
NOT FOR QUOTATION 
WITHOUT THE PERMISSION 
OF THE AUTHORS 

THEORY, SOFTWARE AND TESTING EXAMPLES 
FOR DECISION SUPPORT SYSTEMS 

A .  Lewandowski 
A .  Wierzbicki 

March 1987 
WP-87-26 

Working Papers are interim reports on work of the International Institute for 
Applied Systems Analysis and have received only limited review. Views or 
opinions expressed herein do not necessarily represent those of the Institute 
or of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



NOT FOR QUOTATION 
WITHOUT THE PERMISSION 
OF THE AUTHORS 

THEORY, SOFT WARE AND TESTING EXAMPLES 
FOR DECISION SUPPORT SYSTEMS 

A .  Lewandowski 
A .  Wierzbicki 

March 1987 
WP-87-26 

Working Papers are interim reports on work of the International Institute for 
Applied Systems Analysis and have received only limited review. Views or 
opinions expressed herein do not necessarily represent those of the Institute 
or of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



Foreword 
Research in methodology of Decision Support Systems is one of the activities within 

the System and Decision Sciences Program which was initiated seven years ago and is still 
in the center of interests of SDS. During these years several methodological approaches 
and software tools have been developed; among others the DIDAS (Dynamic Interactive 
Decision Analysis and Support) and SCDAS (Selection Committed Decision Analysis and 
Support). Both methodologies gained a certain level of popularity and have been success- 
fully applied in other IIASA programs and projects as well as in many scientific institu- 
tions. 

Since development and testing the software and methodologies on real life examples 
requires certain - rather high - resources, it was decided to  establish a rather extensive 
international collaboration with other scientific institutions in various NMO countries. 
This volume presents the result of the second phase of such a cooperation between the 
SDS Program and the four scientific institutions in Poland. The research performed dur- 
ing this stage related mostly to converting the decision support software developed during 
the previous phase, from the mainframe to the microcomputer, ensuring simultaneously 
high level of rebustness, efficiency and user friendliness. Several new theoretical develop 
ments, like new non-simplex algorithm for linear programming, new algorithms for 
mixed-integer programming and job shop scheduling are also described in the volume. 
Finally, it presents also new theoretical developments relating to supporting the processes 
of negotiations as well as the methodological issues on application the Decision Support 
Systems in industry management. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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Introduction 

Andrzej Lewandowski, Andrtej P.  Wiertbicki 

This collection of papers presents methodological reports for the contracted study 
agreement 'Theory, Software and Testing Ezamples for Decision Support Systems, Stage 
II' between the International Institute for Applied Systems Analysis (IIASA), Systems 
and Decision Science Program, and the Polish Academy of Sciences, represented by four 
research institutes in Poland: the Institute of Automatic Control, Warsaw University of 
Technology (Part A and coordination on Polish side), the Institute of Systems Research, 
Polish Academy of Sciences (Part B), the Institute of Control and Systems Engineering, 
Academy of Mining and Metallurgy in Cracow (Part C) and the Institute of Informatics, 
Warsaw University (Part D). These methodological reports are augmented with more 
detailed manuals and software documentation in the form of separate working papers. 

The papers present the results of research performed in 1986 according to the con- 
tracted study agreement, with slight modifications agreed upon in the course of research 
with Systems and Decision Sciences Program which coordinated the cooperation on IIASA 
side. Because of the need to summarize the long development of DIDAS family systems in 
response to many requests from various institutions collaborating with IIASA, it was 
agreed to prepare a comprehensive report 'Decision Support Systems of DIDAS family' 
instead of reporting on further theoretical research in part A of the agreement; this 
theoretical research has been carried on, but will be reported in Stage I11 of the study. 
Some other minor corrections and specifications of the contracted study agreement has 
been agreed upon in the course of cooperation; on the whole, however, the papers 
presented here correspond to the scope of the study as specified in the contracted study 
agreement . 

Therefore, the papers in this collection have diverse character, corresponding to vari- 
ous aspects of the theory, software and testing examples for decision support systems. All 
papers contained in this volume were presented at the international Task Force Meeting 
'Theory, Software and Testing Ezamples for Decision Support Systems', organized upon 
IIASA request by the Institute of Automatic Control, Warsaw University of Technology, 
and the Institute of Systems Research, Polish Academy of Sciences, on December 8-9, 
1986 in Warsaw. Since some of the papers are meant to be parts of self-standing software 
documentation, hence they might repeat, in their theoretical manuals, various explana- 
tions given in other papers of more theoretical character. 

The papers in this volume are not ordered according to contracted study agreement, 
nor to the order of presenting them at the Warsaw Task Force Meeting; we have chosen 
instead an ordering corresponding to the subjects of theory, software and applications. 

1) A special character has the first paper 'Decision Support Systems of DIDAS fam- 
ily', written by Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski and 
Andrzej Wierzbicki, which presents a comprehensive history, methodology, theory, imple- 
mentation issues and various applications of systems related to the name Dynamic 
Interactive Decision Analysis and Support, based upon quasisatisficing rationality 



framework and reference point optimization principles. 

Next four papers have mostly theoretical character: 

2) The paper 'Modern Techniques for Linear Dynamic and Stochastic Programs', by 
Andrzej Ruszczynski, presents a review of modern optimization techniques for structured 
linear programming problems, including non-simplex algorithm and, specifically, a new 
regularized decomposition method for stochastic optimization problems. 

3) The paper 'Theoretical Guide NOA2: a FORTRAN Package of Nondifferentiable 
Optimization Algorithms', by Krzysztof Kiwiel and Andrzej Stachurski presents theoreti- 
cal background for a package of FORTRAN subroutines of nondifferentiable optimization 
of locally Lipschitz continuous functions. 

4) The paper 'Implicit Utility Function and Pairwise Comparisons', by Janusz 
Majchrzak presents an approach to estimating the utility function of decision maker for 
decision support systems that process discrete alternatives. 

5) The paper 'Safety Principle in Multiobjective Decision Support in the Decision 
Space Defined by the Availability of Resources' by Henryk Gorecki and A.Skulimowski 
presents new theoretical results on decision analysis with uncertainty about constraints in 
the criteria space and aspirations of the decision maker. 

Further seven papers report on software development and are intended as parts of 
software documentation. 

6) The paper 'Methodological Guide to HYBRID 8.01: a Mathematical Programming 
Package for Multicriteria Dynamic Linear Problems', by Marek Makowski and Janusz 
Sosnowski presents detailed methodological description of two versions of HYBRID sys- 
tems of DIDAS family one for mainframe computers and one for IBM-PC compatibles. 

7) The paper 'IAC-DIDAS-L, a Dynamic Interactive Decision Analysis and Support 
System for Multicriteria Analysis of Linear and Dynamic Linear Models on Professional 
Microcomputers' written by Tadeusz Rogowski, Jerzy Sobczyk and Andrzej Wierzbicki, 
presents introductory documentation and theoretical manual for two new, professional 
microcomputer based, versions of systems of DIDAS family (one version in FORTRAN 
and one in PASCAL). 

8) The paper, 'A Solver for the Transshipment Problem with Facility Location', by 
Wlodzimierz Ogryczak, Krzysztof Studzinski, and Krystian Zorychta, reports on the work 
in the Institute of Informatics, University of Warsaw. The paper describes a solver based 
on branch and bound technique with novel a implementation of simplex algorithm for spe- 
cially ordered network problems. 

9) The paper 'A Methodological Guide to the Decision Support System DISCRET for 
Discrete Alternatives Problems ', by Janusz Majchrzak presents methodological description 
of the DISCRET decision support system. 

10) The paper 'Nonlinear Model Generator' by Jerzy Paczynski and Tomasz Kre- 
glewski presents introductory documentation and theoretical manual for a nonlinear 
model generator for decision support systems in an easy to  use spreadsheet format and 
with a symbolic differentiation package. 

11) The paper for Multicriteria Analysis of Nonlinear Models on Professional Micro- 
computers', by Tomasz Kreglewski, Jerzy Paczynski and Andrzej Wierzbicki, presents 
introductory documentation and theoretical manual for new version of nonlinear DIDAS 
system, including spreadsheet format model definition and symbolic model differentiation. 

12) The paper 'Experimental System Supporting Multiobjective Bargaining Problem - 
a Methodological Guide', by Piotr Bronisz, Lech Krus and Bozena Lopuch presents a pilot 



version of a interactive decision support system in multicriteria bargaining problem. 

Finally, further four papers are related to applications or testing examples: 

13) The paper 'A Permutative Scheduling Problem with Limited Resources' by 
Tomasz Rys and Wieslaw Ziembla presents a specific testing example for decision support 
systems with discrete scheduling alternatives. 

14) The paper 'Multiobjective Evaluation of Industrial Structures - MIDA application 
to  the Case of Chemical Industry', by Maciej Zebrowski presents a methodological applica- 
tion of decision support systems. 

15) The paper 'Spatial P D A  Modelling for Industrial Development with Respect to  
Transportation Cost' by Maciej Skocz and Wieslaw Ziembla presents a multiobjective 
decision problem related to the programming of the development of a spatially distributed 
industrial system. 

16) The paper 'Technologies Ranking and Selection in Chemical Industry - an Appli- 
cation of SCDAS' ,  by Grzegorz Dobrowolski and Maciej Zebrowski presents a specific 
application of the Selection Committee Decision Analysis and Support (SCDAS) System. 

These reports present the results of a collaborative study in the stage 11 of the con- 
tracted study agreement that corresponds to the effort of circa 10 man-years, although 
over 20 researchers have been involved on part-time basis in this study and the results 
obtained through cooperation with independently funded projects in Poland are also par- 
tially included here. 



Decision Support S stems of DIDAS Family 
(Dynamic Interactive Je'ecision Analysis & Support) 

Andrrej Lewandowski, Tomasr Kreglewski, Tadeusr Rogowski, 
Andrrej P. Wierrbicki 

Institute of Automatic Control, Warsaw University of Technology 

ABSTRACT 

This paper presents a review of methodological principles, mathematical 
theory, variants of implementation and various applications of decision 
support systems of DIDAS family, developed by the authors and many 
other cooperating researchers during the years 1980-1986 in cooperation 
with the Systems and Decision Sciences Program of the International Insti- 
tute for Applied Systems Analysis. The purpose of such systems is to  sup- 
port generation and evaluation of alternative decisions in interaction with 
a decision maker that might change his preferences due to  learning, while 
examining a substantive model of a decision situation prepared by experts 
and analysts. The systems of DIDAS family are based on the principle of 
reference point optimization and the quasisatisficing framework of rational 
choice. 

Introduction 

The results reported in this paper are an outcome of a long cooperation between the 
System and Decision Sciences Program of the International Institute for Applied Systems 
Analysis (IIASA) and the Institute of Automatic Control, Warsaw University of Tech- 
nology as well as many other institutions in Poland and in other countries. This coopera- 
tion concentrated on applications of mathematical optimization techniques in mul t iokc-  
tive decision analysis and on the development of decision support systems. ~ l t h o u ~ h  
many articles in scientific journals and papers a t  international conferences described 
specific results obtained during this cooperation (in fact, four international workshops and 
several working meetings were organized during these cooperation), one of the main 
results - the family of Dynamic Interactive Decision Analysis and Support systems - has 
not been until now comprehensively described. Such a description is the purpose of this 
paper. 

1.Concepts of decision support and frameworks for rational decisions. 

1.1 Concepts of decision support systems. 

The concept of a decision support system, though quite widely used and developed in 
contemporary research, is by no means well defined. Without attempting to  give a restric- 
tive definition (since such definition in an early stage of development might limit it too 
strongly), we can review main functions and various types of decision support. 

The main function of such systems is t o  support decisions made by humans, in con- 
trast t o  decision automation systems that replace humans in repetitive decisions because 



these are either too tedious or require very fast reaction time or very high precision. In 
this sense, every information processing system has some functions of decision support. 
However, modern decision support systems concentrate on and stress the functions of 
helping human decision makers in achieving better decisions, following the high tech - 
high touch trend in the development of modern societies [I]. We can list several types of 
systems that serve such purposes: 

- simple managerial support systems, such as modern data bases, electronic 
spreadsheet systems, etc; 

- ezpert and knowledge base systems whose main functions relate to  the help in recog- 
nizing a pattern of decision situation; more advanced systems of this type might 
involve considerable use of artificial intelligence techniques; 

- alternative evaluation and generation systems whose main functions concentrate on 
the processes of choice among various decision alternatives either specified a priori or 
generated with help of the system, including issues of planning, of collective decision 
processes and issues of negotiations between many decision makers; more advanced 
systems of this type might involve a considerable use of mathematical programming 
techniques, such as optimization, game theory, decision theory, dynamic systems 
theory etc. 

Some authors [2] restrict the definition of decision support systems only to the third 
group while requiring that a decision support system should contain a model of decision 
support. Although the systems described in this paper belong precisely to  this category, 
we would like to draw the attention of the reader that it is a narrow sense of interpreting 
decision support systems. With this reservation, we will concentrate on decision support 
systems in the narrow sense. These can be further subdivided along various attributes 
into many classes: 
- systems that support operational planning of repetitive type versus systems that s u p  

port strategic planning, confronting essentially novel decision situations; 
- systems that concentrate on the choice between a number of discrete alternatives 

versus systems that admit a continuum of alternatives and help to generate interest- 
ing or favorable alternatives among this continuum; 

- systems that are essentially designed to be used by a single decision maker ("the 
user") versus systems that are designed to  help many decision makers simultane- 
ously; 

- specialized systems designed to help in a very specific decision situation versus 
adaptable system shells that can be adapted to  specific cases in a broader class of 
decision situations; 

- systems that use versus such that do not use explicitly mathematical programming 
techniques, such as optimization, in the generation or review of alternatives; 

- systems that assume (explicitly or implicitly) a specific framework of rationality of 
decisions followed by the user versus systems that try to accommodate a broader 
class of perceptions of rationality [3]. 

This last distinction was an important issue in the development of decision support 
systems described in this paper. 



1.2 Frameworks for rational decisions. 

When trying to support a human decision maker by a computerized decision support 
system, we must try to understand first how human decisions are made and how to help 
in making rational decisions. However, the rationality concept followed by the designer of 
the system might not be followed by the user; good decision support systems must be thus 
flexible, should not impose too stringent definitions of rationality and must allow for 
many possible perceptions of rationality by the user. 

The first distinction we should make is between the calculative or analytical rational- 
i ty  and the deliberative or holistic rationality, the "hard" approach and the "soft" 
approach. The most consistent argument for the "soft" or holistic approach was given by 
Dreyfus 141. He argues - and supports this argument by experimental evidence - that a 

. . 

decision maker is a learning individual whose way of making decisions depends on the 
level of expertise attained through learning. A novice needs calculative rationality; an 
experienced decision maker uses calculative rationality in the background, while concen- 
trating his attention on novel aspects of a decision situation. An expert does not need cal- 
culative rationality: in a known decision situation, he arrives at best decisions immedi- 
ately, by absorbing and intuitively processing all pertinent information (presumably in a 
parallel processing scheme, but in a way that is unknown until now). A master expert, 
while subconsciously making best decisions, continuously searches for "new angles" - for 
new aspects or perspectives, motivated by the disturbing feeling that not every thing is 
understood, the feeling that culminates and ends in the "aha" or heureka effect of perceiv- 
ing a new perspective. Thus, the holistic approach can be understood as the rationality of 
the culture of ezperts.  

However, even a master expert needs calculative decision support, either in order to 
simulate and learn about novel decision situations, or to fill in details of the decision in a 
repetitive situation; novice decision makers might need calculative decision support in 
order to learn and become experts. These needs must be taken into account when con- 
structing decision support systems that incorporate many elements of calculative rational- 
ity. 

There are several frameworks for calculative or analytical rationality; most of these, 
after deeper analysis, turn out to be culturally dependent (31. The utility mazimization 
framework has been long considered as expressing an universal rationality, as the basis of 
decision analysis; every other framework would be termed "not quite rational". The 
abstractive aspects of this framework are the most developed - see, e.g., (51, [6] - and a 
monograph of several volumes would be needed to summarize them. Without attempting 
to do so, three points should be stressed here. Firstly, utility maximization framework is 
not universal, is culturally dependent; it can be shown to express the rationality of a small 
entrepreneur facing an infinite market (31. Secondly, its descriptive powers are rather lim- 
ited; it is a good descriptive tool for representing mass economic behavior and a very poor 
tool for representing individual behavior. Thirdly, it is difficult to account for various lev- 
els of expertise and to support learning within this framework. 

Many types of decision support systems attempt to approximate the utility function 
of the user and then to suggest a decision alternative that maximizes this utility function. 
Most users find such decision support systems not convenient: it takes many experiments 
and questions to the decision maker to approximate his utility and, when the user finally 
learns some new information from the support system, his utility might change and the 
entire process must be repeated. Moreover, many users resent too detailed questions 
about their utility or just refuse to think in terms of utility maximization. However, a 
good decision support system should also support users that think in terms of utility 



maximization. For this purpose, the following principle of interactive reference point mu-  
imization and learning can be applied. 

Suppose the user is an expert that  can intuitively, holistically maximize his unstated 
utility function; assume, however, that  he has not full information about the available 
decision alternatives, their constraints and consequences, only some approximate mental 
model of them. By maximizing holistically his utility on this mental model, he can specify 
desirable consequences of the decision; we shall call these desirable consequences a refer- 
ence point in the outcome or objective space. The function of a good decision support sys- 
tem should be then not to  outguess the user about his utility function, but to take the 
reference point as a guideline and to  use more detailed information about the decision 
alternatives, their constraints and consequences in order to  provide the user with p r o p -  
sals of alternatives that  came close t o  or are even better than the reference point. 

This more detailed information must be included in the decision support system in 
the form of a substantive model of the decision situation, prepared beforehand by a group 
of analysts (in a sense, such a model constitutes a knowledge base for the system). Upon 
analysing the proposals generated in the system, the utility function -of the user might 
remain constant or change due to learning, but he certainly will know more about avail- 
able decision alternatives and their consequences. Thus, he is able to specify a new refer- 
ence point and to  continue interaction with the system. Once he has learned enough about 
available a1 ternatives and their consequences, the interactive process stops a t  the max- 
imum of his unstated utility function. If the user is not a master expert and might have 
difficulties with holistic optimization, the system should support him first in learning 
about decision alternatives, then in the optimization of his utility; but the latter is a 
secondary function of the system and can be performed also without explicit models of 
utility function while using the concept of reference points. 

The concept of reference point optimization has been proposed by Wierzbicki [7], [8], 
[9]; following this concept, the principle of interactive reference point optimization and 
learning was first applied by Kallio, Lewandowski and Orchard-Hays [lo] and then lead to 
the development of an  entire family of decision support systems called DIDAS. However, 
before describing these systems in more detail, we must discuss shortly other frameworks 
of calculative rationality. 

A concept similar or practically equivalent to  the reference point is that  of aspiration 
levels proposed over twenty years ago in the satisficing rationality framework by Simon 
[ll],  [12] and by many others that  followed the behavioral criticism of the normative deci- 
sion theory based on utility maximization. This framework started with the empirical 
observation that  people do form adaptive aspiration levels by learning and use these 
aspirations to  guide their decisions; very often, they cease to  optimize upon reaching out- 
comes consistent with aspirations and thus make satisficing decisions. However, when 
building a rationale for such observed behavior, this framework postulated that people 
cannot maximize because of three reasons: the cost of computing optimal solutions in 
complex situations; the uncertainty of decision outcomes that  makes most complex optim- 
izations too difficult; and the complexity of decision situations in large industrial and 
administrative organizations that  induces the decision makers to follow some well esta- 
blished decision rules tha t  can be behaviorally observed and often coincide with satisficing 
decision making. This discussion whether and in what circumstances people could optirn- 
ize substantiated the term bounded rationality (which implies misleadingly that this is 
somewhat less than full rationality) applied to the satisficing behavior and drown atten- 
tion away from the essential points of learning and forming aspiration levels. 



Meanwhile, two of the reasons for not optimizing quoted above have lost their 
relevance. The development of computers and computational methods of optimization, 
including stochastic optimization techniques, has considerably decreased the cost and 
increased the possibilities of calculative optimization; moreover, the empirical research on 
holistic rationality indicates that expert decision makers can easily determine best solu- 
tions in very complex situations even if they do not use calculative optimization. The 
third reason, supported by empirical observations, remains valid: the satisficing rational- 
i ty is typical for the culture of big industrial and administrative organizations (see also 
[13]). However, it can today be differently interpreted: the appropriate question seems to 
be not whether people could, but whether they should mazimize. 

Any intelligent man, after some quarrels with his wife, learns that maximization is 
not always the best norm of behavior; children learn best from conflicts among themselves 
that cooperative behavior is socially desirable and that they must restrict natural tenden- 
cies to maximization in certain situations. In any non-trivial game with the number of 
participants less than infinity, a cooperative outcome is typically much better for all par- 
ticipants than an outcome resulting from individual maximization. This situation is called 
a social trap and motivated much research that recently gave results of paradigm-shifting 
importance [14], [15] : we can speak about a perspective of evolutionary rationality, where 
people develop - through social evolution - rules of cooperative behavior that involve fore- 
going short-term maximization of gains. 

When trying to  incorporate the lessons from the perspective of evolutionary rational- 
ity into decision support systems, another question must be raised: in which situations 
should we stop maximizing upon reaching aspiration levels? We should stop maximizing 
for good additional reasons, such as avoiding social traps or conflict escalation, but if 
these reasons are not incorporated into the substantive model of the decision situation, 
the question about foregoing maximization should be answered by the decision maker, not 
by the decision support system. This constitutes a drawback of many decision support 
systems based on goal programming techniques [16], [17] that impose on the user the 
unmodified satisficing rationality and stop optimization upon reaching given aspirations, 
called goals in this case. 

When trying to  modify goal programming techniques and strictly satisficing 
rationality to account for above considerations, the principle of ideal organization [18] can 
be applied in construction of decision support systems. This principle states that a good 
decision support system should be similar to an ideal organization consisting of a boss 
(the user of the system) and the staff (the system), where the boss specifies goals (aspira- 
tions, reference points) and the staff tries to work out detailed plans how to reach these 
goals. If the goals are not attainable, the staff should inform the boss about this fact, but 
also should propose a detailed plan how to approach these goals as close as it is possible. 
If this goals are just attainable and cannot be improved, the staff should propose a plan 
how to reach them, without trying to outguess the boss about his utility function and pro- 
posing plans that lead to  different goals than stated by the boss. 

If, however, the goals could be improved, the staff should inform the boss about this 
fact and propose a plan that leads to some uniform improvement of all goals specified by 
the boss; if the boss wishes that some goals should not be further improved, he can always 
instruct the staff accordingly by stating that, for some selected objectives, the goals 
correspond not to maximized (or minimized) but stabilized variables, that is, the staff 
should try to  keep close to the goals for stabilized objectives without trying to  exceed 
them. By specifying all objectives as stabilized, the boss imposes strictly satisficing 
behavior on the staff; but the responsibility for doing so remains with him, not with the 



staff. 

The above principle of ideal organization can be easily combined with the principle 
of interactive reference point maximization and learning; jointly, they can be interpreted 
as a broader framework for rationality, called quasisatisficing framework [3], [19], that  
incorporates lessons from the holistic and the evolutionary rationality perspectives and 
can support decision makers adherence either to  utility maximization or satisficing. In 
fact, the quasisatisficing framework can also support decision makers following other per- 
spectives of rationality, such as the program- and goal-oriented planning and management 
framework. This framework, proposed by Glushkov [20] and Pospelov and Irikov [21], 
represents the culture of planning, but has been independently suggested later also by 
representatives of other cultures [22]. In this framework, rational action or program are 
obtained by specifying first primary objectives, called goals, and examining later how to  
shift constraints on secondary objectives, called means, in order to  attain the goals. In dis- 
tinction to the utility maximization or satisficing frameworks, the stress here is laid on 
the hierarchical arrangement of objectives; but the quasisatisficing framework can also 
handle hierarchical objectives. 

