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FOREWORD 

The International Institute for Applied Systems Analysis (IIASA) has been a leader in 
the area of multiobjective decisionmaking under conditions of uncertainty, and we have 
long been aware of Professor Sakawa's interesting work in this area. Indeed , he was invited 
to present a lecture here in late 1985 , addressing many of the same issues raised in the 
appended paper . 

Here, Professor Sakawa and his coauthor propose a new interactive fuzzy satisficing 
method for multiobjective nonlinear programming, in the case where the decisionmaker 
holds fuzzy goals for each of the objective functions. On the basis of this innovative 
method, the authors wrote a time-sharing computer program to implement man-machine 
interactive procedures, and this program is applied to the industrial pollution control 
problem, in Osaka City, Japan. Thus, the authors' ideas are in the spirit of the research 
that IIASA is currently carrying out on the role of analysis in the solution of real-world 
problems. 

ALEXANDER 8. KURZHANSKI 
Leader 

System and Decision Sciences 
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An Interactive Fuzzy Satisficing Method Using 
Augmented Minimax Problems and Its 
Application to Environmental Systems 

MASA TOSHI SAKA WA AND HITOSHI Y ANO 

Abstract-A new interactive fuzzy satisficing method for multiobjective 
nonlinear programming is presented, by consideti.ng that the decisionmaker 
(DM) has fuzzy goals for each of the objective functions. Through the 
interaction with the DM, the fuzzy goals of the DM are quantified by 
eliciting corresponding membership functions. In order to generate a 
candidate for the satisficing solution (Pareto optimal) after determining the 
membership functions, if the DM specifies his/ her reference membership 
values, the augmented minimax problem is solved. The D M is thus supplied 
with the corresponding Pareto optimal solution together with the trade-off 
rates between the membership functions. Then by considering the current 
values of the membership functions as well as the tTade~off rates, the OM 
acts on this solution by updating his/ her reference membership values. In 
this way the satisficing solution for the DM can be derived efficiently from 
among a Pareto optimal solution set by updating his/ her reference 
membership values. On the basis of the proposed method, a time-sharing 
computer program is written to implement man-machine interactive proce­
dures. An application to the industrial pollution control problem in Osaka 
City in Japan is demonstrated together with the computer output. 

I. INTRODUCTION 

I N MULTI OBJECTIVE decisionmaking problems 
(MDMP), multiple objectives are usually noncom­

mensurable and cannot be combined into a single objec­
tive. Moreover, the objectives usually conflict with each 
other in that any improvement of one objective can be 
achieved only at the expense of another. Consequently, the 
aim is to find a compromise or satisficing solution of a 
decisionmaker (DM), which is also Pareto optimal based 
on his/her subjective value judgement [l], [2], [6], [9]-[12], 
[14], [40]. Three most promising types of approaches for 
the determination of a compromise or satisficing solution 
of MDMP have been developed, which are (1) goal pro­
gramming approaches [3], [4], [15], [16], [20] ; (2) interactive 
approaches [8], [24]- [29], [33], [34], [36], [37], [38], [44]; and 
(3) fuzzy programming approaches [13], [19], [30]-[32], 
[41]- [43]. 

The goal-programming approaches, which assume that 
the DM can specify his/ her goals of the objective func­
tions, first appeared in 1961 text by Charnes and Cooper 
[3] in order to deal with multiobjective linear programming 
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(MOLP) problems. Subsequent works on goal program­
ming approaches have been numerous including [4], [15], 
[16], and [20]. 

The interactive approaches, which assume that the DM 
is able to give some preference information on a local level 
to a particular solution, were first initiated by Geoffrion 
et al. [8] and further developed by many researchers such 
as [24]-[29], [33], [34], [36-38], [44]. 

The fuzzy programming approaches, which assume that 
the fuzzy goals of the DM can be quantified by eliciting 
his/her membership functions, were first introduced by 
Zimmermann [41] in solving MOLP problems and further 
extended by several investigators such as [13], [19], [30]-[32], 
[42], [43]. 

Naturally, each of these approaches has its own ad­
vantages and disadvantages relative to the others. There­
fore in this paper we present a new interactive fuzzy 
satisficing method by incorporating the desirable features 
of both the goal programming approaches and the interac­
tive approaches into the fuzzy approaches. After determin­
ing the membership functions for each of the objective 
functions through the interaction with the DM, if the DM 
specifies his/her reference membership values, the aug­
mented minimax problem is solved, and the DM is sup­
plied with the corresponding Pareto optimal solution and 
the trade-off rates between the membership functions. Then 
by considering the current values of the membership func­
tions together with the trade-off rates, the DM responds by 
updating his/her reference membership values and the 
satisficing solution for the DM can be derived efficiently 
from among a Pareto optimal solution set. On the basis of 
the proposed method, a time-sharing computer program is 
written in Fortran to implement man-machine interactive 
procedures. The industrial pollution control problem in the 
industrialized areas near Osaka City in Japan is for­
mulated, and the interaction processes are demonstrated 
along with the computer outputs. 

II. INTERACTIVE Fuzzy SATISFICING 

DECISIONMAKING 

In general, the multiobjective nonlinear programming 
(MONLP) problem is represented as the following 

0018-9472/85/1100-0720$01.00 ©1985 IEEE 
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vector-minimization problem: 

min/(x) £ (/i{x),/2 (x), · · ·./*(x))T 

subject tox EX= {xix E E",g1(x) ~ O,j = 1,··· ,m} 

(1) 

where x is an n-dimensional vector of the decision vari­
ables / 1(x),- · · ,fk(x) are k distinct objective functions of 
the decision vector x, g1(x),- · ·, g.,(x) are m inequality 
constraints, and X is the feasible set of constrained deci­
sions. 

