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grams. 
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HODEL OF THE OPTIMAL DEVELOPMENT 
OF A PLANT TAKING INTO ACCOUNT 

DEFENCE AND COMPETITION 

M.Ya. Antonovsk i ,  M.D. K o r z u k h i n , *  M.T. Ter-Mikhaelian* 

1. LNTRODUCTION 
In this paper  w e  formulate and investigate a par t icular  development model of 

a plant, whose growth maximizes reproduction during the  life cycle. In comparison 
with available models (a brief review follows), w e  have included in ou r  model t h e  
competition between plants and t h e  costs of an  individual's defence. This connects 
t h e  development problem with t h e  problem of population dynamics. 

A plant species w e  see now is  t h e  result  of an  evolutionarily formed genotype. 
I t  i s  doubtful whether i t  would b e  possible or desirable to restore the  l ist  of fac- 
tors (with the i r  densities and intensities), which had a significant influence on the  
present s tage of development. A m o r e  realist ic way of investigating development 
and i ts  changes under different ecological conditions is  to make hypotheses about 
these factors, to formulate models, and to test them with field data.  The important 
fac tors  in ou r  model a r e  t he  s i te  quality (generalized resource)  and population 
density. 

2. LITERATURE REYrm 
There i s  a voluminous l i t e ra ture  on the  problem of optimal development (or  

life s t ra tegies)  of plants and animals. W e  shall dwell on papers  containing models 
m o s t  similar to ours .  

W e  study a perennial (plant or t r ee ) ,  which divides available resources  
amongst a number of functions ( the growth of various plant organs,  adaptation t o  
varying ecological conditions, defence from mortality factors).  The problem of 
resource  division is  discussed in detail from the  biological point of view in Pianka 
(1981). There exist  t w o  quite different approaches to tree growth modelling, 
namely, optimal and non-optimal models. The basic merit of t h e  second class of 
model i s  t ha t  they are simpler f r o m  t h e  experimental point of view, viz., comparing 
simulation resul ts  with field data .  The merit of t h e  f i r s t  c lass  of models is  t he i r  
g r e a t e r  biological validity and the i r  consideration of t h e  en t i re  organism, which 
given an  opportunity to descr ibe one of i ts  m o s t  important propert ies ,  namely, i t s  
ability to adapt. Two optimization principles (in different modifications) are com- 
monly used - productivity optimization (increase in biomass) (Kibzun, 1983; Menju- 
lin and Sawateev ,  1981; Nilson, 1968; Oya, 1985; Oya, 1986; Racsko, 1979; Racsko, 
1987; Tarko and Sadulloev, 1985) and maximization of t h e  number of seeds or popu- 
lation growth rate (Antonovski and Semenov, 1978; Antonovski and Korzukhin, 
1983; Vorotintsev, 1985; Insarov, 1975; Korzukhin, 1985; Semevski and Semyonov, 

* Natural Environment and Climate Monitoring Laboratory COSKOMCIDROMET and Academy of  S c i -  
ences ,  USSR. 



1982; Tarko and Sadulloev, 1985; Hanin and Dorfman, 1973; Caswell, 1982). The 
second principle seems to b e  more valid from an  evolutionary point of view (Pian- 
ka,  1981; Semevski and Semyonov, 1982; Hanin and Dorfman, 1980; Holden, 1935). 

The main f ac to r s  to be  considered in a problem statement for optimal develop- 
ment are the  following. (1) The partitioning of energy between growth and repro-  
duction f o r  a plant was considered in Vorotintsev, 1985; Insarov, 1975; Konukhin, 
1975; Tarko and Sadulloev, 1985. (2) The growth curve  maximizing an  animal's fer- 
tility taking into account i ts  defence expenses w a s  investigated in Hanin and Dorf- 
man (1973); in f ac t  i t  was t h e  balance between growth and defence expenses that  
was investigated. (3) Plant competition was taken into account only in Korzukhin 
(1985), but population density w a s  considered as an  external  parameter  not as a 
dynamic variable. In Semevski and Semyonov (1982) f o r  t he  f i r s t  time a non- 
stepped reproductive curve  was obtained; this  resul t  w a s  achieved by including a 
stochastic mechanism in t he  model, namely, the  probability of seed germination at 
each s tep  of development. A similar curve  w a s  obtained in Tarko and Sadulloev 
(1985), but with simultaneous use of two nonintegral principles of optimization. In 
a l l  o t h e r  papers ,  only stepped reproductive curves were obtained. In Oya (1985), 
Oya (1986), Racsko (1979) and Racsko (1987), the  purpose w a s  t o  find a correlation 
between different plant organs,  maximizing the  increase in biomass on the  next 
s tep;  smooth growth curves were obtained. 