2. Quasisatisficing and achievement functions. 

The main concepts of the quasisatisficing framework, beside the principle of interac- 
tive reference point optimization and learning and the principle of ideal organization, are 
the use of reference points (aspiration levels, goals) as parameters by which the user 
specifies his requirements to  the decision support system (controls the generation and 
selection of alternatives in the system) as well as the maximization of an order-consistent 
achievement function as the main mechanism by which the decision support system 
responds to  the user requirements. Achievement functions have been used also in goal pro- 
gramming [17], however, without the requirement of order-consistency [19]. When follow- 
ing the principle of interactive reference point optimization and learning, an order- 
consistent achievement function can be interpreted as an ad hoc approximation of the 
utility function of the user [23]; if the user can holistically maximize his utility and 
interactively change reference points, there is no need for any more precise approximation 
of his utility function. When following the principle of ideal organization, an order- 
consistent achievement function can be interpreted as a proxy for utility or achievement 
function of the ideal staff (the decision support system) guided by aspirations specified by 
the boss (the user); this function is maximized in order to  obtain best response to  the 
requirements of the boss. 

Based upon above principles and starting with the system described in [ lo] ,  many 
decision support systems have been developed with the participation or cooperation of the 
authors of this paper [24], [25], [26], [27], [28], [29], [30], either in IIASA, or in several Pol- 
ish institutions cooperating with IIASA. The name DIDAS (Dynamic Interactive Decision 
Analysis and Support) has been first used by Grauer, Lewandowski and Wierzbicki in 
(311. Other systems based upon such principles are now being developed for implementa- 
tions on professional microcomputers; all these systems we broadly call here "systems of 
DIDAS family". However, also other researchers adopted or developed parallely some 
principles of quasisatisficing framework, represented in the works of Nakayama and 
Sawaragi [32], Sakawa [33], Gorecki et  al. [34], Steuer et  al. [35], Strubegger [36], Messner 
(371, Korhonen et  al. [38] and others; decision support systems of such type belong to  a 
broader family using quasisatisficing principles of rationality. 

Since the maximization of an order-consistent achievement function is a specific 
feature of systems of DIDAS family, we review here shortly the theory of such functions. 



We consider first the basic case where the vector of decisions z€Rn,  the vector of 
objectives or outcomes of decisions q€RP, and the substantive model of decision situation 
has the form of a set of admissible decisions XocRn - assumed to be compact - together 
with an outcome mapping, that is, a vector-valued objective function f : Xo -+ RP - 
assumed to be continuous, hence the set of attainable outcomes Qo = f(Xo) be also com- 
pact; further modification~ of this basic case will be considered later. If the decision maker 
wants to maximize all outcomes, then the partial ordering of the outcome space is implied 
by the positive cone D=RI; - which means that the inequality q1>q"eq ' -g"~D is under- 
stood in the sense of simple inequalities for each component of vectors q', q". 

However, the cone D=R$ has nonempty interior; a more general case is when the 
decision maker would like to maximize only first p' outcomes, minimize next outcomes 
from p l+ l  until p", while the last outcomes from p"+1 until p are to be kept close to 
some given aspiration levels, that is, maximized below these levels and minimized above 
these levels; such objectives or outcomes are called (softly) stabilized. In this case, we 
redefine the positive cone t o  the form 

This cone D does not have an interior if p"<p. Since the cone D is closed and the set Qo 
is compact, there exist D-efficient (D-optimal) elements of Qo , see [18]. These are such 
elements 4€Q0 that ~ ~ n ( t + D ) = o  where D=D\{O); if pl=p andD=RI;, then D- 
efficient elements are called also Pareto-optimal (in other words - such that no outcome 
can be improved without deteriorating some other outcome). The corresponding decisions 
?EXo such that 4=j(z) are called D-efficient or Pareto-optimal as well. Although the 
decision maker is usually interested both in efficient decisions and outcomes, for theoreti- 
cal considerations it is sufficient to analyse only the set of all D-efficient outcomes 

Several other concepts of efficiency are also important. The weakly D-efficient ele- 
ments belong to the set 

In other words, these are such elements that cannot be improved in all outcomes 
jointly . Although important for theoretical considerations, weakly D-efficient elements 
are not useful in practical decision support, since there might be too many of them: if 
p"<p and the interior of D is empty, then all elements of Qo are weakly D-efficient. 
Another concept is that of properly D-efficient elements; these are such D-efficient ele- 
ments that have bounded trade-off coefficients that indicate how much one of the objec- 
tives must be deteriorated in order to improve another one by a unit (for various almost 
equivalent definitions of such elements see [39]). In applications, it is more useful to  
further restrict the concept of proper efficiency and consider only such outcomes that have 
trade-off coefficients bounded by some a priori number. This corresponds to  the concept of 
properly D-efficient elements with (a priori) bound c or D, -efficient elements that belong 
to the set 

where c>O is a given number [18]. D, -efficient elements have trade-off coefficients 
bounded approximately by c and 1/c . For computational and practical purposes, an 



efficient outcome with trade-off coefficients very close to  zero or to  infinity cannot be dis- 
tinguished from weakly efficient outcomes; hence, we shall concentrate in the sequel on 
properly efficient elements with bound E .  

When trying to  characterize mathematically various types of efficiency with help of 
achievement functions, two basic concepts are needed: this of monotonicity, essential for 
sufficient conditions of efficiency, and that  of separation of sets, essential for necessary 
conditions of efficiency. The role of monotonicity in vector optimization is explained by 
the following basic theorem (191: 

Theorem 1. Let a function ~ : Q ~ + R '  be strongly monotone, that  is, let ql>q" 
(equivalent to  q ' ~ q " + f i )  imply r(ql)>r(q"). Then each maximal point of this function is 
efficient. Let this function be strictly monotone, that  is, let ql>>q" (equivalent to  
ql€q"+intD) imply r(ql)>r(q"). Then each maximal point of this function is weakly 
efficient. Let this function be €-strongly monotone, that  is, let q '~q"+f i ,  imply 
r(ql)>r(q"). Then each maximal point of this function is properly efficient with bound c. 

The second concept, that  of separation of sets, is often used when deriving necessary 
conditions of scalar or vector optimality. We say that  a function ~ : R P + R '  strongly 
separates two disjoint sets Q1 and Q2 in RP, if there is such PER' that  r (q)<P for all 
qEQl and r (q )>P  for all qEQ2. Since the definition of efficiency (2) requires that  the sets 
Qo and q+fi are disjoint (similarly for the definitions (3) or (4)), they could be separated 
by a function. If Qo is convex, these sets can be separated by a linear function. If Qo is 
not convex, the sets Qo and g'+fi could be still separated a t  an efficient point @, but we 
need for this a nonlinear function with level sets { ~ E R P :  r(q)>P) which would closely 
approximate the cone g'+fi. There might be many such functions; their desirable proper- 
ties are summarized in the definitions of order-consistent achievement functions [19] of 
two types: order-representing functions (which, however, characterize weak efficiency and 
will not be considered here) and order- approzimating functions. The latter type is defined 
as follows: 

Let A denote a subset of RP, containing Q~ but not otherwise restricted, and let 
~ E A  denote reference points or aspiration levels that  might be attainable or not (we 
assume that  the decision maker cannot a priori be certain whether q€QO or qfQo). 
Order-approximating achievement functions are such continuous functions s:  Qox A -+ R' 
that  s(q,q) is strongly monotone (see Theorem 1) as a function of q€QO for any QEA and, 
moreover, possesses the following property of order approximation: 

with some small ~ 2 Q 0 ;  together with the continuity requirement, the requirement (5) 
implies that  s(q,q)=O for all q=q. 

If pl=p and D=R$ , then a simple example of an order-approximating function is: 

with A=RP, some positive weighting coefficients ai (typically, we take ai=l/si, where s ,  
are some scaling units for objectives, either defined by the user or determined automati- 
cally in the system, see further comments) and some ap+'>O that  is sufficiently small as 
compared to  c and large as compared to F (typically, we take ' ~ ~ + ~ = c / p ) .  This function is 
not only strongly monotone, but also 6strongly monotone. For the more complicated 
form (1) of the positive cone D, function (6) modifies to: 



where the functions zi(qi,qi) are defined by: 

with 

z,!(q,- q,)/s,!, %;=(qi-qi)/s; (9) 

The coefficients s,, s,!, s; are scaling units for all objectives, either defined by the user (in 
which case s,!=s,!', the user does not need to define two scaling coefficients for a stabilized 
objective outcome) or determined automatically in the system; again, we use here 
a p + l = E l ~ .  

Since the definition of an order-approximating achievement function requires that 
only its zero-level set should closely approximate the positive cone, many other forms of 
such functions are possible. For example, in some DIDAS systems the following function 
has been used: 

where the functions z;(q,,q,) are defined as in (8), (9) and the coefficient p 2 l  indicates to 
what extent the minimal overachievement is substituted by the sum of overachievements 
in the level sets for positive values of this function. 

At any point rj that is properly efficient with bound E,  an order-approximating func- 
tion with p=rj strictly separates the sets and Qo. This and related properties of 
order-approximating functions result in the following characterization of D, -efficiency 
[19] : 

Theorem 2. Let s(q, q) be an order-approximating function with E> €20.  Then, for 
any ~ E A  , each point that maximizes s(q,p) over q~ Qo is efficient; if rj is properly efficient 
with bound E (D,-optimal), then the maximum of s(q,q) with T=rj over q€QO is attained 
at rj and is equal zero. Let, in addition, s(q,q) be Fstrongly monotone with respect to q; 
then each point that maximizes s(q,q) over q€Qo is properly efficient with bound E. 

The essential difference between order-consistent achievement functions and other 
types of achievement functions, used in goal programming and based on norms, is that the 
aspiration or reference point needs not to be unattainable in order to achieve efficiency; 
this is because order-consistent achievement functions remain monotone, even if the refer- 
ence point crosses the efficient boundary of Qo . Somewhat simplifying, we can say that 
an order-consistent achievement function switches automatically from norm minimization 
to maximization when the aspiration point q crosses the efficient boundary and becomes 
attainable. On the other hand, the characterization by Theorem 2 is obtained without any 
convexity assumptions, because the order-approximating property of achievement func- 
tions results in a constructive though nonlinear separation of sets Qo and rj+D even in 
nonconvex cases. In fact, the set Q0 needs not to be even connected and the order- 
consistent achievement functions can be as well used to characterize solutions of 



multiobjective discrete or mixed programming. Theorem 2 is valid even if the decision 
outcomes are elements of infinite-dimensional complete normed (Banach) spaces, as in 
many cases of multiobjective dynamic trajectory optimization - see [18]. 

Order-approximating achievement functions have several interpretations. From the 
point of view of utility maximization, achievement function can be interpreted as an ad 
hoc approximation of the utility function of the user, based on the information that  he 
conveyed to the decision support system: the partial preordering of the objective space 
(which objectives are to  be maximized, which minimized and which stabilized) and the 
aspiration levels t for all objectives; if more information is already available, this ad hoc 
approximation can be improved - see further comments. The coefficient E can be then 
interpreted as the weight that  the user attaches to  correcting the underachievement in the 
worst outcome by average overachievements in other outcomes. However, such an ad hoc 
approximation is not a classical utility function, since it is context-dependent: it explicitly 
depends on the aspiration levels t that  summarize the experience of the user and change 
due to  his learning during interaction, thus changing the approximation of the utility 
function. On the other hand, the achievement function (6) can have cardinal form: if 
a i= l / s i ,  then function (6) is independent on affine transformations of outcome space; the 
same applies to  function (7). 

When following the principle of an ideal organization, an order-approximating 
achievement function can be interpreted as the utility function of the staff that  is aware 
of aspirations set by the boss; the maximum of the achievement function is then positive, 
if the staff can propose a solution that  exceeds the aspiration levels, it is negative, if the 
staff cannot propose a solution that  satisfies aspiration levels and only comes as closely as 
possible to  them, and it is zero (Theorem 2) if the staff finds an efficient solution that  pro- 
duces outcomes strictly corresponding to  the aspiration levels. 

From the point of view of strictly satisficing rationality, one should take function (7) 
and set pl=p"=O, that  is, let all outcomes be softly stabilized; this is actually done in goal 
programming approaches. From the point of view of program- and goal oriented planning, 
one should either assume that  the primary objectives are constrained to  be equal to  their 
corresponding aspiration levels, thereby modifying the set of admissible decisions Xo 
(such objectives or outcomes are called guided or strictly stabilized), or assign much 
greater weights to  primary objectives than to  secondary objectives. We see that  the 
quasisatisficing approach can be used by decision makers following either of these three 
frameworks of rationality. 

Further mathematical properties of order-approximating achievement functions have 
been also investigated; for example, it can be shown that order-approximating functions 
give the strongest characterization of efficient solutions for cases where the set Qo is of an 
arbitrary, a priori unknown shape, which is a reasonable assumption in most applied cases 
1181. Another important property of an order-approximating function of the form (6) or 
(7) is tha t  its maximal point t j depends Lipschitz-continuously on the aspiration point p 
in all cases when the maximum of this function is unique; thus, the user of the decision 
support system can continuously influence his selection of efficient outcomes by suitably 
modifying the aspiration or reference point. 

Computationally, the maximization of an order-approximating achievement function 
is either simple - if Qo is a convex polyhedral set, then the problem of maximizing (6), 
(7) or (10) can be rewritten as a linear programming problem - or more complicated for 
nonlinear or nonconvex problems. In such cases, we must either represent (6), (7) or (10) 
by additional constraints, or apply nondifferentiable optimization techniques, since the 
definition of order-approximating achievement functions imply their nondifferentiability 



at  q=q. Often, it is advisable to use smooth order-approximating functions that give 
weaker necessary conditions of efficiency than in Theorem 2, but are better suited for 
computational applications - see further comments. 

3. Phases of decision eupport in systems of DID AS family. 

A typical procedure of working with a system of DIDAS family consists of several 
phases: 

A. The definition and edition of a substantive model of analysed process and decision 
situation by analyst(s); 

B. The definition of the multiobjective decision problem using the substantive model, 
by the final user (the decision maker) together with analyst(s); 

C. The initial analysis of the multiobjective decision problem, resulting in determining 
bounds on efficient outcomes and, possibly, a neutral efficient solution and outcome, 
by the user helped by the system; 

D. The main phase of interactive, learning review of efficient solutions and outcomes for 
the multiobjective decision problem, by the user helped by the system; 

E. An additional phase of sensitivity analysis (typically, helpful to  the user) and/or 
convergence to  the most preferred solution (typically, helpful only to users that 
adhere to utility maximization framework). 

These phases have been implemented differently in various systems of DIDAS fam- 
ily; however, we describe them here comprehensively. 

Phase A: Model definition and edition. 

There are four basic classes of substantive models that have been used in various 
systems of DIDAS family: multiobjective linear programming models, multiobjective 
dynamic linear programming models, multiobjective nonlinear programming models and 
multiobjective dynamic nonlinear programming models. First DIDAS systems have not 
used any specific standards for these models; however, our accumulated experience has 
shown that such standards are useful and that they differ from typical theoretical formu- 
lations of such models (although they can be reformulated back to the typical theoretical 
form, but such reformulation should not bother the user). 

A substantive model of multiobjective linear programming type consists of the 
specification of vectors of n decision variables z € R n  and of m outcome variables y € R m  
together with linear model equations defining the relations between the decision variables 
and the outcome variables and with model bounds defining the lower and upper bounds 
for all decision and outcome variables: 

where A is a m x n  matrix of coefficients. Between outcome variables, some might be 
chosen as guided outcomes, corresponding to  equality constraints; denote these variables 
by ~ C E R ~ ' C R ~  and the constraining value for them by bC to write the additional con- 
straints in the form: 

where A is the corresponding submatrix of A .  Some other outcome variables can be 
chosen as optimized objectives or objective outcomes; actually, this is done in the phase B 
together with the specification whether they should be maximized, minimized or softly 
stabilized, but we present them here for the completeness of the model description. Some 



of the objective variables might be originally not represented as outcomes of the model, 
but we can always add them by modifying this model; in any case, the corresponding 
objective equations in linear models have the form: 

where C is another submatrix of A. Thus, the set of attainable objective outcomes is 
Qo=CXo and the set of admissible decisions Xo is defined by: 

By introducing proxy variables and constraints, the problem of maximizing func- 
tions (7) or (10) over outcomes (13) and admissible decisions (14) can be equivalently 
rewritten to a parametric linear programming problem, with the leading parameter q; 
thus, in phases C, D, E, a linear programming algorithm called solver is applied. In initial 
versions of DIDAS systems for linear programming models, the typical MPS format for 
such models has been used when editing them in the computer; recent versions of DIDAS 
systems include also a user-friendly format of a spreadsheet. 

A useful standard of defining a substantive model of multiobjective linear dynamic 
programming type is as follows. The model is defined on T+ l  discrete time periods 
t ,  O<t< T. The decision variable z ,  called in this case control trajectory, is an entire 
sequence of decisions: 

z = {z[O] ,... z[ t ]  ,... x [ T - I ] ) E R ~ ~ ,  z[t]€Rn (154  

and a special type of outcome variables, called state variables w [ t ] ~  R ~ '  is also considered. 
The entire sequence of state variables or state trajectory: 

is actually one time period longer than z; the initial state w[O] must be specified as given 
data. The fundamental equations of a substantive dynamic model have the form of state 
equations: 

The model outcome equations have then the form: 

and define the sequence of outcome variables or outcome trajectory: 

Y={Y[O],...Y [ ~ I , . . . Y [ T - : ~ . ] , Y [ T I ~ ~ R  mM*(T+l) 
(154 

The decision, state and outcome variables can all have their corresponding lower and 
upper bounds (each understood as an appropriate sequence of bounds): 

z ~ o < z ~ z u p ,  wlO<w<w"p, y l O < y < y u p  ( 1 6 ~ )  

The matrices A[t], B[t], C[t[], D[t] of appropriate dimensions can be dependent or 
independent on time t ;  in the latter case, the model is called time-invariant. This distinc- 
tion is important in multiobjective analysis of such models only in the sense of model edi- 
tion: time-invariant models can be defined easier by automatic, repetitive edition of model 
equations and bounds for subsequent time periods. 



Between the outcomes, some might be chosen to be equality constrained or guided 
along a given trajectory: 

The optimized (maximized, minimized or stabilized) objective outcomes of such 
model can be actually selected in phase B among both state variables and outcome vari- 
ables (or even decision variables) of this model; in any case, they form an entire objective 
trajectory: 

9={9[o],...9[t],...9[T-l],~[T])~R P * ( ~ + ' ) ,  q[t]€RP (18) 

If we assume that the first components qi(t] for lL i<p l  are to be maximized, next 
for pl+l<i<p" are to  be minimized, last for pl1+l<i<p are to  be stabilized (actually, the 
user in the phase B does not need to  follow this order - he simply defines what to do with 
subsequent objectives), then the achievement function s(q,q) - for example, originally 
given by (10) - in such a case takes the form: 

where the functions z[t]=z( q[t] , d t ] )  are defined by: 

where 

~ ( [ t ] = ( q ~ [ t ] - g [ t ] ) / ~ f [ t ]  , ~l ) [ t ]=(~ i I t ] -q i [ t I ) /~ ! [ t I ,  

The user does not need to  define time-varying scaling units si[t] nor two different 
scaling units s,![t],sj'[t] for a stabilized objective: the time-dependence of scaling units and 
separate definitions of s([t],s('[t] are needed only in the case of automatic scaling in 
further phases. 

A useful standard for a substantive model of multiobjective nonlinear programming 
type consists of the specification of vectors of n decision variables z€Rn and of m out- 
come variables ycRm together with nonlinear model equations defining the relations 
between the decision variables and the outcome variables and with model bounds defining 
the lower and upper bounds for all decision and outcome variables: 

y=g(z); z'O<z<zup; y'0< y l  yup  (22) 

where g:Rn+Rm is a (differentiable) function. In fact, the user or the analyst does not 
have to  define the function g explicitly; he can also define it recursively, that is, determine 
some further components of this vector-valued function as functions of formerly defined 
components. Between outcome variables, some might be chosen as guided outcomes 
corresponding to  equality constraints; denote these variables by ~ C E R " ' C R ~  and the 
constraining value for them by b to  write the additional constraints in the form: 

yC=gC(z)=bC; yc~ 'O<bc< - - yc~"p  P3 )  

where gC is a function composed of corresponding components of g. In phase B, some 



other outcome variables can be also chosen as optimized objectives or objective outcomes. 
The corresponding objective equations have the form: 

where j is also composed of corresponding components of g .  Thus, the set of attainable 
objective outcomes is Qo= j(Xo) where the set of admissible decisions Xo is defined by: 

Ln further phases of working with nonlinear models, an order-approximating achieve- 
ment function must be maximized; for this purpose, a specially developed nonlinear 
optimization algorithm called solver is used. Since this maximization is performed repeti- 
tively, at least once for each interaction with the user that changes the parameter q, there 
are special requirements for the solver that distinguish this algorithm from typical non- 
linear optimization algorithms: it should be robust, adaptable and efficient, that is, it 
should compute reasonably fast an optimal solution for optimization problems of a broad 
class (for various differentiable functions g(x) and f(x)) without requiring from the user 
that he adjusts special parameters of the algorithm in order to obtain a solution. The 
experience in applying nonlinear optimization algorithms in decision support systems 1261, 
1301 has led to  the choice of an algorithm based on penalty shifting technique and pro- 
jected conjugate gradient method. Since a penalty shifting technique anyway approxi- 
mates nonlinear constraints by penalty terms, an appropriate form of an achievement 
function that differentiably approximates function (7) has been also developed and is 
actually used. This smooth order-approzimating achievement function has the form: 

where w,, wit, will are functions of q;, q; : 

and the dependence on q, results from a special definition of the scaling units that are 
determined by: 

where r; are additional weighting coefficients that might be defined by the user (however, 



the system does not need them and works also well if they are set by their default values 
r ,=l) .  In the initial analysis phase, the values q,,maz and Q , , ~ , , ,  are set to  the upper and 
lower bounds specified by the user for the corresponding outcome variables; later, they are 
modified, see further comments. The parameter a 1 2  is responsible for the approximation 
of the function (7) by the function (26): if a+w and e+0, then these functions converge 
to  each other (if r i=l  and while taking into account the specific definition of scaling 
coefficients in (26-28)). However, the use of too large parameters results in badly condi- 
tioned problems when maximizing function (26), hence a = 4 -  - - 8  are suggested to be used. 

The function (26) must be maximized with q=f(z) over z€Xo , while Xo is 
determined by simple bounds zlo<z<zUp as well as by inequality constraints 
ylo l g ( z )  s y u p  and equality constraints gC(z)=b . In the shifted penalty technique, the 
following function is minimized instead: 

where c', <", 6 are penalty coefficients and u', u", v are penalty shifts. This function is 
minimized over z such that  z l o < z < z u ~  while applying conjugate gradient directions, 
projected on these simple bounds if one of the bounds becomes active. When a minimum 
of this penalty function with given penalty coefficients and given penalty shifts (the latter 
are initially equal zero) is found, the violations of all outcome constraints are computed, 
the penalty shifts and coefficients are modified according t o  the shifted-increased penalty 
technique 1401 and the penalty function is minimized again until the violations of outcome 
constraints are admissibly small. The results are then equivalent to  the outcomes 
obtained by maximizing the achievement function (26) under all constraints. This tech- 
nique is according to  our experience one of the most robust nonlinear optimization 
methods. 

We omit here the description of the useful standard for defining substantive models of 
dynamic nonlinear programming type that  can be obtained by combining the previous 
cases. 

