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PREFACE

The workshop on Model-Oriented Data Analysis was organized by the Interna-
tional Institute for Applied Systems Analysis and the Karl Weierstrass Institute for
Mathematics of the Academy of Sciences of the GDR.

The main topics were
. Optimal experimental design
. Regression analysis
. Model testing and applications.

Under the topic Optimal experimental design new optimality criteria based
on asymptotic properties of relevant statistics were discussed. The use of addi-
tional restrictions on the designs was also discussed, inadequate and nonlinear
models were considered and Bayesian approaches to the design problem in the non-
linear case were a focal point of the special session. It was emphasized that
experimental design is a field of much current interest.

During the sessions devoted to Regression analysis it became clear that
there is an essential progress in statistics for nonlinear models. Here, besides the
asymptotic behavior of several estimators the non-asymptotic properties of some
interesting statistics were discussed. The distribution of the maximum-likelihocod
(ML) estimator in normal models and alternative estimators to the least-squares or
ML estimators were discussed intensively.

Several approaches to resampling were considered in connection with linear,
nonlinear and semiparametric models. Some new results were reported concerning
simulated likelihoods which provide a powerful tool for statistics in several types
of models. The advantages and problems of bootstrapping, jackknifing and related
methods were considered in a number of papers.

Under the topic of Model testing and applications the papers covered a
broad spectrum of problems. Methods for the detection of outliers and the conse-
quences of transformations of data were discussed. Furthermore, robust regres-
sion methods, empirical Bayesian approaches and the stability of estimators were
considered, together with numerical problems in data analysis and the use of com-
puter packages.

From our point of view the topics in the workshop are of broad interest in sta-
tistical data analysis. Some of the papers have more a survey character, others
are directed to original results on special problems. We believe that these
proceedings will give stimulating hints for statisticians and data analysts both in
theoretical and in practical aspects.

We would like to thank the members of the Program Committee: 0. Bunke, GDR;
J. Dupaéova. Czechoslovakia; F. Pukelsheim, Federal Republic of Germany; and
H.P. Wynn, UK, for their constructive cooperation in the time before and during
the workshop. It is difficult to overestimate the contribution of the organizing
committee, led by Ms. E. Herbst, IIASA, and Dr. F. Avert, GDR, to the success of the
workshop.

July, 1987
V.V. Fedorov
H. Lauter
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AN APPROACH TO EXPERIMENTAL DESIGN FOR GENERALIZED L.INEAR MODELS

Kathryn Chatoner

School of Statistics
University Of Minnesota
St. Paul MN 55108, US.A.

1. INTRODUCTION

A detailed discussion of a Bayesian approach to design for nonlinear problems is
given in Chaloner and Larntz (1986). In that paper a theory of Bayesian design for
concave criteria is discussed and then applied to a logistic regression model.  This
model is an example of a generalized linear model as defined by McCullagh and Nelder
(1983). Generalized linear models are a large class of modeis which include many
important special cases. In this paper we describe how this approach to design can be
implemented in any generalized linear model and look at a logistic regression example.

In linear design problems the Bayesian approach is similar to the non-Bayesian
approach (see e.g. Fedorov 1981, Pilz 1983, or Chaloner 1984). In problems other than
linear problems, however, the Bayesian approach can yield very different designs.

2. GENERALIZED LINEAR MODELS

In a generalized linear model independent measurements, YooYy are taken. The

distribution of the y's depends on unknown parameters. The density of an observation y
{s of the following form:

plyix,t) = exp{[ a(y) X - b(A) )/ c(v) + dAly. 1)} (1)

for some X and T and for some functions a, b, ¢ and d. !f T is known the distribution
Is in the exponential family and has natural parameter X. If T is unknown this
distribution is generally not a member of the exponential family.

The first two moments of a(y) are:

E@W Xt = p = () and  Var(a(y |aT) = b0 (), (2)

where primes denote differentiation with respect to A,
In a generalized linear model the mean of a(y). p, depends on k explanatory
variables, possibly including a constant term. The wvalues of the k explanatory

variables, for the ith observation, are denoted by Xj = (><“,><i2 ..... xik)T, We suppose
that the values of x can be chosen from a set X which is a compact subset of



k-dimensional Euclidean space. The distribution of y is related to these explanatory
variables through the link function g. This function is a monotone function of u and is
linear in x. For an observation y at x we have g(p) = X8

This class of models, described in McCullagh and Nelder (1983), includes many
frequentiy encountered models. Special cases include linear, logistic and probit
regression models. Linear models are given when y has a normal distribution and the
link function is the identity, that is g(p) = p. Logistic regression models are given
when y has a Binomial distribution, a(y) is the proportion of "successes™, p is the
probability of success and the 1ink function is g(p) = log(p/(1-p)).

3. YES| PT DESIGN

Suppose our interest is in the estimation of the set of parameters BT=(BI ..... Bk),

or functions of these parameters, and T is a nuisance parameter. We can choose n
values of the explanatory variable x at which to observe independent measurements
Yoo Y- Suppose that the values of X; must be chosen from some compact set X. To

choose the values of the design points we treat the problem as a decision problem and
choose the points to maximize our expected utility. Exact calculations are usuaily
difficult to implement so we use an asymptotic approximation to our expected utility
as our criterion to be optimized. The approximation is based on the approximate
normality of the posterior distribution, as described, for example, in Berger (1985)
page 224. We denote the full set of parameters as © = (B,'c)T. if the density for an
observation y; at x; is p(y;0.x;) then the (r,s) entry of the expected Fisher

information matrix is:

n
lrg(0X)..%) = - E & _§2  iog ply;i0.x;) . (3)
i=1 56,60

The expectation is over the sampling distribution of y given ©.

In design problems a common approach is to solve the approximate design problem
of choosing a probability measure on X rather than n particutar points. Such an
optimai design measure can be rounded systematically to give n design points. Under
the approach of thinking of a design as a measure m on X, the expression (3) can be
written as:

lg@n)=- Enf §2 tog p(y:6.x) Mldx) . (4)
80r805

The posterior distribution of @ is approximately normal with variance covariance
matrix 1(6,1)" L.



Note also that if the model is linear in the natural parameters XA, and the scale
parameter T is known, then the expected Fisher information matrix is also the actual
value of the second derivative of the log likelihood. Both linear and logistic
regression models correspond to this “canonical™ link function.

3.1 The information matrix for a generalized linear model

The information matrix for a generalized linear model has a special form because
of the form of the density (1), If the scale parameter v is known then 6 = § and the
(r.s) entry of the k by k information matrix for a design taking observations at
Xpoeeoes X is given by:

n
S (var(aly) |, 2 v)7h du? %o (5)
i=1 dw

where w = g(p). This expression is derived, for example, in McCullagh and Nelder
1983, page 33. The structure was also used in Zacks (1977) without the scale
parameter . Note that the dependence on T is only through a multiplicative factor
from the variance of a(y).

If the scale parameter v is unknown then the information matrix 1(6,m) is (k+i)
by (k+1) with entries corresponding to differentiation with respect to t. The expected
information matrix matrix is block diagonal, with the off diagonal entries for
differentiation with respect to Bi and T being zero. The inverse information matrix is

therefore also block diagonal. The approximate posterior variance of $ is given by the
inverse of the k by k matrix with entries given by (5). This matrix just depends on T
through a multiplicative factor. We denote this matrix as IB(e.n), and its inverse as

18(9,11)'1, irrespective of whether T is known or unknown.
we further simplify (5) by defining

wix8) = O (ax'8) N7 gu 2 (8)
dw

Then for a design measure, 7, using expressions (2) and (6) we can write
1g0.1) = (™! [ wix8) T niaw . ©)
3.2 Criteria for design

we will use two criteria for design which correspond to two different utility
functions. The first criterion is to choose a measure 1 on X that maximizes



9,(n) = E log det ig(e.7). (8)

The expectation is over the prior distribution on & The measure T is to be chosen
from the set H, the set of all probability measures on X. This criterion corresponds
to D-optimality in linear problems.

The second criterion is that of minimizing the approximate expected posterior
variance of the specific parameters of interest and corresponds to A-optimality in
linear problems. The design measure is chosen to maximize

9(m) = - EtrB() 1y, (9)

The matrix B($) is a square symmetric matrix of weights representing what functions
of B are to be estimated. 1f linear combinations of § are of interest B(B) is a matrix
of known weights. If nonlinear functions of B are of interest then B(B) depends on B,
We call this criterion ¢,-optimality and it corresponds to A-optimality in linear

problems. This criterion requires that the quantities to be estimated or predicted are
precisely specified and possibly weighted. We express this criterion as maximizing
the negative of the variance so that both ¢, and ¢, are criteria to be maximized.

Other criteria could also be used. Tsutakawa (1972,1980), Lauter (1972,1974),
Dubov (1977), Zacks (1977), Cook and Nachtsheim (1982) and Pronzato and Wwalter
(1985) use these and related criteria.

3.3 The theory of Bayesian design

The theory used in Chaloner and Larntz (1986) is for criteria which are concave on
H, the set of probability measures on X. In that paper we did not specifically consider
nuisance parameters, such as , but their presence presents no additional difficulties,

If, for each 6, the function log det 1g(6.n) and the function -trB(B)Ia(e,n)'l are
concave functions on H, the set of probability measures on X, then the functions ¢, and
§, are therefore also concave functions on H if the expectations exist and § is well

defined. As we assume that X is compact there must exist a probability measure in H
that maximizes the criterion function.

The concavity of the criterion function over H enables the equivalence theorem of
Whittle (1973) to be applied assuming certain regularity conditions are satisfied.
Using this theorem a design is optimal if and only if its directional derivative in the
direction of all single point designs is everywhere nonpositive. 1f a design is optimal
then the roots of this derivative function are the support points of the optimal design
measure.

One advantage of having a concave criterion is that to verify a particular design is
optimal we need only examine the derivative function in the direction of one point
designs and show that it is nonpositive over X.



3.4 Design for generalized |inear models

For a generalized linear model the information matrix is given by (7). Thus, if the
values of B were known the design problem would be equivalent to a linear problem. If
the approach were taken of designing to be optimal for a best guess of the unknown
parameters (as In Silvey, 1980, Chapter 6, or, Chernoff, 1953) we could apply the
methods of tinear design. If the parameters are unknown and have a prior distribution
both §,(n) and ¥,(n) are concave over H.

we may note that if our prior distribution is such that $ and t are independent
then we may replace the factor that depends on t by its expected value. Thus if we
have this prior independence we may ignore the fact that t is unknown in considering
optimal design. We may, therefore, take c(t) as identically equal to one in the
subsequent discussion.
Because the information matrix takes the particular structure in (7) the
directional derivatives for a design 7 in the direction x take a similar form for any
generalized linear model. For \pl-optimalitg the directional derivative for a design n

in the direction x is

A= E wxd) £ 18 -k (10)

Where the expectation is over the prior distribution on § and k is the dimension of x.
For §,-optimality with a weight matrix B(8) the directional derivative for a design n

in the direction x is
ANy = E wixd) tre(d) 18.n) ' 18,1+ P,(n). (11)

The expectation is again over the prior distribution on 8.

9. XAMP

A logistic regression model corresponds to a binomial sampling distribution for y

and a logit link function. Specifically for n; observations taken at X, the single

explanatory variable, the response Yi is binomial with n; trials and probabitity of

success, aly;) = y;/n;, and p = p(x;,8). There is no unknown scale parameter and 8 =

(30.81)T. The mean of a(y;) is related to x by
9(p) = log( p(x;.8) / ( 1-p(x;.8) ) = B, + 8,x; .
For a design m the information matrix, 1(8,m), Is

108.1) = [ p(x.8) (1-p(x.8)) x| M(dx)



where xT = (l,xi)‘

In Chaloner and Larntz several examples of design for the logistic regression model
are given for a variety of criteria and prior distributions. We take just one prior
distribution here and describe the design in detail. We also compare the design to that
using a design which is optimal for a best guess of the parameter values.

The prior distribution is specified in terms of the slope ‘Bl and the ratio ¥ =

Bo/Bl' This ratio, ¥, is the value of x at which the probabllity, p(¥,8), is one half.
we take Bl and ¥ to be independent and both have a uniform distribution over an
interval. Specifically, 8, is uniform on [6,8] and ¥ is uniform on [-1.1]. Numerical

methods of finding designs for particular criteria are given in Chaloner and Larntz.
The criterion and derivatives must be evaluated using numerical integration and the
designs found using numerical optimization methods.

4.1 ¢ -ootimality

For npl-optimalitg a design on seven points was found in Chaloner and Larntz The
design is displayed graphically as a probability measure in Figure 1.

n{x)

FIGURE | The ¢ -optimal design, 7.

The design space was taken to be that where the explanatory variable x lay in the
interval [-1.2,1.2]. To verify that the design above is indeed close to optimal the
derivative function (11) can be examined. A plot of the derivative function is given in
Figure 2 and the derivative does indeed appear to be nonpositive everywhere. As the
derivative is nonpositive outside the interval [-1.2,1.2] the design cannot be improved
upon by enlarging the design space.

We examine this design further by comparing It to the tocally optimal design
which maximizes the determinant of the information matrix at the best guess of the
parameter values. A natura! choice of best guess is the prior mean of ¥ and ‘Bl' that

is 0 and 7 respectively. The locally optimal design is a two point design with half the
mass at .2205 and half at -.2203.



d(nl,X)

FIGURE 2 The derivative function for the design, m, shown in figure 1.

To compare the two designs we can look at a plot of the value of logdeti(8,n) for
the design measures. Figure 3 is a perspective plot of this surface for the &pl-optimal

design with seven support points and Figure 4 is the corresponding pilot for the locally
optimal two point design. The surface is plotted over the support of the prior
distribution as a function of ¥ and B, and is on the same scale in the two figures.

We see, not surprisingly, that the locally optimal design is better than the
|pl-optima| design at the prior mean of the parameters in the center of the region.

The locally optimal design is, however, extremely inefficient for values of ¥ far from
the prior mean of zero. The value of the function in Figure 3 ranges from -6.36 to
-3.81 and in Figure 4 from -14.9 to -2.99.

FIGURE 3 The value of logdet 1(8,n) for the ¢ -optimal design, 1.
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¥=0

FIGURE 4  The value of logdet I(8,m) for the locally optimal design, 1,.

To compare these designs numerically we can calculate the sample sizes required
to give the same efficiency under the ¢ -optimality criterion and the locally optimal

criterion.  The locally optimal design, m,, gives a criterion value ¢ (n,) = -6.951
compared to an optimal value of lpl(nl) = -4.578. For the locally optimal design 1o be
as efficient under the lpl-optimal criterion approximately 3.3 times as many
observations would be required. Conversely, at the prior mean for (‘o’,Bl) of (0,7) the
value of logdet 1(8,m;) Is -4.036 and logdet 1(B,m,) Is -2.993. So only 1.7 times as
many observations in the | design are required for m to be as efficient as Mo in

terms of local optimality.
Thus, the lpl—optimal design, ny. is quite efficient in terms of local optimatity

wheras the locally optimal design, Mo is very inefficient in terms of tpl-optimalitg.

we now very briefly give an example of a upz-optimal design for the same prior

distribution. For this criterion it is necessary to specify exactly what is to be
estimated. The example chosen here is that of estimating ¥. The @,-optimal design

found by Chaloner and Larntz is displayed in Figure 5 and has 6 support points.

The locally optimal design that maximizes -tr B(B) 1(3,11)'1 for the prior mean
of the unknown parameters puts all mass at the single design point x=¥ and is
therefore not of much practical use. A comparison with the locally D-optimal design,
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T,. as described in the section 4.1, is made as this design is sometimes recommended
as a useful all purpose design.

n(x)

-1.0 0.0 1.0

X

FIGURE 5 The §,-optimal design for estimating ¥, n3.

The locally D-optimal design, m,. gives a criterion value §,(n,) = -83.035
compared to an optimal value of §,(n3) = -.356. This striking contrast is due to the
gross inefficiency of m, for ¥ close to -1 or +1 and B close to 8. For the locally
optimal design to be as efficient under the (pz-optimal criterion approximately 235
times as many observations would be required.  Conversely, at the prior mean for
(3,8) of (0,7) the value of tr B(8) 1(8,n5) ™" is .326 and tr B(8) 1(B. )" is .141.
So only just over twice as many observations in the mx design are required for ns to
be as efficient as m, In terms of local optimality.
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MINIMUM BIAS ESTIMATION - DESIGNS AND DECISIONS

Norman R, Draper and Elizabeth R, Sanders
University of Wisconsin-Madison, U.S.A.

1, INTRODUCTION

Response surface analysis concerns the empirical investigation of an un-
known functional relationship, n = ”(X1'x2’°"’xk)’ between a response vari-

able n and k coded predictor variables 5' = (xl,xz,...,xk).

The function n is, typically, approximated over some region of interest
R by a low order polynomial

9{x) = x; 8, (1.1)
where the Py * 1 vector 3 contains terms needed to produce a polynomial of
degree dl; 91 is the corresponding Py X 1 vector of parameters to be esti-

mated. R is contained in an operability region 0, a region in the x-space

in which experimental runs can be performed. (It could happen that R = 0,
as is typically assumed when the criterion of D-optimality is involved.)

The standard approach is then to assume that Yu = x;ue1 + €u? where

u-=1,2,...,N denotes the observations available, where Yu is the observed

value of n at the conditions that give rise to the vector x and where

-iu?
€ = (el,ez,,..,eN)' ~ N(O,{oz), and then to estimate 61 by least squares,

If we define X1 as the N x Py matrix whose uth row is x;u and write
y = (yl,yz,...,yN)', then the least squares estimate of 8 is §1 =
(Xin)_IXiy, and the vector of fitted values is §(x) = x'él.

There are two sources of error in such a procedure: sampling error e
in observing y and bias error due to the difference between the approximat-
ing polynomial and the true function. We shall assume that n(x) is a poly-
nomial of degree d2

n(x) = xj8 + %% (1.2)
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where the p, x 1 vector x, contains the remaining terms needed for the full
2 2

polynomial of degree d2 and 92 is the corresponding Py X 1 vector of para-

meters, -1
Let w(&) be a weight function over 0, and @ ~ = fO w(x)dx. Define Wigs
Hip» and Wy, via
- ]
Hij =Q J, §i{jW(5)d5 (1.3)

where the integration is performed individually for each element of the
matrix. The !ij are the moment matrices of the weight function w(x) over

the operability region., The design criterion to be first considered is
that of minimizing J, the integrated mean square error, defined as

3= Ne Sy ELy(x) - n(x)1% w(x)dx/o?. (1.4)

This can be written as the sum of the integrated variance V, and the inte-
grated squared bias B, the latter arising from terms of order greater

than d; omitted from 9({):

J

NQ Sy VIF(x)Y w(x)dx/o? + N £y {EY(x) = n(x)}? w(x)dx/ o
=V + B, (1.5)

For details, see Box and Draper (1959, 1963).

In various investigations seeking tc minimize J in various experimental
circumstances, one fact always emerged, Unless 0 was restricted and not
much bigger than R, the bias contribution B played a much larger role (in
J) than did V, and so it was prudent in general circumstances to choose a
design slightly expanded from the all-bias design. The all-bias design was
the one that minimized the contribution B alone and it tended to "crouch"
somewhat within the region R and its points were not on the boundary.

This fact prompted Karson, Manson and Hader (1969) to suggest use of
minimum bias estimation, that is, to estimate bl' not by least squares, but

by minimizing B. If the bias that arose from terms of orders (d1+1),...,d2
were modest, running a full design of order d, could be a waste of re-
sources, By fitting a minimum bias order d1 model, one might be able to
protect against bias while using fewer runs than required by a higher order
design, and yet obtain a satisfactory fit. As shown by Karson, Manson and
Hader (1969), the minimum bias estimator is given by
- -1 A= uh

6 = (LIWyy "Wyp) 8 = W6, (1.6)

say, where 6 = ({'X)'lx'y is the vector of estimates obtained by fitting

model (1.2) by least squares where X = (XI'XZ) and X, is the matrix whose

uth row is xéu, the value of xé with the uth observation values substituted.
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The necessary and sufficient condition for obtaining a minimum bias esti-
mator is that

~ _1 _
E(8) = (LlHyy "Hpp) 8 = HE. (1.7
The minimum value of B is then
3 = ] =L -1 2

We see, from equation (1.6), that to get the minimum bias estimator of
order dl’ we need to combine least squares estimators of order f.dl with

those of orders (d1+1),...,d2. However, as pointed out by Karson, Manson

and Hader (1969), we do not need to be able to estimate individually all
the coefficients of order > dl' Among questions we might ask are:

1. What designs, as far as seems possible, provide only those combina-
tions of estimated coefficients that are needed, for the cases (d,,d,) =
1°72
(1,2) and (2,3).
2. For a given set of data, which method of estimation should we use?
(a) Least squares of order dl; (b) minimum bias of order dl; least squares
of order d2?

Aspects of minimum bias estimation that will not concern us here, will
be found in Cote, Manson and Hader (1973), Ellerton and Tsai (1978), Karson
(1970), Karson and Spruill (1975), Khuri and Cornell (1977), Liu and Karson
(1980), Ott and Cornell (1974), and Thompson (1973), For related work see
Evans and Manson (1978).

2. DESIGNS

The questions asked above can be tackled at various levels of gener-
ality. Here we discuss the case where R is spherical and of unit radius in
the coded space, and where W(x) = 1 over R and is otherwise zero; this im-
plies a uniform interest within R and none outside R. We summarize some of

the results given by Draper and Sanders (1987).

2.1. Case dy = 1, dy = 2.

First order designs are used to fit a k-dimensional hyperplane
y = eo + elxl + ... F ekxk + € to the response variable. Use of the mini-

mum bias hyperplane estimator minimizes the bias B arising from neglected

2 2
second order terms B gX] * eee F BpXp F BpoXXy F ol F ek,k-lxkxk-l.

The only non-zero region moments of orders < 4 are

n, =0 S xldx = (e2)”! and

3ug = 0 S aGdx = 30 £ xBibdx = 30ks2) (k)7 (2.1)
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Evaluation of (1,7) shows that 61m""’6km are all unbiased but that
E(eom) = 6t up I 8y (2.2)

where the summation is from i = 1,...,k. Note that only the sum of the
pure quadratic components occurs in (2.2) and not the individual eii's°

It is not necessary to fit the full second order model to the data to ob-
tain (1.6).

Consider a 2X factorial design (ta,*a,...,ta) or a 2X"P fractional
factorial design of resolution > 5, possibly replicated, with a total of ne

points, plus o center points. Let §1=5o) be the overall average response
and let ?} and ?b denote the average responses at the factorial points and

center points respectively. Then

E(Y) = 0, + (nal/N)ze, (2.3)

E(Vy,) = a’ze.,. (2.4)
Thus, if there are no center points, so thaty = ?} and ng = N, (2.2) is
satisfied by taking a2 = U, and éom = éo’ the least squares estimator,

This is a special case of the general fact pointed out by Karson, Manson
and Hader (1969, pp. 465, 466) that designs which satisfy the condition

(xpxp 7 X, = Wiy, (2.5)
always achieve a minimum for B using the least squares estimator. However,
we cannot estimate Esii separately in this case.

With Ny > 0 center points, we use

-

Bom = Y * BV Y,)s (2.6)
with
B = uy/a® - n/h. (2.7)

to achieve minimum bias. Note that we have spent our additional runs wise-
1y, obtaining an estimate of 2911 via (2.4). Moreover we see that the

minimum bias estimator sensibly combines y, a biased estimator of 90 with
Y+4§6, an estimator which provides information on how large that bias may

be. This is a recurring feature of the minimum bias estimator. By choice
of design we can, in general, decide how much detail in the bias we wish
to estimate.

Having achieved minimum B we can now (if n_ > 0) choose the values of a

o
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and no/n to minimize V which, for the present case, reduces to
_ .32 42
Vm =1+ kUZ/AZ + (Az Uz) /(¢4 A2) (2-8)
where Az amd ¢y are the second and fourth order design moments given by NAZ =

2 _ 4 : . . .
Zuxiu’ N¢4 = Zuxiu' The conclusions are that, if we restrict the design to

the unit sphere, and if we use one factorial replication, the best design
values of a and n, are as given below. A1l the non-central points lie on

the unit sphere R.

k =1 2 3 4 5 6 7 8
a =1 0,70 0,57 0,50 0,44 0,40 0,37 0,35
Ny = 2 2 2 3 2 4 3 5

2.2 Case dl = 2, d2 = 3,

Second order designs are used to fit a k-dimensional quadratic surface
to the response variable. Use of the minimum bias estimator would reduce

the bias B arising from neglected third order terms, Zieiiixg +

2 .
+ I.I. s s X3 X< -
I.I 226132x1x3x2. The only non-zero region moments of

L3250 35%%5 * Bl

order < 6 are those in (2.1) and

- 6, _ 2.4, _ 2.2.2
15ug = Q x1d§ =50 ] xixjd§ 15 9 | xixjx£d§
= 15{(k+2) (k+4) (k+6)} 1. (2.9)
Evaluation of (1,7) shows that 6om’ and all éijm are unbiased but that
E(85,) = 85 *+ (u4/u2){eiii + Zeijj}’ i=1,2,...,k, (2.10)

where the summation is from j = 1,...,k. Note that it is not necessary to
estimate individual third order 8's to get {1.6).
We assume use of a response surface design for which

qQ - =
Euxiu N¢q, for q 4, 6,
= Nxz, for q =2, (2.11)
and we write
P .a _
X% ju N¢pq (2.12)

for p=q=2and for p =4, q =2, A1l odd design moments up to and in-
cluding order six are assumed to be zero. It follows that, if the third
order model is true, the least squares estimators for the coefficients of a

second order model are unbiased except for éi for which
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-

E(ef) = 9 + (¢4/A )911 + (¢22/X2)29 (2.13)

ijj*
Now Tlet Ca4 be the contrast obtained by taking the {x?} column vector,

orthogonalizing it with respect to {x } to give a vector x;
computing the normalized form

iii Sa¥» and then

y/(x; ), (2.14)

€31 = 111 MiiXidi

(e.g., see Box and Draper, 1987, pp. 454-458, 472-474)., It can be shown
that Xiii = {x } - (¢4/A2){x1} and

by = Spdsn/ A
_ 42 4722 72
E(c3i) = ei.. +

. (2.15)
11 2 13
¢6 = ¢4/A2

For a standard composite design, this reduces to Eq. (13.8.14) of Box and
Draper (1987, p. 458).
Note that, if the design is rotatable, ¢4 = 3¢22 = 3k4, say, and if we

also choose u4/u2 = X4/k2, then (2.10) is satisfied by the least squares

estimator (2.13). Once again, this 1s the special case of designs that
satisfy (2.5). Otherwise, we set

-

8ip = 61 + Bey; (2.16)

where, to satisfy (2.10),

3U4 ¢4

X

o, - 36 Aybe = 62
_ % 22 2% = %

(2.17)

These equations provide a condition on the design moments and a value for
B. For example, for a complete factorial design, ne points at locations

(+a,*a,...,+a) plus star (+ae,0,...,0),..., (0,0,...,%aa) plus n, center

(o}

points, in k dimensions, (2.17) leads to the design condition (for a spher-
ical region)

bl 6242)/ (3uy0)

[«})
n

(o+2)/ ((k+8) o2} (2.18)

whereupon



(2.19)

This result was obtained by Manson in unpublished lecture notes via the

application of the condition N(X X) X X N. See Karson, Manson and
Hader (1969, p. 465).

If we wish to estimate eiii and 261Jj in (2.15) separately, additional
data points are needed., For example, we can add a second, non-replicated
set of axial points, as detailed by Draper and Sanders (1987); see that
paper also for other design suggestions.

3. DECISIONS ON MODELS

3.1. Lower order least squares versus lower order minimum bias

Whenever the integrated mean square error of the lower order (dl) mini-
mum bias estimator is less than that of the lower order (dl) least squares
estimator, the minimum bias estimator will be preferred to the least squares
estimator. This was discussed by Karson, Manson, and Hader (1969, pp. 468-
474) and generalized by Seheult (1978). We can write

\]L - Jm = tr{(glzg'z"‘ﬁ)(/i'(_)_)'!11(6-9)}. (3.1)

where Q Nl% 12, (X1X1) 1(X1X2), a, = @2/(0/VN) is the vector of
| ] "1 ' ‘1 N

standardized coefficients, and M = (X2 5" ZXI(XIXI) {1{2) . Thus if

(3.1) is positive, minimum bias estimation is preferred, while if it is

negative, least squares estimation is preferred.

3.2. Lower order minimum bias versus higher order least squares

For larger biases, fitting a lower order approximation of any kind to
the response surface is inadequate. When is ay large enough to require the

fitting of a higher order polynomial? We can argue that there is too much
bias present in either lower order fit when we would reject, at a specified
level of significance, a, the null hypothesis

Hot III =0 versus My 't # 0. (3.2)

where I'I = l‘QazuéQI. The estimator 7 = 1' Qu follows the multivariate

normal distribution with mean vector 1 Qu2 and variance-covariance matrix

1 QMQ* 102/N, see Searle (1982, p. 190). The variance o2

is estimated via

the residual mean square error cbtained from the analysis of variance table
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used in fitting the coefficients needed to estimate Qm. From this infor-
mation, the null distribution of T'T can be derived and used to test the

hypothesis in equation (3.2). In general, the decision rule will be to re-
ject the null hypothesis whenever

T2 IOIF(L v, e, (3.3)

t3>

where v is the degrees of freedom for the residual mean square error and
F(l1,v,a) is the upper o point of an F distribution with 1 and v degrees

of freedom. We would choose to graduate the response surface with the
higher order least squares estimation whenever equation (3.3) is satisfied.

3.3 General procedure

Combining the two results above suggests use of:

(a) Tower order least squares estimation if (3.1) < 0,

(b) lower order minimum bias estimation if (3.1) >™0 and {3.2)
is not rejected

{c) higher order least squares estimation if (3.2) is rejected.

3.4 Application to rotatable designs, spherical R

For the special case of rotatable designs of order d1 set in spherical
regions of interest, it turns out that Q = qlz and 5 = qzz, where q is a
function of the region moments, a, is a function of the design moments, and