To ou r  knowledge a search  w a s  never  made f o r  a survival curve by means of 
optimal development models. The optimal correlation of growth and defence f o r  an  
annual plant but f o r  an  a rb i t r a ry  number of mortality factors w a s  obtained in 
Semevski and Semyonov (1982). 

There i s  also a number of models of a different type; in these models t he  fe r -  
tility of vegetable cover  as a whole is  optimized, i.e., without considering separa te  
individuals. 

3. CONSTRUCTION OF THE MODEL 
When attempting to construct a model of optimal growth of a tree, w e  would 

like f i r s t  of all  to obtain at least  the  main qualitative fea tures  of this  growth (see 
fig.1): smooth growth of tree biomass m( t ) .  attaining some maximal value; repro-  
ductive curve  q ( t )  having no fruiting until some nonzero age  to ,  increasing 
the rea f t e r  up to the  end of life; decreasing t o  with deteriorating ecological condi- 
tions; increasing t o  with increasing population density; estimates in even-aged 
plantations of probability p ( t  ) of attaining age  t (this probability is proportional 
to cu r r en t  density n ( t  ). 

Since by means of variable n ( t )  w e  in fac t  consider t he  population's dynam- 
ics, i t  i s  desirable  a lso to descr ibe in t he  model the  behavior of the  main popula- 
tion variables. In ou r  case,  m ( t  ) and q ( t )  are variables of total  biomass and total  
number of seeds f o r  unit square  of plantation - M ( t  ) = m (t ) n  (t  ) and 
Q(t ) = q ( t ) n  (t  ). The behaviour of M(t ) and Q(t ) i s  usually nonmonotonous; for 
more detailed discussion of t he  variables of an  even-aged population, see Konu-  
khin (1986). 

Formula t ion  of the  genera l  model. 

Consider the  population composed of n identical individuals, the i r  life span 
being equal to N. Suppose tha t  individuals consume only one type of resource;  i ts  
maximum quantity accessible to one unit of plant's leaf surface is  equal to amax, 
r e a l  quantity is equal t o  a < amax. The rate of net  photosynthesis is  equal t o  F. 
Assume tha t  t he  seeds produced by individuals are kept  during the i r  life cycle; 
thus t h e  population i s  always even-aged and i ts  density is  monotonously decreasing. 



Figure 1: Usual behaviour of variables describing dynamics of uneven-aged t r e e  
population. t  i s  age of population; m ( t  ) and M ( t  ) a r e  biomasses of in- 
dividuals and the population respectively; q ( t  ) and Q ( t  ) a r e  biomasses 
of total  number of seeds produced by individuals and the  population 
respectively; p ( t )  is an individual's probability of attaining age  of t  . 

W e  shall t ake  the  simplest method of describing an individual's dynamics by one 
variable, namely, the  biomass mi measured at discrete moments of time t =I,. .. ,N. 
In o rde r  t o  take  into account an  individual's defence expenses, w e  include in the 
model dynamic variable pi denoting the  probability of attaining age t ; i t  i s  obvious 
that  pi = ni / n l ,  where ni is  the  population density at age  i. Assume tha t  an indi- 
vidual spends fractions zi , yi , zi of photosynthetic product on the  defence from 
mortality factors ,  biomass growth and reproduction, respectively, 
zi + yi + zi = 1.  These fractions according t o  the  optimization principle should 



be  found by maximizing the  total  number of seeds produced by an  individual during 
i ts  life cycle 

where q is  t h e  number of seeds produced at s tep i by a n  individual with biomass mi 
in t he  case when i t s  expenses on reproduction are equal to ziF.  