Phase B. The definition of the multiobjective decision analysis problem. 
For a given substantive model, the user can define various problems of multiobjec- 

tive analysis by suitably choosing maximized, minimized, stabilized and guided outcomes. 
In this phase, he can also define which outcomes and decisions should be displayed to  him 
additionally during interaction with the system (such additional variables are called float- 
ing outcomes). Since the substantive model is typically prepared by an analyst(s) in the 
phase A and further phases starting with the phase B must be performed by the final user, 
an essential aspect of all systems of DIDAS family is the user-friendliness of phase B and 
further phases; this issue has been variously resolved in consequent variants of DIDAS 
systems. In all these variants, however, the formulation of the achievement function and 
its optimization is prepared automatically by the system once phase B is completed. 

Before the initial analysis phase, the user should also define some reasonable lower 



and upper bounds for each optimized (maximized, minimized or stabilized) variable, 
which results in an automatic definition of reasonable scaling units s, for these variables. 
In further phases of analysis, these scaling units si can be further adjusted; this, however, 
requires an approximation of bounds on efficient solutions. 

Phase C. Initial analysis of the multiobjec tive problem. 

Once the multiobjective problem is defined, bounds on efficient solutions can be 
approximated either automatically or on request of the user. 

The 'upper' bound for efficient solutions could be theoretically obtained through 
maximizing each objective separately (or minimizing, in case of minimized objectives; in 
the case of stabilized objectives, the user should know their entire attainable range, hence 
they should be both maximized and minimized). Jointly, the results of such optimization 
form a point that approximates from 'above' the set of efficient outcomes Q, but this 
point almost never (except in degenerate cases) is in itself an attainable outcome; there- 
fore, it is called the utopia point. 

However, this way of computing the 'upper' bound for efficient outcomes is not 
always practical; many systems of DIDAS family use a different way of estimating the 
utopia point. This way consists in subsequent maximizations of the achievement function 
s(q,q) with suitably selected reference points ?j. If an objective should be maximized and 
its maximal value must be estimated, then the corresponding component of the reference 
point should be very high, while the components of this point for all other maximized 
objectives should be very low (for minimized objectives, they should be very high; stabil- 
ized objectives must be considered as floating in this case, that is, should not enter the 
achievement function). If an objective should be minimized and its minimal value must be 
estimated, the corresponding component of the reference point should be very low, while 
other components of this point are treated as in the previous case. If an objective should 
be stabilized and both its maximal and minimal values must be estimated, then the 
achievement function should be maximized twice, first time as if for a maximized objec- 
tive and the second time as if for a minimized one. Thus, the entire number of optimiza- 
tion runs in utopia point computations is pM+2(p-p"). This is especially important in 
dynamic cases, see further comments. It can be shown that this procedure gives a very 
good approximation of the utopia point gut' in static cases, whereas the precise meaning 
of very high reference component should be interpreted as the upper bound for the objec- 
tive minus, say, 0.1% of the distance between the lower and the upper bound, while the 
meaning of very low is the lower bound plus 0.1% of the distance between the upper and 
the lower bound. 

During all these computations, the 'lower' bound for efficient outcomes can be also 
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim- 
izations for maximized objectives and the highest ones for minimized objectives (there is 
no need to record them for stabilized objectives, where the entire attainable range is any- 
way estimated). However, such a procedure results in the accurate, tight 'lower' bound for 
efficient outcomes - called nadir point inad - only if p"=2; for larger numbers of maxim- 
ized and minimized objectives, this procedure can give misleading results, while an accu- 
rate computation of the nadir point becomes a very cumbersome computational task. 

Therefore, some systems of DIDAS family offer an option of improving the estima- 
tion of the nadir point in such cases. This option consists in additional p" maximization 
runs for achievement function s(q,q) with reference points that are very low, if the 
objective in question should be maximized, very high for other maximized objectives and 
very low for other minimized objectives, while stabilized objectives should be considered 



as floating; if the objective in question should be minimized, the corresponding reference 
component should be very high, while other reference components should be treated as in 
the previous case. By recording the lowest efficient outcomes that  occur in subsequent 
optimizations for maximized objectives (and are lower than the previous estimation of 
nadir component) and the highest ones for minimized objectives (higher that  the previous 
estimation of nadir component), a better estimation inad of the nadir point is obtained. 

For dynamic models, the number of objectives becomes formally very high which 
would imply a very large number of optimization runs - (p1'+2(p-pM))*(T+l) - when 
estimating the utopia point; however, the user is confronted anyway with p objective tra- 
jectories which he can evaluate by 'Gestalt'. Therefore, it is important to obtain approxi- 
mate bounds on entire trajectories. This can be obtained by pU+2(p-p") optimization 
runs organized as in the static case, with correspondingly 'very high' and 'very low' refer- 
ence or aspiration trajectories. 

Once the approximate bounds iUiO and inad are computed and known t o  the user, 
they can be utilized in various ways. One way consists in computing a neutral efficient 
solution, with outcomes situated approximately 'in the middle' of the efficient set. For 
this purpose, the reference point q is situated a t  the utopia point iufo (only for maximized 
or minimized outcomes; for stabilized outcomes, the user-supplied reference component q, 
must be included here) and the scaling units are determined by: 

for maximized or minimized outcomes, and: 

for stabilized outcomes, while the components of the utopia and the nadir points are 
interpreted respectively as the maximal and the minimal value of such an objective; the 
corrections by O.Ol*(iyfo-ilad) ensures that  the scaling coefficients remain positive, if 
the user selects the reference components for stabilized outcomes in the range 
iyfO<~<irad (if he does not, the system automatically projects the reference component 
on this range; the user-supplied weighting coefficients are automatically set to  their 
default values r,=l when computing a neutral efficient outcome). By maximizing the 
achievement function s(q,q) with such data,  the neutral efficient solution is obtained and 
can be utilized by the user as a starting point for further interactive analysis of efficient 
solutions. 

Once the utopia and nadir point are estimated and, optionally, a neutral solution 
computed and communicated to  the user, he has enough information about the ranges of 
outcomes in the problem t o  start  the main interactive analysis phase. 

Phase D. I n t e r a c t i v e  review of efficient solut ions  and outcomes .  

In this phase, the user controls - by changing reference or aspiration points - the 
efficient solutions and outcomes computed for him in the system. It is assumed tha t  the 
user is interested only in efficient solutions and outcomes; if he wants t o  analyse outcomes 
that  are not efficient for the given definition of the problem, he must change this 
definition - for example, by putting more objectives in the stabilized or guided category - 
which, however, necessitates a repetition of phases B, C. 

In the interactive analysis phase, an important consideration is that  the user should 



be able t o  easily influence the selection of the efficient outcomes i by changing the refer- 
ence point q in the maximized achievement function s(q,q). It  can be shown [19] that  best 
suited for the purpose is the choice of scaling units determined by the difference between 
the slightly displaced utopia point and the current reference point: 

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are 
determined somewhat differently than in (30b): 

It is assumed now that  the user selects the reference components in the range 

if ad< P;< for maximized and stabilized outcomes or iyto< q,< ifad for minimized out- 
comes (if he does not, the system automatically projects the reference component on these 
ranges). The weighting coefficients ri might be used to  further influence the selection of 
efficient outcomes, but the automatic definition of scaling units is sufficient for this pur- 
pose even if r i=l  by default; thus, the user needs not be bothered by their definition. The 
interpretation of the above way of setting scaling units is tha t  the user attaches implicitly 
more importance t o  reaching a reference component Ti if he places it close to  the known 
utopia component; in such a case, the corresponding scaling unit becomes smaller and the 
corresponding objective component is weighted stronger in the achievement function 
s(q,q). Thus, this way of scaling relative to utopia-reference difference is taking into 
account the implicit information given by the user in the relative position of the reference 
point. This way of scaling, used also in [32], (351, is implemented only in recent versions of 
systems of DIDAS family, especially in versions for nonlinear models. 

When the relative scaling is applied, the user can easily obtain - by suitably moving 
reference points - efficient outcomes that  are either situated close to  the neutral solution, 
in the middle of efficient outcome set go , or in some remote parts of the set go , say, 
close to  various extreme solutions. Typically, several experiments of computing such 
efficient outcomes give enough information for the user to select an actual decision - either 
some efficient decision suggested by the system, or even a different one, since even the 
best substantive model cannot encompass all aspects of a decision situation. However, 
there might be some cases in which the user would like t o  receive further support - either 
in analysing the sensitivity of a selected efficient outcome, or in converging to  some best 
preferred solution and outcome. 

Phase E. Sens i t iv i ty  ana lys i s  and forced convergence.  

For analysing the sensitivity of an efficient solution t o  changes in the proportions of 
outcomes, a multidimensional scan of efficient solutions is implemented in some systems of 
DIDAS family. This operation consists in selecting an efficient outcome, accepting it as  a 
base qdm for reference points, and performing p" additional optimization runs with the 
reference points determined by: 



where /I is a coefficient determined by the user, -1<!?<1; if the relative scaling is used 
and the reference components determined by (32) are outside the range (yad , iyad, they 
are projected automatically on this range. The reference components for stabilized out- 
comes are not perturbed in this operation (if the user wishes to  perturb them, he might 
include them, say, in the maximized category). The efficient outcomes resulting from the 
maximization of the achievement function s(q,q) with such perturbed reference points are 
typically also perturbed mostly along their subsequent components, although other their 
components might also change. 

For analysing the sensitivity of an efficient solution when moving along a direction 
in the outcome space - and also as a help in converging t o  a most preferred solution - a 
di rec t iona l  s c a n  of efficient outcomes can be implemented in systems of DIDAS family. 
This operation consists again in selecting an efficient outcome, accepting i t  as a base gas 
for reference points, selecting another reference point q, and performing a user-specified 
number K of additional optimizations with reference points determined by: 

The efficient solutions ((k) obtained through maximizing the achievement function 
s(q,q(k)) with such reference points constitute a cut through the efficient set go when 

moving approximately in the direction q - e m .  If the user selects one of these efficient 
solutions, accepts as a new eas and performs next directional scans along some new direc- 
tions of improvement, he can converge eventually to  his most preferred solution - see 1381. 
Even if he does not wish the help in such convergence, directional scans can give him 
valuable information. 

Another possible way of helping in convergence to the most preferred solution is 
choosing reference points as in (33) but using a harmonically decreasing sequence of 
coefficients (such as l / j ,  where j is the iteration number) instead of user-selected 
coefficients k/K. This results in convergence even if the user makes stochastic errors in 
determining next directions of improvement of reference points, or even if he is not sure 
about his preferences and learns about them during this analysis, see (411. Such a conver- 
gence - called here forced convergence - is rather slow and, after initial experiments, has 
not been yet implemented in systems of DIDAS family. 

4. Review of  v a r i o u s  implementations of s y s t e m s  of DIDAS family .  

There exist a number of various implementations of systems of DIDAS family. An 
early, prototype linear version was developed by Kalio, Lewandowski and Orchard-Hays 
[lo]. This version utilized professional LP package SESAME available only on the IBM- 
370 mainframe computers, therefore it was not transferable. The user interface was rather 
poor and the usage of the system was limited to its authors and their collaborators. 

The second, also linear, version of DIDAS family systems was developed by Lewan- 
dowski (421. It was designed as pre- and postprocessor programs to  a commercial LP pack- 
age with standard MPSX input and output. Due to  such design, it was easily transferable 
and many practical problems were solved using it on various computers. The main draw- 
back of this system was that  the interface between pre- and postprocessor and a the LP 
solver was based on reading and writing disk files, which was very time consuming for 
larger problems . An interaction with the user was very simple but inconvenient because 
of long time responses of the system transferring large amount of data. 

The design goal of the next version of DIDAS was to  eliminate, if possible, disk 
transfers and changes of da ta  structures inside the system. It was done by Kreglewski and 



Lewandowski [26] as a interactive multicriteria extension of MINOS linear programming 
system [44]; the reference point concepts were implemented accessing MINOS internal 
data structures. The user interface was redesigned and many new options added. How- 
ever, the portability problems arose again: MINOS is not easily transferable. 

The reference point approach was explored also by many others collaborating 
authors. A DIDAS/N system developed by Grauer and Kaden [43] was the first published 
nonlinear version of such a system. It was based on MINOS/Augmented [45] nonlinear 
programming system, an extended version of linear MINOS. Unfortunately, this solver is 
not robust and efficient enough for realistic nonlinear programming problems. Moreover, 
the user interface in the DIDAS/N system was rather complicated, hence applications of 
this system were rather limited. Later, Kaden and Kreglewski [30] developed another ver- 
sion of nonlinear DIDAS system. Earlier versions of DIDAS were also adapted for special 
purposes by Strubegger and Messner [36], [37]. 

Lewandowski and Kreglewski [46] developed another, general purpose nonlinear ver- 
sion of DIDAS system. It was based on a solver from Modular System for Nonlinear Pro- 
gramming [47] and written completely in FORTRAN, hence easily transferable to arbi- 
trary computer. The user interface was reasonably simple, but preparation of data for the 
system was not quite straightforward. 

The experiences of these developments led in 1985 to two new linear versions: 
DIDAS-MM and DIDAS-MZ. DIDAS-MM was a further development of the version with 
MINOS solver, with extended interactive features, special editor for dynamic linear 
models and graphic features. DIDAS-MZ is based on a linear programming solver from 
IMSL library which is widely accessible; therefore, DIDAS-MZ is much easier transferable. 

In 1986, a new generation of DIDAS family systems was initiated, designed for work 
on IBM-PC-XT and compatible computers. These are: IAC-DIDAS-L1 and -L2 as well as 
IAC-DIDAS-N, described in other papers of this volume. 

5. Applications of systems of DIDAS family. 
The first implementation [lo] of systems of DIDAS family was devoted to the appli- 

cation in forecasting and planning of the development of Finish forestry and forest indus- 
try sectors, based on a substantive model of linear dynamic type. Later, another version 
of DIDAS systems was applied [25] to planning of energy supply strategies, which led to  
other applications in the analysis of future energy- economy relations in Austria (361 and 
of future gas trade in Europe [37]. 

Parallely, applications to forecasting and planning agricultural production in Poland 
[29], to regional investment allocation in Hungary [49], to chemical industry planning (341 
have been initiated. A special version of linear dynamic DIDAS was adapted to flood con- 
trol problems [28]. A nonlinear version of DIDAS was first applied to issues of 
macroeconomic planning 1481; later applications of other nonlinear versions include prob- 
lems of environmental protection of ground water quality [30]. 

Further applications of DIDAS family systems are reported in other papers in this 
volume. 
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1.Introduction 

In the last three decades the theory and computational methods of linear program- 
ming developed into a powerful tool for analysing linear models of economic planning and 
control. Modern linear programming packages (see, e.g., [17],[19]) are capable of solving 
problems with thousands of variables and constraints. Still, linear programming as the 
area of research is far from being closed. On the one hand, the practice poses new large 
and complex problems which result from the tendency to  describe more and more complex 
objects of decision making by mathematical models. On the other hand, the trends in 
modern computer and information technology create a demand for user-friendly decision 
support systems with an intimate interaction between the decision maker and the com- 
puter. The computer is often just a personal computer and this implies very specific 
requirements from the optimization software involved in such systems: it should be capa- 
ble of solving large models, fast, use computer resources in an economic way, and it 
should allow for easy changes in the model. 

A detailed discussion of all these issues goes far beyond the scope of this paper. We 
shall focus our attention here on two main sources of large scale linear models arising in 
decision making: dynamic structure and stochasticity. We shall discuss the ways in which 
general linear programming techniques can be specialized for these models to meet some 
of the computational goals pointed out above. Next, we shall present two nonstandard 
techniques which appear to be particularly useful for the problems in question. 

2. Dynamic structure and stochasticity as sources of large linear models 

It is well known that every linear optimization problem can be equivalently 
expressed in the following form 

T minimize c z 

subject to 

A z = b ,  

where z is the vector of activities (including slack/surplus variables), c is a vector of cost 
coefficients associated with these activities, A  is a technology matrix, and b  is a vector of 
resources or demands, which impose conditions on the admissible activities z .  In real-life 
large scale models, the dimension of z (the number of columns of A) and the dimension of 
b  (the number of rows of A )  may go into thousands. On the other hand, it is typical that 
each resource or demand condition (a  row of A z  = 6 )  involves only few activities and 
each activity appears in only a relatively small number of conditions. As a result, the con- 
straint matrix A  in (2.1) is usually sparse: most of its entries are zeros. Its density (the 
proportion of the number of nonzeros to the size) may be less than 1% and it is clear that 



A .  Ruszczynski - 28 - Modern techniques ... 

this feature should be exploited by the methods for solving (2.1). In fact, all modern linear 
programming codes make use of this feature and contain very sophisticated techniques for 
storing and factorizing sparse matrices, solving equations with them, and updating the 
factorization when the data  change (see [5] ,1231). 

However, there exist important classes of problems in which sparsity alone is not the 
only feature of the constraint matrix. One of these classes are linear dynamic-structured 
problems, in other words - linear control problems. In the simplest formulation of such a 
problem our variables (activities) are related to  time stages t=0,1,2,..,T. At each stage 
t ,  we deal with two groups of variables: state variables s, and control variables ut. The 
variables from the neighboring periods are related through the state equation 

where G and K are some matrices of appropriate dimensions and bt are some known vec- 
tors. Let the initial state so be fixed and let us write our linear objective function as 

Assuming that the only additional constraints on the state and control variables are sim- 
ple lower and upper bounds 

we can easily write our problem in form (2.1) with 

and 

We see that the number of rows and columns of A increase proportionally to to  the 
number of periods T ,  and even for relatively small dimensions of the activities related t o  
a single period the whole problem may have a remarkable size. On the other hand, the 
matrix (2.7) is not only sparse, but has a very regular staircase structure with multiple 
occurrence of the same (usually also sparse) matrices G ,  K and I. We have to  take 
advantage of it if we aim at  solving dynamic problems of realistic dimensions. 

Let us now pass on to  the second class of problems which are of special interest for 
us. Let us assume that some of the entries of the technology matrix A and the right-hand 
side b in the linear model (2.1) are uncertain and that this uncertainty is crucial for the 
decision making. One of possible modelling approaches to such a situation (see, e.g., 1121) 
is t o  assume that A and b are random and may attain one of finite many realizations 
with some known probabilities: 

(Al,bl)  withprobability pl>O, (2-8) 

(A2,b2) with probability p2>0, 
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( A L , b L )  with probability pL>O, 
L 

where C p I = l  Under these circumstances, however, it is in general no longer possible 
I= 1 

that the decision z satisfies the constraints Alz=bl  for all realizations 1=1,2, . . ,L.  There- 
fore, we have to extend our model by introducing some corrective activities yl associated 
with the realizations 1=1,2,.. ,L, which compensate the discrepancy 6 1 - A l z  If we 
describe our capabilities of correction by a matrix W and assign to yl the cost vector q 
and the bounds ymn and ymaz, the correction problem will take the form 

T minimize q y 

subject to 

W y l = b l - A l z ,  yM"~yjymaz 

Our aim is now to find such a, decision z that makes the correction always possible and 
T mrinimizes the sum of the direct cost c z and the expected future correction cost 

L 
T C plq yl. The whole problem can be again written as a large scale linear model: 

I =  1 
T T T T minimize c z + p l q  y l + p 2 q  y 2 + -  - - + p L q  y~ 

subject to 

A l z  + W l y l  = b l  
/I 2 2  + W 2 ~ 2  = b 2  

y ~ n ~ Y l < y - , l = 1 , 2 , . . , L  

The constraint matrix of (2 .10) ,  

has the size proportional to the number L of realizations taken into account, which leads 
to very large problems already for underlying deterministic models of medium size. Still, 
similarly to the dynamic case, A is not only sparse but has a very regular (so-called dual 
angular) structure, with multiple occurrence of the correction matrix W and some simi- 
larities of the realizations A 1 ,A2 , . . ,AL.  It is intuitively clear that we have to take advan- 
tage of that in the method for solving such problems. 

3. Specialized versions of the simplex method 
When dealing with special classes of problems for which general efficient techniques 

already exist, it is a natural direction of research to investigate the possibility of exploit- 
ing the features of these special problems within the general approach. So, we shall discuss 
here some most promising specializations of the acknowledged method of linear program- 
ming, the primal simplez method, for the two classes in question: dynamic and stochastic 
problems. 
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In the primal simplex method the constraint matrix A in (2.1) is split into a square 
nonsingular basis matr i z  B and a matrix N containing all the remaining columns of A ,  
not included into B .  This implies division of the activities z into basic variables z g  and 
nonbasic variables zN . At each iteration of the method the nonbasic variables are fixed on 
their lower or upper bounds, and the values of the basic variables are given by 

We always choose basis matrices B so that 

&<z < P i n ,  
Z~ - B- B (3.2) 

where zg"" and zBm are subvectors of zmin and zmm implied by the division of z into 
z g  and zN . Such an z is called a basic feasible solution, and at each iteration we try to  
find a better basic feasible solution by performing the following steps. 

Step 1 .  Find the price vector p by solving 
T 

r T ~ = c  B ,  (3.3) 

where cg  is the subvector of c associated with zg . 
Step 2 .  Price out the nonbasic columns a, of A (i.e. columns of N) by calculating 

T z . = c . - ~  a .  
3 3 3 (3.4) 

"-8 until a column a, is found for which z, <0 and z,=zm'", or z,>O and z,=z . 

Step 3. Find the direction of changes of basic variables dB by solving 

Step 4 .  Determine from zgM",zBm,zB and dBthe basic variable zg, which first 
achieves its bound when z, changes. 

Step 5.  Replace the r-th column of B with a,,za, with z, and calculate values of the 
new basic variables from (3.1). 

This general strategy can be deeply specialized to account for the features of prob- 
lems under consideration. These improvements can be divided into three groups: 

a) representation of the problem data,  i.e. the way in which the matrix A is stored and 
its columns a, recovered for the purpose of Step 2; 

b) techniques for solving equations (3.1), (3.3) and (3.5), which includes special 
methods for factorizing the basis matrix B and updating this factorization; 

c) pricing strategies, i.e. methods for selecting nonbasic columns a, a t  Step 2 to be 
priced out for testing whether they could be included into B a t  the current iteration. 

Let us discuss these issues in more detail. 

Problem data structures 

The repeated occurrence of the matrices G ,  K and I in the constraint matrix (2.7) 
of the dynamic model suggests a generalization of the concept of supersparsity employed 
in large linear programming systems [I].  It is sufficient to store the matrices G and K as 
files of packed columns ( G  and K may be sparse themselves). Any time a specific column 
a,  of A is needed, we can easily calculate from its number j an fro the dimensions of 

activities related to a single period which column of - K or of [&rnd  on which posi- 

tion will appear in a,  . Thus the problem data can be compressed in this case to the size 
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of one period and easily stored in the operating memory of the computer, even for very 
large problems. In a nonstationary problem, where some of the entries of K and G depend 
on t ,  we can still store in this way all the stationary data,  and keep an additional file of 
time-dependent entries. The recovery of a column of A would then be slightly more com- 
plicated, with a correction to  account for the nonstationary entries, but still relatively 
easy to accomplish. Storage savings would be still significant, because we have grounds to 
expect that only some entries of A change in time. 

The same argument applies to the constraint matrix (2.11) of the stochastic prob- 
lem. It is sufficient to  store the realizations A1,A2,..,AL and W to reconstruct columns of 
A ,  if necessary. But we can go here a little deeper, noting that in practical problems it is 
unlikely that  all the entries of the technology matrix are random. If only some of them are 
stochastic, many entries of A1,A2,..,AL will have identical values and our problem data 
structure will still suffer from a considerable redundancy. Thus, we can further compress 
the structure, as it was done in [16]: we represent each A as 

where A' contains as nonzeros only the deterministic entries of Al , and A l  contains as 
only nonzeros the 1-th realization of the random entries. Therefore it is sufficient to store 
the nonzeros of A' together with its sparsity pattern, the sparsity pattern of the random 
entries (which is common for all Al  ), and the nonzeros of A l  , /=1,2,..,L. This structure 
will only slightly exceed the storage requirements of the underlying deterministic model. 