Z is a matrix of constants specific to the order of the terms guarded

against. In the present case, T T =1 Za2 2Z 1 and C2 = 1'7ZM2'1. Mhen

~~~~~~ ~

ZMZ' consists of diagonal blocks, with each block associated only with a set
of correlated terms in %2 (such as, for example, the set &111, &122,...,
alkk)’ our rule becomes: Use

(a) lower order least squares estimation when £'£.§ Cz,

(b) Tower order minimum bias when t'% > ¢ and ' < ¢%F(1,v,a).

(¢) higher order least squares estimation when T'T > CZF(l,V,a).
Note that the assumption of rotatability does not imply that (2.5) is
satisfied.

For some example data to which this method has been applied for dl =2,

d2 = 3, see Derringer (1969, p. 8); the same data appear in an exercise in

Box and Draper (1987, p. 266, 7.28).



21

3.5 Comments

When the above test is applied, for example as in Section 3.4, some
practicalities become evident, For d1 =1, d, =2, for instance, the test

involves only one measure of curvature, b,

iqe Any decision made is correct

as far as that measure is concerned. However, it would be possible for,
say, b11 to be Targe and positive, and b22 to be large and negative, and

yet Zbii to be small. It would also be possible for one or more of the

b i # j, to be large. Thus the test for model type needs to be in-

ij*
telligently supplemented by other information on curvature, if any is
available. Usually, in first order designs, the interactions can be esti-
mated, either individually or in small groups. Often, information on in-
dividual bii is not readily available. However, typically, the bii are of

the same sign in practical cases; saddles tend to occur less frequently.
Similar difficulties could arise in a d1 = 2, d2 = 3 situation where

the test involves combinations like (3biii+z.b ). Supplementary informa-

J13J
tion on other combinations of third order coefficients might then be
sought. See, for example, Box, Hunter and Hunter (1978, p. 523).

In summary, it must be remembered that the test recommended here ex-
amines only one facet of lack of fit, and must be used in conjunction with
other available lack of fit measures. The virtue of our suggested test
procedure, however, is that it enables consideration of minimum bias poly-
nomial estimators together with, and as alternatives to, the least squares
hierarchy of polynomial models,
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EXPERIMENTAL DESIGNS WITH RESTRICTED MEASURES

V. V. Fedorov
IIASA, A-2361 Laxenburg, Austria

1. INTRODUCTION

In this paper the numerical procedures of the "exchange” type for construc-~
tion of continuous optimal designs with restricted measures (see definitions in
Fedorov, 1986, Wynn, 1982) are mainly considered. The "exchange” type pro-
cedures are based on the simple heuristic idea: at every subsequent step to delete
"bad" (less informative) points and to include "good” (most informative) ones.

Before giving the mathematical formulation of the problem and to illuminate
the place of the results in experimental practice, let us start with two simple
hypothetical examples.

Ezample 1. Let X be an area where N observational stations have to be
located. An optimal (or at least, admissible) location depends upon models describ-
ing a system: "object under analysis — observational techniques’.

The regression models:
vy = nlzy, 9)+e; i =1.N &)

are commonly used in experimental practice. Here y; is a result of an observation
of the i —th station, n(z,?) is an a priori given function, ¥ is a vector of parame-
ters to be estimated and &; is an error which one believes to be random (more
detailed specification will be given later). The optimal location of stations has to
provide the minimum of some measure of deviation of estimates 1 from true values
of 4.

For sufficiently large N the location of stations can be approximately
described by some distribution function é(dz) and one needs to find an optimal
£ (dz). If X is not uniform, then one comes to the restriction that the share
N(AX)/ N of stations in any given part AX cannot exceed some prescribed level. In
terms of distribution functions, it means that

£(dz)=¥(dz), )

where ¥ is defined by an experimenter. Here is the crucial feature of the problem
considered in this paper.

Ezample 2. Let some characteristic y; be observed for members of a sample
of size N. Every i-th member of this sample can be chosen from a group labelled
by variables z;. If the sampling is randomized, then the observed characteristic
v, can be described by some distribution f(y /z; . 9).

In many cases, after some manipulations, the initial model can be reduced to
(1), where n(z;,¥) is an average characteristic of an i —th group and ¢; reflects a
variation within this group. The size of any group (or number of units available
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for sampling) is normally bounded. When applied to a continuous version of the
design problem one can easily repeat the considerations of the previous example
and come to model (1), (2).

In what follows, it will be assumed that in model (1), (2):

- a response function is a linear function of unknown parameters, i.e.
n(z.9)=¥'f (z), 9€R™ and functions f (z) are given;

— errors g; are uncorrelated and E'[ef]:l (or E'[ef]=>\(zi) , where A(z) is
known, this case can be easily transformed to the previous one).

As usual, some objective function ¢ defined on the space of m xm information
matrices

M&=f r@ri tdz)
X
will describe the quality (or accuracy) of a design ¢ (M "l(é) as a normalized
variance—covariance matrix of the least square estimators of parameters 1.

The purpose of optimum design of experiments is to find

€'=ing’ oM (e)) . [ ¢azx)=1, (3)
X

tdz)s¥(dz) , [ ¥(dz)=Q=1 4)
X

Constraint (4) defines the peculiarity of the design problem with respect to
standard approaches. Similar to the moment spaces theory (compare with Krein
and Nudelman, 1973 Ch. VII), a solution of (3) and (4) will be called "(® , ¥)—optimal
design”. In practice, ¥(dx ) restricts the number of observations in a given space
element dr (see the examples).

Optimization problem (1) and (2) were considered by Wynn, 1982 and Gaivoron-
sky, 1985. To some extent, they translated a number of classical results from
moment spaces theory to experimental design language. Gaivoronsky also analyzed
the convergence of the iterative procedure for optimal design construction based
on the traditional idea of steepest descent (see, for instance, Ermakov (ed), 1983,
Wu and Wynn, 1976)

£sr1=(1—ag)és +dszs | ®
£ =Ar'gmgn<b[(1—as VM (())+a M(8)],

where £ has to satisfy (4) and some additional linear constraints:

[ a(@)¢dz)sC . (6)
X
Wynn briefly discussed a number of heuristic numerical procedures based on some
results from the moment spaces theory.

General properties of optimal designs are discussed in Section 2. Section 3
deals with the formulation and basic analysis of the iterative procedure and its
modifications. In Section 4, the possibility of applying similar procedures to the
standard design problem is considered, while in Section 5 a comparatively simple
numerical example is presented.
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2. CHARACTERIZATION OF (¢ , ¥)—OPTIMAL DESIGNS

In this section, the properties of optimal designs will be discussed only to the
extent sufficient for the analysis of the proposed iterative procedures. More
details can be found in Wynn, 1982.

The set of assumptions used later is the following:
a) X is compact , Xer!;

b) f(z)ER™ are continuous functions in X ;
c) ¥(z) is atomless;

d) there exists ¢ <o such that
Z () = [E£O[M(H] sc <= te2(PV)] = ¢,
where Z(¥) is the set of designs satisfying (4);

e) ®(M) is a convex function of M ;

f) S[(A~aM(£) + aM (£)1 =8 [M(¢)D] + a [ ¢ (z.£&) & (dz)+o(a)
X

51 152 € Ec (\P) C <o H

¢’) ¥(z) has a continuous density y¥(z) ;

f’) derivatives g; = ¢ exist and are bounded for all designs satisfying (d).

Let E(\P) to be a set of measures £ which either coincide with ¥ or equal to 0.

Th.eorem 1. If assumptions (a) — (e) hold, then there existis an optimal
design f €= (V).

Proof. The existence of an optimal design follows from (d)—(e) and the com-
pactness of the set of information matrices. The compactness of the latter is pro-
vided by (a) and (b). The fact that at least one optimal design has to belong =(¥) is
the corollary of Liapounov's Theorem on the range of a vector measure (see, for
instance, Karlin and Studden, 1966, Ch. VIII, Wynn, 1982).

Note 1. Liapounov's Theorem leads to another result which can be useful in
applications: for any design £ there is a design £€"‘(~P) such that M (§¢) —M(t)

A function ¢(z,£) Is said to separate sets X; and X, if there is a constant C
such that ¢(z.£)<C (a.e.¥) on X; and ¢(z,£)2C(a.e. ¥) on X, , (a.e. ¥) means
"almost everywhere with respect to the measure ¥".

Theorem 2. [.f assumptions (a)-() hold, then a necessary and sufficient
cqndition .th.a.t ¢ GE.(?) is (8, ¥)—optimal is that ¢(z,t ) separates two sets:
X =suppf and X\X .

This theorem was first formulated by Wynn, 1982. In Fedorov, 1986, a more
accurate proof was given which is more illuminative for the formulation and
analysis of the numerical procedures.

If instead of (c¢), one uses (¢’), then a necessary and sufficient condition can
be formulated in the form of the following inequality:

max ¢ (z.¢') € min ¢ (z,t) )
4 exnx’

reX T
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If (f) is complemented by (f'), then
¢ @) =7(z.&) —tr &(&) M) ,
where 8(z,£) = FALED) ¢ (¢) r(x), and (7) can be converted to

max 7 (z,£) < min  7(z.£) (8)
reX reX\X

3. NUMERICAL PROCEDURE OF EXCHANGE TYPE

Theorem 2 gives a hint on how to construct optimal designs numerically: if for
some given design ¢ one can find a couple of sets:

Dcsupp éand ECX \ supp ¢,
[ ez, &) ¥(dz)> [ o(z.&) ¥(dz) , (9)
D E

[ ¥(dz)= [ ¥ (dx)
D E

then it is hoped that the design E with
supp &€ = supp £\ DUE

will be "better” than ¢£. The repetitions of this procedure can lead to an optimal
design.

A number of algorithms based on this idea can be easily invented. In this
paper one of the simplest algorithms is considered in detail and it is evident that
thorough consideration of others from this cluster is routine technique.

In what follows, the fulfillment of (c¢’) is assumed.

Algorithm. Let

lim 6, =0, lim ), & =coand lim 3, 62 =k <e. (10)

S oo s oo s=1 S oo s
Step a. There is a design §; €§(\P). Two sets Dy and E; with equal measures:

[ ¥v@)dz = [ ¥y(x)dz = &
D, E,

and including, correspondingly, points:

E Argxm&):‘ 6 (x,¢;) and z,, = Argxng?& d(z.¢;) . (11)

where X, . =supp £; and X, =X\ X, ., have to be found.

Step b. The design £ 4 with the supporting set
supp €54y = Xysa1)y = X35 \Dg UE; (12)

is constructed.
Iterative procedure (10)—(12) is based on the approximation (4 -0):

S o(x.8) v(z)dzx RN p(x$) 6, Z<Q , [ ¥ (x)dz =6,
Q Q
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The analysis of the iterative procedure becomes simpler if
(g) for any design £€E(\P):
M & = ¢ >0 .
This assumption is not very restrictive. If, for instance, ¥(z)=q >0 and the

functions f(x) are linearly independent on any open finite measure subset of X,
then (g) is valid.

For most optimality criteria, (g) leads to the fulfillment of the following ine-
qualities:

ae e
<K =2 <k e
B T, <K o,

1<a ,B,8,6<M,

= K3<0o, (13)

for any € E(‘I’). Otherwise (17) is supposed to be included in (g).

Theorem 3. If assumptions (a) (b), (c'), (e)~(g) hold, then [£3] converges
weakly:

lim @ [M(£)) = ins $ M) = ¢’ (14)
Proof. The approach is standard for optimization theory (in the statistical

literature see, for instance, Wu and Wynn, 1978). Therefore, some elementary con-
siderations will be omitted.

Expanding (see (g) and (17)) by a Taylor series in §, gives:

OIM (€5 ,1)] = SIM(§)] + O, [7( 5. 8) — ¥z 15.8)] + 82K (15)
where |Kg| =X, =Ky K,K;K3). Due to this inequality and (10) the sequence
S = i? K 6821 converges. By definition:

YEos€s) —245.45) =0,
and therefore the sequence:
Sis =2 O [ 7z p5.€5) — 7(xy5.€5)]

monotonically decreases.
From (g) and (15):

K, = ¢[M(fz.g.]_)] = ¢[M(fo)] +S5)g +S5,5 = 0*
leads to the boundness of S, .

Subsequently, the monotonicity of [Sls { provides its convergence and the con-
vergence of {®[M (£,)]]. Assume that

lim & [M(¢)]=¢l2¢* +a,a>0. (16)
§ —»m

Then, from Theorem 2 and assumptions (b), (c¢’) it follows that
Y(Zos.€5) — 7(xy5.65) S b <0
and
lim S, b lim T4, = ~=, a7

§ —o § —wg

lim 8[M(£)] s —oo.

§ —»o
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The contradiction between (16) and (17) proves the theorem.

Note 1. In (10)-(12), there is some uncertainty in the choice of D, and E.
Somehow they have to be located around z,; and z,,. When ¥(x) = const (and one
arrives at this case by the transformation dz =y(z)dz), then z,, and z,; could be
the "geometrical” centers of D and E.

Note 2. The iterative procedure can be more effective (especially in the first
steps) if there is a possibility to easily find

D, = Arg max f Wz, &) Y(x)dz

sEXl, D:
and
E. = Arg E:nei)?b Ef, 2z, &)Y (x)dz (18)
subject to
Df Y(z)dz = [ Y(z)dz =5 . (19)
3 EJ

Note 3. When & is sufficiently small and
J 2@ T @w@)dz 8 f (@) (x50,
D

J 2 @) @) W(=)dz 81 (@500 T(z5) 0
E

then the calculations can be simplified if one uses the following recursion formula
(see, for instance, Fedorov, 1972):

oM LrrT

M-l
1d:6fTM_1f)

M7 = aF
=(FM e TYym 1 + 089 .

The modified version of the algorithms, presented in Note 2, gives a hint for
the construction of

Algorithm 2.
Step a. The same as (18) but instead of (19)

S v@)dz = [ Y(@)dz (20)
D,
s E,

(no constraints on the sizes of D and E!).

Step b. Coincides with step b of algorithm 1.

This algorithm seems to be rather promising for changing the structure of an
initial design §, rapidly, but allows some oscillation regimes, at least principally.

The author failed to prove its convergence. Probably some combination of both
considered algorithms (for instance, the majorization of (20) by some vanishing
sequence &) could be useful.

It must be noted that the sequences {4.] defined by (10), for instance,
{6, = (s +m) 1] give the slow convergence of {®. ) where &, = ®[M(£;)] is close
enough to ¢[#M (¢')]. Empirically, it was found that if 6, is reduced when &_ ., = &
then the iterative procedure converges faster than for other choices of {4 .
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4. EXCHANGE ALGORITHM IN THE STANDARD DESIGN PROBLEM

The possibility of using the algorithms similar to (10)-(12) for design problem
(3) (without constraint (4)) was somehow overlooked in the design theory.

The simplest analogue can be formulated as follows:

Step a. There is a design £;. Two points

z,. = Arg max ¢{(z, and z,. = Arg min ¢(z, s 21)
1s gxd,¢( £) 2s gxextp( &) (

where X, = supp X have to be found.
Step b.

éS +1 = ‘Es - 65 é(xls) + 65 é(xzs) ] (22)

where é(z) is a design with one supporting point z.

The sequence {d¢} can be chosen as in (10). The convergence of the algorithm
can be proven similarly to Theorem 3.

It is worthwhile noting that the convergence of procedures (21), (22), in the
discrete case (when 65 =K /N, where X is integer and N is the total number of

observations) is questionable, because proof of Theorem 3 is essentially based on
the fact that 6; — 0.

S. EXAMPLE

Algorithm (14)-(16) becomes particularly simple when ¥(z) = const (using the
appropriate transformation of X’ axes, any problem with the continuous ¥(z) can
be transformed to this case and sets D¢ and Es are elements of some regular grid
G¢. Further simplification is possible when the dimension of X is small (say not
more than 3). Then the grid G, can be chosen rather dense at the very first step
and one can execute computations with § = ¥(x)A4, oy = 6, G; =Gy, where Ais a
volume of one element of G,

In Figures 1 and 2 and Tables 1 and 2, the results of the computation for D-
criterion and for the two dimensional polynomial model are presented. The form of

X is rather irregular and corresponds to some region where an observation net-
work has to be chosen to analyze the concentration of pollutants.
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DETERMINANT OF INITIAL IMFORHATION HATRIX
2.41918e-07

[NITIAL COVARIANCE HATRIX
5.245
-1.742 13.531
-17.323  22.317 113.980
0.278  3.593 5.047 6.23
-7.853  3.824 18.292 0.235 24.288
~0.222 10.042 19.410 9.84 7.370 53.942
Table 1. Initial design
characteristics

FIMAL COVARIANCE MATRIX
6.952
-0.062 4.070
=7.121 2,451 13.636
-0.226  1.080 1.165 2.694
-7.122 0.213  7.487  0.717 11.101
-3.294  5.213 10.859 1.140 5.544 25.150

VALUE OF THE DETERMIMANT
.62639e-05

Table 2. Final design
characteristics



NUISANCE PARAMETER EFFECTS IN BALANCED DESICNS

Johan Fellman
Swedish School of Economics and Business Administration, Helsinki, Finland

1. INTRODUCTION

In experimental design the 1inear model often contains extra parameters,
in which the experimenters are not interested. Usually the elimination of
these "nuisance" parameters reduces the precision of the estimators of the
main parameters. E.g., in block designs the parameters measuring the block
effects are nuisance parameters. Ehrenfeld (1955) studied the effect of the
nuisance parameters. He studied the design matrix and his main result was
that in a non-singular model the nuisance parameters are without effect if
and only if the columns corresponding to the nuisance parameters are or-
thogonal to the columns corresponding to the main parameters. Later the
nuisance parameter problem has been studied in a more general framework and
results have been obtained for the singular case (Fellman, 1976, 1978, 1985,
Baksalary 1984).

2. NOTATIONS AND THEORETICAL RESULTS

In the 1940's Rao (1945 a, b) studied the estimability of parametric
functions under singular linear models. His method was later developed by
Fellman (1974). The core of this method is the following results.

Consider the linear model (Y,Xa,0?l). The parametric function @ = c'a
is estimable if and only if there exists a solution vector p of the eqguation

X'Xp = c. (2.1)

The corresponding estimator is o = p'X'Y and Var(é) = p'X'Xp. These results
are used in this study.
We consider the Tinear models

(Y,X]T + XZB,GZI) (2.2)
and
(Y,X]T,GZI) (2.3)

where X; is an N x k matrix,

X2 is an N x m matrix and their elements are assumed to be known and

both matrices may be rank deficient,

T 1s a k-dimensional vector of main parameters and

g8 is an m-dimensional vector of nuisance parameters.
The model (2.3) is obtained from the model (2.2) by the simplifying assump-
tion that the nuisance parameters are lacking.

Using the partition X = (X1’X2) the information matrix of model (2.2)
can be written



32

XiX] Xixzw A B ( ) (2.4)
M= X'X = | | = |FT say .
XoXq [XpXp| 8D
The matrix A is the information matrix of the model (2.3).
We shall also use the following notations. The column-space (range) of
a matrix H and the orthogonal complement of this space are denoted C(H) and
CL{H), respectively. If a€ RK*M then we introduce the (k+m)-partition
a' = (3',a%).
. If 8 =¢'t is estimable with respect to (2.2) then the optimal estimator
is 8 = p'X'Y, where p is a solution of the equation

Mo = ¢ (2.5)

and ¢' = (c',0). The variance of the estimator is Var(é) = o2p"Mp.
We have the following theorem.

THEOREM 2.1. (Fellman 1976, 1978). Let M be a non-negative symmetric
(k+m)x(k+m) matrix with the k+m partition {Z2.4), Tet ¢ = (C',0)" be a (k+m)-
dimensional vector, which belongs to C(M) and Tet p be a solution of the
equation Mp = ¢. Then the equation

Ar = ¢ (2.6)
has a solution r and
p'Mp > r'Ar, (2.7)

with equality if and only if r = (r',0)' is a solution of the equation Mr = c.

It is easily seen that a necessary and sufficient condition for equality
in (2.7) is that

B'r = 0. (2.8)

The inequality (2.7) indicates that the optimal estimator with respect
to model (2.3) is never inferior to the optimal estimator with respect to
model (2.2). If equality is obtained in (2.7) then the parametric function
¢ is said to be estimable with maximal accuracy with respect to model (2.2).
Necessary and sufficient conditions that an estimable parametric function is
estimable with maximal accuracy are given elsewhere (Fellman, 1976, 1978,
1985) .

3. APPLICATIONS

Balanced 2-way design. Suppose that we have performed a balanced ex-
periment with k treatments and m blocks. If additivity holds, we have the
mode

(i=1,....k)
y_ij=”(_i+8j+u+n_ij |
(G=1,....m

where i,j are the treatment and block subscripts, respectively, Ti’Bj’ and

u are fixed unknown parameters and nij have the mean zero and the variance

2

o“. Using the matrix notation Y = Xa + n
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K T T
_ 10...010...01 1 -
Y1 10...001...01 . LR
Y12 Dot Ty 1, )
Yy = |: x=10...ooo...1|,a=81,n=; (3.1)
y J SO . ’
km 00...110...01 : [Mkm
00...101...01 B
TLoon o .
00...100...1 1l
Apart from the factor o2 the information matrix
(mo0...0.1 1...1 m]
Om...0:1 1...1m
- : B
M=X'X=100...m11..1m = H;:--} (3.2)
CAkolok| LBD
11...1:0 k...0 k
19,350 0.k K
mm...mk k...kkm

We are interested only in the parameters TysessTy and consider Byse-esBpy

and u as nuisance parameters. Only contrasts between the parameters
TyseessT) are estimable. On the other hand, every contrast between TyseeesTy

is estimable. .
Let ¢ be an arbitrary contrast, then the equation Ar = ¢ has the sol-

ution r = A_1E = %E. Now

and the presence of the nuisance parameters Byse-sBp and u does not affect

the precision of the estimate of any contrast of the =t's.

Balanced incomplete block design. In this case, not every treatment
block combination is performed. The model (3.1) can be used if we only can-
cel some of the observations. The design is balanced if we require that
every treatment occurs equally frequently and that every pair of treatments
occurs equally frequently in the same block.

If the number of treatments is k,

the number of blocks is m,
the number of cells per block is b,
the number of replications of each treatment is u,
the number of times any two treatments occur in the same block is 1,
then the incomplete block design is balanced if ku = mb and x(k-1) = u(b-1)
(Kempthorne, 1952, p. 530).
The information matrix is




R P LR EE R ER R [a:B
M= UpqUop-- Upy - b 0 ... 0 b| = { . }
u12u22.. uk2 : 0 b ... 0 b B':D

Upmiom® + Ykm 0 0 ...b b
u u...u :b b b bm

where u1.j = 1 if the treatment i is in the block j and uij = 0 if the treat-

ment i is not in the block j. The distribution of zero's and one's in B de-
pends on the chosen design but every block contains b cells and every treat-
ment is replicated u times. From this it follows that

k m

b) Uss = b and ¢ ;s = UL
=1 W j=1 W

Only contrasts between the parameters 3

i

T, are estimable. Analogously

to the randomized block design it can be proved that every contrast is esti-
mable.
Consider an arbitrary contrast ¢ = c't. The equation Ar = c has the
1

solution r = EE' The contrast is estimable with maximal accuracy if and
only if

B'F = 0. (3.3)
Such a contrast must satisfy the conditions

H o~ x

E uij c, = 0 (3 =1,....m). (3.4)
If the equation (3.3) is premultiplied by B we get the equation
BB'r =0 (3.5)

In the product

F=BB'=
U e Yk [Yim e Yk
u u
the element
f.. = s T I L TARET R
10 ¢=1 it 3t u+y ifi=13

If we study a balanced incompiete block design » < u and
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u+ u2 x o+ u2 N u2
2 2
F=1|x+u u+u ... x+u
2+ 2

A+ U A+ U .. Uu+u

is of full rank and the equation (3.5) has only the trivial solution r = 0.
Hence, no contrast satisfies the necessary condition and no contrast is es-
timable with maximal accuracy.

We observe quite contrary results for complete and incomplete designs.
Therefore it may be of interest to study how much the nuisance parameters in
BIBD reduce the efficiency of the estimates of the contrasts of the main
(treatment) parameters. _

Consider an arbitrary BIBD and an arbitrary contrast 6 = c't. The in-
troduced method indicates that we have to solve the matrix equation

Mp = ¢ (3.6)
where M is given in (3.2), c¢' = (¢',0) and 215] c; = 0. If we define
p' = (p',0',8) then the equation (3.6) is decomposable into the equations

m
up; + -E Ui 595 +us = c; i=1,...,k (3.7)a
Jj=1
k
iz] Uijpi + boj +bs =0 j=1,...,m (3.7)b
k m
u £ p.+b = oj + mbs =0 (3.7)c

1] j=1
Following Kempthorne (1952 p. 80) we obtain
K .
oj = -5 - B».E Uijpi J=1,...,m
i=1
If this result is substituted in (3.7)a we get

m k
1 _ Lo
Up . + ji] uij(}d - B-SE] Usjps} + us = c; i=1,...,k

"

If we observe that Zj uij = U, I Ujq = b, Zj uij u and zj uij usj = A
for s # i and if we introduce R = 21:] o and H = u - (u - A)/b we obtain
p; = MR/DH + Ci/H' Furthermore, Var{d) = o'Mp = p'c = p'C = c'c/H. If we

could estimate 8 = c't without any nuisance parameters we should obtain the
variance c'c/u. Hence the efficiency can be written (cf. Kempthorne, 1952,
p. 533)

E=1-(u-2a)/bu. (3.8)

We observe that for incomplete designs A < u and E < 1. This formula indi-
cates that, in general, BIBD with great values of A should be used.
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TABLE 1 The efficiency of some designs given by Kempthorne (1952).

3 2 2 3 1 75 Kempthorne p. 529
7 3 3 7 1 78
7 4 4 7 2 88
15 3 7 35 1 71
15 7 7 15 3 92
15 8 8 15 4 94
31 3 15 155 1 69
31 7 35 155 7 89
40 4 13 130 1 77 Kempthorne p. 530
21 5 5 21 1 84
31 6 6 31 1 86
57 8 8 57 1 89
6 3 5 10 2 80 Kempthorne p. 539
10 5 9 18 4 89
28 7 9 36 2 89
14 7 13 26 6 92
8 4 7 14 3 86

These efficiences can also be interpreted in another way. Consider that
we have to estimate k treatments and our BIBD consists of m blocks with b
cells each. Assuming that the experimental cost per cell is constant then
we can compare our BIBD with a complete design with mb cells. Now each block
has to contain k cells and the number of blocks is u = mb/k and the variance
of the estimate is c'c/u. Hence the efficiency in (3.8) can also be inter-
preted as the efficiency when we compare a BIBD design with a complete design
having the same number of cells.
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ADMISSIBILITY AND OPTIMALITY OF EXPERIMENTAL DESIGNS

Norbert Gaffke and Friedrich Pukelsheim
Institut fiir Mathematik der Universitit Augsburg

1. INTRODUCTION

In this paper we study the relation between admissiblity and optimality of experimental
designs. While it is standard decision theoretic reasoning that a statistical procedure
which is uniquely optimal will necessarily be admissible, we here prove a converse to
the effect that an admissible design is uniquely optimal with respect to the E-criterion
and a specific choice of the parameter system of interest. The general equivalence
theory may then be employed to obtain necessary conditions for admissibility.

As usual we choose the experimental conditions from a compact k-dimensional
experimental domain X C R*. We assume that under experimental conditions z € X
the real observation Y (z) follows a linear model

Y(z) = 20 + oe(z)

with uncorrelated errors e¢(z) of unit variance. A design ¢ is a probability distribu-
tion with finite support on the experimental domain X, determining allocation and
proportion of the experimental conditions.

The performance of a design ¢ is determined through its k x k moment matrix

M(¢) = /I zz'dé.

Let M be the feasible set of moment matrices, assumed to be a convex and compact
subset of nonnegative definite k x k matrices.

We shall study admissibility of a candidate matrix M in the set M. It is illuminat-
ing to first discuss the case when the full parameter 6 is of interest (Section 2). Before
turning to the more general case of an s-dimensional parameter system K’'6 (Section
4) we derive some intermediate results on information matrices (Section 3).

2. ADMISSIBILITY FOR THE FULL PARAMETER SET

Suppose M € M is a moment matrix whose admissibility properties we wish to in-
vestigate. We call M admissible for § in M when no moment matrix A € M satisfies
A > M and A # M, relative to the Lowner ordering >. To avoid trivialities we assume
M #£0.
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We shall show that every admissible moment matrix is E-optimal, i.e. it maximizes
the minimum eigenvalue of an appropriate information matrix. However, the parameter
system for which E-optimality is obtained is related to the candidate matrix M in an
intrinsic manner: We choose the system H'6 from a full rank decomposition

M=HH,

where with r = rank M the k x r matrix H has full column rank r. An E-optimal
moment matrix for H’9 in M is one which maximizes A (Cx (A)) over A € MNA(H),
where A(H) is the convex cone of all nonnegative definite & x k matrices whose range
contains the range of H, and

Cu(A)=(H'A"H)™! for A€ A(K).
We need an auxiliary lemma before turning to admissibility.

Lemma 1. Let A € M be a competing moment matrix. If A is E-optimal for H'6
in M then A> M.

Proof. By construction the range of M contains (actually coincides with) the range
of H, and we have

Cu(M)=(H'M~H)™!=(H'(HH')"H) ' =1,.
Optimality of A yields 1 = Apin(Cy(M)) < Anin(Cu(A)). Therefore I, < Cyx(A),

and pre- and postmultiplication with H and H' gives
M=HH' < HCy(A)H' < A,

where the last inequality may be found for instance in Pukelsheim & Styan (1983, p.
147). 0

We are now in a position to establish the relation between admissibility and unique
E-optimality as announced above.

Theorem 1. The moment matrix M is admissible for § in M if and only if M is
uniquely E-optimal for H'9 in M.

Proof. Suppose M is admissible. From Theorem 2 in Pukelsheim (1980, p. 344) we
know that there exists an E-optimal moment matrix A for H’§ in M. By Lemma
1 we have A > M, and admissibility of M forces A = M. This establishes unique
E-optimality of M.

Conversely suppose M is uniquely E-optimal. Let A be a competing moment
matrix satisfying A > M. Due to monotonicity A will also be E-optimal. But then
uniqueness forces A = M, i.e. admissibility of M. a

Lemma 1 and Theorem 1 are closely related to Corollary 8.4 of Pukelsheim (1980,
p. 359). Next we turn to the classical Theorem 7.1 on admissibility of Karlin & Studden
(1966, p. 808), inveatigating the existence of a nonnegative definite matrix N #£0ora
positive definite matrix N satisfying the system of normality inequalities

trace (AN) < trace(MN) forall A€ M.

Employing customary notions of convex analysis we shall call a matrix N which satisfies
this system of inequalities to be normal to M at M.
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Theorem 2. (i) If M is admissible for § in M then there exists a nonnegative definite
k x k matrix N # 0 which is normal to M at M.

(ii) If there exists a positive definite k x k matrix N which is normal to M at M then
M is admissible for  in M.

Proof. (i) From Theorem 1 we know that M is E-optimal for H’0 in M. The general
equivalence theory provides a necessary and sufficient condition of optimality in the
following form, see Theorem 8 of Pukelsheim (1980, p. 356). Optimality holds if and
only if forall Ae M

trace (H'GAG'HE) < Amax(H'M~H) = 1/Amia(Cr(M)),

for some generalized inverse G of M and some matrix E € convS. Here conv§
denotes the convex hull of all r X r matrices of the form zz’ such that z is a normalized
eigenvector of Cy (M) corresponding to Apin(Cx(M)). However, we have seen above
that Cy(M)) = I, and so E actually is an arbitrary nonnegative definite r x r matrix
with trace equal to 1.

Define the nonnegative definite matrix N = G'HEH'G. Then

trace AN <1 =trace MN forall Ac M.

Hence N cannot be 0, and it satisfies the normality inequalities.

(ii) Let A be a competing moment matrix satisfying A > M. Then 0 < trace {(4— M)
N}. On the other hand the normality inequalities yield trace {(A — M)N} < 0. There-
fore trace {(A — M)N} = 0, and positive definiteness of N forces A = M. Thus
admissibility is established. 0

Our proof provides the additional information that in Theorem 2(i) we can choose
N 30 as to satisfy 1 < rank N < r = rank M.

Note that rank 1 matrices M = c¢¢’ may well be admissible for the k-dimensional
parameter §. By Theorem 1 admissibility then holds if and only if M is uniquely
optimal for ¢'§ in M, and then Theorem 2(i) admits a rank 1 choice N = dd'.

Admissibility for a subset of the full parameter system admits a similar develop-
ment, with slightly more technical input concerning information matrices.

3. INFORMATION MATRICES

Consider a fixed s-dimensional parameter system K'f given by some k x s matrix K
of full comlumn rank s. Admissibility for K'6 concentrates on the s x s information
matrix for K'6 which, if A € A(K) with A(K) defined as in the preceeding section, is
given by
Ck(A)=(K'A"K)™'.

Recall that for the full parameter case a rank deficient moment matrix M may be
admissible. Similarly a rank deficient information matrix Cx (A) may prove admissible
for K', provided we exercise some care when extending the matrix function Ck from
A(K) to the convex cone NND(k) of all nonnegative definite k x k matrices. The
appropriate definition for an arbitrary matrix A € NND(k) is

Ck(A) = leif})l(K'(A +el)7 1K),
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Then Ck (A) is nonsingular if and only if A € A(K) and in this case
Ck(4)=(K'A"K)™!,

see Lemma 2 in Miiller-Funk, Pukelsheim & Witting (1985, p. 23). Another represen-
tation of the extended matrix function Cx was used in Gaffke (1987), namely

CK(A) = min LKAL'K,
Lx

where the minimum is taken over all left inverses Ly of K (i.e. Ly K = I,) and is
carried out relative to the Léwner matrix ordering. That the minimum exists is a
consequence of the Theorem in Krafft (1983). It can also be seen using the Gauss-
Markov Theorem, as follows.

Consider a linear model with expectation K and dispersion matrix A, where
B € R’ is the unknown parameter vector. The set {Lx} of left inverses of K defines
the set of linear unbiased estimators for S, and the BLUE for 8 corresponds to a
particular member Lg such that Lx AL} is a minimum. We will call such a matrix
Lk aleft inverse of K minimizing for A, i.e.

LxK=1I, andCk(A)=LxALk.

Equivalently one could say that L is a minimum A-seminorm generalized inverse of
K', see Rao & Mitra (1971, p. 46).
Both expressions for Ck(A) coincide, as shown next.

Lemma 2. For all nonnegative definite k x k matrices A we have

lim(K'(A +eI)™')"! =min Lk AL%.
€lo Lx

Proof. Since for € > 0 the matrix A + el is positive definite, we know from the
Gauss-Markov Theorem that

I}Iﬁn Lg(A+e)Ly = (K'(A+ el)7 ' K)™L.
L3
Let L} be a left inverse of K minimizing for A. Then

min L ALy < min Lic(A+el)L < Lic(A+ el L,
X X

and letting ¢ — 0 the assertion follows. 0
With the extended definition of Cx a moment matrix M € M is called admis-
sible for K’6 in M when no moment matrix A € M satisfies Cx(A4) > Cx(M) and
Ck(A4) # Cx(M).
Again we wish to study a fixed moment matrix M € M. However, we now choose
a full rank decomposition of its information matrix (which we assume to be nonzero)

Ck(M) = HA,

where with ¢ = rank Cx (M) the s x ¢ matrix H has full column rank ¢.

We shall have to investigate the parameter system H'K'8. The information ma-
trices relative to the representations (K H)'8 and H'(K'6) satisfy the following decom-
position rule. The matrix functions Cxy and Cpy are defined as above with KH and
H instead of K and with domains NN D(k) and NN D(s), respectively.
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Lemma 3. For all nonnegative definite k x k matrices A we have
Cxu(A) = Cu(Ck(A)).
Proof. When A is positive definite then
Cxu(A)=(H'K'A"'KH)™' =Cy((K'A"'K)™!) = Cy(Ck (A)).

Now take a nonnegative definite matrix A. For ¢ > 0 then Cx(A) < Cx(A+el). Since
A+ el is positive definite we obtain Cy(Ck(A)) < Cxu(A+ €l). The right hand side-
becomes Ck y(A) when ¢ — 0.

For the converse inequality let Ly be a left inverse of H minimizing for Cx(A),

and Ly be a left inverse of K minimizing for A. Obviously Ly Lk is a left inverse of
KH, and by Lemma 2

Cku(A) < LyLx ALy Ly = LyCk(A)Ly = Cu(Ck(A)).

The two inequalities force equality, and the proof is complete. O
An analoguous decomposition rule holds for left inverses of K H minimizing for A.

Lemma 4. A left inverse Ly of KH is minimiging for A ifandonly if Lxyy = Ly Lk
for some left inverse Ly of K minimiging for A and some left inverse Ly of H mini-
mizing for Ck (A).
Proof. We first note that if Lg is a given left inverse of K, then the set of all left
inverses of K is the linear manifold Lx + B where B may be any s x k matrix with
BK = 0. From this it is easy to see that Ly is minimizing for A if and only if
Lk AQg = 0, where Qg denotes the orthogonal projector onto the nullspace of K'.
Similarly a left inverse Lg i of K H is minimizing for A if and only if Lxy AQgn = 0,
where Qi g is the orthogonal projector onto the nullspace of (K H)'.

To prove the direct part of the lemma let Lx gy be a left inverse of K H minimizing
for A. Consider the matrix equations

LxnKX =Lky, and X-[K, AQk|=[I,,0].

Obvioulsy each of them separately has a solution. Moreover they have a common
golution for X, by Theorem 2.3.3 in Rao & Mitra (1971, p. 25). In order to apply this
theorem we must verify Ly y K[I,,0] = Lxu[K, AQk], but this holds true in view of
LKHAQKH =0 and QK = QKHQK. Setting LK = X and LH = LKHK, we have a
left inverse Lx of K minimizing for A, a left inverse Ly of H, and Ly Ly = Lgy. In
fact, Ly is minimizing for Ck(A) since by Lemma 3
LyCx(A)Ly = Ly Lx ALy Ly = Ly ALy = Cxu(A) = Cy(Ck(A)).

The converse part is immediate: Evidently Ly Lg is a left inverse of KH, and
LyLg ALy LYy = LyCk(A)LYy = Cu(Ck(A)) = Cxu(A). 0

We shall now use these intermediate results for our discussion of admissibility and
optimality.

4. ADMISSIBILITY FOR PARAMETER SUBSETS

Let M € M be a fixed moment matrix. We resume the discussion of M being admis-
sible for K'0 in M. Assume that Cx (M) # 0 and choose a full rank decomposition
Cx(M) = HH' as in Section 3. We first present a result similar to Lemma 1.
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Lemma 5. Let A € M be a competing moment matrix. If A is E-optimal for H' K'9
in M then Ck(A) > Ck(M).

Proof. By construction the range of Cx (M) contains the range of H. Applying
Lemma 3 we obtain

Crn(M) = (H'Cx(M)~H)™' = (H'(HH')~H)™ = L.

Optimality of A yields 1 = Ayin(Cxsr(M)) < Amin(Cxk 5(A)). Therefore I < Ck i (A),
and pre- and postmultiplication with H and H' yields

Cx(M) = HH' < HCy(Ck(A))H' < Ck(A).

Note that Cg(Ck(A)) = Ck g (A) is nonsingular and hence Ck(A4) € A(H). [
The following theorem on admissibility and E-optimality parallels Theorem 1.

Theorem 3. The moment matrix M is admissible for K'0 in M if and only if M
is E-optimal for H'K'8 in M and for any other E-optimal moment matrix A € M for
H'K'0 in M we have Ck(A) = Cx(M).

Proof. Follow the proof of Theorem 1, with Lemma 1 replaced by Lemma 5. Use
Lemma 3 for the converse part. 0

We are now in a position to present our main result: A proof based on E-optimality
of Theorem 2 of Gaffke (1987).

Theorem 4. (ij If M is admissible for K'0 in M then there exists a nonnegative
definite s x s matrix D # 0 and there exists a left inverse Lx of K minimizing for M
such that Ly DLk is normal to M at M.

(ii) If there exists a positive definite s x s matrix D and a left inverse Lx of K
minimizing for M such that LY DLk is normal to M at M then M is admissible for
K'9 in M.

Proof. (i) By Theorem 3 the moment matrix M is E-optimal for H'K'0 in M, and
as shown above Cx g (M) = I;. The general equivalence theory tells us that
trace (H' K'GAG'KHE) <1 forall Ae M,

for some generalized inverse G of M and some nonnegative definite ¢ x ¢ matrix E with
trace equal to 1. Define the matrix N = G'’KHEH'K'G. Then

trace (AN) <1 =trace(MN) forall A€ M,

and 1 < rank N < ¢t. The matrix Lxy = H'K'G satisfies Lygy KH = H' K'GKH
= (Cxku(M))™' = L and Lxyy MLy = H'K'GMG'KH = I, = Cxy(M), and thus
is a left inverse of K H minimizing for M. Lemma 4 then ensutes that Lygy = Ly Lk
where Ly is a left inverse of K minimizing for M. Setting D = Ly ELy we obtain
the desired representation

N=LYyELxy = L' L'yELy L = Ly DLg.
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(ii) Let A be a competing moment matrix satisfying Cx(A) > Cx(M). Then

0 < trace {(Ck(A) — Cx(M))D}
< trace{(Lx ALy — Lk ML) D}
= trace {(A - M)Ly DLk} <0,

and because of positive definiteness of D therefore Cx(A) = Ck(M). O
The proof gives the aditional information that in Theorem 4(i) we can choose the
s X s matrix D so as to satisfy 1 < rank D <t = rank Cx(M).
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OPTIMAL BLOCK DESIGNS FOR CORRELATED OBSERVATIONS
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1. INTRODUCTION

The paper considers a simple block model and assumes that the errors
within the blocks are correlated according to a stationary first order
autoregressive process with known lag one correlation coefficient A. We
restrict attention to the case A > 0 and try to determine an optimal block
design. The set of all block designs with v treatments and b blocks with k
plots per block is denoted by QV b k' The position of the plots within the

blocks is determined by the design. If design d € QV b k is applied then we

assume that the vector of the measurements on the u-th block fulfills
Yau = Tdu-r * 1kﬁu - €u (1)
where Bu is the effect of the u-th block, Tdu is the treatment design

k
of the errors in the u-th block. The covariance matrix of e, is

matrix in the u-th block, 1, is the k-vector of ones and e, is the vector

NECIER
2
s, =0 | A A
A2 N1
. A1 oA
AN a2

where o0& > O is unknown and A > O is known. If we define Td=[Té1,...,Téb]’
and if x is the Kronecker product of matrices and Ib is the unit matrix of

size b, then the vector of all measurements can be written as

Yq = TdT + belkB +e . (2)

Since we assume that the measurements on different blocks are uncorrelated,

we have a covariance matrix of e which equals Ib x SA' For a fixed design d

the information matrix for the estimation of T equals
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b b
€, = 9 TSt - (s i) Ty sty s “1r (3)
d ~ du A du k A k duA 'k'k'A "du
u=1 u=1
The information matrix is the Moore-Penrose generalized inverse of the co-

variance matrix of the best linear unbiased estimate for the vector 7 -—
(T'lv/v)lv. It is the idea of optimal design therefore to search for de-

signs which maximize some one-dimensional criteria of %d. We consider the

class of ¢p criteria which are based on the eigenvalues Hq1 2...2 Hav-1 20
of @d. For p € R, p # O we have
v-1
P py-l/p
0, (8) = (i1 ) Hgd)
i=1
(@) = (Vgl y/(v-1)
®ol®a’ = (=1 Hai

and
ol €q) = Mgy

Then %0 is the well-known D-criterion, ?y the A-criterion and ¢ is the
E-criterion. The criterion ?_q is the trace of the information matrix. A
design d* is wp—optimal if it maximizes wp(%d) over a set of designs.

The %d—matrix for every d € Qv,b,k has constant row and column sum

zero. This implies that a design for which all off-diagonal elements of €

d
are equal has Hqp == Hgy-1- It is easy to see that a design d»* for which
Ml = % Mgsy—1 and which maximizes tr%d over a set of designs is

wp—optimal over this set for all p > O, that is for all wp—criteria which

are of statistical relevance. To determine such a design it is necessary to
make some definitions.

For a design d € Qv.b.k define ry; as the number of appearances of

treatment 1 in the design. For 1 < u { b let YT be the number of appear-

ances of treatment i in block u. Further define €4iu 25 the number of ap-

pearances of treatment i at an end plot of block u and ey = zﬁ—lediu' Note
that €4iu is either 0,1 or 2. The matrix with entries ediu is the incidence
matrix of a block design with b blocks of size 2. This design is called the
end design of d. For treatment i and j the number mdij counts how often the

treatments appear adjacent to each other in the same block. The design d is

called neighbor balanced if all mdij' i#j. are equal and all Mg = 0. The

diagonal elements of €, equal

a
b

2 2 2

Caii = Tai{lA7) —egyN - 2mg A - E?(E_ETX'E {ngy (1M +eg; M (4)

u=1
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and the off-diagonal elements are

b
Cqpy = "Mgs A~ iy 9 {ngy (1N rey  MHng o (1-0)+e o A} (5)
dij = M T o 2 Paiu aiu™ a0 dju

u=1
see Kunert (1987). In the following we want to determine optimality proper-

ties of certain block designs in the cases v = k and v < k.

2. E-OPTIMAL BLOCK DESIGNS IN THE CASE V = K

It was shown in Kunert (1987) that a design with

b
_ bk(k-1) o
z Dyiuldju = vOv-1) for all i # j (6)
u=1
2b(k-1 . .
mdij = Y(v-1) for all i # j (7)
b
4b (k-1
= - for all 1 # j (8)
u_l(ndiuedju * egilayy) YOVD
b
2b . .
z ediuedju = m for all i # J (9)
u=1

in the case k { v and A > O has maximal tr@d and all off-diagonal elements
of @d equal. Consequently such a design is optimal. Since it takes a great

number of blocks to achieve condition (9) we consider designs which fulfill
conditions (6).(7) and (8) only. Kunert (1987) has shown that they are
highly efficient under each wp-criterion. We want to determine exact E-op—

timality properties of some of them. Designs with properties (6),(7) and
(8) were introduced by Kiefer and Wynn (1981).

In the case v = k condition (6) is fulfilled by every complete block
design. Condition (7) means neighbor balance and condition (8) is fulfilled
by every complete block design with neighbor balance.

We can construct complete block designs with neighbor balance whenever
b is a multiple of v/2 and v is even, and whenever b is a multiple of v and
v is odd, see, for instance, Gill and Shukla (1985). The cases b = v/2 and
b = v are now considered in more detail. If v = 3 then the complete block
design with neighbor balance d € 93 33 also fulfills (9). However, for

v 2 4 it is impossible to fulfill (9) with only v or v/2 blocks. We there-
fore restrict attention to the case v 2 4. We also restrict attention to
the case A 2 0, since we know that for negative correlations there are
nonbinary designs which perform even better that the designs fulfilling the
whole set of conditions (6).(7)},(8) and (9).

THEOREM 1 If A > O and b = v/2 where v is even, then the neighbor balanced
complete block design d* € 2 is E-optimal over (2 .
v,v/2,v v,v/2,v

Proof: It was shown in Kunert (1987) that the smallest nonzero eigenvalue

Hasy—1 of @d* fulfills
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b(k-1), ;k-(k-4) (A-A+x%)

Bawy-1 2 & = Gy gy )

We now show that Hay_1 < & for every d € Qv,v/2.v' If xd.f = @d - EIV +
(f/v)lvlv, then the eigenvalue Hv-1 of %d is less than § if ¢ xdfe < 0 for
a v-vector £, and Mgy— < g it & de < O for a v-vector & with &' 1 = 0.
Let X4 denote the (i, J) th entry of deE.

(i) Assume the design d has one treatment i such that r
Then

v-2 2
xgi1 ¢ T3 (1) -

di < v/2 - 1.

1 v-1
=(v-2)N 2 (102 - L E <o

and, consequently, Hay—1 <E.

(ii) Assume the design is equireplicate but one treatment appears at
least twice at end plots. Then

v 2 2 1-A
Xdii < 5 (1+A7) - 2x m{ 2 (1- )\) + 2} - F (v-1)/v <O
and, consequently, Hay-1 CE.

(iii) Assume the design is equireplicate and all €4y = 1 but there are

treatments i and j which never appear adjacent to each other. Then

%aii ¥ a3 T %dij = %aii T cdjj ~ ¢4y 7 2
= v(1)Z - a2 - 1A z {ng  (I7N) + ey A = ng . (1-A)
v- (v 2)A diu u dju
u=1
2
- edjux} -
<v () -2 -2k <o,
(iv) Assume d is equireplicate, all ey = 1 and all mdij =1, i # j.

For each treatment i there is one treatment j # i, such that i and j appear
at the opposite ends of the same block. Consider the vector € with i-th and
j-th entry (v-2)/v and all other entries -2/v. Then 8’1V=O and

e’ xdfe = Xy + x,.. + 2x

dii djj dij
b
= v(1nZy -2 o\ - 1A Y Ay, * ng.) (1A
v- (v 2)A diu dju
u=1
+ (e €dju )A} -2 (v-2) E/v .
For the block u* with e = 2 we have

diux ¥ edju*
(ndiu* * ndju*) (1-A) + (ediu* * edju*) A22

Since ) {(ny;, * N (IA) + (egpy * eqgM = (v-2)(1-) + 2. we
consequently have
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2 2
Cqi1 T cdjj + 2cd1J < v({1+AT) = 227 - 2N -
1-A 2
;:(;:ETX-(2(V 2)(1-A)7 + 4}
= 2(v-2) E/v .

This completes the proof.

We now turn to the case b = v. Remember that there always is a neigh-
bor balanced complete block design d» € QV v and that ud*v—l > &. How-

ever, not all neighbor balanced complete block designs in QV v perform

equally well. What is more, there are designs which are not complete block
designs and which perform better than some neighbor balanced complete block
designs for some A. As an example consider the designs in Table 1.

TABLE 1 Three designs in 94

4,4
a
4123 1432 1241
h=1234 f=4321 g=2412
3412 1243 3134
2341 3124 4323
8Take columns as blocks

It was shown in Kunert (1985) that f performs better than h if A 2
0+7. Note that f is not a complete block design, but that it is neighbor
balanced and that the end design of f is connected while that of h is not.

We now define a non empty set A Cc Q , which contains the
V,V,V v,V,V

neighbor balanced complete block designs in Q , and which contains the
V,V,V

be the set of all d € Q such that
v v,V,V

E-optimal design. Let Av,v

d is equireplicate, (10)
d is neighbor balanced, (11)
no treatment appears at both end plots of the same block. (12)

Remember that (10) and (11) imply that every treatment appears at
exactly two end plots. It was shown by Azzalini and Giovagnoli (1987) that
(10) and (11) are necessary and sufficient for optimality in a simpler
model without block effects. The designs in Table 1 are all in A4 4.4

THEOREM 2 Assume b =k =v > 4. If 0 ¢ A < 1 and if a design d € Qv vV is
E-optimal over ( , then d € A .

V,V,V v,V,V
Proof: We know that there is a neighbor balanced complete block design dx

in Av.v,v and M gsey~1 2 £. We now show that for every d € Qv,v.v which is

not in Av,v v ve have M4 v-1 <§.

(i) Assume there is a treatment i such that T4 < v-1. It was shown in

case 1 of Theorem 3 of Kunert (1985) that then
2 2.3
X4ii < v=1){-1+A+A"(1-N)} - edi(2x+(v—3)(x A1/ {v-(v-2)N} .

It can easily be seen that consequently
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Xeoo < (v=1)(A2=1) (1-A)/{v=(v-2)A} < O

dii

for all X < 1, and not only for A { 4/5 as stated in Kunert (1985).
(ii) Case 2 of Theorem 3 of Kunert (1985) solved the situation that

€44 2 3 for an 1i.

(iii) Assume there is a treatment i and another treatment j such that
m,.. < 1. Then
dij

c +c - 2¢ < 2v(1+k2) - 4A2 + 2N .

dii djj dij -

Since v(1#AZ) - 222 + 2

g+ 4A2(1—A)/{v—(v—2)k}. we get that

Mg g < €+ DEAN/{v=(v-2)A) - A CE .

(iv) Assume there is a block u such that treatment i appears at both
ends of this block. It follows that

2 1-N

° "o (e

I

r .(1+A2) - 2x .—2)(1—A)2+4}
di i

dii

Since rdi = v we have

{v=(v-2)\) xg; < 2(1-AA% - 2(1-0) < O .

This completes the proof.

If we exclude non-binary designs from the competition then Theorem 2
implies that the E-optimal design must be a neighbor balanced complete
block design. For all neighbor balanced complete block designs d we have

that xdf{v—(v—2)k}/(kz-k3) is the information matrix of the end design of d

in the block model with uncorrelated errors, see Kunert (1985). The end
design of such a d is equireplicate and has v blocks of size 2. It is well-

known that there is essentially only one connected block design in Qv v.2

and this design has second-smallest eigenvalue 2-2cos (2n/v). This implies
that for every complete block design d € Qv v.v e have

ngyq € €+ 20850%) {1-cos(2m/v)}/{v-(v-2)A)

and the bound is attained if the complete block design d* has neighbor ba-
lance and the end design of d»* is connected. Such designs exist for all odd
v, see Kunert (1985).

I have so far neither been able to show that these d* perform better
than all nonbinary d € Qv v.v for all positive A < 1, nor have I been able

to find examples of nonbinary designs which actually perform better or
equally well.

There is one exception. If v = 4 then the design g in Table | is a
complete block design with neighbor balance and connected end design, and
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ugv_l £+ 2{1—cos(2v/v)}(Az—xs)/{va(v_z)x}

= £+ 20223 /{v-(v-2)0) .
Now take an arbitrary design d € Q
as g if d € A

4.4.4° It can only perform as well

Then there are two treatments i and j which do not

4,4,4°
appear together at the opposite end plots of any block. It follows that

c + c - 2c = 2v(1+K2)—4A2+4R -

dii djj dij
b

1-A z _ 2

—(v-2)% {(ng4y a5 (17N * (egyy — eqyu)™T -

u=1

The fact that k = 4 and that no treatment appears adjacent to itself for
all d € AV vV implies that no treatment appears twice in a block unless it

appears at an end plot. This implies that

2 2 1-A 2
aii * Caj; T 2Cqiy $ ZVAMT) - T+AN - omEEE AN

since there are four blocks where either i or j appear at an end plot.
Consequently,

<&+ 20223/ (v-(v-2\) = 1

Hav-1 gv-1

We thus have shown that g is E-optimal over Q Note that the arguments

4,4,4°
in the proof do not hold for v > 4. However, Theorem 2 of Kunert (1987)
shows that for v 2 5 every complete block design with neighbor balance for
every 0 < A < 1 and every @p—criterion has an efficiency of more than 99 %.

3. THE CASE V < K

b
. _ ol _ vo—l, -1 -1 vo—l _ E ,
Define W, = SK (1ksk lk) SK 1k1ksk . We get @d = Ju=t TdquTdu' Let
us consider one single block u. Then the i-th diagonal element of T(’iuw}\Tdu
equals
2 2 1-A 2
Naiu(IPN) ~ eq; A T mmayn Pan (1N Foeq M

Restricting attention to the case A > O we realize that, for fixed D44y and

€4;° then C4ii is maximal if treatment i appears only at end plots of such

units where n,. 1is small.
diu

As an example consider the case k = v + 1. Then

2 1-a

tre; = b(v+1)(1n%) - 2bA T ) oy (A7A) + ey AV
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Since z z {ndiu(l—k) + ediux} = b(v+1)(1-A) + 2bA, an upper bound for the

trace is attained if n,, =1+ 1/v and e,, = 2/v for all i and u. This
diu diu

clearly is impossible. The maximum attainable trace is reached if iy €

{1.2} and e

Table 2 thus has maximal trace for A > 0. Calculating c

diu € {0,1}, €4iu being 1 only if N4y = 1. The design f in
£1 with formula (5)

we can see that f is ¢p—optima1 over {1 for every p 2 O.

4,12,5

TABLE 2 A design for k =v + 1

111 234 342 423
423 423 423 111
f =234 111 234 234
423 423 423 111
342 342 111 342

If k is becoming larger the situation gets more difficult. Note that
