
Working Paper
MINEI' A FAST NCPWORK Id' SOWER

I. Maros

June 1987
WP-87-50

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria

June 1987
WP-87-50

Working Papers are interim r epo r t s on work of t he International
Institute f o r Applied Systems Analysis and have received only limited
review. Views or opinions expressed herein do not necessarily
represen t those of the Institute or of i ts National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

In comparison with already existing software f o r t he solution of network type
l inear programming problems, MINET gives a possibility of very flexible pricing
tha t can be fu r the r f i t ted to the special s t ruc tu re of the network and using a suit-
able interface, i t can re f lec t t he need f o r changing the network s t ruc ture .

Alexander B. Kunhanski
Chairman

System and Decision Sciences Program

CONTENTS

1 Introduction

2 Problem Statement

3 Solution of Network LP Problems

4 Implementational Considerations

5 Irnplementational Tools of MINET

6 Use of MINET

7 Concluding Remarks

References

I. Maros

Computer and Automation Institute of
the Hungarian Academy of Sciences, Budapest

1. INTRODUCTION

Within the frame of IIASA project 'Uodeling of Interconnected Power Systems"

i t w a s necessary t o create an advanoed implementation of a network linear pro-

gramming (LP) algorithm. The program is supposed to work in a hierarchical sys-

t e m of programs under conditions which are different from the routine practice of

network LP applications. The main purpose of this new development is to have an

efficient network LP solver which can easily be included in o ther systems and

which i s under full control of the designers and implementers of the power system

model. As a by-product, the system can be made available for stand-alone usage.

The program is based on the unpublished implementation PNS (Pure Network Sys-

tem) of Maros (Eindhoven University of Technology, Eindhoven, The Netherlands,

1983). For further reference the new implementation will be called MINET.

The special s tructure of the network LP problems has challenged many

researchers to exploit this feature in favor of efficiency of the solution process

and capacity of programs. In this context efficiency is measured in solution time

while capacity is understood as the maximum size of problems that can be solved by

a given program.

The literature is rich in the theoretical foundation of the specialized network

simplex method and s o m e important algorithmic details a r e also published. Less at-

tention w a s paid to certain implementational details which, however, also consider-

ably influence the efficiency of a program.

The purpose of this paper is (a) t o give account of the theoretical back-

ground, implementational tools, capabilities, and special features of MINET, (b) to

serve as a user's guide. It also reports s o m e limited computational experiences.

2. PBOBIZM STAT-NT

The minimal cost network flow (MCNF) problem o r capacitated transshipment

problem can be s tated as follows:

sub jec t to z x (i , k) - z x (k , j) = b (k) f o r k f M (2)
f e I (k) j E O (k)

where

E is a set of arcs (i , j) of the network G(M, E) ,

M is the set of nodes.

The cardinality of M is denoted by m , and that of E is denoted by n. The con-

s tant b (k) represents the requirement at node k . A node k f M , f o r which

b (k) < 0 is called a supply node,

b (k) > 0 is called a demand node,

b (k) = 0 is called a pure transshipment node.

I t is assumed that

If V < 0 then there i s no feasible solution. If V > 0 then the problem can be con-

verted to the prescribed form by adding a dummy destination with a requirement of

-V and slack arcs from each source t o the dummy destination. The slack arcs are

given unit costs of zero and infinite arc capacities.

It should be noted that (3) is not a restriction of generality because individual

lower bounds of the variables different from zero can always be moved to zero by a

simple transformation.

Associated with each node k E M is a dual variable n(k) called its node poten-

tial or simplex multiplier. An a r c (i , j) is directed from node i to node j. An a r c

(i , j) is said t o be out-directed from node i and in-directed in node j. In this

sense I (k) is the set of tail nodes of arcs that are in-directed t o node k , and 0 (k)

is the set of head nodes of arcs that are out-directed from node k .
The flow, cost, and upper bound of a r c (i , j) are represented, respectively

by z (i , j) , c (i , j) , and u (i , j). The objective is to determine a set of a r c flows

which satisfies the node requirements and capacity restrictions at a minimum total

cost.