Representation of the basis inverse 

It is clear that  for constraint matrices of the form (2.7) or (2.1 1) the basis matrices 
B inherit their structure. Although general techniques for factorizing sparse matrices (see, 
e.g., 15],[23],[28]) are in principle able to cope with such bases, there is still room to  
exploit their structure within the factorization and updating algorithms. 

Let us a t  first discuss this matter on the simple control problem with the constraint 
matrix (2.7). Assuming that  all the state vectors s l ,s2, . . ,s~ are basic, we obtain the fol- 
lowing form of the basis matrix 

BO is lower triangular and the equations involving Bo or B$ can be simply solved by 
substitution. To solve Bod=a, we partition d into (dl,d2,..,dT) and a into 
(ao7al,..,aT-1) according to the periods, and solve the state equations 

with do=O. Notin that  in (3.4) we have at=O for t<r we can start simulation in (3.7) !+ from r. To solve T Bo=c we need only to back-substitute in the adjoint equations 

with T ~ + ~ = O .  Again, noting that  c g  in (3.3) changes only on one position from iteration 
to  iteration, we can start the simulation in (3.8) from the position a t  which the change 
occurred. 

In general, the basis matrix is not so simple as (3.6) and some controls are basic, 
while some state variables are nonbasic. The basis matrix is still staircase, but the blocks 
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on the diagonal (which in (3.6) are all I) are not necessarily square and invertible: 

where J1,J2? . . ,JT are some submatrices of I; K 1 , K 2 , . . , K T  are submatrices of K and 
G 1 , G 2 7 . . 7 G T - 1  are submatrices of G .  A factorization of B is necessary to represent it in 
a form suitable for solving equations with B and B~ and for corrections when a column 
of B is exchanged. 

We can of course specialize the elimination procedures of [5] or 1131, because we 
exactly know where to look for nonzeros in particular rows and columns of B .  This idea of 
blockwise elimination has been analysed in (141, (22) and [32]. There is, however, a more 
promising global approach which aims a t  exploiting features similar to those that  led 
from (3.6) to the equations (3.7) and (3.8).  ame el;, we would like to transform somehow 
B to a staircase matrix 

having the diagonal blocks Bff  square and nonsingular. Solving equations with B would 
be almost as simple as with Bo and would require only inversion of B f f 7  t=1727. .7 T. 

In (201 the pass from B to B is achieved by representing 

- 
with F chosen in such a way that  B inherits as many columns of B as possible. In partic- 
ular, all the state columns of B will appear in B, so that  the diagonal blocks Bff will have 
large parts common with the identity and will be easy to invert. Moreover, F has also a 
very special structure 

with D square, invertible, and of relatively low size. Solving the equations with B or B T 

resolves now itself to the factorization of Bff (which is easy) and factorization of D (see 
[20]). Updating the factors is rather involved, unfortunately. 

Another approach has been suggested in [I]. Since Bo is particularly easy to invert, 
we aim a t  using Bo as B .  We do not construct factors as in (3.11) but rather add new 
rows and columns to Bo and work with a larger matrix 

r 1 

Here U contains columns which are in B but not in Bo, and V contains units in 
columns which are in Bo but not in B ,  to explicitly nullify the variables corresponding to 
these columns. The solution to 
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Thus we need only to  solve equations with Bo , which is particularly simple, and to  
factorize the matrix V B ~ '  U, which is of much smaller size than B. Similar formulae can 
be derived for the backward transformation (3.3). Updating the factors is much more sim- 
ple than for (3.11),(3.12), because the general form (3.13) does not change when rows of 
V and columns of U are added or deleted. 

where Wl , 1=1,2,..,L are square nonsingular submatrices of W. The inversion of Bo 
resolves now itself to  the inversion of W W2, . . . , Wl, which can be done independent1 y. 
We can also exploit here some similarities between the W's (common columns) to  further 
simplify their inversion (see the bunching procedure discussed for other purposes in 1321). 

Let us now pass t o  the stochastic problem (2.10). Supposing that  the basis contains 
only the correction activities, its form is particularly simple 

In general, however, the basis matrix will be of the form 

- 
with the blocks Wl 1=1,2 , . . ,L ,  not necessarily square and nonsingular. Again, we would 
like to  transform B into a form more suitable for inversion. At  the first sight, since B is 
lower block triangular, both approaches discussed for the dynamic problem are applicable 
here. We can aim at  obtaining factors as in (3.11) with a w of dual angular structure 
having invertible diagonal blocks. We can also apply a method based on the Sherman- 
Morrison formulae (3.15)-(3.16) and work with a matrix of the form (3.13). 

(3.17) Bo = 

The relation with the dynamic model, however, follows from rather superficial alge- 
braic similarity of the problem matrices (lower block triangular structure). In fact, in the 
dynamic model we deal with a phenomenon that evolves in time, whereas the stochastic 
model describes a phenomenon spread in space. Thus, while we had grounds to  assume 
that  many state variables will be basic in the dynamic model (which implied the choice of 
Bo ), we cannot claim the same with respect to  the correction activities in the stochastic 
model and specify in advance some of them to  be included into' W. Therefore, the 
approach of [ I ]  must be slightly modified here. Instead of working with B ,  we would 
prefer to  operate on a larger matrix 

r 

W l  
w2 

. . . 
WL 
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in which some of the rows of the matrix V, which are used to ull'fy the nonbasic correc- 

tion activities, are added to  W to  make the diagonal blocks 11 square and invertible. 

Under these circumstances, however, the block diagonal part of is no longer constant, 
contrary to the matrix Bo in the form (3.13) for dynamic problems. The representation 
(3.19) and the resulting updating schemes were analysed in the dual (transposed) form in 
1121, and (271. The resulting formulae, however, are so involved and distant from the 
essence of the underlying problem, that  it is not clear whether this particular direction 
can bring a significant progress. 

The approach (3.11) might be more prospective here, but we should be aware of the 
fact that  it is natural to  expect that  many first stage activities z will be basic, because 
corrections are usually more expensive. Hence, the blocks W, in (3.18) will be far from 
square and adding to  them columns to  achieve the block diagonal B will inevitably 
increase the size of D in (3.12). 

Summing up this part of our discussion, we can conclude that  implementations of 
the simplex method for large dynamic and stochastic problems lead to very detailed linear 
algebraic techniques that  try to  exploit the structure of basis matrices t o  develop 
improved inversion methods. Although there is still a lot to  be done in this direction, one 
can hardly expect a qualitative progress here. 

Pricing strategies 

Let us now pass to the problem of selecting nonbasic columns to be priced out a t  a 
given iteration for testing whether they could be brought into the basis. Since the selec- 
tion of a variable to enter the basis largely determines the variable to leave, pricing stra- 
tegies have a considerable influence on iteration paths of the simplex method and this 
influence grows with the size of the problem. There are two acknowledged techniques for 
general large scale linear programs (cf., e.g., [ la] ) :  

a) partial pricing, where a t  each iteration a certain subset of nonbasic columns are 
priced out to select the one to enter; 

b) multiple pricing, where a list of prospective candidates is stored, and they are priced 
out again a t  the next iteration. 

These general ideas can be further specialized for the two classes of problems in 
question. The lower block triangular structure of A in (2.7) and (2.11) suggests a natural 
division of the set of columns into subsets treated together by partial pricing strategies. 
These subsets correspond to  periods in (2.7) and to the first stage decision z and the reali- 
zations in (2.11). This idea was thoroughly investigated experimentally in 171 and the 
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conclusions can be summarized as follows: 
- rank the blocks (periods, realizations) equally and use them in a cyclic fashion; 
- within each block (if it is still large enough) rank the columns equally and also use 

them in a cyclic fashion. 

Again, pure linear algebraic concepts seem to be insufficient to  fully specialize the 
pricing strategies. We should somehow exploit our knowledge of the essence of the under- 
lying model to  gain further improvements. 

Noting that  the dynamic model describes a phenomenon that  evolves in time, we 
have grounds to expect that  similar sets of activities will appear in the basis in the neigh- 
boring periods. This suggests a simple modification of the partial pricing strategy 
described above: if a prospective column has been found in period k, price out the 
corresponding columns from the next periods and bring them to  the basis, as long as pos- 
sible. The initial experiments reported in [9] indicate that  this simple modification may 
improve the performance significantly (by 20-30% on problems of size 1000 by 2000.on 
IBM PCIXT).  

In the stochastic case the situation is generally analogous, and only slightly more 
complicated. If a correction variable is basic for the realization (Al,bl) , we have grounds 
to expect that  the corresponding variables will be basic for some neighboring realizations 
(Aj,bj) However, contrary to  the dynamic model, the notion of 'neighboring realizations' 
is not so clear and is difficult to  implement. Nevertheless, this possibility should at  least 
be investigated experimentally. 

4. Feasible direction methods 
The main disadvantage of the simplex method when applied to dynamic or stochas- 

tic models is that it changes only one nonbasic activity a t  a time. We have already 
observed that  periods in the dynamic model and realizations in the stochastic model exhi- 
bit close similarities. This results in very long iteration paths of the simplex method with 
some subsequences of iterations used to realize similar changes for many periods or reali- 
zations. It would be much more convenient to perform these changes simultaneously. 

The feasible direction methods (see [8],(20]) may help us to implement this idea (the 
simplex method is a feasible direction method, too, but with particularly simple direc- 
tions). The main difference between these methods and the simplex method is that we 
change many nonbasic variables a t  a time and allow z~ to  have values between their 
bounds a t  intermediate steps. We still preserve the division of z into zg and zN and still 
keep the conditions (3.1) and (3.2). However, steps 2, 3 and 4 of the simplex method are 
modified as follows. 

Step 2a.  Price out nonbasic columns a, of A by calculating 

and select a subset S of columns al such that  z,<O for q=zJm'", r>O for q=zJm" , 
zj#0 for z;"ln<zj<zm", (a  subset of prospective candidates). 

3 
Step 9a .  Determine a direction dN of change of the nonbasic variables z~ such that 

d , ~ ,  <O for ~ E S ,  

(in the simplex method dN has only one nonzero component). Determine the direc- 
tion of change of the basic variables by solving 
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where A, is a submatrix of N formed from the columns selected in Step 2a, and d, 
is the nonzero subvector of dN. 

Step 4a. Determine from z ~ ' n , z ~ a x ,  zg , dB and z r ' "  , z r a x  , z, and d, the variable 
which as first achieves its bound, when z, moves in the direction d, . 

At first we note that when one of the variables which change their values ( a  basic 
from zg or a nonbasic from z, ) will hit its bound, some nonbasic variables will be out of 
their bounds. So, we should either accept the fact that nonbasics can have arbitrary 
values in the course of calculation, or construct a basic solution from the current one 
without increasing the objective value. The second idea has been analysed in [20], where a 
detailed auxiliary algorithm has been described to pass to such a basic solution. This, 
however, involves many additional steps which may considerably diminish the advantages 
of changing many nonbasics in a major step. The radical solution of (81 seems to be more 
promising: we allow nonbasics to have values between their bounds. Under this assump 
tion the division of z  into basics and nonbasics is no longer determined uniquely by the 
algorithm. If the previous basics are still between their bounds, we can maintain the divi- 
sion to save on updating. When one of the basics hits its bound we can choose among z, 
the variable to replace it. In general, as discussed in [8], we should aim at  constructing 
such a basis that allows for an efficient next iteration. This may e.g. be accomplished by 
selecting a nonbasic which is possibly far away from its bounds. However, there is a need 
for a more theoretically grounded approach, which could perhaps be based on the analysis 
of the dual problem. 

Since the algebra of the feasible direction method is close to that of the simplex 
method, we can of course use here all the tricks developed for compact inversion of basis 
matrices discussed in the previous section. 

Leaving aside these technical points, let us now focus our attention on the specializa- 
tion of the strategy of the feasible direction method to problems having dynamic or sto- 
chastic structure. The crucial question here is the choice of the direction of change of non- 
basic variables. Although in theory the only limitations are the conditions (4.2), (4.3) ,  in 
practice we have to use more restrictive conditions to limit the number of columns of N to 
be priced out. Again, as it was in the case of the primal simplex method, we can take 
advantage of the structure of the constraint matrix and of the similarities of the blocks. 
Thus, we can try to select to z, a t  a given iteration similar activities from different 
periods/realizations and then make one major step of the method. The only difference is 
that previously we performed sequences of similar steps bringing to the basis correspond- 
ing activities from different blocks, while here we at  first select a group of related candi- 
dates and then change them simultaneously. 

An important feature of the feasible direction approach is the freedom for specifying 
the starting point. Indeed, once we abandoned the the requirement that all nonbasic vari- 
ables are on their bounds, we are free to start the calculation from a solution which need 
not be basic. This may help solving practical problems, where reasonable nonbasic solu- 
tions can be specified by the user. 

Summing up, the feasible direction approach appears to be a promising idea for large 
scale problems having a dynamic or stochastic structure. It retains the algebraic advan- 
tages of the simplex method and provides more freedom for exploiting the structure to 
shorten iteration paths. The potential of this approach is far from being exploited. 
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5. The regularized decomposition method 

The idea of applying decomposition methods to linear programs of dynamic or sto- 
chastic structure has been known since 25 years (31, but it is still attractive and provides a 
framework for new ideas. We shall focus our attention here on the stochastic problem 
(2.10), whose structure directly suggests the application of decomposition, and we shall 
discuss the application of the new regularized decomposit ion method suggested in 1241. As 
for dynamic problems, the approaches suggested in the literature so far are entirely 
different and still of rather theoretical importance (see, e.g., [5], (61, (101, [ l l]) .  

By formulating the dual to (2.10) we obtain a problem of primal angular structure, 
to which the Dantzig- Wolfe decomposition method can be applied 141. Since applying the 
Dantzig-Wolfe method to the dual is equivalent to applying the Benders  decomposit ion to 
the primal 1161, we shall discuss our basic ideas in primal terms. 

It can be readily seen that if z is fixed in (2.10) the minimization with respect to 
yl ,y2, . . ,y~ can be carried out separately by solving for 1=1,2,..,L the second-stage sub- 
problems 

T minimize q y 

subject to 

ymin< < max 
- Y - Y  . 

Let us denote the optimal value of (5.1) by jl(z), and take the convention that 
j l(z)=+oo, if (5.1) is unsolvable. Then our problem (2.10) can be equivalently formu- 
lated as  follows: 

T 
L 

minimize F (2)- c z+ C pl jl(z) 
I= 1 

subject to 

where 

We introduce the condition (5.4) to the problem formulation, because we are going . 

to use separate approximations for jI and for their domains XI . 
Much is known about the functions jl and the sets XI (see, e.g., [9]).  In particular, 

each XI is a convex closed polyhedron and each jl is convex and piecewise linear on XI . 
Although the pieces of jl and the facets of jl are not given explicitly, for each z we can 
determine a piece of jI active a t  5 ,  or a linear constraint defining XI, which is violated a t  
2'. 

Indeed, let (5.1) be solvable a t  z=2' and let n denote the vector of simplex multi- 
pliers associated with the solution. Then it follows from the duality relations in linear 
programming that for every z 



A .  Ruszczynski - 38 - Modern techniques ... 

and the equality holds for z=2.  If (5.1) is not solvable for z=Z, then phase I of the sim- 
plex method or the dual simplex method will stop at a certain iteration, a t  which it will 
not be possible to move a basic variable ygr towards its feasibility interval ( y ~ n 7 y ~ a x ] .  
If T is the r-th row of the basis inverse (if the dual method is used and yBr> ygrax), then 

Similar formulae hold for the case of y B r < Y g n  and for the phase I of the primal 
simplex method. 

We shall call the linear inequalities following from (5.6) objective cuts, and the ine- 
qualities following from (5.7) feasibility cuts. Each objective cut can be written as 

with gl=-Aln, crl=nTbl. Each feasibility cut can be expressed in a similar fashion: 

T with s = - A l  T and an appropriately defined cl. Functions fl and sets XI are polyhedral 
and there can be only finite many (although usually quite a few) such cuts. 

Next, if we have objective cuts (5.8) for all 1=1,2,..,L we can construct an aggregate 
cut 

where is computed from (crl,gl) by means of averaging 

We can now describe the version of the Benders decomposition method for stochastic 
programs, known as L-shaped algorithm (301. 

Let ( ~ j , ~ j ) ,  j E J ,  be the set of aggregate cuts (5.10) known so far, and let 
zjigi), j E J ,  be the set of feasibility cuts generated previously. At each iteration of the 
method we perform the following operations. 

Step 1.  Solve the master problem: 

minimize F(z) = c Tz+ u 

subject to 

&+($) T z < ~ ,  j E  J) 

z < z-2. - - 

Let z" be the solution to (5.13)-(5.16). 

Step 2. Solve for 1=1,2,..,L the subproblems (5.1) a t  z=Z. If any of them is infeasible, 
generate the corresponding feasibility cut (5.9), append it to (5.15) and go to Step 1. 

L 

If all subproblems are feasible, check whether Cpl f l (Z)=u .  If this condition is 
1=1 
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satisfied, then stop; otherwise generate objective cuts (5.8), the aggregate cut (5.10), 
append it to (5.14) and go to  Step 1. 

It is not difficult to observe that  this method exactly corresponds to the Dantzig- 
Wolfe method applied to the dual of (2.10): the cuts passed to the master (5.13)-(5.15) 
are the proposals passed to  the master in the Dantzig-Wolfe method. 

The attractiveness of this approach follows from the fact that  the solution procedure 
closely reflects the structure of the original problem. It also allows for some parallelism in 
subproblem solution. It has, however, inherent drawbacks common for all purely linear 
cutting plane methods (cf., e.g., [29]), and for the Dantzig-Wolfe method (which is in fact 
their dual counterpart): 
- the number of cuts (5.14), (5.15) increases in the course of calculation; 
- the master problem is unstable: new cuts may imply rapid changes of d; 

- convergence is slow 

These drawbacks led to  the idea of the regularized decomposition method 1241, which 
combines the Benders decomposition with modern stable techniques of nonsmooth optimi- 
zation [15]. The main idea of the method is to change the master program, which gen- 
erates successive points zk a t  which the subproblems are solved. We aim a t  constructing 
such a master which would be able to use the information gained in the past not only in 
the form of cuts, but also in the form of the best point z found so far. 

The method uses objective and feasibility cuts (5.8) and (5.9) as before. It does not, 
however, average them to form aggregate cuts (5.10), but rather maintains separate sets 
of cuts for each component fl : 

Next, the master problem, although quite similar to (5.13)- 5 16 , is augmented with 
a quadratic penalty term for the distance of d to the best point & .fo?nd so far: 

"k 1 k T L 
minimize F (Z)=,~~Z--Z Il+c z+ C p1Vj 

subject to  

The existence of this quadratic term stabilizes the master problem, i.e. makes it less 
sensitive to the changes in the set of cuts (5.18)-(5.19). It also allows for skipping out- 
dated cuts and keeping the total size of the master limited. 

The logic of the regularized decomposition method can be summarized as follows. 

Step 1. Solve the regularized master (5.17)-(5.20), getting a trial point d and objective 
estimates VI, I=1,2 ,.., L.  

Step 2. Solve for I=1,2,. . ,L the subproblems (5.1) a t  z=Z. 
a )  If (5.1) is infeasible, then append the feasibility cut (5.9) to (5.19). 
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b) If (5.1) is feasible, but f i ( z ) > u l  , then append the objective cut (5.8) to the set of 
cuts Jl in (5.18). 

k Step 3. Change the regularizing point z according to the following rules. 

a) If there were infeasible subproblems (5.1), set zk+'=zk. 
L 

b) If F ( i ) = c T 5 +  C plu1, then set zk+'=i.  
I =  1 

L 
c) If F ( ~ ) ~ ~ ~ ( z ~ ) + ( l - - y ) ( c ~ i +  C plul) and exactly n+ L constraints were active 

I= 1 
in (5.17)-(5.20), then also set zk+'=i; otherwise set zk+l=zk 

Step 4 .  Delete from the cuts (5.18)-(5.19) some of those which were not active a t  the last 
solution i to  the master, and go to Step 1. 

It is easy to observe that  the number of active cuts (i.e. linearly independent con- 
straints with positive Lagrange multipliers) never exceeds n + L ,  where n is the dimension 
of z and L is the number of blocks (realizations). Since at  Step 2 a t  most L new cuts may 
enter (either a feasibility cut or an objective cut for each I ) ,  the total number of cuts need 
not exceed n + 2 L .  In fact, i t  is usually much smaller, if many bounds (5.20) are active. 

It has been proved in (241 (for the general case of minimization of a sum of 
polyhedral functions) that the rules for changing the regularizing point zk at  Step 3 
guarantee that  the sequence zk is convergent in finite many iterations to the solution of 
our problem. This result obviously applies also to the particular problem we are 
interested in. 

It is easy to  observe that  the use of the quadratic term in (5.17) implies that  the 
regularizing point zk has a reat influence on the solution of the master problem. In par- \ titular, the starting point z influences considerably the whole iteration path,  which is 
obviously not true for the linear decomposition method. This may significantly reduce the 
effort required for solving practical problems, where a good starting point is available. 

These important theoretical features have been obtained a t  the expense of replacing 
a purely linear master problem (5.13)-(5.16) by the quadratic problem (5.17)-(5.20). T o  
make the regularized decomposition method really competitive, we need an efficient com- 
putational technique for solving the regularized master. 

Such a technique can be based on the active set strategy. It consists in selecting a 
subset of the constraints (5.18)-(5.20) to be satisfied as equalities, solving the resulting 
equality constrained subproblem, changing the active set, solving the new subproblem, 
etc. The active set is increased, when a cut not included in it is violated, and it is 
decreased, when a cut in the active set has a negative Lagrange multiplier in the subprob- 
lem. 

The equality constraints defined by an active set can be compactly written in the 
form 

a + ~ ~ z -  E ~ U = O ,  (5.21) 

where a is composed of the constant terms ajl$corresponding to the active cuts, G has 
I columns gJ.igJ , and E is a zero-one matrix whose j- th column is the unit vector e if the 

j- th cut is an objective cut for fl , and is a zero column otherwise. Active bounds (5.20) 
can also be put into (5.21) with particularly simple columns of G (unit vectors). Thus 
each equality constrained subproblem has the form: minimize (5.17) subject to (5.21). 
Denoting by X the vector of Lagrange multipliers corresponding to  the active cuts (5.21), 
we can formulate the following necessary and suficient conditions of optimality: 
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where p=(pI,p2,.. ,pL) is the vector of probabilities. The primal solution is defined by 

The number of active cuts does not exceed n + L  and so does the size of the system 
(5.22)-(5.23). However, the specific structure of E ( unit or zero columns and full row 
rank) makes it possible to further reduce the dimension by representing 

After eliminating analytically u and X B  from (5.22)-(5.23) we obtain the equivalent 
system 

where 

T hN=UN-N U g ,  

The system (5.25) has dimension not exceeding the dimension of z, independently of 
the number of blocks L, and can be solved by stable numerical techniques for least- 
squares problems ( see 121, [24]). In the implementation [25] additional advantages have 
been drawn from the activity of simple bounds, which further reduces the dimension of 
(5.25). 

Summing up, not only the regularized master (5.17)-(5.20) has a smaller number of 
cuts than (5.13)-(5.16), but the effort for solving it is comparable with the effort for solv- 
ing linear problems of the same size. These observations have been confirmed by the ini- 
tial experiments with the regularized decomposition method for large scale stochastic pro- 
grams, which we shall report in an extended form elsewhere 1261. They indicate that  the 
method solves medium-size problems (200 by 500) 2...3 times faster than purely linear 
techniques, is capable of solving very large problems (problems of size 2500 by 5000 in ca. 
1 min. on IBM 3033) and the growth of costs is sublinear when the number of realizations 
L increases. 

