nature of the "assignable causes'
influencing performance (e.g. transient or recu..rent, magnitude and duration of effect on
product quality).
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The use of a POMC model. and the muimum likelihood approach to model
identification, can provide a fleJ:ible and sensitive measure of changing production states.
but a source of eltra information (such as more intensive sampling when degradation is
indicated, or direct operator surveiJJance) is required to infer the cause of such change.
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Richard Pincus, Berolin (GDR)
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During a drug trial some blood constituents like erythro­
cytes, leukocytes, glucose etc. are measured in k groups of
individuals which have been treated with different dosages
D1 <D L < ... <D~ say. Denoting the group sizes by n

i
i=l, ... ,k, we can write the observations

Here yU stands for the p-dimensional vector of observed
constituents of the j-th individuum in the i-th group. Inter­
preting the Yij 's as realizations of random variables with
distribution ~ , i=l, ... ,k, we are interested in testing the

against the

Alternative: F~ < P
t

< ... < PIt or

(1)

(2 )

i.e. homogeneity against trend (or ordered) alternatives.
Here (2) means that for each of the p components separately

there exists a stochastic (increasing or decreasing) ordering.
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If the number
additionally we
with

of observed components reduces to
assume the y.. to be normally

'J

one, and
distributed

and

E y ..
'J

Cov y __
1.1

I.J. ­
I I

,
ry- ,i=1, ... ,k

then the hypothesis becomes

and the alternative

r.<: ("flo <: ••• <: f11t or' ft.:> f'1l :> ••• :> /'1\1 (4 )

Abelson and Tukey (1963) considered the class of statistics

( 5)

or its square, respectively, the so called linear contrasts,
and showed the existence of an optimal choice of c 1 , ..• ,c~

which maximizes the minimum power among all tests, based on
linear" contr"asts. The Yi. , y.. and s ar"e def ined by

Yi.

Y••

""1:. y .•
~ I~

=2:22.
d

In.
•

Y" In
'J

, n=n
1

+ ... +n
lt

,

s =1: l2 (y .. -yo )2. I(n-k).
i j '~ ,.

Schaafsma
c'~;, namely

(1966) gave an explicite expression for the optimal

111
C i = [ -d i

tIl.
(d --d. )

It I

1/1.
+d·

1-1
,i=1, •.. ,k, (6 )

wher"e di =n 1 ~" .. +ni ' do =0.
Actually Schaafsma used a test statistic equivalent to

n·
I



or its square, respectively,
Somewhere Moat Powerful Teat.
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which gives a Most Stringent

Now we drop the normality assumptions and denote by rij the
rank of Yij among all n observations. Consequently we denote

r· j • =: L:~ r'i~ In i
and

1" •• = (n+1) 12.

i=.'1, ... ,k,

The rank analogon of the statistics (7) is given by

( 8)

(Note that the denominator is a constant).

If thl~ sample size n tends to infinity, n ... 00, and
ni In .. li >0, i=1, ... ,k, then the linear' rank st.cltistics
(8) tends to a normal distribution. More exactly

E· c· n' ( r· -r-•. )
I • . ,. - N(O,u.

11 z.
(E·n·

1. 1/2. 1/2.
n c· ) «n+1)/12)

I I ,

This can be seen by writing (8) as a permutation statistic

I:; L.J C i (r;~ --r-.. ), see Pw-i and Sen <1971>, ch. 3.4.

Considering local alternatives

, b. i >0, i =2 , ... , k , (9 )

then the rio are asymptotically normally distributed and the
choice of (6) has an interpretation as minimax solution among
linear rank permutation statistics.

For non local alternatives such a justification is not
available, a more natural choice of the weights ci would be
then

ci =i , i=1, ... ,k. ( 10)
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For normally distributed multivariate observations y" with
'~

E Yii r- ..
and

Cov y 'if. , it. >0, i='l, ... , k ; j = 1 , ••• ,n.
I

one can construct linear combinations a'Y~ say. Forming
with these new univariate variables the linear contrast (5)

gives

a' E i c i n i (y i. -y.. ) I (a ' Sa )

where

( 111

Vi·

Y..

S

=~, y., In·
• '~ I

=E.I:. Yi' In ,
I l 1

= .... )', (y .. --V' ) (y., -'Y
I
', )' I (n-k)

~.-~ I~ ,. '.1

Hothorn and Pincus (1987) chose the linear combination a so,
that (11) becomes as large as possible, i.e.they considered
the statistic

2.
T "'ma>:

a

a (1:. c '
I I

n', (y;. -y.. » (.t: i c i n i

a,' S a

(Y;. --Y.. » a

Under the hypothesis of homogeneity of the k groups,*T
Z

I (E; c~ n; ) has an Fp...._~_pt1 -distribution. The same

idea might be applied to Schaafsma's statistic (7) as well.
This gives

a'(l:'c.n.(y. _'y )l(E·con.(y. -y »'a, , , 'oo •• , , • ,_ ...

being B
I"-pl} l., {'J l.

z
B =ma>:

a a ' (~ I:, (yo> -y
"-i & '~ ..

up to a constant 2:.ct
, n'

" I

) (y;~ -Y.. ) ')a

, ( 12)

-distributed.
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Let now denote by r·.~·

'.\
component of y~ among all

111 tp)vector· (r-j, , ••. ,r-.,.. .~

r-ow·-vectlJr-s
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1='1, ••• ,p, the

n I-th components,
The rn:p-matr·ix

r-ank of the I-th

and by r-.~ tile

formed by the n

111
(r- ..."

lp)
-(n+1)/2, ••. ,r- ..