REMARK In the above description w e followed the terminology of [3].

Let us denote the matrix of constraints on the left hand side of (2) by A . It is

easy to see that each column of A is associated with an arc (i , j) and contains one

coefficient with value of -1 and one with +1 corresponding to the starting node and

the ending node, respectively. In addition to this usual case w e allow in MINET such

arcs which correspond to loops (self-loops). In this case the "from" and the "to"

nodes coincide. The matrix column of such an a r c contains one -1 coefficient.

Using a more concise notation w e can write problem (1)-(3) in the following

form (with evident interpretation of the correspondence):

minimize z = c 'z (5)

subject to Az = b (6)

where A is an m by n matrix, c , z, and u are n-vectors, b is an m -vector and

' (prime) denotes the transpose.

The dual of this problem is the following:

maximize 2 = b 'w - u ' V (8)

w unrestricted , (10)

where w is an m -vector and v is an n-vector of dual variables.

It is a ra ther characteristic feature of the network LP problems that usually

there are much more arcs than nodes, i.e. the number of variables is much larger

than the number of node constraints, m << n.

3. SOLUTION OF NETWOBK LP PEOBLEHS

For solving problem formulated in (5)-(7) primal (e.g.[3]), dual (e.g. [9]), and

primal-dual (e.g.[Z]) algorithms have been proposed. A s a result of recent develop-

ments the primal type algorithms show clear superiority over the others. The

dramatic improvement of the performance of network LP solvers is largely due to

the successful application of new achievements in computer implementation tech-

nology fo r optimization algorithms.

Following p] we can say that computer implementation technology seeks to

discover efficient procedures for carrying out subalgorithms of a general method

on a computer by investigating (a) what kind of information to generate and main-

tain fo r executing operations most effectively, (b) which data structures are best

to record, access, and update this information, and (c) what methods are mos t suit-

able for processing these data to make the the desired information available when

i t is needed. Such knowledge can be the result of long experience in the theory and

practice of optimization and the proper combination of the best elements of

mathematics and computer science.

In the case of the solution of network LP problems the underlying algorithm is

the revised primal simplex method where the very special s tructure of the problem

is highly exploited. This is done in two aspects:

- mathematical considerations,

- implementational considerations.

A bounded variable simplex basis for a network flow problem corresponds to a

spanning t ree with m - 1 arcs. Knowing this t r ee and the nonbasic variables at

bound the actual basic solution can easily be calculated. This practically

corresponds to the case when the basis of a general LP problem is triangular (or

combinatorially triangularizable). Thus - in contrast with the standard revised

simplex method - we do not need the basis inverse (or equivalents of it) in any

form. This is one of the main points in the specialization. Any information required

for the steps of the simplex method can directly be provided by this triangular

basis o r r a t h e r by proper operations on the basis tree. The required arithmetic

operations are addition, subtraction, and multiplication. It means that if our start-

ing values a r e integers then we can simply use integer arithmetic all the time. This

(a) considerably improves the efficiency of the algorithm, and (b) completely ex-

cludes computational errors which is a frequent problem with general purpose

linear programming algorithms.

4. III[PLEHENTATIONAL CONSIDERATIONS

The reports on efficient network simplex algorithms usually describe the

theoretical achievements but do not indicate explicitly how the operations are to

be organized t o minimize the computational and updating effort p e r iteration. The

only exception in this respect s e e m s to be [I] which presents a number of algo-

rithms in detail but unfortunately they are not f r e e of errors and therefore cannot

directly be implemented. A very recent paper [I21 (which w a s not available when

ei ther PNS in 1982-83, o r MINET in 1985 were designed) gives an elaborate algo-

rithm but due to the shortage of time i t could not be checked. In any case the algo-

rithm shows a careful design and is surely a valuable contribution to the network

L P literature.