Fundamental to the MONLP is the Pareto optimal con­
cept, which is also known as a noninferior solution. Quali­
tatively, a Pareto optimal solution of the MONLP is one 
where any improvement of one objective function can be 
achieved only at the expense of another. Mathematically, a 
formal definition of a Pareto optimal solution to the 
MONLP is given in the following. 

Definition 1 (Pareto optimal solution): A decision x• E 

X is said to be a Pareto optimal solution to the MONLP, if 
and only if there does not exist another x E X such that 
/ 1(x) ~ / 1(x*), i = 1, · · · k, with strict inequality holding 
for at least one i. 

In practice, however, since only local solutions are 
guaranteed in solving a scalar optimization problem by any 
standard optimization technique, unless the problem is 
convex, we deal with local Pareto optimal solutions instead 
of global Pareto optimal solutions. The concept of local 
Pareto optimal solutions was first introduced by Geoffrion 
(7]. 

Definition 2 (local Pareto optimal solution): A decision 

tion µ11(x) which is a strictly monotonically decreasing 
function with respect to f;(x). Here, it is assumed that 
µ11 (x) = 0 or --+ 0, if f;(x) ;;?> f 1° and µ1,(x) = 1 or --+ 1, 
if / 1(x) ~//,where / 1° is an unacceptable level for / 1(x), 
and J/ is a totally desirable level for /;(x) within / 1m;n and 
/;max. 

After determining the membership functions for each of 
the objective functions, in order to generate a candidate for 
the satisficing solution, which is also local Pareto optimal, 
the DM is asked to specify his/ her reference levels of 
achievement of the membership functions, called reference 
membership values, which can be viewed as an obvious 
extension of the idea of the reference point of Wierzbicki 
(37]. For the DM's reference membership values P.1,, i = 