'~
-(n+1)/2), i=l, •.. ,k, j=l, •.• ,n;

will be denoted by R. Finally we wr-ite c for- the n-vector-
( C In f/l. I 11l 11-' ill ) ••

1 1 , ••• ,c. n. , ... ,e" "
The r-ank ver-sion of (12) with Yj. and Y.. r-eplaeed by

and~. r-espectively, can be wr-itten as

r:
I'

e . R (R •Rt' R ' e . ( 13)

Applying the techniqL\e of F'ur-i and Sen <1971>, ch. 5.1, for·

multivar-iate per-mutation tests one can easily show, that if

the n; tend to infinity, the limit distr-ibution of (13),

nor-malized by .....,.e~ n' is a Chi-Squar-e distr-ibution with p
~" ,

degr-ees of fr-eedom under- the hypothesis. Especially for- e; =i,

i=l, ••• ,k this limit distr-ibution hlJlds for-

(~ c. n. (r-. -r- ». (~')'_.(r-.. -r-. ) (r-oO --r- ). )-. (!:.c. n· (r: -r:. » Ii! il. n·
6-e, I • .... L....... '.).. '~.. t' , ,. :'
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DATA ANALYSIS IN THE FREQUENCY DOMAIN:
WIND- AND AIR-POllUTION INTERACTION IN VIENNA

Wolfgang POLASEK, Institute for Statistics,
University of Vienna. A-lOto WIEN Universitatsstr. 5.

SUMMARY

The paper describes the interaction of S02 and windspeed at 5 different sites in
Vienna for the year 1977. Amultivariate time-series model is estimated for
half-hourly data according to Akaikes's information criterion AIC. The estimates are
used to derive the relative-power- contributions in a multivariate spectral analysis
and to study the pollution interaction in the frequency domain. The interaction
pattern between wind and S02 is summarized in a path diagram.

I. INTRODUCTION

Monitoring air pollution data has become increasingly important in recent years
and many approaches for data analyses have been suggested. In order to study
interaction over time and space. a large data base and multivariate models are needed.
This paper uses a multivariate time-series framework and the so-called
relative-power-contribution (PC) analysis developed by Akaite (968) to describe
S~-pollution and wind in Vienna.

Whilst univariate analyses of pollution data have sometimes stimulated the
development of time-series techniques (e.g. Box and Tiao 1975). hardly any
multivariate studies have been carried out. This is partly due to the difficult nature of
pollution data (outliers. collinearity, and non-stationary influences) which mates
any multivariate study highly sensitive to slight changes in the data. In order to
model subtle interactions it is necessary to find a long and uninterrupted series of
observations on air pollution and weather on several sites simultaneously.
This study concentrates on S~ and wind interaction. since these variables only are
recorded at sites in Vienna which allows a spatial interaction analysis. There is little
choice of measurement sites: No distinction between roadside and
background-pollution measurement sites can be found. It is surprising that, in a
decade of increasing environmental interests. Vienna has no accurate and continous
measurements of air pollution data. Hence I hope that this study will stimulate
demand for a better air pollution data base in Vienna.

Section 2 describes the AIC estimation technique for vector autoregressive
processes and then presents the relative power contribution analysis. Section 3
contains the major empirical results of this study based on path diagrams which
summarizes the power contribution analysis. The final section lists some concluding
remarks.
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Z. MULTIVARIATE TIME-SERIES MODELS

In what follows we briefly ouUine two methods for analysing the dynamic
properties of a multivariate time-series model. First, we describe the so-called MAlCE
approach (minimum AIC estimate) for estimating a vector autoregressive (VAR)
process. which is part of the TlMSAC-78 programs of Akaike etal. (1979). These
estimates are the basis for power contribution (PC-) analysis. which can be viewed as
a special type of causality analysis in the frequency domain.

Aspecial class of multivariate time-series models. the vector AR models, are used
frequenUy in econometrics and the technical sciences. The multivariate extension of
the so-called Box-Jenkins (1970) method uses patterns within the autocorrelation
function and cross-correlation function for identifying the orders of the time-series
models (see e.g. Tiao and Tsay 1983). The development of information criteria (AIC,
DIC, etc.) has encouraged the "automatic" approach ofmodel selection.