Let us discuss t he  equations describing the  dynamics of biomass and popula- 
tion density (i.e., the  probability of attaining age  i). The f i r s t  is  t he  well known 
equation of organic substance balance fo r  an individual 

mi+l = m i  + v i F ( m i . a )  - b ( m i ) ,  (2 

where F is  t he  rate of photosynthesis a t  given biomass mi and resource  a ,  and b 
denotes the expense of respiration. Equation (2) in different modifications has 
been used repeatedly in growth models (Karev, 1985; Bugrovski et al., 1982; Oya, 
1985; Racsko, 1979; Sirotenko, 1981). 

The dependence of survival function V on the  amount of resource  a and the  
individual's parameters  in the  equation describing the  dynamics of population den- 
sity 

is known even more poorly than the  f o r m  of F in (2). For example, w e  cannot 
answer definitely whether V is dependent on an individual's cu r r en t  state or on 
some p a r t  of i ts  growth t ra jec tory .  The last assumption includes in the  survival 
function something like "memory" and is quite possible from a physiological 
viewpoint. Later  w e  shall  t ake  t h e  simplest hypothesis about lack of "memory1'. I t  
i s  also possible tha t  V depends on an individual's biomass but without any informa- 
tion on the  possible form of V(m), w e  shall not use it. 

According to  the  presen t  state of survival theory (Semevski and Semyonov, 
1982) t he  biomass depends on t h e  pressure  of t he  mortality fac tor  V and the  
amount of resource  r spent  on defence. V = V(W,r) (we consider t he  one-factor 
case; by "resource" w e  mean an  individual's inter ior  resource ,  i.e., the  p a r t  of an 
individual's energy spent  on defence); at the  same time, V is  a concave function of 
r .  Let us use one of t h e  possible ways to introduce resource  (Antonovski e t  al., 
1984; Korzukhin, 1986), namely 

where F i s  photosynthesis; z is  t h e  p a r t  of i t s  production expended on defence; 
a ( n )  is  a n  ecological resource  (e.g. light) accessible to the  individual tha t  
depends on density n of population; amax = a (0); Fmax = F [m ,amax] i s  t he  max- 
imum rate of photosynthesis. Assume tha t  in t he  case when a n  individual expends 
maximum accessible r e sou rce  ( a  = 1, F = p a x )  on defence, the  survival i s  a max- 
imum, i.e., t he  individual i s  totally defended, V(r =1) = 1. 

Let us discuss possible ways of including population density in t he  list of fac- 
tors tha t  have been influential in forming an  individual's genotype. Consider an  
even-age population. 



Judging by the  present  dynamics of boreal forests ,  the  conclusion can be  
reached tha t  m o s t  exogeneous disturbances almost completely destroy an initial 
stand (wildfires, windfalls, pests). In tha t  case,  an intensive invasion of free t e r r i -  
to ry  begins with a "package" of pioneer individuals t ha t  can be  considered a s  
even-aged (Kazimirov, 1971; Kirsanov, 1976); these individuals strongly interact  
with each o the r  and depend only slightly on younger individuals of lesser size. So 
the  following problem statements are possible. 

I t  can  be assumed tha t  individual trees were formed at different initial densi- 
t i es  of population ni (1) (each with i t s  probability h i ) ;  i i s  a number of initial con- 
ditions. In tha t  case, the  following quantity has  to be  optimized 

where qk is  t he  number of seeds produced by an  individual at age  k .  

I t  can be  assumed tha t  an  individual tree was formed at one (o r  a group of 
closed values) initial density n* (1); this  assumption i s  a par t icular  case of (5). In 
this  case, an  individual's behaviour at initial densities different t o  n* (1) is  subop- 
timal. 

I t  can be  assumed also tha t  an individual was formed a t  different initial densi- 
t i es  and w a s  optimally adapted to each of them. The formalization of this  viewpoint 
i s  similar t o  the  previous one and leads t o  t he  maximization of t he  quantity 

La te r  on w e  shall  use t he  simplest version (6). 