1, · · · k, the corresponding local Pareto optimal solution, 
which is in a sense close to his/her requirement (or better, 
if the reference membership values are attainable), can be 
obtained by solving the following augmented minimax 
problem, where it is assumed that the difference (fl.1, -
µ1,(x)) is of equal importance to the DM. Thus 

~~~ { 11!':1:k (P.,, - IL1,(x)) + p i~I (P.,, - IL1,(x))} 

(2) 
or equivalently 

(3) 

x• e X is said to be a local Pareto optimal solution to the or 
MONLP if and only if there exists an r > 0 such that x• min w ) 
is Pareto optimal in X n N(x*, r), i.e. there does not exist :i;~;::t to 
another x e X n N(x*, r) such that / 1(x) ~ / 1(x*), i = , 

1, · · ·, k, with strict inequality holding for at least one i, k 

where N(x*, r) denotes the set {xix e £", llx-x*ll < r}. P.1, - IL1,(x) ~ w - PL (P.,, - IL1,(x)) , 1 = l ,· · · ,k . 
Usually, local Pareto optimal solutions consist of an 1

-
1 

infinite number of points, and some kinds of subjective 
judgement should be added to the quantitative analyses by 
the DM. The DM must select his/her local compromise or 
satisficing solution from among local Pareto optimal solu­
tions. 

In this paper, assuming that the DM has imprecise or 
fuzzy goals for each of the objective functions in the 
MONLP, we propose a new interactive fuzzy satisficing 
method. 

In a minimization problem, a fuzzy goal stated by the 
DM may be to achieve "substantially less" than A. This 
type of statement can be quantified by eliciting a corre­
sponding membership function. 

In order to elicit a membership function µ11(x ) from the 
DM for each of the objective functions / 1(x), i = 1, · · ·, k 
we first calculate the individual minimum / ; min and maxi­
mum / ;max of each objective function / 1(x) under given 
constraints. By taking account of the calculated individual 
minimum and maximum of each objective function, the 
DM must determine his/ her subjective membership func-

The term augmented is adopted because the term 
k 

PL (P.,, - IL1,(x)) 
;- 1 

(4) 

is added to the usual minimax problem, where p is a 
sufficiently small positive scalar. Thus the augmented 
minimax problem is a natural extension of the usual 
minimax problem. Such an augmented minimax problem 
can be viewed as a modified fuzzy version of the aug­
mented weighted Tchebycheff norm problem of Steuer and 
Choo (36] or Choo and Atkins [5]. 

It should be emphasized here that the augmented mini­
max problem is simply used as a means of generating a 
local Pareto optimal solution, and if the DM is not satis­
fied with the current local Pareto optimal solution, it is 
possible for him/ her to improve the solution by updating 
his/ her reference membership values. 

The relationships between the local optimal solutions of 
the augmented minimax problem and the local Pareto 
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optimal concept of the MONLP can be characterized by 
the following theorems. 

Theorem 1: If x* is a local optimal solution to the 
augmented minimax problem for some {l1 = (fl1i> ··,fl!.), 
then x* is a local Pareto optimal solution to the MONLP. 

Proof: Assume that x* is not a local Pareto optimal 
solution to the MONLP, then there exists x E X n 
N(x*, r) such that /(x) ""f(x*) or equivalently µ.1(X)" 
µ./x*) or {l1 - µ./x)"" {l1 - µ.1(x*), where µ.1(x) = 
(µ. 1,(x),. · -, µ.1,(x)). Then it holds that 

max (fl1 - µ. 1 (x))"" max (fl1 - µ. 1 (x*)) 
l :s;;; i .t;;; k ' ' 1 "i <. k ' ' 

k k 

PL (fl1, - µ.1,(x)) <PL (fl1, - µ.1,(x*)). 
;-1 ;- 1 

This means that 
k 

1i:;;i:k (fl/, - µ./,(X)) + p i~I (fl/, - µ.f,(X)) 

k 

< 11::~:k (fl1, - µ.f,(x*)) + P ;~1 (fl1, - µ.1,(x*)) 

which contradicts the fact that x* is a local optimal 
solution to the augmented minimax problem (2). Hence x* 
is a local Pareto optimal solution to the MONLP. 

Theorem 2: If x* E X is a local Pareto optimal solution 
to the MONLP with 0 < µ.1,(x*) < 1 holding for all i, 
then there exists {l1 = (fl1,,. ·., {l1) such that x* is a local 
optimal solution to the augmented minimax problem. 

Proof- Assume that x* is not a local optimal solution 
to the augmented minimax problem (2) for any {l1 satisfy­
ing 

fl1, - µ.1,(x*) = · · · = fl1, - µ.1,(x*). 

Then. there exists x E X n N(x*, r) such that 
k 

11:::i:k (fl1, - µ.1Jx*)) + P ;~1 (fl1, - µ.f,(x*)) 

k 

" 1i:;;i:k (fl/, - µ./,(x)) + p i~I (fl/, - µ./,(X)) . 

This implies that 
k 

i1:::i:k (µ.1,(x*) - µ.1,(x)) + P ;~1 (µ.1 ,(x*) - µ.1,(x)) ""o. 

Now if either any µ.1,(x*) - µ.11(x) is positive or all µ.1,(x*) 
- µ.1,(x), i = 1,- ·., k, are zero, this inequality would be 
violated for sufficiently small positive p. Hence 

µ. 1,(x•) - µ.1,(x).;;; O, i = 1, .. ., k 

must hold. Since by the assumption 0 < µ.1(x*) < 1, we 
have /(x*) " f(x) , which contradicts the fact that x• is a 
local Pareto optimal solution to the MONLP and the 
theorem is proved. 

As can be seen from the above proofs, it should be noted 
here that an obvious advantage of the augmented minimax 
problem over the usual minimax problem is that local 
Pareto optimality is guaranteed even if the uniqueness 

assumption for the solution is absent, because of the pres­
ence of the augmented term. 

The geometric interpretation of the augmented minimax 
problem is as follows. Let us assume that (w*,x*) be an 
optimal solution to the augmented minimax problem (4) 
with all the inequality constraints of (4) active. Then the 
intersection of the k active inequality constraints in the 
membership function space can be obtained by solving the 