The vector AR(p) model for the K-dimensional time series X(t) =( Xl (t), ... ,xK(t) )'

has the form

X(t) - A1X(t-l) - ... - ApX(t-p) = u(t) .

where the Ai'S are (K XK) parameter matrices, and u(t) is the multivariate

white-noise error term which is assumed to have the following moments:

E[u(t)I~O , Var[u(t)]. I, t -l,. ...T,

(Z.O

(Z.Z)

and I is positive definite. Also u(t) and u(s) are independent for S" t. Furthermore,
we assume that the process (Z.1) is stationary, which implies that the determinant of
vector polynomial is nonzero inside the unit circle:

(Z,3)

The estimation of the parameters Ai in (Z.l) and I in (Z.Z) and the order p by

the MAlCE procedure requires us to pre-specify to maximum lag length Pmax'
Calculating the AIC (Akaike's (1973) Information Criterion) statistics defined by

(2.'1)

the minimum AIC-estimate of the order p is determined by

AIC(p) =min [ AIC<O.....AIC(Pmax)] .

This method can be viewed as extension of the maximum likelihood procedure for
models with increasing numbers of parameters. The first term reflects the estimated
log-likelihood of the process, which is a decreasing function of the rsidual variance.
The second term in (z..1) is the so-called penalty function which is an increasing
function of the number of parameters. In the case of AIC it is twice the number of
parameters. The AIC overestimates the lag length p of the AR-process, whilst the DIC
which uses In(T) in the penalty term, and is defined by

(Z.6)

estimates p consistently. The reason for using AIC and not DIC is that DIC penalizes
the order of multivariate models more than AIC and therefore produces AR-models
with almost no interactions at all. In particular, Granger-type (1969) causality
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measures can be affected by this problem. since they compare residuaJ. variances of
univariate and multivariate models.

2.1 Relative Power Contribution Analysis

Relative power contribution analysis is based on the estimation of a multivariate
spectral matrix by a vector autoregressive process. We shall outline this approach
only briefly. Further details can be found in Aka.ike (1968). Avector AR(p) process
(2.1) whose order has been correctly determined by MAlCE is capable of representing
all the dynamics of a multivariate time series. Turning to the frequency domain. the
information for the spectral matril is contained in the vector AR-polynomial

A(s) .. lK - IP Am (s) . (2.7)
m=l

Aspectral analysis of the process (2.1). which requires the Fourier- transform of
the autocorrelation function. leads. after some algebra, to the following equation in
the frequency domain:

(2.8)

Here the *-superscript denotes conjugate transposed matrices, whilst A(f) is the
z-transform of the AR-polynomial (2.7). Also

A(f) .. IK - IP A (s)elp(i2wfm) . i .......- L 0 1 f 1 112 ; (2.9)
m=l

and this has to be of full rank for any frequency f. Details of cross-spectral
estimation can be found e.g. in Jenkins-Watts (1968). The spectral matrix PI (f) of the
process (2.1) is now given by inverting the matrices A(f) from the left and from the
right:

PI (f) =A -1 (f) IA* -1 (f). (2.10)

Since 1 is the diagonal covariance matril of a white noise process
(assumption 2.2), each univariate spectrum on the diagonal of the left-hand side is
given as a sum of "power contributions" (PC) from variable i to variable j at
frequency f. consisting of Kelements given by

PCI i->j J(f) .. Iaij (f) 12 s H . i,j .. l. ....K. (2.11)

'Where aij denotes the H.j )-th element of the inverse matril A at frequency f and sii

is the i-th diagonal element of 1. The relative PC's are defined as the power
contributions (2.12) divided by the estimated spectrum of variable i:

PC% [ i->j J(f) .. PCI i->j J(f) / Pi (f) . (2.12 )

The estimated spectrum of the i-th variable should be the sum over all po'Wer
contributions:

Pi(f) .. 1; PCIi->j)(f) . (2.13 )

It is convenient to plot all the relative PC's for one variable in one bOI as is done
in Figures 3.1 a-d. Note that the power contributions can be vie'Wed as special types of
causality measures in the frequency domain. Adiscussion on the relationship
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between this PC-approach and Geweke's (1982) feedback measures in the frequency
domain can be found in Kunitomo (1984),

3. INIERACfION ANALYSIS

The results of the relative PC-analyses of Viennese air pollution are summarized
in Figurs 3.1 to 3.:5 by path diagrams based on different sets of variables. Fig 3.1.f
describes the interaction of the S~-variablesat:5 different places (HW: Hohe Warte.
GG: Gerichtsgasse. St: St. Stephan. DT: Donauturm, and AP: Arthaberplatz) and
summarizes the influence pattern in the form of a path diagram. Dotted lines
represent "faint" influences and normal1ines represent "average" influences. The
magnitude of the influence corresponds to the area in a relative "PC-boI", We can
detect interactions between sites in the west of Vienna and unidirectional influences
from the west-central to the east.

Fig. 3.2 contains the S~-interactionanalysis for the same:5 places as in Fig. 3.1.f,
but only for hourly data (192 observations). The results of our analysis may have
been influenced by the length of the recording intervals. However the similarity of
the path diagrams leads us to suspect that such influences are minor.