I t should be noted he re that the minimization of the computational e f for t p e r

iteration usually does not resul t in the minimization of the total computational ef-

for t to solve a problem. This la t te r is heavily influenced by the pricing strategy

applied while this is a r a t h e r problem dependent factor. To achieve good overall

performance with a network L P program properly refined pricing strategy must be

implemented.

The basic idea in the efficient specialization of the simplex method is the spe-

cial representation, w e , and updating of the basis. By this w e can achieve the ef-

ficient performance of the basic operations of the revised simplex method (BTRAN,

PRICING, and FTRAN). The developed techniques use the rooted tree representa-

tion of the basis. MINET adds one node to M and this node is considered the root of

the basis tree. The root node is regarded as being on the top in the rooted tree

with all o ther nodes hanging below it. If nodes i and j denote endpoints of an arc

in the rooted t r e e such that node i is closer to the root, then i is called the

predecessor of node j and node j is called the immediate successor of node i .

To facilitate the description of the list functions used in the network simplex

algorithms w e will use some notations:

T = the basis tree.

T(z) = subtree of T headed by node z (i.e. the subtree that includes z and

all its successors in the predecessor ordering).

For handling the basis the following list functions have been defined:

p (z) = the predecessor of node z . If z is the root node then p (z) = 0.

s (Z) = "thread successor" of z .

Function s (z) may be thought as a thread which passes through each node ex-

actly once in a top to bottom, left to right order , starting from the root node. The

thread-successor of the last node is the root node. If w e denote the root node by 1 ,

then the set Is (11, s2(1), . . . , sn (1) = 11 is exactly the set of nodes of the rooted

tree, where s2(1) = s (s (1)), s3(1) = s (s2(1)), etc.

r (z) = reverse thread of z .

t (z) = number of nodes in T(z).

f (z) = last node in T (z) in thread ordering.

h (z) = distance of node z from the root node (i.e. the number of arcs to

be passed from z to the root in the predecessor order). h (1) is de-

fined t o be 0.

g (z) = preorder distance of node z. This denotes the sequential position

of node z in the thread ordering. By this definition g (1) =l.

i d (z) = directed arc identifier. Suppose arc E (ib (z)) connects nodes z

and p (z) [ib (i) denotes the column number of the i-th basic arc in

the matrix]. i d (z) is defined as follows:

For representing T the minimum requirement is to keep the predecessor,

thread, and directed arc identifier functions. N o t e that each of the above defined

functions requires an m + 1 length integer array. In general i t is t rue that if w e

use more functions and at the same time occupy more memory space fo r the a r rays

the algorithm will be faster (even if logically m o r e complicated). This leads us to

the we l l known space-time conflict. (It also should be noted tha t not all the above

functions can be used simultaneously because some of them a r e replacements f o r

t he others.) Setting up the design c r i t e r i a w e can decide on how f a r to go in using

more functions and complicated algorithm to gain speed. This decision influences

the maximum problem size as well .

Glover, Klingman and Stutz in [ll] use the predecessor, thread, reverse

thread, and directed arc identifier functions.

Srinivasan and Thompson in [14] agumented the data s t ruc ture with the dis-

tance function which resulted in some simplifications and speed improvement of the

algorithm at the expense of updating the distance function in each iteration.

Ali et al. reported in [I] tha t Glover and Klingman had replaced the distance

function by the number of nodes in subt ree function. The resulting procedure re-

tained the benefits of t he previous algorithm while giving a cheap updating of the

newly used function.

Bradley, Brown, and Graves in [4] replaced the distance o r t he number of

nodes in subt ree functions by the preorder distance function. In this way tracing

the cycle (to find the leaving arc of t he basis t r ee) i s simpler but t he updating is

more difficult.

AU et al. reported in [I] the following observation. If a basic arc i s removed

from T, then T i s partitioned into two trees T1 and T2, where the root is contained

in TI . The dual Variables of e i t he r T1 o r T2 must be updated. If w e augment the

data s t ruc ture with the number of nodes in subt ree function then the smaller sub-

tree f o r updating can easily be selected. W e transform T1 and T2 into independent

t rees , update the dual variables in t he tree with fewer nodes, then reconnect T1

and T2 and complete the updating.