following simultaneous equation : 

1 + p p 

p 1 + p 

p p 

p 

p 

1 + p µ.1,(x) 

k 

fl1, + P :L fl1, - w* 
;-1 

k 

fl1i + P :L fl1, - w* . (s) 
;-1 

k 

fl1, + P :L fl1, - w* 
;-1 

Denoting the left-hand matrix by A, its determinant be­
comes det (A)= 1 + kp * 0. Also, denoting the adjugate 
matrix of A by [ti;), we have Ii;;= 1 + (k - l)p, aJi = 
- p. Therefore the solution to the simultaneous equation 
( 5) is represented by 

µ.1,(x) = ( I aJi (fl1; + PI fl1, - w•))/det (A) 
J-1 1-1 

or, using the above 

µ.11(x) = fl1, - w*/(1 + kp). ( 6) 

Added insight can be obtained by comparing the iso­
quants of the minimax problem and the augmented mini­
max problem as depicted in Fig. 1, where, in general 

B=tan - 1 (/k=l"p/ (l+p)). (7) 

This relation shows that 8 is monotone increasing with 
respect to p. Thus for sufficiently small positive scalar, 
augmented minimax problems overcome the possibility to 
generate weak Pareto optimal solutions as was shown in 
Theorems 1 and 2. Hence augmented minimax problems 
are attractive for generating Pareto optimal solutions even 
if appropriate convexity assumptions are absent. 

To verify the relation (7), we merely observe that the 
cosine of the angle 8 between the normal vector 
( - p, · · · , - p, - 1 - p, - p, · · ·, - p) of the isoquant of the 
augmented minimax problem and the normal vector 
(0,- · ., 0, -1 , o,. · ., 0) of the isoquant of the minimax 
problem is given by cos e = (1 + p ) / /1 + 2p + kp2 . 
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Isoquants of the minimax problem and the augmented minimax 
problem. 

Naturally, p should be a sufficiently small, but computa­
tionally significant, positive scalar. However, for practical 
purposes, a computationally significant lower bound p 
may be 

p = 10 - <a - b) (8) 

where a is the precision figure of the computer, and b is 
the figure of each membership values which the DM can 
distinguish. In most cases, a computationally significant 
value of p = 10 - 3 - 10 - 5 should suffice. 

Now given the local Pareto optimal solution for the 
reference membership values specified by the DM by solv­
ing the corresponding augmented minimax problem (3), 
the DM must either be satisfied with the current local 
Pareto optimal solution, or act on this solution by updating 
his/ her reference membership values. 

In order to help the DM express his/ her degree of 
preference, trade-off information between a standing mem­
bership function µ. 11 ( x) and each of the other membership 
functions is very useful. Such a trade-off between µ. 1, ( x) 
and µ.1,(x) for each i = 2,· ·_- , k is _e_asily obtainable since 
it is closely related to the stnct positive Lagrangian multi­
pliers of the augmented minimax problem (3). Let the 
Lagrangian multipliers associated with the constraints of 
the augmented minimax problem (3) be denoted by A., , 
i = 1,- . . , k. If all A., > 0 for each i, then by extending the 
results in Haimes and Chankong [12), it can be proved that 
the following expression holds1 

i = 2,- . ., k. (9) 

1 Mathematically, it is assumed that l) ( v•, x •) is a regular point of the 
constraints of the augmented minimax problem 3) ; 2) the second-order 
sufficiency conditions are satisfied at ( v• , x• ); and 3) ~ere are .no 
degenerate constraints at ( v• , x*), where (v• , x*) is an optimal solution 
to the augmented minimax problem (3). 

The formal proof of this relation can be found in Y ano 
and Sakawa [39) and will therefore be omitted. However, 
geometrically, we can understand it as follows. In 
(µ. 11 , µ.fl'· · · , µ. 1, v) space, the tangen_t hyperplane at some 
point on Pareto surface can be descnbed by 

H(µ.I» JJ.1i» .. , JJ.1" v) 

= a1µ.11 + a2µ.h + · · · +akµ.f, + bv = c. 

The necessary and sufficient condition for the small dis­
placement from this point belongs to this tangent hyper­
plane is t:..H = 0 or equivalently a1t:..µ.11 + a 2 t:..µ./, 
+ · · · + akt:..µ.1, + Mu = 0. For fixed values of !::..µ.!, = 0 
(j = 2,· · ·, k , j * i) and t:..v = 0 except µ.11 and µ.1,. we 
have a 1!::..µ.11 + a,!::..µ./, = 0. Similarly, for fixed values of 
t:..µ.1, = 0 (i = 1,- · ., k, i * j) except µ.!, and v, we have 
a1t:..µ.!, + bt:..v = 0. It follows from the last two rel<1tions 
that 

_ t:..µ.1, =~= (-a1/b) (t:..v/f::..µ.1,) 

t:..µ.11 a, (-a/b)=(t:..v/f::..µ.1). 

Consequently, it holds that 

_ aµ.11 = (av; aµ.1.) 

aµ.1. ( av;aµ.1,) · 

Now using the Lagrangian multipliers A; , i = 1, · · · , k as­
sociated with all the active constraints of the augmented 
minimax problem (3), we observe that 

av 
-;;-=-A., , i=l,-· · ,k. (10) 

JJ.1, 

Hence we have the result (9) as required. 
It should be noted here that in order to obtain the 

trade-off rate information from (9), all the constraints of 
the augmented minimax problem (3) must be active. There­
fore, if there are inactive constraints, it is necessary to 
replace P,1, for inactive constraints by µ.11(x*) and solve the 
corresponding augmented rmmmax problem (3) for obtain­
ing the Lagrangian multipliers. 

So far we have considered a minimization problem and 
consequently assumed that the DM has a fuzzy goal such 
as "/,(x) should be substantially less than a,." 

In 
1

the fuzzy approaches, we can further deal with a more 
general case where the DM has two types of fuzzy goals, 
namely fuzzy goals expressed as "f,(x) should be in the 
vicinity of b;'' (called fuzzy equal) as well as "f,(x) should 
be substantially less than a,'' (called fuzzy min). Such a 
generalized MONLP problem may now be expressed as: 

fuzzy min 

fuzzy equal 