Fig. 3.3 contains the results of the PC-analysis for windspeed variables. Since
windspeed and S~ are generally not recorded at the same sites. we have chosen the
closest available sites for this purpose. The path diagram shows dominant
interactions in the north-south direction along the Danube-valley,

Fig. 3.'4 is the joint lO-dimensional analysis between the:5 S~ variables and the :5
windspeed variables on an hourly basis (windspeed is recorded only hourly). The
path diagram shows influences of wind and S~ by differently marked arrows. Fig.
3.:5 contains the same analysis, but only for 3 sites (St, Stephan and Gerichtsgasse are
left out). The results of the 3-site and the :5-site analysis seems to be reasonably
comparable, However. the spatial interaction is much richer for the :5-site analysis.
while the wind/S~ interaction between HW and DT seems to dominate the 3-site
analysis. Increasing the sites (and hence the dimensions) does not seem to be a way
of validating lower dimensional findings. Interaction profiles tend to be richer with
more dimensions. To what degrees these are artefacts created by multicollinearities
or nonstationarities. is difficult to check with the present data. Cautious
interpretation is advisable. since simple 2-dimensional models for the sites
Gerichtsgassse/Strebersdorf does not indicate any interaction. However. the previous
IO-dimensional analysis gave a faint indication of such influen ces.

The same phenomenon can be found for a 2-dimensional analysis between S~
and windspeed at the site St. Stephan. The"curse of dimensionality" seems to be at
work also in a frequency domain data analysis. It is too soon to pass judgement on the
usefulness of this approach. and further applications and simulations are needed to
eIplore its applicability to pollution data.

4. CONCLUSIONS

As a major result, we see that high dimensional models eIhibit more interactions
between wind- and S~ -variables than low dimensional ones. This is true for purely
S~ and wind models as well as for miIed models. Path diagrams help to summarize
the results of the power contribution analysis.

The frequency-based nploration shows that most interactions between variables
take place at low frequencies, without any regular cyclical influences. This contrasts
a similar analysis in Tokyo (see Polasek and Kishino 1984), where al2 hour cycle had
been observed because of the dominant daily land-sea wind cycle, Influence
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directions in Vienna are generally from the west to the east. or from the north-west
to the south-east This corresponds also with the dominating wind direction during
the ~ winter-days of the observation period.

As a general result we find that a multivariate time-series analysis associated
with a PC analysis is a useful tool to uncover the dynamic and spatial interaction of
air pollution variables. The results are not always convincing because time-series
estimates are generally very sensitive to any nonstalionary disturbances which can
be frequenUy found in air pollution data. Nevertheless. useful information can be
provided by a frequency based path analysis. particular in addition to descriptive or
exploratory studies which are usually carried out in the time domain.
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COMPARING CLASSICAL STATISTICAL CONTEXTS FOR GROUP MEMBERSHIP DISCUSSIONS

Willem Schaafsma
Department of Mathematics RUG. P.O.Box 800. Groningen. The Netherlands

1. INTRODUCTION

When consulted by a patient. the medical doctor will discuss the
patient's group membership on the basis of his vector z e ~p of signs and
symptoms. Suppose that k mutually exclusive categories C(l) •...• C(k) are
of interest. e.g. k unordered diagnostic categories, or k ordered
prognostic categories referring to remaining life length (degrees of
malignancy). As there are many situations where a categorical diagnosis,
prognosis. or gradation is doubtful. the medical doctor might prefer
probabilistic terminology. The subjectivists have paid considerable
attention to (1) the elicitation of personal probabilities. and (2) the
performance of persons or systems generating such probabilities. The main
reason for the use of subjective probabilities is that the form of much
information is not suitable for a classical statistical approach while the
model underlying such an approach is almost always questionable.

Though we accept the arguments in the preceding sentence. we do not
accept subjectivism as the panacea. Instead of eliciting subjective
opinions. we will try to elicit the underlying statistical information. If
this is technically impossible. e.g. because an interpretation of
literature is involved. then an elicited opinion may sometimes be replaced
by equivalent artificial data. This is the basis of the procedures for
incorpora ting expert opinions. implemented in the POSCON program to be
discussed.

The present paper starts from the assumption. usual in discriminant
analysis and pattern recognition. that the statistical data consist of :
(1) the vector z of scores for the patient under investigation, (2)
similar complete vectors of scores ~l""'~n(h) ~ ~p for an independent

random sample of nth) = ~ elements from category Ch(h=l •... ,k). (The

forthcoming POSCON book will consider some other forms as well, e.g.
special forms of expert opinion.)

As indicated above, we adhere to the relative frequency definition of
probability. Given the vector of scores z. the patient may be compared
with other patients having approximately the same vector of scores. The
probability that this patient if from C

h
is a mathematical idealization of

the relative frequency of category h in a reference population of
hypothetical patients, with score vectors suitably chosen around z. This
loose formulation shows that further specifications are needed
if a mathematical definition is required of the vector
p(z) = (Pl(Z) •...•Pk(Z»T of the patient's "true" probabilities. Note that

the meaning of p(z) depends on the context chosen and on the patient's
vector of scores z, rather than on the patient itself: the actual group
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membership of the patient is not determined by a probability vector but by
a categorical statement.