5. IHPLE16ENTATIONAL TOOLS OF HINET

As noted ea r l i e r t he available l i t e ra ture does not provide a full description of

a n implementation and many of the published sub-algorithms contain errors. When

developing the predecessor of MINET (PNS, 1983) we simply wanted to make a n ef-

ficiently operating c o r r e c t network implementation f o r problem (1)-(3). The test-

ing of PNS has given promising results and therefore i t i s considered a good start-

ing basis fo r developing MINET.

Algorithmically MINET is a specialized primal revised simplex method fo r solv-

ing MCNF problems. For the representation of the rooted basis t r e e T i t uses the

following functions (just as does i t PNS):

- directed arc identifier,

- predecessor,

- thread.

- reverse thread,

- number of nodes in subtree.

- last node in subtree.

Matrix A of (6) i s represented in MINET in the following way: The indices of

the nonzero entr ies a r e s tored in a column-wise o r d e r in the Linear list inti (e) . To

identify the beginning of columns in this list an a r r a y of column pointers cp (.) i s

used. In each column the index of the 'from' node i s supposed to be listed f i r s t and

i t i s followed by the index of the 'to' node if i t exists. The upper bounds and the

cost coefficients of the arcs are s tored in a r r ays u (.) and cst (.), respectively. The

s tatus of the arc variables can be found in a r r a y mark '). Basically this can as-

sume th ree different values corresponding to basic, nonbasic at lower bound, and

nonbasic at upper bound situations.

The flexibility of this scheme is evident and will be recalled la ter .

As a starting basis MINET creates an a l l s lack basis, where all the nodes are

connected t o the artificial root [Master Root]. The capacity of these arcs i s un-

bounded. A directed arc identifier i s negative if the corresponding node require-

ment i s negative (supply node), else i t i s positive. I t is easy t o see tha t f o r this

trivial basis the corresponding administration is the following:

The index of the Master Root is m + 1.

The starting basic solution is usually infeasible. In phase-1 the program at-

tempts to reduce the flows on all artificial arcs to zero. For this purpose a special

algorithm is used taking the advantage of ideas described in [13]. In the present

interpretation i t means the setting up of the vector of simplex multipliers s tored in

pi(.) with the following values:

(i) 1 if b (i) < O .

Note that (4) must hold fo r the problem, otherwise feasible solution cannot be

found.

An iteration starts with the pricing operation. This serves to compute the

d(j) reduced costs f o r the nonbasic variables and to select one candidate for

entering the basis. If such a variable cannot be found then ei ther (a) an optimal

solution is reached if w e are in phase-2, o r (b) phase-1 is terminated in which case

the situation is still t o be evaluated: if all the artificial flows are driven to zero

then phase-2 is initiated, otherwise the problem has no feasible solution.

Variables corresponding to artificial arcs are never priced because they are

type-0 variables (see [13]).

The pricing operation of a column consists of the following computation if i

points to the f i rs t nonzero entry of column j :

d (j) = - n(ind (i)) + ~ (i n d (i + 1)) - cst (j), if the arc is ordinary , (11)

d j = - (2 i) + m + 1 - s t (j) if the arc is a self-loop . (12)

In phase-1 the cst (a) par t is not present. If nonbasic variable j is at upper bound

then w e change the sign of d (j) fo r evaluation.

I t is easy to see from (11) and (12) that pricing a column is a 'cheap' opera-

tion in the sense of the number of memory accesses and arithmetic operations.

If t he re exists at least one nonbasic column with d (j) > 0, then the optimality

condition is not satisfied and variable j is introduced to the basis.