T(’iuw)\Tdu is the information matrix of a design consisting of a single
block. Kunert and Martin (1987) show that for A > 1/2, trTéuW)\Tdu is not
maximal if every treatment appears equally often in block u. As an example
consider the case v = 4 and k = 8. For b = 12 compare the two designs f and
g € 04 12.8 in Table 3. For small A f performs universally better than g.

Note that f is neighbor balanced and is a balanced block design. However,
for A > 1/2 the design g becomes better. The design g also is neighbor ba-
lanced but it is not a balanced block design. Note by comparing the traces
that the gain in efficiency is not high. It seems logical therefore to re-
strict the competing designs to be balanced block designs.

TABLE 3 Two designs for k = 2v
4123 4312 4231 4123 4312 4231
1234 3124 2314 1234 3124 2314
3412 2431 1423 3412 2431 1423
f=2341 1243 3142 g=1234 1234 2314
4123 4312 4231 3412 2431 1423
1234 3124 2314 1234 3124 2314
3412 2431 1423 3412 2431 1423
2341 1243 3142 2341 1243 3142
tre, = 96 (1 + \%) - 20° tre, = 96 (1 + 22y - 2402
- 3§%é§l (48 - 721 + 3022} - 3é%é§l-{60 ~ 108\ + 5422}
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CHAPACTERIZATICIIS M EXAMPLES CI' OPTIMAL EXPEPIIENTS WITH
OUALITATIVE AID CUANTITATIVE FACIORS

Viktor 5. Kurotschka

1. CONDITIONAL REPRESENTATION OF EXPERIMENTS WITH QUALITATIVE AND
QUANTITATIVE FACTORS

1.1 Conditioning and linearization of the model equations

We will denote by X the experimental region, i.e. the set of all
experimental condition x under which an experiment can be alternatively
performed. The experimental region of an experiment which is influenced
by, say K1 qualitative factors each being able to operate at, say Ik levels

k = 1,...,K1) can be represented by
&
X=:;1:= sz.]{‘],...,%(} (1)
and a single experimental condition by
Xy = (11""’JI<1) ’ ikF.H,...,Ik} ’ k=1,...,K1

The experimental region of an experiment with K2 cuantitative factors of
influence may be described by some convex set

K
. " 2
X = R <:]RK2 with some non empty Xk=1 (a,b) < X2 . (2)

The experiments considered in this paper are those with K, cualitative and

1
K2 quantitative factors and can be defined by having

K
) _
X=Xy %Xy = (1,00 ) %X, (3)

as their experimental region.
The true response of the experiment to the experimental condition

nt X9x->n(x) €Rr
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is usually modeled as a location varameter (expected value in the para-
metric and shift parameter in the nonparametric set up) of the cbservation
Y(x) which is asssumed to be a randam variable.

Defining the error of the observation by

e(x):= Y(x) - n(x)
one obtains the following cbservation equations
Y(x) =n(x) +elx) , xFfX (4)

Restrictino oneself to exveriments with only finite many observations,
say N , an experimental design can be described by

( hYd -
‘x“) x(2) "'X(I) ] X(i) cx,1i=1,...,1

d =
I — 1
IJ(X(1)) II(x(z)) ...LJ(X(N))J Zi=1N(X(i)) =1

(5)

indicating that 11(x,.,) observations should be performed at experimental

(1)
condition x(i) , 1=1,...,I.
&
If X = X1 = ><k=1{1,...,Ik} , i.e. if ¥ is in particular finite, then
all experimental conditions xy €Y%y can be listed in a design admittinc
) (x1) being zero for some x, € X, getting the following representation (see

1 1

also appendix) :

~

o ‘ i.k=1,...,Ik
d ——N12” K iT (1‘1(11,...,1_[, );

) = ((x) 5%, €X,) (6)
™M 1 k=1,...,K

1
where

N(x1) = N(i1,...,iK) € {0,1,...,M}, N(x1) =N

X1y

has the same meaning as before. The corresponding cbservation model (model
of the experiment) in vector form

Ya = g * fa
with components

TnX(g)) = nlxggy) + e lxgy))
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will be considered under standard conditions, i.e. for each design d

X

Xq has a distribution P d € { 6 € 0}

Fa,ei
under which all single cbservations are (stochastically) independent and of
equal precision, i.e.

2
VareXn(x(i)) = g~ (8) , 8 €0

We further will only consider response functions n with a finite linear
parametrization

B: 9386 > (31(6),...,Er(6)) ER.

i.e. for which there exist a: X 3 x » a(x) F_]Rr so that for all x € X and
all ¢ € ©

_ _ __T
n(x) = n(x,8) = Zp=1ap(x)Bp(6) = a” (x)B(8)

If X = X1 as in (1) then every response function n has a finite linear para-
metrization (see also appendix), the corresponding linear models are known
as AIOVA experiments.

If X = Xy as in (2) then finite linear parametrizations are motivated to
some part by theoretical a priori knowledge about the experiment taking in
consideration also some suitable transformation of the cbservation, to some
part because the response function is a regression of a normal distributed
variable on a normal distributed randam vector and to another part that the
linear parametrization cames from a formal approximation of the unknown re-
sponse function by some system of (known) functions aqre..,a. 0N X2

(Chebychev systems, systems of splines) with 8 = (B .,Br) representing

1r°s
the (unknown) expansion coefficients. The corresponding linear models for

X = .\:2 are often called general regression experirents.

If X = X‘I x X2 as in (3) a finite linear parametrization can be motivated

by the following almost natural conditioning of the observation equations (4):

For each X, C X1 let

YX1 (X2) = Y(X-] rx2) ’ nx (X2) Hes n(x1 IX2) ’ €X (X2) = E(X‘I ’X2) ’
then for each x,I < X,I
Yy, ) = "%, (x)) + %, 2 %O X

are experimental ecuations defined on X2 so that for each of these condi-

tional response functions Ny ¢ X € X

1
1
be motivated as in the case X = X2:

1@ finite linear parametrization can
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_ T a
"X, (xy) = ‘35(1 ("2)"x1 r Xy € Xy

with

By = (By 1re-nsB

1 1

ay = (a

)T
x1r(x1)
T

’ax1r(x1 ) )

g -
1 11

By suitable arrangements and aggregation of the so defined partial regression

model equations indexed by X € X1

7 _— T 2
1X1 (x2) = aX1 (xz)f}X1 + EX1 (xz) .t € X2 (7)

on may cbtain the linear mocel equations on the camplete set X =X1 X X2:
Y(x) =a (x)B £ e® , x = (x,,X,) €X, x X, =X
’ 1772 1 2 oo

where of course the form of a and 8 highly devends on the kind of inter-
action which might exist between the qualitative and the quantitative
factors.

The two extreme but also the two most important classes of mocels
classified by interaction of the two kind of factors are treated in
section 2 respectively in section 3.

1.2 Conditional representations of designs

The conditioning of the model eguations almost naturally suggests also
a conditioning of a design an X = X1 x X2 , namely the following represen-
tation:

a= (N12...K1’d(N12...K1)) (@)

= (N(X,) ,x, € X.) is defined as in (6) and assigns the
12...K1 1 1 1

nunber N(x1) of observations to each individual regression model (7) in-

where N

dexed by X%, € ){1

1 €

a( )i= (dlx)) % € X))

1
represents the system of the designs d(x1) for the individual regression
€ X

Nio. ok

models (7) indexed by x , hamelv

1 1

d(X1) = ((t1n(x1)""’tK2n(x1)) €X,;n= 1,...,1'1(}(1))

where cbviously tkn represents the level of the k'th factor present at the

€ X, .

n'th replication of X, 1
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This conditional representation of exact designs together with the
conditioning of the model I have suggested to Dr. J. K8ster, to Dr. J. Lopez-
Troya and to Dr. V. Vierich who succeded to characterize optimal exact
designs for same first basic models (see Koster (1976), Lopez-Troya (1982a)
and (1982b), Kurotschka and Wierich (1984), Wierich (1984) and (1985)).

A more general approach introducing conditional generalized designs
has been presented in Kurotschka (1961). The present paper deals with this
more general approach taking into account more recent contributions in par-
ticular those of Dr. Wierich which will be explicitely cited.

In terms of generalized designs £ defined as probability measures on
P(X1) ® (X2 n ‘ER ) the representation (8) corresponds to conditioning pro-

2

bability measures on product spaces (desintegration of measures):
where

g, =v =2 o vl{x He
1 x1€X1 1 X,

is a probability measure (a generalized design) on (X1 ,P(X1)) assigning

R v({x1}) = N(x1) dbservations to X, €X and generalizing N and

1 12...K1

S211 = °

is a Markov kernel from (X1 ,P(X1)) to (X2,X2 n ‘Ek ) representing for each
2

X

model indexed by X,
buted on X, and so generalizing d(x1)

€ X, a generalized design 52'1 (x1) = 6(x1) of the individual regression
€ X assigning how the N(x1) observation should be distri-

With this conditional representation of £ the information matrix for

% = (B,,8,)" has the following form:

1172

I,(c) = fa(x)a’ (x)€(dx) (10)

T
ZX1€_.X1v({x1})J'X2a(X1,x2)a (x4 /X)) 8 (A%5,%4)

which for different models, i.e. for differently aggregated a and B simpli-
fies the design problem substantially.



58

2.  EXPERIMENTS WITH QUALITATIVE AND CUANTITATIVE FACTOPS INTERACTING

2.1 Ceneral Intra Class Experiments

The extreme case of completely interacting factors can be described by
the following definition:

Definition

An experiment with K, cualitative and K, quantitative factors will

be called an experiment with completely interactinc factors when the number
of unknown, rarameters of the finite linear parametrization of its resvonse
function

r(x1)
ns: A.] x lx2 3 (X.] lxz) = T](X.] lxz) = ED=1 aX1p(X2) BX1D €R (11)
. _ . e _ .
precisely r = ZX1(_.X1r(x1) , i.e. if Bx1 = (Bx11""’8x1o(x1)) derends on

X1 € A.] .

The statistical analysis of two sirple examples of such experiments
have been discussed in Searle (1979) and referred to as intra class re-
gression experirents.

D- and A-optimum intecer valued designs for such basic models had been
characterized in Kurotschka and Wierich (1984)).

Here we follow the more general approach of Kurotschka (1981) which not
only gives ready to apply solutions to the main desion problems accociated
with such experiment but also throughs some light on some specific diffe-
rence betwenn A- and C-optimality criterion for a design.

According to the definition (2.1) the response function n of such an
experiment with completely interacting factors which from now on will be
called a general intra class regression experiment has the following aggre-
gated finite linear parametrization:

h'd - T
n: X, ox X2 E) (x1 ,x2) - n(x1 ,x2) = a (x1 ,x2)B €ER
with

a-(1{ a ;X.]GX.])al’ldB—(BX;X €X1)

SRS 1]

1

} is an indicator function on X2 assiging a, as regression vector
1 1
to the response function when the level cambination X, of the qualitative

where 1
{x

factors is present.
This aggregated form of the finite linear parametrization of n shows
immicdiately that

Tg(e) = Ip(tg @&y ) =10 € ) =

cliag(\)({x1})1B (6(x1)); X, € }{1)
*4
where
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Tg

(5x)) = f, a_ (x)a. (x,)s(dx,.x,)
b 2™ 2

1
is the information matrix of the design 6(x ) of the individual rearession
model indexed by X, c ).1

The prablem of finding D- and A-optimum deSJ.qns ¢ for B can know be
solved conditionally by determining v and é: The maximization of

for the parameter vector B .

r(x,)
_ 17 .
det IB(E) = det IB(\) ® 8) = Hx1e(1v({x1}) det IBy (5(,;1)) (12)
"1

and the minimization of

trace 151(g) - trace IE1(v ® §) = ZX1EX1(trace IE; (6(x,)) /v(ix, 1)
1

with respect to v and § has been solved in Kurotschka (1961) with the follo-
wing results:

& = Vp ® 6D is D-optimum for the whole parameter vector B in the class of

all generalized designs iff for each X, c X1

1) GD(X1) is a D-optimum design of the individual recression experiment
indexed by X, € X, for the parameter vector BX

1
r(x1) , where r, (x1) is as before the number of

1
2) vD(x1) = r(x1)/Z

x1FX1
components of 8
*1
Ep = Vp @ GA is A-optimum for the whole parameter vector £ in the class of
all generalized designs iff for each X, € X1:
1) GA(x1) is an A-optimum design of the individual recression experiment
indexed by X, € x1 for the parameter vector BX1
2y v (%) \/race s -1 (c%(x ))/Z \/trace I, = (%(x ))
AT €, x

1

Besides the fact that these results for general intra class experiments re-
duce the design problems to pure regression type experiments (so that cata-
logues of existing literature on regression experiments can be used to
provide examples) they also show how different the D- and the A-criterion
judge the difficulty of a statistical analysis of a regression experiment,
namely the D-criterion by the number of unknown parameters the A-criterion
by the square root of the minimal achievable sum of variances of the Gauss
Markov estimators for the unknown parameters. 0
Note that if one is only interested in a subset {BX RS € X1
1
the parameters than the corresponding D- and A-optimal designs can be cb-
tained by the above characterization of g respectively g replacing every

c X.]} of

X1 by A? in the above characterlzatlon, because for B := (B ,x1 € )xo) one

cbtains det I 0(E) and trace I 0(g) fram ( 11) by substltutmg 3’? for X.I .
B
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2.2 Experiments with partially interacting factors

Although the class of all intra class experiments is rather large and
highly relevant for practical nurposes (one has only to think of processes
modeled by the individual regression setups indexed by Xy ¢ X1 indicating

that they are highly depending on a combination x, of qualitative factors
influencing the performance of the considered processes) it may cuickly be
left in particular if cne statistically analyses such experiments dis-
covering that not all components of BX depend on X, SO that for further

1
investigations optimal designs are necessary which take into account that
the factors are not completely interacting.

The case when qualitative and quantitative factors do not interact at
all and which will be referred to as general analysis of covariance models
will be treated in the next section in rmore detail. The case of partial in-
teraction will here be only indicated by examples ¥hich I recently sug-
gested for investigation:

et X1 ={1,...,I} , i.e. consider one quantitatiwefactor with I diffe-

rent levels and let X2 = [-1,+1] a standard region for one cualitative

factor and consider experiments with response function (x1 =i 1 Xy = t)
n1(i,t) = Bi1 + th + B3t2
n2(i,t) = Bi1 + BiZt + 83t2
n3(i,t) = Bi1 + th + Bi3t2
ng(i,8) = B.y+ BiZt + Bi3t2

where Nyrny define the intermediate models between the analysis of covariance
type experiment with n = n, and the intra class regression experiment with
n =ng . (Further interesting models one gets for Bi1 = B1) .

Note that also the following practically highly relevant model is not
an intra class regression with

C (1) (2) (1,2) (1,2), r
n(i,,i,,t) = 6. + B, + B, + BTN v+ BT .
1772 0 i, i, 11121 1,1
Eere the interaction between the two qualitatiwe factors is described being
dependent on the level t of same quantitative factor.
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3.  GENERAL ANOCA EXPERIMENTS

3.1 Analysis of the design prablem and first optimality results

Traditionally one would say (in analogy to the notion in ANOVA) that the
qualitative and quantitative factors do not interact with each other iff
the response function n splits into two additive parts, one representing
the effects of the cualitative the other those of the quantitative factors:

n: Xy x %53 (x1,x2) - n(x1,x2) = n1(x1) + n2(X2) €R

In terms of the conditional representation and linearization of the model
equation this can be expressed by the following conditions on

T r(x,)
n(x1,x2) =ay (x2)BX = Zp=1 a, p(x2)BX 0 ,
1 1 1 1
namely
ax11 =1
and
ax12""’ax1r(x1) and Bx12""’Bx1r(x1) are independent of x1 € X1
so that
- r -
n(xy,xy) = BX1,1 I e BB = nglxg) 4o, (x)
By the following renumbering
Ay, F= ap_1 ’ sz:= Bp_1 and ry:=1r -1
and by taking into account that any n1(x1):= EX 4 on X1 has a finite (suit-
1 m
able, see appendix) linear parametrization, say B8, = (B..,...,8 )l
- 1 11 r
one cbtains: 1
1 2 T T
n(x1,x2) = Zp=1a1o(x1)B1o+Xp=1a20(x2)1320==a1(x1)B1 + a2(x2)ﬁ2 (13)

note that the representation n = Nty here is unicue by the recuirement

that 1 and ayqre
restricts oneself to "relfatively minimal Linear parametrizations" of the con-
ditional model equations,that is to linearly independent systems of func-
tions a Fenesd .
x11 X r

This an¢ the restriction to non degenerate designs has been made throuch-
out the whole made paper without loss of too ruch generality but hopefully
with sufficient win in basic understanding (althourh I ar aware that gene-
ralized inverses have soetimes an unresistable attraction).

vy are linearly independent on Xz which follows iff one
2
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The conditional representation of a generalized (but also an integer valued
concrete) design £ = 51 ® £2|1 allows now the following representations of

the relevant information matrices:

Ig(e) =1 B, (€ 8 £51q)

ol
a x| T

=% o J (2 0y) a5 () £, |4 (G5,%,) v (£, 3) (14)

X, €X X
1™ 2 a, (x2)

(
Ig (59) Iy

T

where

_ T _ T
IB1(£1) = J'X1a1a1d£1 = Zx1e{1a1 (x)ay(x ) v({x, D

is the information matrix for B1 of the design 51 = v (the marginal of ¢ on

X1) of the ANOVA experiment with response function n(x1) = a?(x1)B1 ,

T
I, (&) = aa,deg
B2 2 X, 272772
is the information matrix for 132 of the cdesign £2=ZX1FX.I £2|1(x1)v({x1})
(the marginal of £ on >:2) of the regression experiment with response function

_ T
n(xz) = a2 (Xz) 132 and

T,,(8) = fea, (x,)a5 (%)) £ (Q(x, %))

T c
Zx1CX1a1 (x1) J'Xza2 (x2) £y E (dxz,x1)v ({x1 1) . (15)
Anc from here one sees that

1

131(5) = 131(51) - 112(£)Ig2(£2)132(5)

_ T -1
T, () = Ig () = I,(80Tg (6)T15(8)  and (16)

: : T o)1)
Get Tp(5) = det I (5p)det(Iy (2)) =~ Tp(2) Ty (5 Tp5 ()

det I - det 132(5) = det I, (£) - Get I, (52)

()
By 1 2
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det IB(E)

B -1 T
det IB (£) —O.et(]:B (51) —112(5)13 (EZ)IQ(E»_det T (&)

1

T -1 T det IB(E)
det IBZ(E) =det(152(€2) —112(5)131 (51)112(5)) :&E—Im
1

and

trace 1_1(5) = trace I_'1(g) + trace 1—1(5) .
B 51 52

Because for any design &* with

x.22%83)7 = 0
2
it follows that
I (e%) = I (ex @ c%) ()

i.e. the design £¢* has the same information matrix as the oproduct of its
maraginals and

I, (6%) = T, (%), i=1,2,... (18)
1 1

i.e. the design &£* has the same information matrix for the parameter vectors
B‘I anc. B2 as its corresponding marginals g’%‘ resvectively 53 cne obtains

immediatly the following theoretically rather trivial but practically very
useful characterization of optimum desicn (which has been usec¢ in Kurotschka
(1981) to carstruct exanple, but not explicitly formulated because of its
cbvious validity):

Theoren

If a design 53 of the regression experiment with response function

n, = a'ng has the property

X2az(xz)gg(dxz) =0 (e "Symmetny of 53 w.r.t. a,

then (the following three statements follow fram ( 18)):

(1) IZff a design g# of some ANOVA experiments with response function
ng = a?&l is ¢-optimal within some class A1
of linear independent functionals of B1 then the product ¢* = 5’1" ® 5’2" is a

of designs for some vector 11)1

$—-optimum design of the ANOCA experiment characterized by the response

function n = a?ﬁ1
experiment for which the marginal 51 € A1 .

+ a‘gsz for w1 in the class of all designs £ of the AMNOCA
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(1i) 1ff 55 is in addition ¢ optimal for some vector by of linear indepen-
dent functionals of 132 in same class A, of designs of the above regression
experiment then for any design 51 of the ANOVR experiment the product

£* = 51 ® 55 is a ¢-optimum desian of the corresponding ANOCA model in the
class of all designs ¢ of the AlICCA experiment for which the marginal

£, €A, .

2 2

(iii) The product design &* = £* @ £% is ¢-optimal for ¢ = (w1,w2)T in the
class of all designs ¢ of the ANCCA experiment for which the marginals

19 A1 and £y € A2 iff 5? and 55 fullfill above condition (i), respectively (ii).

MNote

1) In the above statements @optimal stands for any optimality criteria
based on (the inverse of)the information matrix of a desian.

2) I am aware that classically the name ANOCA (Analysis of Covariance) is
referred to experiments where response functions n, are constitutec by con-
coritant variables.

Hevertheless the use of this name for the more general experiments as
regardea here is equally justified by the same formal arguments as in
classical literature,

3) The above statements hold for generalized as well as for concrete designs.
4) The validity of the theorerm is due to (18) and is obviously not entailed
by the design £* being a product design, i.e. ( 17 ). The role of product

designswill be discussed in the next section.

Mprlications of the theorem (Exarmles)

1) If a, is the vector of one dimensional projections on X, and X, is suffi-

ciently symmetric around 0 , such as a sphere, a cube, a simplex centred in
zero then D- ané A-optirum cesicms for 5., are known vhich are symmetric

w.r.t. a, (see rultidimensional linear regression in Fedorov (1972) , note

that the exanple in Kurotschka (1981) is of this tvpe).

2) Lore generally a series of "higher order factorial reqression" experi-

p Pr.
ments with regression function a. (x,) = x 1- et X, 2 of odd
2p 72 21 21(2
DOWers pg * ... * py constitute a large class of exarmles where in

varticular D-ontimal cdesigns which are syrmetric w.r.t. a, exist.

3) The system a, of trigorametric furctions constitute popular models

where the ecuidistant an¢  equiweightec designs are D- and RA-optimm and
symmetric w.r.t. a, and therefore define classes of AMNCCA nodels as exarvles
for the above theorer.
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3.2 The role of product design and further optimality results

To analyse the optimality of product designs, i.e. designs ¢ for which

52’1 is independent of %y c X1 , 1.e. £ = 51 ® 62 it seems to me suffici-

ently essential to concentrate on experiments with
(d) 1 qualitative factor and
(B) K qualitative non interacting factors (see appendix for justification).

In my paper 1981 I expressed my conviction (argueing heuristically) that a
restriction of optimality considerations to product designs is admissible.
The first formal proof was published by Dr. Wierich (1966b) for the case (3).
In the meantime there exist several rather general proofs justifying the
restriction to product designs (including the case (B)) at least when opti-
mality criteria are invariant with respect to linear reparametrizations of
the AIIOVA parameters B1 (such as uniform optimality, D-optimality and several

minimax-optimalities). Therefore it seems to be relevant to look closer at
my results on product designs in (1981) and same of its cbvious extensions:
According to the general formulas (16) one obtains more or less irmediately,
after simplifying

131(V) ja1dvja§d6\
Io(e, 8 Ey) =Ip(v®6) = .
[fa2d6fa1dv IB2(6) J
for the
@%(m:m:§={huun3x1=i»mu)=micm .
i=1,...,I
I, (v® 8§ = v(i)6,., = c(8)v(i)v(i")
B, i i'=1,...,I

with
T o1
c(8) = fa,dsI; (6)fa,ds
2

det IB1(v ® §) (1 —c(6))Hi=1\)(i) = (1-c(8))det IB1 (v)

(19)

et I (v ® 6) (1-c(8))det I, (v)det I; (6)
72

1

det Iz (v ® §) (1 -c(8)cet Iz (8)
2 2

Similarly simple one gets

trace T3 (v ® 8) = I - c(8)/(1 = c(8)) + I;_.1/v(4)
1
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Observing that
1 fajas

T
Ja,as ( Jajaras

det = (1 - c(8)) det J’azagdc‘s

and that
1 J'agdc‘s
I B ( 6) = T
[ B(')‘J Jajas  faj,a ds
L

is the information matrix of a design § of the regression experiment with
response function

_ T

np =Byt B v By
which Dr. Wierich called the pure regression part (and I preferably the
"augmented regression experiment") one gets Dr. Wierich's alternmative
representation (see (Wierich (1986b) and (1987)):

0

det I, (v ® 8) = I, (8)det Ip (v)
1 0 1
dt I, (ve 6 =detI () (20)
T
2 (BOIB’\)
L
det I (v ®8) = det 1° o pl8)det Iy (v)
(30152) 1

and

trace IE1(v ®¢) = (1 - Ig (sn/zg (6) + trace 151(v) i
1 0 0 1

Both representations show that product designs reduce the general design
problems to problems of designing pure ANOVA and pure regression experiments

but one has in addition to minimize c(§) = 1 - Ig (8)
0
also trace IE1 (v ® §) is easy to determine as direct calculations show:
2
_ T T.. _ -0
IBZ(v ® §) = fa,ayds - fajards = 152(6) .
Consequently one has
-1 0"
trace I, (v ® 8) = trace I (&) (21)
BZ Bz.
-1 I.c(8)

0 1 -1
trace IEZ (8) + T—ewy * trace I, (v)

1

trace I? (v ® §)
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The validity of ( 21) is in general equivalent to
faTdv 17! (v) fa,dv = 1 (22)
1 B1 1

which is txrue under general conditions on a1,su.fficient conditions which

can be generalized are given in Wierich (1987). For experiments with K, non
interacting qualitative factors, i.e.
K

CASE(B)'n'X=K1{1 I}Bx—>n(x)=z1a(k)
R I B e 1 1'% k

O €ER
=1 lk
with control parametrization identified by aék) =0,k = 1,...,K1 -1
k
one can easily prove the validity of ( 20 ) directly and so cbtain the same
formulas ( 19 ), ( 20 ) and ( 21 ) for this case only Ig (v) replaced by
1

{ 23 ) from the appendix. Here the formulas (21) for the traces of product
designs are less relevant because A-optimal product designs (in contrary to
the D-optimum) need not to be A-optimum among all designs.

Examples and counter examples investigated by Kiefer's and Fedorov's
equivalence theorem may be found in Wierich (1987).

4. APPENDDN: On optimum design of ANOVA experiments

The notions and results of this section represent (unless otherwise
explicitely stated) a short sumary of may papers (1967) and (1972) which
have been republished by parts in (1971) respectively (1978) and are in-
cluded here because of their restricted access and their relevance to the
discussed problems.

To study design problemsin terms of the information matrix the follo-
wing two ANOVA models seem basic to me:

CASE (A): Fxperiments with one cualitative rfactor.

Because an experiment with K qualitative factors completely interacting has
the same number of essentially unknown parameters (number of parameters of
a relatively minimum parametrization) as the number of different experi-
mental conditions X, €%,
upon (by renumbering the level cambination using for instant lexicographical
identification) as one factor experiment with I1 o Iz- ces -IK different

= XKk=1{1""'Ik} such an experiment can be looked

levels. The design problems remain essentially equally trivial.
By similar reasons and arguments one can justify the inportance of the
less trivial

CASE (B) : Experiments with K noninteracting qualitative factors.

If in an experiment with K factors one pair of factors ({say the first two)
interact then to the I1 . 12 different level combinations there correspond

I, - I unknown (essential) parameters which can be locked upon as effects

1
of one factor having I, - 12 different levels, the merged model is then a

1
(K = 1) factor experiment without interaction. The same merging of inter-
acting factors can be done if two or more disjoint pairs (or tripels and so
on) of interacting factors exist reducing the model to one with less but non
interacting factors. The consequence for optimum design will be seen to
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be obvious.

It is convenient to use a nonsymmetric control parametrization not only
because of their practical importance but also because it best discriminates
between the two basic optimality notions: D- and A-optimality, also because
of technical reasons, itis a relatively minimal parametrization:

UK . — (k)
n: xi=1{1,...,Ik} 3 Xy - n(11,12,...,J.K) = 2112:10(1]( €R
with the identification conditions: cxI(k) =0, k€ {1,...Kk1} .
Here we have k
BT = (Gf1) S ,Q£111 lﬂfz),... ,afK) ,..-,G(K) )
1 T
and
aT = (

Too cavreeorlis o avslis anrene 010 iipenasdes o 1)
{11—1} {11—11 1} {12~1} {J.K—1} {J.K—IK}

which are coordinate functions (1-dimensional projections) on X, so that

aaT is a matrix of two dimentional projections so that it follows that
Ig(v) = faaTdv depends on v only through

its two dimensional marginals v, 1<k<2<K.

2 14
Identifying the number N(i1 ’e- .,J'.K) of observations at the level cambination

X, = (i1""’j‘K) with N - v({i1,...,J'.K}) one obtaing for N - v written as

Ny o= M) x €X = % _{1,...,K)
[0y Npp N
7 _
NI (v) = J5(N ,...K) = N§2 D2 NZK ;Mg = (O (9 ) (23)
e

where the Nzk are matrices of the "second order totals" Nzk(iz’ik) , 1l.e.

the total numbers of cbservation with the 2'th and k'th factor acting at
level i ¢’ respectively 1k , with bars on the N ok indicating the deletion

of the last rows and colums subject to the control parametrization, and
the b are diagonal matrices having the "first order totals" N, i.e. the

total numbers Nk(ik) of observations with the k'th factor acting at level 1k .
Here too, in all of the Dk except DK , the last row and colum is deleted

subject to control parametrization.
By partial inversion formulae for matrices one obtains for ¥(B) =

A (1,
01.— (01 l...laI_1).



20K 12
JoWi2. . &) =Dy = MpreeasNyg) | : : '
=T =T
NZK' . .DK [N‘IKJ
and by Lagrange multiplier methods the main result:
A design N’;Z N is an uniformly optimal design for 0(1 in the class of
all designs with fixed first order totals N1 , iff the second order totals
* = rrk :
N1k , Kk 1,...,K of o K satisfy
N. (i, )N*(1,)
- 171"k 'k . .
N?‘(k(l‘]llk) = IR ~ B 11 = 1!---1I1 ’ lk = 1I'°°IIkI k=2,...,K;

i.e. if N#Z...K has proportional second orndern totals N1k s k=2,...,K,

i.e. if v* has proportional 2-dimensional marginals (to the 1-dimensiocnal v_l)

i.e. if the 2-dimensional marginals of v* of the first factor are product measures.
Note if the model results fram merging 2 (or more) interacting factors
to one then the corresponding uniform optimal design will have 3—-dimensional
marginals which are proportional to the two dimensional corresponding to the
two merged factors (see Kurotschka (1972/78)).
For uniform optimal designs for a; i.e. those with proportional

N’;k , k=2,...,K, one has an information matrix for oy

. N . _ . cyy1=1,.00.,1
JodNip ) = (N (D8;5, = Ny IN (3130 g 7777 00)
therefore D- and A-optimal designs in the class of all designs of total
sample size N one gets if the second order totals N, are proportional
to "D-optimal" first order totals defined by N’%‘(i) = N/I respectively to
"A-optimal" first order totals, defined by
N/(\/‘I1 R no, i = 1,...,I1 -1
* (4 =
N ; (11) {

N/V'I.I—1+‘I ,i1=I1 .

Cbserve that all these properties concerned with a, are campatible with the

1
analogue properties for OpreeesOp SO that one can speak of uniform optimal .

D- and A-optimal designs for the first L factors. But such statements are
obviously concerned with optimality properties of ch (v),.. .,IaL(v) not
1

with T T T » which has to be considered if one is cealing with

(a o, )
100200y
statistical procedures based on joint information matrix rather then the
partial. For the A-optimality this stronger result (minimizing the trace
of the joint information matrix) follows immediatly fram the partial results,
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for all . < K - 1 . The main new contribution of Wierich (1986) is that the
D-optimum design is one which is discribed above as a D-optimum for the
first L factors, namely the design with proportiocnal second order totals

ng » 1<k <L, Xk <2 <K and balanced first order totals Npseo s

L=1,...,K, or expressed in terms of vu:
v has uniform 2-dimensional marginals Vv, » 1 <k <2 <L and

vl=vk®v2’,1§k5L<lfK.

k

A last remark on critics and polemics against generalized designs in ANOVA
experiments:

It is in contrary for ANOVA-experiments reasonable and informative to admit
generalized designs, because N(x1) r X € X1 are seldam in practical problems

interpreted as number of repetitions, but more often as size of the experi-
mental unit (size of the field, amount of material of some given quality,
extension of some region or space,and so on) and implicitely determines

the unrestricted optimal allocation not disturbed by compramises of providing
intervalued M(:) , see for more details Kurotschka (1972b).
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DESIGN AND ANALYSIS IN GENERALIZED REGRESSION MODEL F

M.B. Maljutov
Moscow State University, Moscow, USSR

Classical regression analysis has two appealing features from the point of
view of applications:

1. Nonparametric nature: only two moments of measurements are supposed
to be known instead of rarely known distributions.

2. Linear or iterative linear estimates are used which are easy to compute
and analyze and which have some optimality properties.

Among numerous generalizations of classical regression methods (generalized
linear models, minimal contrast estimates, etc.) we wish to point out one model
which preserves both useful features of the classical model and at the same time is
much more flexible in applications. 1 mean the following F-model which - as an
intermediate step - appeared in estimating parameters of exponential family distri-
butions (Barndorf-Nielsen, 1978), as an asymptotic principal part of errors in
variable model (Fedorov, 1974), and was called "fitting expectations” in (Jennrich
and Ralston, 1979).

It will at first be introduced in its simplest form without some technical condi-

tions. Let measurements y4 € R! have distributions P:‘ (). z €X,i =1,.. N,
such that

Egyy = n{xy,9) )
Var y,; = v(x;,9) )
deO®cRrP

where 7(:) and v(:) are smooth bounded functions of z,¥. The only available
results are asymptotic when N » «. Thus we need a condition of the weak conver-
gence of the design measures:

ey = N2 1, ()=>e (3)

where ¢ is a probability measure on X.

The important asymptotic identifiability coundition of ¥ via 7n(:,¥) is crucial
which excludes situvations where a certain part of ¥’s components has influence
only on v ('), e.g., in the variance components model. The global identifiability con-
dition is as follows:

R(®,9) := [(n(z.8) ~ n(z,8"))?e(dz) >0 (a)

when ¥ # 1¥°, ® is compact.

When investigating the local behavior of estimates with a good prior guess
available it is sufficient to demand only the following condition

ST (@, %) Nz, ez, B)e(dz) := m (W) ()
is uniformly non-degenerate in 9, ¢(-) = dn()/ 69.
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N
In general "least squares” (LS) estimate argmin, 2 (y; — n(zi,'ﬂ))zv 1z ,9)
1=1
is not even consistent for F-model, but the slight generalization of the iterative
Newton-Gauss algorithm (NEGA) of evaluating LS estimate, namely the well-known
iterative reweighted NEGA (IRNEGA) reaches the lower bound of the local asymp-
totically minimax (AM) quadratic risk which we will state below.

We also give the lower bound for the procedure's (i.e. design combined with
estimate) performance and the procedures reaching this lower bound asymptoti-
cally are given.

Now we shall outline a general scheme for which our results are valid.

1. We consider multivariate measurements y; € ®™ fulfilling conditions
analogous to those indicated previously. This MF-model includes the variance com-
ponents (VC) model mentioned earlier (see Luanchi, 1983), estimation of grouped
data (Luanchi and Maljutov, 1984), etc. Let us explain e.g. the connection between
VC- and F-models. Let y = XB + EI=1Utet' e, be mutually independent n,-vectors
of i.i.d. components, Ee; = O,E'ei2 = 0. Then Ey =XB8,Covy = E[1 U} Uirof. Let
the third and fourth moments of ¥ be the functions of ﬂ,of, s ,of (which is the
case when the combined vector (yT,Vec vy T)T is described evidently by the MF-
model.

2. Almost all the asymptotic results for the MF-model are available for
sequential design (SD). The necessity of such a generalization was emphasized in
Silvey (1980). An informal description of SD is as follows. After each measurement
yn we get a decision based on Yy := (y4,....¥n) Whether to stop (N = n) experi-
ments. In this case a decision on the underlying distribution Pf, (in our case - an
estimate of ¥) is taken. Otherwise we choose a design point z, ,1(y}) € X and
make the following measurement y, , . We shall survey here only the case where

the conditional distribution of ¥, ,, for given y[ is P:"“ depending only on

z, +1(y'{'). It is clear that y'{‘ is no more an independent sequence, but the mar-
tingale technique (Maljutov, 1983), using consecutive centerings provides us with
sufficient information on the asymptotic behavior of estimates, including asymp-
totic confidence bands.

We omit here an accurate description of the measure Pf, on YV corresponding
to SD-s _ (see Maljutov, 1983). Some notations are needed:
Ny =E3N,f5 = [F5(v)P5(dy).

The static projection w3(:) of s is a measure on X such that for all 8 C z(o-
field of X’ subsets) n3(B) = ﬁ;l Z5-1P3(z, €B,k <N).

The predictable projection of s is a random measure on (X, z) such that for
allB czx

n§) =Ngt gl 1(z €B) .
1(4) is an indicator of the event A. The sequence s,, of SD-s is called asymptoti-

cally nonrandom (ANR) if H;" converge weakly to the nonrandom measure m,
(now we suppose X to be a complete separable metric space). The example of a
sequence of SD-s not being ANR is the following.

Let ¥ = (v, y @), x = {0}, y P be i.i.d. Py and ¥, be a probability of
jumping fromn ton +1is1/2 + 1/3sgn n. Irrespectively of the initial position
y.,.fz) - + = with probability 1/2. Now let N,,, =2m + msgn y,,(tz). Thus N =3m or
m, H.,,}O{ =3/2 or 1/2 with probabilities 1/2. If both the stopping time and con-

trols do not depend on noninformative chaotic variables and a sequence of SD-s is



74

adaptive then usually we have an ANR sequence. Limit theorems’ expressions for
such cases usually depend only on rr;. Asymptotic normality (AN) of common esti-
mates is usually true. Otherwise limiting information matrices are random and the
asymptotic distribution of common estimates is not normal.

The following two useful formulas generalizing the well-known Wald identities
for SD are extensively used in proving our results.

Lemma 1. i) If sup flg:(y)le, (dy) < = and supN4 < o then
EzN _0™(yn) =Ny [§5 n3(sz) @)
ii) If sup f(g],“lc (‘y))sz, (dy) < o, supﬁ,, < o and
Var 3 2,7:1 g:"‘,, =0
then
Var E,’!:ig:"(‘yn) =Ej E#uVarf,(g:"(yn)/ vi -1y

Letting 1% to vary over ® (e.g., being an initial guess, we denote by 19* the true
value of ¥. SD for F-model is described by the equations

ESe(yn |y ™) = iz, 9*)

_ a.e. whenN =2n , )
Covgu(yp |yT 1) = v(zy, 9*)

and regularity conditions from Maljutov, 1983. The lower bounds obtained there
are accurate for ARD sequences and may be made higher otherwise. To derive
such improved lower bounds we need the extra condition:

s
I,™ weakly converge random measure Il

We normalize SD s, by the condition ﬁ:’:‘ = m and consider two types of the
lower bounds for the quadratic risk. The first one is valid for the certain class of
iterative estimates and for any distribution P§ satisfying (2). The second type is
over any estimates but the additional supremum over certain class of distributions
PY is introduced.

Let us formulate the first lower bound. For any I; € Ry, Ay >0,% =1,...,p let
us introduce

RS (9) = E,*EN (1] (T(y, ) — 8%))?
where
T(y.8) = 9 + A9 (¥) 21 By(z) (yg — 1z, 9))
is an arbitrary linear in residuals correlation for ¥*. Let
B(r)={9 €eRP |9 —9*|?<r]
and

R(7t) = lim lim su mR ™ (8) .
™ c*wm*wﬂEB(cgm) )

Theorem 1. Under regularity conditions outlined

R(T)2E ﬁ) Adfmt,
1=1
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where m is the random information matrix:
m = [T (z,9%)v N (z, 9% )¢p(z,9*)[1y* (dz)
and the expectation is over distribution of I1z*.

Let us consider any estimates T of 9* such that
sup E||T|? <

over class X(7n,v) of distributions P;"j with the conditional means 7() and covari-
ances which are smaller in Loewner sense than v (-). Let

s
RS(c)= sup mES A (LT - 8))2
¢ deB(cem) ? ,Ep et
Theorem 2. Under regularity conditions outlined

lim lim B"™(c)=E 3 A\ 1fmi,

C +om 4w {=1P

Our last lower bound concerns procedures i.e., combined design and estimate.
We fix differentiable function ® of information matrices m, which is convex in
m1, & » + = when m approaches 4 degenerates matrix, ®&(m) =z ¢(m’) if m <m~’
in Loewner sense and ®(am) = a 1&(m), a > 0.

As a consequence of theorem 1 we have

Theorem 3. Under regularity conditions outlined

lim lim m sup Q(Ef,’!‘[('r(-,'l’) ~¥*)(7(-,9) —VI* )7']“1 2 ®(m ) = min &(m)
C +o M +oo deB{c/m)

This theorem justifies the intuitively obvious fact g-optimal static design is
also the best among SD-s. There is certainly a version of this theorem which

corresponds to theorem 2.

The usual two-step procedure:

- The first ém experiments (0 < £ < 1) are planned statically to provide (4)
which is sufficient for Vm -consistency of the LS-estimate ¥, for ¥* Jennrich
(19689).

- The remaining (1 —£)m experiments are planned statically with normalized
information matrix m,(d¥,). The first IRNEGA-estimate will provide us with
(1 — £)-efficient estimate for ¥=*.

I will not touch here asymptotic theory of IRNEGA-estimates for F-models
which is developed in Maljutov (1983). The only remark is that this theory is the
application of limit theorems for random fields, which is unavoidable when the esti-
mates are interated.

The participation of R. Matos Marino is acknowledged in proving Theorems 1
and 2.
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1. INTROD N

The design of experiments for parameter estimation gives rise to two different problems : first one has to
define the criterion to be used to compare experiments, second one has to optimize it. The availability of
algorithmic procedures intended to solve this optimization problem in a reasonably simple way thus appears as a
preliminary requirement for the practical use of experiment design. Classically the definition of the optimality
criterion is based upon the well-known asymptotic properties of maximum likelihood estimators. The most
commonly used criterion is the determinant of the Fisher information matrix, and an experiment that maximizes
this determinant is said to be D-optimal . This maximization can be carried out by using a specific algorithm
when one is interested in a design measure (Fedorov 1972, Silvey 1980), or by resorting to classical nonlinear
programming algorithms when one wants to optimize a discrete design.

When the model response is a nonlinear function of the parameters to be estimated, both approaches lead to
an experiment that depends on the (unknown) value of the model parameters. The most traditional approach
consists then in designing a D-optimal experiment for some reasonable nominal value of the parameters. An
important consequence of such an approach is that the uncertainty on this nominal value is not taken into account.
This has raised some doubts among experimenters about the practical interest of optimal experiment design.
Several approaches have been proposed to overcome this difficulty. One of them consists in designing experiments
in a sequential way by alternating estimation of the parameters and experiment design. Each estimation procedure
improves the information available on the parameters, to be used during the next experiment design. Sequential
design has been widely studied and applied in many situations (see e.g. Box and Hunter 1965, Fedorov 1972,
D'Argenio 1981, DiStefano 1982), and when feasible it can be considered as an efficient answer to the problem
raised by nonlinear models. However one is often faced with situations where a single experiment has to be
performed. Moreover, any sequential design can be considered as consisting of a series of single experiment
designs that have to be performed as best possible given the available information on the parameters. These two
reasons give a particular importance to nonsequential approaches, that aim at designing single experiments while
taking into account some characterization of the parameter uncertainty. For that purpose two methodologies scem
particularly atractive.

The first one is Bayesian and assumes the knowledge of the prior distribution of the parameters. The criterion
to be optimized is then the mathematical expectation of some classical non-robust criterion over the possible
values of the parameters (Fedorov 1972, 1980, Goodwin and Payne 1977). Each evaluation of such a criterion
requires the computation of a mathematical expectation, and this seems a tremendous obstacle to the practical use
of this approach. To design discrete optimal experiments, we propose a stochastic approximation algorithm that
enables Bayesian criteria to be optimized almost as simply as classical non-robust criteria would be. However such
an approach may lead to very poor experiments for some particular values of the parameters associated with low
values of the prior probability density function. When such a situation is unacceptable, one may prefer to
optimize the worst possible performance of the experiment over the admissible domain for the parameters
(Fedorov 1980, Silvey 1980, Landaw 1985). This minimax (or maximin) design only assumes that the
parameters belong to some prior domain, without any hypothesis on their distribution. Here again the
computational burden generally involved in minimax optimizations is an obstacle to the practical use of the
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approach. For that reason we describe some tools for designing discrete minimax optimal experiments at a
reasonable cost.

Section 2 briefly states the problem and defines the notations to be used. Section 3 presents some criteria of
optimality related to Bayesian design, some properties of the corresponding optimal experiments, and a stochastic
approximation algorithm intended to optimize Bayesian criteria. Section 4 defines the minimax criterion to be
used when Bayesian design is unacceptable. The particular case of exponential regression models, widely used in
the biosciences, is considered. An algorithmic procedure for the optimization of minimax criteria is described.

2. PROBLEM STATEMENT

Denote by y the N-dimensional vector of all available measurements on the process, 8 the p-dimensional
vector of the parameters 10 be estimated, and ¢ the n-dimensional vector describing the experimental situation (e.g.
sampling times, control variables...). Suppose that the measurement noise £* is additivewhite with zero mean and
a distribution f(g*) independent from the value of 8. Denote by y;,(8.6) the output vector of the model with

parameters 9, associated with the observations y. If there is no error in the model structure, a "true value” §* for
the parameters exists, such that

¥=ym@*o +£* 1)

Under some regularity conditions, the maximum likelihood estimator of @ based on y is asymptotically normally
distributed N(§* Mg~1(8* ¢)), where the Fisher information matrix Mp(8.¢) can be written as

Mp@.0) = X'(8.).2-1().X@e), @
where
X(@.) = dym(8.£)/08", €)
and
2 1@ =] 3 In f(e)3 . 3 In f(e)/RE". f(e) de. @)
If the noise is also supposed to be white, then Z(g) is diagonal and one obtains the well-known expression
N
ME@©.e) = X (1/w;).951i(0.£)/09. dyyi(0.)/08", Q)
i=1

where yy; is the ith component of yp,, and where w; is the ith diagonal term of X(¢) (for an additive white noise

N(O,cz), wi=0'2). ‘When yp,i(8,) is a nonlinear function of §, the Fisher information matrix depends on @, and the
classical D-optimal design consists in maximizing the criterion

jd(@.&) = det Mp(0.9), ©)

with respect to ¢ for a given nominal value of 8. The uncertainty on this nominal value is not taken into account.
The methodologies described in the following sections aim at removing the dependence on § by using some prior

knowledge on the possible values of §. Because of the large acceptance of D-optimality, we will focus our
attention on criteria based upon the determinant of the Fisher information matrix.

3. BAYESIAN DESIGN
3.1. Criteria

In order to describe the prior parameter uncertainty, the parameter vector § is supposed to be distributed
according to a known probability density function p(@). The knowledge of p(8) may result from previous
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experiments, or may simply express our uncertainty on the location of Q‘. Bayesian criteria of optimality then
correspond to the mathematical expectation of some functional of the Fisher information matrix (Fedorov 1972,
1980, Goodwin and Payne 1977, Pronzato and Walter 1985, Walter and Pronzato 1985, 1987, Chaloner and Lamtz
1986). Among the possible criteria that can be deduced from (6) consider the following ones.

An experiment ggq is said ED-optimal if it is associated with the maximum value over the admissible

experimental domain B of the criterion
jed(®.€) = Eglig@e)), 0
where jq(8.¢) is given by (6), and where Eg{.} denotes the mathematical expectation over the possible values of .

Definition 3.2.

An experiment gq4 is said EID-optimal if it is associated with the minimum value over E of the criterion

jeid®©) = Eg(1/j3(0.0). ®
In what follows the admissible experimental domain is supposed to be defined by
€imin < e'1 < e'imax- i= 1...., n, (9)

It must be noted that, except when the Fisher information matrix does not depend on 8 or when p(0) reduces to a
discrete measure with one point of support, ED- and EID-optimality are not equivalent. An ED-optimal
experiment maximizes the average value of a scalar measure of the information to be gained from the experiment,
whereas an EID-optimal experiment minimizes the average value of a scalar measure of the asymptotic parameter
uncertainty. As far as reducing parameter uncertainty is concerned, EID-optimality should be preferred to
ED-optimality (see e.g. (Walter and Pronzato 1985, 1987, Pronzato 1986) for a comparison between these two
criteria),

3.2. Propertics
Linearity with respect to some parameters. Even if they are nonlinear in the parameters, model outputs often

are linear in a subset of these parameters. The following theorem then extends to EID-optimal design a
well-known property of D-optimal design.

Theorem 3.1.
If the following hypotheses are satisfied:
H1: the model output satisfies

ymi®9 =gt @"o.0l, i=1,..N, a0
with
o= g™y, an

H2: the noise is additive, white, and distributed independently from 9,
H3: the linear parameters Ql are distributed independently from the nonlinear parameters _Q"l,
then the EID-optimal experiment can be obtained with all components of Q‘ fixed at 1.

Proof.
From H1 and H2 the Fisher information matrix can be written (Pronzato 1986)
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where Ip is the pxp identity matrix, Op is the pxp null matrix, up is the p-dimentional vector with all entries
equal to 1, D( Ql) is the diagonal matrix diag[el~,j = 1,..., p}. Taking H3 into account, one has

P
jeid(® = Egl( TT (81)2}. Egnl{det IMp(u;, 8™ 0)). (13)
j=1

The linear parameters Ql only appear in (13) as multiplicative terms that do not depend on ¢. The EID-optimal
experiment can therefore be obtained by minimizing Eﬁnl[det'lMl:(np,,Q“I&)]with respect to g.

Reparameterization of the model. Among the attractive properties of D-optimal design is the fact that a
D-optimal experiment is invariant with respect to any non-degenerated transformation applied to the model
parameters. Unfortunately this property generally does not hold true for EID-optimal design. To prove it, consider
a reparameterization of the model defined by A(9). The EID-optimality criterion for the estimation of @ can be
writien as

jeid® =Eq(det2(30Y/00).det IMEA(®) )], (14)

which generally differs from Eﬁ[derz(a&l/aﬁ)] .EQ{det'lMFQ,(ﬁ)&)]. Consequently the EID-optimal experiment

for ) generally differs from the EID-optimal experiment for §.
Remark. EID-optimal experiments are nevertheless invariant under any linear transformation (such as a
change on the units in which the components of 0 are expressed), for then 9AY34 is not a function of 9.

Replicated experiments. It is well known that D-optimal experiments often consist of replications of
observations made under the same experimental conditions. This property has received a great deal of attention (see
e.g. (Box 1968, Wynn 1972, Landaw 1980)). The following theorem indicates that EID-optimal experiments can
also be expected to consist of replications of some minimal experiment (see (Pronzato 1986) for examples).

Theorem 3.2.

Subject to regularity conditions, any experiment ¢* that corresponds to a stationary value of the criterion jg;q

can be associated with a parameter value Qeid(g*) such that ¢* also corresponds to a stationary value of the

criterion jg(8,;4e").©)-

Proof.

Deriving (8) with respect to ¢, one gets

dleid(€)dg| ex = Jg 3(1/jg(.0))/3e) | g+-P(8).d0, (15)
which implies the existence of Qeid(g*) such that

dieid(@)/de| g+ = I(1/ig(Qeig(e”) €)/08) | gx- (16)

The stationarity of jajq(e) at ¢* therefore implies that of jd(Qeid(g*)&_). Consequently when the EID-optimal
experiment is obtained for a stationary point of the criterion (8), this experiment is also a stationary point for the
D-optimality criterion for some value 94 of the parameters. Whenever this stationary point corresponds to the

optimum of the criterion (6), the EID-optimal experiment will present the same properties of replications as a
classical D-optimal experiment.

3.3. Algorithm

Stochastic approximation algorithms (Dvoretsky 1956, Poliak and Tsypkin 1973, Saridis 1974) are
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especially attractive for the optimization of criteria involving the computation of mathematical expectations. They
permit to avoid any evaluation of such expectations and thus to save a considerable amount of computational
time. The classical Robbins-Monro procedure, described here for the minimization of the criterion jgjq, can be

written as

0
gD = () 1K) = (der! MpO®, ))lg - o®). an
€
Whenever g(k"'l) does not belong to E as defined by (9), it is projected on its boundary. At each iteration k, Q(k)
is randomly selected according to the prior probability density function p(@) and A must satisfy some well
known conditions that are fulfilled by the harmonic sequence l(k)=oz/k. Since it is well known (and easy to check
experimentally) that the convenient choice for a is highly problem dependent, we have proposed a scaled
stochastic gradient algorithm, where the scalar A i replaced by the diagonal matrix

1 k 0
A% = 2® diag ((ejmax €jmin)/ (— T [— (et Mp@D )i 12)12,j=1,.... ) (18)
k i=1 de i
Note that A%) can be computed iteratively. This scaling policy ensures a greater independence of the behavior of