As both the definition and the estimation of the vector p(z) of the
patient's probabilities depend on the mathematical context. the following
questions appear: which is the most appropriate context. how many and
which variables should be included in the analysis. etc. This is a
sophisticated form of the problem of the reference class (Reichenbach.
1949) .

In practice choosing the context is necessary if one wants to use one
of the available programs for estimating p(z). especially because some of
these programs have many options for model specification. As the estimates
depend on the context chosen. one will have to compare the performances of
the underlying models. This comparison will have to be based on the data
at hand. Le. (x.z). The definition of adequate concepts of
performance.however. may involve theoretical constructs like the
'actual'performance to be observed if. for fixed background information x.
the model is used for making probability statements for many future
individuals. This is where literature about subjective probability is
useful (Section 2).

After having discussed some scoring functions. we shall show that
life would be perfect if all population parameters were known (Section 3).
We have already remarked that in practice we will have to rely on the data
(x.z) at hand. The POSCON project is one of the attempts to develop
adequate classical statistical methodology and corresponding computer
programs (Section 4). The output of the POSCON program involves standard
errors for the probability estimates. These standard errors can be used to
discuss the performance of the POSCON context chosen. This enables the
user to make a deliberate choice of context (Section 5). The paper
provides a framework for discussing the effect of data reduction (Section
6) •

2. BIAS AND ACCURACY OF PROBABILITY STATEMENTS

Suppose that a person or system has generated assessments rl •...• r m•

on the basis of the vectors of scores zl •...• zm of a large number (m) of

individuals whose group membership labels hI'" ..• h are known to the
k m

researcher. Of course r i e Sk = {p e ~ ; Pi ~ 0; EiPi = I}. the unit

simplex in k-dimensional space; h. e {l •...• k}, and z. e ~P(i=l •...• m).
1 1

Calibration. If one considers the individuals (1) with r ih > .90. say.

then (each of these individuals having an estimated Ch-membership

probability of no less than 90%) the relative frequency

#{i ; r ih > .90. hi = h}/#{i ; r ih > .90}

should not be (much) smaller than .90. Otherwise •overconfidence' is
displayed by the assessor.
Accuracy. Let c : {I •.... k} ---7 Sk be defined by c(h) j = c5h • j = 1(0) if

h = (>') j. Note that one would like to have r i close to c i = c (hi)' This

suggests to use the Brier (1950) score
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to characterize the over-all lack of agreement between the true group
membership c

i
and the probability assessment r i (i=1 •...• n).

If the k categories display a certain ordering, e. g. because they
correspond to the division of remaining life length into k successive
intervals. then a slightly different scoring rule is indicated (Epstein.
1969) .

For further reading. e. g. about other concepts of performance. we
refer to Savage (1971). Sta~l von Holstein - Murphy (1978), the series of
papers by Habbema et al. (1978. 1981), and Kahneman et al. (1984).

3. THE PERFORMANCE OF THE VECTOR P OF THE PATIENT'S TRUE PROBABILITIES

If the ma thema tical context would completely and correctly specify
the joint distribution of H. or 1= c(H). and Z, then one would not be
troubled by statistical uncertainties, errors due to misspecifications,
etc. Thus, let us assume that the individuals to be considered are taken
at random from some very large population for which all relative
frequencies of interest are known. Let (H.Z) or (I,Z) describe category
number and vector of scores for such an individual.

The population analogue of the Brier score,

is minimal if the function r : IRP
---7 Sk is chosen such that the outcome

r(z) of R r(Z) is equal to the vector

p(z) E(c(H)IZ=z) = E(Ilz=z)

of the patient's true probabilities

Ph(z) = E(IhIZ=Z) = P(H=hIZ=z)

(h=1 ..... k). This result displays that the Brier scoring function is
proper in the sense that it encourages the assessor to use his actual
opinion about the patient's probabilities. (In a decision-making context
there are many situations where the scientific process of making inductive
and predictive inferences can be corrupted. see Section 4.) The Epstein
scoring function mentioned in Section 2 is also proper. In fact Sta~l von
Holstein - Murphy (1978) shows that any quadratic scoring function is
proper. In our notation the argument is as follows. Let Q be any
positive-definite (symmetric) matrix and consider the minimization of

E(R_I)TQ(R_I) = E(r(Z) - C(H»TQ(r(Z) - c(H»

as a function of the procedure r. To show that r = P is optimal. let P
(capital rho) denote the vector p(Z) of true posterior probabilities for a
random patient and note that the form to be minimized is equal to

E(r(Z) - P + P - C(H»TQ(r(Z) - P + P - c(H» =

= E(r ( Z) - P) TQ(r ( Z) _ P) + E(P _ c (H» T (P - c (H) )

because

E(r(Z) - p)TQ(p _ c(H» = E(r(Z) _ p)TE(p - c(H)IZ) = o.
As Q is positive-definite. the minimum is obtained by taking r(Z) = P.