Before writing the  final version of the  model, i t  i s  convenient t o  introduce 
specific photosynthesis f' (per  sq.cm.) f o r  an individual instead of the  total  one F, 
and the  individual's leaf surface S, s o  tha t  

F =S.f'(S,a) . 

The dependence S ( m )  can b e  taken in the  f o r m  S - m d  ,d < 1 ( Kuzmichev, 1977). 
(Dependence f' (S)  appea r s  through effects like crown self-shading). 

The general f o r m  of t he  model to be  suggested is: 



where a (mi , n i )  is  t h e  amount of accessible (per  individual ecological resource  in 
an  even-aged population of ni individuals with biomass mi,  S(mi ) being equal t o  an 
individual's leaf surface.  The parameters  to be  found are vectors  ( x ,  y ,  z )  tha t  
provide a maximum value f o r  function (9). 

Let us descr ibe t h e  par t icular  case of model (7)-(9) investigated in t he  
present  pape r  (one p a r t  of t h e  investigation w a s  made by means of analytical tools 
and the  o the r  by computer simulation). I t  w a s  assumed that:  
- t h e  specific photosyntheses .f i s  independent on leaf surface S (i.e., t h e r e  i s  

no crown self-shading); 
- the  resource  accessible t o  an  individual depends exponentially on t h e  product 

S.n (in f ac t  h e r e  w e  used t h e  competition model developed in Korzukhin and 
Ter-Mikhaelian (1982) tha t  contains an analytical deduction of this  formula); 

- leaf sur face  i s  proportional t o  biomass m (a simplified version with d =1 in 
o r d e r  t o  make the investigation easier) ;  

- t he  survival V, f irst ly,  depends on i t s  argument in a l inear  manner and second- 
ly assumes tha t  an  individual is  able t o  defend itself totally from exogenous in- 
fluences, i.e., 

t he  energy expended on respiration is  proportional t o  total  photosynthesis; 
i.e., in ( 8 )  b -S..f; 

t he  number of seeds produced by an individual at one s tep  (during one year )  is  
proportional t o  total  photosynthesis, i.e., q in (9) depends on i t s  argument in 
a l inear manner; 

specific photosynthesis J' is  proportional t o  t he  amount of accessible 
resource  (in o r d e r  t o  decrease  the  number of parameters).  

A s  a resul t ,  w e  obtain 

1 R = - C zimiae "nini -. m a r  ; 
i=l  

where 1 i s  an intensity of competition. 

The parameter u i s  equal to survival in the  case when an individual expends 
nothing on defence; otherwise i t  can  be  interpreted as a measure of s i te  favoura- 
bility f o r  an individual. 



4. SOME RESULTS. 
The par t i cu la r  case of th i s  model describing a n  individual's development 

without competition h a s  been investigated by means of analytical  tools; in f a c t  th is  
case desc r ibes  t h e  growth of a single individual 

ni +l = [u +(I- )zi Ini ; (13) 

1 
R  = - zi ami ni --, max ; 

n1 i=l  

H e r e  i t  is possible to consider  a as a n  a b s t r a c t  pa ramete r  being dependent on 
some c o n c r e t e  ecological f a c t o r  (e.g., on light in a n  hyperbolic manner). The 
d i s c r e t e  analogy of th i s  model, investigated in Semevski and Semyonov (1982), can  
be  obtained in t h e  case of a maximum favourable environment, i.e., u = 1 (tha t  
means ni =n l). 

Let us  investigate t h e  dependence of a n  individual's optimal s t ra teg ies  on 
paramete rs  a and u ,  considering as usual R  t o  be  a function of 
(zN,yN),  . . . , ( z l , y  where k = 1 ,  . . . , N is  t h e  number of maximization s teps .  W e  
mark t h e  values of z , y  ,z, providing a maximum to functional R  with upper  indices. 
At each  maximization s t e p  k ,  functional R  i s  a quadrat ic  function of var iables  
Z N - ~ : . Y N - ~ : .  

where RN-k are items of R  depending on z ,  y  with indices of l e s s e r  values than 
N -k . I t  follows from t h e  r i g h t  s ides  of equations (13). (14). t h a t  C3N -k > 0 for all  
k ;  a c o n c r e t e  form of coefficients C j l  i s  determined by values of z , y  providing a 
maximum to R  at t h e  foregong s t e p s  of optimization. 