Conclusions 

We discussed some modern computational approaches to large scale linear programs 
arising from dynamic and stochastic models. In our opinion, two directions deserve more 
attention as promising tools for decision support systems: 
- feasible direction methods with special compact inverse techniques borrowed from 

implementations of the simplex method and with specialized direction-finding pro- 
cedures; 
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- the regularized decomposit ion method with decentralized or parallel subproblem solu- 
tion. 

The common feature of these methods is the freedom in specifying the starting point 
and its strong influence on the cost of calculations, which is crucial for decision support 
systems, where we usually solve repeatedly similar models. The methods are also more 
flexible than simplex-based approaches and provide a potential for an interactive control 
of calculations and for some parallelism. On the other hand, they both can use computer 
resources a t  least so economically as the simplex methods and are capable of solving large 
models. 
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Systems Research Institute, Polish Academy of Sciences. 

ABSTRACT 

This paper forms a theoretical guide for NOA2, a package of FORTRAN 
subroutines designed to locate the minimum value of a locally Lipschitz 
continuous function subject to locally Lipschitzian inequality and equality 
constraints, general linear constraints and simple upper and lower bounds. 
The user must provide a FORTRAN subroutine for evaluating the (possi- 
bly nondifferentiable and nonconvex) problem functions and their single 
subgradients. The package implements several descent methods, and is 
intended for solving small-scale nondifferentiable minimization problems 
on a professional microcomputer. 

1. Introduction 

NOA2 is a collection of FORTRAN subroutines designed to solve small-scale 
nondifferentiable optimization problems expressed in the following standard form 

minimize f(x):=max{ f , ( x ) :  j = l ,  ..., mo }, ( l a )  

subject to F , ( x )  5 0 for j = l ,  ..., ml, ( lb )  

F,(x) = 0 for j = m I + l ,  ..., m l + m ~ ,  

Ax 5 b ,  
L U x ,  < x , 5  xi for z=l,  ..., n, 

where the vector x = ( x l ,  ..., x,) has n components, f and F ,  are locally Lipschitz con- 
tinuous functions, and where the mA by n matrix A, t i e  mA - vector b and the n-vectors 

L x and x u  are constant; A is treated as a dense matrix. 

The nonlinear functions f ,  and need not be continuously differentiable (have con- 
tinuous gradients, i.e. vectors of partial derivatives). In particular, they may be convex. 
The user has to  provide a FORTRAN subroutine for evaluating the problem functions 
and their single subgradients (called generalized gradients by Clarke (1983)) a t  each x 
satisfying the linear constraints (ld,e). For instance, if 5 is smooth then its subgradient 
gFj(z) equals the gradient V F , ( x )  , whereas for the max function 

which is a pointwise maximum of smooth functions F . ( . , - )  on a compact set Z,  gF,(z)  
3 I 

may be calculated as the gradient V , F , ( x ; z ( z ) )  (with respect to x ) ,  where ~ ( z )  is an 
arbitrary solution to the maximization problem in (2). (Surveys of subgradient calculus, 
which generalizes rules like V ( F 1 + F 2 ) ( x )  = V F l ( z ) + V F 2 ( z ) ,  may be found in Clarke 
(1983) and Kiwiel (1985a) .) 
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NOA2 implements the descent methods of Kiwiel (1985a-d,1986a, 1986c,1987), 
which stem from the works of Lemarechal (1978) and Mifflin (1982). 

A condensed form of problem (1) is to 

minimize f ( z )  over all z  i n  R 

satisfying F I ( z )  < 0,  

FE(z)=O, 

A z  5 6, 
z L  < z i  z U ,  

where f is the objective function, 

F I ( z )  = maz {F , ( z ) :  j= l ,  ..., m )  

is the inequality constraint function, 

F E ( z )  = max { maz[F,(z ) , -F , (z )] :  j=mI+l, ..., mI+mE) 

is the equality constraint function, the mA inequalities (3d) are called the general linear 
constraints , whereas the boz constraints (3e) specify upper and lower simple bounds on 
all variables. 

The standard form (1) is more convenient to the user than (3), since the user does 
not have to program additional operations for evaluating the functions FI and FE and 
their subgradients. On the other hand, the condensed form facilitates the description of 
algorithms. 

The linear constraints are treated specially by the solution algorithms of NOA2, 
which are feasible with respect to  the linear constraints, i.e. they generate successive 
approximations to  a solution of (1) in the set 

SL = { z :  A z  5 b and z L  5 z < z U ) .  

The user must supply an initial estimate 5 of the solution that  satisfies the box con- 
straints ( z L  < i <_ z U ) ;  the orthogonal projection of i onto SL is taken as the 
algorithm's starting point. 

Two general techniques are used to handle the nonlinear constraints. In the first one, 
which minimizes an exact penalty function for (1) over SL ,  the initial point need not lie in 

SF = { z :  F I ( z )  < 0 and F E ( z )  = 0 )  

and the successive points converge to a solution from outside of SF . The second one uses 
a feasible point method for the nonlinear inequality constraints, which starts from a point 
in 

and keeps the successive iterates in SI.  The choice between the two techniques is made by 
the user, who may thus influence the success of the calculations. For a given level of final 
accuracy, the exact penalty technique usually requires less work than the feasible point 
technique. On the other hand, the feasible point technique may be more reliable and is 
more widely applicable, since it does not in fact require the evaluation off and FE outside 
of SLr)SI .  
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NOA2 is designed to find solutions that are locally optimal. If the nonlinear objec- 
tive and inequality constraint functions are convex within the set SL, and the nonlinear 
equality constraints are absent, any optimal solution obtained will be a global minimum. 
Otherwise there may exist several local minima, and some of these may not be global. In 
such cases the chances of finding a global minimum are usually increased by restricting 
the search to a sufficiently small set SL and choosing a starting point that  is "sufficiently 
close" to a solution, but there is no general procedure for determining what "close" means, 
or for verifying that  a given local minimum is indeed global. 

NOA2 stands for Nondiflerentiable Opt imizat ion Algorithms , version 2.0. 

In the following sections we introduce some of the terminology required, and give an 
overview of the algorithms used in NOA2. 

2. An overview of algorithms of NOA2 

The algorithms in NOA2 are based on the following general concept of descent 
methods for nondifferentiable minimization. Starting from a given approximation to a 
solution of ( I ) ,  an iterative method of descent generates a sequence of points, which 
should converge to  a solution. The property of descent means that  successive points have 
lower objective (or exact penalty) function values. To  generate a descent direction from 
the current iterate, the method replaces the problem functions with their piecewise linear 
( polyhedral ) approximations. Each linear piece of such an approximation is a lineariza- 
tion of the given function, obtained by evaluating the function and its subgradient a t  a 
trial point of an earlier iteration. (This construction generalizes to the nondifferentiable 
case the classical concept of using gradients to linearize smooth functions.) The 
polyhedral approximations and quadratic regularization are used to derive a local approx- 
imation to  the original optimization problem, whose solution (found by quadratic pro- 
gramming) yields the search direction. Next, a line search along this direction produces 
the next approximation to  a solution and the next trial point, detecting the possible gra- 
dient discontinuities. The successive approximations are formed to ensure convergence to  
a solution without storing too many linearizations. To this end, subgradient selection and 
aggregation techniques are employed. 

2.1. Unconstrained convex minimization 

The unconstrained problem of minimizing a convex function f defined on R n  is a 
particular case of problem ( 1 ) .  In NOA2 this problem may be solved by the method with 
subgradient selection (Kiwiel, 1985a). 

Let gf (y)  denote the subgradient of f at  y calculated a subroutine supplied by the 
user. In the convex case 

where < - , . > denotes the usual inner product. Thus a t  each y we can construct the 
l inearization of f 

which is a lower approximation to  f .  
Given a user-provided initial point z l ,  the algorithm generates a sequence of points 

zk, k=2,3, ..., that  is intended to  converge to  a minimum point of f .  At the k-th iteration 
the algorithm uses the following polyhedral approzimation to  f 
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derived from the linearizations of f a t  certain trial points yJ of earlier iterations j, where 
the index set J ; C { ~ ,  ..., k)  typically has n+2 elements. Note that  $ may b e - a  tight 
approximation 'to f in the neighborhood of trial points y J ,  for j in J!, since 

f ( y ' ) = P ( y ' ) .  
k ^k The best direction of descent for f a t  z  is, of course, the solution d  to the problem 

minimize f ( z k + d )  a 1 1  d  in Rn,  

k ^k since z  +d minimizes f .  The algorithm finds an approximate descent direction dk to 

^k k minimize f ( z  +d)+ldI2/2 -all d ,  (7) 

k k  where the regularizing penalty term JdI2/2 tends to keep z  +d in the region where jk 
may be a good approximation to f ( 1 . 1  denotes the Euclidean norm); without this correc- 
tion term, problem (7) needs not have a bounded solution. 

The nonpositive quantity 
k -  ^k k u - f ( z  i d k ) - f ( z k )  

k .  is an optimality measure of z  , slnce 

k 1 / 2  k f ( zk )  < f ( 2 )  + ( u  1 ( z - z  1 -  uk for all z .  

The algorithm terminates if 

ukl < f S ( 1 + l f  ( z k ) l ) ,  I - 

where c s  is a positive final accuracy tolerance provided by the user. Thus for € ,= lo-  I 

and 1 2 4 ,  we may hope to achieve the relative accuracy of about (1-1) leading digits in the 
objective value (considering also zeros after the decimal point as significant), i.e. typically 
a t  termination 

1 f ( z * )  ( z k  is about 10-('-')maz {I f ( zL ) I , l ) ,  (11) 

where z* is a minimum point of f .  Of course, such estimates may be false for ill- 
conditioned problems. In practice uk usually converges to a negative number, small rela- 
tive to maz { f ( z k ) , l ) .  

The stopping criterion (10) usually works with E ,  set to or but it is not 
always reliable. For instance, if f is polyhedral and bounded from below then termination 

k should occur a t  some iteration with uk=O (and optimal z  ). In practice, computer round- 
k ing errors prevent the vanishing of u . The search direction finding subproblem (7) is 

solved in NOA2 by the subroutine QPDF4 for quadratic programming (Kiwiel, 1986b), 
which calculates the quantity 

^k k ek = 1 ( 2  + d k ) - f ( z k )  (12) 

and gives uk a nonpositive value according to some dual estimate; in theory ek should 
equal vk. The smallness of 1ek- uk1 relative to lukl indicates good accuracy of QPDF4. The 
accuracy usually deteriorates in the neighborhood of a minimum point of f (when too 
small accuracy tolerance E ,  prevents termination), or earlier for ill-conditioned problems. 
The case of ek 2 0 ,  i.e. inability to find a descent direction, enforces abnormal 
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termination. 

If the algorithm does not terminate, then the negative value of vk (see (8)) predicts 
k the descent f ( zk+dk) -  f (zk) for the step from z k  to zk+dk. Usual1 u over-estimates 

k r .  . the descent because f(-)>p(.) and P need not agree with f at  z +d if its linearizations 
k do not reflect all discontinuities in the gradient of f around z (too few of them to make 

^k k up f , or they were calculated a t  y3 far from z ). Thus two cases are possible when a line 
search is made to explore f along the segment joining z k  and zk+dk.  Either jk is a good 
model of f and it is possible to make a serious step by finding a stepsize t;>0 such that 
the next iterate 

k k  zk+' = Zk+tL d 

has a lower objective value than zk, or a null step zk+'=zk (t:=0) combined with cal- 
culating the linearization f ( . ; t ~ ~ + ' )  a t  a new trial point 

k k  yk+' = zk + tR d 

with tA5(0,1l may be used to get the next improved model fk+ '  of f .  Since 0< t t< t ;  , 
and tR are called left and right stepsizes respectively, although they may coincide if 

k More specifically, a serious step with tL>O is made if 

where mL,  m, and r a r e  positive parameters less than 1, whereas 

is the linearization error of f ( - ;y )  a t  z. These conditions ensure a significant objective 
k decrease ( i . e  tL and m L t i v k  cannot be too small). On the other hand, a null step with 

k tL=O and t i ~ [ t , l ]  must ensure that  the new linearization satisfies 

k k + l  ^k k f(zk+d ;y )-f(zk) > mR[f  ( z  +dk)-f(zk)] = mRuk 

for some fixed mR€(O, l ) ,  so that  its incorporation will make fk+ '  a better approxima- 
^k tion to f along the direction dk from zktl  = z k  than f was, thus enhancing generation 

of a better next direction dk+l.  
For technical reasons, the line search parameters must be positive and satisfy 

m L + m v < m ~ < l  and F<l .  - By changing the standard values 
mL=O.l, mR=0.5, mv=O.O1 and F=0.01, the user may strongly influence the 
algorithm's efficiency on a given problem. Note that  the total amount of work in solving a 
problem depends on the number of function and subgradient evaluations as well as on the 
number of iterations. The algorithm may require only one objective evaluation per itera- 
tion. This is justified if the cost of one objective evaluation dominates the effort of auxili- 
ary operations (mainly a t  quadratic ~ r o ~ r a m r n i n ~ )  per iteration. In the reverse case, one 
may wish to  decrease the number of iterations a t  the cost of increasing the number of 
objective evaluations. 

More specifically, the line search checks if trial stepsizes t € [ r , l ] ,  starting with t = l ,  
satisfy the sufficient descent criterion 

f (zk+tdk)  5 f (zk)+mLtuk 
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k and thus are candidates for tL. Hence if the threshold stepsize r i s  set to 1, only t = l  need 
be tested, and a serious step with t k = l  will occur if 

^k (see (8) and (13a)), i . e  f must be very close to f a t  zk+dk if mL approaches 1. In prac- 
tice mL>0.5 may result in many null steps (the algorithm concentrates on improving its 
models $ of f between infrequent serious steps), whereas mL<O.l may produce 

k (damped) oscillations of { z  ) around the solution (little descent is made a t  each serious 
step). For a smaller threshold i?< 1, more stepsizes t are tested (typically two for r=0.1, 
three for r=0.01), and there are fewer null steps. In practice decreasing r f rom 1 to 0.01 
will usually decrease the number of iterations a t  the cost of more function evaluations. 

It is worth adding that  for a polyhedral f one may frequently use the values 
mL=0.9, mR=0.95, mv=O.O1 and r=l, which parameter values, however, are usually 
inefficient for more general functions. 

To sum up, it is reasonable to  set m~ and F i n  the ranges [0.1,0.9] and [0.01,1] 
respectively, and use mv=O.OO1 and m R = ( l +  mL)/2.  

The user may trade-off storage and work per iteration for speed of convergence by 
choosing the maximum number M of past subgradients (linearizations) involved in the 

^k 9 approximations f (whereas more linearizations increase the model accuracy). To  ensure 
convergence, the algorithm selects the linearizations active a t  the solution to subproblem 
(7) for keeping (their indices enter J f i l  together with k + l ) ,  whereas inactive past 
linearizations may be dropped (i.e. overwritten in the memory by new ones, if necessary). 

^k More linearizations enhance faster convergence by producing more accurate f , but the 
costs of solving subproblem (7) may become prohibitive. Using Mg greater than its 
minimal possible value n+3, Mg=2n  say, frequently increases the overall efficiency. 

An additional iricrease of modelling accuracy may be possible when f is the point- 
wise maximum 

of several convex functions f, with subgradients g!,. The user may choose a positive -. 
activity tolerance c and the maximum number 1, of additional linearizations of fi at z  k 

-R that  will augment f . Then subproblem (7) employs 

k k k where L contains a t  most I ,  indices of the €,-active functions fi(z )> f (z  )-c,. How- 
ever, these additional linearizations may overwrite some past ones (if Mg is too small), 

k and this may or may not increase the accuracy of $ a t  points remote from z  . 

If space limitations prevent the algorithm from storing sufficiently many (Mg> n+3)  
past subgradients, the algorithm may be run with Mg> 3 by employing subgradient 
aggregation instead of selection. This will usually - sometimes even drastically - decrease 
the speed of convergence. 

The algorithm described so far is rather sensitive to the objective scaling, especially 
to  the multiplication of f by a positive constant, mainly due to  the presence of the arbi- 
trary quadratic term in subproblem (7). For greater flexibility, the user may choose a 
positive weight u in the following version of (7) 

^k k minimize f (z +d) + u ldI2/2 -all d. (16) 
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The standard value u = 1  suffices for well-scaled problems. If j varies rapidly, increasing u 
k will decrease Id 1 ,  thus localizing the search for a better point to the nei hborhood of zk.  

1 5 
f For instance, if the initial derivative v1 of f a t  z1 in the direction d is "large" (e.g. 

v < - 10  ), one may try a larger u ,  u=100 say, in the next algorithm's run on the same, 
or related problem. On the other hand, too "large" u will produce many serious, but short 

k steps with very small Izktl-z 1, and convergence will be slow. We may add that for 
piecewise linear objectives smaller values of u are less dangerous than too large. Moreover, 
large errors may arise in the solution of (16) by the subroutine QPDF4 if u is small 
(u<1oP4);  then it is better to  multiply j by a small number and set u=1. 

In the general case of u>O, the optimality estimate (9) becomes 

k 112 k 
j(zk) 5 j(z) + ulv I Iz-z I -  vk for all z. (17) 

This suggests that  the accuracy tolerance E, should be decreased when a larger u is used; 
otherwise, "false" convergence will occur. 

2.2. Linearly constrained convex minimization 

The box constrained problem with a convex j 

minimize j(z) , 

subject  z: 5 zi 5 zy  for i= 1, ..., n,  

can be solved in NOA2 by a modification of the method described in the preceding section 
(Kiwiel, 1985c,1986c,1987). 

The presence of finite upper and lower bounds ensures the existence of a solution and 
prevents divergence of the algorithm, which must occur when there is no solution (then 

k (z I tends, in theory, to  infinity; in practice - until an arithmetic overflow terminates the 
calculation). It is always advisable to place bounds of the form - 1 0 0 0 ~ ~ , ~ 1 0 0 0 ,  which 
should not be active when the solution lies inside the box. 

L U The objective j and its subgradient g j  will be evaluated only inside the box [z ,Z I. 
This ma be used to eliminate regions where j is undefined. For example, if 
j(z)=z:Y2 + ezp(z2) ,  it is essential to place bounds of the form z l>  ~ ~ 5 2 0 .  

If the user specifies an infeasible initial point zl,  i t  is projected on the box (by 
L U k replacing 21 with max{z, ,min(zi ,z,  )) ) .  Successive z remain in the box. 

k At the k-th iteration, an approximate feasible descent direction d is found to  
-k k minimize j (z +d) + u(dI2/2, ( 1 9 4  

L U subject  z, 5 zf+d, 5 z, , for i=l,  ..., n. 

This subproblem is a natural extension of (16). Consequently, the preceding remarks on 
the choice of parameters remain in force. 

We may add that  the introduction of box constraints only slightly increases the 
work a t  the search direction finding. 

For the problem with general linear constraints 

minimize j(z), subject  A z  5 b, (20) 
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the search direction finding subproblem becomes 

^k k minimize f (z + d )  + uldI2/2, 

subject  A (xk+d)  5 b. (21b) 

Due to rounding errors, the calculated direction dk need not be "strictly" feasible. To  
measure the infeasibility of a direction d we use the constraint violation function 

v2(d) =max{ h (xk+d)  ,0) 
zk 

defined in terms of 

h ( x )  = max { A,x-b': i=l,  ..., m ~ ) ,  (22) 

where A, denotes the i-th row of A.  Subproblem (21) is equivalent to the unconstrained 
problem 

^k k minimize f ( x  +d) + uldI2/2 + cv2(d) -all d (23) 

when the penalty parameter c is sufficiently large. Hence we may test increasing values 
of c until the solution of (23) is feasible, and hence solves (21). Starting from c=p, where 
p>O may be provided by the user, each successive c is multiplied by 10 until the solution 
dk of (23) passes the feasibility test 

h(xk+dk)  < ep,  (24) 

where c~ is a positive absolute feasibility tolerance. If this test is failed by even "very 
large" c ,  the calculation terminates. This occurs if c > l / c M ,  where E M  is the relative 
machine accuracy (the smallest positive c for which l + c > l  in the computer's arithmetic). 

No computational difficulties should arise if the linear constraints are well-scaled and 
the feasibility tolerance cF is large enough. In particular, it may be necessary to  ensure 
that  the coefficients of A are of order 1 and eF>cM2. For instance, if the coefficients of A 

6 result from measurements corrupted by errors of magnitude 10- , one should set 
c ~ = I o - ~ .  

If the initial point specified by the user is not feasible to within the tolerance EF, the 
algorithm tries to  project it onto the feasible set (by using a version of (23)). If the projec- 

k tion is successful, each successive z satisfies the linear constraints to within c ~ .  More- 
over, f(y) and g,( y) are calculated only a t  eF - feasible points with h( y) <eF. 

A combination of the preceding techniques is used for the problem 

minimize f (x)  -all z 

satisfying Ax  5 b, xL  5 x < x u .  

In this case, all trial points satisfy the simple bounds exactly, and the general linear con- 
straints to within e ~ .  
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2.3. Exact penalty methods for convex constrained problems 

The convex minimization problem 

minimize I ( z )  -all z  ( 2 5 4  

satis/ying F , ( z )  <_ 0 for j = l  ,...,my, 

F , ( z )  = 0  for j = m I + l ,  ..., mI+mE, 

where the functions I and F ,  j = l ,  ..., ml, are convex and the functions 
I 

F,, j = m I + l ,  ..., mI+mE, are affine (linear), may be solved in NOA2 by the uncon- 
strained minimization of the ezact penalty function 

e ( z ; p )  = I ( z )  + P F + ( z ) ,  (26) 

where p>O is a fized penalty coefficient, and the constraint violation is measured by 

F + ( z )  = max{F(z ) ,O) ,  

F ( z )  = max{F, ( z ) :  j = l ,  ..., my, IF,(z)I: j=mI+l  ,..., mI+mE} .  

Each solution z p  to the problem 

minimize e ( z ; p )  -all z  in R n  (27) 

solves (25) if it is feasible ( F ( z p ) < O ) .  This holds if p is sufficiently large, (25) has a solu- 
tion and its constraints satisfy the generalized Slater constraint qualification, i.e. for some 

F,(zS)  <0,  j= 1 ,..., my, Fj(zs)=O, j=mI+l ,..., mI+mE. 

The methods with a fixed penalty coefficient require the user to specify a sufficiently 
large p .  For well-scaled problems one may usually choose p in the interval I10,100]. If p is 
too small, (27) need not be equivalent to (25)) and the algorithm may diverge when the 
penalty function has no finite minimum. On the other hand, too large p hinders the 
minimization of the penalty function, which becomes ill-conditioned. (If p is large, the 
algorithm must hug the boundary of the feasible set.) 

The first method in NOA2 solves (26) by one of the algorithms for unconstrained 
minimization. At  the k-th iteration, a polyhedral approximation ~ ~ ( e ; ~ )  to e ( . ; p )  is con- 
structed from the past linearizations of e ( . ; ~ )  (see (5) and (6)). (These linearizations are 
calculated as in (5) from subgradients of the functions of (25)) which are evaluated by the 
user's subroutine.) The k-th search direction dk is chosen to 

-k k minimize e ( z  +d;p)  + u ldI2/2 -all d  (28) 

(see (16)). Termination occurs if 

IukI 5 ss ( l+le(zk;p)l)  

and 

F ( z k )  5 ( F ,  

where E S  and E F  are positive final accuracy and feasibility tolerances, provided by the 
k k k k user, whereas uk is a dual estimate of the predicted descent e ( z  +d ; p ) - e ( z  ; p ) ,  which 
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satisfies the optimality estimate 

where X* is a solution to (25). This method does not exploit the specific structure of 
e ( . ; p ) .  

The second method exploits the additive structure of e  ( . ; p )  by constructing separate 
^ k  polyhedral approximations f k  and F  to the objective f and constraint function F .  Thus 

the method may use a more accurate polyhedral approximation to  e ( . ; p )  

t k ( z ;p )  = j"(z) + p r n a x { F k ( z ) , o )  (31) 

in the search direction finding subproblem (28), which usually enhances faster conver- 
gence. 