subject to 

where I u i = 1,2,- · · ,k. 

f,(x )(i E ~)) 
j 1(x)(i E /) 

x EX 

(11) 

In order to elicit a membership function from the DM 
for the fuzzy goal "f,( x) should be in the vicinity of b,," it 
is obvious that we can use different functions to the left 
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fl 
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fo 
! 

Fig. 2. An example or a fuzzy equal membership function. 

and right sides of b,. Fig. 2 illustrates the graph of the 
fuzzy equal membership function where the left function is 
hyperbolic inverse and the right function is exponential. 

Having determined the membership functions for two 
types of fuzzy goals, if the OM specifies his/her reference 
membership values, the corresponding augmented minimax 
problem (3) is solved in order to generate a candidate for 
the satisficing solution. 

When fuzzy equal is included in the fuzzy goals of the 
OM, it is desirable that f,(x) should be as close to b, as 
possible. Consequently, the notion of local Pareto optimal 
solutions defined in terms of objective functions cannot be 
applied. For this reason, we introduce the concept of local 
M-Pareto optimal solutions which is defined in terms of 
membership functions instead of objective functions, where 
M refers to membership. 

Definition 3 (local M-Pareto optimal solution): A deci­
sion x• E X is said to be a local M-Pareto optimal solu­
tion to (11 ), if and only if there does not exist another 
x EX n N(x*, r) such that µ.1,(x) ;;.. µ.1,(x*), i = 1,· · ·, k, 
with strict inequality holding for at least one i. 

Observe that the set of local Pareto optimal solutions is a 
subset of the set of local M-Pareto optimal solutions. 
Using the concept of local M-Pareto optimality, the follow­
ing M-Pareto version of Theorems 1 and 2 can be ob­
tained. 

Theorem 3: The x• E X is a local M-Pareto optimal 
solution to (11), if and only if there exists P.1 = (P.1,, · · ·, P.1) 
such that x• is a local optimal solution to the augmented 
minimax problem. The proof of this theorem is much like 
that of Theorems 1 and 2 and thus is omitted. 

Following the above discussions, we can now construct 
the interactive algorithm in order to derive the local 
satisficing solution for the OM from among the local 
M-Pareto optimal solution set. The steps marked with an 
asterisk involve interaction with the OM. 

Step 0 (Individual Minimum and Maximum): Calculate 
the individual minimum //run and maximum f,m"" of each 
objective function /;( x) under given constraints. 

Step I* (Membership Functions): Elicit a membership 
function µ.1,(x) from the OM for each of the objective 
functions. 

Step 2 (Initialization): Set the initial reference member­
ship values p.<p = 1, i = 1, · · ·, k and set the iteration 
index r = 1. 

Step 3 (Local M-Pareto Optimal Solution): Set P.1, = 

p.y>, i = 1, · · ·, k, solve the corresponding augmented 
minimax problem to obtain the local M-Pareto optimal 
solution x<'>, f(x<'>) and the membership function value 
µ./x<'l) together with the trade-off rate information be­
tween the membership functions. 

Step 4* (Termination or Updating): If the DM is satis­
fied with the current levels of µ.1,<x<'>),i = l,· ··, k of 
the local M-Pareto optimal solution, exit the program. 
Then the current local M-Pareto optimal solution 
/(x<'l) = (f1(x<'>),· · · , fk(x<'>)) is the local satisficing 
solution of the OM. Otherwise, ask the OM to update the 
current reference membership values p.y> to the new refer­
ence membership values p.y+l), i = 1,. ·., k by considering 
the current values of the membership functions together 
with the trade-off rates between the membership functions. 
Set r = r + 1 and return to Step 3. Here it should be 
stressed for the DM that any improvement of one member­
ship function can be achieved only at the expense of at 
least one of the other membership functions. 

III. AN INTERACTIVE COMPUTER PROGRAM 

Fuzzy satisficing decisionmaking processes for multi­
objective nonlinear programming (MONLP) problems in­
clude eliciting a membership function for each of the 
objective functions and reference membership values from 
the DM. Thus, interactive utilization of computer facilities 
is highly recommended. Based on the method described 
earlier, we have developed a new interactive computer 
program. Our new package includes graphical representa­
tions by which the OM can figure the shapes of his/ her 
membership functions, and he/she can find incorrect as­
sessments or inconsistent evaluations promptly, revise them 
immediately, and proceed to the next stage more easily. 

Our program is composed of one main program and 
several subroutines. The main program calls in and runs 
the subprograms with commands indicated by the user. 
Here we give a brief explanation of the major commands 
prepared in our program. 

MINMAX Displays the calculated local individual 
minimum and maximum of each of the objec­
tive functions under the given constraints. 

MF Elicit a membership function from the OM 
for each of the objective functions. 

GRAPH Depicts graphically the shape of the member­
ship function for each of the objective func­
tions. 

GO Derives the satisficing solution for the OM 
from among the local M-Pareto optimal solu­
tion set by updating the reference membership 
values. 

STOP Exits the program. 
SAVE Saves all the necessary information, which has 

been put in, in a file . 
READ Restores the information which was saved in 

the file. 
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In our computer program, the DM can select his/her 