The simplicity of the pricing operation can be misleading. Since in practical

cases the number of arcs (n) is much larger than the number of nodes (m), there

are many nonbasic variables that must be scanned in the course of iterations be-

fore optimality can be declared. Many of the pricing strategies work in such a way

that a great number (or all) of the nonbasic variables a r e priced in one iteration

(c.f. steepest ascent). This can result in a tremendous amount of computations to

find an entering arc. This is trw even fo r the simplest selection rule 'first posi-

tive'. There a r e statistics showing that 50-90 percent of the computational effort

to solve a network LP problem is spent on pricing. With special problems these fig-

ures can even be wor se . Though these facts have been recognized by some

researchers, a general purpose 'optimal' pricing strategy has not been found yet.

Observations show that the efficiency of the pricing strategy is generally problem

dependent (at least with the known pricing strategies). Since w e have no informa-

tion on the structure and 'behavior' of the problems to be solved in project

"Modeling of Interconnected Power Systems" w e implemented some known pricing

strategies and designed a new one which has some f ree parameters. These parame-

ters enable the user of the system to tune the program to a given class of problems

to solve the members of the class in an efficient way.

The pricing strategy to be used can be defined in the starting phase of MINET.

When the standard pricing [ST] is selected we have the chance to further specify

the way i t should work. In this case column selection strategy is controlled by the

user defined variable 'np ' as follows:

np = 0 f i rs t positive d (j) in phase-1, largest d (j) in phase-;?,

np = 1 largest d (j) in both phases,

np = 2 first positive d (j) in both phases,

np = 3 f i rs t positive d (j) in phase-1, but scanning starts at the last

column and goes backwards, largest d (j) in phase-2.

In MINET standard pricing is carried out by SUBROUTINE PRICE 1.

When the new pricing strategy (called sectional pricing and referred as SC) is

selected then some further parameters have to be provided by the user. Before

describing the meaning of the parameters w e briefly outline the basic idea of SC.

In a general pricing step SC scans only a subset of the nonbasic variables. For

this purpose matrix A of (6) is partitioned into adjacent sections of the s a m e size

(only the last section can somewhat be smaller). The size is defined a s percent

NPERC of n (the number of arcs) which, at the same time, defines the number of

sections (NSC). There is a parameter KVEC that gives the number of improving

vectors (the ones with positive d(j)) to be found in one section if there are any.

Pricing of a sections stops when this number of vectors have been found and the

column where i t happened i s recorded. Next scanning will start at this point.

There is an o ther parameter KSEC tha t controls the number of sections to be

scanned in one pricing operation. In MINET KSEC is temporarily set to the number

of sections (NSC), t ha t is all sections are scanned with the above technique. The fi-

nal decision on the entering column i s based on the magnitude of the corresponding

d (j) and the largest one is selected from among the scanned candidates. Special

c a r e must be taken when the prescribed number of improving vectors cannot be

found (typically in the neighborhood of an optimal solution), especially to declare

optimality a 'full pricing' i s necessary. The logical s t ruc ture of SC (which can easi-

ly be reconstructed from the souroe code of SUBROUTINE SPRICE) automatically

covers al l these cases.

I t i s easy to see tha t SC is a r a t h e r flexible pricing scheme (which sti l l can be

extended t o multiple pricing) and many of t he known pricing s t rategies are con-

tained in i t as special cases tha t can be reproduced by special definition of param-

eters NPERC, KVEC, and KSEC. The power of SC has already been proved in a gen-

e r a l LP implementation (MAPS) of the author and in the limited number of experi-

ences tha t w e had with MINET (where the improvement w a s dramatic).

Using the above definitions now w e can easily describe the parameters to be

provided f o r MINET when SC i s selected. These p a r a m e t e r s are simply NPERC and

KVEC. (As mentioned ea r l i e r KSEC is not a user acoessible parameter yet.)

After pricing (which resulted in finding a candidate a r c variable) the next

question i s the determination of the outgoing variable. This i s done in the pivot

operation. To c a r r y out this s t ep in general LP w e need the updated form of the in-

coming column. This can be obtained by the expensive FTRAN operation. In net-

work LP FTRAN can completely be omitted and the pivot s t ep (rat io tes t) can be

car r ied out by tracing the loop (created by the incoming a r c) on the basic span-

ning tree.