Both methods may be allowed to choose the penalty coefficient automatically during 
the calculations (Kiwiel, 1985d). Then a t  the k-th iteration we set p = p k  in (28) and (31). 
The initial p 1  may be specified by the user. The penalty coefficient is increased only if z k 

! 
k k is an a proximate solution to (27) (i.e. z minimizes e ( . ; p  ) to within some positive toler- 

ance 6 ), but it is significantly infeasible (i.e. F ( z k )  is "large"). The specific rule for 
k updating p is 

- p  and bk+'=bk; if -uk 2 $ or F ( z k )  j - u k  set pi+'- ( 3 2 4  

otherwise set pk+'=pk and bk+'= c,@, (32b) 

where c p > l  and cv€(O, l )  are parameters that  increase the penalty and decrease the accu- 
k racy tolerance of unconstrained minimization 6  ; 6'=(u1(. Usually one may use 

pl=lO, c  =2 or c  = l o ,  and c,=0.1. Larger values of c  and c,  enable a faster P P 1 growth of the penalty coefficient a t  earlier iterations, if the initial p was too small. On 
the other hand, very large values of penalty coefficients slow down convergence. 

When employing the exact penalty methods, the user should place sensible upper 
and lower bounds on all variables. If the box defined by such bounds is not too large, the 
penalty coefficient will quickly reach a suitable value and then will stay constant. More- 
over, box constraints ensure the existence of a solution and prevent the algorithm from 
diverging. 

We may add that  the automatic choice of the penalty coefficient may produce a very 
large value of p k .  The methods terminate at  the k-th iteration if p k + ' > l / f M ,  where E M  
is the relative machine precision. Such abnormal termination may indicate that  the con- 
straints are not regular (e.g. are inconsistent), or that they are ill-scaled. 

In the current version of NOA2 additional general linear constraints A z j b  can be 
handled only by the first method that  does not exploit the structure of the penalty func- 
tion. 

2.4. The constraint linearization method 

The convex constrained problem 

minimize f ( z ) ,  subject F ( z )  5 0  (33) 

with a convex f and a convex F  satisfying the Slater condition ( F(zS)<O for some zS) 
may be solved in NOA2 by the constraint linearization method (Kiwiel, 1987), which is 
frequently more efficient than the algorithms of the preceding section. 
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At the k-th iteration the algorithm uses polyhedral approximations jk and pk to f 
and F in the search direction finding subproblem 

^k k minimize f ( z  + d )  + u(dI2/2 ( 3 4 4  

^ k  k subject F ( z  + d )  < 0, (34b) 

k where u>O is the weight of the regularizing quadratic term. Its solution d is an approxi- 
mate descent direction for the exact penalty function (26), provided that  the penalty 

k 4 parameter p=p is reater than the Lagrange multiplier p of the constraint (34b). Hence 
the algorithm sets p8=pk--' if p"<pk--'; otherwise 

k -k 
P = max { P  , c p p k - I } ,  (35) 

k where cp>l is a user-specified parameter (usually cp=2), and p O = ~ .  With 2 ( . ; p k )  given 
by (31), the predicted descent 

k - k k  k k  u = e ( z  +d ; p  ) - e(zk;pk)  

satisfies the o timality estimate (30), which justifies the termination test (29). The line k' k k search from z along d uses the rules of Section 2.1, applied to e ( - ; p  ) .  
Subproblem (34) is solved by finding dk  to 

^k k *k  k minimize f ( z  + d )  + u(dI2/2 + c maz {F ( z  +d),0}, (36) 

where the penalty coefficient c is chosen as in Section 2. (cf. (23)). Abnormal termination 
with c > ~ / E ~  may indicate violation of the Slater constraint qualification, ill-scaling of 
the constraints, or that  the infeasibility tolerance e~ is too tight. These factors also may 

k enforce termination due to p > 1 1 ~ ~ .  

Additional linear constraints 

A z L b ,  z L < z < z U  

are handled by the techniques of Section 2.2. In this case the Slater constraint 
L U qualification reads: F(zS)<O, Az < b  and z < 5 z for some 2s. Once again, we 

stress that  the presence of box constraints may be crucial to  the algorithm's convergence. 

2.5. Feas ibIe  point m e t h o d s  f o r  convex  p r o b l e m s  

The convex constrained problem (33) may be solved in NOA2 by the feasible point 
*k  method (Kiwiel, 1985a), which uses polyhedral approximations P and F of f and F in 

the search direction finding subproblem 

- k  k minimize H ( z  + d )  + uIdl2/2 -all d ,  (37) 

where u>O is a scaling parameter, whereas 

~ ~ ( 2 )  = maz { f k ( z )  - f ( zk j ,Fk(z)}  

is the k-th polyhedral approximation to the improvement function 

H ( z ; z ~ )  =maz { f ( z ) -  f (  zk )  ,F ( z ) }  for all z. 

^ k  k Thus, if F(zk)<O, we wish to  find a feasible ( F  ( z  +dk)<O ) direction of descent 
( r ~ ~ ~ t d ~ j <  f ( z k )  ), whereas for F(zk)>O, dk  should be a descent direction for F a t  z k 

(F  ( 2  +d  )<o), since then we would like to decrease the constraint violation. 
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k The algorithm runs in two phases. At phase I successive points x are infeasible, and 
the line search rules of Section 2.1 are applied to  F. Finding a feasible xk starts phase 11, 
in which the line search rules are augmented to  ensure feasibility of successive iterates. Of 
course, phase I will be omitted if the initial point x1 is feasible. 

The algorithm requires the Slater constraint qualification (F(xS)<O for some xS); 
k otherwise, it may terminate a t  a point x that  is an approximate minimizer of F. 

The algorithm is, in general, more reliable than the exact penalty methods of Sec- 
tions 2.3 and 2.4, because it does not need to choose penalty coefficients. Unfortunately, 
its convergence may be slower, since it cannot approach the boundary of the feasible set 
at  a fast rate. 

Additional linear constraints are handled as in Section 2.2. 

2.6. M e t h o d s  f o r  nonconvex  p r o b l e m s  

Minimization problems with nonconvex objectives and constraints are solved in 
NOA2 by natural extensions (Kiwiel, 1985a, 1985b, 1986a, 1986c) of the methods for con- 
vex minimization described in the preceding sections. Except for the constraint lineariza- 
tion method of Section 2.4, each method has two extensions, which differ in the treatment 
of nonconvexity. The methods use either subgradient locality measures, or subgradient 
deletion rules for localizing the past subgradient information. Advantages and drawbacks 
of the two approaches depend on specific properties of a given problem. 

For simplicity, let us consider the unconstrained problem of minimizing a locally 
Lipschitz continuous function f ,  for which we can calculate the linearization 

by evaluating f and its subgradient g a t  each y. At the k-th iteration, several such 
l j  . 

linearizations computed a t  trial points y , ] E J ~ ,  are used in the following polyhedral 
approximation to f around the current iterate x k 

k 
p ( x ) =  f ( ~ ~ ) + r n a x { - r r ~ ( x ~ , ~ ~ ) + < ~ ~ ( ~ ~ ) , x - x  >: j~ J;}, (38) 

where the subgradient locality measures 

a ,(xk,yj) = m a x  { If(xk) - f ( x k , ~ j ) l ,  7Jzk-~jI2} 

with a parameter 7 >O indicate how much the subgradient gj(yl) differs from being a 
subgradient of f a t  xi;0bserve that  in the convex case with 7,=0 the approximation (38) 
reduces to the previously used form (6) (cf. (4)). More generally, for ~ , > 0  the subgra- 

-k dients with relatively large locality measures cannot be active in f in the neighborhood 
-k of xk. Thus even in the nonconvex case f may be a good local approximation to f ;  pro- 

^k vided that  it is based on sufficiently local subgradients. This justifies the use of f in the 
search direction finding subproblems of the preceding sections (cf. (7), (16), (19), (21), 

(28), (37)). 
Ideally, the value of the locality parameter 7, should reflect the degree of noncon- 

vexity of f .  Of course, for convex f the best value is 7,=0. Larger values of 7, decrease 
the influence of nonlocal subgradient information on the search direction findin This, for 

k 4 instance, prevents the algorithm from concluding that  x is optimal because f indicates 
that  f has no descent direction a t  xk. On the other hand, a large value of 7, may cause 
that  after a serious step all the past subgradients will be considered as nonlocal a t  the 
search direction finding. Then the algorithm will be forced to accumulate local 
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subgradients by performing many null steps with expensive line searches. 

In the strategy described so far the influence of a subgradient on jk decreases 
"smoothly" when this subgradient becomes less local. More drastic is the subgradient 

^k deletion strategy , which simply drops the nonlocal past subgradients from f . In this case, 
we set ~ , = 0  in (39) and define the locality radius 

k of the ball around x  from which the past subgradients were collected. As before, the 
^k k approximation f is used to generate a search direction d . A locality reset of the approxi- 

mation occurs if 
k ldkl 5 ma a , (41) 

k where ma is a positive parameter. This involves dropping from Jf an index j with the 
k ' largest value of lz -yJ1 ,  i.e. the most nonlocal subgradient is dropped so as to decrease 

the locality radius ak.  If the next d k  satisfies (41), another reset is made, etc. Thus resets 
decrease the locality radius until it is comparable with the length of the search direction 

Idkl. 
k Dropping the j- th subgradient corresponds to replacing cr ( x  , y J )  in (38) by a large 

number. Moreover, the frequency of resets is proportional to t I! e value of m, in the test - 
(41). Therefore, our preceding remarks on the choice of 7 ,  are relevant to the selection of 

ma.  

In practice one may use ys=l  and ma=O.l, increasing them to rS=10 and ma=0.5 
for strong nonconvexities 

Both strategies use line searches similar to  that of Section 2.1. Additionally, the 
subgradient resetting strategy requires that  a null step ( x k + ' = x k )  should produce a trial 

k k k point yk+' close to  x  in the sense that  1 y k + l -  x  I is of order a . Since 1 y k f  l -  x k ( = t i l d k l ,  
k the right stepsize t R  should be sufficiently small. This can be ensured either by testing 

progressively smaller initial trial stepsizes, or by introducing the direct requirement 

where c d ~ [ 0 . 1 , 0 . 5 ]  is a parameter, e.g. Cd=m, 
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1. INTRODUCTION 
A new approach for multicriteria decision making is briefly presented here exploiting 

the pairwise comparisons of alternatives and assuming the existence of an implicit utility 
function of the decision maker. We plan to  extend DISCRET along this direction in the 
future. 

The basic problem in the area of the interactive decision support systems is the 
extraction and utilization of the preferences of decision maker (DM). A rather large 
number of approaches have been developed during last decade. This chapter reports some 
basic ideas of a new approach, which seems to be promising because of its conceptual and 
methodological simplicity. The presented approach is based on the pairwise comparisons 
of alternatives and linear approximations of the DM's utility function. Since the approach 
is a t  an early stage of development and its several aspects still have to be investigated, 
just some basic ideas and motivations will be presented. 

The basic feature of the approach is that  th DM is not forced to  compare pairs of 
alternatives which are presented to him but he chooses himself a subset of alternatives to 
be evaluated. An underlying quasiconvex DM utility function is assumed. 

2. MOTIVATIONS 
Let us consider the following multicriteria decision making problem. A decision 

maker ( a  person or an institution) wants to  buy a new car and has some difficulties in 
choosing from the variety of models available on the market. He is not an expert in cars 
and he knows just a few models: his old car and those possessed by his friends and rela- 
tives. So, all he is able to say about his preferences is a number of statements concerning 
cars he knows, like for example: 

VW Golf is preferred to  Ope1 Kadett,  

Fiat Uno is preferred to Peugeot 205, etc. 

He refuses to  compare cars he doesn't know or to supply any other kind of information 
about them. The reference point approach might be adopted in this case, but what if the 
DM would not be satisfied with the result? 

The task can be formulated as follows. A relatively small number of pairwise com- 
parisons of alternatives is available. What can be said about the DM's preferences on the 
basis of this small amount of information and what can be said about the quality of that 
information ? Note that  a statement: "a cheap good car is preferred to  an expensive bad 
car" is a rather low quality information since, once price and performance have been esta- 
blished as criteria, this is an obvious statement. The DM should be informed about the 
quality of the alternatives evaluation he had made. Also his inconsistencies should be 
discovered. 
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3. BASIC IDEAS 
Let F be the space of m criteria, A = R T  be the domination cone and let Q C F 

be the set of feasible alternatives. We will assume that there exist an underlying implicit 
quasiconvex utility function U: -+ R behind the DM'S preferences. The DM need not 
recognize it existence; however, we will assume that whenever he decides that  alternative 
b~ Q is preferred to  alternative a €  Q ,  it is equivalent to U(b) > U(a) .  

The DM'S utility function U is in general a nonlinear function of criteria. Identifying 
such function usually requires large amount of data and a significant computational effort. 
Therefore, keeping nonlinearity of U in mind, we shall restrict ourselves to  a set of linear 
approximations of U only. 

Suppose that k pairs of alternatives were compared by the DM: 

b, is preferred to a,, ai,b, E Q , i = 1 ,..., k 
This set of data may be considered as a set W of k vectors in the criteria space F, point- 
ing from a less preferred alternative a, to a more preferred alternative b,. 

Let us also consider the set V of normalized vectors w, E W : 

Each of the vectors U, represents a direction of improvement in the space of criteria 
of the function U(f) .  Hence, the cone C spanned by vectors U, E I/ is the cone of 
improvement for U( f )  and can be defined as: 

i = k  
C = { C a , u ,  : a, E R +  , u; E V) 

i = l  

The cone C* is the corresponding polar cone and can be defined as: 

Both cones C and C* can be expressed by their generators. The set of cone generators is 
the minimal subset of vectors belonging to that cone that still span the cone. The genera- 
tors of cones C and C* will be denoted by c and c*, respectively. 

C = { C a , c ,  a j €  R + ,  C , E  C )  
3 3 

1 

C* = { C ajc f  , a j €  R + ,  cf E C * )  
1 

where C and C* are corresponding generator sets. 

Let us return to  the pairwise comparisons. Since we shall consider linear approxima- 
tions of the utility function, for the sake of presentation simplicity, assume that  U is 
linear. If the DM has decided that alternative b E Q is preferred to alternative a E 9,  
then U(b) > U(a ) .  It is clear that  <u,u> > 0, where u = [a,b], and u is a vector nor- 
mal to hyperplanes U(f) = const. Hence, the vector u is contained in cone C*. 

From the above analysis it follows that an accurate determination of the vector u 
normal to the hyperplanes of U will be possible only in the case when the cone C* is 
spanned by a single vector (namely u ) .  In this case the DM'S utility function (or rather 
actually its linear approximation only) has been obtained and we can easily calculate the 
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DM's most preferred solution by minimizing U over the set Q. 
In general, because of obvious reasons, the cone C will be smaller than a halfspace 

and its polar cone C* will have a nonempty (relative) interior. In such a case, each of the 
vectors contained in C* may appear t o  be the vector u .  Fortunately, we can restrict our- 
selves to  the generators C* of the cone C* only. Considering each C; to  be the vector u 
(minimizing linear function based on CJ ) one can obtain a set of g .  E Q being the linear 

3 
approximation minimizers of DM's utility function. These elements g .  define a subset 

3 
S C Q of nondominated elements of Q in which the DM's most preferred alternative 
(minimizer of i U) is contained. 

As it can be seen now, our approach does not pretend to  determine the DM's most 
preferred solution exactly. It will rather tend to  find a domain in which it is contained. 
The more information about DM's preferences is contained in alternatives pairwise com- 
parisons supplied, the smaller this domain will be. Besides, also a good candidate for the 
most preferred solution may be presented to the DM. It can be obtained a kind of average 
vector for the cone C*: a sum of c;, a sum of v,, a gravity center of V .  etc. The author's '.' 
favorite method for the candidate selection is the calculation of the minimal (Euclidean) 
norm element from the convex hull spanned by the cone C* generators c;. This technique 
based on the method of P. Wolfe [I]  appeared to be very useful in our approach, serving 
also for some other purposes. Let us denote the minimal norm element from the convex 
hull spanned by the set V of vectors v as 

The minimizer of the linear function based on vector z will be chosen as the candidate for 
the DM's most preferred solution. 

4. SOME DETAILS 
In this chapter, we shall discuss the basic cases that  can occur for different sets of 

pairwise comparisons of alternatives supplied by the DM. 

Case 1. Cone C is a halfspace of F and llzll = 0. 

As it has been already mentioned, in this case the linear approximation of the DM's util- 
ity funct i0n. i~  defined by the vector u normal t o  the halfspace spanned by C .  The DM's 
most preferred solution may be found by the optimization of the linear function based on 
u .  

Case 2. Cone C is not a halfspace of F and llzll = 0. 

Since the DM's utility function is assumed t o  be quasiconvex, the set V of pairwise com- 
parisons supplied by the DM is inconsistent. Conflicting elements should be selected from 
the set V and presented t o  the DM. They are those elements which spann a convex hull 
containing zero and hence cause llzll = 0. Their selection is automatic during the calcula- 
tion of the element z. 

Case 3. Cone C is contained in a halfspace of F, it contains the domination cone A and 

llzll 2 0. 
This is the basic case. After the set of linear functions based on vectors C *  optimization, a 
subset of nondominated elements of set Q will be obtained. This subset is defined by the 
set of linear approximation optimizers of the utility function. A candidate for the DM's 
most preferred solution will be found by optimizing over the set Q the linear function 
based on vector z .  Notice that  if the number of supplied pairwise comparisons is small 
(too small to  spann a non-degenerate cone C) ,  then generators of the domination cone A 
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can be added to  the set V. 
Case 4. Cone C is contained in the domination cone A and 11~1120. This is the case of a 
low quality of information contained in pairwise comparisons of alternatives supplied by 
the DM (and corresponds to statements like: "a good cheap car is preferred to an expen- 
sive bad car"). The DM should be informed about this fact and perhaps he will be able to  
give some more restrictive statements. If he refuses for some reasons, we cannot proceed 
along the Case 3 line. However, instead of of considering the supplied information as 
being of a discriminative type we can treat it as an instructive type information. Each of 
the vectors uE V can be treated now as an approximation of the DM'S improvement 
direction or his utility gradient approximation. Hence, we can proceed just like in Case 3, 
taking the cone C instead of C* into consideration. Of course the DM should be aware of 
the new interpretation of the information he has supplied. 

Cases 3 and 4 can be distinguished a priori by checking whether C>A or CCA, 
respectively. 

5. CONCLUDING REMARKS 
If the DM is able to supply a large amount of results on alternatives evaluations, 

then a technique similar to  one presented in [2] should be used in order to eliminate dom- 
inated alternatives from further considerations. If it is not the case, the DISCRET pack- 
age methodology should be applied. Actually, the presented approach is planned to  be 
included into the DISCRET framework. 

Several aspects of the presented approach are still t o  be further investigated. The 
main one is how to  select a small sample of such alternatives that  their evaluation by the 
DM may result in significant improvement of an approximation of DM'S preferences. 
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ABSTRACT 

We consider the situation where a decision-maker in a multicriteria optim- 
ization problem must follow additional constraints in the criteria space 
defined by availability of resources. The set defined by such constraints - 
called demanded set - is assumed to be uncertain as a result of a priori 
experts estimations. The analysis of numerous real-life situations showed 
that  a method of looking for a non-dominated solution on the so-called 
skeleton allows to  find a solution maximally safe with respect to  the ran- 
dom perturbations of the demanded set. We formulate a maximal safety 
principle as a requirement that  the expected value of distance from the 
solution chosen to  the boundary of the demanded set were maximal. Then 
we prove that  the search executed on the skeleton curve satisfies this prin- 
ciple for a class of demanded sets defined by aspiration levels. 

1. INTRODUCTION 
The choice of a compromise solution fulfilling additional conditions with regard t o  

its location in the criteria space is essential in numerous real-life multiple criteria optimi- 
zation problems. For instance, the choice of a technological process from many variants 
proposed by experts, taking into account the total cost of investment and the minimal 
necessary time to  start  the production, is often based on the analysis of upper and lower 
bounds for values of the above criteria, (Gorecki, 1981). Such bounds are usually not 
strict; they are called aspiration levels and are assumed to  be imposed independently by 
experts or the decision-maker after the formulation of the problem, therefore serving as an 
additional information for selecting the compromise solution. 

The nature of aspiration levels is often uncertain and the arising set of demanded 
values of criteria may be represented as random or fuzzy set. When selecting a comprom- 
ise solution, the decision-maker is obliged to take into account the possibility of unex- 
pected change of aspiration levels using an uncertainty handling technique. For the case 
where the demanded set is defined by two aspiration levels such a method has been pro- 
posed by Gorecki (1981). In his approach the search for a non-dominated solution has 
been executed on a line which joins the aspiration levels, and lies inside of so-called skele- 
ton of the demanded set. An outline of the skeleton method may be found in Gorecki 
(1981) and Wiecek (1984). The numerical implementation of this method has then been 
developed by Gorecki et  al. (1982, 1985). Here, we will present some of its theoretical 
foundations. 

Throughout this paper we will assume that  the set defined by the lower and upper 
aspiration levels, called demanded set, and the attainable set of the criteria values have a 
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non-empty intersection. Then we will analyse the problem of selecting a non-dominated 
compromise solution from this intersection which is - in some sense - most reliable to the 
changes of the demanded set. Namely, we look for a problem solution on a specific class of 
lines called the ordinal skeleton curves of the demanded set. The solution thus obtained 
will possess the property that  the expected value of the distance from the boundary of the 
demanded set is maximal, or equivalently, that the probability of remaining within the 
demanded set - which boundary changes according to some random rules - is maximal. 

In this paper we will concentrate our attention on the particular case of the criteria 
space constraints, namely on the sets defined by aspiration levels of the form 

where: ql and 92 are the aspiration levels for criteria, denoting the minimal admissible, 
and the most desired values of the criteria, respectively, and O is the positive cone of the 

N partial order in the criteria space. Usually O =  R +  , and 
N 

Q = n [ q l i ; q 2 i l  
i= 1 

(2 )  

where q l = ( q l l ,  . . . , q l N )  and q2=(q21 , . . . , q2N) ,  q l i<qa i  for l i i < N  and the product of 
intervals is understood in the Cartesian sense. 

2. PROBLEM FORMULATION 
Let us consider multicriteria minimization problem /MMP/ 

( F :  u-+ R N ,  - + r n i n ( O )  (3) 

where F = ( F 1 , F 2 ,  ..., F N )  is the vector objective function, U is a subset of the decision 
space, and O is a closed, convex and pointed cone defining the partial order Se in the cri- 
teria space R ~ .  We assume that the set U and the function F are convex, therefore the 
attainable set F (  U )  is also convex. 

The solution u to the problem will be called non-dominated 
iff 

The set of non-dominated decision will be called the Pareto set and denoted by 
P ( U , F , O )  while the corresponding set of non-dominated valuations 

will be called the compromise set . We will also use the notation P (  V , O ) : =  P (  V , i d E , O )  
whenever V C  E .  

Moreover, we assume that  in the criteria space two points are distinguished, 
q l : = ( q l l ,  . . . ,q lN)  and q2:=(q21,q22, . . . ,q2N)  such that q 2 i e q l .  The points 91 and 92 will 
be called the upper, and the lower aspiration levels for the problem (3), respectively. 

The aspiration levels are set up by experts independently from the base problem for- 
mulation and define so-called demanded set Q for the values of the criteria (cf. formula 
(1)). We will assume that  ql is attainable and that 
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On the contrary, 92 is assumed to be unattainable strictly dominating point for the 
attainable set F ( U), i.e. 

and 

(cf. Skulimowski (1986a)). 