membership function in a subjective manner by consider­
ing the rate of increase of membership of satisfaction from 
among the following five types of functions: linear (41), 
exponential, hyperbolic (19), hyperbolic inverse and piece­
wise linear (13) functions. Then the parameter values are 
determined through the interaction with the DM. Here, 
except for hyperbolic functions, it is assumed that µ.11(x) = 

0 if /,(x) ~ f;0 and µ. 11(x) = 1 if /;(x) ""j/, where / 1° is 
an unacceptable level for / 1(x) and// is a totally desirable 
level for / 1(x). 

The linear membership function is given by 

The linear membership functior' .. m be determined by 
asking the DM to specify the two points /;0 and // within 
1rax. and //nin. 

The exponential membership function is given by 

µ.1,(x) = a1(1 - exp(-a1(/1(x) - /,o};(// _ /.°}}). 

The exponential membership function can be determined 
by asking the DM to specify the three points / 1°, /1°·5 and 
// within /,max and /,min, where a 1 is a shape parameter, 
and ft represents the value of / 1(x) such that the degree 
of membership function µ.1,(x) is a. 

The hyperbolic membership function is given by 

µ.1,(x) = (l/2)tanh(a.(/1(x)- b1)) +(1/2) . 

The hyperbolic membership function can be determined by 
asking the DM to specify the two points /,0·25 and //5 

within /;max and / 1min, where a1 is a shape parameter, and 
b1 is associated with the point of inflection. 

The hyperbolic inverse membership function is given by 

µ.1,(x) = a1tanh- 1 (a1(/1(x)- b1)) +(1/2) 

The hyperbolic inverse membership function can be de­
termined by asking the DM to specify the three points f;0 , 

/ 1°·5 within /,max and /,min, where a, is a shape parameter, 
and b1 is associated with the point of inflection. 

The piecewise linear membership function is given by 

where 

N, 

µ.1,(x) = L a1AJ1(x) - g11I + /3J1(x) + A1 
j - 1 

f31 = (t;,N,+ 1 + 111)/2, 

A;= (si,N,+ l + S;1)/ 2. 

Here, it is assumed that µ.1,(x) = t.J,(x) + s1, (i.e., t,, is 
the slope and s,, is the y-intercept) for each segment 
g1,_ 1· "" f,(x)"" g.,. The piecewise linear membership func­
tion can be determined by asking the DM to specify the 
degree of membership in each of several value5 of objective 
functions within /,max and /,min. 

IV. AN APPLICATION TO ENVIRONMENTAL 

PROBLEMS 

Consider the application of the proposed method to an 
industrial area in Japan. The middle part of Osaka Prefec­
ture is one of the most highly industrialized areas in Japan. 
Osaka City, which is the second largest industrial and 
commercial area in Japan, contains many small rivers 
which are branches of the Y ado River. The Y odo River is 
an important source of drinking water for Osaka's resi­
dents, but water pollution in the Y ado River basin has 
become increasingly serious. Air pollution is also at critical 
level in the greater Osaka area. In addition, the water 
supply capacity is limited in this area. Moreover, the 
limitations of land use in this area are obvious, since it is 
one of the most populous areas in Japan [23). 

Here the industrial pollution control problem for Osaka 
City is formulated as the following three objective optimi­
zation problem (24), (26), [28): 

maximize 

minimize 

minimize 

n 

/1 = L A;K)-b;LJ1 
j - 1 

fz = L (w 1/k;)K1 
j - 1 

/ 3 = L (w2/k;)K1 
j-1 

(12) 

subject to 

where 

.E (-y,;Jk1 )K1 "" r,. 
j-1 

i = 1,2 

qz "" ( I K1)1( I L1) "" q1 
1-l 1- I 

aK10 "" K1 "" /3K10 

a'L10 "" L1 "" /3'L10 

j an industry (j = 1,- ·-, n; n = 20) 

(13) 

(14) 

(15) 

(16) 

K1 capital value (book value of tangible fixed 
assets) in industry j 

K10 actual capital value in industry j 
L1 number of employees in industry j 

L10 actual number of employees in industry j 
w11 unit load of chemical oxygen demand (COD) 

(i = 1) or sulphur dioxide (S02 ) (i = 2) per 
industrial shipment in industry j 

y11 resource coefficient for land ( i = 1) or water 
(i = 2) per industrial shipment in industry j 

k1 capital coefficient, namely capital value per 
unit of shipments in industry j 

f 1 restriction for land (i = 1) or water (i = 2) 
q1 upper (i = 1) or lower (i = 2) bound for the 

overall capital intensity (ratio of total capital 
value to total number of employees) 
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a, {J , a', {J ' 

parameters of the production function for each 
industry j, and 
parameters which represent friction (resis­
tance) in the transfer of capital and labor. 

The objective function / 1 is a Cobb-Douglas type of 
production function which is homogeneous of degree one 
and thus if to each factor the value of its marginal product 
is paid, total output is distributed between capital and 
labor in the production 1 - bi and bi' respectively. This 
value should be maximized so as to increase the total 
production. The objective function / 2 is the total amount 
of COD and should be minimized so as to decrease the 
water pollution. The objective function / 3 is the total 
amount of S02 and should be minimized so as to decrease 
the air pollution. Constraints (13) are resource constraints, 
each of which is a land or water resource constraint. 
Constraint (14) is the technical constraint, which shows 
capital intensity as a whole. This has been utilized to 
indicate the direction of technological changes occurring as 
a result of the reformation of the industrial structure. 
Constraints (15) and (16) are frictional constraints: because 
drastic changes in the industrial structure are not desirable, 