Since  we consider  function (16) within t h e  t r iangle  

it follows from C3,N + > 0 t h a t  a maximum can  b e  r e a c h e d  e i t h e r  at 

z N *  = 0, y  N +  = O ,  

or at some point of t h e  segment 

z N *  + yN* = 1 .  

Let us denote th i s  local  maximum R ~ O  and R:', respectively.  



I t  is  obvious tha t  z N  = 1, z = y N  = 1. Consecutive maximization of functions 
of type (16) f r o m  k =1 to k =N-1 gives the  following resul ts  (technical details of 
this conclusion are obvious and therefore  omitted). 

Let ~ i - ~ ,  y i +  denote values of zN+, yNdk  at which derivatives 
dR / dyN + , dR / dzN + are equal to zero. 

Let us assume tha t  at maximization s teps  t =I ,  . . . , k -1, a maximum of R has 
been reached in zN = y -' = 0. The equation 

determines the  curve  u:(a) on which z i * ( u , a )  at maximization s tep  k fo r  t he  
f i r s t  time becomes equal to ze ro  (being more than zero  a t  the  foregoing steps). I t  
can be shown tha t  at s tep  k , t he  value vi+(u , a )  is  always more than 1. 

On the  curve determined by equation 

a local maximum R:' is located at the  point zN-k = 0,  yN-k = 0. A t  t he  points 
( a  ,u ) lying between curves u o ( a )  and u = l - a  , this maximum is  located in the  po- 
sitive quadrant (zN+ > 0,  yN + > 0) ;  at the  points ( a  ,u )  lying above u o ( a ) ,  i t  i s  
located in quadrant (zN -k < 0,  yN+ > 1) .  

It  is  not difficult to show tha t  the  problem of comparing R ~ O  with R i l  in the 
domain lying below u o(a ) amounts t o  defining the  sign of the  expression 

where 

Negative values Ak < 0 correspond to R:' < R#O and vice versa .  Curves u E ( a )  ob- 
tained f r o m  Ak ( a  ,u ) = 0 are shown in fig.2. 

The optimal development s t ra tegies  constructed with t he  help of bifurcation 
curves ( 18 ) - ( 20 ) are the  following ( see fig.2). 

1. In domain woo bounded with segments of curves  u i  -l ( a  ) and uz -l ( a ) ,  the  
individual realizes a suboptimal s t ra tegy 

with t he  corresponding value of functional (15) 

2. In the system of domains wlk bounded with segments of curves  
u:(a), u:-l ( a )  and u o ( a ) ,  an  individual realizes s t ra tegies  

z1  = . . . = z N  = O ;  



Figure 2: Separation of parameter's plane (a ,u ) for model (13-(15) into domains 
Wjr  with different development strategies. For equations of bifurca- 
tion curves and optimal strategies, see text.  



with corresponding values of functional (15) 

Strategies  obtained in a "growth-reproduction" model (Semevski, Semyonov, 1982) 
correspond t o  t h e  case u =1 . 

3. In t he  system of domains w2k bounded with segments of curves  

u:(a ), ( a  ) and u o(a ), an  individual realizes s t ra tegies  

z1 = . . . ZN* , Zmax Z N - k + l  = . . . = Z N  = 0 ; 

y l =  . . .  N-k = ymax = Y s Y N * + l =  . . .  = y N = O ;  

where 

Corresponding values of functional (15) a r e  equal t o  

1 1 ~ ~  
RFax = a m l [ q ( a , u ) l N *  

So all reproductive s t ra tegies  are stepped, i.e., zi=O is  changed immediately by 
z t  = 1 (except f o r  t he  suboptimal s t ra tegy (21)). Growth is  always exponential 
with e i t he r  y =1 o r  y =ymax < 1; dynamics of density is  e i ther  exponential (stra- 
tegies (21, (23)) with ni +l=uni o r  "biexponential" (strategies (25)) with 

ni = [u +(1 -a )zmax]nt , i 5 N - k ; 