Note that lack op calibration will not appear if one uses P = p(z)
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for making probability assessments. In fact, calibration is also perfect
if r(z) is chosen by conditioning with respect to any other statistic
y = feZ). The underlying argument is as follows. Using the notation
Pf = E(Ily), observe that, obviously,

E(IIPf E A) = E(PfIPf E A)

for any A c Sk' This formula implies that calibration is perfect for

r(Z) = P
f

.

4. CLASSICAL STATISTICAL GROUP MEMBERSHIP DISCUSSIONS

Medical experts using their
display considerable lack of
reliability. Weather forecasters
their forecasts are evaluated
Kahneman et al., 1984).

We are interested in probabilistic reasoning as the basis of clinical
decision making. How should the patient be informed before he is asked to
consent to tryout a certain treatment? What is the information content of
the physician knowledge? Such questions require adequate discussion. The

Background Information
Training Samples (x)

Patient's Vector of
Scores (z)

Specification Decision
Structure (Gains or Losses)

Statistical Model
{Pe ; e E e}

Inductive Inferences
(about e)

Predictive Inferences
(r(x,z), s(x,z))

Fig. 1 Decision, Action

structure of such scientific discussions is outlined in Fig. 1.
Note that actual clinical decision making in an ongoing process where

data are collected depending on previous experiences, therapies are
replaced by other ones, etc. Nevertheless, at certain crucial nodes, a
discussion of the simple form presented in Fig. 1 is indicated.

The approach we follow belongs to classical mathematical statistics,
the heritage form Fisher, Neyman, Wald, a.o. The background information x,
the patient's true category number h. and its vector of scores Z are
regarded as outcomes of random variables X. H, and Z. Let P denote the
'true' joint distribution of (X,H,Z). This would be well-defined if the
over-all population C = VhCh and its partitioning into subclasses were

specified. In practice, population definitions are somewhat hypothetical.
The sampling assumptions behind the specification of P are also often
questionable. We shall always assume, however, that X and (H,Z) are
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the

are
that

in

made
(H,Z)

start from
a E 8} of

realistic

shall
{ p •

a '
the assumption is
such that X and

stochastically independent. This assumption is
discriminant-analysis situations we have in mind.

As the precise form of P is unknown in practice, we
some statistical model. This means that a class

probability distributions is defined and
P E {Pa ; a E 8}. Of course, any Pa is

stochastically independent. In some situations we will discuss what
happens if the assumption P E {Pa ; a E 8} is not satisfied. Such

robustness investigations are needed because models will always stretch
reality to some extent.

Though inductive inference and decision making are interesting (see
Fig. 1), we focus on the making of predictive inferences. As P is unknown,
the patient's vector p(z) of true probabilities is unknown. If we assume
P E {Pa ; a E 8} then there is some value of a which is the true one. We

are interested in the corresponding vector

Pa(z) = Ea(Ilz=z)

of probabilities. The background information x can be used
a (inductive inference) and Pa(z) (predictive inference).

the estimator which assigns the estimate rz(x) = r(x,z) to

information x. It is natural to study the bias

for estimating
Let r denote

z
the background

and the covariance matrix

E (r (X) - E r (X))(r (X) - E r (X»T,a z a z z a z

the diagonal elements (variances) in particular. The sum of these diagonal
elements (the trace of the covariance matrix) will be denoted by va(z). It

will play some part later on. In practice the bias will be of order

n- 1while the standard deviations of the estimates are of order n-~. These
standard deviations, the square roots of the diagonal elements of the
covariance matrix of rz(X), can be expressed in mathematical form

involving the unknown parameter a. Thus it is natural to estimate these

standard deviations. Let s (x) = s(x,z) E IRk denote the resulting vector
z + 2

of so-called standard errors. Note that Ils(x,z)11 is an estimate of Va(z).

The POSCON project (A.W. Ambergen, O.J.W.F. Kardaun, W. Schaafsma,
D.M. Van Der Sluis, a.o.) is about the problems discussed in this section.
Mathematical expressions for the covariance matrices were derived in
Schaafsma (1976) (k=2), Ambergen Schaafsma (1983,1985) (k>2), etc.
Similar results were developed by Rigby (1982), Critchley - Ford (1985),
etc. Early programs were written by Ambergen and applied to discuss group
membership of the Border Cave skull (Ambergen - Schaafsma, 1983'). After
consulting with various colleagues from the medical profession, the POSCON
program was written by Van Der Sluis. POSCON provides probability
estimates r(x,z) and corresponding standard errors s(x,z) on the basis of
data (x,z) and model {Pa ; a E 8}. Many options have been made available

to the user. The most important feature of the program is that the user is
allowed to partition the vector of variables into a number of subvectors
which subsequently are regarded as independent, conditionally given
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group membership. For each subvector a variety of options is available.
The choice of model {Pa ; a e e}, possibly after a reduction of the

data, will have an effect upon the output r(x,z) ,s(x,z) of the program.
The present paper attempts to give an adequate discussion of the choice of
context.