frictional coefficients are imposed to provide upper and 
lower bounds for each decision variable. The problem is to 
find the compromise or satisficing allocation of production 
factors (capital and labor) to each industry under con­
straints (13) to (16). 

The resource restrictions f 1 and r 2 in the constraints 
(13) were assumed to be r 1 = 232,200, r 2 = 200,000. The 
parameters q1 and q2 were supposed to be 1.4 and 0.9, 
respectively. The parameter for capital and labor, a, a', 
and /3, /3', were assumed to be a = a' = 0.903, /3 = /3 ' = 
1.070. The parameters for Ai' bi, ii and w;i' 'Y;i are shown 
in Table I and Table II, respectively. The code numbers of 
the industrial classification are explained in Table III . The 
sources for these data have been obtained mainly from 
Statistical Office of Osaka Prefecture [35), the Ministry of 
International Trade and Industry [21°), and the Osaka 
Bureau of Trade and Industry [22). 

In applying our computer program to this problem, 
suppose that the interaction with hypothetical DM estab­
lishes the following membership function and the corre­
sponding assessment values for the three objective func-
tions 

/ 1: linear, (/1°,fi) =(4800000,5020000) 
/ 2 : hyperbolic, (f2°25.fi°5

) =(147000, 145000) 
/ 3 : exponential,(/3°, /3°5

, / 3
1

) =(110000, 104000, 102000). 

In Fig. 3 the interaction processes using the time-sharing 
computer program under TSS of an ACOS-1000 digital 
computer at the computer center of Kobe University in 
Japan are explained- especially for the first iteration 
througli the aid of some of the computer outputs. In this 
interaction, the initial values of the decision variables x ~ 
( K 1, • • ., K 20 , L 1,: • ., L 20 ) are set at their lower bounds. 

Pareto optimal solutions are obtained by solving the 
augmented minimax problem using the revised version of 

TABLE I 
CALCULATED VALUES Of PARAMETERS ai, bi , AND ki 

Industry Ai bi ki 

1 10.9000 0.1145 0.1195 
2 8.6200 0.1391 0.1160 
3 15.3900 0.1566 0.0716 
4 6.1000 0.1779 0.1599 
5 9.9900 0.1723 0.0926 
6 5.4600 0.1540 0.1868 
7 7.2200 0.2291 0.1824 
8 7.9100 0.1294 0.1400 
9 6.7300 0.1479 0.1735 

10 9.5200 0.1737 0.1125 
11 15.2200 0.1445 0.0670 
12 6.1300 0.1865 0.1926 
13 6.4900 0.1216 0.1746 
14 8.1800 0.0870 0.1077 
15 6.8500 0.1981 0.1486 
16 7.4300 0.2000 0.1659 
17 9.6700 0.1588 0.1020 
18 7.3600 0.1841 0.1491 
19 7.0000 0.2107 0.1394 
20 8.4700 0.1677 0.1228 

TABLE II 
CALCULATED VALUES OF PARAMETERS W;i AND y,

1 

Industry COD S02 Land Water 

1 0.07875 0.00822 0.0244 0.0407 
2 0.03111 0.02235 0.0718 0.1292 
3 0.03110 0.02235 0.0219 0.0072 
4 0.00142 0.00076 0.1024 0.0324 
5 0.00142 0.00076 0.0244 0.0121 
6 0.21680 0.06751 0.0487 0.1564 
7 0.07133 0.05218 0.0105 0.0154 
8 0.07133 0.05218 0.0429 0.0599 
9 0.03466 0.01505 0.1461 0.0212 

10 0.02592 0.00413 0.0553 0.0549 
11 0.02592 0.00413 0.0468 0.0542 
12 0.00198 0.07963 0.1087 0.0617 
13 0.00587 0.02136 0.0773 0.0562 
14 0.00084 0.03055 0.0354 0.0373 
15 0.00116 0.00778 0.0589 0.0293 
16 0.00083 0.00340 0.0464 0.0129 
17 0.00105 0.00243 0.0235 0.0133 
18 0.00073 0.00116 0.0702 0.0267 
19 0.00367 0.00228 0.0451 0.0324 
20 0.00864 0.00228 0.0354 0.0258 

TABLE III 
CLASSIFICATION OF INDUSTRIES 

Code Industries Code 

1 Foods 11 
2 Textile mill products 12 
3 Apparel products 13 
4 Lumber and products 14 
5 Furnitures 15 
6 Pulp and paper products 16 
7 Printing and publishing 17 
8 Chemicals and products 18 
9 Coal and petroleum products 19 

10 Rubber products 20 

Industries 

Leather products 
Clay and s tone products 
Iron and steel 
Nonferrous metals 
Fabricated metal products 
Machinery 
Electrical machinery 
Transportation equipment 
Precision machinery 
Miscellaneous 
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Ct)MMAN(i: ·---------------------< ITERATION 4 >----------------------
=GO 

CONSIOER THE CURRENT MEMBERSHIP VALUES OF 
INPUT SUFFICIENTLY SMALL POSITIVE SCALAR FOR AUGMENTEC1 TERM: THE PARET(1 (IPTIMAL SOLUTION TOGETHER WITH 
=0.001 THE TRAOE-OFFS AN(1NG THE MEMBERSHIP FUNCTIONS. 

THEN INPUT YOUR REFERENCE MEMBERSHIP VALUES ---------------------< ITERATION 1 >---------------------- FOR EACH OF THE MEMBERSHIP FUNCTIONS: 

INITIATES AN INTERACTION L.IITH ALL THE INITIAL REFERENCE 
MEMBERSHIP VALUES ARE 1 

( KUHN-TUCl<ER CONDITIONS SATISFIED > 

PARETO OPT !MAL SOL UT ION TO THE AUGMENTE(I MINIMAX PROBLEM 
FOR !NIT IAL REFERENCE MEMBERSHIP VALUES 

MEMBERSHIP OBJECT I VE FUNCTION 

MCF1> = 
M<F2) = 
MCF3> = 

x ( I) 

XC J> 
x ( 5) 
XC 7) 

x ( 9) 

X< 1 t) E 

x ( t:J> 
X< 15> 
x ( 17) 
x (19) 
x (21) 
x (23) 
XC25) : 

X<27> 
X<29> 
x (31} 
x (33) 
X(35> 
X<37) 
X(39) 

0.5251 
0.5251 
0.5251 

28919 . 
9132. 
9178. 

68254. 
1809. 
4026. 

104086. 
80583. 
32812. 

4896. 
25783. 
19347. 
8851. 

47008 . 
885. 

5896. 
30980. 
56420. 
28597. 

4437. 

F< 1> = 
F<2> = 
FC3) = 

x ( 2> 
x ( 4) 

X( 6) 

x ( 8) 
X< 10) 
x ( 12) 
x ( 14> 
X<16) 
XC18> 
XC20> 
x <22> 
x (24) 
XC26) 
XC28) 
X<JO> 
x <32> 
x (34) 
X(36) 
X(J8) 
X C40) 

TRADE-OFFS AMONG MEMBERSHIP FUNCTIONS 
-(IM(F2)/(IM(Ft> = 2.8539 
-DMCFJ)/OMCFl ) = 1.1151 

4915513. 
144817. 
103865. 

20749. 
14417. 
33403. 
78047. 

5520. 
14029. 
25958. 
87216. 
38813. 
28094. 
18740. 
8810. 

17157. 
36539. 

4487. 
9062. 

10853. 
56002. 
19891. 
24280. 

ARE YOU SATISFIED L.IITH THE CURRENT MEMBERSHIP VALUES OF 
THE PARETO OPT !MAL SOLUTION ? 

---------------------< ITERATION 2 >----------------------
CONSIDER THE CURRENT MEMBERSHIP VALUES OF 
THE PARETO OPT IMAL SOLUTION TOGETHER WITH 
THE TRADE-OFFS AMONG THE MEMBERSHIP FUNCTIONS. 