the algorithm from the problem considered. It implies that

(2 - ()
=+aq,i=1,..,n 19)

The convergence properties of the scaled stochastic gradient can be related (Pronzato 1986) to those of
pseudogradient algorithms, which are studied in (Poliak and Tsypkin 1973). The convergence can be accelerated by
changing the value of A& only when the product of the gradients at iterations (k-1) and k has a negative value
(Saridis, 1974). Examples illustrating the behavior of the algorithm can be found in (Pronzato and Walter 1985,
Walter and Pronzato 1985, 1987). Note that this algorithm could also be used to optimize other criteria based
upon the mathematical expectation of non-robust criteria over the possible values of the parameters. The choice of

the prior distribution p(8) can be made freely as long as one is able to generate parameter vectors Q(k) according to

p(®).
4. MINIMAX DESIGN
4.1. Criterion

The approach described in Section 3 designs experiments that are good on the average but can reveal very
poor for some particular values of the parameter vector associated with very low values of p(8). One might thus
sometimes prefer to optimize the worst performance of the experiment over the admissible domain ® for the

parameters. This minimax (or maximin) policy has already been proposed (Fedorov 1980, Silvey 1980, Landaw
1985), but the complexity of minimax optimization appears as a tremendous obstacle to the practical use of such
criteria. An algorithm intended to optimize these criteria in a reasonably simple way will be described in Section

4.4, The prior information on @ is limited here to the knowledge of the admissible domain ®. No hypothesis is
made on p(). A possible criterion for optimality that can be deduced from (6) is given by

Jmmd® = min [jg@e)]. (20)
0e®
Definition 4. (Pronzato 1986, Walter and Pronzato 1987)
An experiment g, 4 is MMD-optimal if it maximizes the criterion jp, mq(€) over B.
Equivalently, ¢ ;g satisfies
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€mmd = Arg [ max [ jg(8,,mq®o)1], @
¢ceB
with
9nma(® = Arg [ min [ j3@.e)]1. 22)
Qe®
4.2. Properties

As we shall see, MMD-optimal experiments can be shown to possess some properties that are similar to
those obtained for EID-optimal experiments.

i ity wi m m
Theorem 4,1,

If Hypotheses H1 and H2 of Theorem 3.1 are satisfied, and if
H4: The admissible space for the parameters is such that the constraints on QI are independent from those on Q"I,

then the MMD-optimal experiment can be obtained with all components of Q] fixed at 1.

Proof.

Takipg H1 and H2 into account, the Fisher information matrix can be written as in (12). From H4, the
MMD-optimal experiment can therefore be obtained by

P
emmd = Argl max [min [ T1 (6%)2). min [ det ME(up 8" )11, @3)
£eE Ql j=1 in
which implies
€mma = Arg [ max [ min [ det My(up, 6™, &))). @
eeB in

The search for a MMD-optimal experiment can thus be conducted in a parameter space reduced to Q"l. This will
result in appreciable savings of computational time when using a minimax optimization algorithm such as that
described in Section 4.4.

Reparameterization of the model. Contrary to classical D-optimal experiments, MMD-optimal experiments
are generally changed when a non-degenerated transformation is applied to the model parameters. To prove it,

consider a reparameterization of the model defined by A(0), and assume @ transforms into A.When estimating 9,
the MMD-optimality criterion (20) can be written as

immd(e) = min [ det2(9AY08).det ME(M8).2)) (5)
Qed

and, unless the transformation A(Q) is linear, the experiment maximizing (25) generally differs from the
MMD-optimal experiment for the estimation of A, that maximizes min [ det Mp(A.¢)].
ALEA
li xperiments.

Theorem 4.2,

(i) If the following hypothesis is satisfied
HS: §,,md(®) as given by (22) does not depend on g,
then the MMD-optimal experiment is D-optimal for this value of 9.

(ii) If the following hypothesis is satisfied
H6: ¢mmd is stationary and corresponds to a saddle point of the D-optimality criterion where jg is stationary in @,

then gy mg corresponds to a stationary value of the criterion jd(ﬁmmd(;mmd),g).

Proof,
(i) Trivial from (21)-(22).



(ii) Since g is supposed stationary,

ajd@mmd@s)/aal =0, (26)
€mmd

with Qmm d(_Q) given by (22). Equation (26) can also be written

aﬂmmd[@/aQI -0jd®emmd) /98
Smmd 9mmd®@mmd)
+9§d@mmdEmma)©)/ 9 9| =0 @n
€mmd
Since g mq is by hypothesis a saddle point solution where jq is stationary in §, one has
ajd(ﬁ&mmd)/aﬂ’ =0, (28)
9mmd©mmd)
and (27) reduces to
ajd@mmd(;mmd),e)/a;| =0 29)
€mmd

As a consequence of this theorem, MMD-optimal experiments will present the same property of replications
as D-optimal experiments do when the condition of part (i) applies. When the conditions of part (ii) are satisfied,
this will also be true whenever the stationary solution for 1d®mmd©mmd)-e) corresponds to the optimum.

The computational burden involved in minimax optimizations is a major obstacle to the practical use of
minimax criteria for the design of experiments. However it is sometimes possible to take advantage of the model
structure and the parameter constraints to transform the minimax design problem into a simple D-optimal design
problem. Such a situation is met when theorem 4.2 part (i) applies, and the MMD-optimal experiment is then
obtained by maximization of the D-optimality criterion j3(@u, 49- For a given model structure and a given

admissible domain ®, the first question to be answered therefore is whether or not H5 is satisfied. We shall see in
the next section that this is true for a large class of exponential regression models.

4.3. Exponential regression models

Exponential regression models play an important role in physics and in the biosciences. For that reason the
results that we recall now seem of special importance.

Theorem 4,3. (Melas 1981)

Suppose that hypothesis H2 of theorem 3.1 is satisfied as well as
H7: the ith model output is given by

P
¥mi@0) = E 0 exp (- 6™¢), (30)
=1
where e; is a scalar characterizing the experimental situation for the ith measurement (for instance the ith sampling
time),
H8: the admissible domain for the nonlinear parameters _Q“l is given by
®nl = _Q“le RP| enlls enlmax- enlj_ 9“1j+1 > }‘j' j=1,..., p, 31

nl
where 8™, and the kj are known,

then for any experiment g with at least 2p measurements 8, - + given by (22) is such that

p-1
1 1 1
-inmmd = (enlmax- 6™ max- A1, 8™ max- A1+ A, M max "Z lkj . (32)
J:
If the conditions of theorem 4.3 and H4 are satisfied, then theorem 4.1 applies. Consequently theorem 4.2 part (i)
applies too, and the MMD-optimal experiment is obtained by maximization of the classical D-optimality criterion
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for the parameter vector @p‘, inmmdt)tv where inmmd is given by (32). Note that this MMD-optimal

experiment will present the same property of replications as those observed on D-optimal experiments.

If for some exponential regression models it is posssible to transform MMD-optimal design into a
conventional problem of D-optimal design, the minimax optimization problem has generally to be handled as
such. Next section presents an algorithm intended to optimize minimax criteria at a reasonable cost.

44. imization of minimax criteri

There are rather few general-purpose algorithms for solving minimax problems. Most of them are restricted
to situations where one of the two vectors involved belongs to a finite set of values. They therefore do not apply
here where both @ and ¢ belong to infinite sets. Shimizu and Aiyoshi (1980) have proposed a relaxation procedure
involving the iterative construction of a set of representative values for one of the two vectors (here 8), and the
solution of a series of minimax problems where @ is restricted to this finite set of representative values. The

initial minimax (here maximin) problem (21)-(22) can be viewed as the maximization, with respect to g, of the
scalar B subject to the constraint

min [ det M(@.8)) 2 B. (33)
Qe®

Inequality (33) is equivalent to

det Mp(0,¢) 2B, V0E€®, (34)
and the maximin problem is an optimization problem with respect to ¢, subject to an infinite number of
constraints. The procedure relaxes the problem by taking into account a finite number of constraints only. The

algorithm can be summarized as follows:

Step 1: Choose an initial parameter vector ﬂ(l), and define a first set of representative values

s = gDy, (33
setk=1.
Step 2: Solve the current relaxed problem
¢®) = Arg [max [min [det MR@)]]l. (36)
ceE Qe S(k)
Step 3: Solve the minimization problem
8%+ = Arg [ min [ det Mp(@.6®)]1. an
ge®
Step 4: if
det MEO®*D, ¢y > min [ det Mp@.e®))] -8, (38)
8e sk)

where 8 is a small predetermined constant, then stop and consider (Q(k+1). ¢®)) as an approximate solution
of the maximin problem. Else, include Q(k+1) into the set of representative values,

sk+1) _ glk) U( Q(k+1)], 39

increase k by one, and go to step 2.

Shimizu and Aiyoshi have shown (1980) that the procedure terminates in a finite number of iterations when
the following assumptions (often satisfied for minimax design problems) hold:

H9: det Mg(6,¢) is continuous in 9, differentiable with respect to ¢, and with partial derivatives continuous in ¢,
H10: the admissible experimental domain E is compact, and such that

E=(¢e RNIci(e) <0, i=1,..., q}, (40)
where the c; are differentiable with respect to ¢, with partial derivatives continuous in g,
H11: the admissible domain for the parameters is nonempty and compact.
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It must be noted that if one has to stop the procedure before the terminating condition (38) is satisfied, an
approximate solution is nevertheless obtained, that satisfies a condition similar to (38) with a constant &' > 8.
Steps 2 and 3 require an optimization to be performed. Since the functions involved are not necessary unimodal
(and it is possible to find very simple examples where they are not), their global optimum must be determined.
The use of a global optimizer is therefore necessary. The implementation of such an algorithm, based upon an
adaptive random search strategy, is described in (Pronzato et al. 1984).

5. CONCLUSIONS

EID- and MMD- optimal designs appear as two complementary answers to the problem of experiment design
for estimating the parameters of a nonlinear model.

If it is acceptable to perform poorly for some unlikely values of the parameters, an EID-optimal experiment
can be chosen, which will ensure good performances on the average. The representation of the prior uncertainty on
the model parameters must then be probabilistic. If poor performances are unacceptable, MMD-optimality is to be
preferred. This requires a deterministic representation of the prior uncertainty on the parameters.

A stochastic approximation algorithm has been described for the optimization of the EID-optimality
criterion: it makes EID-optimal design almost as simple as classical D-optimal design. There are special cases of
importance where MMD-optimal design transforms into D-optimal design. For other situations where the
minimax optimization problem cannot be avoided a relaxation procedure has been described: an approximate
minimax solution is obtained after a reasonable amount of calculations.

Both methodologies could be extended to the design of discriminating experiments, and to sequential design.
For the later problem the method for updating the information after each estimation phasis would depend on the
methodology chosen. When EID-optimality is used, each estimation phasis should provide a more accurate

description of the distribution p(Q) of the model parameters (see e.g. (Steimer et al. 1984, Sheiner and Beal 1980)

for a procedure for updating p(@)). On the other hand, when MMD-optimal design is used, each estimation phasis
should provide a more accurate description of the admissible domain for the parameters. Methods recently
developped for membership set estimation could be used for that purpose (Belforte and Milanese 1981, Walter and
Lahanier 1986).
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OPTIMAL DESIGN FOR NONLINEAR PROBLEMS

D.M. Titterington
Department of Statistics, University of Glasgow, Glasgow Gl2 8QQ, Scotland

1. INTRODUCTION

This paper provides a brief overview of some of the difficulties that
arise in the implementation of optimal designs for nonlinear problems. The
major source of difficulty is that the optimal design itself is a function
of the true values of the unknown parameters, 6. As a result, the correct
optimal design cannot be specified at the outset. In practice, a variety of
strategies might be attempted, including the following:

(i) Choose a static design that is optimal for some prior guess at the
values of the parameters.

(ii) Implement a sequential design, in which the allocation of later obser-
vations is modified on the basis of up-to—date estimates of the unknown
parameters. Within this class of designs, it is convenient to distinguish
between batch-sequential designs, in which the design strategy alters at
comparatively infrequent intervals, and fully-sequential designs, where the
parsmeter estimate and design strategy are updated after every observation.

One of the main points we shall make concerns the difficulty of valid-
ating interval estimation procedures within sequential design procedures.

The plan of the paper is as follows. Section 2 gives a taste of the
scope of nonlinear problems, Section 3 outlines the optimal design theory
that betrays the difficulties, and Section 4 comments on the problems of
inference based on data from sequential design. A problem involving the
estimation of a nonlinear function of the parameters in a linear model is
discussed in Section 5 and Section 6 reports on part of a larger simulation
study.

Although many references are cited later in the paper, it is appropr-
iate to refer to Ford et al (1987) for a much more extensive review of the
topic.

2. THE SCOPE OF NONLINEAR PROBLEMS

The starting point of our discussion is the regression model
Y =n(6;x) + e, (1)

in which Y is a response variable, n is the regression function, 6 contains
k unknown parameters, x is a set of design variables and the error e has
zero mean and variance o2, Errors on different observations are assumed
uncorrelated and, in some circumstences, 62 = 02(8;x).

A canonical form of the usual linear regression model has constant o2
and

Y=aTx+e. (2)
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So far as optimal design is concerned, the following all constitute
nonlinear problems.

2.1. DNonlinear response function

This class of problems, in which n(6;x) is a nonlinear function of 6,
is exemplified by many of the models used for reaction rates in chemical
kinetics. For example, with k=2, the formula

n(g;x) = Gl{exp(—egx) - exp(—elx)}/(el— 62)
is used by, among others, Box and Lucas (1959), to model a reaction of the
form A - B + C. In the model, x represents time and n the concentration of
substance B.

2.2. Linear regression with nonconstant variance

In this class, n(6;x) = GTx, but o2 depends on 6 and x.

2.3. Linear regression, but interest concentrated in a nonlinear function
of the parameters

An example of this, studied by Ford and Silvey (1980), is provided by
the quest for the stationary point in a "quadratic" regression model. To
be specific, we have

2

Y = elu + 82u + € , -1 gucsgl, (3)

with constant 02, and interest is concentrated in

g(8) = -91/262 .

Another example is provided by the problem of inverse regression in simple
linear regression.

2.4, Quantal response

In the simplest version of this, binary response, we have

Y = 1 with probability n(6;x)
= 0 otherwise. T
Specialising further, the case n(8;x) = F(87x), in which F is the
logistic distribution function, provides the linear logistic model. In its
simplest version, eTx = el + 62x. For this case, interest may lie in
estimating © per se, or in, say, the pth quantile of n(6;x), defined by
1,1
u, = o, {F “(p) 61}.
Finally, in this Section, we comment that the broad areas of the
identification of econometric models (Papakyriazis, 1978) and dynamic

systems (Titterington, 1980) are also sources of nonlinear problems, in the
context of this paper.

3. OPTIMAL DESIGN THEORY

We start by introducing some notation. We define I(6;x) to be the
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Fisher Information matrix associated with an observation Y at x, and we
denote by M(8;£) the per-observation information matrix associated with a
design measure & on the design space ¥. Thus

M(83E) = j I(63x)E(ax).

For exponeitial family problems with the structure given in (1),
1(63x) = {62(03x)} Tyn V',

where (Vn)T = (an/ae e an/aek). In the case of (2), of course,
Ho36) = 02T (4)

For the binary response problem,

I(63x) = {n(l—n)}_an(Vn)T-

We denote by Z the class of all design measures on ¥.

The relative merits of different designs are typically judged on the
basis of a scalar criterion, ¢(-), defined on the class, M, (6), of informa-
tion matrices. In what follows, we suppose that ¢(:) is a real-valued,
concave, isotonic, positively homogeneous function, defined on NND(k), and
that ¢(-,-) denotes the Fréchet derivative associated with ¢ . Specific
choices for ¢(-) are associated with D-, A-, E- and c-optimality (Silvey,
1980, Pukelsheim and Titterington, 1983). The following general equivalence
theorem provides alternative characterisations of a $g-optimal design, which
is a design, £*, such that M(0;£¥*) maximises ¢(M), for M & M. (o)

Theorem (Whittle, 1973, White, 1973)
The following are eguivalent
(1) ¢{M(0,£)} is maximised at M(6,£%).
(ii) o{M(6,£*), M(6,6)} <O for all te E .
If, also, ¢ is differentiable at M(6,5%), (i) is equivalent to
(iii) o{M(e,£%), I(8,x)} < O for all xe ¥.

In principle, the theorem is useful for checking whether or not a
proposed design is optimal, and for motivating sequential design procedures.
In terms of the latter, two possible algorithms are as follows. In both of
them {6 } denotes a sequence of estimators of 6, where en is based on n

observatlons, at x . xn, which constitute 4 design En

15 e-
Algorithm A : Choose X 41 to maximise ¢{M(?n,€n+l)}.A
Algorithm B : Choose X to maximise ®{M(en,€n); I(en’xn+l)}' (Steepest

ascent direction.)

The need to base sequential design on up—to—-date estimates of 6 betrays
the fundamental difficulty created by nonlinear problems, namely, the depend-
ence of the correct optimal design, and the applicability of the Theorem,
on 6 . Only in the linear case (c.f. (4)) does 6 disappear. Of course,
non-sequential designs can be used, by assuming a prior guess, 8 , for 6,
or by adopting a prior density, m(8), for 6, and then basing all analysis
on the averaged optimality criterion . where

o (€) = j $1M(8,£)) m(s) as;

m

see Lauter (197k).

ki, GENERAL QUESTIONS ABOUT SEQUENTTAL DESIGNS
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Given that we resign ourselves to the need to choose the sites of our
observations sequentially, thereby creating a sequence of design measures,
{En}, and an associated sequence of estimators {Sn}, based on, say, maximum

likelihood estimation, three crucial general questions arise.
Ql. As n » «, does én > ST, the true value of 8, in any sense?

Q2. As n + «, does M_ = M(8_,& ) » M(8,_.,E¥), where £¥ is a correct optimal
R n n’’n T

design?

Q3. Suppose there is, in the case of prespecified (non-sequential) design,
a procedure for generating exact or approximate interval estimates for
8, or functions thereof. Can the procedure be used safely with data
generated by sequential design procedures, thereby effectively ignoring
the fact that the design was generated sequentially in such a way that

data Yo s ¥y largely dictate the choice of Xn+l?

With regard to Q1 and Q2, the crucial gquestion is Ql, in that, if én
is consistent, then Q2 will generally follow by a continuity argument.

To illustrate the non-triviality of Q3 consider the very simple example
of linear regression through the origin. (Although this is clearly not a
nonlinear example, it adequately brings out the present difficulty.) Thus,

Y. =8x, e, 1i=1,2, ... (5)
with e; ~ N(0,1), independently for each i. Let 6, be the least squares {or
meximum likelihood) estimator of 6, based on n observations. Thus

A P

en = ZYixi/in A ;6)
and, 1f the Xi are determined independently of the data, en ~ N(e, l/Zxi ).

As a result, exact confidence intervals for © are easily obtained.
Suppose, however, we generate the Xi by the sequential design algorithm:

x; =1, x; = Yi— s, i=2, ... . Then (6) still provides the maximum likeli-

1 1 ~
hood estimator for 86, but the distributional result for en is no longer true

exactly. Of course, the combination of model (5) along with the above
design algorithm constitutes an AR(1) model: our problem can therefore be
regarded as one of making inferences for stochastic processes; see Lai and
Siegmund (1983), and Ford et al (1985) for a parallel discussion in the case
of a more general Normal linear model.

For this example, we have remarked that the sequential nature of the
design does not affect the identity of the maximum likelihood estimators,
but it does, or might, affect interval estimation. Ford et al (1985)
comment on another parallel to be drawn, in terms of this phenomenon, with
the problems of making inferences from incomplete data (Rubin, 1976).

In these problems the distribution of en, conditionally on the design

achieved sequentially, is typically quite unlike its distribution were the
design prespecified: see Ford and Silvey (1980) for empirical results and
Ford et al (1985) for very simgle examples. In many cases, however, the

unconditional distribution of en does appear to allow the use of standard

approximate interval estimation recipes. In fact, it does not seem appropr-
iate, from a fundamental point of view, to make inferences conditionally on
the sort of sequential design we envisage using. After all, we hope that
the limiting design might be the correct optimal design. As such, the
design itself should tell us something about 6 and is therefore not
ancillary.

The answers to questions Ql-3 have as Yyet not been obtained in any
general sense. However, we now present some reassuring evidence for the
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cases of Sections 2.3 (for which theoretical and empirical results are
available) and Section 2.4 (for which much of the work has been empirical).
Other results, related to Section 2.4, appear in Wu (1985a).

5. LINEAR REGRESSION, WITH INTEREST IN A RATIO OF PARAMETERS

We recall Ford and Silvey's (1980) interest in estimating the turning
point of the quadratic response curve subsumed in (3). The objective is to
minimise the approximate variance (generated by the usual, Taylor—-expansion
argument of g(en), where g(8) = —61/262. It turns out that this leads to a

c-optimality criterion, in which the vector, c, is Vg(6) and is proportional
T . . .
to (1, 2g)°. Thus, the optimal design depends on the ratio 61/62. Whatever

value this ratio takes, the support points of both the optimal design and
the sequential design generated by Algorithm B are concentrated at u = + 1.
The nonlinear nature of the problem makes itself apparent in that the
optimal weights depend on 61/62. When |el/62| = 1, the optimal design turns

out to be degemerate, concentrated on a single point (u = +1 or u= -1).
Ford and Silvey (1980) provide confirmatory answers to questions Q1 and Q2.
So far as Q3 is concerned, they provide encouraging empirical results in the
form of coverage rates, for the cbvious asymptotic 95% confidence interval
for g(6), in Monte Carlo experiments. However, theoretical backing was
provided later, in Wu (1985b), to confirm that, asymptotically, at lemst,
the answer to Q3 was indeed "Yes". It is important to remark that the key
to the theoretical results in both papers was to concentrate on the pure
error process {ei} and to use standard limit theorems.

In an attempt to answer Q1-Q3 at a more general level, Wu (1985b)
considered the estimation of a nonlinear function, g(6), within the linear
model defined by (2), but without the Normality assumption. The validity
of standard, asymptotic interval estimates follows provided

)M (6 - 0) » o22(x), (7

in distribution, as n + «, where Mn is the per-observation information matrix

6 - 8
n(en

from n cbservations. Wu (1985b) points out that, provided the errors {e;}
form a martingale difference sequence, conditions on {Mn} laid out by Lai

and Wei (1982) are sufficient to guarantee (7). Unfortunately, the nature
of these conditions makes them difficult to verify in practice. That they
are not necessary conditions is illustrated by the fact that they do not
hold in the example of Ford and Silvey (1980)!

6. EMPIRICAL RESULTS FOR THE "DILUTION SERIES" MODEL

In this Section, we outline the main findings of a Monte Carlo study
that was designed to compare the performances of various design strategies.
More extensive discussion is provided in Ford et al (1987) and in the
unpublished, University of Glasgow, Ph.D. Thesis of C.P. Kitsos.

The study is based on the "dilution series" model of Fisher (1922).

We treat it simply as a binary response model, with

p{Y = 1|x) = exp(-6x) = 1-p(Y = O|x).

Estimation of 8 is the objective of the experiment.

The optimal design is a degenerate measure at x = 1.59/6. We report
results for a set of 1000 simulations, with sample size N = 100 in each run.
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The following design procedures are compared in the present paper.

Pl : Static design, with all observations at x = 1. 59/6 , where 6 is an
initial guess for 8.

P2 : Batch-sequential design, with two batches of 50 observations, and
en obtained by maximum likelihood.

P3 : Batch-seguential design, with four batches of 25 observations, and 6
obtained by maximum likelihood.

PL : Fully sequential design, following an initial batch of 5 observations,
and with én updated by the appropriate version of the following general

stochastic approximation algorithm at each stage:

~ _ 2 -1 A
801 = 0+ (nM(8 58 )Y Uy 1% 6 ).

n+l
Here, U ylx,e is the score function associated with a single
observation.
When the level x is altered in methods P2, P3 and P4, the procedure
adopted was to take X 41 = 1'58/én

The true value for the parameter was 8, = 3.18 and compariscn was made
among three choices for the initial value eo, namely, 2.20, 3.18 and 7.15.

To avoid divergence in PlL, én was constrained within the interval (1.37,

199.70): for detailed explanation, see Ford et al (1987, Section T).

. The Table presents the sample average, 0, of the lOOO reallsatlons of
SN, the estimated mean squared error (EMSE) of eN, the "asymptotic" approx-—
imation to var(éN) and the empirical coverage rate (ECR) of the standard,
approximate, 95% confidence interval for 6.

TABLE Results of simulation study (true & = 3.18)

Procedure 60 ) EMSE var(éN) ECR
P1 2.20 3.2k 0.20 0.17 0.950
3.18 3.20 0.17 0.16 0.952

7.15 3.00 0.20 0.20 0.952

P2 2.20 3.25 0.22 0.17 0.945
3.18 3.20 0.15 0.16 0.950

7.15 3.24 0.20 0.20 0.955

P3 2.20 3.24 0.20 0.17 0.9L46
3.18 3.19 0.16 0.16 0.950

7.15 3.23 0.19 0.20 0.946

PL 2.20 3.21 0.16 0.17 0.955
3.18 3.21 0.15 0.16 0.960

7.15 3.2k 0.17 0.20 0.953

In general, the results were reassuring, with acceptable coverage
rates and EMSE's close to the values in the var(6,) column. It has to be
said that two of the runs for P2 and 60 = 2.20 were discarded because of

"3ivergence" and that, in this case, the sample skewness and kurtosis of §
indicated clear non—-Normality. The simulation study reported on in Ford
et al (1987) is much more extensive, but reinforces these general remarks.

N
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REGRESSION ANALYSIS






LEAST MEDIAN OF SQUARES FOR UNMASKING IN TRANSFORMATIONS AND MULTIPLE

REGRESSION

A.C. ATKINSON, IMPERIAL COLLEGE, LONDON, U.K.

1. INTRODUCTION

The purpose of this paper is to summarize some recent work on the use
of robust regression for detecting multiple outliers and groups of
influential observations. The two situations studied are multiple
regression and transformation of the response in a linear model.

Methods based on the deletion of single observations are effective if
there is only one outlier. But sometimes when there are several outliers,
single deletion methods fail to reveal all, or even any, of these. In such
examples, the outliers are said to be masked. Of course, if the presence
of several outliers is suspected, it is theoretically possible to consider
deletion of all m-tuples of a given size. However the combinatorial
explosion of possibilities rules out an exhaustive search. For example, if
the_number of observations n=30, deletion of all sets of 4 observations
leads to evaluation of 27 405 combinations.

As a tractable alternative for a regression model without transformation,
Atkinson (1986a) suggested a two-stage procedure. The first, exploratory,
stage uses least median of squares regression, a robust method which resists
nearly 50% of contamination in the data, to identify potential outliers and
influential observations. As a result of the robust anmalyst the data are
provisionally divided into n-m 'good' observations and m 'bad' ones. 1n the
second, confirmatory, stage, standard single-deletion regression diagnostics
are used to check the n-m good observations. To investigate the properties
of the m deleted observations Atkinson (1986a) developed addition diagnostics
which measure the effect on the analysis of the data of reintroducing deleted
data points one at a time. These methods are described slightly more fully
in Section 2.

The extension of this two-stage procedure to transformation of the
response in a linear model is described in Section 3. The example studied is
the parametic family of power transformations indexed by a scalar parameter
X. For the exploratory stage Atkinson (1986a) suggests the use of least
median of square regression over a grid of A values. Plots of the robust
residuals as A varies are informative about departures from the model. The
confirmatory stage is concerned with the influence of individual
observations on inferences about A. The two measures used are the
approximate score statistic for the transformation (Atkinson, 1973) and the
quick estimate of the transformation parameter (Atkinson, 1982). Examples
of addition and deletion versions of both statistics are given in Section 3.
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2. LEAST MEDIAN OF SQUARES REGRESSION

In this section a brief description is given of the exploratory use of
least median of squares regression for the detection of multiple outliers.
A book length treatment is provided by Rousseeuw and Leroy (1987).

Suppose that the majority of the observations follow the standard linear
regression model

E(Y) = XB, (1

where the n x p matrix X consists of the known values of the p carriers
which are functions of the explanatory variables. The errors are assumed
additive and independent with constant variance o?. T

For the parameter value b let the residual A T b. Then two
criteria for the choice of b are:
Least Sum of Squares Regression: min Z ri2
b
Least Median of Squares Regression: min median riz.
b

The intention of least median of squares reqression in the presence of
outliers is to fit a line to the 'good' observations whilst revealing the
'bad' observations as such.

The numerical method used to find b is a form of random search. If the
rank of the regression model is p, samples of p observations are taken, to
each of which, except for singular samples which are abandoned, the
regression model can be fitted exactly. Such samples are called 'elemental
sets'. Sampling with calculation of the median of the non-zero residuals
continues until either a stable pattern of residuals emerges, or until there
is a specified probability, for a given level of contamination, of obtaining
at least one elemental set which consists solely of 'good' observations.

For the Jth elemental set let the residuals be .5 at least p of which

’

will be zero. If the elemental set giving rise to the minimum median squared
residual is denoted by T, then

2o : 2 _ . . 2
ry = median ri. = min median r?y (2)

NT J NJ

where NT and NJ are the number of non-zero residuals, usually n-p. As an

estimate of o? Atkinson (1986a) suggests s? = F;. The estimate is used to

provide standardized least median of squares residuals ;i = r.T/g.
i

Fig. 1 is an index plot of the standardized residuals T. for the stack
i

loss data introduced by Brownlee (1965, p.454). There are 21 observations
and } exploratory variables, to which a first order model is fitted. Ta
obtain Fig. 1, 1,000 elemental sets were sampled. The four observations
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FIGURE 1 Brownlee's stack loss data: index plot of standardized least
median of squares residuals ..

forming the resulting optimum elemental set are marked in the figure by
crosses. The plot clearly indicates that observations 1, 3, 4 and 21 are
outliers and raises doubts about observation 2. This analysis agrees with
that of Andrews (1974) and with the least median of squares results of
Hampel et al (1986, pp 330-2). Atkinson (1986a) illustrates, for this
example, the evolution of the robust residuals with the number of elemental
sets sampled. A very full analysis of the stack loss data is given by
Daniel and Wood (1980, Chapter 5). Atkinson (1985, § 12.4) summarizes this
and other analyses.

The result of Rousseeuw (1984) and of Atkinson (1986a) show that least
median of squares is an excellent exploratory tool. However, the estimates
of the parameters of the linear model have poor properties and a second,
confirmatory, stage is required. Rousseeuw (1984) uses the least median of
squares estimate as a starting point for robust regression using M estimators.
To check the n-m 'good' observations Atkinson (1986a) uses half-normal plots
of deletion residuals and of modified Cook statistics to which simulatian
envelopes are added. These least-squares regression diagnostics are
described in the books of Belsley, Kuh and Welsch (1980), Cook and Weisberg
(1982), Atkinson (1985) and of Weisberg (1985, Cap. 5 and 6). The addition
diagnostics for the effect of adding back in each of the m deleted
observations are described by Atkinson (1986a).- Examples are given, for the
stack loss data, of the analoques of residuals and of modified Cook
statistics.



100

3. TRANSFORMATION OF THE RESPONSE

Quite different diagnostic methods are required when transformation of
the response is investigated. Again the strategy is in two stages, explora-
tory and confirmatory. As an example we consider the parametric family of
power transformations analysed by Box and Cox (1964). In normalized form
this is

) = G - /A (A # 0) (3)

= ylog y (h =0

where y is the geometric mean of the yi- The hope is that there is some

value of the parameter A for which the transformed observations will satisfy
the linear model (1) to an adequate degree.

For the normalized transformation (3), with the assumption of normal
errors, the loglikelihood of the observations, maximized over the parameters
of the linear model, is given by

Lmax(k) = -(n/2)[1 + log{2nR(A)/n}]. (4)
In (4) R(X) is the residual sum of squares of the z(X) given by
ROV = 200 (T - Hz(W), (5)

where the hat matrix H = X(XTX)_1XT. The maximum likelihood estimate of A
is the value X for which the profile loglikelihood Lmax(x) is maximized.

To unmask information about the dependence of the estimated
transformation nn several outliers. Atkinson (1986a) uses a plot of the

least median ot squares residuals ot z{(A), denoted ;l(k), calculated for 21

values of X between -1 and 1. Changes in the pattern of the residuals as A
varies are indicative of potential outliers and leverage points. Fig. 2

is such a plot for an altered version of the poison data analysed by Box and
Cox (1964). The original data consist of the results of a 3x4 factorial
experiment with 4 replicates per cell, in which the response is survival
time. There is strong evidence of the need for a transformation and the
inverse transformation is indicated. To show the effect of a single outlier
we fellow Andrews (1971) and alter Y20 from 0.23 to 0.13. As a result, the

likelihood analysis indicates the log, rather than the reciprocal,
transformation.

Fig. 2 shows that the effect of the changed observation is not apparent
from the robust analysis at A=1. The largest least median of squares
residuals belong to the largest observations. But, as A approaches -1, the
robust residuals all become small, with the exception of that for the altered
observation 20 which increases in magnitute to -17.13. The next greatest
residual in magnitute is -3.99 for observation 35. The plot clearly
indicates the anomalous nature of observation 20.
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FIGURE 2  Altered Box and Cox poison data: plot of robust residuals ;i(X)
against A. O altéred observation 20.

As a result of the exploratory plots of Fi(k), of which Fig. 2 is an

example, up to m observations may be suspected of being outlying. The
influence of these observations on inferences about A is checked in the
second, confirmatory stage of the analysis.

Hypotheses about the value of X can be tested using the approximate
score statistic T _(XA) introduced by Atkinson (1973). For confirmatory use,

the statistic is evaluated from a fit of the model to the n-m 'good’
observations. To check the effect of deletion of each of these observations,
the statistic Tb(i)(k) can be used, in which the effect of deletion is
estimated. Similarly, the effect of adding back into the analysis each of
“~e m deleted observations can be estimated from the addition diagnostic

TP[i](x) described by Atkinson (1986a). Related addition and deletion

diagnostics for A, the quick estimate of the transformation parameter, are
described in the same paper.

As an example of the confirmatory stage of the analysis we use the
record times for 35 Scottish hill races listed by Atkinson (1986b),
together with the distance of the race, in miles, and the climb in feet. For
the calculations in this paper, the time for race 18, which is 3 miles long,
has been corrected from 1 hour 18 minutes to 18 minutes.

Analysis of the transformed data using least median of squares shows
that observations 7, 11, 33 and 35 have large positive residuals. The plot

of ?i(X) against A given by Atkinson (1986a) shows that, initially, the

residuals decrease as A decreases. The score statistic for all 35
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observations and the plot of the profile loglikelihood Lmax(x) both suggest

that the square root transformation, A=0.5, is appropriate. However, the
confirmatory analysis reveals the importance for this conclusion of some of
the suggested outliers.

~

Tp(i)(1)
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FIGURE 3 Corrected hill racing data: index plot of approximate score

statistic TP(i)(1)'

Fig. 3 is an index plot of the deletion estimate of the score statistic
TD(i)(1) for the hypothesis of no transformation. For all observations
Tp(1) = -6.24 and there is strong evidence of the need for a transformation.

However, the_ plot shows how important observation 7 is to this conclusion.
If observation 7 is deleted, Tp(1) = -3.17, close to the value of the

estimate in Fig. 3. Fig. 4 shows the index plot of the quick estimates

X(i)(1) and K[i](1)’ collectively called Xj(1), which is centred

around 0.79. The plot reveals not only the importance of reintroducing the
deleted observation 7, but also the importance of observation 33,. which was
previously masked. The implication is that if both observations 7 and 33
are deleted, there will be no further evidence for a tramsformation. Fig. 5,
in which both observations have been deleted, does indeed show that all the
evidence for the transformation, as measured by the approximate score
statistic Tp(1), depends on observations 7 and 33. The same conclusion
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FIGURE 4 Corrected hill racing data: index plot of quick estimate Xi(1);
observation 7 deleted.
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FIGURE 5 Corrected hill racing data: index plot of approximate score

statistic Tpi(1); observations 7 and 33 deleted.
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follows from the plots of the profile loglikelihood as observations are
deleted given in Atkinson (1986a).

These examples show the use of the two-stage procedure in which an
exploratory analysis using robust regression is followed by a confirmatory
analysis based on least squares diagnostic methods.

Further examples involving transformation of the response are given by
Atkinson (1986a). Atkinson (1986b) gives plots of profile loglikelihoods
for several examples, including those of the present paper. In these
examples the plot of the robust residuals as A varies is more informative
than the plot of least squares residuals as a function of A. But, when the
observations come from a balanced design, established diagnostic methods
based on least squares provide the required information with appreciably
reduced computation. These methods, for transformations, include those
based on added variable plots (Cook and Weisberg, 1982, § 2.4; Atkinson,
1985, Chapters 6-9) and on measures of the effect of deletion of single
observations (Cook and Wang, 1983; Atkinson, 1985, § 12.3).
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CONDITIONED ESTIMATORS OF NONLINEAR FARAMETERS

Henning Lauter, Berlin (GDR)

1. INTRODUCTION

The estimation of nonlinear parameters is of special
interest in different fields. Mostly in nonlinear estimation
problems it is tried the statistical methods known for linear
parameters to use in a direct way also for nonlinear problems.
We point out that it is necessary to include the special form
of the nonlinearities into the estimation procedure. We
discuss the conditioned estimators derived by l.Aauter (1984)
and give a computational procedure for these new estimators.

2!

- ESTIMATION QF NONL.]

Let F be the distribution of a variable veé R . On the
basis of an observation of y we will estimate the parameter
AP .
As examples for N we mention:

1. Let ﬂ ""’Ph be distributions in RP and M, peneamy

be positive integers. For a function ¢ and for P=(F’1 ,...,Fk )
we define

b

m
A(P)=S...I?(x“ R L g ) P R R L ) 1T' T Pi(dxij)' (1)
! k=1 =1

For instance the error rate for misclassification in the
discriminant analysis is of this type (Lauter (198%5)).

2. For the variable y¢ R™ the representation
k
=X+ E , Be R

holds where X depends nonlinearily on 3. Here X(F)=3 is to be
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estimated. Especially growth curve models are of this type,
e. g.

4 ,
exp(B3 ti Y+ €., t.€ R, i=1l,...,n. (2)

Yi =B1 +03 . :

2

-

3. For the variable ve R™ the linear model

y=X@+ € , B €R"

holds and A(F)= ’L(B) for a nonlinear functicwnftis to be
estimated.

There are several principles for estimating A(F). One of
the frequently used methgds ig the'~ substitution procedure.
Here one estimates F by F, and A(ﬁ‘) is the estima&g for

MNP, In some other cases one defines an estimator X in an
implicite form. Especially in nonlinear regression one computes
the least squares estimator (l.s.e.) 6 for 3 by

A 2 2
ly—X 3] =min | y=-X(B) |
3
A A

and one uses B or f&ﬂ?) as the estimator for XA(F). In some
other situations one takes the U-statistics as an estimator for

A(F). For this we assume that in (1) ¢ is symmetric in each of
the k tupels xg, ""’xinu;’
of the distribution Pl . niﬁma we define

1

A
A= - E WYy aeraaY e aY, . geeeaY )
L A ki
c 1 4 "m‘ LJ.‘ Mk

i=1,...,k. For samples yi1 ,...,%nl

where the summation goes on all indices with

3 <3 Y oeeat ] senw gl <1 A | .
1 2 "‘)_ 1 2 "y

The ¢ denotes the number of such different sets of indices:

ny, Ny

m, mk
The asymptotic behaviour of these estimators is investigated
extensively. Ibragimov & kKhasminski (1981) and Lauter (1985)

proved the asymptotic minimax property of the substitution
estimator and the U-statistics for functionals (1), The l.s.e.



108

in nonlinear regression is strongly consistent under general
conditions. Jennrich (126%) and Bunke & Schmidt (1980), Wu
(1981) showed this for a compact space for the nonlinear
parameter. Lauter (1987) gave results for unbounded nonlinear
parameters. The nonasymptotic behaviour is of special interest.
A simple example was given by Lauter (19846). We considered
i.i.d. normally distributed variables Y, 1o Ya with Y~
N(G, 4 ) and A(F) =e B is to be estimated. The maximum
likelihood estimator (m.l.e.) is

R 1 n A 4 _

A= — Z Y. =y We have E e P =g p e i . For v 1s a
n i=1 ¢ ~ A A

sufficient and complete statistics the A = e pl““A is the

best unbiased estimator for A(F). Moreover i=e ﬁ"fﬁ has

A

the minimal mean sgquared error in the set {g eﬂ : Q€ R:& - In
this case we see that K has a smaller variance than e B and
additionally Y is unbiased. Therefore in some situations the
usually uwsed m.l.e. or l.s.e. can be improved as in the
variance as in the bias.

We mention as another example an exponential model. We assume
the model (22 2ith N EFVT(O,GZ). One finds by simulations
that the m.l.e. B, , B, , GS vield biased estimations for @3,

4 k]
B, » By - As an example we give the values for n=6&4, t6 =~t4n
=5, ty ==---tz =3, t~ =-*t3 =1,

2 1 ) ) ) ) o~ - A
G ==, Bl =1.0, Bz =2.0, BS =~.3%. Une gets Eﬁf .873, EBL
4
fad A A A

=2.11, EB, =-.301, var @,= .35, var Qﬁ .52, var GS= . 004,
The quite large bias of the B‘ and ﬁz is disturbing. But

how one can improve these estimators ? The problem consists in
the general definition of an appropriate estimator in nonlineat
situations.

3. CONDITIONED ESTIMATORS

The concept of conditioned estimators gives a good approach
for nonlinear parameter estimations. The idea to this method
comes from some stability demands on the estimators.
Definition 1: Thg\estimator l is called conditioned unbiased

o
estimator w.r. to A= \(y) and ] if

- n is a random variable in k™ with E(q)y)=0,
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n N ~ n .
- far all Ye € R there is a Y, € R with
3 " N ~ A
E { )&(yo +'l) I y=y°} = /\(yo) (3)

~ ~

A
- the estimator X is defined by X(yo )= )\(yo ).

Definition 2: The estimator X has a conditioned minimal mean
squared error if all conditions in definition 1 are fulfilled,

only (3) is replaced by

Fal ~ . N ~
B ¢ ATt )= AP C A + )~ AF)) | Y=y, }

~ N
=min E{( X(z*-q )= AR ( X(x*—q Y~ X(F)Y)Y | y=y } . (4)
N °

z€R

Example: We consider as above Yi =fi+ §; y & ~ N0, 1) .
A ~
i=1,...,n and )(P)=e‘z, A =P, Let 1 be independent of vy
~ ~
and 1~N(O,I) then X\ =exp( - %R ) is a conditioned unbiased
A - A

estimator w.r. to A and X =exp(ff - {% ) has a conditioned

~
minimal mean squared error. We remember that these estimators X
and A were best unbiased resp. optimal in the mean squared
distance. Moreover it holds

~ 2 -
ECX ~ePo? ce(3-ebP)rr |, gcx-ebP® e(X-eh)?

In this example we see that these conditioned estimators are
better than the m.l.e. We remark that for linear estimators in
linear models the BRBLUE i coincides with the conditioned
estimators.

For the computation of the conditioned estimators it is
convenient to approximate the conditions (3) and (4). Far
instance we approximate E {i(?o +n) | y=y°} by

1 1
[ ~ N -,
E{X(yo +|l)|y==y°}~— Zr\(yo + rl“ )
1 i=1
] 1) . . .
when " 1eens Y are realizations of 7 . Sometimes one

substitutes y, +a instead of ;; and then we have
~ 1 1 . )
. ~ i -
E{ A, +'l)| y=y°},~.— 2 Ay, +a+ - (55)
1 i=1
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Up to now the distribution of 1 was known but not fixed. In
general this distribution should be data dependent. For y+
describes lentS around vy the conditioned estimators include
the behaviour of X around X(y).

4. DATA FITTED CONDITIONED ESTIMATORS

We pointed out that for est1mat1nq A(F) the substitution
method gives the estimator l” )(F ). Now we genetate 1
subsamples of the given sample and denote the corresponding
estimations of F by P=W ___ _ p=ll If yta is considered
instead of y then the estimations of Pa (distribution of y+a)
are F:--;(l)’ .. ,F-nall.) .

Pefinition 3: A data fitted conditioned unbiased estimator
w.r. to i is )(£~ ) where a fulfils the condition
1 1 &
- ¥ A (ph W y= APy, (6)
1 i=1 o

Here we study the variation of A in the neighbourhood of g
without any additional conditions on random varlablps Ry re-
sampling we generated "new" distributions around F and insofar
this X(ﬁa. ) is a data fitted conditioned estimator.

Example: We consider yi =E+ E;,E;“N(Q, ql), i=1,2 and A(F) =P,
If we use the subsamples Y, ;yz A then the data fitted
estimator is defined by

23
) Y

3= :

eV 4aVr 4o Y

~ 2
One finds O E(e )(F)) ~ECX -~ A(F)) and this tends to e
for I3 — ®

A general result was given by Lauter (1986) . There was
proved that the U-statistics is a data fitted conditioned
estimator.

S. COMPUTATION QF A DATA EITTED CONDITIONED ESTIMATOR

. oD Bt W
Now we use the representation Xy Y= A(F® \)) where Yy
is the sample generated by our resampling method. Then (6)
goes over in the condition
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11, G e A
— Y Ay'MeD= Ay, (7)
1 i=1

- . . o~ . . -
For the determination of a we use a modified Gauss—Newton-

~
procedure. We denote ):(a)= jL— X (a) and follow the next

Qo
steps: ot

1. Starting with an initial vector g 1 compute

1
. . +
Y4 A Q] ~ ),
a1 ~a0+1 [ 2 ﬁk(y +a°) S f4(y rao)] -
i=1

1 1 1
A A
I op oW rapn[ Ney= = 3 My Ylea]
jm=] 1 j=1
2. Determine y‘ such that
1 ! ~ A 2
C D M N “)+ao+f(g1—a°))— A(y)) =min
1 i=1 A

2]

~
a, —-a°+ [ (a“ —a, )
4. Repeat the steps 1. to 3. with a, instead of a. and s. o.

Here A* denotes the Moore—-Fenrose—-Inverse of the matrix A.

For this computational method it is possible to prove a
convergence result (similar to Hartley (1961)). The so con-—
~ ~ N
structed sequence a, 18, ,... coOnverge and a,—» a, a fulfils
(7). This procedure yields a data fitted conditioned estimator
A
if M\ is given explicitely.
Some modification is necessary if we will find a data. fitted
estimator in nonlinear regression. We assume that the

regression model depends on the particular subsample:

v = x W) gy, g (8)
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A -
i=1,...,1. We denote the l.s.e. for B in (8) by 3% ar

d
a(y\“ ). With G d)(B)='—— X lt)(B) we compute
dan
1
= z g Wl W,y (F W,
i=1

and let 51 be the eigenvector of [' to the largest eigenvalue.
Then we determine such ¢ that

11
_ Aoy i) ~ A r
( S Wy +¢ 8, 1-Byn” =min
1 i=1 3
and put
— o~
AT A

A\
Now we denote by fz ) such parameter which fulfilsg
o

G (i Wy (y W aax VD (GFW =0
o o
and define
1 N
.. s IS A <
Par=Y 6V 3 W) th (g iy,
. 1 o o
1=

Then let 51 be the eigenvector to the largest eigenvector of
f(a,) and we determine such 7. that
1 1
- ¥ Gy va, +¢ 3, ) =B (y)) ¥ =min
1 i=1

holds. Now we put

a =a + ¢ 3
2 1 1 2

and repeat this procedure by replacing a, instead of Ry .

Again the convergence of this procedure can be proved.

Example: We consider the exponential model (2) with the special

values for B, ’Bz ,B, and t1""’t6 given in section 2. Here

3
aone obtains

A=(.7329, .2532, .0505, -.0265, -.0486, —.0485)°
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The mean squared error (MSE) of the l.s.e. computed with the
corrected observations y+3 is about 15 % less than the MSE of
the usual l.s.e. This shows the large statistical advantage in
using the conditioned estimates in such exponential models.
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Resampling Codes and Regenerated Likelihoods

S.-M.Ogbonmwan, University of Benin, Nigeria
R.J.Verrall, University of London, Goldsmiths’ College, England
H.P.Wynn, City University, London, England

1 Imtroduction

This paper continues the work by Ogbonmwan and Wynn on the use of resampling
and restricted reference sets to obtain simulated likelihoods for complex statistical
models. These are particularly relevant when distributional properties are poorly
specified but some parametric modelling is required. Comparisons are made with
the normal theory likelihood for some simple autoregressive models.

In a previous paper Ogbonmwan and Wynn, 1987 (OW) sketched a theory of
likelihood generation in semi-parameter models which showed itself applicable to
two sample, regression and autoregressive models. We introduce here, along with
the method in that paper, a further method in which whole alternative sample
paths may be generated. We shall give some examples comparing the two methods.
Relevant recent work is by Davison, Hinkley and Schechtman (1986).

2 The Likelihood

The technique in OW is as follows. Starting with a data set
z=(21,...,2n)

we assume that there is some parameter dependent transformation

¥, = go(z) wherey, = (y1,...,9m)s.

If 0 is a ‘true’ value of the parameter we assume a kind of exchangeability
assumption. That is, we look at all y* vectors in a ‘reference set’ S() obtained
from the original y, by ‘expansion’. Thus S (6) may be all bootstrap samples or all
versions of y, obtained by sign change.

For each y* € S(f) we compute a statistic T'(y") or alternatively resample from
S(0) to obtain a resampled set of T'(y*) values. This set will have an empirical
distribution F} (t), which may, if so required, be smoothed to obtain a density fr(t).
The hat in both cases denotes the fact that we have used empirically generated
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values. The likelihood, which we denote by L; (a second version will be given later)
is .

L:{8) = fr(f)
where { = T(y,) is the statistic evaluated from the transformed raw data.

The rational for this is that if t is a rough sufficient statistic whose distribution
given @ is reflected by fT(t) then indeed L, will be roughly proportional to the
true likelihood (by Neymann factorization). This method is reconstructive with the
engine of reconstruction being the assumptions about S(8). Special choices of S(f)
are referred to as resampling codes.

For certain models a more objective version of the process may be given by trac-