The development s t ra teg ies  w e  obtained a r e  c l ea r  from a qualitative 
viewpoint. A t  l a rge  values of u ( system of domains w lk) an  individual grows dur- 
ing some p a r t  of i ts  life and reproduces during the  remainder, i t s  defence ex- 
penses being equal t o  zero. The most appropriate  domain is  wll ,  where an  indivi- 
dual grows during the  f i r s t  N-1 s teps  and then reproduces at the  Nth one. For a 
smaller u (systems of domains w2k ) an individual is required t o  expend resources  
on defence and on growth during the  ear ly  p a r t  of i ts  life before s tar t ing t o  repro-  
duce. In conditions of resource  deficiency (small a )  and severity of s i t e  (small u ) 
(domain woo), a n  individual realizes a s t ra tegy of a n  "ephemeral" type, i.e., i t  



starts to reproduce only in t he  f i r s t  step. 

Thus the  model (13)-(15) in spite of i t s  simplicity descr ibes  plausibly t h e  adap- 
tation of optimal development s t ra tegies  to different ecological conditions. 

Optimal s t ra tegies  in t he  model with competition (10)-(12) were investigated 
with t he  use of computer simulation. In contrast  to t h e  l inear model (13)-(15), two 
new parameters  appear ,  namely, intensity of competition 1 and initial density n 
However, scale  substitution Ini =si removes dependence on 1 and w e  have a r ight  
to vary, f o r  example, I ,  with nl  being constant. The simulations were made f o r  
nl=lo4 and N=lO; just as in t h e  l inear case,  a search  fo r  t h e  s t ra tegies  w a s  made 
on t h e  parameters '  plane ( a  ,u) f o r  t h e  following set of values of 1: 1 = l ov4 ,  3.16 
. lo4,  3.16 (these values were taken from a model (Korzukhin et al., 
1987) t ha t  had been verified by field da ta  on birch-siberian pine succession; in 
tha t  model, t he  same expression w a s  used fo r  describing light competition). 

The main effect found in model (10)-(12) consists of t h e  presence of "smooth" 
reproductive s t ra teg ies  in contrast  to stepped s t ra teg ies  of a linear model. The 
general pa t te rn  of behavior is t h e  following: s t ra tegies  z k  cease to be  stepped 
with increasing a ,  u ,  1, however. at the  same time, t h e r e  is  an  increase in t he  
number of s teps  with z k  # 0 , l .  This pa t te rn  is  found only when t h e  value of u is  
big enough and all  zk  are equal t o  zero. Thus t h e  following s t ra tegy is  added t o  
s t ra tegies  of t he  l inear model: 

= . . . Z N  = O  ; 

An example of this  s t ra tegy i s  shown in fig.3a; t he  corresponding dynamics of an 
individual's biomass and ferti l i ty a r e  shown in fig.3b. The behaviour of population 
variables M and Q is qualitatively similar t o  tha t  shown on fig.1. 

Finally i t  is necessary to mention one more effect derived f r o m  t h e  mode!. I t  is 
customary t o  suppose (e.g., see Bugrovski et al., 1982) tha t  an  individual gets  i ts  
maximum biomass through t h e  fact  tha t  respiration expenses increase f a s t e r  than 
t h e  rate of photosynthesis F; as soon as these quantities become equal, growth 
ends. According to development s t ra tegies  obtained from the  model, an increase in 
biomass ends because t he  individual begins to spend all photosynthetic products on 
seed production. I t  seems tha t  both things take  place in r e a l  life, i.e., t h e r e  are 
both an  increase of reproduction expenses and nonproportional (relative t o  
biomass of leaves) growth of organs, tha t  do  not produce but consume photosyn- 
thet ic  products. 



Figure 3 Solution of model (10)-(12) (obtained by means of computer simulation) 
for following values of parameters: u = 0.08, a - 1.0, 1 = 
nl=104, N = 10. Designations correspond t o  those used in (10-(12) 
and in legend t o  fig.1. Through zk  being identical t o  zero, the  dynam- 
ics of population density is  exponential and therefore  is  omitted. 
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