THEN INPUT YOUR REFERENCE MEHBERSHI P VALUES 
FOR EACH OF THE MEMBERSHIP FUNCTIONS: 
=0.5 0.6 0 55 

Fig. 3. Interactive decisionmaking processes. 

the generalized reduced gradient (GRG) (17] program called 
GRG2 (18]. In GRG2 there are two optimality tests : 1) satisfy 
the Kuhn- Tucker optimality conditions, and 2) satisfy the 
fractional change condition 

[FM - OBJTST[ < EPSTOP X [OBJTST[ 

for NSTOP time consecutive iterations, where FM is the 
current objective value, and OBJTST is the objective value at 
the start of the previous one dimensional search. NSTOP has 
a default value of 3. In Fig. 3, it is shown that one of these 
conditions is satisfied. 

In this example, at the fourth iteration, the satisficing 
solution of the DM is derived and the values of the 
objectives and decision variables are shown in Fig. 4. The 
CPU time required in this interaction process was 8.003, 
and the example session takes about ten minutes. 

The satisficing allocation of capital and labor to each 
industry corresponding to the results obtained by interac-

=0.48 0.62 0.57 

( f(UHN-TVCl\ER CONOITIONS SATISFIE[1 ) 

PARETO OPTIMAL SOLUTION TO THE AUGMENTED MINIMAX PROBLEM 
FOR YOUR REFERENCE MEMBERSHIP VALUES 

MEMBERSHIP OBJECTIVE FUNCTION 

N(F1) = 
M(F2) = 
M(F3) = 

x ( 1) 

x ( J) 
x ( 5) 
X( 7) 

X( 9) 

x ( t 1) 
X( 13> 
x ( 15> 
X(17) 
XC 19) 
x (21) 
x (23) 
Xl25.l 
x <27) 
Xl~91 

x <31) 
x (JJ) 
x (35) 
x (37) 
XC39) 

0. 4568 
0.5968 
a. 5468 

28579. 
9132. 
9178. 

68254 . 
1809. 
3776. 

103740. 
80583. 
3:2812. 

4896. 
25783. 
19347. 
8851. 

4 7008 . 
885. 

5896. 
J0980. 
56420. 
28597. 

44J7. 

F Ct> = 
FC2 ) = 
FCJ> = 

x ( 2) 
xc 4) 
x ( 6) 
xc 8) 
X( 10) 
x ( 12) 
x ( 14) 
x ( 16) 
x ( 18) 
X<20) 
XC22> 
x (24) 
XC26) 
X(=8"1 
XC30) 
x <J=) 
X(34) 
XC36) 
X(38) 
x (40> 

TRADE-OFFS AMONG MEMBERSHIP FUNCTIONS 
-DM CF2>10MCFD = 0.9431 
-[1MlF3)/0MCF1 l :: 1.3559 

4900487. 
144286. 
103752. 

20749. 
14417. 
33403. 
78047. 

4660. 
14029. 
25958. 
87216. 
38813. 
28094. 
18740. 
8810. 

17157. 
36539. 

4487. 
9062. 

10853. 
56002. 
19891. 
24280. 

ARE YOU SATISFIEO WITH THE CURRENT MEMBERSHIP VALUES OF 
THE PARETO OPTIMAL SOLUTION ? 

=YES 

Fig. 4. The satisficing solution of the OM. 

tion is summarized in Table IV together with the values in 
1975. 

The satisficing values for the objective functions can be 
interpreted as compromised values of the DM between the 
conflicting objectives which are the maximization of the 
production function and the minimization of two environ­
mental factors (COD and S02 ). The satisficing solution for 
the decision variables Ki and Li shows the satisficing 
allocation of capital and labor to each industry. These 
results show that capital values in industry as a whole are 
reduced compared with the values in 1975. Capital forma­
tion in the coal and petroleum industry and in the chem­
icals and related products industry is especially severely 
reduced, and the nonferrous metals industry and the 
fabricated metal product industry decrease their capital 
formation. On the other hand, in consumer industries such 
as the lumber and furniture industries, as well as in mac­
hine industries such as the electrical machinery industry, 
capital formation is promoted. 

V. CONCLUSION 

In this paper, we have proposed an interactive fuzzy 
satisficing method using the augmented minimax problems 
in order to deal with the fuzzy goals of the DM in 
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TABLE IV 
SATISFICING ALLOCATION OF CAPITAL AND LABOR 

1975 Proposal 
Industry Capital Labor Capital Labor 

I 31653 22527 28579 25783 
2 22981 17521 20749 18740 
3 10114 18088 9132 19347 
4 13479 8237 14417 8810 
s 8S81 827S 9178 8851 
6 36996 16041 33403 17157 
7 75S9S 43494 682S4 47008 
8 86440 34161 78047 36S39 
9 2004 827 1809 885 

10 Sl61 4195 4660 4487 
II 3764 SSl2 3776 S896 
12 15S38 8472 14029 9062 
13 108036 28964 103740 30980 
14 28750 10147 25958 10853 
IS 7S339 52749 80583 56420 
16 81S41 52358 87216 56002 
17 30677 26736 32812 28597 
18 32687 18S97 38813 19891 
19 4577 4148 4896 4437 
20 26266 22701 28094 24280 

multiobjective nonlinear programming problems. In our 
interactive scheme, after determining the membership func­
tions, the satisficing solution of the DM can be derived by 
updating his/her reference membership values based on 
the current values of the membership functions together 
with the trade-off rates between the membership functions. 
Furthermore, M-Pareto optimality of the generated solu­
tion in each iteration is guaranteed. Based on the proposed 
method, the time-sharing computer program has been writ­
ten to facilitate the interaction processes. 

An application to the industrial pollution control prob­
lem in Osaka City demonstrated the feasibility and ef­
ficiency of both the proposed method and its interactive 
computer program by simulating the responses of the 
hypothetical DM. Although the actual DM for the for­
mulated problem would of course select other values of the 
three objectives than the ones which w·ere selected by the 
hypothetical DM used in this paper, the way to iterate and 
calculate is essentially the same. However, further appli­
cations must be carried out in cooperation with a person 
actually involved in decisionmaking. From such experi­
ences the proposed method and its computer program must 
be revised. We hope that the proposed method and its 
extension will become efficient tools for man-machine 
interactive fuzzy decisionmaking under multiple conflict 
objectives. 
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