ing backwards from S(8) to reconstruct alternative samples for z. Thus relabelling
S(8) as Sy(9) alternatively construct an S;(8) by an inversion. If y* is a typical
member of S, (#) we reconstruct z* by an inversion -

2‘ = g—l(g‘)
The tilde over g denotes the fact that §~! may not be the precise inverse of g in all
cases. The reversion may lose dimensions, or some entries in £* may be fixed. This
will become clearer in the examples. The z* are to be considered as alternative
samples that ‘might have been produced’ if # were the true value of the parameter.
For each z* we then compute the value of a statistic, T(z*), and procede as above
to construct fr(t) and the alternative likelihood

Ly(8) = fT(t‘)v

where { is now T'(z), the value for the raw data. We assume that §~(gs(z)) = z,
so that the raw data can be reconstructed precisely and that therefore z € S;(9).

The ease with which one can reconstruct the sample z* depends on computa-
tional efficiency and also any initial assumptions fed into the construction of §~.

The implementation of the procedures (to construct L = L, or L3) has as its
starting point storing § on the computer and procedes to construct L(#) for the
stored value. The technique, in the construction of L; particularly, is thus similar
to that of Diggle and Gratton (1984) for implicitly defined likelihood. It differs
from more traditional bootstrap methods in that simulation takes place for a range
of 8 values rather than at an estimated value §. Method 1 (Ly) is particularly
powerful for large complex models which allow some degree of exhangeability after
a parameter-dependent transformation and also a data reduction implied if the
dimension of y is much less than the dimension of 2. We believe that a likelihood
is a proper output for a large scale simulation in which different input parameter
values for 4 are used.

If the y* are chosen uniformly from S(@) then the reconstruction gives a distri-
bution for the z* which is uniform on S,(#) = §~'(S,(9)). The construction of an
exact low dimensional sufficient statistic is hampered by the discrete nature of this
distribution and the finiteness of its support. The full randomisation likelihood is

1
—Prob(z* = z|o).

B
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Usually this is equal to  since §7'(y) = z and is therefore uninformative. We wish
to replace this by
Prob((a”) = t(2)le)

with the probability now evaluated over fT. Thus the summary statistic t and the
smoothing step become critical. In non-parametric theory the smoothing step is
not used (see discussion in OW).

3 The Autoregressive Model
We revisit the autoregressive model considered in OW. The AR(1) is written
Xg"an_1=€t, t=1,...,n.

Here the {e;} are usually assumed to be an independent sequence with constant
variance. Suppose now we have observations zy,...,z,. We ‘store’ ¢ and generate

fe=x—ax_1, t=1,...,n.

If o is the true o then the {y:} are a set of true residuals. We perform resampling
on the {y:} (for the stored value of @) to produce B vectors

g:, = (y;a--'ay;)'

Notice that the dimension of y* is one less than the dimension of z = (o, ..., 2,)
We may consider examples of the two methods described above. In OW we look
at

TRyt oyt
T, (y.) — :—1 —13
B 2 ?)?
The alternative is to produce sample paths by constructing
n==x, xi=oazi_;+y (=1,...,n)

This is the ¢! transformation mentioned above. We then calculate
Zﬂ z‘ lx‘
D(y") = Fetins
- 2i(a)?
In either case we can construct a likelihood by looking at a (smooth) distribution
filtile), i=1,2
and setting

Notice that f3 is merely
Z. 1 Ti—1%i

a=
Dy 1l at

the usual maximum likelihood statistic.
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In the examples below we resample by simple bootstrap with sign changes giving
(2")! possible samples. We smooth by merely letting

fi)=ghe-d<e<e+a,

for the range of stationarity —1 < ¢ < 1. Here d is a suitably chosen constant and
data was generated by sampling the &; from a normal distribution with n=32.

We compare L,(a) and Ly(e) with the exact Normal theory likelihood, L(a).
The regenerated likelihood L4 exhibits better behaviour. The likelihood L, behaves
strangely outside the interval [—1,1] showing that T} may not be the appropriate
statistic. Both T} and T, are approximately sufficient for o for large samples and
show robustness for non-normal errors. It would be fairer to compare L, and L,
with the likelihood based on the asmptotic distribution of &, which is normal or the
more accurate saddlepoint approximation given in Phillips (1978) (see also Durbin
(1980)). This will be the subject of a further paper.

The following figure compares the cumulative versions of the likelihoods L,,L,
and L for one data set:

x10~1
12,

10,
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The following table compares the behaviour of L, and L, outside the [-1.1] range:

@ L, L, o |Ly L,
-20 (0 0 053 0
-19 |0 0 065 2
-1.8 10 0 073 1
-1.7 (0 0 0.8|3 1
-16 |1 0 091 0
-1.5 |1 0 1.0} 2 0
-14 |0 0 1.1 2 0
-1.3 1|0 0 1.2 | 2 0
-1.2 10 0 1.3 |4 0
-1.1 (0 0 1.4 |3 0
-1.0 |0 0 1.5 |2 0
-09 |0 0 1.6 | 2 0
-08 |1 0 1.7|3 0
070 0 1.8 |3 0
-06 |1 0 1.9 3 0
-0.5 |1 2 20 (5 0
-04 |0 1 215 0
-03 3 1 222 0
-0.2 |5 2 235 0
0.1 |6 7 24 |1 0
00 |11 11 25|17 0
01 |10 11 262 0
02 |5 8 2713 0
03 |6 3 28 |6 0
04 |5 4 29 4 0

4 Conclusions

The likelihoods L, and L; in the general case are seen as alternatives to both the
exact distribution theory likelihoods and likelihoods based on bootstrapping a single
fit. For complex problems basing the statistic T on a transformed data set may be
the most convenient. For simpler problems we advise reconstructions of alternative
sample paths (method 2) and use of approximately sufficient statistics. The latter
is an open problem as is the choice of statistic for method 1.
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FLAT GAUSSTAN NONLINEAR REGRESSION MODELS

Andrej Pézman
Mathematical Institute SAS, CS-814 73 Bratislava,Czechoslovakia

1., INTRODUCTION

Tn the paper presented we consider gaussian nonlinear
regression models, close to linear ones but still evidently
nonlinear. Such models are called flat models. Every univaria-
te nonlinear model becomes flat after a suitable reparametri-
zation (Proposition 3); there are also many nontrivial examp-
les of multivariate flat nonlinear models. The aim of the
present paper is to show that nonlinear least squares estima-
tes have in flat models very good nonasymptotic statistical
properties.

1.1 The model

Let ¥y, ..., Yy be observed data and let us denote by
Y = (Yl,..., Yn)T the observed vector. The considered nonli-
near regression model is of the form

Y =908 +&
& ~ N(O,Y) (1)
6 e ®cr®

where ?(9) 1s the systematic part of the model (= the mean

of ¥)," &is the gaussian error with the variance matrix 3,

O is the vector of m unknown parameters 91,..., .-

Regularity assumptions:

i) The variance matrix I is nonsingular.

1i) The parameter space & is connected and it is open
in R%, N

iii) The response function :® PR has continuous second
order derivatives 32?(9)/ 28, 393 for every 8e®,
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iv) The vectors 3?(0)/39 , ...,)?(9)/98m are linearly

independent for every #¢&.
The (Fisher) information matrix M(8) is equal to

_ o8 1 ins)
M, 5(9) ._77%— s -,%3— . (2)

It is nonsingular because of the assumption iv).
The model is linear iff »(#) is linear in the variables
91, e+ 8 . Evidenily, M( 8) does not depend on # in linear

models. The last property motivates the following definition.

Definition 1: The model (1) is flat iff the information
matrix M(P) does not depend on @ .

Under a reparametrization of the model (1) we understand s
twice continuously differentiable mapping B(8) which is defi-

ned on ® and which is regular (i.e. det [3/3/99T] 0 ;(0e ®)).

Definition 2: The model (1) is potentislly flat iff it is
flat after a sulitable reparametrization.

2. PARAMETRIC PROPERTIES OF FLAT MODELS

Another equivalent definition of flat models is connected
with the lencov - Amari o -connections presented in Amari
(1985). It can be easily shown that the coefficients of
o-affine connections given in Amari (1985) Eq. (2.27) do not
depend on o in the model (1), and they are given by the expres-
sion on the left-hand side of Eq. (3) given below.

Proposition 1. The model (1) is flat iff

2,7 -1 by
9°7(8) 5~ _%_(m = 0 ; (i, 3, ke{l, ve., m}) (3)
aaiaaj b,

for every ¢ ® .

The proof can be obtained by differentisting the right-
hand side of (2).

To measure the influence of the choice of the para-
meters on the nonlinearity of the model, Bates and Watts (1980)
introduced a three-dimensional array measuring the parameter
effect nonlinearity,

[_)21('1‘(9)/&01393.]}: eps (1, J, ke{l, ..., m}). Here e, are

orthonormal vectors in the tangent plane to the expectation

manifold
4 :={7(0) : 8¢ O},
(ef. also Ratkovsky (1984), chpt. 2.4).
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Proposition 2. The model (1) is flat iff the array of
the Bates and Watts measures of the parameter effect nonlinea~
rity is zero.

Proposition 3. Every univariate model (dim # = 1) is flat
after a sultable reparametrization.

The proof is based on the simple differential equation
for the new parameter/3

ap/ae = lapte)/ael, .

2 1
Here llaﬂt := a* & a. Evidently, M(#) =1 for every/ .

Proposition 4. Let A be a nonsingular m>m matrix. If
5%) is flat, then it is flat also after the reparametrization
= A®.
The proof follows from Definition 1.

ProEosition 5. Model (1) is potentially flat iff for
every Jle and every i, j,h,k we have

32, 6) 1 32y (8) _ 5% (5) <1 9% (8)
T;f—i o = [1-7] TL”"k - - Tz'ﬂ_ai -z [1-P°] —?——baj o (4)
where

3 3. T -

(the projector onto the tangent plane to & ).

The proof follows from a statement from differential
geometry, according to which every potentially flat model has
a zero Riemannian - Christoffel curvature (ef, Eisenhart (1926),
p. 25. We note that flat models in Amari (1985), p. 46 corres-
pond to our potentially flat models. We chose our definition
from classical differential geometry (Eisenhart (1926)) becau-
se i1t has a better statistical interpretation.

3. STATISTICAL PROPERTIES OF L. S. ESTIMATES

This section is based on the extension of results on the
nonasymptotical probability density of nonlinear least squares
estimates presented in Pdzman (1984) and Pézman (1987).

By the L. S. estimate we understand the estimate

6= 8 I ) 112
0:=8(Y) := arg min |IY - » (8 . (6)
- g0(C> ? Z
Let & be the true (though unknown) value of & . Take r>0 and
denote by
.= N 5
Mr) :={yeR :ly - ?(0)|lr<r}

the sphere in the sample space which is centred at p(5). We
shall suppose that &,r are such that there is a solution of
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(6) for every Ye¢ G(r). Denote by

0(r) :={6(Y) : YEG(r)}

a subset of the parameter space ®& . The number r should be
smaller than the radius of curvature of any geodesic curve on
or at least on the surface &(r) :={7(8) : 8¢ ©(r)} (cf.
Pédzman (1987) for details). .

Proposition 6. The probability density of # is approxi-
mated on ®{r)} by the formula

A - A 2

2173 det Q(4,0) 1 ] a

Q819 = GO exp [~ IRy - p®1NCT ()
(2r) det M(e)

A

where P® 1is given in Eq. (5) and where

A - _ A A - T -1 6 32 (;)
Q5(8,0) = 5(0) + [(8) - (O] = (1-P )wfi—”; .
If the model (1) is flat, then

B = 2 (L) -yl
Qij(o,e) = Hi—asa-{zll?(e) - 7(0) 2} .

A -

If the model (1) is potentially flat, then q(8l8) is equal
(up to & multiplic?five norming constant) to the exact proba-
bility density of obtained from a reduced sample space con-
taining the set G(r) as its inner part.

The proof follows from Pézman (1987). Especially the
last statement follows from Eq. (21) there, after applying our
definition of potentially flat models.

Proposition 7. If ais distributed according to q(sli)

on @{r) and if the model is flat, then the vector of random
variables

A A 1T -1 3p(4
v, (0) = [p(8) - p®] L -géi—); (1 =1, eer, m)

i? dis?ributed according to a truncated normal distribution
N(O, M).

’ In case of m = 1 the proof is in Section 1 of Pdzman
(1984), in case of m>1 it is included in the proof of
Theorem 2 of the same paper.

Proposition 8. If the model is potentially flat, then
the set

{5 . [?(3) -7(9)]Tz-lp$[?(3) -p@lce } (8)
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is a confidence region, supposing that it is a subset of @(r).
Here ¢ 1s either a quantile of the xz—distribution (if = is

known), or of the F-distribution (if X = ¢’T and @ is unknown,
but estimated independently). The level of significance of the
region is the level of the quantile plus the probability
of the "lost part" of the sample space. This probability is
bounded above by

1-7P Lx§<r2,].

The proof of the statement is an extension of Theorem 2
in Pdzman (1984).

3.1 Possibility of numerical computations

The verification whether a regression model is flat or
potgntially flat, the computation of the probability density
of & and the computation of the radius of curvature (cf. Péz-
man (1984), Appendix B) require the computation of first and
second order derivatives of p(#) in every point 6¢ ® as well
as some additional simple matrix computations. To obtain
the confidence regjon (3) we need to compute these derivatives
only at the point 8 .

However, the necessity of computing first and second
order derivatives of #%(8) is not new in nonlinear regression,
because standard programs for computing L. S. estimates
usually need such derivatives.

More details concerning the proofs and other details
should be included in a subsequent paper prepared for the
journal Statisties.
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ASYMPTOTICS FOR INADEQUATE NONLINEAR MODELS WITH HETEROSCEDASTIC
VARIANCES

Wolfgang H. Schmidt
Humboldt-University, Berlin, GDR

1. INTRODUCTION

Several asymptotic results for the nonlinear regression
model with heteroscedastic variances are presented. Special
attention is paid to so-called inadequate models for both the
vector of the unknown expectations as well as for the vector
of the unknown variances. It is wellknown that fitting the
data by inadequate models with only few parameters can lead to
smaller mean squared errors than fitting by adequate models
whereas the latter are known rather seldom only.

The construction of the estimators utilizes the Least-
Squares approach following a method introduced by Jobson and
Fuller (1980) for the linear regression model.

The proofs of all the results in this paper will be
published elsewhere.

We consider observations

Yj = fj + s‘j Cj, j-1,2,...,n,...

where fj’ j21 are real numbers and €., j1 are positive numbers,
both being unknown. The sequence ( ej)jél constitutes a se-
quence of independent and identically distributed random
variables with E €, =0 and E ef = 1. The problem under con-
sideration is the estimation of the vector of expectations

f = (fj)jéle R or more presicely of a suitable chosen
functional thereof. Given a parametric model for f

G = o = (9,5, 98}, OcrP, Sclosure of O,

which may or may not be true (f€ G, or f¢§,)
we introduce the projection parameter

n
4@ = arg méf ;Ei ugn) (fj-gj03))2

where (u is an array of weights.

(n))
j j=1,...,n
Choosing the weights corresponds to fitting charac-
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teristics of the regression function well. E.g. it might be of
interest to have an approximation of the regression function

in a special interval with high precision not neglecting the
information contained in the observations outside of the inter-
val. For that purpose we introduce weighted Least-Squares
estimators

K. arg min 3 % (n)( g (M2 + r (v,
n T TINE R SY Y nty:
where w(")= wgn)(yl,...,yn) are random weights such that

w(")- u(") tends to zero in probability for n tending to
infinity and rn(y”&) tends to zero in probability as well.
Special cases are for rn(y,55 =0

(i) w(n) = u(n) = 1, ordinary LSE

A

(ii) w](n)=e}2, two-stage LSE where G'j denotes a consistent
estimator of & ;. Such estimators can be easily
derived if 6} = &,(21)

depends besides on > on a finite dimensional parameter

fc-e,TC- R only.
We use the following denotations:
For vectors x,y,ze R
n
1
X, = = z, x .
( Y)z n 2 j jY]
and
IXIg = (x,x)_.

Further let P be the distribution of yj, j=1,...

-+

[
(]

[

00
= > P is the distribution of the sequence

Then P
f, f.,
© 1 Fjr8

(Yj)jélo
We use the symbol P for the vector (91(°°)j>1'

2. WEAK CONSISTENCY

We set up the following assumptions:

Al: E|51lk< oo for some k ® 2 -

A2: The fgnctions g. are continuous on © and for every compact
&L € O there is a >0, a constant c < oo and an integer n,

such that for all néno,Jedf, e © with I&-J'N<d
it holds

1g() - g(-\‘))lu € c -2

A3: sup Igj(fU‘)l< oo for every compact f£c G.
joare L
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A4: For every compact ,‘Ccéther‘e are a nondecreasing function
‘Yx : {0,00) —=» [0,00) being positive on (o0,00) and an

integer n_ such that for all Je& , >'e® and n 2 n, it
holds

1g(3) - @12 & W, (19-9m.
In case & is unbounded Vg fulfils

Ve e ®

In what follows'¥ and ¥ are fixed compact subsets of R,

A5: sup (f.<o00
j.fex

A6: .&f exists is uniquely determined and belongs to some
compact X< © for all sufficiently large n.
A7: For some integer k * 2 and every d>0 it holds

sup Pe & (suplw(.n) - u(.")l>d) = o(n-(k-z)/z).
fey,6e & ‘ ji ) )

A8: For some integer k 2 2 and every positive d and % ,all
compact £<Q® it holds

su P (su Ir (y,Ni>w) = 0(n'(k'2)/2).
feR eet 16 llo\fr{lh& ntY

Theorem 2.1 Under the assumptions Al,...A8 we have for

every positive 3
A
su P U - 328 ) = o(n~(k-2)/2y
fc‘J(,eesz f.6 n~ Vf

in case that E=‘L56R°°l§'é 6]. £6, j=1,2,...}
for some € >0 and & < oo.

This theorem generalizes results by Malinvaud (1970) and
Ivanov (1976).
(Remark: It was proved by Huet (1986) and Maljutov (1982) that

the weights w(.n) =672 lead to inconsistency whenever

6‘]. = hj(ﬂ‘) depends on ~J}.)

2 Now it is our aim to estimate the unknown variances
6]', j=1,2,... . '

Suppose there is given a model for 62 = (&

®= {h(SIT) = (hj(‘SlT))j§113€' é I-c e(—t}

Which may or may not be true (6’262 or 624.@). Again we use
the Least-Squares approach to estimate T, i.e.

2y

721 namely

n A
T= arg min% ha s(.n) ('e\‘? - h.(«?,'i:))z
AL I 3TN

with 8% = (y;-g;($)?
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(n)
Then it can be proved under some Lipschitz conditions on h
that

182 - h(5.'r)‘|2 =le? - h(:3‘£ ) + v (y,0)

where r_(y,t) fulfils A8 and e? (y -9 ('3‘))2
Therefore the Theorem applies again and ylelds especially

(n)

and s are random weights approaching nonrandom weights vj

P
%-Tfs 5, 0 uniformly in fe® and 6e € with
Te 6 = arg min 162 + A% - h(«\,f,“‘)l
and (f -g, (0}))2 j 2 1 denotes the model error for f,
. 2 aaA .
Now it is natural to estimate &% by h.(JyT), j 2 1 and one
gets ) )
P
A
sup|82 -2 _£:8, ¢
j ) )
with
2
8% = h. (J..T
J J(

From this point of view it becomes clear that the model D is

always a model for 62 +A2.
Now the procedure might be applied again to obtain two-
stage estimators namely

a

>
with
and

= arg min ly - g(D)|A

Q] = h, («r -t

73 A

"c- arg min le - h(«')‘.'t’)lg

with ej (vj-95 (5?2

and sj = (5‘.‘(}14-1) + 4%2 82 + 4p38.)-1.

Here B3 and p, are the thlPd or the fourth moment of &,

respectively andA = gj - 95 (43‘)

The consistency of'écan be proved in case of a repetition
model
Yi = fi "'sij&ij, i=1,...,lll

]=1,...,ni

j
for n, —» oo for i=1,...,m and fixed or slowly increasing m.

3. STRONG CONSISTENCY

For simplicity let us assume from now on that we have
adequate models for both f and €, i.e. .3 = and T} o =T for

some e © and T€ T . Using the technlque established by
Jennrich (1969), which was extended by Jobson and Fuller (1980),
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A
the strong consistency for 0} and %n can be proved. For this
purpose we need the following assumptions:
A9: There are_constants €>0 and ©< oo such that for all j=>1
Gé 5‘] £ 6
A10: Bis _compact and the functions g () are continuous in
e ® for every j 2 1,
A11: For all functions 1,k e'® = {(gj(«"‘))jn,«?eg}

there are real numbers (1,k) such that

! :tRK l(l,k)n - (1,x)] o 9
® ]
A12: |g,-g.l= O implies J= 2,
Theorem 3.1 (Bunke,Schmidt (1980)). The assumptions
9,...,A12 Eogefher with A7 for k = 2 ensure
A
J\n a.s. ’5\.

A suitable adaption of the same technique leads to the
following result:

Theorem 3.2 The following assumptions together with A9

and A7 for k = 2, gn) = ;n) gn) gn) entail
‘%n a.s. T .

A13: E£:<oo.

Al4: ©and T are compact and there is a constant c < oo such
that

|gj(<'f)-gj(0")lé clP-'N for all j 21
and
lhj('U‘,"c)-hj(-S‘,'C')lé c lt-t'll for all j21 and all Je &,

A15: For Ay = {(hi(F v )) ;. T eT] it holds

sup 1(1,K, - (1, k)lﬁ’:$?5 0 for real numbers (1,k).
l,ke.%(l

. _ - . ies T= T’ .
A16: |hT’ hTJ 0 implies T=¢9

4. qYn-CONSISTENCY

Now we give conditions under which
A A
(3, - = 0,(1) and TR(T -T) = 0, (1)
are fulfilled.

Theorem 4.1 (Bunke,Schmidt (1980)). Besides of the
assumptions AY,...,Al12 let the following conditions be fulfilled:

Al17: It holds All with ¥ replaced by
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2
= § by h @ o

Je®; i,k =1,...,p}.
Here it is assumed that the function g.(J) are twice
continuously partially differentiable with respect to T
A18: a) The limits

o 1 & T
and n
A s lin % ]%g (‘”a?r @'

exist and are regular.
b) -J belongs to the interior of 0.

-1/72 & (n)_ (n) 3 .
c) It holds n ;;i (wj -u; ) 5 35 gj(ﬁ) €] 0p(1).

Then we have
X (43‘(3‘"-3)) — N(0,A"1ca™Dy,
In the next step 7n' (eh—“) = Op(l) is established. For
this aim we introduce the following assumptions:
A19: Let the condition A11 with ?Creplaceg by

4 - 2_ T 9 T
5 _xlu‘aczu{(mk nj(o\, L))jn, (m n].({’», ))jél,

el J el ia
(———Mi vy hj(s‘,'t))jal, €-9,L€. Ji=1,...,p,
k,l=1,...,q}

be fulfilled.
A20: There is a constant c< oo with

) ? . e
| n,(m) Lo hj(:r SO E cllr-21

9Ty
and
0 2 ) R Y ‘
|G5&- 1y (3, '('s«r—k by @) c1d- o

for all j * 1,Te¢T, k=1,...,q.
A21: The limits

and
n 2
. 1 (n) 9
d, = lim = > 2 h (NN, k,1=1,...,
k1 m»a)"j=1v] 9T 2T j ¢ |
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exist and D is regqular.

Theorem 4.2 The conditions of Theorem 3.2 together with
A19, A20 and AZ2I ensure 4ﬁTTh-~) = OP(1).

5. ASYMPTOTICALLY EFFICIENT ESTIMATORS

a A
Here we use the estimators JTn and Tn as initial

estimators for defining an one-step Gauss-Newton generalized
iteration. We proceed according the lines in Jobson and Fuller
(1980). Let us introduce the vector of the residuals and the
centered squares of residuals

A
Y1-9; ()

z = Yn=8n (%) o
(y1-9; (&,))%-h (3,3)

(-9, (5 0)2-n_(§,.% )

and the matrices

§x(0‘)
H(MT) =

Hy (0,9) & Hy(nT)
and
YEMNT) = Diagl_—ﬁi,..., 6§, G:Var 62,...,6:Var€§]
with 3
X@) = ( 53: gj(UW)-

]=1,-ooln ’
i=1,...,p
- ) <
Hl(ﬂ‘,’t) = (3:.‘: hj(:’""))j=1,...,n ,
k=1,...,q
d
Hz(a\lrt') = (W hj(a"rt))j--l,---ln .

i=1,...,p

Then the one-step version of the Gauss-Newton iteration
procedure is defined to be

3{1) (s{,‘ v TG DY S, 2B WG NG, 8z

Theorem 5.1 Let the assumptions of Theorem 4.1 and
Theorem 4.2 be Fulfilled. Moreover, assume that the matrices

I3 = 3 H@OY @O
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tend uniformly in (&4?7)e &xT to reqular limits I(J,%).
Then we have

2o
£ (RGP ) —> N0, 171 (D).
n

Notice that I(3,T) is the limit of the average Fisher-
information matrix if the observations y. are normally distri-

buted. Therefore, using the local asymptotic normality of the
family of probability distributions, it follows that the one-
step version is asymptotically efficient. Similar results have
been obtained by Maljutov (1982) for the special case
hj(JET) = hj(w). Mal jutov (1982) also proves the local

asymptotic minimaxity for sequentially designed experiments.
The preceeding result can be utilized for the construction

—
of an asymptotic 1-a« confidence region for the vector (5&,
namely: 2 A

T o Th AA N 2
{(,\7 )l n(%‘h'l\’\J In('\‘)‘n,’l'n) (S\n_a\ qu-q;l—x }

Further it can be used for the construction of an asymptotic
x-test for testing

H:Y(J‘,T) =%o against K: 'X(J‘,T) #'Xo

for a given parametric function

x:’f><6>-_->nl.

The hypothesis is to be rejected if

5.8 T3 A3 2 )G ANt 2 y-v)
"(X(OB'°n)_]5) (c( n'Th) n “YnTh n''n TY% T’ Yo

2
>X1A-¢'
Here C(J),T) denotes the Jacobian of ]kwith respect to < and T.
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ERRORS IN THE FACTOR LEVELS: PARAMETER ESTIMATION OF HETEROSCEDASTIC MODEL
AND ROBUSTNESS OF THE EXPERIMENTAL DESIGNS

I.N. Vuchkov and L.N. Boyadjieva
Department of Automation, Higher Institute of Chemical Technology, Sofia

1. INTRODUCTION

In the course of the planned experiment the selected factor levels are
often established with errors. Then the correct model is

y =2ZB + v (1)
instead of the model
y = XB +v

where y is an (nX1l) vector of observations, Z=(1,f2(z),f3(z),...,fp(z) and
X=(1,f2(x),f3(x),...,fp(x)), are the true and the selected (nXp) matrices

respectively, B is a (pX1) vector of coefficients to be estimated and v is
a (nx1) vector of the random response disturbance. At that fj(x)=(fj(x1),

fj(xz),...,fj(xn))', where fj, j=2,3,...,p denotes given function of the
factors and the (gX1) vectors of selected xi and true zi factor levels are
connected with relation zi = Xi+ei' ei being the (gX1l) vector of factor er-

rors in the ith trial, i =1,2,...,n, 9 £ p.
Usually the following assumptions are accepted conserning the distur-
bance v and the matrix of factor errors € = (el,e2,...,en)':

_ 2 a _ (var(e.), i=j,
E(v) = 0, D(v) = o.L E(e) = 0, D(e) = {Fov(eiej)' %

(2)
where E and D indicate expectation and covariance matrix respectively. It
is also assumed that all errors are independently distributed among the
runs.

As the true design matrix Z is unknown, the model (1) has been transfor-
med (Box, 1963) into a model having a design matrix X and modified responce
disturbance, caused by the real response disturbance v and by the errors in
the factor levels transmitted to the response. For linear in factors models
it has been proved that the modified response disturbance has zero expecta-
tion and equal variances in all design points, thence the least squares es-

timate (LSE) b=(X‘X)_1X‘y is unbiased and efficient. For nonlinear in fac-
torsmodels the modified disturbance has nonzero expectation and different
variances in all experimental points depending on selected factor levels,
whichresult in biased and nonefficient LSE b.

That is why special methods must be used for estimation of nonlinear in
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factors models with errors. An iterative procedure (Fedorov, 1974) ensures
consistent and asymptotically normal estimate of B for given second order
moments of the factor errors and of the disturbance v. The procedure conver-
ges if initial estimate of B is close enough to the true vector B. But this
condition may not be always be met if substantial errors occur in the factor
level settings. In addition to this it is difficult to estimate the moments
of disturbance v separately - for example the variance Og in presence of
factor errors.,

Another possibility to estimate the nonlinear infactors models is the
following transformation (Vuchkov and Boyadjieva, 1981) of the model (1)

y=FB +r (3)

where F=F+Ee(G), r=v+(G—Ee(G))B, Ee(G) denotes the expectation of the mat-

rix G=Z-X with respect to the factor errors.

The design matrix F in the model (1) is nonrandom and known provided
the moments of the factor errors are given. The disturbance r has a zero
expectation and diagonal covariance matrix

_ 2 02 2.
D(r) = Dly) = dlag(Ol,Oz,...,On) =z

with elements

2 2

Oi=oo+B'AiB+ci, i=1,2,...,n (4)
where A, = E_((g,-E_(9,)) (g,-E_(g,) "), (5)
c, = 2Ev,e(viB' (gi-Ee(gi) )

and g; is the ith row of matrix G. If the disturbance v, is independently
distributed by ei in a given run, then c; = 0, 1i=1,2,...,n.

The terms B'AiB and ci in (4) are due ;o , the factor errors and
they increase the response variances from Oo to Oi. In linear in factors mo-
dels this increase is equal with all design points as Ai and ci depend on
error moments only. In addition F=X, as Ee(G)=E(€)=O. For nonlinear with res-
pect to factors models c; and the elements of Ai-matrices depend on Xy as

well,which causes variance heteroscedasticity.

Thence, for known factor error moments, the estimation of nonlinear mo-
dels is reduced to estimation of model (3) with heteroscedastic variances.
The best linear unbiased estimate (BLUE) for B is provided by the weighted
least squares method:

1 1 1

by = (F'Z°F) F'Iy. (6)
Since the elements of matrix I depend on the unknown parameter B, the esti-
mate

b, = (£'sT'R) ! pisTly (7

can be applied instead of bZ if some estimates si of O? are available.

2
But as far as the true variances Oi differ from s.l the estimate bZ

doesn't coincide with bs' While BLUE by allways results in more accurate
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. ) -1 .
model, in comparison to LSE b=(F'F) "F'y the properties of bs depend on va-
riance estimation method. As compared to b,bs is proved to be really more

efficient if the variances are precisely estimated and their heteroscedasti-
city is substantial.

2. HETEROSCEDASTIC VARIANCE ESTIMATORS AND PROPERTES OF THE ESTIMATES bs

The properties of the estimates b_ will be investigated when the fol-
lowing four methods discussed in (Horn, Horn, 1975) are used as variance es-
timators: MINQUE (Minimum Norm Quadratic Estimate), AUE (Almost Unbiased
Estimate) , ASR (Average of the Squared Residuals) and SV (Sample Variance).
It as assumed that m replications are carried out in each of the n design
points. The model for lth replication of the design is given by (3) with in-
dices (1) added to denote the corresponding replication

y(l) = FR + r(l), 1=1,2,...,m. (8)

The model for all m replications is expressed as follows:
y = FB + r, (9)

with corresponding formulae to (6) and (7) of the form

by = (FIHTRETY - e i e, (10)
b, = FEIH TR - s in T lesTly (11)
where ; = (y(l) ,y(2) ,...,y(m) )' is an (mnX1) vector, §=m_IZT=1 y(l) is an

(nX1) vector, §=(F',F',...,F')' (m times) is an (mnXp) matrix,

~ 1)1 2) 1 '

r=(r( 1 r( ) ,...,r(m) )' is an (mnX1) vector with (mn*Xmn) covariance mat-
rix D(r) = =diag(Z,Z,...,L) (m times) and S=diag(s,S,...,S) (mtimes).

2 2
The unknown variances 02 = (01,02,..

2 2 2 2
vector s = (51,52,...,sn) with one of the following forms depending on the

’

2
.,On) are estimated through the

methods mentioned above:
2

=a 2

SMINQUE Am u, mz21, (12)
2 _ 5 - (13)
SAUE mtr =t

2 mzi (14)
Sasp ~ U M=

2 -1 .m (1) *2 =1 _m (1) %2 .

Sqy T (m—-1) (Zl 1( (Zl=1 ) ). m2 2, (15)

where
A =1 - 2m ‘diag(k. .k kK ) +m k2 (16
'm ilag 11, 22,-.., nn m ' )
-1
K=F(F'F) F', [kl =%,., i,3=1,2,...,n (17)

ij ij



-1 -1
= di ‘e = - i =1,2,... 18
Bm dlag(b111b22: lbnn) ’ bll (1-m kll) 1 14, n ( )
L I ~(1) *2 _ -1l.m ~(1)2
u o =m Zl=1(r )y °, u, =m Zl=1ri , (19)

and k.)*2L§ [F-

The (nX1) vector u elements are the average values of the squared re-
siduals from replicated trials in the design points. The {(mmX1) residual
vector is calculated by means of the LSE b for B:

@M @t s S Ry - (1-R)F = oF (20)

ens
~ ~ ~ ~ ~ _1-.,'
where Q = (I-K), K = F(F'F) "F'and

b (21)

0]
=
e

-

l<

Two modifications are envisaged for the MINQUE method. A preliminary
given positive number (in the first one) and the average of the sguared
residuals (in the second one) are substituted for the negative values of
variance estimates whichis possible to be obtained by MINQUE method in some
of the design points.

The estimates of the bs type: bMINQUE'bAUE'bASR and bSV' the proper-

ties of which will be discussed are calculated with the aid of (11) where
the weighted matrix S is determined through the elements of the vectors
(12)~(15) respectively. The discussion is based on the investigation related

to bMINQUE and bsv made in the appendix of (Rao, Subrahmaniam, 1971).

2.1. Unbiasedness of bS

. i d b
Theorem 1. The estimates of the bs type bMINQUE'bAUE'bASR an sy are
r

unbiased, i.e. E(bs) = B (if E(bs) exists), provided the disturbance is
symmetrically distributed.
Proof. The following theorem of (Kakwani, 1967) will be used: Every

estimate B, the deviation of which from B has the form of H(Z)r is unbiased

i.e:~E(@) = B (it is assumed that the mean E(@) exists), providedH(r)=H(—;))
and r is symmetrically distributed.

The deviation of b from B, obtained through (11) and (9), takes the
following form: S

b - 8= Fein TR
Therefore in compliance with Kakwani's theorem, the estimates bs are unbi-

ased, provided the matrix H(;) = (5'5_15)_15'5_1 doesn't change as r is rep—
laced by -Y. which in the event of nonrandom matrix F is reduced to the

establishment of the condition S(;) = S(-;), i.e. to
s2() = s2(-D) (22)

2~
where s (r) is determined by means of one of the relationships (12)-(15).
For the first three variance estimators.it is clear that only vector u
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depends on r as the matrices Am and Bm are nonrandom according to (16)-(18).

Consequently the test of (22) boils down to the verification of
u(r) = u(-r) (23)

The formula for the element u, of u can be obtained using (20) in

(1)

order to present the vector r and its ith element in the form
A(1 ~ (1)~
r( V- Q( )r, 1=1,2,...,m
~ _ (L'
r, =q r, (24)

1
, ., 1i=1,2,...,n, 3 =1,2,...,mn and qgl) stands

1+4i,3 (1) i
for the i-th row of the matrix Q . The square of the residual in the 1lth
replication at the ith design point from (24) is given with the following
quadratic form:

~A(L)2 _ ~, (1) (L)'~

r, = . r

r ;
1 ql 1

where [Q(l)lij = [6]

Thence

sM2 - M2y, (25)
i i
Consequently from (25) and (19) it becomes clear that the condition (25) is

fulfilled for the estimates bMINQUE' bAUE and bASR'

The fulfilment of (23) with the estimate bSV can be established direct-
ly by rewriting (15) in the following form:
m (1) *2

(Z,_ (7)) 7,

1.m (1), *2 -1
z r ) - m 1=1

2 -
ssv(r) = (m-1) 1:1(

where it is taken into account that from (8)

(l)_m-lzT=1 y(l) - xg + r(l)—m_12T=1(XB+r(l)) _ r(l)_m-lzr;=1r(l)

Consequently if the assumptions of Kakwani's theorem are met, the esti-

t i .
mates bMINQUE' bAUE' bASR and bSV are unbiased

2.2. Consistency of b

This property will be discussed assuming that m + ®, with n and p
being~fixed. Further on it is necessary to use the following:
(i) Theorem 2.3 from (Demidenko, 1981). The estimate bZ is consistent

2
for B, provided Xmin(F'F) + ®, m > ® and maxd

i £4d4 g (Amin stands for mi-
i

nimal matrix eigenvalue).
(ii) Theorem 2.4 from (Demidenko, 1981). The LSE b for heteroscedastic

model (9) 1is consistent for B provided Amin(F'F) +®, m +~ ®© and
maxc? £4 §$ ™.

i

The consistency of bs can be stated with the following

Theorem 2. Let s can be determined by means of one of the vectors
(12)-(15). Then bs (see (11)) is consistent estimate for B provided
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2
A, (F'F) »®, m + o and max0, £ 4 £ =,
min i 1

Proof. (Throughout the proof it i1s assumed that all probability limits
plim (.) are taken for m + «). The comparison of bZ and bS from (10) and

(11) shows that if

plim s2 = 02 (20)

then bs o] bZ' m * ®, and according to the theorem, mentioned in (1), bs is

a consistent estimator for B. Consequently, establishing the consistency of
bs means a verification of the relationship (26), i.e. verifying whether

MINQUE, AUE, ASR and SV methods conslstenly estimate the unknown variances.
For the first three estimators it can be written using formulae (12)-(14)

} 2 _ . -1 _ . -1 . _ :
plim sMINQUE = plim Am plim u = (plim Am) plim u = plim u,
lim s2 = plim B_pli = plim u
p AUE p mP mu = plim u,
lim 2 = plim u
p Sasr plim u,

since from (16)-(18) it follows that plim Am and plim Bm are identity
matrices:

-1
plim(1-2m 'k

plim[A_1.. = _
mJ plim(m 1kij) =0,1i#%j,

-1.2 o
ii+m kii) =1, 1i=j,

. -1 -1 .
jpllm(l—m kiy) =1, 1 =73,

1]

plim[B_]..
G CHER

Therefore for MINQUE, AUE and ASR methods the condition (26) is reduced to
a consistent estimation of variances by means of the vector u, i.e.

plim u = 02. (27

Seeking for the elements of plim u, we use the following (mX1) vector
of residuals from the replications at the ith design point:

~ ~A(1) ~(2) ~(m) ! A
rpo= (T T ) s ' T FiB +r, —Fib = Fi(B—b)+ri (28)

_, (1) (2) (m) _, () (2) (m)
where ri—(ri PEL ety Y', y.=(y

1 AZA A ~ '
i i ,Yi :---,Yi ) ,yi (yi,yi,...,yi)

i
1 1
ri ), yi ) are the ith elements of (nxl) vectors r(l) and y(l) from (8), b
is LS estimate (21) and Fi is an (mXp) matrix with equel rows of the form
(fil'fi2""'fip)" fij = F i i=1,2,...yn, j =1,2,...,p.
Therefore u, can be presented by (19) and (28) as
_ -1._m A(l)2 _ =1Aa¢n _ -1 ot ] _
u; =m Zl=1 B =m rr.o=m ((B-b) F.o+ ri)(Fi(B—b) + ri)) =

(B—b)‘(F;Fi/m)(B—b) + 2(riFi/m)(B—b) + (riri/m)
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Thence

plim u, = (R-plim b) 'plim (F;Fi/m) (B-plim b) +

. ) , , '
+ 2pllm(riFi/m)(B-pllm b) + pllm(riri/m) (29)

The frist term in the right side of (29) is a quadratic form having vector
(B-plim b) = O (as according to the theorem mentioned in (ii) plim b = B)
and matrix with bounded elements, according to the determination of Fi

£ £, /m) = £

m
., £, r,s =1,2,...,m.
1=1 “ir'is ir is’ re !

[ plim(FF, /m) 1= @
Consequently, this term equals zero. The second term of (29) is zero too,
since plim(riFi/m) cam be regarded as a vector of probability limits of the
covariances between the elements of r, and Fi' which are zeros, Fi being
a nonrandom matrix. Thence (29) reduces to

plim u, = plim(r;ri/m) = plim(ZT=1 ril)z/m) = ci.

Regarding the estimation of 02 through SV it is well known (Gramer,
1946, § 27.4) that this method provides unbiased estimates for Oi

whit variances of the form:

2 _ -1 _ 2, a
var (sgi.) =m "y, - 0 (m-3)/(m-1)m,

(1) (1,4 2 2
= - > -
where My E(yi E(yi )) é Therefore var(ssvi) 0, m =+ «, Thence Sgyy S
consistent, i.e. plimséVi = Oi, i=1,2,...,n, as an estimator who is

unbiased and with variance tending asymptotically to zero (Johnston, 1972,
§ 9.1). This complets the proof.

2.3. Efficiency of bs: Monte-Carlo simulations

The comparison of the efficiency of the bs type estimates, bZ and b is

usually based on sample covariance matrices, obtained by means of Monte-
Carlo tests (Rao, Subrahmaniam, 1971) since attaining an approximation to
the covariance matrix of bs is still to be done. Summarized results from

similar tests for estimates b
Table 1.

The aim is to investigate these estimates in the case of small number
of replications and without replications. The comparison is carried out
through the value of the ratio between sample covariance matrix determinats

D(b,) |/|D(b)

b
MINQUE’ bAUE' ASR’ bsv and b are given in

. If the ratio is smaller

for the estimates bs and b, i.e.
than 1, the estimation by means of bS is more efficien than the one, obtai-
ned through LSE b. The nearer this value is to the minimal one (determined
by B(bz)l/ls(b)L the closer in efficiency sence the estimates bS are to the

bZ' The heteroscedasticity is preset from maxoi/minoi = 1.31 to 19.46 vary-
i i
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A

A
TABLE 1 The values of |D(@)|/|D(S)‘ for estimates B
of the type MINQUE, AUE, ASR, SV and BLUE.

2 2
n max i/min i m MINQUE AUE ASR sV BLUE
i
1,31 1 7.641 2.738 2.436 - 0.976
3 2.485 2.077 2.039 5.668 1.007
1 3.710 1.262 4.321 - 0.320
2 1.374 1.052 1,118 4.423 0.293
9 13.30 3 1.092 0.933 0.939 1.835 0.341
6 0.628 0.599 0.599 0.726 0.327
10 0.445 0.439 0.439 0.452 0.298
1 3.354 1.194 1.568 - 0.261
19.46 3 0.944 0.801 0.811 1.324 0.273
6 0.505 0.485 0.487 0.574 0.261
1 2.593 1.132 3.3%6 - 0.633
8 6.41 2 2.075 1.595 1.532 32.173 0.673
3 1.299 1.166 1.152 1.895 0.615
6 0.947 0.920 0.920 1.032 0.706

ing error moments. The number of replicationsmis 1, 2, 3, 6 and 10, the
sample size is 400, The models are two with coefficients
g = (.8, 1.3, -8.5, 4.7, 5.5, -3.2)'and B = (9.5, -6.5, 2.4, -2.4, =2.1,

1.8, 5.7)"' whose elements correspond to the terms 1, xl’ x2, x1x2, x1 and

5. They are estimated with two different design with n =9 (-1,-1, 1,-1,

-1,1, 1,1, 1,0, —1,010,110,'1, 0,0) and n = 8 (‘11_11 11"11 —1111 1111 1lol

0,1, 0,0, 0,-1) points (for every point the values are given for x1 and Xy

respectively. The two modifications of bMINQUE' mentioned 1n 2 are calcula-

ted. The second modification prove to be more inefficientii in the case
with m = 1 and more efficlent than the first one with increasing number of
replications. In Table 1 the values for MINQUE method in all cases with
m = 1 are obtained by means of the first modification (a number 0.01 is
substituted for negative variance estimates). All cases with m 2 1 corres-~
pond to the second one with the average of the squared residuals used in
substitutions.

The results shown provide for the following conclusion. If replications

lacki th imat: b i
are lacking, e estimates bMINQUE' AUE’ bASR and bsV are less efficient

than the LSE b. However with a moderate number of replications the estima-

tes bMINQUE’ bAUE and bASR grow more efficient than b with the heterosce-

dasticity increasing. The use of bSV with moderate number of replication is

X

risky because it can be less efficient than b. The bSV efficiency becomes

comparable with this of b P bAUE and bA for a large number of rep-

MINQUE SR

lication (m 2 10). Best results have been obtained by the use of bAUE'

3. ROBUSTNESS OF EXPERIMENTAL DESIGNS TO ERRORS IN THE FACTOR LEVELS

Depending of the specific cilrcumstances various requirements might be
appropriate in the choice of experimental design. (Box, Draper, 1975). One
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of these requirmentsis the good behaviour of the design in presence of er-
rors in the factor levels. It is assumed that B in the model (3) will be
estimated by LSE b = (F'F)_IF'y rather than by BLUE bZ which leads to an
efficiency loss devendina on the variance heteroscedasticity.

This heteroscedasticity varies from design to design with a given
model and factor error moments. Thence the criteria seeking for the robust
design to factor errors can be formulated in a way that the design would
ensure the least possible efficiency loss. Alternatively such criterion
should select from several designs the one providing estimate b with impro-
ved covariance matrix caracteristic as compared to the others. Seeking such
criteria one faces heteroscedasticity of variances and particularly their
dependence on B which causes serious difficulties.

An attempt to alleviate these difficulties is made in (Vuchkov, Boyad-
jieva, 1983) where two criteria for robust design are proposed. In addition
to (2) it is accepted that vi is independently distributed by the factor

errors ei in each run. The first criterion use as a measure of heterosce-

dasticity the quantity

o = maxO?/Z? 0?
i 1" Ti=17i

2 . . . . .
where Oi is calculated using (4) with ci = 0. The criterion is formulated
as a difference between superior limit of aafter B and the minimum value of

o = an = n , attainable when no errors occur:

Ys = stép(l - an
It is shown that YS can be calculated by means of

Y, = n"l(m;xxi -1 (30)
1

if the following assumptions about diagonal elements of the matrix Ai from

(5) and & = n 2% . A are fulfilled
i=1 i
[a. ] «02/8'8 [a).. <« 02/6'8 j =1,2,...,n.
i ]J o ’ J] o ’ 14y ’ (31)

In (30) maxA.ii is the maximal root of the characteristic equation |Ai—XW =0
i

The fulfiment of (31) can be assertained in many practical cases with given

factor error moments and some initial estimates of vector B norm R'B and

for Oi. Consequantly if the conditions (31) are met then the maximum hete-

roscedasticity of variances after B with the design applied, can be esti-
mated through supd while its deviation Ys from an becomse a mesure of effi-

ciency loss and thence a measure of robustness of the design to factor er-
rors.

The second criterion chooses design that will provide for the smaller
covariance matrix trace of estimate b. It implies a better design X1 than
x2 provided the following inequality is fulfilled:

T = (tr(D(b))), - (tr(D(b)))y <0 (32)
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where (tr(D(b)))i denotes the covariance matrix trace for the desian Xi’

i =1,2. It is shown that (32) can be reduced to
T = B'ARB + oiAa <0 (33)

n

n
Ak, "
i=1"1iii

(T Yo Ba = (] k0, - (B k0

n
where AR = (Zn=1 Aikii)2_
kii = (F(F'F)_lF‘)ii and the indeces 1 and 2 correspond to the design Xy

and X2. Criterion makes it possible to compare some designs regardless of B

as the ellements of AR depend on the points of the design to be compared and
on the factor error moments, while the quantity Aa depend on the design
points. This possibility depend on ARmatrix definitness and the sign of Aa.

Comparable design in sence of criterion T are those one for which the
matrix AR is positive definite and Aa20. Incomparable designs in the sense
ofTare those ones, for which the matrix AR is not defined.
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DATA-SMOOTHING AND BOOTSTRAP RESAMPLING

G.A. Young
Statistical Laboratory, University of Cambridge,
16 Mill Lane, Cambridge CB2 1SB, U.K.

1. INTRODUCTION

This paper reviews aspects of the smoothed bootstrap approach to stat-
istical estimation.

The basic problem underlying the bootstrap methodology is that of pro-
viding a simulation algorithm which produces realisations from an unknown
distribution F , when all that is available is a sample from ¥ . The
bootstrap of Efron (1979) simulates, with replacement, from the observed
sample. The smoothed bootstrap, discussed by Efron (1979, 1982) and Silver-
man and Young (1987), smooths the sample observations first and hence
effectively simulates from a kernel estimate of the density f wunderlying
F . This is achieved, without construction of the kernel estimate itself,
by resampling from the original data and then perturbing each sampled point
appropriately.

The bootstrap and smoothed bootstrap will be considered as competing
methods of estimating properties of an unknown distribution F . Given a
general functional o , which may relate to the sampling properties of a
parameter estimate, it is required to estimate on the basis of a set of
sample data the population value o(F) of this functional.

The standard bootstrap estimates a(¥) by a(Fn) , Fn denoting the

empirical c.d.f. of the sample data. The smoothed bootstrap estimates «o(F)
by a(F) , where F 1is a smoothed version of Fn . The simple idea under-
lying the bootstrap estimation, therefore, is that of using Fn or f as
a surrogate or estimate for the unknown ¥ . In many circumstances the

bootstrap estimate will itself be estimated by resampling from Fn or % y

though as yet unpublished work by Davison and Hinkley points in the direction
of 'bootstrap resampling without the resampling’'.

Though conceived by Efron (1979) as a means of tackling complex estim-
ation problems, for a discussion of smoothing there is some advantage in
studying the very simplest case where the functional o is linear in F
Relevant questions to be considered are:

(i) When is it advantageous to use a smoothed bootstrap rather than the
standard bootstrap?

(ii) How should the smoothing be performed? Is there any advantage in
simulating from a 'shrunk' version of the kernel estimator, with the
same variance structure as the sample data?

(iii) Is it possible to define data-driven procedures which will choose the
degree of smoothing to be applied automatically?
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2. SMOOTHED BCOTSTRAP PROCEDURE

Suppose X.,...,X are independent realisations from an unknown r-
1’ n

variate F . Assuming F has a smooth underlying density £ , a convenient
smoothed bootstrap is obtained from the kernel estimator fh s of £
defined by ,
A 2 2 - 2
£ (0 = (1+n ¥/ £ ((1+n yi

(2.1)

n
3 n—l h—r z

kil v (xex 1
i=1 1

Here K 1is a symmetric probability density function of an r-variate dis-
tribution with unit variance matrix. Operationally V 1is taken as the
variance matrix of the sample data and h is a parameter defining the
degree of smoothing. . _
Realisations generated from fh have expectation equal to X , the

mean of the observed sample, but smoothing inflates the marginal variances.
Silverman and Young (1987) give a number of simple examples which show that
smoothing of this type can have a deleterious effect on the bootstrap estim-
ation: see also section 3. The kernel estimator %h is therefore 'shrunk’

to give an estimator %h s with second-order moment properties the same as

’ —_
those in the observed sample. Note that the mean of fh s is X/(1+h2)§.

3. LINEAR FUNCTIONALS

For a linear functional o(F) = f a(t)dF(t), the smoothed bootstrap

estimator is Gh(F) = f a(t)fh S(t)dt . This estimator may be written

1 n
6, (F) == izl wE(X) (3.1)

where

i a{(1+hz)'é (x+hVéC)} K(£)dg

w¥(x)

Using a Taylor expansion of a and the assumptions on the kernel function
K , the mean squared error of &h(F) may, for h small, be expanded as

_ 2 4 6
MSE{&h(F)} = c0 + Ch™ + C,h™ + O(h") - (3.2)

Here we have assumed that V = rvij] is a fixed positive definite symmetric

matrix and

¢y == [ {att) - w12 arcey

c, == [ {a(t) - u} a*(t)dF(v) ,
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=

[ 2 [ {a(t)-u} a**(t)dF(t) + % [ ax(t)2ar(t)

%—(n—l) { [ ax(tydr(t) 12 ]

+

where 1 = [ a(t)dF(t) ,
a*(t) = Doa(t) - t-Va(t) ,

T 1 1 1
teVa(t) + 1y Ht - 5 Da(t) - 5 t-V(Dya) + ¢

are(t) = 8 2 v 4 8

oW

2

Dv a(t)
_ 2

Here Dya(t) = Eizj LR IOVEIL L

_ .2
(Ha)ij =34 a(t)/dtiétj

See Silverman and Young (1987) for details of the manipulations.

The expansion (3.2) immediately gives the result:
Lemma

Provided a(X) and a*(X) are negatively correlated, the mean squared
error of the smoothed bootstrap estimator &h(F) of oa(F) will be less
than that of the unsmoothed estimate &O(F) = f a(t)dF (t) , for some
h>0. n 0

The corresponding result for the bootstrap estimator &h(F) =
f a(t)%h(t)dt , constructed from the unshrunk kernel estimator, requires
a(X) and Dva(X) to be negatively correlated.

As a simple example, suppose F is the univariate standard Gaussian
distribution and let a(t) = t2 . With V = 1 we have,

covia(X),a*(X)} < 0

cov{a(X),Dva(X)} >0,

so that smoothing, with shrinkage, is of potential value in bootstrap estim-
ation of the fifth moment.
The lemma above states that if C1 < 0 in (3.2) some small degree of

smoothing at least is worthwhile. If also C2 < 0 we might speculate that
some larger degree of smoothing may be appropriate. If both C1 > 0 and
C2 > 0 the appropriate bootstrap estimator is the unsmoothed estimator
&O(F) . Otherwise, the optimal smoothing parameter, in the sense of minim-
ising the approximate MSE C, + C1h2 + c2h4 is given by h = (2\c1|/4c2);j
The quantities C1 and C2 depend on the unknown underlying distrib-

ution function F , and in general will be complicated functions of the
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moments of F . A possible strategy would be to choose h with reference
to a standard distribution, such as the standard r-variate Gaussian. 1In
circumstances where the sample data do not suggest any sensible statistical
model, C1 and 02 can be estimated, for example by substitution of the

sample moments.
Given estimates Cl,C2 for Cl’C2 an entirely data-driven strategy

for choosing the degree of smoothing would be to take h = 0 1if él ~ 0,

© if @1 < 0 and 62 < 0 and h = (2\61\/4@2)é otherwise. The case

® corresponds to Efron's 'parametric bootstrap' (Efron, 1979).

Rather than choosing h by reference to (3.2), which gives an expan-
sion for h in the neighbourhood of zero, the representation (3.1) of the
estimator can be used in conjunction with computer algebraic manipulation to
obtain an exact expression for MSE{dh(F)} . This expression can then be

=3
]

minimised in h to obtain the optimal value of the smoothing parameter.

4. EXTENSION TO NON-LINEAR FUNCTIONALS

When an explicit bootstrap procedure is being used the functional o
is unlikely to be linear. The ideas of Section 3 can be applied to bootstrap
estimation for more general o , provided o admits a first-order von Mises
expansion about F of the form

a(F) = o(F) + A(F - F) , (4.1)

for F 'near' F . The functional o is linear and hence representable as
an integral, A(F) = f a(t)dF(t) , and to first-order the sampling properties
of the bootstrap estimator u(ﬁ) of o(F) are the same as those of the

estimator A(?) of A(F) . Provided sup\ﬁ—F[ is Op(n_é)

(4.1) will be Op(n'l)

, the error in

5. EXAMPLE

Let F be an unknown univariate distribution and consider estimation
of the skewness,

E(X - EX)°

Q(F) = _E.—.—_F___
2.3/2
{EF(X—EFX) 3

Simple manipulations, easily performed by computer algebra, show that the
linear approximation (4.1) is defined by

_ 4 2 3 3 2 2 2 2 2
a(t) = (t( 2u1 t o+ 3u1 Hot + 6u1 Hg = 6u1 Hy * 4u1 Hot™ - 31, gt

2 3 2 2 6 4
- 3u1u2 t = BujHghg 6L, - 2u, t o+ Bu gt /2u s - 3u1 Hy

2 2 3 2
L T L T L T
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r
where = E_X
ur F

The bootstrap estimator dh(F) is given by:

22—1 xi3 3%n° 3% x>
& (F) = = + - - . (5.1)
h nV3/2(1+h2)3/2 V%(1+h2)3/2 V%(1+h2)% v3/2(1+112)3/2

In the special case of F standard Gaussian, computer algebraic manipulation
of the function a(t) gives a closed form approximation for the MSE of
dh(F):

6
MSE{ah(F)} = 73 (5.2)
n(l+h")
and gives C1 = -18/n , C2 = 36/n . These values suggest, misleadingly,
h = %
In the general case, the formulae for C1 and C2 are complicated

functions of the moments of F . With a manipulation package such as REDUCE
it is straightforward to write FORTRAN subroutines to evaluate these coeff-
icients: the moments of the observed sample are then substituted to yield
estimates Cl’C2 . The formula for MSE{&h(F)} , of which (5.2) is a special
case, amounts to hundreds of lines of code, If ul =0 it reduces to the
simpler form:

2 2 12 2 2
- 16¢(h +1)"h nu_ u

2 44 2
MSE{ah(F)} > (=8(h“+1)%h nu. “u o Mg

2 "3

2 32 2 2 2 3 2 2 3 2 2
48(h +1)“h u2 Mg - 12¢(h +1)“h u2u3u5 - 8(h +1) nuz u3
3

2
+ 48(h2+1) My, H

+

2 % 8 2 2
3 ~ 12(h +1) uzusus + 4h nuz 43

6 2 2 4 2 2 4 2 2 4 2
+ 16h nuz u3 + 24h nuz u3 - 9h uz u3 + 9h u3 ty

3 2 2 2
2 u, - 22h u2

2 2 2 2 5 2
+ 20h nuz u3 + 36h uz - 24h u 4

2 2 2 2 2 2 5 3
4 1 -
+ 4h u2 u6 + 18h u3 u4 + 8nu2 u3 + 36u2 24u2 u4