Other features of the POSCON project are that expert opinions can be
incorporated, variables can be discrete or continuous, covariance matrices
can be equal or unequal, etc. A companion of POSCON is the program CONCERN
by Kardaun (1986). The contexts implemented in POSCON are derived from
discriminant analysis, those implemented in CONCERN belong to survival
analysis (Cox's proportional hazards model). Programs like GLIM can also
be used to generate probability estimates rex, z) equipped with standard
errors s(x,z). The contexts implemented in this program belong to
(logistic) regression analysis.

5. THE PERFORMANCE OF A CLASSICAL STATISTICAL GROUP MEMBERSHIP DISCUSSION

If a large sample of future individuals with known group membership
would be available, then one can study the actual performance of the

classical statistical probability vector generating system r x : ~p -7 Sk'

for fixed background information x. The methods of Section 2 are
applicable. Working along these lines, the theoretical pharmacists Hemel
and Van Der Voet, and the mathematical statistician Tolboom found some
lack of calibration of POSCON models in situations with small sample sizes
~ ~ 10 and large dimensionality p ~ 15. The standard errors presented by

POSCON seemed unreliable if the corresponding estimates were close to 0 or
1. Note that the same thing happens if a probability is estimated by means
of a rela tive frequency. If the rela tive frequency is 0 or 1 then the
plug-in estimate of the standard deviation is 0 and this is not
trustworthy.

Lack of calibration in the sense of overconfidence can be explained
as follows. If one would use the true vector Pa : ~p -7 Sk for generating

probability vectors then calibration would be perfect (Section 3). The
estimates rx(z) are scattered around the true values Pa(z). If we replace

an extreme event, e.g. ~ = {z : (Pa(z) \ > .90} by its sample-analogue,

e.g. Bh = {z ; rh(x,z) > .90}, then points with (Pa(z»h > .90 disappear

and points (from Bh ) with (Pa(z»h < ,90 are included. This shows why

strict unbiasedness of the estimators rz(X) can go together with lack of

calibration and systematic overconfidence: sampling phenomena add to the
tails of the relevant distributions,

Though much more experience is needed. we are confident that the
classical statistical approach will perform well provided that one aims at
low complexity and large sample sizes. An attempt to develop adequate
theory is as follows.

In practice the data (x,z) is all we have. The probability vector
r (x, z) depends on the classical statistical context chosen: one has to
specify the variables to be incorporated, the model {Pa ; a e e}, and the

form of the estimator r of P (z). If a large test set were available thenz a
we would compute the Brier score (see Section 2). Note that this would be
done for fixed background information x. The Brier score is an unbiased
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estimate of the actual inaccuracy

E~rx(Z) - I~2 - E(~R - I~2IX - x).

a concept which is similar to the actual error rate (see Lachenbruch
(1975). Mc Lachlan (1975). etc.) and the actual discriminatory value (see
Schaafsma (1976. 1984). Khatri et al. (1987). etc.). The construction of a
prediction interval [~(x).d(x)l for this actual inaccuracy is a very

relevant subject. Note that the procedure [~.dl would have to satisfy

E P( (d(X) :s E(~R - I1121X) :s d(X» I X) - 1 - ex.

2It is easier to focus on the over-all inaccuracy EIIR - III . This
quantity can be estimated almost unbiasedly by applying the
leaving-one-out method. This holds in particular if the sample sizes
n1 •··· .nk are related to the prior probabilities Pl ••.. 'P

k
in the sense

that they constitute the outcome of a multinomial M(n; P1•...• Pk )

distribution. If the relation is different then some precautions should be
made.

From a theoretical point of view the following population analogue of
Murphy's partition of the Brier score is of interest. We have

because

E«R-P)T(p_I)lz=z) = E«r(X.z) - p(Z»T(p(z)_I)IZ=z) = 0

as X and I = c(H) are independent conditionally given Z = z. while
E«p(z)-I)IZ=z) = O. Moreover. as p = E(I) = EE(IIZ) - Ep(Z) = EP, we have

T 2
E«P-p) (p-I)IZ) = -E(llp-pll IZ)

(see Kahneman et al. (1984) p. 309).

The term EIIR_PI1 2 can nicely be studied by conditioning with respect
to Z. We can always write

2 2
E~r(X.z) - p(z)~ = trace Var (r(X,z» + ~Er(X.z) - p(Z)~

while for the special case P E {Pa ; a E 8} we have

2 2
Ea~r(X,z) - p(z)~ = Va(z) + ~ba(z)~

(see Section 4). If a parametric
asymptotically efficient estimators

of order n- 1 just like b (z). Hence
a

Ea~R - Pa~2 = Eava(Z) + 0(n-
1

)

POSCON model is used, then the usual
r (X) of p (z) are such that v (z) is

z 2 a -2 a
~ba(z)~ is of order n . Thus we have

where mathematical expressions for va can be obtained from the theory

underlying the POSCON program while numerical values can be read from the
2

output. If P = Pa then Ea~Pa - p~ can also be evaluated. These results

are of some interest for theoretical work. The comparison of two models.
however. is not very interesting if P E {Pa ; a E 8} has to be assumed for

both models: the smaller the model the better, provided that it is
correct. From a practical point of view it is interesting to compare
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models without assuming that they are correct. The leaving-one-out method

for estimating EIIR - If gives a clue.