Another additional assumption which will be used a t  this stage of problem solution 
is that  there exist reasonable estimates of the scale coefficients for each scalar criteria 
F1, ..., FN. This will enable us to measure the distance of the criteria inside the demanded 
set basing on locally comparable units of the coordinates of the criterion function. A 
method of deriving locally comparable units has been proposed by Gorecki (1981) who 
used the differences between the coordinates of the barycenter of Q and ql as the relative 
units of criteria. 

Since this kind of information imposes certain knowledge of the trade-offs between 
criteria which in our model are uncertain, in the real-life applications we will repeat the 
execution of the algorithm described in the following section interactively, with the 
slightly varying values of the scale coefficients. 

The demanded set Q plays the role of additional constraints imposed on the solution 
to  the MMP. At this stage we will assume that  every non-dominated solution found inside 
Q is admissible for the decision maker. However, the estimates of ql and 92 are usually 
uncertain and the satisfactory solution to  the problem is the one which lies inside of the 
actual demanded set Q,, perturbed by a random factor r ] .  T o  maximize the probability of 
tiopt€ Q,, we will define a special class of algorithms of the line-search for a non-dominated 
solution to  MMP inside of Q .  

3. THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE 
The idea of the algorithm of finding a compromise non-dominated solution presented 

below consists in replacing the original MMP (3) by a search for a non-dominated solu- 
tion belonging to  a curve g which lies inside the demanded set Q. If Q is defined by ( I ) ,  g 
begins a t  an attainable reference point ql and ends at  an unattainable dominating one, 92 
i.e. g(0)=ql and g ( l )=q2 .  The solution thus found belongs to the intersection of 
FP( U,O) and g*:= g ( [ O ; l ] ) ,  and is non-dominated provided that  the set FP( U,O) 
divides the demanded set into two parts. The latter condition is fulfilled e.g. when F ( U )  
is convex and (6) is satisfied. 

The algorithm of the search. 
The choice of the curve g is based on the analysis of the specific properties of ele- 

ments of g*. Consequently we will consider the curves which satisfy the maximal safety 
principle, i.e. those for which the probability that  the compromise solution chosen will 
remain within the randomly perturbed demanded set is maximal. 

This may be achieved by selecting the curve maximizing the mean value of distance 
from the boundary of the demanded set. Considering moreover the fact that  some criteria 
may turn out  to  be redundant leads us to choosing the so-called ordinal skeleton curve 
(Gorecki (1981), Wiecek (1984)) as the curve the search should be expected on. 

The general algorithm of the search on a curve g may be sketched as follows: 
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Step 0 : selection of g ,  the choice of the algorithm A of detection of a non-dominated 
point p on g*, 

Step 1 : 

f;=A (fi-l)ri-l),  

Step 2 : check whether f, is attainable; set r;:=l if f, is attainable, 

otherwise r;:=O, 

Step 9 : 

e ,  := II fi-fi-1 I1 
i j  ri<ri-, and e , < e o  

then 

p:= 
fi+ fi- 1 

2 

stop 

else i:=i+l, go to 1. 

The result of an execution of the algorithm is a non-dominated solution p. The Pareto- 
optimality of p is an immediate consequence of the assumption that  ql and q2 are 
separated by the non-dominated surface F P ( U , O ) .  The uniqueness is assured if g is a 
linearly ordered subset of Q which will be assumed further on. The maximal safety of p 
will be discussed in the following section. 

In selecting a curve g so that  safety principle is satisfied, a crucial role is played by 
the norm in the criteria space since it determines the value of the distance of the solution 
chosen from the exterior (or, equivalently, boundary) of Q.  On the other hand, choice of 
distance influences the properties of the probability distribution of finding a non- 
dominated point along a curve. The justification of the choice of the norms Il or 1, in the 
criteria space is contained in the following subsection. 

The algorithm is assumed t o  possess the following properties 

a) A ( f , r ) € g t  whenever f ~ g *  

b) I 1 - f  I < I f  f - 1  for 1 > 1 

c) the assumed number of iterations of A depends only on the value of 1 I ql-q2 ( 1 ,  not 
on the shape of g*. 

T o  check whether a point F,  belonging to g* is attainable one should examine the 
existence of solutions to  the equation 

In convex cases this may be done as proposed by Wiecek (1984). 

The value of eo must be sufficiently small t o  assure the accuracy of the method. The 
recommended value which proved t o  be adequate in numerical experiments is 
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where p , (Q)  is the diameter of the projection of Q on the i-th axis in the criteria space. 

The choice of a distance in the criteria space 

We will s tart  this section from the following definition: 

Definition 1 : A curve g : ( ~ , l ] + E  is linearly ordered iff 

where is the partial order in E. The set of all linearly ordered curves linking the 
points x and y will be denoted by L (x,  y). 

Further on we will require that  the following property of the line-search for a non- 
dominated solution, imposed by the choice of the class searching algorithms, is satisfied. 

Assumption 1 . Let x and y be two elements of the demanded set Q such that  xLey .  
Then the probability of finding a non-dominated point on a linearly ordered curve con- 
necting z and y is constant and does not depend on the choice of this curve. 

On the other hand we may require that  the search on a curve gives better results 
when the curve is longer which can be formalized as 

Assumption 2. The probability of detecting a non-dominated point on a curve linking two 
points is proportional to the length of this curve. 

Consequently, the Assumptions 1 and 2 imply that  all linearly ordered curves linking 
two fixed points in the criteria space should have the same length. The above require- 
ments imply the limitations in the choice of the distance and the derived differential form 
(element of distance) which defines the length of the curve. 

It is easy to see that  the following statement is true. 

Proposition 1 : The Assumptions 1 and 2 are fulfilled by the length of the curve gen- 
erated by the ll or I, norm, i.e. by 

where g= (gl ,...,gN) is the curve considered, and z ( l l )  is the element of length associated 
to the L1 norm. The length of g for I, norm is defined similarly to (10). 

Proof of the Proposition 1 is given in Gorecki and Skulimowski (1986b), i.e. we 
prove that  

jor each z , ~ E Q ,  a ,b€L(z ,y ) :  h l ( a ) = h l ( b )  (11) 

Observe that  only certain distances in R~ satisfy the above requirement ( l l ) ,  e.g. i t  
is not fulfilled by the Euclidean distance. 

The Assumptions 1 and 2, and the subsequent distance in the criteria space are in 
compliance with the assumption about the class of algorithms applied for looking for a 
non-dominated point on a curve, namely we will assume that  these algorithms satisfy: 

Assumption 3. The a priori imposed maximal number of steps of an algorithm of detect- 
ing a non-dominated point on a curve g connecting the elements z and y of the criteria 
space does not depend on the choice of g but on the differences between coordinates of x 
and y. In particular, i t  may be defined as 
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where E n t ( r ) ,  r €  R ,  is the smallest integer exceeding r ,  and s;, l< i<N,  are desired 
steps of quantification of criteria. 

4. THE SAFETY PRINCIPLE 
We will s tart  this section with some basic definitions and properties. Let us recall 

that  the demanded se t  Q  is a closed and connected subset of the criteria space such that  

F P ( U , O ) n Q  f 4 (12) 

Remark 1 : When (12) is not satisfied but Q  contains some dominating points for the 
attainable set then Q  may be regarded as a target set and a distance scalarization tech- 
nique may be applied (Skulimowski, 1985a). 

Further on we will restrict our consideration to  the case where the demanded set 
appears as a result of upper and lower estimates for the values of the criteria. 

Definit ion 2 . The interval  demanded se t  for the problem (3)  is given by the formula 

where: 

N Interval demanded set in the case 0:= R+ may be represented as 
N 

where qj ,q; are lower and upper estimates of the i-th criterion demanded values respec- 
tively. 

Definit ion 9 . The subset SI of the interval demanded set QI defined by the formula 

S I : = { z ~ Q I :  3Gi ,Gj ,  if j -facets of Q I ,  such that (13) 

where a Q I  - the boundary of QI - will be called the skeleton of Q I .  

Now, let C ( Q )  be the subset of Q  consisting of points maximally distant from the 
boundary of Q ,  i.e. 

C ( Q ) : = { z € Q :  v y ~ Q , d ( ~ , a Q ~ d ( z , a Q ) ] )  (14) 

and let ql and q2 be two distinct elements of a Q  such that  q 2 i e q P  If Q  is convex then 
for each element q  of the boundary of Q  there exist a unique half-line ~ ( q )  starting in q  
and such that  the function d ( e , a Q )  grows fastest on u(q) in a neighborhood of each point 
belonging to  u(q) .  It is easy to  see that  u(q) links q  and C ( Q )  and it is linearly ordered. 
Thus we may formulate the following 

Definit ion 4 . The ordinal skeleton of Q  is the set 

It is evident that  if Q  = QI then SocSI .  

Observe that  the narrower are the experts' estimations concerning a criterion Fi the 
smaller scope of decision is left to  the decision-maker. Consequently, in some extreme 
cases certain criteria can be regarded rather as the constraint functions. Moreover, when 
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Remark 2: The property (15) of the curve S can serve as a definition of the ordinal skele- 
ton curve in the case when the demanded set is different from QI. The proved property 
(15) of the skeleton curve is closely related to  another definition of the safety of the solu- 
tion admitted. 

Definition 6 .  A non-dominated y solution to the problem (3) will be called mazimal ly  safe 
with respect to  the change of bounds of Q iff for each X E F P ( U , O )  

where 71 is a probability distribution in the space of closed and convex subsets of the cri- 
teria space. 

Now let us observe that  Proposition 3 implies the following result concerning the 
safety of the solution to  MMP chosen on the skeleton curve S .  

Theorem 1. Let X be an arbitrary subset of Qr. The probability distribution 71 defining 
the changes of aQ is assumed uniform. Then the maximally safe element of X with 
respect to  the changes of Q belongs to  S whenever SnXf 0. 
Corollary 2 : A maximal safe non-dominated point belongs to S or is closest to  S in 

F( V n Q .  

5. AN APPLICATION TO A DESIGN PROBLEM 
Let us consider the problem of designing a construction lift taking into account the 

set of parameters which decide about the commercial success of the product. These cri- 
teria include the time of evaluation of the project F1, the lifting capacity F2, the maximal 
range of the arm F3. We assume that  may exist other criteria such as reliability 
coefficient Fq or the production price per unit F5 which should be simply optimized, 
without paying attention to  the constraints in the criteria space and are not included in 
the model of preferences here presented. The total cost of design and investment may be 
regarded as a constraint, together with the employment, materials and technology limita- 
tions. We assume that  all constraints form a set U of admissible design strategies. The 
annual net income anticipated I may serve as an aggregated utility function which, how- 
ever, depends on the above listed criteria in an unknown way. We can only assume that  I 
is monotonically depending on the measure of fulfillment of the market's expectations 
which are expressed by the set Q. 

According to  the preference model presented in the preceding subsections U is 
defined by upper and lower limitations for the values of criteria. These parameters can 
have the following practical interpretation: 

Flr - the minimal time necessary t o  distribute an announcement about the new product 
to the potential customers, also - if all or a prevailing part of lifts is to be sold t o  one 
company - the minimal supply time required by this company; 

Flu - estimated upper limit of period warranting a sufficient market's demand, or the 
maximal supply time required by the commissioning company, or the estimated time 
a similar lift will be designed and offered by other producers; 

F2, - minimal lifting capacity admissible for lifts of this type; 

FZu - maximal reasonable lifting capacity estimated basing on the knowledge of potential 
scope of applications of lifts; 
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F31,F3u - similarly as above - the minimal admissible, and maximal reasonable values of 
the range of arm. 

Each criterion should be optimized inside of the bounds Fil,Fiu, l< :L3 ,  whereas 
F1 should be minimized, the other criteria - maximized. T o  treat the functions F, in an 
uniform way we will instead maximize the function (-F1). 

The demanded set Q can be expressed in the form 

The bounds of Q are uncertain as the values of Fil and F,,, 1Lt<3 are only esti- 
mates of the real user's needs. By Theorem 1 the strategy chosen on the skeleton set S 
ensures that  the probability of remaining within a perturbed set Q,, maximal, t;l being a 
random perturbation coefficient of Q .  Roughly speaking, the better the solution chosen 
fits into the set Q,,, the higher is the income I, on the other hand I should be monotonic 
with respect to  the criteria Fl,F2, ..., FN.  Thus we can conclude that  I should be mono- 
tonically proportional to  the utility function defined by the formula 

~ ( u ) = d ( F ( u )  , ~ Q ) I ~ ( F ( ~ ) ) + I ~ ( P ( u ) )  (17) 

where d(.,aQ) is the distance to the boundary of Q ,  F=(F1 ,F2 ,F3) ,  E=(F4,F5) and Il 
and I2 are certain order representing functions defined so that  the maximum of G were 
non-dominated and situated within Q X  R 2  (cf. also formula in the final subsection). Let 
us note that  the values of Il and I2 are entirely independent if the values of F and are 
not depending on each other. 

Hence it follows that  the maximal safety with respect to F of a compromise solution 
chosen is not conflicting with the goal of optimizing F in Q X  R2.  According to  the results 
of the preceding subsection such a compromise value of F should be found on the skeleton 
curve S. 

Since we do not impose any decision choice rule for the remaining criteria Fq and F5 
we might consider two subcases: 

1. F and P are independent - then we get a family of solutions of form 

where Fc is the compromise value of F found on the skeleton curve S. 

2. the values of P are uniquely determined by F - then we get a unique solution 

(FC,E(FC)). 

6. FINAL REMARKS 
The algorithm of solving the MMP basing on the search on the skeleton curve has 

been implemented in FORTRAN and applied to  solve real-life problems. The reader is 
referred to  Gorecki et  al. (1982, 1985) for a detailed study of decision making in the 
development analysis in the chemical industry. 

The applications presented there show the adequacy of the decisions made via the 
skeleton method. Some properties of the MMP solution choice algorithm based on apply- 
ing the skeleton curve have also been discussed by Wiecek (1984). The main idea of this 
algorithm is the same as in the general algorithm with the curve g replaced by the skele- 
ton curve S. This algorithm can be repeated interactively, with the modified scale 
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coefficients and the lower, and upper experts' estimations, 92 and ql, respectively. 

The method turned out to  be useful as well in case where the existence of the inter- 
section of S and the set of non-dominated points could not been taken for granted basing 
on the assumptions concerning the objective F and the feasible set U. In particular, a 
heuristic version of the method could be applied to  select a compromise solution in the 
case of non-convex attainable set F ( U )  provided the decision-maker is modifying the 
upper and lower estimates ql and q2 in accordance with the initial information about the 
location of F P ( U , O )  he is assumed to  posses. The theoretical analysis of such a class of 
methods, applying the search on the skeleton curve as a single step of the procedure, with 
the demanded set systematically modified during and interactive decision-making process 
challenges the perspectives of the further development of the method. 

Another possibility of investigating the theoretical fundamentals of the method con- 
sists in interpreting the search for a non-dominated solution on S as maximizing certain 
utility function p which admits its local maxima on S. In this approach p can be taken 
as the membership function of certain fuzzy set which describes the uncertainty of the 
demanded set Q. This function can have the form 

It follows immediately from the above formula that p~ has the desired property men- 
tioned above, i.e. 

and, moreover, p Q is order representing ( Wierzbicki, 1980) 

These properties could provide for a combination of fuzzy set theory and the skele- 
ton method. 
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1. INTRODUCTION 
The purpose of this report is to provide sufficient understanding of mathematical, 

methodological and theoretical foundations of the HYBRID package. Section 1 contains 
executive summary, short program description and general remarks on solution tech- 
niques and package implementation. Section 2 contains mathematical formulation of 
various types of problems that can be solved by HYBRID. Section 3 presents methodolog- 
ical problems related to solution techniques. Section 4 presents foundations of the chosen 
solution technique and documents the computational algorithm. Section 5 contains short 
discussion of testing examples. 

1.1. Executive summary 
HYBRID is a mathematical programming package which includes all the functions 

necessary for the solution of linear programming problems. The current version of 
HYBRID is referred to further on as HYBRID 3.01. HYBRID 3.01. may be used for both 
static and dynamic LP problems (in fact also for problems with structure more general 
then the classical formulation of dynamic linear problems). HYBRID 3.01. may be used 
for both single- and multi-criteria problems. Since HYBRID is designed for real-life prob- 
lems, it offers many options useful for diagnostic and verification of a problem being 
solved. 

HYBRID is a member of a decision analysis and support system DIDAS family 
which is designed to support usage of multicriteria optimization tools. HYBRID can be 
used by an analyst or by a team composed of a decision maker and an analyst or - on last 
stage of application - by a decision maker alone. In any case we will speak further on 
about a user of a HYBRID package. 

HYBRID can serve as a tool which helps to choose a decision in a complex situation 
in which many options may and should be examined. Such problems occur in many situa- 
tions, such as problems of economic planning and analysis, many technological or 
engineering design problems, problems of environmental control. To illustrate possible 
range of applications, let us list problems for which the proposed approach either has been 
or may be applied: planning of agriculture production policy in a decentralized economy 
(both for governmental agency and for production units) [2], flood control in a watershed 
[25], planning formation and utilization of water resources in an agricultural region, 
scheduling irrigation, planning and design of purification plant system for water or air 
pollution. 

To avoid a possible misleading conclusion that the usage of HYBRID may replace a 
real decision maker, we should stress that  HYBRID is designed to help a decision maker 
to concentrate on real decision making while HYBRID takes care on cumbersome 



M .  Makowski, J .  Sosnowski - 75 - HYBRID 9.01 

computations and provides information that  serves for analysis of consequences of 
different options or alternatives. A user is expected to define various alternatives or 
scenarios, changing his preferences and priorities when learning about consequences of 
possible decisions. This problem is shortly discussed in Section 5 and illustrated in the 
tutorial example. 

HYBRID could be used for that  purpose as a "stand alone" package, however - after 
a possible modification of a problem in an interactive way - one can also output the 
MPS-format file from HYBRID to  be used in other packages. The later approach can be 
used also for a transformation of a multicriteria problem to  an equivalent single-criteria 
LP. Diagnostic functions are not performed by many other linear programming packages, 
e.g., by MINOS - it is interesting to  note that  the authors of MINOS actually advise the 
user to debug and verify the problem with another package before using MINOS. 

HYBRID can be used for solving any linear programming problem but it is specially 
useful for dynamic problems; this covers a wide area of applications of operation 
researches. Many optimization problems in economic planning over time, production 
scheduling, inventory, transportation, control dynamic systems can be formulated as 
linear dynamic problems (171. Such problems are also called multistage or staircase linear 
programming problems [18] ,[19]. A dynamic problem can be formulated as an equivalent 
large static LP and any commercial LP code may be used for solving i t ,  if the problem 
corresponds to single objective optimization. For multicriteria problems, a preprocessor 
may be used for transformation of that  problem to an equivalent LP one. The system 
DIDAS, described in other papers in this volume, is a package that is composed of prepro- 
cessor and postprocessor for handling transformation of multicriteria problem and pro- 
cessing results respectively [20]. Those pre- and postprocesors are linked with an LP pack- 
age. HYBRID 3.01. has generally similar structure . The main difference is that  - instead 
of an LP package - another algorithm is applied, which exploits the dynamics of a prob- 
lem. Similarly as some other systems of DIDAS family, HYBRID has the advantage of 
handling a problem as a dynamic one which results in an easy way of formulation of cri- 
teria and of interpretation of results, since one may refer to one variable trajectory con- 
trary to a "static" formulation of dynamic problems which involves separate variables for 
each time period. 

HYBRID has been designed more for real-world problems that require scenario 
analysis than for academic (e.g., randomly generated) problems. Thus HYBRID is 
oriented towards an interactive mode of operation in which a sequence of problems is to 
be solved under varying conditions (e.g., different objective functions, reference points, 
values of constraints or bounds). Criteria for multiobjective problems may be easily 
defined and updated with the help of the package. 

The HYBRID 3.01 is available in two versions: one for mainframes and one for PC. 
Each version require a FORTRAN compiler that accepts full standard of FORTRAN-77. 
Implementation on a particular computer requires only changes in a routine that  reads 
system date and time. 

The package has been tested on VAX 111780 (for f77 compiler under Berkeley UNIX 
4.2) and on a P C  compatible with P C  IBM/XT. The minimal configuration of P C  con- 
sists of 512kB RAM. Intel coprocessor 8087 is strongly recommended (in fact required by 
some FORTRAN compilers). 
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1.2. S H O R T  P R O G R A M  D E S C R I P T I O N  

1.2.1. P r e p a r a t i o n  of a p r o b l e m  fo rmula t ion  

A problem to  be solved should be defined as a mathematical programming model. 

Firstly, a set of variables that  sufficiently describe the problem - for the  sake of the 
desired analysis - should be selected. It is desired - however not necessary - to define the 
problem in such a way as to  possibly exploit the problem structure (further on referred to  
as a dynamic problem). Secondly, a set of constraints which defines a set of admissible 
(i.e. acceptable or recognized as feasible by a decision maker) solutions should be defined. 
Finally a set of criteria which could serve for a selection of a solution should be defined. 

The formal definition of criteria can be performed in HYBRID in an easy way. How- 
ever, it should be stressed that  any definition of a complex problem usually requires 
cooperation of a specialist - who knowns the nature and background of the problem to be 
solved - with a system analyst who can advise on a suitable way of formal definition. It 
should be clearly pointed out that  a proper definition can substantially improve the use of 
any computational technique. For small problems used for illustration of the method, it is 
fairly easy to  define a problem. But for real life problems, this stage requires a close 
cooperation between a decision maker and a team of analysts as well as a substantial 
amount of time and resources. 

For real life problems, the following steps are recommended: 

1. Mathematical formulation of the problem being solved should be defined. 

2. A da ta  base for the problem should be created. This may be done on P C  with a help 
of a suitable commercial product (such as Framework, dBase, Symphony, Lotus 1-2- 
3). Original da ta  should be placed in this data  base. A user need not worry about 
possible range of quantities (which usually has an impact on computational prob- 
lems) because HYBRID provides automatic scaling of the problem. 

3. Verification of the data  base and of the model formal definition should be performed. 

4. The corresponding MPS standard file should be created. This may be done by a spe- 
cialized problem generator (easily written by a system analyst), or an universal gen- 
erator such as GEMINI (developed a t  IIASA) or GAMMA (part of FMPS package 
on UNIVAC) or by any appropriate utility program of data  base software. We 
strongly discourage the user from creating the MPS file with help of a standard text 
editor. 

1.2.2. Problem ver i f ica t ion 

This stage serves for the verification of model definition which is crucial for real 
application of any mathematical programming approach. 

First stage consists of preprocessing the MPS file by HYBRID, which offers many 
options helpful for that  task. HYBRID points to possible sources of inconsistency in model 
definition. Since this information is self-explaining, details are not discussed here. It is 
also advisable to examine the model printout by rows and by columns, which helps to  ver- 
ify model specification and may help in tracing possible errors in MPS file generation. 

Second stage consist of solving optimization problems for selected criteria which 
helps in the analysis of consistency of solutions. For larger problems a design and applica- 
tion of a problem oriented report writer is recommended. HYBRID optionally generates a 
"use r f i l e"  for that  purpose which contains all information necessary for the analysis of a 
solution. 
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After an analysis of a solution, a user may change any of the following parameters: 
values of coefficients, values of constraints and also any parameters discussed in next sec- 
tion. This may be done with help of the interactive procedure which instead of MPS file 
uses "communication region" that  contains problem formulation processed by HYBRID. 
Therefore, a user needs no longer to care about original MPS file which has the backup 
function only. 

1.2.3. Problem analysis 

Problem analysis consist of consecutive stages: 

analysis of obtained solution 

modification of the problem 

solution of modified problem. 

Analysis  of a solution consists of following steps (some of which are optional): 

The user should examine of values of selected criteria. Since the solution obtained in 
HYBRID is Pareto optimal, the user should not expect improvement in any criteria 
without worsening some other criteria. But values of each criterion can be mutually 
compared. It is also possible to  compute the best solutions for each criterion 
separately. A point (in criteria space) composed of best solutions is called the "utopia" 
point (since usually it is not attainable). HYBRID provides also a point composed of 
worst values for each criterion. This point is called "nadir" point. Such information 
help to define a reference point (desired values of criteria) because it is reasonable to 
expect values of each criterion to  lie between utopia and nadir point. 