2 2 2
- 13n_ u + 4u_ u,. + 9p

2 5,2 4
2 Mg 2 Mg Hy) /7 (4nu, (hisl) ) ) (5.3)

3

Invariance of the estimator (5.1) under the transformation Xi > Xi+C

(i =1,...,n) suggests the following procedure for choice of h . Centre
the observations Xi by calculating Yi = Xi -X (i=1,...,n) . Then

. -1 ¢n r . . .
substitute n Ei=1 Yi for u (r =2,...,6) 1in (5.3). This gives an
estimate of the mean squared error of the bootstrap estimator as a function
of h ., Use a numerical routine to minimise this and use the minimising
value of h for the bootstrap estimation itself.
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For each of four underlying distributions - standard Gaussian, uniform
on [-1,1] , Beta (5,3) and standard exponential - and two sample sizes,
n=5 and n = 50 , 1000 datasets were generated., Table 1 shows, for each
combination, the mean squared error over the 1000 replications of the boot-
strap estimators &h(F) , when h 1is chosen by various strategies. Strategy

A takes h = 0,0 always, Strategy B takes h = 0.5 always, Strategy C
estimates C1,C2 and chooses h according to the estimated values, as

described in Section 3, while Strategy D is the procedure described above,
based on (5.3).

Table 1 : MSE of bootstrap estimators, skewness example.

Distribution N(0,1) ul-1,1] Beta(5,3) Exp(1)
o(F) 0.0 0.0 -0.310 2.0
Smoothing
Strategy
5 A 0.3607 0.3566 0.3889 2.4497
B 0.1847 0.1826 0.2341 2.7557
C 0.2977 0.2950 0.3629 2,5674
D 0.,0912 0.0869 0.1554 3.0748
50 A 0.1092 0,0450 0.0650 0.4930
B 0.0559 0.0230 0.0435 0.8661
C 0.1066 0.0446 0.0649 0.5331
D 0.0596 0.0218 0.0589 0.5490

The results of the simulation disappoint in that they do not provide
concrete evidence in favour of any particular smoothing procedure. Automatic
application of a small amount of smoothing can lead to substantially less
accurate estimation: see the figure for the exponential simulation, n = 50 .
Strategy C is unlikely to make the estimation dramatically worse and gener-
ally leads to some improvement over the standard bootstrap. Strategy D can
lead to considerably greater accuracy in the bootstrap estimation but, as
the exponential simulation makes clear, may also lead to quite inappropriate
choice of h ., Errors in the linear expansion (4,1), which is the basis of
strategies C and D, may, even for moderate sample size, be quite appreciable.

Automatic procedures for choosing the degree of smoothing should be used
with caution. It is probably advisable to examine the sample data, using an
estimator of the form (2.1) say, and then to choose h with reference to
some suggested parametric family of distributions.
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Model- and Method-Oriented Intelligent Software for Statistical
Data Analysis

S.A. Aivazyan

Central Economics-Mathematical Institute of
the USSR Academy of Sciences
Moscow, USSR

1. Introduction

This paper deals with intelligent applied statistics software developed at CEMI1
(Central Economics-Mathematical Institute of the USSR Academy of Sciences). Every
component of the software system under consideration represents a branch of applied
statistics implemented as a comparatively small expert system (SES, 400-500 rules in the
knowledge base). This is why the system is called a series of Method-Oriented Statistical
Expert Systems, version 1 ("MOSES 1" is the abbreviation used officially, but in this
paper "M1” will be used).

Every SES of the series:

(1) guides the user through the available literature, and methodological and

software information related to specific features of the problem at hand;

(2) informs you which initial assumptions on the nature of the data to be processed

and also the form of the model which should be used;

(3) assists in comstructing a chain of statistical procedures and algorithms which

have to make up the basic program and its automatic implementation;

(4) helps in interpreting intermediate and final results of statistical analysis and (if

necessary) in generating additional control statements for continuing the pro-
cess of statistical analysis;

(5) assists in choosing the form in which the results should be presented.

Basically, it is assumed that system M1 will be used mainly by statisticians. How-
ever, for comparatively simple statistical problems M1 can also be useful to economists,
sociologists, physicists, engineers, etc, who are familiar with probability theory and statis-

tics at the level of the graduate student of an economics or engineering department.
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2. Method-Oriented Statistical Expert Systemas: brief description of
their structures

The series of Method-Oriented Statistical Expert Systems consist of a number of

SES which can be used for solving problems arising in different areas (economics, sociol-

ogy, health-care, technology, etc). Each specific expert system realizes statistical tech-

niques of a branch of statistical analysis: a regression analysis SES, a classification SES,

an exploratory statistical analysis SES, etc, and thus can be viewed as a model-oriented

system.

The components of the series are compatible in the following sense:

(a)

(b)

(c)

they are oriented toward the same user intelligence level (perhaps it would be

more accurate here to use “intelligence interval”).

they are based on the same methodological principles of computer-aided assis-

tance;

there is a possibility of cross-references (when interacting with the computer,
the user of the regression analysis SES can be advised that he should be con-

sulted, say, by the classification SES, to solve his problem).

We now describe in brief the functional structure of the series of Method-Oriented

Statistical Expert Systems M1:

(1)

TSA is an expert system for time series analysis. The numerous planning and
management bodies at the different levels of an economy constantly face the
necessity of real-time analysis of changing indices, characterizing the state and
dynamics of a system (economic, technological, etc). Similar problems arise in
a number of research activities. There are the problems of smoothing of time
series, their decomposition into a trend, periodic and random components, their
extrapolation (prediction), locating the time and character of structural

changes, etc.

EDA is an expert system for ezploratory date analysis. Unfortunately, there
exists an unpleasant tradition in statistical studies: no attention is paid to the
key stage of formulation and justification of the initial assumptions underlying
the basic models of statistical data generation. Usually a statistical investiga-
tion begins as follows: “We assume that (or it is reasonable to assume that)
the regression under consideration is linear and characterized by independent
normally distributed random parameters. Then...”. In reality, statistical data
to be processed may be non-normal, dependent, heteroscedastic and so on. Sta-
tisticians have had to put up with such unjustifiable initial assumptions.

Exploratory analysis has developed extensively in the past 10-15 years and, in
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particular, projection pursuit methods aimed at investigating initial data to
formulate adequate assumptions concerning their probabilistic and geometric
nature and the mechanism of data generation. Only a few software systems
exist which use these techniques (for example PS-ISP 1986), but no expert sys-
tem is referenced anywhere. This is one of the reasons for EDA to become a

component of M1.

REGRAN is an expert system for regression analysis. The corresponding sta-
tistical techniques enable us to reveal and describe the dependence of a result-
ing response upon a set of explanatory variables. Regression analysis is prob-
ably the most widely used statistical approach. When using these techniques,
the man-machine interaction is of paramount importance since there are vari-
ous weakly formalized stages such as the choice of the general form of the
model, the study of the collinearity phenomenon, the analysis of outliers, etc.
The interaction with the SES and its advice are most valuable for a user at this
stage. In fact this area of applied statistics can be considered basic for a
number of other statistical approaches, and a large number of references from

other components of M1 are related to REGRAN.

CLASS is an expert system for classification of objects and patterns. Along
with regression analysis, the corresponding statistical classification methods
(pattern recognition, discriminant analysis, automatic classification, cluster
analysis, etc) are the techniques widely used in applications and, first of all, in
economics and social sciences. The problems of studying typology and type-
generating features, diagnostics in technology and health care, preliminary data
array processing to single out homogeneous portions of information, and many
other problems are handled by this cluster of the statistical software. The
advances of Soviet scientists in this field ensure the possibility of the creation of

market competitive programs (at least in their functional contents).

SEE is an expert system for solution and analysis of simullaneous econometric
equalions. The simultaneous econometric equations arising in the theory and
practice of economic-statistical modeling are interrelated regression equations
and identities in which the same variables in different equations can be both
responses and explanatory variables. The interrelations under consideration
can involve variables corresponding to lagged moments as well as the current
one. SEE is intended to help a user to choose the model structure, to make it

identifiable, estimate the coefficients of equations involved, etc.
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(6) PROF is an expert system for construction and analysis of production func-
tions. The production functions give a compact mathematical description of
the relations between the final product outputs and resources. In particular,
these functions are very helpful in the analytical study of resource efficiency
and the involvement of a resource in production, in the prediction of the output
level, etc. The functions are constructed and analyzed by using regression

analysis and time series analysis.

3. Who is the User of M1 and how intelligent is M1?

M1 is intended for both the statistician and the user who, on the one hand, has his
problem posed and knows his ultimate goal, and, on the other hand, is trained in applied
statistics (i.e., knows basic concepts and definitions of regression models, regression
analysis, time series and trend, classification with and without learning samples, mul-
tivariate observations and their projection on a plane, etc). Thus, among the users of M1
there are both statisticians (with different levels of knowledge) and non-statisticians

(economists, sociologists, engineers, etc) having elementary knowledge in statistics.

To explain how M1 works, we decompose the possible statistical study into elements

as follows:

Element 1: (formulation): refinement of the formulation of the problem and final objec-

tives of the study.

Element 2. (methodology): the choice of appropriate statistical techniques, including the

set of statistical procedures and the order of their performance for data processing.

Element 3: (computation): realization of the chosen set of statistical data processing

techniques.

Element 4: (interpretation): discussion of intermediate and final results of statistical data
processing, and derivation of conclusions, including recommendations for further investi-

gation.

Among these four major elements of practically any statistical study only the last
three can be partly automated and provided with computer-aided assistance in the frame
of M1. Primarily, we consider how to help the user to choose adequate preliminary
assumptions (hypotheses) concerning the geometric and probabilistic nature of data to be

processed and to describe the model which generates these data (EDA is entirely intended
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for solving these problems, while in other components of the series these problems are
thoroughly analyzed). The general idea of ‘user-computer’ interaction in Ml’s com-
ponents follows the traditional principle “"from general description to more and more

method-oriented notions”.

Thus, if one applies the three-level classification of intelligent software (see Hahn,
1985), M1 has to be placed at the second (middle) level.

As mentioned before, every component of M1 interacts with a knowledge base con-
taining at most 400-500 rules and assertions. It is thus possible to realize the project on
the IBM-XT or IBM-AT PC (or any compatible 16-digit PC).

The basic algorithmic languages are C-language, FORTRAN-77, and some other (ad

hoc) languages.

4. References
PC-ISP: PC-Interactive Scientific Processor. User’s Guide and Command Descriptions.
Chapman and Hill Software. New York-London, 1986.
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ASSESSING THE PERFORMANCE OF ESTIMATES WITHOUT KNOWLEDGE ON
THE REGRESSION FUNCTION, THE VARIANCES AND THE DISTRIBUTIONS

Olaf Bunke
Humboldt University, Berlin, GDR

1. INTRODUCTION

In this paper we want to show, how the performance of
estimates and models may be assessed without knowing the
regression and variance functions and the distributions of the
observations. It is only assumed, that there are independent
observations Yij (i=1,...,m; j=1,...,ni) with means and
variances

Eyyy= FOG) = £ Dy = vixg) = 62, (1)

J
which are determined by the values of unknown regression and
variance functions f and v for fixed “"design points” X Many

different parametric or nonparametric estimates of these
functions and estimates of parameters in approximative models
for them have been proposed in the literature and are widely
applied. Their bias, variance or more generally a risk

r(fF,v,Py ..o, P) = E L [S(y),f,v] (2)

for such estimatorss & w.r.t. a loss function L give a
description of their performance. The risk depends on the un-
known distributions Pi of the observations Yii assumed to be

the same for jsl,...,ni. The MSE in estimating by a parametric
model, say, by 93 - is a special case of (2) and is a descrip-
tion of the performance of the model 95+

The performance of the estimator may be assessed with an esti-
mate of the risk (2). For this we need estimates of f,v and
P, leading to a "plug-in® risk estimate

n

A A A A
r = r(f,v,Pl,...,Pm). (3)

Thus we are confronted with the semiparametric estimation
problem of estimating the vectors

= (feif), v = (6,,....6) (4)

and the distributions Pi‘ As the calculation of maximum
likelihood estimates turns out to be too complicated, we
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propose to derive Bayes estimates with respect to standard
prior distributions, which in their noninformative limit case
are identical to MLE's in some simple special cases. In this
way we obtain some sensible structures of estimators, possibly
being admissible by their Bayes property, and we could adapt
the parameters of the priors trying to get accurate estimates
of £, v or P, or of the risk (2;.

In general it will be impossible to calculate explicitely
the risk estimate (3) and it will be approximated by a smoothed
"bootstrap estimate" (see Efron (1982)§

B
R AT FICAD R AR VS (5)
k=1
where for each k y(k) is _a sample of observations ygk)simulated
under the distributions J

i
A survey of methods derived under this approach is given
in Bunke (1987).

2. BIVARIATE REGRESSION WITH KNOWN HOMOGENEOUS VARIANCE

For an illustration of the basic ideas we will discuss the
special case of univariate real explanatory and dependent
variables xi and yij’ that is, of bivariate regression, assuming

that all variances are known and identical: 62 = Dyij'

We want to include in the prior a possible smoothness of
the regression function, which may be described by a small
value of its second order difference ratios, that is (see
Silvermann (1986) or Titterington (1985)) of

TCP) = T ICF g =Fy) (g g =0 )= CFy=Fy ) Oxgmxg ) 12 7
1

7 (Xq =) (=% ) -

(6)

Additionally to a probable smoothness of f we will assume,
that its "mean” ¥ =3 f;/m and “global slope®

i
b(F) =52 (F,-F) (x;-R)/ & (x,-)% = ¢'¢ (7)
i h -
are °"probably bounded® in the sense of a prior density

p(£) o exp [-(§ ¥ +yb(P)Z + AT(£))/2] (8)

with some (possibly small) constants ¥ ,y and a constant A,
which characterizes the "degree of smoothness®. These constants
will be adapted later.

We assume that the “errors’ i = yij-fi are i.i.d. with

distribution P. The prior distribution of f,P is then assumed
to give independent f and P, the density of f being (8) and
the distribution of P being the Dirichlet distribution O, with

index measure o= a N(o,62) (see Hartigan (1983)). The prior
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mean of P will be the normal distribution N(o,6’2), while a
characterizes the “dispersion’ of the random distribution P
around its mean.

The posterior means of f and Pi are Bayes estimates w.r.t.

a square loss function. The results in Bunke (1985,1987) give
the estimates

f=E(fly) =Q§ (9)
A A 2
':i = E(Pi\Y) =k N(fila +qii) +
1

A (10)
-k) E;G N(fi+ehj,qii+qhh)/n,
where y is the vector of means 7h =2 yhj/nh’
@ = ((ag) = [Em 244 spec’+ ahe 6 72N, (11)
N = Diag [nl,...,nm], Q -6 -2 QN (12)

4 is the vector of one's, H is the symmetric matrix of the
quadratic form (6) (T(f) = f'H f), €y denote the "Bayes

residuals” yhj_ ?h (h=1,...,m;j=1,...,nh), k=a/(a+n) and
n=2_n_.

h h
The density of the distribution (10) is a mixture of a normal
density with mean fi and a kernel density estimate based on the
"pseudoobservations” yihj = ?i + ehj with normal kernel and

local bandwidths aihj =49;i % %n
A simulation of i.i.d. r.v.'s Yij

(k)
(5), is easily performed in a sequential manner. At first, a
o-1-variable with k=P(0) and 1-k=P(1) is simulated. If the

(k)

A
under Pi’ as required in

result is O, then a value yij is simulated under

A
N(fi,€52+qii). If the result is 1, then an index h is generated
under the uniform distribution P(h) = 1/m and afterwards an
index j under P(j) = 1/n,. Then a value yij(k) is simulated
under N(yihj,qii+qhh).

If the main interest is in estimating f, the constants
.9 . may be adapted by ninimizing an estimate R of the
weighted MSE

R(E, . A) = ENF-FI2 (22 = z'W 2). (13)
Such an (unbiased) estimate is
A
RCE,»,2)=1y12 -&2 tr v(Q), (14)
$¥ Y B(Q) i
B(Q)=(I-Q)'w(I-Q),Vv(Q)=w Q'N_IQ-B(Q)- (15)

A numerical simplification is reached, if the matrix inversion
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in (11), which would be needed for all admitted combinations
f’]f’ A . is calculated using the spectral decomposition of H:

=265 Ui (6147004 0) (1)
where u; are orthonormal eigenvectors corresponding to the
eigenvalues @.. We assumc identical n, = 0.

We may use u; = m /24 and

u, = tc, t2 =Z(xi-§)2 (17)
i

2
and therefore we have:
~ -1 -2,-1 . -2 -2.-1 .
Q=(Ym "+n&"°) ujuy + ('Tt +ng ) Uy + (18)

D -2,-1 .
+ 2 (A@;+n6™ )" u,u;.
i=3

If the main interest is in estimating the risk (2), then the
constants may be adapted by minimizing a bootstrap estimate '
of the mean error M = E|r-rl

B
A=> 1r0 /B, (19)
k=1

A A
For (19) we need preliminary estimates f and Pi’ e.g. (9)

and (}0) with §=“T= 0 and A chosen by minimization of (14).
Then r would be the risk estimate (3) calculated with the

preliminary estimates, while ?(k) would be calculated in the
s?m§ way, but replacing the original sample y by a sample

K A
Y

The “semi-noninformative® choice ¥ = 4= 0, which simplifies
the calculation of risk estimates, will be sufficient in many
cases. But if we try to derive a Bayes estimate of the risk
(2) in place of the plug-in estimate (3), then one should
allow positive constants ¥, ¢, as it can be learned from the
disadvantages of a Bayes estimate of the square of a normal
mean w.r.t. an improper prior. Intuitively, the Bayes

estimate ¥ = E(rly) will be more accurate than the plug-in
estimate (3) in the region of interesting regression functions
and distributions described by the prior, because it minimizes

simulated under the distributions Pi'

the prior mean of EI?-rlz. But it requires a high computational
effort in general, although for moderate n the sequential
simulation proposed in Bunke (1987) may be realizable.

Bayes, best linear unbiased (with a linear model) and
nonparametric spline, kerne} and nearest neighbor estimators
of f are linear or affine: f = Ay + b.

The unbiased estimator of the quadratic risk (12), which
under a normal distribution P is best unbiased (see Bunke and
Droge (1984)), is then

A -2 - 2 2

= i - ' -
R Y“B(A) 20'W (I-A)y+6° tr V(A)+ Lblly, (20)

while the Bayes estimate would be
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R = ERlY) = IQ VHE(A) + tr Q B(A)-

2 (21)

20 (1-A) @y + bl +6% tr wa N A",

Example. To give an impression of the form of the Bayes
estimate f = Q Y we have calculated Q in the case

. 2
x; =i, m= 10, n; = 1, x = 0.1, §{=9=0,6" = 1. (22)

While H is a band matrix with elements

hj; =1 (i=1,m), 5 (i=2,m-1), 6 (3%i€m-2)
hi o1 = -2 (i=1,m-1), -4 (2%i£m-2) (23)
hi jo2 =1 (i=1,...,m), hij = 0 otherwise,
the inverse (11) is approximately (we give only the lower
triangular part):
.77
.29 .41
.04 .24 .40
- .04 .09 .25 .40
- .04 .01 .09 .24 .39
- .02 -.01 .01 .09 .24 .39
- .01 -.01 -.01 .01 ..09 .24 .40
.00 -.01 -.01 -.01 .01 .09 .25 .40
.00 .00 -.01 -,01 -.,01 .01 .09 .24 .41
.00 .00 .00 -.01 -.02 -.04 -.04 .04 .29 77
We see, that the estimates ?i are smoothing the observations
nearly like moving averages with varying weights.

3. THE GENERAL CASE

The general case (1) with unknown heteroscedastic vari-
ances may be treated in an analogous way as the special case
considered in section 2. The prior density for f,v would now
include a term T(v) describing the smoothness of The variance
function v, so that recalling the standard noninformative
prior for variances (see Hartigan (1983)) one may assume a
prior density

p(f.vcp() o7t expl-gT(v)/2], (24)
1

where we use the density (8). -
From Bunke (1987) we have a normal N(Q ¥,Q) as the
conditional posterior distribution of f under a fixed v,

where Q@ = Q(v) is given by (12), but 672N being replaced by
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-2 -2+
1 ""’nmeln 1. (25)

The marginal posterior density of v is of the form

L(v) = Diag [n16

p(vly) = q(vly) s(vly), (26)

with the product of inverse Gamma densities

n.
q(vly)ccTTG' Y exp[- Zlyij-?ilz/z 62] (27)

and a residual factor s of relatively complicated structure
(see Bunke (1987)). The Bayes estimates of f and v may be ()
calculated approximatively, simulating independent values v
under the distribution (26) and taking

j z% O(_!(k))?s(x(k)Ly) /% s(x(h)ly), (28)
éizx zégk) s(_\i(k)ly) / ZS(_\((h)lY)- (29)
k h

The Bayes estimate of Pi is the posterior mean (w.r.t. the
density (27)) of the distribution

2 2 L]
k N (F;,67+e;Q(v) ;) + (1-k) hz Winj (30)
where -]
A A
Winj = N (f‘i+(yhj-f‘h) ©,/6,, a;,Q(v) a;,), (31)
eik =Jik' aih = e.-(G./5 )e . (32)

An approximation may be calculated by simulation as described
in (28), (29). Another more crude approximation may be obtained
replacing v by some nonparametric estimate v, e.g. one of

those proposed in Bunke (1987):

fxQ) ¥, P %(30) with v = V. (33)

Such estimates would be "empirical Bayes estimates® calculated
as Bayes estimates assuming v to be known and then replacing
Vv by an estimate.
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Experimental Design Technique in the
Optimization of a Monitoring Network

V. Fedorov, S. Leonov, S. Pitovranov
International Institute for Appiied Systems Analysis
Laxenburg, Austria

I. Introduction
The following main assumptions are crucial to the approach.

- The optimal design of an observational network is model oriented. It is
assumed that the observed values can be (a! least approximately) described
by a regression model containing unknown parameters.

- All uncertainties (observational errors, fluctuations of processes under
investigation, small irregularities, deviations of the model from the "true”
behavior, etc.) are absorbed by additive errors, which are assumed to be
random.

- All objective functions (both in analysis and design) are formulated as expec-
tations of some deviations of estimators from the "true" values. Most fre-
quently it is the variance of an estimator or the variance-covariance matrix
and some functions of it in multidimension cases.

The algorithms presented in this paper are oriented to the case where errors
of observations are uncorrelated: E[g; aj] = g®A '1(::1)6,,, where A(z) is the so-
called "effectiveness function" reflecting the accuracy of observations at the
given point z. It is assumed throughout this paper that the observed value y; is a
scalar. The generalization for more complicated situations, for instance y; either
a vector or a function of time, is straightforward (compare with Fedorov, 1972,
Ch.5; Mehra and Lainiotis, 1976).

One can apply the method to a vector case when the concentration of several
pollutants have to be observed. If the dynamics of some environmental charac-
teristics are of interest then it becomes necessary to consider responses belong-
ing to some functional space.

II. Optimality Criteria
This paper comprises two main types of optimality criteria: the first is related
to the variance-covariance matrix of estimated parameters, while the second is

based on variance characteristics of the response function estimators. Details can
be found in Fedorov, iy72; Silvey, 1980; Atkinson & Fedorov (to be published).

Table 1 contains optimality criteria which can be handled with the help of the
softiware described later. Formal definitions of optimality criteria are in the
second column of the table and the corresponding dual optimization criteria are
formulated in the third column.

Theoretically all of the algorithms discussed are valid for the case of linear
parametrization: 7n(z.,¥) = 197'/(::), where f(z) is a vector of given functions.
How to handle nonlinear models will be considered in Example 3.
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Table 1.
Optimality (D) Mz)rT(z)DEDSf () ~tr 8D =—¢(z ,£)
criteria
D-criterion In|D]| AMz)d(x &) —m ,
generalized
D-criterton | In|4TD4 | Az)rT(z)Da[ATDA1 14 TDP () —s , s =rank4
A-criterion tr D Az )fT(:c )D2f (z)—tr D,
lnear tr AD, 420 Mz)rT(z)DADS (z) — tr AD,
criterion
a-criterton | fd(z.Ow(z)dz | A=f1(@)rT(z)o(z)dz ,
Z Z
extrapolation | d(z,£) M) 2T (z)Df @)} —d (z.8). A=1 (o) s T (2 ).

The following notations are used in Table 1:

- D =D(§) = ND('O) where D =D(§) Is a normalized variance-covariance
matrix, D('d) isa variance-covariance matrix of the least square estimator ¥,

DHH =M = t§1 Py M=z )7 ()1 T (=)

- ¢ is a design, i.e.,£ = {p;.2, {t"=1 . where p, is a fraction of observations which
has to be located at a point z;; p; could be the duration, frequency or the
precision of observation;

- m is a number of unknown parameters (dimension of ¥) ;
- & = 0%/ 0D —ibQ/bDapiap =1

- d(z,.{) = T(:c )Df(z) is a normalized variance of the estimator 7;(::.'5) at a
given point x ;

- X is a controllable region, z; € X ;

- A is a utility matrix, usually reflecting the significance of some parameters or
their linear combinations;

- w(x) is a utility function, usually reflecting the interest of a practitioner in
the value of the response function at a point z.

The existence of a nonsingular optimal design is assumed for all opt.imalit.y
criteria in Table 1. Singular optimal designs (i.e. an information matrix M(f ) is
singular, |M(£')| =0, in the regular case D(§) = _1(5)) can occur when rank
A <m. In practice one can easily avoid singular designs applying to the regular-
ized version of the initial problem (see Fedorov, 1986, section 2):

8,LD(8)] = S[{(A—p)M(8) + pM (&) 71, (1)
where |M(£,)| # 0.

Objective function (1) can also be used in cases where it is necessary to com-
plement existing networks defined by £, by some new observational stations. D- and
A-criteria are usually used when all unknown parameters are equally of interest.
The first one is preferable, being invariant to linear transformation of unknown
parameters (for instance when one needs to rescale some of them). usually chosen
diagonal with elements A4,,(a =1,m) reflecting the significance of the
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corresponding parameters ¥,(a =1,m).

The last two criteria can be used when an experimenter is interested in the
explicit estimation of a response function n(z,¥). For instance, if there are points

ZyZp. %y of special interest, then o(z) =L_§1 é(z —z,), where &(z-=x°) is 6—
5 =
function, and (D) = L-21 d(z.,8).

II. First-Order Iterative Algorithm
III-1. The algorithm
We start with the iterative algorithm of the following form (for details see
Fedorov 1986):
541 = (L—ag)é +agé(z), @
where

ey
¢, isacurrent design onastep s, & = {zy;.Pys, 1 =10 Lt§1 Pys =1,

X; = {45, 1 =1,ng] is a supporting set of the design;

f(zs) is a design with the measure totally located at a point z .

The algorithm provides so-called forward and backward procedures. In the back-
ward procedure, the "east informative' points are deleted from the current
design, while conversely the forward procedure includes the new, "most informa-
tive" ones.

III-2. Selection of {z,} and {agl.

For the forward procedure: z, =zt = Argmier‘l" ez b)) ag =7 .
k4

For the backward procedure: z, =z, = Arg mea“)’( o(z.&;) .
T .

- _73, p; 2 7S

ag = /1)), pe <7, P: =p(z;) is a weight for a point zg.

The algorithm provides three choices of gain sequence {7s I

@) 7s = ,§=1,2,...; ny is a number of supporting points in an initial

ngts
design. oWit.h this choice of 7, one can simulate the subsequent inclusion
(deletion) of the most (least) informative stations.

(b) 7, is defined by the steepest descent method, which provides the largest
decrease of the objective functions in the chosen direction £(z).

(c) 75 =C, where C, is a small constant (0.01 =+ 0.1) which is defined by a user.

This sequence does not satisfy traditional conditions
lim 7y, =0, Ty, =, T 7_:' < oo , which are usually implied to prove the con-
S »w s s

vergence of the iterative algorithms, but may be useful for the construction
of the discrete designs.

Numbers of steps (length of excursion) for the forward and backward pro-
cedures are defined by the user.
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[I1I-3. D-criterion.

The algorithm "DOPT” is oriented for the construction of D-optimal designs
providing the minimum of the determinant |D(¥)|, D(¥) is a covariance matrix of
the parameters’ estimators. Simultaneously the algorithm minimizes sueg( Az)d (z,£)

x

(see Table 1) securing an effective estimation of the response function over set X.
Moreover, in the case of normally distributed errors £; D-optimal design ensures

the best value of the noncentrality parameter when the hypothesis
513’ 1)2(.7.,19‘) 26,6 >0, is tested (see Fedorov, 1986).
x

The formulae for iterative recomputation of the covariance matrix and the
determinant are

ag Mz)D(¢,) (=) T(z)D (&)
1—-ag+agAz)d (z . £5) '

D(ks4q) = (L—ag) ™! D(&) -

[D(t541)] = A—a)!™[1 —ag + agd(z,£)17 - [D(&)] -

The structure of a vector of basic functions f(x ) must be set in the corresponding
subroutine. If the effectiveness function A(z) is not constant, then instead of f(z)
the functions A/ %(z)f (z) have to be programmed.

[II-4. Some notes on the algorithm.

Stopping rule. The calculations are terminated if:

(a) the convergence criterion is attained for the forward procedure:
m 1. |¢(zs+)| < 8, where 4 is defined by a user (this means that the value of
the directional derivative is small enough and, subsequently, £ is close
enough to the optimal design).

(b) a given number of iterations is attained.

Merging of supporting points in the forward procedure. Let i, be a size of
the k-th grid element defined during the mapping of X, & =1,L; L is a dimension of
controllable region X. If

EF —-“-';,tl < Crer hy; T4 €X; k=1L ,

then a point z; is merged with a point zs+ , constant C_ . being defined by a user.

Deleting of points with small weights in the forward procedure. If for
some 1%, Py s <4, then a point =z 5 is deleted from the design and
Pys+1 = pj's/ (1—p,'s) , J #1i . Both latter procedures help to avoid designs with
a large number of supporting points.

IV. Optimization Algorithm of the Exchange Type

The algorithm has the form &g, = é; + a  é(z;) where ag can be either posi-
tive or negative.

From a computational point of view, the main difference in this algorithm from
the one described in Section 3 is that the whole design is not recomputed at each
step: all modifications concern only newly included (ag; > 0) or deleted (ag <0)
points, which explains the origin of the term "exchange” in the title of the algo-
rithm (see also Fedorov, 1986). The various modifications of the "exchange type"
algorithm are particularly useful when some subset of an initial design has to be
included in the final design (some prescribed observational stations have to be
included in the final observational network). The algorithm can be easily adapted
to solve the regularized versions of the originally singular design problems
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conserving some ''regular” fractions of an initial design.

The presented software contains three modifications of the exchange pro-
cedure.

Deleting the least informative points from the initial design. The back-
ward procedure is executed (some points are deleted) with ag = —-1/ny and
T, = Arg meax): ¢(z,t;), ngisthe number of points in the initial design

x

A number of steps for deleting is chosen by a user. All points in the final design
have equal weights. This procedure can be used, for instance, when it is necessary
to find and remove a given number of the least informative stations
Inclusion of the most informalive points. The forward procedure is exe-
cuted with ag =1/n,,and z; = Argmler)'n( olz &),
x

A number of steps for inclusion is chosen by a user.

For both of the above procedures, the normalization of the covariance matrix
is carried out during the last step.

Normalization is not executed during the intermediate steps in order to make
tangible either the decrease of the determinant |D(£)| due to the deletion of the
observational stations or its increase due to the inclusion of stations.

Standard exchange procedure. Forward and backward procedures are exa-

cuted subsequentially, the initial procedure being chosen by a user. The number
of steps for the forward and backward procedures are equal.

The choice of fzs } is as described above,

75, forward procedure
a, = .
s —min (75.,p), backward procedure
There are two variants for the choice of gain sequence {7 i:
1

@ ys = T"’l*’—l' s=1,2,...; [{] is an integer part of (s —1)/2nn ;

75 changes after executing both forward and backward procedures, i.e., it is
a '"large iteration’’;

(b) 7s = C¢.,Cy is a constant defined by the user. The popular Mitchell algo-
rithm (Mitchell, 1974) can be considered as a particular case of this version.
The Mitchell algorithm does not generally converge to an optimal solution.

VI. Linear Optimality Criteria

Algorithms LINOPT and LINEX are intended for the construction of linear
optimal designs providing minima of the value tr AD({;), where A is a utility
matrix chosen by the user according to his needs.

The major difference in the algorithms LINOPT (first-order iterative algo-
rithm) and LINEX (optimization algorithm of the exchange type) from DOPT and
DOPTEX respectively, is that the function ¢(z,{) has the following presentation:

~p(z.£5) = M=) LT (@)D (£,)AD (&)1 (z) —tr AD(&;) .

More detailed information on software can be obtained from IIASA’'s Computer
Service, see also Fedorov et al, 1987.

VII. Examples
Frample 1. Linear parametrization, D-criterion.
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To illustrate the possibilities of the proposed software, let us consider a com-
paratively simple example based on air pollution data from Modak and Lohani,
1985. The particular example we shall use is shown in Figure 1a, which gives iso-
pleths of monthly mean values of SO, concentration for 9am in Taipei City, Taiwan.
The original network contains eleven observing stations (see Figure 1b). The
underlying model was chosen as a polynomial of the second degree with uncorre-
lated random additive errors:

Yy = V40,2 + 992y #0475 +052 5 +062 2,5 +Ey

where (z “.221) are coordinates of the i-th station. Of course, this model is too
simple for a good approximation of the pattern presented in Figure 1a, but because
of its simplicity one can easily understand the main features of the software.

The optimality criterion was taken equal to the normalized determinant of
variance-covariance matrix (D-criterion).

(a) Completely new network. The purpose of this algorithm is to find the
"best observation’ network under the assumption that there are no constraints on
the number of stations and their locations except that the stations have to be
within the city’s area.

The ratio of determinants for the original and optimal locations is greater
than 10" (see Table 2). One can observe (Figure 1b) a typical (for the conventional
optimal design) location of observation stations: most of them have to be on the
boundary of the area and only a few (in our case only one) inside it. This should be
compared with the result by Modak and Lohani, 1985, p.14, based on the so-called
"minimum spanning tree’ algorithm, where observing stations are mainly located
inside the area. However, a comparison of results is conditional since the authors
did not report the model used for the monthly averaged concentration of SOz.

For illustrative reasons both DOPT and DOPTEX programs were used to con-
struct the optimal allocation of observation stations and naturally they led to the
same (up to computational accuracy) results. The optimal network consists of
seven stations (the model contains six unknown parameters). Usually the number
of observing stations is equal to the number of unknown parameters. The seventh
point appears here due to some peculiarities in the controllable region. The vari-
ances of all parameters (except the intercept whose variance does not depend
upon the allocation of stations) are reduced 10-20 times, see Table 1.

Theoretically the optimal design assumes that the accuracy of observations at
the various points is different. Sometimes this demand is not realistic in practice
but it is easy to verify theoretically that the design characteristics are quite
stable under variation of weights (see Fedorov and Uspensky, 1975, p.56). The cal-
culations confirm this fact for our example. For instance, from the optimal design,
point 1 with small weight ( ~0.054) was removed from the design and for all others
the weights were chosen equal 1/6 (so called saturated design: number of observa-
tion = number of unknown parameters). The ratio of the determinants of the
variance-covariance matrices for the newly constructed design and D-optimal
designs was found to be equal to ~1,2. In terms of variances, the discrepancy
(~®V1,2) is negligible.

(b) Optimal observation network containing some stations with fized posi-
tions. When creating a new observation network, one can face the necessity of
including in it some N, (for instance, well equipped) existing stations. If the total
number N of stations is given, then one has to consider the following design prob-
lem
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Figure 1a: Monthly average (January,
1981) concentration of SO

(in 0.1 ppm) for Taipel City and the
existing observation network.

Figure 1b: A - existing stations,
e - new network, D-criterion.

Table 2: New Network, D-Criterlon

Crssseese sseseassss FINAL DESIGN sssessrassss
v point weight coordinates
INITEAL DESIGN I. 005  -0.5789 0.7500
2. 0.172  -0.6842 -0.5833
30130 -1.0000 0.3333
G062 1.0000 -0.4167
S, 0.157  0.3684 -1.0000
6. 0.165  -0.0526 1.0000
ru:r::g COVARIANCE MATRIX g D hx L
_2,53232 ‘“322 193, 469 FINAL COVARIANCE WATRIX
13.228 39.169 -39.831 83.318 8'096 -
5.754 38.872 -23.188 74.240 96.087 b At R
29.515 89.311 -98.286 i67.743 144.397 401.929 . . :

-0.155 0.%22 0.982 2.664
-6.452 -0.3i4  5.953 0.193 10.41R
-2.738 3.628 8.524 0.632 4.113 19.60¢6

DETERMINANT OF INITIAL INFORMATION MATRIX VALUE OF THE DETERMINANT
1.13¢45e-04
8.08280e-09
o = Arg mén S[(1-No/N)E + (No/ N)&o] .

where £, describes the location and accuracy of an existing station required to be
in the planned network. The results of the calculations for D-criterion are
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presented in Table 3.
Table 3: D-Optimal observation network with fixed stations.
sassestess  FIMAL DESIGH sstsasttssss

point weight coordinates FINAL COVARIAMCE MA

1. 0.09% -0.5789 -0.5000 5.579 b

2. 0.091 -0.4737  0.5000 0.29¢ 3.941

3. 0.091 -0.0526 -0.8333 -6.583 1.466 14.47¢

4. 0.091 0.157% -0.3333 0.335 0.90 0.5%5 3.148

2. gﬁlli ll!gg 304167 ~6.73% -0.286 7.137 0.413 12.716
. . . -0. -3.877 . . . . .
;- 0 106 el 5.138 13.120 1.043 S5.575 29.52%
. 0.110 -0.6842 -0.5833 YALUE OF THE RUIMANT

S. 0.094 -1.0000 0.3333 5.26021 OS'HE !

10. 0.093 0.3684 -1.0000

Ezample 2. Linear parameirization, A-criterion. Theoretically the optimal
location of observational stations depends upon the chosen criterion of optimality.
In practice the dependence is usually negligible. To confirm this fact, let us con-
sider the A-criterion when the quality of a location is characterized by the aver-

n
age variance of the parameter estimators: ¢=m1 3z =m ltr D. The

a=s
results of the calculation (program LINOPT) are presented in Table 4. The alloca-
tion of all observation stations coincides. The major traceable difference is in the
"weights": the points which are closer to the origin have the greater weights (i.e.
the accuracy (or number of repetitions) of observations has to be greater for the
"central points").

Table 4: A-Optimal network.
ssensensst  FINAL DESIGH sssssssesses

1 Daa

FINAL COVARIANCE MATRIX

point weight coordinates 4112
1. 0.240 -0.6842 -0.5833 0.777 4.710
2. 0.104 -0.5789  0.7500 -4.269  1.014 12.164
3. 0.128 0.157% 0.9167 0.211 1.1%2 1.493 3.169
4. 0123 0.3684 -1.0000 -4.730 -0.857 2.951 -0.51% 10.331
S. 0.051 -1.0008 0.3333 -1.661 4375 6.991 1.302 3.228 18.299
6. 0.117 1.0000 -0.4167
7. 0.2%7 -0.052¢ 0. YALUE OF THE DETERMINANT 0.00006390

YALUE OF THE CRITERION - trace { HTIL D)
52.7850

Ezample 3. Nonlinear parametrization, D-criterion.

Let us assume we have a single source of pollutant and geographically homo-
genous region with spatial scale approximately 100 x 100km. A widely used model
for the study of dispersion of various pollutants on this scale are Gaussian type
models.

The concentration distribution from a single release is given by the Gaussian
Puff Model as

oz B.0) = ) oxp [ (:x:l—ﬂt)2 _ ::22
Y (211’)3/2(71020 2012 2 22
(z3—9,)? (23+9,)*
x fexp[ ~ ——*—1] + exp [- —-——1
o5 203
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where n is the concentration, z, - axis is in downwind direction, z, axis in the
horizontal crosswind direction, z 4 - axis in the vertical, ¢ is the travel time, ¥, is
the total amount of material released at time t=0 o,, 0,, 04 are the standard devia-
tions of the Gaussian distributions in the z,, r, and z4 direction, i is the mean
wind speed directed along z, - axis and ¥, is the effective release height.

The time integrated surface concentration is given by the Gaussian Plume model as
2 1,2

b
n(z,¥) = ——— exp [—1/2(— + =2 @)
U 0,04 of o}

There are different parametrizations of standard deviation ¢,, o3 ( Berliand,
1985). We use one of the simplest

0, =(Cpz,/u) %, 03=(Cazy/@)/2.

For obtaining some averaged (monthly, seasonal and annual) field of concen-
tration it is necessary to formulae (3) averaged over climatological data for wind
direction and wind speeds.

The physical problem can be formulated as the network design for monitoring
of total amount of released material and effective release height.

In this example, unlike the linear case, we have to be concerned with the
values of the parameters’ estimates. The reason that in the linear case the
variance-covariance matrix does not depend upon estimated parameters while in
the nonlinear case (see Fedorov and Uspensky, 1975) this matrix (or more accu-
rately its asymptotic value) depends upon the true values of the unknown parame-

ters U,: IJ.I_II.\-NDO’N) = ”1(13‘ §¢), where M(9,¢) = (V9,z)f (1’ z)é(dz), fr(¥,z) =
@g:,—'.',l , N is the number of observations and ¢ is a limit design. Optimal designs

formally defined as in linear case also depends upon ¥, , and is sometimes called
locally optimal.

In this situation the following procedure is recommended: a user has to choose
some probable (reasonable, admissible, etc.) values of 1 and define intervals which
will almost certainly contain true values of unknown parameters; for boundary
points of these intervals, optimal designs have to be computed with the help of one
of the above described programs; if the corresponding designs differ greatly from
each other, an "average” design has to be constructed. Fortunately optimal
designs are rather stable to the variation of parameters and therefore the latter
procedure can be avoided.

The square area with the 50 X 50 mesh scale was used for computations, the
source of pollutant was located in the origin. It was assumed that the wind’'s speed
and frequency are equal for each direction of wind rise. The optimal design for
this symmetric case are two consecutive circles if the operability region is suffi-
ciently large. Otherwise the location of supporting points will depend upon the
boundary shape. The dependence of the circles’ radiuses on the value of assessed
parameter of effective height can be seen in Figure 2. The dependence of optimal
design on wind speed can be seen in Figure 3.
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OPTIMAL DESIGN (SPEED 5 m/s)
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Figure 2: Dependence of the allocation of the optimal design stations on the
height of pollutant release (wind speed is assumed constant in all
directions and equal to S5m/sec).

OPTIMAL DESIGN ( HEIGHT 250 m).
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Figure 3: Dependence of the allocation of the optimal design stations on wind

speed which is assumed uniform in all directions. (The weight of pol-
lutant release is assumed constant and equal to 250m).
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TESTING FOR OUTLIERS IN LINEAR MODELS AND BONFERRONI SIGNIFICANCE LEVELS

Stratis Kounias
University of Thessaloniki, Greece

1. INTRODUCTION

Consider the Tinear model Y=XB+e withuncorrelated observations and common

variance 02. Then the vector of residuals is e= Y-Xé where fxé =X'Y. An
observation which differs "very much" form the fitted value has a Tlarge
residual and is considered to be an outlier. Removing or adjusting residuals
simplifies the description of the rest of the data because in the null case
of no outliers, the residuals do behave much Tike a normal sample.

One approach is practical and subjective by plotting the residuals or the
observed and the fitted values and examining the plot.

A suggestion (J. John and N. Draper 1978, J. Gentleman and M. Wilk 1975)
is to replace the observation with the largest residual with its missing
value, which is estimated from the remaining observations and continue simi-
larly for the remaining outliers. They proceed to replace the k largest re-
siduals and provide a statistic Qk which is the difference between the sum

of squares of residuals for the original data and the sum of squares of re-
vised residuals resulting from fitting the basic model to the data remaining
after omission of k data points.

When one outlier is present, the direct statistical treatment of residuals
provides a complete basis for data-analytic judgments. When two or more out-
liers are present; the resulting residuals will often not have any noticeable
statistical peculiarities.

The statistic commonly used to detect an outlier is the maximum normed

residual z, = ei/v/e'e i=l,...,n (C. Daniel 1960, W. Stefansky 1969). The

joint distribution of a set of k normed residuals has the form of an
inverted t distribution with n-p-k degrees of freedom. (C. Quesenberry and
H. David 1961, H. Raifa and R.Schlaifer 1961, W. Stefansky 1972). Since the
associated distribution js very complex, exact p values are difficult to
obtain. These are evaluated either by using simuTation or applying Bonferroni
upper and lower bounds. The aim of the present paper is to demonstrate impro-
vements of the Bonferroni bounds.

Let Pi = P(|zi|> d), Pij = P(l21|>d, |Zj|> d) i# J etc, then use the
notation: n
S, = P., S, == = P.., S,=2=2Z= P.., , etc
L D R A B PP L

where Sk is the sum of all k-fold intersections.
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OQur problem is to evaluate the critical value d i.e. P(max[zﬁ|>d)=a and
the distribution of max|21| is very complicated.
The first order upper Bonferroni bound is
R(maxlzi| >d) s S1 (1)

and for a given d, P(Izi!>(i)=Pi is easily computed. With more effort we

can compute ﬂj and %jk and use the lower and upper bound to approximate

d.
Setting SI= a we solve for d and this gives a conservative estimate

(overestimate) of the actual critical value . In the case where all |zi|have
the same distribution we find d from

P(z? > dz) = a/n (2)

for a given significance level a.

Actually we evaluate the left hand side for different values of d and
find the one with the given probability a/n.

The second order lower bound is

$;- S, s P(max|z;|> d) (3)

and equating Sl-S2 with a we find a non-conservative estimate (underestimate)

of the critical value d.

These values have been tabulated for the two and three-way layouts by
using the first and second Bonferroni bounds (W. Stefansky 1972, R.Cook and
P. Prescott 1981, J.Gaplin and D. Hawkins 1981). The last paper uses third
order bounds.

2. IMPROVED BOUNDS

The accuracy of the Bonferroni significance level can be improved ejther
by taking higher order bounds or by sharpening the bounds of a given order.
It is known (W. Feller, vol I, p 110) that if

n

A=uU A, , S.= = P(A,) , S,= = P(A.A.) etc, then
521 0 i i 2 i< i]
P(A) < Sl-SZ+...+Sm when m is odd

P(A) 2 Sl-SZ+...+Sm when m is even

are called Bonferroni inegualities of order m.
In the outlier problem we have Ai={|21|>d}, A={max|zi|>d}

We present ‘here two improvements
i) When the events are exchangeable i.e., when the residuals are equally
correlated. This happens in orthogonal two level factorial designs, in ba-
lanced designs etc.
ii) When the events do not follow a specific pattern.

For the first case (i) the improved upper and lower bounds up to the third
order are:

Upper bounds

P(A)< S
P(A) £ S

1
1~ 25,/n (5)
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P(A) éslf(Z(Zk-l)/k(k+l)32-+(4/k(k+l))S
where k= [3 53/ 52]+ 2

Lower bounds
P(A)2 Sl/n

3

P(A)z (2/k(k+l)(kSl-S where k=[2$2/Sl]+l (6)

5)

P(A) z ({2ntk-1)/n(k+1))S -(2(n+2k-2)/nk(k+l))SZ+(6(nk(k+l))S

1
where k=[2((n-2)52-3S3)/((n-l)Sl-ZSZ)]+1

with [x] denoting the integer part of x.

The proof is done through the indicator random variables.These are improve-
ments of the Bonferroni bounds (4) which are derived from (5) and (6) by set-
ting k=1.

Although the bounds (5) and (6) are quite satisfactory for practical
problems, they can be improved in the case (ii) where the events are not ex-
changeable. This is the case of two and three-way layouts and in most regres-
sion problems,

D.Hunter (1976) gave the following second order bound:

3

n
P(A) s = P.- = P,, (7)
izt ' 1 Y
the last summation is for all edges of the tree T.
The best bound is given by the maximum spanning tree using for example
Kruskal’s algorithm. In practice neighboring points have higher probabilities
and then (7) becomes:

n n-1
P(A)s = P.-= P, . (8)
i=1 ' q=1 111

In a two-way layout factorial design, let pij denote the correlation between

e, and ej, then pij =
If the design has R rows and C columns, then

P(]zi|> d) is an increasing function of Pij-

p]j = -1/(C-1) between residuals in the same row
plj = -1/(R-1) between residuals in the same column
pij = -1/(R-1)(C-1) between residuals otherwise

If R2 C the maximum spanning tree is formed by linking all residuals in
each row and then linking columns (K.Worsley 1982)
Inequalities (8) can still be improved
n n-1 n-2
P(A)s ZP-= P, .. +3 P, ..., . (9)
521 ) i=1 i,i+1 i=1 i,i+1,1i+2
and also the lower bound of order two i.e.

P(A) 2 (2/k(k+l)(kSl-S + == P, . .) (10)

ji+2 i,i+1,]
this improves the bound of D. Dawson and D. Sankoff (1967) and S. Kwerel
(1975).

2
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3. APPLICATIGN

If we have Bernoulli trials with probability of succes p and we are inte~
rested in testing for randomness, a statistic is the longest run of successes
in n trials (Schwager 1984).

Let the events be:

Ai = { There is a run of k successes starting at trial i=1,...,N, N=n-k+1}

A = {There is a run of k successes in n trials}

TABLE 1. Comparison of bounds

n |k |p Ll L2 L3 EXACT Ul 'U2
300|10(.5|.08884 .12382 .12382 .13351 .14232 .14258
1500 [ 10 (.5 | .33264 .20593 | ,36361 | .51918 72711 | .72852
300 15(.5|.00292 .00436 .00437 .00437 .00438 .00438
1500 | 15(.5 | .56336 | -5.19094 .57095 .88559 | 2.08708 | 2.11978
100 | 10(.7 |.34910 .01535 | .39393 | .58008 .73580 | .79093
300 | 10|.7 |.62667 | -6.93128 | .63397 | .93526 | 2.27401 |2.48578
where:
L1 : The second order improved Bonferroni bound
L2 : The lower bound of Worsley (1985) using hypertrees
L3 : The Tower bound (improved) given in (10)
U1 : The uppewr bound given in (9)
U2 : The upper bound of Hunter given in (7)

Observe that in all cases the bounds L3, U1 perform better and are quite

accurate in probabilities just above zero.
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STABLE DECISIONS IN DISCRIMIMANT, REGRESSION
AND FACTOR ANALYSIS

J. Lauter, Academy of Sciences of the G.D.R.,
Farl Weierstralld Institute of Mathematics

1. INTRODUCTION

Two concepts will be treated to stabilize the multivariate