6. THE EFFECT OF A DATA REDUCTION

Starting from an original context with model {Pa ; a E e}. we

consider the effect of a data reduction f : ~p -7 ~q. the intuitive
background being that estimation errors will become smaller while accuracy

may get lost. The induced model {P~ ; a E e} will usually be such that a

is no longer identifiable. Suppose that reparametrization leads to the
fmodel {Q ; ~ E ~}. Of course P = Q for some ~ = a E~. If the original

~ a ~

model is suitable for POSCON evaluations then the reduced model is not
necessarily of this form. Much depends on the model and the specification
of f. If f is linear then normality and equality of covariance matrices

is preserved. the independence of X(l) and X(2) is not invalidated. etc.
To be practical. we assume that both models admit numerical evaluation by
the computer resulting in output of the form (r(x.z),s(x.z». Moreover we

assume that P E {Pa ; a E e} with as a consequence that pf
E {Q~ ; ~ E ~}.

Using Murphy's partition of the Brier score, we obtain

2 2 2 2 2
E~R - I~ -E~Rf - I~ = E~R - p~ - E~Rf - Pf~ - E~Pf - P~

because

where

The favourable effect of data reduction on estimation errors is
expressed by

EIIR - PI1
2

- EllRf - Pf112:::: Ea(va(Z» - E~(V~.f(Y»

where, of course. a and ~ = a belong to the true distribution P. Note that
the expressions in the r.h.s. can be estimated, either on the basis of
output of the POSCON program or from the underlying formulas. In practice

this favourable effect is of order n -lwhereas the unfavourable effect

Ellpf - PI1
2

is of order 1. An interesting application is as follows.

The problem of the reference class. We quote Reichenbach (1949): "If we
are asked to find the probability holding for an individual future event,
we must first incorporate the case in a suitable reference class. An
individual thing or event may be incorporated in many reference classes,
from which different probabilities will result. This ambiguity has been
called the problem of the reference class We then proceed by
considering the narrowest class for which reliable statistics can be
compiled" .

Accordingly, let Z be a discrete variable with m + 1 possible
outcomes or. equivalently. corresponding to a classification into one of
the subsets D •...• D of the over-all reference population. We shall focus

o m
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on the question whether the classes Do and D1 should be pooled. The

notations of Fig. 2 are self explaining. The effect of the transformation

D ... D N
ll

, .. , .N
km

) ~ M{n ; (911 ····,9km )}0 m
C1 n10

... n
1m n1+ m

9h+ = P
9

(H=h) = r. 0 9hj = PhJ=

e D.) k
Ck

9+ j = P9 (z = r h=1 9hjnkO
... n

km nk+ J

n+ O
" . n n Ph(j) = P9 (H=h\Z e D.) = 9h /9+ j+m J

Fig. 2

max(z,1) is that on the one handf {O, ... ,m) ~ {1, ... ,m} with f(z)

2 1 k 2
Ellp - Pfll = r j =Oe+}h=1{ehj /e+ j - (eho+9h1)/9+0 + 9+1)}

-1 k 2
9+ 0 9+ 1 (9+ 0 + 9+1 ) rh=l{Ph(O) - Ph (1)}

expresses what one looses by pooling Do and D
l

while on the other hand the

reduction of variance E v (Z) - E v f(Y)' expressing the gain, is
9 9 l/I l/I.

approximately equal to
1 k -1 -1 k

rj=oP(ZeDj)rh=l(ne+l ) Ph (j)(1-Ph (j)) - n rh=lPh(l-Ph )

-11k 2 k _2 -1 k_2
= n (l-rj=Orh=lPhj + rh=lPh ) ~ n (1-rh=lPh )

where Ph = (9ho+9hl)/(9+0+9+1)' Exact expressions can be obtained but are

lengthy.
Conclusion. It is advantageous to pool Do and Dl if and only if

-1 k _2 -1 k 2
n (l-rh=lPh ) > 9+09+1 (9+0+9+1 ) I:h=l{Ph(O) - Ph (1)} .
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directions in Vienna are generally from the west to the east. or from the north-west
to the south-east. This corresponds also with the dominating wind direction during
the :5 winter-days of the observation period.

As a general result we find that a multivariate time-series analysis associated
with a PC analysis is a useful tool to uncover the dynamic and spatial interaction of
air pollution variables. The results are not always convincing because time-series
estimates are generally very sensitive to any nonstationary disturbances which can
be frequently found in air pollution data. Nevertheless. useful information can be
provided by a frequency based path analysis. particular in addition to descriptive or
exploratory studies which are usually carried out in the time domain.
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Fig. 3.1.e Site RRTHRBERPLRTZ (RP)
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