In MINET ra t io test i s ca r r i ed out by SUBROUTINE RTEST1.

The subsequent updating operation requires the modification of the adminis-

tration of the basic spanning t r ee , the simplex multipliers, and the basic solution

as well . This is a r a t h e r complicated procedure and i s partly based on some ideas

of [I] and [3].

- 12 -

The updating steps of MINET can be found in the lengthy SUBROUTINE UD1.

6. USE OF ilIMET

The present version of MINET can be used in a stand-alone mode on the VAX

computer of IIASA. The program is written in FORTRAN77 language of the VAX. The

source code of the program is portable to other FORTRAN77 systems with t w o pos-

sible exaeptions:

(a) The VAX FORTRAN uses the Dollar sign ($) in a FORMAT statement where the

standard FORTRAN77 uses backslash (\).

(b) The INCLUDE statement of VAX FORTRAN is non-standard.

The subroutines of MINET are commented so that the reader can have a f irs t

idea of the function and operation of them. The source code of MINET can be found

in files 'minetl.fl containing the program, and 'minetcom.for' containing the com-

mon variables. The latter file also provides information on the meaning of vari-

ables and the way how the maximum size of the solvable problems can be changed in

the declarations.

MINET is a fully in-core program, i.e. a f ter loading and reading in the problem

i t does not use the background store (disk). The compaot data storage scheme

makes it possible that very large problems can be solved by this in-core version.

The problem t o be solved must be provided in a text file with the following

structure. (The structure is very simple and can easily be changed if necessary.)

1 rec. M,N, format: 215 (i.e. two fields, 5 characters wide each, right justi-

fied)

2 rec. ' f rom ' node, 'to' node, upper-bound, cost coefficient, format: 215,2110

N + 2 rec. right-hand-side elements, five in one record. format: 5110.

To invoke MINET we simply type the name of the file where the executable

program resides (presently i t is *minetl.out'). The start procedure of MINET con-

sists of a dialogue part. The output of MINET appears in capital letters if a user

response is required, otherwise in smal l - case letters.

For program maintenance purposes a single variable is used t o control the ex-

tent of intermediate output. First this trace variable is questioned. The recom-

mended value fo r normal use is 0 (zero). After this the name of the input file, the

pricing strategy, and the parameters of the selected pricing strategy must be

given. A t trace level 0 only two lines of intermediate results appear. One a f t e r

completion of phase-1, and one af te r an optimal solution has been found (if such

exists). In both cases the number of iterations and the value of the t rue objective

function a r e displayed.

A detailed tabular output of the solution is not automatically produced. The

user i s asked if he/she wants to have it. In the case of yes, the name of the output

file must be given.

The structure of the tabular output is traditional. I t contains information on

the column and r o w variables as well.

The shadow prices of the r o w variables are actually the values of the dual

variables w (i) , while the shadow prices of the column variable are the values of

dual variables v (j) , or the negative of them if a variable is at bound.

7. CONCLUDING EtEWRKS

After checking the correct operation of MINET we generated some larger

problems t o test efficiency. For this purpose we used the t ra i le r subproblems of

R.R. Love, jr . 'Traffic Scheduling via Benders Decomposition', Mathematical Pro-

gramming Study 15. The largest of these problems contained 124 nodes and 3894

arcs. This specific type of problems w a s very sensitive to the pricing strategy ap-

plied and interestingly enough produced the best run statistics with NPERC=100

and KVEC=l which corresponds to a special partial pricing strategy. The solution

time on the VAX 11/780 computer of IIASA w a s less than 4 seconds (residence time)

under low workload conditions of the machine.