analysis in high-dimensional applications:
(i) & methad fitted to one-factor covariance structures. For
the one-factor structure and for certain prior distributions
of the parameters, the corresponding Rayves decision rules will
be determined. According to their construction, these rules
are admissible decisions.
(ii) If special multiple—factor structures are considered, the
inverse matrix G" of the matrix of sums of products, 6, can
be replaced by a suitable diagonal matrix T. To improve this
approximation in certain cases, an expansion by an infinite

LI (T-TBT) +{T-2TBT+TETET) +. ..

serles

will be proposed. By stepwise adding of terms of this series,
a hierarchy of models is formed which can be applied for the
aptimization of solutions in practice.

The classical multivariate methods are usually constructed
under the assumption that the parameters are known. Afterwards
the parameters are replaced by their maximum likelihood esti-
mates. For prognostic decisions, this two-step approach is
often unstable and unreliable. High correlations of the vari-
ables, multicollinearity, and "overfitting" result in errone-
ous estimates. It will be seen that equalizing and smoothing
methods lead to improved decisions. The known procedures of
selection of variables, the partial amnihilation of informa-
tion, represent also an aid for stabilizing the results, but
they are not the best and not the adequate way to overcome the
difficulties.
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..l.XE'.LEz
Let us start from two normally distributed learning
samples,

iy {)
7RI N LD A (1)
(j=1,23 k=1,...,nvp;n{3)%1;n_ ”’+n“) =p+2) ,

and an observation which has to be assigned to one of both
populations,

MU Np ¢ I“'“J’ 15 (1=1,32; t30). )
’ T

The unknown parameters of the decision problem are M“ﬂ M(”,
Z' and 1, where 1 denotes the unknown population. Variéble t
describes the precision of vector y(c’which is to be assigned.
By introducing t we shall recognize a close connection between
the different forms of discrimination rules (substitution
rule, maximumn likelibhood rule).
The considered one-factor structuwre is defined by

7 =k+we :‘N“ ittt ‘“) 53
where K is a positive definite diagonal matrix and w 1is a
nonnegative number. This structure includes an  algebraical
relation between the mean values and the covariances which was
also investigated by Sdrbom (19274) and in program LISREL
(Joreskog and Sorbom (1984)). In practice observations y(“ of
thisg kind result from an only non-observable primary variable

yy) by adding independent disturbances v H
(3) =y ‘:l)u+vf})+ % (3=1,2), (Za)
y J’vN,(F‘J’ . By, v‘{kNP(o,k:). (Zb)

o and B are vectors of scale constants.
In the following we want to construct discrimination rules
which depend only on the statistics

Y Y ’

.

“ (“ =y(°]_y“/ \ ),({2) = ‘(D)__ “" G. (4)

i
y(]) are the sample means, and G is the matrix of sums of
*
products, .
> n{]
3 oty o 5
G=(g, )= Z Z_(y y1 )(yr1 vyl (5)

b2
e

A}

it
—-
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These rules are even those which are invariant under transla-—
tions.
For a fixed tﬂto we define according to 8. DasGupta (1965)

W) o nlD +ter /nil) Y g, (6)

w o SO d

y = -t
L.et
0 if i=1 (right)
L(1,3)== (8)
\1 it J#Fl (false)

be the given loss function where 1 is the actuwal population
(1=1,2) and j is the result of the decision (j=1,2). By the
following theorem the admissibility of a special discrimina-
tion rule is obtained.

Theorem ii For fixed positive t=t, , Ct’éﬁ (i=1,...,p) with
c{‘ +. ;‘ <1 and the 0-1 1055 function (8), the rule which
decides for the population j with the minimal value
‘j, ] - i [
i (i - i RVLCLIY ) B (j=1,2) (9)
nql+t0 '

is admissible in the class of rules that are invariant under
translations (cf. (4)). Here C is the pxp diagonal matrix

C= Dlag(c (ay} +bzcz-hga + gi)) (i=1,...,p), (1)
a==a(t°)——-to/(2t‘” e U (2 gy, (11)
beb (tg) =t/ (zt ] ¢2) (U (1) o)), (12)

i and 2y are the components of y and =z.

The proof was submitted on conference DIANAZ (J. Lauter
(1986a)). There a special prior distribution of the parameters
is precribed, and the corresponding Rayes rule is constructed.
The admissibility results from the fact that the Bayes rule is
essentially unique. In practice the following limit rule can

(1)

be applied: )
1 i (y ey (W, g oy i -:—(y(” +y (2))) 0

j= (13)
2 otherwise,

where C=Diag(p((n‘H n @', W) ))(y“ —yim * +qy, ) and



yc‘“ y y,‘” are the components of Y, " , y.“') .
In the customary digcriminant analysis, G appears instead of

matrix C-G. In the rules (?) and (1%), C-G has very large
diagonal elements which is a typical sign of the high stabili-
ty.

In the next theorem a rule is provided which is especially
designed for independent variables. In this rule only the
inversion of a diagonal matrix appears.

Theorem Z: For fixed positive t=tg, ci 1 & (i=1,...,p) the
rule which decides for the population j with the minimal value
(4! | ,
—1%—_— (O Gy ot e g (i=1,2) (14)
a4 +t,

is admlsslble in the class of rules that are invariant under
translations. Here C is defined by (10), (11), (12).

For practical applications the limit rule

1 if (yf"—y‘i))'c°1(y‘“ - %(y“)+y‘i)))}0 (1)
j= ' ‘
2 otherwise . )
is offered where CﬂDiag((n“’nﬁp/(n“‘+nu’))(yi ~y(2) +g“ ).

Examples of application and simulation  ex perlmentﬁ are
contained in J. Lauter (1986a,b,c).

2:.2.Frediction in HRegression Analysis with Stochastic
Rearessors
We start from a learninq sample

~ N1"P ’ a,c E /: ) (14)

r
1.
o

( ek ,‘M-. oo O
H nép+2) and a further observation Ym(yc y ) o+t
the same population. We want to predict y by means of the
other p components of Y under the information of the learning
sample.

The special covariance structure used here is Z =k+w §, 8,
(k. positive definite diagonal matrix, wﬁﬂ). We shall consider
only prediction rules which are invariant under translations.
These are rules that predict Ho =Yg Ve, by means of
KEYTY 0 g 09g 0 G, whgre '

s ¢ % o

Y = ' d = ( )==2:(Y ~Y )Y -
an g“i h .)( K Y.) (17)

-

Y 9, G b= 1
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are the mean vector and the matrix of sums of products of the

learning sample. Let L(yo ,yg)—(yo y°)2=(§a —Xg 2 be the
quadratic loss of a prediction x 0 =Yg Yo, -
Theorem 3: For fixed c (CL l; 1=0,. .. 4,P% c'gl+...+c'1 <1) and
st (L‘; 3 i=l,...,p), for nE p+2, the predictor
fo=(c.~1-cy(n/ e -6 1o g0 !« (18)
Mg = (g €ofn/tn 3 g ¢ b

is admissible in the class of all predictors that are
invariant under translations. Here

C= Dlag(r (n/(n+1) )+ bl qii+ Q )) (i=1,...,P). (19)
are the components of .
In the special case of one regressor variable (p=1) we
obtain

A 1 BT
o= w . — C i3 ey
Xg gq(b(n/(n+1))n1 +(b+1)g11+c{(c 1)~1) g (20)

¢

where b=coc1“cc—c1. Under the conditions of theorem 3, the

inequalities b>0 and cd(ccwl)}O hold. Therefore this predictor
]

implies a shrinkage compared with the classical predictor
L BN
"o'—gc 911 ’\‘,I -
In the next theorem a prediction rule is offered in which only
the inversion of a diagonal matrix appears.
Theorem 4: For fixed positive L.,t\ (i=1,uu.,p)
- - X
with c11+...+cfﬁ{1, for n=p+2, the pFEd]LtDr

-4 .
A°=(1—(n/(n+1))x'C x) gé C ' (21)

is admissible in the class of all predictors that are
invariant under translations. C is defined by (19).
In the case of one regressor variable (p=1), predictor
A i : -1
x°=ga((c’—1)(n/(n+1))x‘ +c1g11+c1t1 ) x1 (22)
results. For varying values of c1 und 81 , the same predictors
arise as in (20).
In practice all predictors of this section are also design-—-
ed for stable smoothing of data and for stable replacing of
missing values.

£:.Z2. Stable Factor Analysis
The factor analysis serves the recognition of the structure
of covariance matrices of p-dimensional variables vy. We start

from the Wishart distributed matrix of sums of products
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generated by n p-dimensional observations,
G a Wy z ,n-1), (23)

and we use the one-factor structure defined by Z ‘ﬂ A - ¥y
where A=ﬂﬁag( xi) is a positive definite diagonal matrisx,
v :(Yf) is a vector.

In the following v is to be estimated. Vector v is needed
for faorming a linear function of the observation y which has
maximum correlation with the supposed factor variable Yo (cf.
(Za), (Zb)): 2;=Q'y. Let L= "GQ'“V¢'”1 be the loss function
where J|X{] =¢ £ T xl

1 3

ve ) iz the Euclidean matrix norm.
1
Iﬁgg[gm Se For fixed positive C-,E; (i=1,...,p) with

c; +...+cf 1, for n3p+1,‘ an admissible gftimator of V¥ is
obtained as the eigenvector y of matrix (C-G) corresponding
to the largest eigenvalue & which fulfils the additional
normalization 3'6 = U s

-1 A A A
(C—-G) V= v (V). (24)

Here €C is defined by C=Diag(c‘(gu-+5%)), i=lgnen yPa

A disadvantage of this result is the missing invariance
under linear scale transformations of the single variables.
Therefore a further estimator assigned to the loss function

- A -{/2 'L
L= "(Diag(ki«c\Ué)) Vl(Ve““VV')(Diag(l%wctvf)) v 'I (25)

is to be constructed.

Theorem &: For fixed positive o, {{ (i=1,...,p) with
~ - ¥

c11 +aaatcC I <1, Ffor n=Emin(p+l, ), and ftor the loss function
23), an admissible estimator of Y is obtained in the

following way: Compute

1 o -y /-
, B=(C-G)  , t=(n-3)/2,

D=(Diag(gs +§£:))
iag g&‘ 6‘))
- 4 -
A=D 1/’2(E1+ { Diag(E))D 1/l; (26)
determine vector ¢ which maximizes
P
AAN- (e Tw) - %N‘Diag(xm‘)x; (27)

A
compute V=Dv2x. Matrix € is defined as in theorem 5.
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This result has a close connection with the known principal
component analysis. If the terms associated with t are
neglected, that is, n is considered to be very large, and if
£, =0, c{=c (i=1,...,p), then V is the solution of
Gv D1ag(G)v<& corresponding to the largest eigenvalue ¢ which
fulfils the additional normalization

(¥ (piagw@H ¢ -1/ 3 (Diagw 1y = 4. (28
Hence under the mentioned neglects, the principal component
method appears as the solution of the factor problem with
minimal Rayes risiko. Thus the essential difficulty in
egtimating the specific variances of the variables vanishes in
factor analysis.

IMATION OQF THE INVERSE COVARIANCE MATRIX
Jd a

rmer papers ( Lauter (198é6b,c)) we have shown that

the diagonal matrix
Ty = (Di G (Di -t gyt (2
¢ =(Diag(G(Diag(()) ~ G)) 29)

can be considered as a stable substitute for G-{ if certain
multiple—factor structures are assumed. To improve this
approximation in applications with relatively large samples,
an expansion of G" can be used the first term of which is
even T, or a multiple T=cTy . If we put

/e iz

Ag=Tg = BT , A=cA, , B=I-A, (Z0)

0

it follows that (cf. Faddejev and Faddejeva (1963))

Al oy ST4E+RY 4R+, ..,

67 crer Yt roqy TV (o)t T

"
4 _ . :
6 =T+(T-TEM+(T-2TGT+TETET)+. .. - (1)

The shrinkage factor c is determined in such a way that the
maximal module of the eigenvalues of B is minimized:
c=2/(1mu+xmm). Here lmu and xmtn are the maximal and
the minimal eigenvalue of AO . Then the arising series (31)
converges for any positive definite G.
In practical applications the partial series can be used:

(3(0\ =T

64 =21-TeT

6 W —zr-zTET+TETET (32)
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They are also applicable in cases with a singular covariance
matrix G. Cross-validation can be employed to decide which
level of this hierarchy of models should be preferred.

-
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ANALYSIS OF DATA WHEN CONSTRUCTING AN ADAPTIVE REGRESSION MODEL

Lukaschin,Y.P.

Academy of Sciences of the USSR
Institute of World Economy and
International Relations, Moscow

1. INTRODUCTION

Here we shall consider the discrete-time processes which evolve over
time. The background of ordinary discrete-time regression analysis is a hy-
pothesis that the behaviour of the underlying process may be approximated
using a linear equation model with constant coefficients, which reflect the
intensity of relation of the endogenous variable,y, and exogenous variables,
Xir i=1,2,...,p. The regression equation is

p
Ye= 235Xt t e (1)
i=1

where e, is an error of the model, t is time, t=1,2,...,T, or in matrix
notation

y=%Xa+e , (2)

where X is a (Txp) matrix, y and e are (Txl) vectors, a is a (pxl) vector of
coefficients to be estimated.

As it is well-known the estimate of the parameter vector under the least
squares of the errors criterion is

3= @0y . (3)
However the intensity of interrelation of the variables is not constant often
over time. Thus, the coefficient estimates obtained under the above hypothesis
are only the average ones for a sampling period and it is doubtful that they
could allow to make time analysis properly and to obtain good forecasts.

Besides the evolution of the underlying processes there are some other
reasons to suspect that the parameters of many regression models are not
stable over time. It is possible to note four of them, Sarris (1973). Many of
regression equations are not correctly specified, i.e. they don't contain some
important variables, which should be included. A nonlinear relationship,
approximated with linear one, is also a source of parameter changes. The other
sources are the substitution of a true variable with another one (due to an
error or absence of statistical data) and the procedure of aggregation and
using of the composite time-series which often leads to loosing of a homoge-
neity of time-series due to a revision of the methodology of its calculation.

Thus, the multiple regression (1) with constant coefficients is too rigid
in many cases. And it is often quite desirable to incorporate a tool of adap-
tation of the coefficients in model (1) to correct their values as soon as a
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new observation of time-series become available. This would allow to outline
the changes of the coefficients over time, to enlarge the economic inter-
pretation of the results, to give an idea about tendency of movement of the
process, to determine the perspective directions of model reconstruction.

The most known tool for this aim is the Kalman filter originally used in
engineering. It was developed in Kalman (1960), Kalman and Bucy (1961), Mehra
(1972) . Then Cooley and Prescott (1973,1976) have proposed an adaptive regres-
sion model for economic applications under the hypothesis of Markoff motion of
the coefficients. A survey of the papers on time-varying coefficient regres-—
sion analysis may be found, for instance, in Raj and Ullah (1981). The common
shortcoming of these approaches when they are applied to economic research is
the necessity to have a priori some information which can't be obtained from
anywhere, such as the knowledge of the covariance matrix of nonobservable
random variables or coefficients; in other cases it may be a hypothesis about
the transition matrix in Markoff scheme for the coefficients, etc. As a result
the application of these approaches comes across the difficulties. In Luka-
schin (1979) the attempt is made to overcome these difficulties by improving
of the procedure of Wheelwright and Makridakis (1973), in which an antigra-
dient direction is used for adaptation of the coefficients. One shortcoming of
the gradient approach may be a weak convergence, the other one is a high cor-
relation of the coefficient corrections, because all of them are proportional
to forecast error and therefore have the same sign if the value of endogenous
variables are positive.

In Lukaschin (1986) a method of adaptation of the regression coefficients
is proposed using exponentially-weighted moving average (EWMA). This is the
method which we are developing here in Section 2. Section 3 is devoted to ana-
lysis of data when the adaptive regression model is constructing using this
method.

2. ADAPTIVE REGRESSION MODEL

2.1. General ideas

Let us consider a regression equation with time-varying coefficients,
which is of the form

p
Y = 2,3it¥it * S “)
1=1
Let us examine the estimates of the parameters given by least-squares method
under the hypothesis of constancy of the coefficients. After a simple rear-
ranging the estimate of the parameter vector a may be written in terms of the
sample averages of the cross products of the observations of the endogenous

and exogenous variables taken in pairs, i.e.

= (X'X) X'y

|

1 == -1 1 ==
[E(X X)) [E(X y)]
-1
mll m12 cee mlp m1,p+1

' (5)

mpi “‘;;2 . Mep "‘pp+1
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—

1

=

T
where m; - :[: t%jtr i=1,2,...,p, j=1,2,...,p+l and for generality
t=

of notation it is admitted that Ye=Xpt1,t*

In what follows the attention will be paid to behaviour of the m5e
A key to the problem of practical development of an adaptive regressioh model
with time-varying coefficients is apparently in finding of a good tool for up-
dating of the estimates of time-varying averages mj.

It is proposed to substitute in (5) the whole period averages m:

tr which should be the estimates of local (or current) averages o% the
crgss products of the regression variables taken in pairs. There are many dif-
ferent ways to obtain c For example, in context of a moving regression
analysis c; j,t are compu%ég as moving averages. The weights in this case are
taken equai 60 1/n, where n is the extent of the average. Actually unequal
weights may be used in moving averages. Say, more recent points in the extent
of the average can be taken with greater weights, and first points with less
ones. Such approach is more appropriate for a forecasting problem. It is pos-
sible as well to seek for a presence of time trends in the cross products and
to approximate them with known functions of time or any other models.

As it was already noted, in most approaches to an adaptive regression
analysis the equation of the dynamic coefficients' motion and sometimes even
the values of the parameters of this equation are to be postulated a priori.
But it is hardly realistic to think such a choice valid, for the coefficients
are themselves nonobservable. The approach outlined here is based only on
examination of the dynamics of the average values of the cross products of
paired observable variables. These products form time-series, which can be
presented on graphs and analized visually or using some analytical means. All
these graphs in common show the structure and dynamics of the process under
study. They allow to localize the points of suspicious changes. Thus, at the
stage of analysis a multidimensional problem is decomposed into p(p+3)/2 uni-
dimensional ones. However, uni-dimensional analysis shouldn't be carried out
in isolation from analogous parallel studies. All uni-dimensional problems
must be agreed, submitted to one global aim, to one criterion. Any interme-
diate, particular or indirect criterion may lead away from the main aim. That
is why such criteria play only an auxiliary role at the initial stage of the
model construction.

2.2. Case 1: Variables haven't time trends

In previous paper, Lukaschin (1986), we have treated in details the
simplest case, when all the variables of the regression equation (4) haven't
any visible trend. In this case it was proposed to substitute the arithmetic
means m;: in formula (5) by the EWMA S; The EWMA is widely used in the
adaptive analysis and has become a base o% many procedures. In that case c;

ij,t

will be renovated at each moment t as follows 3
Sij,t = BSij,t-1 * oL (XigX5e) s (6)
¢ij,t = Sij,p v (7)

where i=1,2,...,p, 3J=1,2,...,p+l, o is a smoothing constant, which is taken
in general from the interval 0<e¢<1l, B=1-o

The formula (5) with €ij,t substltuted for m;s gives the estimates of the
model coefficients a; at moment t. To start the calculations using the
recurrent type expression (6) it is necessary to have some starting value
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Sij o 8t moment t. It was proposed to determine it as the arithmetic mean of
the'first r observations of time-series, i.e.

1 r
Si3,0 = ;ﬁ:?l‘ikxjk . (8)

To simplify the procedure r and smoothing parameter « were assumed the same
for all pairs of i and j. Their best values were seeking for by minimizing the
mean squared error of the one-step ahead forecasts

Qelyx) = = De. (9)
T i=l 1

~

where €y.] = Yy4] — Yg4] 1S an error of the forecast,

— A
Yi4] = X'418¢ 1S the one-step ahead forecast,

A

ag is an estimate of the parameter vector at moment t.
An interesting result was obtained in Griese and Matt (1973), from which it
follows an important property of the outlined procedure. It turns out that
application of the EWMA for smoothing of the cross products gives at each
moment t (when t is great enough to neglect the influence of the starting
values) the estimates of the parameters Si, which minimize exponentially-
weighted sum of squared residuals of the regression

t
a 2tk
Re =kZZ:L (v 'iaitxik) B . (12)
= i

i:

2.3. Case 2: Variables have time trends

If some regression variables have time trends then the cross products
will have them too, and the EWMA may not catch the mean level of the product.
An attempt may be made to transform the original equation to obtain one with
variables without trends using, for example, chain indices, rates of growth,
differences of the proper order etc. If such transformations are not desirable
then it is necessary to find satisfactory way to take trends into account. In
particular, when the cross products have approximately polynomial trends we
propose to present their motion using adaptive polynomial models of R.G.Brown
(1963) , which are based on multiple exponential smoothing.

As it is well-known the EWMA of order p is obtained by exponential
smoothing of the FWMA of order p-1, that is

(p] [p] St[p—l] ) (11)

St = St-l +

fol,

where p=1,2,... , Sy 1is the original time series.

Brown has developed a procedure of renovation of parameters of a
polynomial of order g, in which these parameters are known linear functions of
the EWMA of order 1,2,...,g+l and vice versa.

Thus, one needs a subroutine, which if necessary would allow to calculate
the EWMA, say, of order 1,2 and 3 to construct the adaptive polynomials of
order ¢,1,2. In particular problem the adaptive regression model must be deve-
loped taking into account the dynamic properties of the cross products of the
regression variables. To choose a proper set of orders of the adaptive polyno-
mials it is necessary to carry out some special preliminary analysis of data.
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3. ANALYSIS OF DATA

When a set of variables is chosen and a form of a regression equation is
determined the analysis of data may be carried out in three stages.

At the first stage it is worth-while to begin with examination of the
regression equation with constant parameters and testing the hypothesis of the
parameters' stability. It may be realized by different ways. For example, the
substitution of a coefficient aj by (a;+bjt} and testing of 51gn1f1cancy of
the parameters may confirm or reject tﬁe stability hypothesis. Then it is
possible to divide a sample into two subsamples and to compare the estimates
of the corresponding coefficients in both, to apply test of Chow (1968). It is
useful to estimate the regression equation with constant coefficients itera-
tively, starting from the sample size p and consecutively increasing it by 1.
It gives the graph of the estimate against the sample size, which may be in-
formative. Testing the constancy of the regression relationships over time may
be carried out by examination of the errors of one-step ahead forecasts using
CUSUM- or CUSUM of squares techniques proposed in Brown, Durbin, Evans (1975).
I1f these or other tests indicate that regression coefficients are apparently
time-varying then the analysis of data may be continued.

At the second stage the attention must be paid to dynamic properties of
the regression variables and their cross products. It is reasonable to test a
homogeneity of movement of the time-series, suspicious change-points etc. An
annotated bibliography on statistical analysis of structural change may be
found in Hackl and Westlund (1985). If nothing prevents from application of
multiple exponential smoothing the further aim of preliminary analysis of data
is to establish the proper order of adaptive polynomials to approximate the
movement of the cross products. It may be carried out separately for each
time-series (x Xs)y by trying and comparing different orders.

At the thlr stage it is necessary to determine some good initial con-
ditions to start the recurrent calculations. Our experiments show that the be-
haviour of the model and results it gives including the optimal value of the
smoothing constant are sensitive to initial values of the renovating quanti-
ties, i.e. of the EWMA of order 1,2,3 for each cross product.

Having carried out the data analysis one may proceed to synthesis and
joint estimation of the adaptive regression model, using any global criterion.

4. CONCLUSIONS

In this paper some general questions of the adaptive regression analysis
are considered, an approach to construction of an adaptive linear regression
model with time-varying coefficients is presented. Adaptation of the coeffici-
ents is proposed to be realized by means of the decomposition of a multidimen-
sional problem into some uni-dimensional ones and the following synthesis of
the partial results into united system of estimation. In particular, Brown's
adaptive polynomial models are proposed to be used for analysis and treatment
of data in uni-dimensional space.

Our experiments show that a treatment of the adaptive regression model is
considerably simplified if its variables (endogenous and exogenous) haven't
any significant time trends and ordinary EWMA is enough to take into account
the dynamics of their cross products. That is why it is worth-while to do
one's best to reformulate if necessary the model in such a way. In some other
cases the application of Brown's models may be useful for investigation of the
coefficients' movement.

It may be noted that multicollinearity may cause agreed motion of two or
some parameters in different directions. It is necessary to keep such situa-
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tions under the control. Serious danger of this type comes from log-transform—
ation, after which the variables used to be linearly dependent and correla-
ted. To avoid the influence of the multicollinearity it is reasonable to
consider the adaptive regression model preferably with small numbers of exo-
genous variables. Sometimes the adaptive regression exposed here may be con-
sidered as a tool of a preliminary analysis of the interrelation of the data.
Then the obtained results may be used for formulation of a more sophisticated
hypothesis about coefficients' movement to take it into account directly by
reconstruction of the model.

Finally, it may be noted that extraction of more and more information
about movement of the process under study from the same data is not inde-
finite, of course. More deep knowledge demand creation of more sensitive
model. But such model may be unstable and work worse. Therefore in every case
a researcher must find the reasonable level of investigation of the coef-
ficients' dynamics.
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DEVELOPMENT OF A COMPUTER SYSTEM FOR MODEL SELECTION
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1. 1INTRODUCTION

Data fitting of the regression type often used in econometric modeling
requires trial-and-error methods in selectiong a set of explanatory
variables. The stepwise or all-subset techniques implemented on a computer
reduce our burden to some extent. But the interpretation of the results is
still a large task because of difficulties in checking the validity of the
hypothesis testing and in giving meaning to regression coefficients.
Rethinking of the obtained equations is not feasible when the number of
equations is large and the cause-effect relationships between variables are
not known exactly in advance. Moreover, statistical reliability does not
necessarily ensure applicability. Model building in uncertain environment
calls for carft skills that are the mixture of science and art.

This paper introduces a computer system called the Interactive
Modeling Support System (IMSS) that helps model building for those systems
which are methodologically undeveloped in the sense that neither analytical
nor statistical methods are adequate for dealing with. [t aims at
reflecting the practical knowledge and experience of experts on the models,
at the same time, developing their ideas and exercising thier judgment and
intuition. The computer system consists of a combined modeling techniques
of statistical and graph-theoretical approaches, and related multi-stage
man-machine dialogues. One of the main advantages of using this system is
the facility for the structuring of both mental and mathematical models,
that facilitates the model understanding and confidence.

After a brief description of the modeling system, its application to
the modeling and simulation of NOx concentration is presented.

2. MODELING METHODOLOGY

The modeling procedure of using IMSS requires the following three
types of information:

(a) A set of variables S={xi} to describe the system under study.

(b) The corresponding measurement data table X=(xi;).

(c) A cause-effect relation B, on the product set SxS, or equivalently,
the adjacency matrix A=(a;;) with ai;=1 if and only if (xi,x;)éB.

The objective of the modeling is to obtain a set of linear equations
that describes the underlying system and is capable of predicting the
behavior of the system.

The modeling process consists of three different but interdependent
stages of dialogues. The first stage dialogue is required for preparation
of the modeling, including input of measurement data and the initial
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version of cause-effect relation on the set of variables, transformation of
variables, data screening, and refinement of the cause~effect relation by
referring to the statistical information.

The second stage dialogue is devoted to finding a trade-off between
the measurement data and the modeler's knowledge about dependencies between
variables. Based on the measurement data and the initial version of the
cause-effect relation, using the option of regression method, a linear
model and the corresponding digraph model are found. The modeler can
modify the new relation referring to these computer models and his or her
knowledge. The process continues repeatedly until no change occurs or the
modeler is satisfied with the modified relation.

The third stage dialogue is related to model simplification and
elaboration. Model simplification is based on the use of equivalence
relation, and model elaboration is an application of regression analysis
including the hypothesis testing on estimated coefficients, and examination
of the explanatory and predictive powers of the model.

The first craft required is the selection of descriptive variables.
The variable set S can include nonlinear reexpression or time-delayed
variables of the initial variables. Following the traditional usage, we
use the term "linear model" to describe a set of equations whose structural
parameters are embedded linearly. Reexpression and time-shifting enable us
to analyze nonlinear relationships and multiple autoregressive processes.

At the second and third stages, the corresponding data set is required
to be complete in the sense that it is screened enough to avoid the
influence of outliers or the problem of multicollinearity. This does not
imply that the data should be measured absolutely correctly. Soft
obsevation is allowed to compensate for 1lacking or extraordinary data.
Hereafter, we use the term "observation" instead of "measurement'", meaning
that observation can include data estimated or modified by the modeler.

Because both the complexity and ambiguity of an object depend on the
interests and capabilities of the individual, the introduction of a
cause-effect relation is also a craft work. But in-depth considerations
are not required initially; the remaining ambiguities are resolved after
some iterative modeling sessions. In applications, it is often difficult
to make the clear-cut distinction between input variables, output variables
and intermediate variables. The purpose of the modeling also has an
influence on the model. The flexibility in determining the model structure
is most emphasized. However, for a complex system, to determine the model
structure is often a hard task. Therefore, the pairwise cause-effect
relationships are required first and then the validity of the total model
structure is examined. This process is the most important part to reflect
human mental models on the computer model.

In the second stage, the regression methods are used to obtain linear
models and graph-theoretical techniques are used for man-machine
interactions. The required human input is knowledge of the structural
image of the system. This stage includes part of the model verification,
because the modeler should judge whether the model behaves as he intends.
Even the experts can hardly tell whether the obtained model is appropriate
or not because the coefficients of a linear model do not necessarily have
practical meanings. Therefore, the structure of the model is extracted and
shown in the form of digraphs to help the understanding and modification of
the computer model.

The third stage is concerned with judgments about the validity of the
model in terms of its explanatory and predictive powers, But data
concerning the results of policies not implemented are generally not
available, 80 scenario analysis is prepared. Here, both cumulative
experience and deep insight into the system are required.
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3. INTERACTIVE MODELING SUPPORT SYSTEM

The Interactive Modeling Support System (IMSS) 1is a highly user-
friendly software providing for an interactive person-computer dialogue
facilitated by the use of advanced techniques to communicate directly
graphic information to the computer and receive graphic output. The
total modeling process of using IMSS is shown in FIGURE 1. The following
main advantages of its use are emphasized:

(a) The data-screening features provide a powerful tool for debugging
the data-set.

(b) The structural modeling features are helpful for organizing one's
thinking with respect to the system under study.

(c) It enables rapid access to the set of relationships comprising the
statistical model.

(d) It makes possible rapid validation and easy refinement of the
statistical model.

cause-effect
‘//’/,/’7 relation

variable list basic statistics
observation table pre-calculations
modification of transformation
relationships data screening
STAGE 1
START MASTER
MENU
current
linear model
STAGE 2
STOP
I linear model ]
STAGE 3
| digraph model|
[ elaboration I [ simplification I I new relatlong]
regression digraph models | modlflcatlongw
analysis linear models T
model building, hypothesis testing, residual plots,
multicollinearity checking, extrapolation

FIGURE 1 The total modeling process of using IMSS.
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The modeling information (S,X,A) is put into the computer at the first
step. [IMSS has several facilities to read and preprocess the data set.
The facility for data transformation makes it possible to analyze time-lag
effects or functional relationships. Data transformation is also needed to
make distributions of variables symmetric because, according to Hartwig and
Dearing (1979), non-symmetric distributions and nonlinear relationships
often exist together. If every distribution of variables is roughly
symmetric, then we will have a high chance to obtain a linear model.

If at some step the modeler want to check distributions or outliers of
the data for some variables, IMSS assists him by showing the 1list of
candidates of outliers, histograms or scattergrams. The modeler can
designate the case numbers which he does not want to use in the modeling.
IMSS also checks and displays pairs of variables which have high
correlation coefficients. To avoid the problem of multicollinearity and
also to simplify the model, it is recommended that one of the pair is set
aside when they are supposed to be linearly dependent. The modeler can be
referred to the condensed basic statistics and scatter plots.

The manner of filling the adjacency matrix A should be negative. Here
negative means that the modeler should enter the computer a part of his
knowledge, putting 0's at the right places. The rest of entries will be
filled with 1's by the computer. The underlying idea is that the modeler
should inquire into strength of relationship between every pair of
variables except those which are definitely irrelevant. An extension of
binary relation is allowed in filling the matrix A=(ai;):

2 if xi certainly influences Xx;
ai; = 1 if xi might influence Xx; 1)
0 if X never influences Xx;

There is no difference between 1 and 2 in the structural modeling, but they
are treated differently in the statistical modeling, 1i.e., the variables
indicated by 2 are regarded as the core variables and those indicated by 1
the optional variables.

IMSS has another option of filling the matrix A. The relation
considered is the cause and effect that is not necessarily transitive. But
it may be quite feasible to employ the assumption of transitivity to
develop a linear model. The modeler can choose the option of a transitive
embedding method that is a modified version of that in Warfield (1976).

STRUCTURAL MODELING TRANSITIVE EMBEDDING I

HIERARCHICAL ORDER s suunn SKELETON DIGRAPH

gr.w.end mois.end evap.pot cap.rise
leakage drainage sto.loss sprin.ls
runof f sprin.ig sub.irri gr.w.beg

mols.beg evap.act precipit Irr.capa

Press return key.

r INTERACTIVE MODELING FIRST STAGE DIALOGUE

FIGURE 2 An example of developed digraph model.
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The advantage of this method is that it can reduce the number of pairwise
comparisons remarkably. One caution in wusing this method is that the
modeler should consider indirect cause-effect relationships as well as
direct ones. IMSS provides the digraph of hierarchy based on the adjacency
matrix A, taking its transitive closure and extracting the skeleton. The
interactive modification facility helps the refinement or rethinking of the
relation. FIGURE 2 shows an example of developed digraph model.

After the first stage dialogue, the set of variables S and the data
matrix X are fixed and will be used in the subsequent stages as they are.
The adjacency matrix A is alone open for further modification. The purpose
of the second stage is to elaborate the cause-effect relations which are
summarized in A.

At the beginning of the second stage, the modeler must choose one of
the options of regression methods with self-selection of explanatory
variables. The options of these include:

(a) the forward selection procedure,

(b) the backward elimination procedure,

(¢) the all possible selection procedure, and

(d) the group method of data handling.

The last one can be used when the number of data points is very small. It
is a modified version of the original one (Ivakhnenko, 1968), i.e., the
partial description is written in a linear form with respect to variables.
FIGURE 3 shows the opening menu of the second stage dialogue.

—
(_ (— vv SECOND STAGE DIALOGUE v¥

Forward Selectlon Procedure
0

0
2|Backward Eliminatlon Procedure LINEAR MODEL
o
1]
3|All Possible Selection Proc. o]
DIGRAPH MODEL
0
4|Group Method of Data Handling o]
1]
o CAUSAL RELATION
5|1nteractlion In Second Stage o] 0
0 0
[+] 1]
O|Enter a method number ==) REPETITION INTERACTION
(1] 1]
1] 1]
~J 1] 1]
- 0o L

FIGURE 3 The opening menu of the second stage dialogue.

Let us denote by C = (ce,C), where ce is an n-column vector and C an
nxn matrix, the coefficient matrix of a set of linear equations which the
computer will search from now on:

X =ce *+ Cx with c¢ii =0 for all i, 2)

where x denote the n-column vector whose components correspond to the names
of variables xi1,X2, °**,Xn.

By the selected automatic modeling method, the computer will estimate
the row vectors of C one by one referring to the matrix A that can have
been converted into a reachability matrix. Thus the computer finds a
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linear model:
Mc = (S, C) or x=ca+ Cx. &))

Then the adjacency matrix A and the corresponding relation B will be
modified in an apparent manner.
Let us introduce a digraph D defined by

D=1(8, B), 4)

where the elements of S are identified as vertices and those of B arcs.
The vertices are represented by points and there is a directed line heading
from xi to x; if and only if (xi, x;) is in B.

Let B denote the transitive closure of B, and suppose the variable set
S can be divided into m cycle sets ei1,e2,*-+,en; here e, is defined by:

Xi, X; € ep if (Xi, Xj), (Xj, Xi) € B. (5)
Then we can define new sets:

S=1{e1, ez,"*, en } (6)

B'= { (ep, eq) ; sOMe (Xi, X;) € B, Xi € ep, X; € eq } (7

and the corresponding digraph (S,B*) is called_ the condensation digraph.
Finally we introduce the skeleton digraph D which is a minimum arc
subdigraph of the condensation digraph, for which removal of any arc would
destroy reachability present in the relation.

Actually the above process is carried out by some matrix operations in
the computer. After all, the computer will have found the digraph model:

Mo = (S, D), (8)

that is a visual version of the linear model Mc. [f the modeler is
satisfied with the modei structure, the modeling process will proceed to
the third stage. Otherwise, the second stage will be repeated again after
amendments of the digraph model Mp. The modification facility of the
digraph is one of the most fascinating parts of [IMSS; but the detail
description is omitted here. FIGURE 4 and FIGURE 5 show the dialogues in
the second stage.

STRONG COMPONENTS MODIF1CATION MODE

LEVEL 3 GROUP }

e ‘@0

Level division? <(y/n> ==)

vvv SECOND STAGE DIALOGUE vvv ADJACENCY STRUCTURE

FIGURE 4 The modification module to the cycle sets.
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L47 ADJACENCY MATRIX MODIFICATION MODE

1 23458678 1
2(!

® NN AW N =
~
~

Arrow keys move the cursor.
Return key terminates modification mode.

v99 SECOND STAGE DIALOGUE 999 DIAGRAPH MODEL

FIGURE 5 The modification module to the adjacency matrix.

Even an expert can hardly tell whether the obtained 1linear model is
appropriate or not because of the difficulties of checking validity of the
hypothesis testing and giving meanings to regression coefficients. The
most emphasized point of using IMSS is that the refinement of the
statistical model can be done by the modification of the structural model.

The third stage dialogue consists of two modes: model simplification
and model elaboration. Model simplification is based on the use of
equivalence relation and model elaboration is applications of regression
analysis and scenario analysis. The simplification mode 1is prepared for
reducing the obtained model into an optimization or simulation model. IMSS
prepares most of the classical procedures in regression analysis including
the hypothesis testing on the estimated coefficients, and the examination
of explanatory and predictive powers of the model with the aid of graphic
facilities of the computer. FIGURE 6 shows an example of regression
result, and FIGURE 7 shows an example of obtained model equation.

RESULT 2 Regressand ss) variable X12 Ranking | /7 1
variable coefficient standard error t-rattio correlation
X1 -.2194D+01 0.8382D+00 -.2617D+01 0.5314
X2 -.2051D-01 0.6428D-02 ~.3191D+01 ~-.4480
X3 -.1583D+01 0.6150D+00 -.2573D+01 0.4364
X7 0.1008D-01 0.4673D-02 0.2159D+01 0.3787
xn 0.3967D-01 0.5077D-02 0.7815D+01 0.6658
XtS -.6587D-01 0.1732D-01 -.3804D+01 0.47886

constant 0.8956D+01 [ hit return ]
Degrees of Freedom = 2| AdJusted R-Square = 0.7893
S.D. of Reslidual = 0.2444D+00 F-Ratlo = 0.1785d+02
T(.2) , 0,05 ) = 2,0796 F(C 6, 21 , 0.05 ) = 2,5727

FIGURE 6 A result of linear modeling.
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#un CURRENT LINEAR MODEL == peel07 wan

--- equatlion for variable wmois.end ---

mois.end = 2,6751D+02 ~1.2739D+02 gr.w.end =-1.4655-02 precipit
3.47230-02 sprin.ig -6.7754D-02 evap.pot

5.8402D-01 sub.trri

hit return

FIGURE 7 An example of obtained model equation.

The more detail description of IMSS and its application to the
simplification of a comprehensive grounwater-crop production model are
found in Nakamori et al. (1985) and Van Walsum et al. (1985), respectively.

4. APPLICATION TO AN ENVIRONMENTAL PROBLEM

As an example of using IMSS, let us build a simulation model to
predict NOX concentration. The selected variables are shown in TABLE 1.
For each variable, we have three years data (1977, 1980, 1983) from 22
cities in Japan; 66 data points in all.

TABLE 1 The list of selected variables.
(Every item represents the value in a defined area.)

Notations Contents

NOx yearly and spatially averaged NOx concentration
pop.tota total population in the area

pop.dens population density

pop.chen changing rate of the population

pop.hous average population in a family

farmland percentage of the land use for agriculture
building percentage of the land use for buildings

traffic percentage of the land use for traffic

ind. tota total amount of the shipment from the industries
ind.heav shipment from the heavy industries per unit area
ind.ligh shipment from the light industries per unit area
trade amount of the wholesale and retail sales
temperat annual mean temperature

wind.vel annual mean wind velocity

dic.sea distance between the area center and the seashore
dic.moun distance between the area center and the mountains
altitude altitude of the area

cities20 the number of cities within 20 km

citiesd0 the number of cities within 40 km

traf.car traffic volume of cars

traf.bus traffic volume of buses

traf.str traffic volume of small trucks

traf.btr traffic volume of trucks
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introduced the initial version of cause-effect relation which is summarized
in a digraph as shown in FIGURE 8.

traf.str

traf.car

traf.bus
pop.tota pop.hous cities20
pop.dens building citiesd40

farmland

ind.hea
dic.sea
dic.mou

v

n

temperat
altitude

FIGURE 8 The initial version of cause-effect relation.

After the modeling
following set of equations and the corresponding model structure

in FIGURE 9.
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building

traf.car

citiesd0 cities20

FIGURE 9 The model structure obtained after the modeling sessions.

5. CONCLUSION

The interactive modeling support system is a tool for enlightening
both the modeler and the computer about the underlying system. The main
point is how effectively extract reality from human mental models and also
from measurement data with computer assistance. One of the fascinating
application is to design a decision support system coupled with IMSS,
because model building is the most important part in decision making.
Moreover, we are developing an intelligent modeling system by adding a
knowledge base system to IMSS.
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1. INTRODUCTION

The class of stochastic models to be examined here is representative of doubly
stochastic processes. This latter term is used to denote processes which consist of an
underlying process, in this case a Markov chain, which is not directly observed put which
can be observed through another stochastic process. Models of this type are particularly
appropriate for describing a seemingly very different problem: that is, the statistical
problem of estimation from incomplete data (Dempster et al. 1977). In this latter case the
output of the ‘true’ but concealed process is thought of as conditioning a second process
which censores the input and produces the observed data. Both processes are considered to
be parameterized and the problem is to determine the parameter set from the observations.

If the assumption is made that the underlying process is Markovian in the sense that
its value at any time depends on only a finite interval of its immediate history then this
restriction defines the partially observed Markov model. If the unobserved process is
further restricted to be discrete it becomes 2 Markov chain and is the situation dealt with
here.

For the class of ergodic partially observed Markov chain (POMC) models, the method
of maximum likelihood (MLE), based on the likelihood of the observation sequence, is
known to provide consistent parameter estimation (Baum and Petrie 1966). Baum's
algorithm was originally proposed (Baum and Fagon 1967) as an iterative procedure for
constrained maximization of homogeneous polynomials with positive coefficients. It has
desirable numerical properties, including guaranteed local convergence with monotonic
function improvement.

The algorithm has been generalized to a larger class of functions (Liporace 1982)
and (Rabiner et al. 1985). It has been applied to parameter estimation problems involving
polynomial likelihoods. Examples of this include estimation of linear learning models
(Pruscha 1976), continuous key space approximations in cryptanalysis (Andelman and
Reeds 1982), and in quality control (Whiting 1983). Statistically, Baum's algorithm is an
example of the E-M (expectation-maximization) method for maximum likelihood estimation
when sampling with incomplete information (Dempster et al. 1977). Numerically, it can be
regarded as a form of fixed point iteration derivable from the necessary conditions for a
local extremum (Whiting 1983).

Proof of convergence of the iterative method rests on the equivalence between the
set of critical points of the likelihood function and the fixed points of the iteration. When
the iteration is derived from the zeros of the gradieat of the likelihood function under the
parameter constraints, convergence to a local maximum will typically be linear (Whiting
and Pickett [984).
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To improve this slow convergence rate, an extention of the secant method, known as
Steffenson’s method can be applied directly to the iterates provided by the Baum algorithm.
This method typically exhibits superlinear convergence (Whiting 1985).

The subsequent organization of the paper is as follows: a description of Baum's
algorithm is given in Section 2. for the case of the POMC with discrete observations; the
relation between Baum's algorithm and the E-M method is shown in Section 3; the problem
of model order estimation is addressed in Section 4 where the praperties of a criterien due
to Akaike (1974) are investigated; an experiment involving the ‘seasitivity’ of this model
order estimation criterion is reported in Section 3; the results of an application of
marimum likelihood estimation and model order estimation to quality moaitoring in
manufacturing are discussed in Section 6.

2. IMPLEMENTATION OF MLE WITH BAUM'S ALGORITHM

LetXT - (X(0). X(1). ... .X(T), YT - (Y(1), ... Y(T)} denote the state (unobserved) and
observation sequences from a POMC, respectively. Here X(1) € Sy and Y(t) € Sy where
Sy-(1, ... .NJand Sy -(0. I, ..., M-1) are discrete state and observation spaces. The process

state is not observed directly: it serves to index the conditional distribution of the
observation process Y(t).

The stochastic process X(t) is an ergodic Markov chain, with N x N transition matrix
P-(pj;) and state transition probabilities:

pjj = Pr(X(1)=jIX(t-1) =i) .  wherei,j€ Sy

The initial state distribution vector p- (pj), is the probability that X(t) - i, i € Sy at some

arbitrary time t-0. .
Given the value of the process state X(t), the random variable Y(1) is independent of

all other X(t'), Y(t'), U=t. The conditional distribution of Y(t) as a function of the
unobserved state X(t) is given by R-(rjy) where:

rig=Pr(Y()-kIX(t)-i). fori €Sy.k € Syandallt

The POMC is fully specified through the N(N + M + 1) componentsof p, P, andR. Let

0 € Adenote an N(N + M + 1), vector formed from these elements. There are
N'=N(N + M -1)-1 independent paramelers determined by the constraints:

N N M-1
Z pj-1-0 Z pj-1-0 Zrig-1-0 i €Sy (1)
i1 j~1 k-0

Baum's algorithm is based on a state enumeration represeatation of the likelihood
function. The likelihood, as a function of 8, is denoted L(8;YT) - Pr(YTQ) State
enumeration yields L(8; YI) - T Pr(XT YT, 8) where

xT

T

Pe(XT, YT 8) - pyqo) 1T px(e-1)x10) Fxtu)viy) . @
-1
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The polynomial form of L( 8; YT) is revealed by expressing the above in an alternative
fashion. Define the following:

T
UGT i, )= 2 8y(i-1), i Bxce), j
t-1
(3)
T
VT YT 1)« 3 8y, & 8xqv).
t-1

where i, j€Sy. k€Sy and §; j is the Kronecker delta. Summation over i€Syor kESy will be
denoted by "e".

U is the count of the number of transitions from state i to j appearing in XT and V is
the number of times outcome k and state j occur together Note that U and V constitute

sufficient statistics for estimating 8 in the case of 3 completely observed system. Equation
(2) can now be written:

N M-l ror . N T. .
Pr(xT, YT8) - pyeg) TC TT rikV(X,Y,k,))) 1 pj U(X.ij) (4
j=1 k=0 i=l

This is a polynomial of degree 2T « I in the efements of 8.

Baum's algorithm may be derived using an auxillary function approach (Baum et
al. 1970). A more direct derivation is obtained by constructing the necessary conditions for
a constrained extremum (using (1) and (4)), and deriving a fixed-point iteration from these
conditions. Using this approach, the necessary conditions evaluated at the 'current

estimate 8, yield:

z Pr(xT YT, 0,) &%(0),5

xT
pj -
Pr(YT. 0,)
z pr(xT YT 8,3 UL i j)
xT
pij - )
T PrxT YT, 0, T, i0)
xT
T Pe(xT YT 0,) v(RT. YT k)
xT
rig =

T Pr(xT, YT, 0,3 u(xT, o j)
T
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In a fixed-point iteration, the left side of (5) defines the n+15t estimate, 8,, . This

iteration is Baum's algorithm for the POMC. Evaluating the right side is accomplished
using the forward-backward algorithm, described in the following.

Baum and co-workers proposed a numerical procedure for evaluating successive
iterates of the algorithm given by (5). The so-called forward-backward algorithm ((6) and
(7) below) involves processing of observations in both the order observed ("forward”
direction) and in reverse order ("backward” direction).

As originally proposed, the forward-backward algorithm requires both the
“forward” probabilities:

a;(t) -Pr{YlandX(t) -i ;8,), forie Sy:
and the "backward” probabilities:

Bi(t) ~Pr(Y(te1), .. Y(T)IX(t)-i :085). fori€ Sy.

These are computed using the forward and backward recursions:

N
aj(t) - T aj(t-Dpjj rjyy.  t-2....T: jESY
i=1
and (6)
N

Bit)- = Qi(hl)pii £iY(te1) - t-T-1,....1; i€ Sy.
j=1
If the above are evaluated at the current iterate from Baum's algorithm, 8, . then the next
iterate is given by:

a;(1) B;i(1)
pi= —_—
Pf{YT; _e_n ]

T-1
Z aj(t) pjj rjy() Bj(te1)
t=1
pij )
T-1
Z aj(t)Bi(t)
t=1

T
Zaj(t) Bi(t) dyqr) k .
t=1
ik - i.j€ Sy . ke Sy,
T-1
I @l ;)
t=1
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N
where Pr{YT:8,) = T @;(t) (-L(@, ; YT)). Note that these expressions require storage of
i-1
the B's.ie.an Nxl vector sequence of length T. As well. computation is delayed until all T
observations become available. Implementation of Baum's algorithm with the forward-

backward algorithm requires on the order of TN2 and TNZM flops for the parameters of P
and R, respectively.

3. RELATION TO THE E-M ALGORITHM
The approach suggested by Baum and co-workers for the parameter estimation

problem can be considered as a special case of the E-M algorithm applied to a doubly
stochastic process. To show this relationship it is assumed, as before, that the observed data

YT are a realization from Sy and the corresponding X € Sy are observed only indirectly

through Y. The process is completely specified by the parameter 6 .

Each iteration of the E-M algorithm involves two steps, the expectation (E) step and
the maximization (M) step. After k iterations of the algorithm, the E-step estimates the
current value of the sufficient statistic t(x) as:

t = E(t(X) | YT, 8)

given the current value of the parameter 8g. This is followed by the M-step in which a
new value By, is obtained as a solution to:

E(1(X) | 8) = tk.

Further iterations of this two step procedure yields increasingly better estimates of 8.

For the partially observed Markov chain, sufficient statlistics are counts of the
frequency of occurrence of state-to-state transitions; as well as state and observation joint
occurrences. These correspond directly to the sufficient statistics eccurring with a fully
observed Markov chain (Billingsley 1961).

Application of the E-M algorithm to the POMC first involves using the forward and
backward recursions (6) to obtain the expected value of the sufficient statistics (the E-step)

from the process (X(t), Y(t)), tel, .. .. T Thisrequiresthe determination of the following
values:

aj - likelihood of the observation sequence YT given that the initial state is state i.

a - likelihood of the observation sequence YT.

bjj - expected number of transitions from state i to state j, given YT.

bj - expected number of transitions out of state i, given YT
Cik - expected number of occurrences of the outcome k while in state j, given YT.

¢ - expected number of occurrences of state j, given YT.
New estimates of p;. pj;. fjg are obtained as follows (the M-step):

pi - 8/a. i - by/bi, T ° /S

These estimates have been shown by Baum et al. (1970) to increase the value of the
likelihood function over the value achieved in the previous iteration. Furthermore these
investigators have shown that repeated iterations will converge to a local maximum of the
likelihood function.
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4. MODEL ORDER ESTIMATION

The POMC model offers a flexible, dynamic representation of discrete state processes
which are observed in the presence of noise. In practice, it is important to ascertain
whether or not the basic model structure can be recovered from observation sequences.
The most fundamental parameter of a POMC model in this regard is the dimension of the
unobserved process state. Model order estimation criteria have been proposed which
attempt to identify the number of independent mode! parameters, which is equivalent to
the dimension of the process state in the absence of other restriclions.

Let ki denote the model order (number of independent model parameters) of a POMC
process with state dimension j. The value of k;j is given by: k; = j (j-1) + j (M-1), where the
first term represents the number of independent parameters in the transition matrix P,
and the second is the number required to specify the output distribution. i.e. the number of
parameters in R. Missing from this expression is the number of parameters in the initial
state distribution, which is not considered because of the assumption of stationarity which
is made when examining consistency of estimation criteria.

The model order criterion investigated here is known as Akaike's information
criterion, or AIC (Akaike 1974). The criterion can be simply stated: choose the model j
which minimizes: ~

AIC (k) = -2 log Pr (YT, §}) + 2k;

where k; is the number of independent parameters (defined above), andle_\i is the maximum
likelihood estimate of the k; model parameters. Note that calculation of AIC over a range of

model orders, j, requires calculation of the MLE ﬁ\, for each value of j. In practice, this
represents a significant effort since it requires numerical optimization, e.g. using Baum's
algorithm.

The AIC criterion has been shown not 10 be a consistent estimator of model order in
many different settings (e.g. Katz (1981)). As outlined briefly below, the AIC criterion is
also not consistent when applied to the POMC model. However, it has been demonstrated
with observations from a simulated POMC process, that AIC performs better than other,
consistent criteria for moderate length samples (Whiting 1985).

To show that AIC is not consistent, convergence of the likelihood ratio may be
employed. This convergence is established in Baum and Petrie (1966), extending similar
results for fully observed Markov chains, reported in Billingsley (1961).

The criterion AlC(ki) would be consistent if, in the large sample limit, its minimum
value occurs for j=q, where q is the ‘true’ model order. Equivalently, the following must
hold for j > qand j < q (Wax and Kailath 1985):

AIC (k) - AIC (kg) 0.

Consider the case j > q, so that ki » kq, The above can be written:

AIC (k) - AIC (kg) -2 (k5 - k) - XYT. kj. ko) ®)
where:
L(YT. kj. kg) -2 ( max log Pr(YT.8) - max log Pr(YT.8))
QsAk; QCAk%

and Aki‘ Ay are the sets of model parameters (0) having ki and kq independent elements,
respectively.
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The latter term in equation (8) has an asymptotic 12k3 _ k, distribution in the large
sample limit. This is a statement of a result given in Baum and Petrie (1966). This result
was established under the assumption that the models in the sets Ay and Ay possess an
ergodic property. This property can be shown to hold when the unobserved Markov chain
X(t) is ergodic and the matrix R contains no zero elements.

As a consequence of this asymptotic convergence, the right-hand side of equation
(8) is negative with non-zero probability, i.e. with the probability that lzk“ - ko 2k k).
in the large sample limit. The AIC criterion therefore has a non-zero pro%ability of
overestimating the true model order. so it is not a consistent criterion.

A number of criteria have been proposed which are similar to AIC, except for a
weighting factor applied to the number of parameters that is an increasing function of T.
Simulation evidence indicates that the tradeoff involved in using a consistent criterion is
reduced sensitivity in the case of moderate sample lengths. In Section 6. a demonstration
of the application of MLE to model identification from a sample of production data is
provided. with AIC used in the estimation of model order.

5. Y

Some evidence of the "sensitivity” of the AIC criterion for moderate length samples
is provided by means of the following simulation study. Three ‘true’ models were simulated,
with model orders |, 2 and 3. The sample data length was 5000 samples, with the output
distributions restricted to two values (i.e. binary observation. Y(t) = 0 or |). Maximum
likelihood estimates for models of order |, 2 and 3 were obtained for each of the three ‘true’
models (model order | represents a single constant state. for which the MLE is the mean of
the observations). The AIC was calculated for the nine resulting combinations. The entire
experiment was replicated twice. and the results are summarized in Table 1.

TABLE 1: Mode! Order Estimation Using AIC

True Order of Estimated Model AICwith
Mode! Order Replication Order 1 Order 2 Order 3 true model
Order 1 1 13554 1358.3 13633 13558

2 1407.0 14093 14143 14070

Order 2 1 14312 1426.6 14314 1428 5
1450.3 14442 1448 1 14453

Order 3 1 14857 14732 14769 1478 8
14811 1467.9 14723 14740

Note: a) Values tabulated are 1/2 AIC.

b) Underlined item indicates model order selected by AIC.
c) Run length ~ 5000 samples (binary observations).
d) Last column shows value of AIC with true model parameters.

The table indicates that model order estimation for moderate length samples is
questionable. The order 1 and 2 models were correctly identified, but the order 3 model was
mistakenly identified as order 2. This behaviour is not surprising in view of the sample
size; the full information MLE (ie. with the model states observed) showed significant
errors. The "sensitivity” of the AIC is evident from the table. In the case of true model
order 3,the AIC value for estimated order 3 was smaller than for order 1, i.e. although an
error was made, the true model order was clearly the second choice in both replications.
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6. MODEL IDENTIFICATION: AN APPLICATION

To illustrate the flexibility of the POMC model, and the use of MLE and the AIC model
order estimation criterion on "real” data, the following application is described.

Observations were obtained from an incandescent lamp manufacturing process,
which can be characterized as a high speed (roughly 3000 units per hour) transfer line.
Two separate points were monitored in this line, with binary observations indicating
acceptable or defective subassemblies. Results of the analysis of three separate one hour
samples at each of the two monitoring points are reported here.

POMC models of order 1, 2 and 3 were estimated from each sample separately. Several
starting values for P and R were considered to ensure a global maximum of the likelihood
was found, using a variation of the Baum algorithm discussed earlier.

The results of the application of the AIC criterion, and machine performance
statistics (proportion of acceptable items for each model state; and, duration of each state as
obtained from the estimated transition matrix) are reported in Table 2. Generally, the
model of order | (corresponding to a constant state, or “statistical control") was not
indicated. The exception was the first sample from monitor 1, where the AIC was
approximately equal for the order | and 2 cases. Note that the model of order 2 identified
from this sample shows the second state as transient (state two was the indicated state in
the initial distribution).

TABLE 2: Model Identification Results

Monitor Sample Observed Mean Model Performance Level Mean Duration

Number  Length  Performance Order (AIC) By State By State
1 2 3 1 2 3
1 2450 91 2 9 31 - o 111 ---
or 1 9 - - e’ -
2650 90 2 91 0 --- 500 5 ---
2600 81 3 98 83 58 19 125 12
2 2400 89 2 92 83 - 333 167 ---
2950 90 3 1. 91 &7 37 125 500
or2 95 87 --- 167 333 ---
2650 88 2 93 82 --- 125 11 ---

Note: a) The first sample for monitor 1 and second for monitor 2 showed two AIC values
which were approximately equal.

b) "Performance” implies proportion of good items produced in each state.

¢)  "Duration" is in units of machine cycles (items produced).

Several general conclusions can be made regarding this study: (1) significantly
different performance levels can be discerned from production data using the POMC modet;
(2) temporary shifis in performance, representing both deterioration and improvement in
product quality, are clearly evident, indicating the dynamic structure of the POMC modet is
of definite value in quality monitoring; (3) the structure of the Markov chain estimated
from production data offers some insight into the nature of the “"assignable causes™
influencing performance (e.g. transient or recurrent, magnitude and duration of effect on
product quality).
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The use of a POMC model, and the maximum likelihood approach o model
identification, can provide a flexible and sensitive measure of changing production states,
but a source of extra information (such as more intensive sampling when degradation is
indicated, or direct operator surveillance) is required to infer the cause of such change.
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Richard Fincus, Berlin (GDR)

1. INTRODUCTION

During a drug trial some blood constituents like erythro-

cytes, leukocytes, glucose etc. are measured in k groups of
individuals which have been treated with different dosages
Dy <D <...<Dy , say. Denoting the group sizes by n.

i=l,...,k, we can write the observations

yi‘ yrre !YQ“‘

AVREEERL N

Here Yi stands for the p—-dimensional vector of observed
constituents of the j-th individuum in the i-th group. Inter-
preting the vy 's as realizations of random variables with
distribution F} y i=l,...4k, we are interested in testing the

Hypothesis: ﬁ =Pl =, .= p\ , (1)

against the

t ti : B« A A F *P Feeax F 2
Alternative A Pz FH or A Fz Fh . (2)
i.e. homogeneity against trend (or ordered) alternatives.
Here (2) means that for each of the p components separately
there exists a stochastic (increasing or decreasing) ordering.
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If the number of observed components reduces to one, and

additionally we assume the yq to be normally distributed
with
E Y ‘.J = H h
and .
Cov v, = G ,i=l,...,k 1 imlyeeayn,

then the hypothesis becomes

=My == My s ()

and the alternative

r'-i f‘z LA r‘h or f‘. My EaLL rnl . (4)

Abelson and Tukey (1963) considered the class of statistics

Z ; < nﬁyh “y..) /s (5)

or its square, respectively, the so called linear contrasts,
and showed the existence of an optimal choice of S ""’Ch
which maximizes the minimum power among all tests, based on

linear contrasts. The vy; , vy.. and s are defined by

Schaafsma (19266) gave an explicite expression for the optimal
c's, namely

[ n o) m uz] ‘
e =Ll-d; gdy=dp 0T wd oy mdi ) L ng istea ik, (6)

where d; =My +..*ng o, dg =0,
Actually Schaafsma used a test statistic equivalent to

Z’;Ci n; (Yoo Yo )/Z;Zs(y;j -VY.. )l (7)
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or 1its square, respectively, which gives a Mast Stringent
Somewhere Maost Fowerful Test.

Now we drop the normality assumptions and denote by ru the
rank of yﬁ among all n observations. Consequently we denote

.‘
il

. z:irﬁ /n, ' i=1,0..,k,
and
(n+1) /2.

3
]

The rank analogon of the statistics (7) is given by

Z;C; n, (r, —r. ) (8)
(Note that the denominator is a constant).
If the sample size n tends to infinity, n-+0 , and

n; /n < 2; ¥y i=l,...,k, then the linear rank statistics
(8) tends to a normal distribution. More exactly

Z- c, n; r, -r, )

— N(O,1).
172 T n N
n T e ) (n+) /1)

This can be seen by writing (8) as a permutation statistic
z:.z:. = (qs -t.. ), see Furi and Sen (1971), ch. 3.4.
' J

Considering local alternatives

. 1 - .
I"iq-r‘-. =A;/nn ,A;:»u, 122, 0.4k, ()

then the r; are asymptotically normally distributed and the
choice of (&) has an interpretation as minimax solution among
linear rank permutation statistics.

For non local alternatives such a justification is not
available, a more natural choice of the weights c, would be
then

€ =i, i=l,...,k. (10)
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For normally distributed multivariate observations yq with

TR At

Cov y = zt ’ Zl Oy 1=l we gk 3 j=1,...,n‘ ’

and

one can construct linear combinations a’yu s+ say. Forming
with these new univariate variables the linear contrast ()

gives
a'Z,c; ne yy, —y. ) /(a'sa) (11
[
where
Y. =E" Y|S /I'l.' )
Y. =2,2.y|.. /n
) 3\ 3
ﬁ .
s =Z§l"i (y\';) Y. )(Y.'S “Yi. )y '/ (n—k)

Hothorn and Fincus (1987) chose the linear combination a so,
that (11) becomes as large as possible, 1i.e.they considered
the statistic

a’(Z:;c; n; (y;

~Y.. ))(Z;c; n, (Y. “Ye ))&

T =max
a a’" 8 a

Under the hypothesis of homogeneity of the k groups,

< Tz/(Z:;cf n; ) has an F ~distribution. The same

? pin-hepaa

idea might be applied to Schaafsma’s statistic (7) as well,
This gives

a‘(z;c‘-n‘-(y‘-_ “Yeu ))(Z;C‘.n;(y;_ ~y.. ))a
B =max , (1)

a a'(ZZ.E:. (y. —y. )y
' 3 3 *

ﬁ ~y.. ) la

2 . . .
up to a constant z:g:; n, being Hvaﬂl,pll —distributed.
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Z.2. Rank versions
(2)
lLLet now denote by ri' ’ 1=1,...,p, the rank of the 1-th
component of yi amang all n l1-th components, and by r; the
vector (r?' ,...,r!m ) . The nup-matrix formed by the n

row-vectors

9 P .
(rq *(n+1)/2,...,r;s —(n+1)/2), i=l,...,k, i=l,...,n; ,

will be denoted by R. Finally we write ¢ for the n-vector

177} 172 12 .
(c, /n. R A v ).

The rank version of (12) with y, and y, replaced by ri.

yreaCy /n
and r,  respectively, can be written as
c RR'RRc. (13)

Applying the technique of Furi and Sen (1971), ch. 5.1, for
multivariate permutation tests one can easily show, that if

the n; tend to infinity, the limit distribution of (13),

. 2
normalized by Z:;c; I
degrees of freedom under the hypothesis. Especially for c, =i,

i=1l,...4k this limit distribution holds for

is a Chi—-8quare distribution with p

-4
(T cntr £ (DN r.—e ot —r )y (Dean: (r ~r, 1) /D5 .
P ) [} .. ' ‘ I') '3 L L) L} \* Iy ]
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DATA ANALYSIS IN THE FREQUENCY DOMAIN:
WIND- AND AIR-POLLUTION INTERACTION IN VIENNA

Wolfgang POLASEK, Institute for Statistics,
University of Vienna, A-1010 WIEN Universitatsstr. 5.

SUMMARY

The paper describes the interaction of S0 and windspeed at 5 different sites in

Vienna for the year 1977. A multivariate time-series model is estimated for
half-hourly data according to Akaikes's information criterion AIC. The estimates are
used to derive the relative-power- contributions in a multivariate spectral analysis
dnd to study the pollution interaction in the frequency domain. The interaction
pattern between wind and S0, is summarized in a path diagram.

1. INTRODUCTION

Monitoring air pollution data has become increasingly important in recent years
and many approaches for data analyses have been suggested. In order to study
interaction over time and space, a large data base and multivariate models are needed.
This paper uses a multivariate time-series framework and the so-called
relative-power-contribution (PC) analysis developed by Akaike (1968) to describe
$Gy-poilution and wind in Vienna.

Whilst univariate analyses of pollution data have sometimes stimulated the
development of time-series techniques (e.g. Box and Tiao 1975), hardly any
multivariate studies have been carried out. This is partly due to the difficult nature of
pollution data (outliers, collinearity, and non-stationary influences) which makes
any multivariate study highly sensitive to slight changes in the data. In order to
mode] subtle interactions it is necessary to find a long and uninterrupted series of
observationson air pollution and weather on several sites simultaneously.

This study concentrates on S0, and wind interaction, since these variables only are

recorded at sites in Vienna which allows a spatial interaction analysis. There is little
choice of measurement sites: No distinction between roadside and
background-pollution measurement sites can be found. It is surprising that,ina
decade of increasing environmental interests, Vienna has no accurate and continous
measurements of air pollution data. Hence I hope that this study will stimulate
demand for a better air pollution data base in Vienna.

Section 2 describes the AIC estimation technigque for vector autoregressive
processes and then presents the relative power contribution analysis. Section 3
contains the major empirical results of this study based on path diagrams which
summarizes the power contribution analysis. The final section lists some concluding
remarks.
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2. MULTIVARIATE TIME-SERIES MODELS

In what follows we briefly outline two methods for analysing the dynamic
properties of a multivariate time-series model. First, we describe the so-called MAICE
approach (minimum AIC estimate) for estimating a vector autoregressive (VAR)
process, Which is part of the TIMSAC-78 programs of Akaike etal. (1979). These
estimates are the basis for power contribution (PC-) analysis, which can be viewed as
a special type of causality analysis in the frequency domain.

A special class of multivariate time-series models, the vector AR models, are used
frequently in econometrics and the technical sciences. The multivariate extension of
the so-called Box- Jenkins (1970) method uses patterns within the autocorrelation
function and cross-correlation function for identifying the orders of the time-series
models (see e.g. Tiao and Tsay 1983). The development of information criteria (AIC,
BIC, etc.) has encouraged the “automatic” approach ofmodel selection.

The vector AR(p) model for the K-dimensional time series X(t) = (x(t),..xg(t) )

has the form

X() - AX(t-1) - .- ApX(t-p) =u(t) . @0

where the A;'sare (K xK) parameter matrices, and u(t) is the multivariate
white-noise error term which is assumed to have the following moments:

Elu(t)l=0 , Varlu(t)l=X%, t=1,.T 22)

and I is positive definite. Also u(t) and u(s) are independent for s » t. Furthermore,
we assume that the process (2.1) is stationary, which implies that the determinant of
vector polynomial is nonzero inside the unit circle:

llK-Alz-...-Apz9|=0 for 1z} s1. (2.3)

The estimation of the parameters A; in (2.1) and I in (2.2) and the order p by
the MAICE procedure requires us to pre-specify a maximum lag length p ...
Calculating the AIC (Akaike's (1973) Information Criterion) statistics defined by

AIC(p) =1n 1%y » 2K2p/T, (2.4)

the minimum AIC-estimate of the order p is determined by

AIC(f) = min [ AIC(1), ... AIC(ppya )], (2.5)

This method can be viewed as extension of the maximum likelihood procedure for
models with increasing numbers of parameters. The first term reflects the estimated
log-likelihood of the process, which is a decreasing function of the rsidual variance.
The second term in (2.4) is the so-called penalty function which is an increasing
function of the number of parameters. In the case of AIC it is twice the number of
parameters. The AIC overestimates the lag length p of the AR-process, whilst the BIC
which uses In(T) in the penalty term, and is defined by

BIC(p) =1In I X, | + K2p 1n(T)/T, (26)

estimates p consistently. The reason for using AIC and not BIC is that BIC penalizes
the order of multivariate models more than AIC and therefore produces AR-models
with almost no interactions atall. In particular, Granger-type (1969) causality



221

measures can be affected by this problem, since they compare residual variances of
univariate and multivariate models.

2.1 Relative Power Contribution Analysis

Relative power contribution analysis is based on the estimation of a multivariate
spectral matrix by a vector autoregressive process. We shall outline this approach
only briefly. Further details can be found in Akaike (1968). A vector AR(p) process
(2.1) whose order has been correctly determined by MAICE is capable of representing
all the dynamics of a multivariate time series. Turning to the frequency domain, the
information for the spectral matrix is contained in the vector AR-polynomial

A(s)=Ig - 3PA (s) 27
m-=]
A spectral analysis of the process (2.1), which requires the Fourier- transform of
the autocorrelation function, leads, after some algebra, to the following equation in
the frequency domain:

AD) PL(D) A(D* = 3. (28)

Here the *-superscript denotes conjugate transposed matrices, whilst A(f) is the
z-transform of the AR-polynomial (2.7). Also

A(f) =Ig - 3P A(s) exp(i2nfm) i=v-1, 0<f¢1/2; (29)
m=1
and this has to be of full rank for any frequency f. Details of cross-spectral
estimation can be found e.g. in Jenkins-Watts (1968). The spectral matrix Py (f) of the

process (2.1) is now given by inverting the matrices A(f) from the left and from the
right:
PyD-Alza 1. (2.10)

Since X isthe diagonal covariance matrix of a white noise process
(assumption 2.2), each unjvariate spectrum on the diagonal of the left-hand side is
given as a sum of "power contributions” (PC) from variable i to variable j at
frequency f, consisting of K elements given by

PCLinj D =tall (MR s, ij=1..K, @11

where all denotes the (i,j)-th element of the inverse matrix A at frequency f and Sii

is the i-th diagonal element of X. The relative PC's are defined as the power
contributions (2.12) divided by the estimated spectrum of variable i:

PC%[ i~j 1 (£) = PCLi->jl () /7 B;(), (2.12)

The estimated spectrum of the i-th variable should be the sum over all power
contributions:

pi(D) = 3 PCLi-jI(f) . 2.13)

It is convenient to plot all the relative PC's for one variable in one box as is done
in Figures 3.1 a-d. Note that the power contributions can be viewed as special types of
causality measures in the frequency domain. A discussion on the relationship
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between this PC-approach and Geweke's (1982) feedback measures in the frequency
domain can be found in Kunitomo (1984).

3. INTERACTION ANALYSIS

The results of the relative PC-analyses of Viennese air pollution are summarized
in Figurs 3.1 to 3.5 by path diagrams based on different sets of variables. Fig 3.1.f
describes the interaction of the S0,-variables at 5 different places (HW: Hohe Warte,

GG: Gerichtsgasse, St: St. Stephan, DT: Donauturm, and AP: Arthaberplatz) and
summarizes the influence pattern in the form of a path diagram. Dotted lines
represent “faint” influences and normal lines represent “average” influences. The
magnitude of the influence correspondsto the area in a relative "PC-box”. We can
detect interactions between sites in the west of Vienna and unidirectional influences
from the west-central to the east.

Fig. 3.2 contains the S0,-interaction analysis for the same 5 places as in Fig. 3.1.f,

but only for hourly data (192 observations). The results of our analysis may have
been influenced by the length of the recording intervals. However the similarity of
the path diagrams leads us to suspect that such influences are minor.

Fig. 3.3 contains the results of the PC-analysis for windspeed vacriables. Since
windspeed and SO, are generally not recorded at the same sites, we have chosen the

closest available sites for this purpose. The path diagram shows dominant
interactions in the north-south direction along the Danube-valley.
Fig. 3.4 isthe joint 10-dimensional analysis between the 5 SO, variables and the 5

windspeed variables on an hourly basis (windspeed is recorded only hourly). The
path diagram shows influences of wind and S0y by differently marked arrows. Fig.

3.5 contains the same analysis, but only for 3 sites (St. Stephan and Gerichtsgasse are
left out). The results of the 3-site and the 5-site analysis seems to be reasonably
comparable. However, the spatial interaction is much richer for the 5-site analysis,
while the wind/S0, interaction between HW and DT seems to dominate the 3-site

analysis. Increasing the sites (and hence the dimensions) does not seem to be a way
of validating lower dimensional findings. Interaction profiles tend to be richer with
more dimensions. To what degrees these are artefacts created by multicollinearities
or nonstationarities, is difficult to check with the present data. Cautious
interpretation is advisable, since simple 2-dimensional models for the sites
Gerichtsgassse/Strebersdorf does not indicate any interaction. However, the previous
10-dimensional analysis gave a faint indication of such influences.

The same phenomenon can be found for a 2-dimensional analysis between S0,

and windspeed at the site St. Stephan. The "curse of dimensionality” seems to be at
work also in a frequency domain data analysis. It is too soon to pass judgement on the
usefulness of this approach, and further applications and simulations are needed to
explore its applicability to pollution data.

4. CONCLUSJIONS

As a major result, we see that high dimensional models exhibit more interactions
between wind- and SO -variables than low dimensional ones. This is true for purely

S0, and wind models as well as for mixed models. Path diagrams help to summarize

the results of the power contribution analysis.

The frequency-based exploration shows that most interactions between variables
take place at low frequencies, without any regular cyclical influences. This contrasts
a similar analysis in Tokyo (see Polasek and Kishino 1984), where al2 hour cycle had
been observed because of the dominant daily land-sea wind cycle. Influence
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directions in Vienna are generally from the west to the east, or from the north-west
to the south-east. This corresponds also with the dominating wind direction during
the 5 winter-days of the observation period.

Asa general result we find that a multivariate time-series analysis associated
with a PC analysis is a useful tool to uncover the dynamic and spatial interaction of
air pollution variables. The results are not always convincing because time-series
estimates are generally very sensitive to any nonstationary disturbances which can
be frequently found in air poliution data. Nevertheless, useful information can be
provided by a frequency based path analysis, particular in addition to descriptive or
exploratory studies which are usually carried out in the time domain.
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Fig 3.1 a: Site HOHE WARTE (HW) Fig 3.1.b: Site GERICHTSGASSE (66)
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Fig. 3.1.e Site ARTHABERPLATZ (AP)
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COMPARING CLASSICAL STATISTICAL CONTEXTS FOR GROUP MEMBERSHIP DISCUSSIONS

Willem Schaafsma
Department of Mathematics RUG, P.0.Box 800, Groningen, The Netherlands

1. INTRODUCTION

When consulted by a patient, the medical doctor will discuss the
patient’s group membership on the basis of his vector z e R® of signs and
symptoms. Suppose that k mutually exclusive categories C(l),...,C(k) are
of interest, e.g. k unordered diagnostic categories, or k ordered
prognostic categories referring to remaining life length (degrees of
malignancy). As there are many situations where a categorical diagnosis,
prognosis, or gradation is doubtful, the medical doctor might prefer
probabilistic terminology. The subjectivists have paid considerable
attention to (1) the elicitation of personal probabilities, and (2) the
performance of persons or systems generating such probabilities. The main
reason for the use of subjective probabilities is that the form of much
information is not suitable for a classical statistical approach while the
model underlying such an approach is almost always questionable.

Though we accept the arguments in the preceding sentence, we do not
accept subjectivism as the panacea. Instead of eliciting subjective
opinions, we will try to elicit the underlying statistical information. If
this is technically impossible, e.g. because an interpretation of
literature is involved, then an elicited opinion may sometimes be replaced
by equivalent artificial data. This is the basis of the procedures for
incorporating expert opinions, implemented in the POSCON program to be
discussed.

The present paper starts from the assumption, usual in discriminant
analysis and pattern recognition, that the statistical data consist of
(1) the vector z of scores for the patient under_ investigation, (2)
similar complete vectors of scores xhl""'xhn(h) e R for an independent

random sample of n(h) = nh elements from category Ch(h=1,...,k). (The

forthcoming POSCON book will consider some other forms as well, e.g.
special forms of expert opinion.)

As indicated above, we adhere to the relative frequency definition of
probability. Given the vector of scores z, the patient may be compared
with other patients having approximately the same vector of scores. The

probability that this patient if from Ch is a mathematical idealization of

the relative frequency of category h in a reference population of
hypothetical patients, with score vectors suitably chosen around z. This
loose formulation shows that further specifications are needed
if a mathematical T definition is required of the vector
p(z) = (pl(z),...,pk(z)) of the patient’'s "true" probabilities. Note that

the meaning of p(z) depends on the context chosen and on the patient’s
vector of scores z, rather than on the patient itself: the actual group
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membership of the patient is not determined by a probability wvector but by
a categorical statement.

As both the definition and the estimation of the vector p(z) of the
patient’s probabilities depend on the mathematical context, the following
questions appear: which is the most appropriate context, how many and
which wvariables should be included in the analysis, etc. This is a
sophisticated form of the problem of the reference class (Reichenbach,
1949).

In practice choosing the context i1s necessary if one wants to use one
of the available programs for estimating p(z), especially because some of
these programs have many options for model specification. As the estimates
depend on the context chosen, one will have to compare the performances of
the underlying models. This comparison will have to be based on the data
at hand, i.e. (x,2z). The definition of adequate concepts of
performance,however, may involve theoretical constructs like the
‘actual’performance to be observed if, for fixed background information x,
the model is used for making probability statements for many future
individuals. This is where literature about subjective probability is
useful (Section 2).

After having discussed some scoring functions, we shall show that
life would be perfect if all population parameters were known (Section 3).
We have already remarked that in practice we will have to rely on the data
(x,z) at hand. The POSCON project is one of the attempts to develop
adequate classical statistical methodology and corresponding computer
programs (Section 4). The output of the POSCON program involves standard
errors for the probability estimates. These standard errors can be used to
discuss the performance of the POSCON context chosen. This enables the
user to make a deliberate choice of context (Section 5). The paper
provides a framework for discussing the effect of data reduction (Section
6).

2. BIAS AND ACCURACY OF PROBABILITY STATEMENTS

Suppose that a person or system has generated assessments LiveeenEy
on the basis of the vectors of scores ZyaeeeaZp of a large number (m) of
individuals whose group membership labels hl,...,.hm are known to the

k
researcher. Of course ri € Sk = {pelk; pi 2 0; Zipi ; 1}, the unit
simplex in k-dimensional space; hi e {1,...,k}, and zi e R (i=1,...,m).

Calibration. If one considers the individuals (1) with rih > .90, say,

then (each of these individuals having an estimated ch-membership

probability of no less than 902) the relative frequency

#{i ; Tin > .90, hi = h}/#{i ; Tin > .90}

should not be (much) smaller than .90. Otherwise ’overconfidence®’ is
displayed by the assessor.

Accuracy. Let c : {1,...,k} — Sk be defined by c(h)j = éh 3 = 1(0) if
h = (#)j. Note that one would like to have r, close to c, = c(hi). This

suggests to use the Brier (1950) score

-1 2
m ZT=1"ri - Ci"
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to characterize the over-all lack of agreement between the true group
membership ci and the probability assessment ri(i=1,...,n).

If the k categories display a certain ordering, e.g. because they
correspond to the division of remaining life length into k successive
intervals, then a slightly different scoring rule is indicated (Epstein,
1969).

For further reading, e.g. about other concepts of performance, we
refer to Savage (1971), Sta&l von Holstein - Murphy (1978), the series of
papers by Habbema et al. (1978, 1981), and Kahneman et al. (1984).

3. THE PERFORMANCE OF THE VECTOR P OF THE PATIENT'S TRUE PROBABILITIES

If the mathematical context would completely and correctly specify
the joint distribution of H, or I = c¢c(H), and Z, then one would not be
troubled by statistical uncertainties, errors due to misspecifications,
etc. Thus, let us assume that the individuals to be considered are taken
at random from some very large population for which all relative
frequencies of interest are known. Let (H,2) or (I,2Z) describe category
number and vector of scores for such an individual.

The population analogue of the Brier score,

E|R - 1"2 = E E(JJr(2) - c(H)"2|Z).

is minimal if the function r : RP - Sk is chosen such that the outcome

r(2) is equal to the vector

r(z) of R

p(z) = E(c(H)|Z=z) = E(I|Z=2)

of the patient’s true probabilities
P, (z) = E(I, |2=2) = P(H=h|z=2)

(h=1,...,k). This result displays that the Brier scoring function is
proper in the sense that it encourages the assessor to use his actual
opinion about the patient's probabilities. (In a decision-making context
there are many situations where the scientific process of making inductive
and predictive inferences can be corrupted, see Section 4.) The Epstein
scoring function mentioned in Section 2 is also proper. In fact Sta¥l von
Holstein - Murphy (1978) shows that any quadratic scoring function is
proper. In our notation the argument is as follows. Let Q be any
positive-definite (symmetric) matrix and consider the minimization of

E(R-I)'Q(R-I) = E(r(2) - c(H))Q(r(Z) - c(H))

as a function of the procedure r. To show that r = p is optimal, let P
(capital rho) denote the vector p(Z) of true posterior probabilities for a
random patient and note that the form to be minimized is equal to

E(r(Z) - P + P - c(H))TQ(r(Z) -P+P -c(H)) =
= E(r(2) - P)’Q(r(2) - P) + E(P - c(H) (P - c(H))
because
E(r(2) - P)'Q(P - c(H)) = E(r(2) - P)'E(P - c(H)|2) = o.

As Q is positive-definite, the minimum is obtained by taking r(2) = P.
Note that lack op calibration will not appear if one uses P = p(z)
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for making probability assessments. In fact, calibration is also perfect
if r(z) is chosen by conditioning with respect to any other statistic
Y = £(Z). The wunderlying argument is as follows. Using the notation
Pf = E(I|Y), observe that, obviously,

E(I|P; € A) = E(P|P. « A)

for any A< S This formula implies that calibration is perfect for

r(Z) =P

k'
£

4. CLASSICAL STATISTICAL GROUP MEMBERSHIP DISCUSSIONS

Medical experts using their intuition for obtaining probabilities may
display considerable lack of <calibration, and poor interobserver
reliability. Weather forecasters seem to perform better, probably because
their forecasts are evaluated more easily and more frequently (see
Kahneman et al., 1984).

We are interested in probabilistic reasoning as the basis of clinical
decision making. How should the patient be informed before he is asked to
consent to try out a certain treatment? What is the information content of
the physician knowledge? Such questions require adequate discussion. The

Background Information Statistical Model
Training Samples (x) {Pe; o € 0}
Patient’s Vector of Inductive Inferences
Scores (z) (about @)
Specification Decision Predictive Inferences
Structure (Gains or Losses) (r(x,z), s(x,z))

Fig. 1 Decision, Action

structure of such scientific discussions is outlined in Fig. 1.

Note that actual clinical decision making in an ongoing process where
data are collected depending on previous experiences, therapies are
replaced by other ones, etc. Nevertheless, at certain crucial nodes, a
discussion of the simple form presented in Fig. 1 is indicated.

The approach we follow belongs to classical mathematical statistics,
the heritage form Fisher, Neyman, Wald, a.o. The background information x,
the patient's true category number h, and its vector of scores z are
regarded as outcomes of random variables X, H, and 2. Let P denote the
‘true’ joint distribution of (X,H,2). This would be well-defined if the

over-all population C = VhCh and its partitioning into subclasses were

specified. In practice, population definitions are somewhat hypothetical.
The sampling assumptions behind the specification of P are also often
questionable. We shall always assume, however, that X and (H,Z) are
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stochastically independent. This assumption is realistic in the
discriminant-analysis situations we have in mind.

As the precise form of P is unknown in practice, we shall start from
some statistical model. This means that a class {Pe s 6 € @ of

probability distributions is defined and the assumption is made that
P e {Pe ; & € ®). O0f course, any Pe is such that X and (H,Z) are

stochastically independent. In some situations we will discuss what
happens if the assumption P e {Pe ; 6 € ® is not satisfied. Such

robustness investigations are needed because models will always stretch
reality to some extent.

Though inductive inference and decision making are interesting (see
Fig. 1), we focus on the making of predictive inferences. As P is unknownm,
the patient’s vector p(z) of true probabilities is unknown. If we assume
Pe {P6 ; 6 € ©}) then there is some value of 6 which is the true one. We

are interested in the corresponding vector

pe(z) = Ee(I\Z=z)
of probabilities. The background information x can be used for estimating
6 (inductive inference) and pe(z) (predictive inference). Let rz denote
the estimator which assigns the estimate rz(x) = r(x,z) to the background
information x. It is natural to study the bias

E (r (X)) - py(2z) = D (z)
and the covariance matrix

T

Ee(rz(x) - Eerz(X))(rz(X) - Eerz(x)).
the diagonal elements (variances) in particular. The sum of these diagonal
elements (the trace of the covariance matrix) will be denoted by ve(z). It
will play some part later on. In practice the bias will be of order

-1 .. s : -

n while the standard deviations of the estimates are of order n %. These
standard deviations, the square roots of the diagonal elements of the
covariance matrix of rz(X), can be expressed in mathematical form

involving the unknown parameter 6. Thus it is natural to estimate these
. k .
standard deviations. Let sz(x) = s(x,z) € R+ denote the resulting vector
2, .
of so-called standard errors. Note that |s(x,z)||"is an estimate of v (z).

The POSCON project (A.W. Ambergen, 0.J.W.F. Kardaun, W. Schaafsma,
D.M. Van Der Sluis, a.o.) is about the problems discussed in this section.
Mathematical expressions for the covariance matrices were derived in
Schaafsma (1976) (k=2), Ambergen - Schaafsma (1983,1985) (k>2), etc.
Similar results were developed by Rigby (1982), Critchley - Ford (1985),
etc. Early programs were written by Ambergen and applied to discuss group
membership of the Border Cave skull (Ambergen - Schaafsma, 1983). After
consulting with various colleagues from the medical profession, the POSCON
program was written by Van Der Sluis. POSCON provides probability
estimates r(x,z) and corresponding standard errors s(x,z) on the basis of
data (x,z) and model {Pe ; & € ©}. Many options have been made available

to the user. The most important feature of the program is that the user is
allowed to partition the vector of variables into a number of subvectors
which subsequently are regarded as independent, conditionally given
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group membership. For each subvector a variety of options is available.
The choice of model (Pe ; © € 8}, possibly after a reduction of the

data, will have an effect upon the output r(x,z),s(x,z) of the program.
The present paper attempts to give an adequate discussion of the choice of
context.

Other features of the POSCON project are that expert opinions can be
incorporated, variables can be discrete or continuous, covariance matrices
can be equal or unequal, etc. A companion of POSCON is the program CONCERN
by Kardaun (1986). The contexts implemented in POSCON are derived from
discriminant analysis, those implemented in CONCERN belong to survival
analysis (Cox’s proportional hazards model). Programs like GLIM can also
be used to generate probability estimates r(x,z) equipped with standard
errors s(x,z). The contexts implemented in this program belong to
(logistic) regression analysis.

5. THE PERFORMANCE OF A CLASSICAL STATISTICAL GROUP MEMBERSHIP DISCUSSION

If a large sample of future individuals with known group membership
would be available, then one can study the actual performance of the
classical statistical probability vector generating system r R — Sk,
for fixed background information x. The methods of Section 2 are
applicable. Working along these lines, the theoretical pharmacists Hemel
and Van Der Voet, and the mathematical statistician Tolboom found some
lack of calibration of POSCON models in situations with small sample sizes
n = 10 and large dimensionality p =~ 15. The standard errors presented by

POSCON seemed unreliable if the corresponding estimates were close to 0 or
1. Note that the same thing happens if a probability is estimated by means
of a relative frequency. If the relative frequency is 0 or 1 then the
plug-in estimate of the standard deviation is 0 and this is not
trustworthy.

Lack of calibration in the sense of overconfidence can be explained
as follows. If one would use the true vector Pg ® R — Sk for generating

probability vectors then calibration would be perfect (Section 3). The
estimates rx(z) are scattered around the true values pe(z). If we replace

an extreme event, e.g. Ah = {z ; (pe(z))h > .90} by its sample-analogue,
e.g. Bh = {z ; rh(x,z) > .90}, then points with (pe(z))h > .90 disappear
and points (from Bh) with (pe(z))h < .90 are included. This shows why

strict unbiasedness of the estimators rz(X) can go together with lack of

calibration and systematic overconfidence: sampling phenomena add to the
tails of the relevant distributions.

Though much more experience is needed, we are confident that the
classical statistical approach will perform well provided that one aims at
low complexity and large sample sizes. An attempt to develop adequate
theory is as follows.

In practice the data (x,z) is all we have. The probability wvector
r(x,z) depends on the classical statistical context chosen: one has to
specify the variables to be incorporated, the model {Pe ; © € ©}, and the

form of the estimator rz of pa(z). If a large test set were available then

we would compute the Brier score (see Section 2). Note that this would be
done for fixed background information x. The Brier score is an unbiased
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estimate of the actual inaccuracy
2 2
Blr (2 - 1) = E(R - 1)?|x - =),
a concept which is similar to the actual error rate (see Lachenbruch
(1975), Mc Lachlan (1975), etc.) and the actual discriminatory value (see

Schaafsma (1976, 1984), Khatri et al. (1987), etc.). The construction of a
prediction interval [g(x),a(x)] for this actual inaccuracy is a very

relevant subject. Note that the procedure [g,a] would have to satisfy
2 -
E P((d(X) < E(JR - I||7|X) £ d(X)) | X) =1 - a.

It is easier to focus on the over-all inaccuracy E|R - I"z. This
quantity can be estimated almost wunbiasedly by applying the
leaving-one-out method.This holds in particular if the sample sizes
n,,...,n are related to the prior probabilities Pyrer Py in the sense

that they constitute the outcome of a multinomial M(n ; pl,...,pk)

distribution. If the relation is different then some precautions should be
made.

From a theoretical point of view the following population analogue of
Murphy's partition of the Brier score is of interest. We have

2 2 2 2 2 2
E[R - 1 | =E[R - P|” + E[P -I|" = E[[R - P|" - E|P - p|" + E[| p - I
because
E((R-P) (P-1)|2=2) = E((r(X,2) - p(2)) (p(2)-1)|Z=2) = 0

as X and I = c(H) are independent conditionally given Z = z, while
E((p(z)-I)|2=2) = 0. Moreover, as p = E(I) = EE(I|Z) = Ep(Z) = EP, we have

2
E((P-p) (p-1)|2) = -E(||P-p||*|2)
(see Kahneman et al. (1984) p. 309).

The term E"R-P"2 can nicely be studied by conditioning with respect
to Z. We can always write

E|r(X,z) - p(z)||2 = trace Var (r(X,z)) + [|Er(X,z) - p(z)||2
while for the special case P e {Pe ; 6 € O} we have
E flr(x.2) - p(z)||2 = v (z) + ||be(z)||2
(see Section 4). If a parametric POSCON model is used, then the usual

asymptotically efficient estimators rz(X) of pe(z) are such that VG(Z) is

of order n” ! just like be(z). Hence "be(z)"2 is of order n 2. Thus we have
2 -1
EgR - Poll” = Egvg(2) + 0n™™)

where mathematical expressions for v, can be obtained from the theory
underlying the POSCON program while numerical values can be read from the
output. If P = P_ then Ee"Pe - p||2 can also be evaluated. These results

are of some interest for theoretical work. The comparison of two models,
however, is not very interesting if P e {Pe ; © € ©) has to be assumed for

both models: the smaller the model the better, provided that it is
correct. From a practical point of view it is interesting to compare
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models without assuming that they are correct. The leaving-one-out method

for estimating E|R - I||2 gives a clue.

6. THE EFFECT OF A DATA REDUCTION

Starting from an original context with model {Pe ; 6 € 8, we

consider the effect of a data reduction f : RP — Rq. the intuitive
background being that estimation errors will become smaller while accuracy

may get lost. The induced model {Pz ; & € ©} will usually be such that e
is no longer identifiable. Suppose that reparametrization leads to the
model {Qw ; w e ¥}. Of course P: = QW for some y = @ ¢ ¥. If the original

model is suitable for POSCON evaluations then the reduced model is not
necessarily of this form. Much depends on the model and the specification
of £f. If f is linear then normality and equality of covariance matrices

is preserved, the independence of X(l) and X(Z) is not invalidated, etc.
To be practical, we assume that both models admit numerical evaluation by
the computer resulting in output of the form (r(x,z),s(x,z)). Moreover we

assume that P e {Pe ; 6 € ©) with as a consequence that Pf e {Qw s yw e V).
Using Murphy's partition of the Brier score, we obtain

2
I

2 2 2 2
E[R - T)|"-ElRe - I| = E[R - P|" - E[R; - P[|" - E[P; - P|

f
because
2 2 2 2
E[P - o] - E|[P; - o = E|[P - Pp + Pp -p||” - E[P; -0
where
T T
E((P-Py) (Pf—p)|Y) = (E(P|Y) - Pe) (Pg-p) = 0.
The favourable effect of data reduction on estimation errors 1is
expressed by

2 2
E[R - P|” - E[R; - P.|" = E (v, (2)) - E, (v, ¢(¥)
where, of course, @ and y = 6 belong to the true distribution P. Note that
the expressions in the r.h.s. can be estimated, either on the basis of

output of the POSCON program or from the underlying formulas. In practice
this favourable effect is of order n-lwhereas the unfavourable effect
E"Pf - P"2 is of order 1. An interesting application is as follows.

The problem of the reference class. We quote Reichenbach (1949): "If we
are asked to find the probability holding for an individual future event,
we must first incorporate the case in a suitable reference class. An
individual thing or event may be incorporated in many reference classes,
from which different probabilities will result. This ambiguity has been

called the problem of the reference class ..... We then proceed by
considering the narrowest class for which reliable statistics can be
compiled”.

Accordingly, let Z be a discrete variable with m + 1 possible
outcomes or, equivalently, corresponding to a classification into one of
the subsets Do""'Dm of the over-all reference population. We shall focus
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on the question whether the classes D0 and D1 should be pooled. The

notations of Fig. 2 are self explaining. The effect of the transformation

D0 ce Dm Nll,...,N ) ~ M{n ; (ell,...,ekm))
C.(n ern n = =
.1 }0 IT }+ eh+ P (H=h) EJ =0 ehJ ph
) e,. =P (Z e D ) = & _
Ck L 0 Py +] zh 1 hJ
N,y B, | B P (1) = Pe(H=h|Z €Dy = ehj/e+j
Fig. 2
f: {0,...,m) — {1,...,m} with f(z) = max(z,1) is that on the one hand
ol k 2
BIP - Pel™ = ¥5o0®h P Cnglo4g - (Coony) /040 * €410
-6, 0, (6, +06,) 5 (o (0) - p (1))
+o0 +1 +1 h 1'*h Ph
expresses what one looses by pooling D0 and D1 while on the other hand the

reduction of wvariance Eeve(Z) - EWVW f(Y), expressing the gain, is
approximately equal to

EL P2 (ne, ) oy (1) (Lpy (3) - a7 iEy_ By (1-Fy)

2o h=1'"%+1’ PRl =Py tdl) - h=1Pn'""Ph

.1 ko2 .k 2 -1 k
S0 R T nanPhy T TpenPp) F R (R Ay)

- _ + . . .
where ph (eho ehl)/(e+0+e ). Exact expressions can be obtained but are

+1
lengthy.
Conclusion. It is advantageous to pool D0 and Dl if and only if
-1 k -1k 2
nod-z 1ph) > 040941 (0401041 Fpay (PR (0) - A (10D
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directions in Vienna are generally from the west to the east, or from the north-west
to the south-east. This corresponds also with the dominating wind direction during
the 5 winter-days of the observation period.

As a general result we find that a multivariate time-series analysis associated
with a PC analysis is a useful tool to uncover the dynamic and spatial interaction of
air poliution variables. The results are not always convincing because time-series
estimates are generally very sensitive to any nonstationary disturbances which can
be frequently found in air poilution data. Nevertheless, useful information can be
provided by a frequency based path analysis, particular in addition to descriptive or
exploratory studies which are usually carried out in the time domain.
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