I t should be noted that the above procedure does not mean a heavy testing of

MINET, and this job must be done in the next phase of the project "Modeling of In-

terconnected Power Systems". This will also be a good occasion to tune the algo-

rithm to the specific needs of the modeled power networks. One of these require-

ments is already known and this is the ability of modifying the s t ruc ture of the net-

work. Clearly, this can be done in a r a t h e r easy way. If an arc is to be deleted then

the marker mark (a) of i t can simply be set to 0. If an arc is to be added then i t can

be put a f t e r the last arc using the data scheme described above. Adding a node re-

quires a little bit more work with the present assumption that the Master Root (MR)

is indexed m + 1. Now the new node(s) can simply be added t o the existing ones and

the new value f o r m must be established which also defines the new index of MR.

Now the new a rc@) connecting the new node@) can be added in the above described

way. This administration could be made easier if we used 0 fo r indexing MR. While

on the VAX FYIRTRAN i t i s possible, the FORTRAN77 s y s t e m which we used f o r pro-

gram development i t was impossible. This point is also considered as a possible

fu r the r improvement on 'user friendliness' and flexibility of the s y s t e m .

[I 1 Ali, A.I., R.V.Helgason, J.L.Kennington and H.S.Lal1: " P r i m a l Simplex Network
Codes: State-of-the-Art Implementation Technology", Networks 8(1978), pp.
315-339.

[2] Barr , R., F.Glover and D.Klingman: "An improved version of the Out-of-Kilter
Method and a comparative study of computer codes", Mathematical Program-
ming, vo1.7. No. 1.(1974), pp. 60-87.

[3] Barr, R., F.Glover and D.Klingman: 'Znhancements of Spanning Tree Labeling
Procedures f o r Network Optimization", Infor 17(1979) pp. 16-34.

[4] Bradley, G.H., G .G .Brown and G.W.Graves: "Design and Implementation of
Large Scale Primal Twnsshipment Algorithms". Management Science, 24, 1 ,
1977, pp. 1-34.

[5] Glover, F., D.Karney and D.Klingman: 'Implementation and Computational
Study on Start Procedures and Basis Change Criteria fo r a Primal Network
Code", Networks 4(3) (1974) 191-212.

[6] Glover, F., D.Karney, D.Klingman and A.Napier: "A Computational Study on
Start Procedures, Basis Change Criteria, and Solution Algorithms f o r Tran-
sportation Problems", Management Science 20(1974), pp. 793-813.

C73 Glover, F. and D.Klingman: "Recent Developments in Computer Implementation
Technology fo r Network Flow Algorithms", International Workshop on Ad-
vances in Linear Optimization Algorithms and Software, Pisa, Italy, July
20-31.1980.

[8] Glover, F. and D.Klingman: 'The Simplex SON Algorithm fo r LPDmbedded N e t -
work Problems", Mathematical Programming Study 15(1981) pp. 148-176.

[9] Glover, F., D.Karney and D.Klingman: "Implementation and Computational Com-
parison of Primal, Dual and Primal-Dual Computer Codes fo r Minimum Cost
Network Flow Problems", Networks, 4, 3(1974), pp. 191-212.

[lo] Glover, F., D.Karney and D.Klingman: "Double-Pricing, Dual and Feasible Star t
Algorithms for the Capacitated Transportation (Distribution) Problem", ccs
Research Report 105, Center fo r Cybernetic Studies, University of Texas,
Austin, Texas (undated).

[ll] Glover, F., D-Klingman and J.Stutz: "Augmented Threaded Index Method fo r
Network Optimization", INFOR, 12, 3,1974, pp. 293-298.

[I23 Grigoriadis, M.D.: "An Efficient Implementation of the Network Simplex
Method", Mathematical Programming Study 26(1986), pp. 83-111.

[13] Maros, I.: "A General Phase-I Method in Linear Programming", European Jour-
nal of Operational Research, 23 (1986), pp .64-7'7.

[I41 Srinivasan, V. and G.L.Thompson: "Accelerated Algorithms for Labeling and
Relabeling of Trees with Applications to Distribution Problems", Journal of
the Association of Computing Machinery, 19, 4, 1972, pp. 712-726.