2. The user may also a t  this stage make modifications to the original problem without 
involving the MPS file. 

3. For dynamic problems, HYBRID allows also for examination (in also a problem 
oriented report writer. 

Modification of the problem may be done in two ways: 

1. At this stage, the user can modify the formulation of the original problem. But main 
activity in this stage is expected after the model is well defined and verified and no 
longer requires changes in parameters that define the set of admissible (acceptable) 
solutions. It should be stressed, that  each change of this set usually results in change 
of the set of Pareto-optimal solutions and both utopia and nadir points should be 
computed again. 

2. If the values of all constraints and coefficients that  define the admissible set of solu- 
tions are accepted, the user should start  with computations of utopia point. This can 
be easily done in an interactive way. After utopia and corresponding nadir points 
are obtained (which requires n solutions of the problem, where n is the number of 
criteria defined) the user can also interactively change any number of the following 
parameters that  define the selection of an efficient solution t o  the multicriteria prob- 
lem: 
- Reference point (i.e. desired values for each criterion) might be changed. This 

point may be attainable or non-attainable (cf sec.2.4.). 
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- Weights attached to each criterion can be modified. 
- Reference trajectories in dynamic case can be changed as reference points. 
- Regularization parameters in selection function can be adjusted. 

3. Additionally, the user can temporarily remove a criterion (or a number of criteria) 
from analysis. This option results in the computation of a Pareto optimal point in 
respect to remaining "active" criteria but values of criteria that  are not active are 
also available for review. 

Solution o j  a problem. The problem defined by a user (after possible modification) is 
transformed by HYBRID to an equivalent LP problem which is solved without interac- 
tion of a user (an experienced user may however have an access to the information that  
characterizes the optimization run). 

1.2.4. Remarks relevant to dynamic problems. 

HYBRID allows for solving both static and dynamic LP problems. Static problems 
can be interpreted as problems for which a specific structure is not recognized nor 
exploited. But many real life problems have specific structure which - if exploited - can 
result not only in much faster execution of optimization runs but also remarkably help in 
problem definition and interpretation of results. 

Numerous problems have dynamic nature and it is natural to  take advantage of its 
proper definition. HYBRID offers many options for dynamic problems, such as: 

1. In many situations, the user may deal with generic names of variables. A generic 
name consists of 6 first characters of a name while 2 last characters corresponds to  
the period of time. Therefore, the user may for example refer to the entire trajectory 
(by generic name) or to value of a variable for a specific time period (by full name). 
Such approach corresponds to  a widely used practice of generating trajectories for 
dynamic problems. 

2. The user may select any of 4 types of criteria that  correspond to  practical applica- 
tions. Those can be defined for each time period (together with additional "global" 
conditions), but this requires rather large effort. Therefore, for dynamic problems, 
criteria are specified just by the type of criterion and the generic name of the 
corresponding variable. Types of criteria are discussed in details later. 

A problem can be declared as a dynamic one by the definition of periods of time. For 
a dynamic problem, additional rules must be observed. These rules correspond to the 
way in which the MPS file has to be sorted and to the way in which names for rows 
and columns are selected. These rules follow a widely accepted standard of genera- 
tion of dynamic problems. The formulation of a dynamic problem, which is accepted 
by HYBRID is actually an extension of the classical formulation of dynamic problem 
(cf Section 2.2.) .  In this formulation a model may contain also a group of constraints 
that  do not follow the standard of state equations. 

1.2.5. General description of the package and data structure 

The package is constructed in modules to provide a reasonably high level of flexibil- 
ity and efficiency. This is crucial for a rational use of computer resources and for planned 
extensions of the package and possible modification of the algorithm (see Section 5). 

The package consists of three subpackages: 
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Preprocessor that serves to process data, enables a modification of the problem, per- 
forms diagnostics and may supply information useful for verification of a problem. 
The preprocessor also transforms a multicriteria problem to a parametric single cri- 
teria optimization problem, helps in the interactive change of parameters, etc. 

Optimization package called solver of a relevant optimization problem (either static 
or dynamic) 

Postprocessor that can provide results in the standard MPS format and can also gen- 
erate the "user file" which contains all information needed for the analysis of a solu- 
tion; the later option makes it easier to link HYBRID to a specialized report-writer 
or a graphic package. 

All three subpackages are linked by communication region, that contains all data 
packed in an efficient way. From the user point of view, HYBRID 3.01 is still one package 
that may be easily used for different purposes chosen via specification file. 

The chosen method of allocating storage in the memory takes maximal advantage of 
the available computer memory and of the features of typical real-world problems. In 
general, the matrix of constraints is large and sparse, while the number of all essential, 
non-zero coefficients that take different numerical values is much smaller than the number 
of all non-zero coefficients. A super-sparse-matrix technique is therefore applied to store 
the data that define the problem to be solved. This involves the construction of a table of 
these essential coefficients. In addition, all indices and logical variables are packed so that 
one four-byte word is being used for four indices (2 logical and 2 integer). All data is 
packed in blank common to minimize the storage area used. 

Special commands of HYBRID support model verification and problem modification. 
This is necessary to facilitate scenario analysis and to reduce the problems caused by 
inappropriate scaling (cf sec. 3.8.). 

The data format for the input of MPS file and the output of LP results follows stan- 
dards adopted by most commercial mathematical programming systems (cf e.g. [24]). 

1.2.6. Outline of the solution technique 
HYBRID uses a particular implementation of the Lagrange multiplier method for 

solving linear programming problems. General linear constraints are included within an 
augmented Lagrangian function. The LP problem is solved by minimizing a sequence of 
quadratic functions subject to simple constraints (lower and upper bounds). This minimi- 
zation is achieved by the use of a method which combines the conjugate gradient method 
and an active constraints strategy. 

In recent years many methods oriented for solving dynamic linear problems (DLP) 
have been developed. Most of those methods consists of adaptation of the simplex method 
for problems with a special structure of constraints. In HYBRID, a different approach is 
applied. A DLP, which should be defined together with a state equation, is solved 
through the use of adjoint equations and by reduction of gradients to control subspaces 
(more exactly, to a subspace of independent variables). The method exploits the sparse- 
ness of the matrix structure. The simple constraints (lower and upper bounds for 
non-slack variables) for control variables are not violated during optimization and the 
resulting sequence of multipliers is feasible for the dual problem. The global constraints 
(i.e constraints other then those defined as simple constraints) may be violated, however, 
and therefore the algorithm can be started from any point that satisfies the simple con- 
straints. 
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The solution technique can be also used to solve single-criteria quadratic problems 
with virtually no changes in the algorithm. However, a routine to  input and handle the 
relevant data  and a corresponding standard for data input have yet to be designed and 
implemented. The solution method for multi-criteria quadratic problems requires 
modification of the algorithm. However the necessary modifications will be based on 
HYBRID 3.01 (cf sec.7 for details). 

In order to provide general information about capabilities of HYBRID, the main 
options are listed below. HYBRID offers the following features: 

Input of da ta  and the formulation of an LP problem follow the MPS standard. 
Additional rules ( that  concern only sequencing of some rows and columns) should be 
observed in order to  take advantage of the structure of a dynamic problem. An 
experienced user may speed up computations by setting certain options and/or 
parameters (cf the HYBRID User Manual). 

Solution is available in the standard MPS format and optionally in a user file which 
contains all da ta  that  might be useful for postoptimal analysis and reports. 

A main storage area, called the communication region, contains all the information 
corresponding to  a run. The communication region is stored on disk in certain situa- 
tions to allow continuation of computations from failed (or interrupted) runs or to 
run a modified problem while using previously obtained information without the 
necessity of reading and processing the MPS input file. 

The multicriteria problem is formulated and solved as a sequence of parametric 
optimization problems modified in interactive way upon analysis of previous results. 

For static or dynamic problem, the solution technique can be chosen. 

The problem can be modified a t  any stage of its solution (i.e., by changing the 
matrix of coefficients, introducing or altering right-hand sides, ranges or bounds). 

A special problem scaling is implemented (as described by the authors in [4] and 
briefly discussed in Section 3.8). 

A comprehensive diagnostics is implemented, including the checking of parallel rows, 
the detection of columns and rows which are empty or contain only one entry, the 
splitting of columns, the recognition of inconsistencies in right-hand sides, ranges 
and bounds, and various other features. that are useful in debugging the problem for- 
mulation. 

The package supports a display of a matrix by rows (printing the nonzero elements 
and names of the corresponding columns, right-hand sides and ranges), as well as a 
display of a matrix by columns (analogous to  displaying by rows). 

A check of the feasibility of a problem prior to its optimization is optionally per- 
formed. 

The optimization problem solver uses a regularization of the problem (see Section 
3.7). 

More detailed information for an infeasible or unbounded problem is optionally pro- 
vided by the package. 

1.3. Remarks on implementation 

HYBRID 3.01 is an extended version of HYBRID 2.1 documented in 1271. Therefore 
there are only small changes in the methodological guide in comparison to the methodol- 
ogy presented in 1271, because the solution techniques are basically the same. However, 
there are some important methodological innovations: 
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A modification of the problem formulation and of the solution technique as  well as 
resulting changes in the algorithm allow for solving dynamic problems with delays in 
both control and state variables. 

Instead of state equations for a dynamic problem, the user may specify state inequal- 
ities. 

The optimization algorithm has been improved by an automatic evaluation of some 
parameters, a different technical implementation of scaling, some changes in control 
flow, which results in its faster execution. 

The code has been modified in a way that allows for implementation on a personal 
computer (compatible with IBM PCIXT).  A new approach to  data  handling pro- 
vides for easier use of the package. 

Diagnostics have been improved and several observed bugs have been removed. 
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2. S T A T E M E N T  O F  O P T I M I Z A T I O N  P R O B L E M S  

2.1. Formulation of  an L P  p r o b l e m  

We will consider a linear programming problem (P) in the following standard form 
(see, e.g., [9]): 

min c z  (2.1) 

where z , c , l , u  E R n  , b,r  E R m  and A is an m x n matrix. 

The constraints are divided into two groups: general constraints (2.2) and simple 
constraints (2.3). In the input da ta  file (MPS file) the vectors b  is called RHS and the vec- 
tor r  - RANGES. The vector 1 and u  are called LOWER and UPPER BOUNDS, respec- 
tively. Obviously, some of bounds and/or ranges may have an infinite value. Therefore 
HYBRID may be used for solving any LP problem formulated in the way accepted by 
most of commercial packages. 

2.2. Class ica l  f o r m u l a t i o n  of a D y n a m i c  L P  p r o b l e m  ( C D L P )  

Before discussing a formulation of a dynamic problem that  can be solved by 
HYBRID 3.01., let us first consider a classical formulation of a dynamic linear program- 
ming problem (CDLP) (cf 1171) in the following form: 

Find a control trajectory 

and a state trajectory 

2 = ( z l 7 . . . , z T )  

satisfying the state equations with initial condition so 

and constraints 

< F  z + D , U , < ~ ~ - ~  t = 1 ,  ..., T 4 - 1  - r t - l -  t - 1  t-1 

et<ut< ft t = 1 ,  ..., T 

F , z , l d ,  

which minimize the performance index 

where: 
- t=1, ... T denote periods of time 
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- state variables zt, control variables ut, both for each period, are elements of Eucli- 
dian spaces of appropriate dimensions; 

- matrices At,Bt,Dt,Ft  are assumed to  be given, 
- RHS vectors ct and dt, as well as range vector rt and bounds for control variables 

et and jt are given, 
- initial condition z0 is given. 

The above given formulation has been chosen for the purpose of simplification of 
presentation only. Actually, the following modifications are accepted: 

1. Instead of inequality (2.5), equality constraints can be used; 

2. Since no constraints of bounds type (2.6) are allowed for state variables z ,  such con- 
straints may be specified in columns section of MPS file, thus formally are handled 
as inequality constraints of type (2.5); 

3. Performance index (goal function) can either be specified as single objective or will 
be replaced by a dummy goal function that is defined by the transformation of a 
multicriteria problem to a parametric LP problem; 

The structure of an CDLP problem (formulated above as in [17] ) may be illustrated 
by the following diagram (example for T = 3, ~ ~ , u ~ , u ~ , z ~ , z ~ , z ~ ~  are vectors, slack 
variables are not shown ) 

u1 u2 u3 "0 "1 "2 "3 rhs var . 
4 0 0 A,  - I  0 0 1 s ta te  eq. 

0 B2 0 0 4 - I  0 C 2  s ta te  eq.  
0 0 B3 0 0 A2 - I  c 3  s ta te  eq. 

D l  o o FO o o o do constr. 

o D2 o o F1 o o dl  constr. 

o o D3 o o F2 o d2 constr. 
0 0 0 0 0 0 F3 d 3  final s ta te  

b 1 b2 b3 0 al  a2 a3 
- goal 

where I is identity matrix and 0 is a matrix composed of zero elements 

2.3. F o r m u l a t i o n  of a D y n a m i c  P r o b l e m  ( D L P )  

The formulation of CDLP has been chosen for the purpose of simplification of 
presentation only. Actually HYBRID 3.01 is capable to solve problems of more general 
class, which will be referred to  as Dynamic Linear Programming problems (DLP). 
Namely, the matrices B = diag(B,) ,  D = diag ( D i ) ,  F = diag (F,) need no longer be 
block diagonal matrices. Also matrices below identity matrices need no longer have any 
specific structure. Therefore the CDLP is a specific example of DLP. One of main gen- 
eralizations - from a practical point of view - is that a problem with delays for control 
variables (which is not CDLP-class problem) may be solved by HYBRID. In fact, 
HYBRID accepts also problems with delays for both state and control variables, provided 
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tha t  s tate  variables for periods "before" initial s ta te  d o  not enter s ta te  equations. A 
choice of criteria for CDLP-class problem is also limited in comparison with tha t  for DLP 
(cf sec.4.3). 

All variables are divided into two groups: decision variables u and s ta te  variables zt, 
the latter are specified for each period of time 

Find a trajectory zt and decision variables u  such tha t  both: 

s ta te  equations 
t-1 

with given initial condition zo 
and constraints 

T 
d - r <  C F t z t +  D u s d  

t=O 

e l u l f  

are satisfied and the  following function is minimized: 
T 

The following two symbols can be used in the  specification file for definition of DLP: 

NT - number of periods (stands for T in the  above formulation) 

NSTV - number of s ta te  variables in each period ( the dimension of vectors zt ) 
The user can define s ta te  inequalities instead of s ta te  equations (2.9). The  slack 

variables for such inequalities are generated by HYBRID. For the  sake of the  presenta- 
tion simplicity only the  s ta te  equation will be considered further on. 

The  structure of an DLP problem may be illustrated by the  following diagram: 
(corresponding t o  an  example analogous t o  the  above example for CDLP) 

U "0 x 1 "2 "3 rhs var. 

1 A,  - H I  0 0 1 state eq. 
B2 A 10 4 1  - H 2  0 c2 state eq. 
B3 A 20 A,, A 22 -H3 c3 state eq. 
D FO F 1  F 2  F 3  d constr. 
b 0 al a2 a3 - goal 

where Ht is diagonal matrix and 0 is a matrix composed of zero elements 
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2.4. Multicriteria optimization 

2.4.1. General remarks 

The specification of a single-objective function, which adequately reflects preferences 
of a model user is perhaps the major unresolved difficulty in solving many practical prob- 
lems as a relevant optimization problem. This issue is even more difficult in the case of 
collective decision making. Multiobjective optimization approaches make this problem 
less difficult, particularly if they allow for an interactive redefinition of the problem. 

The method adopted in HYBRID 3.01 is the reference point approach introduced by 
Wierzbicki [21]. Since the method has been described in a series of papers and reports and 
has been applied to DIDAS (cf [1],[20]), we give only general outline of the approach 
applied. This approach may be summarized in form of following stages: 

1. The user of the model (referred to further as the decision maker - DM) specifies a 
number of criteria (objectives). For static LP problem a criterion is a linear combi- 
nation of variables. For DLP problems one may also use other types of criteria (cf 
sec. 2.4.2). The definition of criteria in HYBRID can be performed in an easy way 
described in the User Guide to  HYBRID. 

2. The DM specifies an aspiration level q = {ql, ....,qNc), where qi are desired values 
for each criterion. Aspiration level is called also a reference point. 

3. The problem is transformed into an auxiliary parametric LP (or DLP) problem. Its 
solution gives a Pareto-optimal point. If specified aspiration level q is not attain- 
able, then the Pareto-optimal point is the nearest (in the sense of a Chebyshev 
weighted norm) to the aspiration level. If the aspiration level is attainable, then the 
Pareto-optimal point is uniformly better then ij. Properties of the Pareto-optimal 
point depend on the localization of the reference point (aspiration level) and on 
weights associated with criteria. 

4. The DM explores various Pareto-optimal points by changing either the aspiration 
level q orland weights attached to criteria orland other parameters related to the 
definition of the multicriteria problem. 

5 .  The procedure described in points 3 and 4 is repeated until satisfactory solution is 
found. 

To give more formal presentation, let us introduce following notation: 

NC is the number of criteria 

gi is the i-th criterion 

g, is the aspiration level for i-th criterion 

W, is a weight associated with i-th criterion (whereas the user specifies its absolute 
value which is internally changed to negative depending on the type of criteria - 
cf sec. 2.4.3). 

em is a given non-negative parameter. 

A Pareto-optimal solution can be found by the minimization of the achievement 
scalarizing function in the form 

NC 
max ( w ~ * ( Q ~ - ) )  + * w * , 4 min 

i=l,...,NC i= 1 

This form of achievement function is a slight modification of a form suggested by 
A.Lewandowski [20] and by A.Wierzbicki [23]. Note that for em=O only weakly Pareto- 
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optimal points can be guaranteed as minimal points of this function. Therefore, the use of 
very small c m  will result i n  practice (except of situations in which reference point has 
some specific properties) in almost weakly Pareto-optimal solution. On the other hand, 
too big values of c m  could drastically change properties associated with the first part of 
the scalarizing function. 

2.4.2. Types of criteria 

A user may define any number of criteria. To facilitate the definition 6 types of cri- 
teria are available and a user is requested to declare chosen types of criteria before their 
actual definition. Two types of criteria are simple linear combination of variables and 
those criteria may be used for both static and dynamic problems. Four other types of cri- 
teria correspond to  various possible performance indices often used for dynamic problems. 
Since the latter criteria implicitly relate to the dynamic nature of the problem, they may 
be used only for dynamic problems. 

For the sake of simplicity, only the variables of the type X ,  (which otherwise is used 
in this paper to distinguish a state variable in DLP) are used in the following formulae, 
but in fact one can use in the definition of criteria both control and/or state variables. 
The only exception is the type DER of criteria, which may be defined by state variables 
only. Note that z; = { z i t ) ,  t=1 ,  ... T  . 

An k-th criterion qk is defined in one of following ways, for static and dynamic LP: 

Type MIN 
T n  

qk = C C aitzit + min 
t = l i = l  

where n is number of (state and control) variables, T  is number of periods; T = l  is 
assumed for static LP. 

Type MAX 
T n  

qk = C C aitzit + max 
t = l i = l  

and exclusively for dynamic LP: 

Type SUP 

qk = max (zit - zit) + min 
t = l , . .  T  

where xi is a selected state or control variable, Ti - its reference trajectory 

Type INF 

qk = min (zit - zit) + rnax 
t=l , . .  T  

Type FOL 
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qk = max (abs(zit  - z,,)) + min 
t= l , . .  T 

Type DER 

qk = max (abs(zit  - zit- +min 
t= l , . .  T 

which applies only to  state variables. 

2.4.3. Transformation of multicriteria problem to an auxiliary LP 
The transformation is done by HYBRID 3.01, therefore its description here has only 

informative purpose. This description may be useful in case of using the MPS file (option- 
ally created after modifications and transformation of a problem) as input for another LP 
package. 

Following notation is used throughout this subsection: 

u - name of the auxiliary variable u 

w, - weight coefficient for i-th criterion 

cn, - name of i-th criterion 

cht - string (2-characters) which identifies t-th period of time 

qi - reference point (aspiration level) for i-th criterion 

qi - linear combination of variables that  defines a criterion of the type MAX or MIN 
' ' - delimiters of a string 

T - number of time periods 

z . = { z  . ) , t  = 1 ,  ..., T is a variable that  defines a criterion of a type SUP,INF,FOL or 
3 l t  

DER. 

Transformation will be discussed for each type of criteria: 

Type : MIN 
additional row (with name which is concatenation of following three strings: 
'< ' ,en, ,  ' 0  - ' is generated in form: 

Type : MAX 

is transformed in the way similar to  type MIN, with additional (internal, for compu- 
tations only) change of the signs of W ,  to negative. 

Type : SUP 

additional T rows (with names which are concatenations of strings 
'< ', cni,  '. ' cht, where t = 1 ,  ..., T )  are generated in forms: 

Type : INF 
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is transformed in the way similar to type SUP, with additional (internal, for compu- 
tations only) change of the signs of w, to negative. 

Type : FOL 
additional T  columns (with names which are concatenations of strings 

I I '+ I ,  cn,, . , cht, where t=1,  ..., T )  are generated ; in the following formulae this 
name is replaced by C: 

additional T  columns (with names which are concatenations of strings 
6- I , cni, 6 . I , cht, where t=1, ..., T )  are generated ; in the following formulae this 

name is replaced by c,; 

additional T rows (with names which are concatenation of strings 
6- I - , cn, . ', cht, where t=1,  ..., T  ) are generated in form : 

additional rows (with names which are concatenations of strings 
6 I '< I ,  cn,, . , cht, where t = 1 ,... , T) are generated in the form: 

Type : DER 

additional 2x T  columns are generated in the same way as described for a criterion 
of the type FOL; 

additional T  rows (with names with are concatenations of strings 
I- ' - 

I I , cn,, . , cht, where t =1, ... , T )  are generated in form : 

where At-l, Bt, cjt are parameters of the state equations (cf sec.3.3.3), I is the 
identity matrix and B{ and (At-l-I)l denote the j-th row of matrices Bt and 
(At- - I )  respectively; 

additional T  rows (with names which are concatenations of strings 
I I '< I ,  cn,, . , cht) are generated in form : 

Auxiliary goal function, which is to  be minimized, is generated in the following form: 

where summation is done over corresponding sets of respective criteria, i.e. indices i, 
j, k correspond t o  criteria of type: MIN or MAX, SUP or INF and FOL or DER, 
respectively; E, is given parameter. 

The name of auxiliary variable v is '..dummy .', whereas the name of auxiliary goal 
function is '.dummy ..'. 

Value of E, may be changed by the command MEPS in a routine for modification of 
multicriteria parameters. 
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3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROB- 
LEMS 

3.1. General remarks 
The most popular methods for solving linear programming problems are based on 

the simplex algorithm. However, a number of other iterative non-simplex approaches 
have recently been developed 15-71. HYBRID belongs to  this group of non-simplex 
methods. The solution technique is based on the minimization of an augmented Lagran- 
gian ~ e n a l t y  function using a modification of the conjugate gradient method. The 
Lagrange multipliers are updated using a modified version of the multiplier method [8] 
(see Sections 3.2 and 3.4). 

This method is useful not only for linear programming problems but also for other 
purposes, as described in Section 1.2. In addition, the method may be used t o  solve prob- 
lems with non-unique solutions (as a result of regularization - see Section 3.7). 

The following notation will be used: 

a, denotes the i-th row of matrix A 

x . denotes the j-th component of vector x 
3 

llxll denotes the Euclidian norm of vector x 

( u ) +  denotes the vector composed of the non-negative elements of vector u (where nega- 
tive elements are replaced by zeros) 

T A denotes transposition of matrix A 

3.2. The multiplier method 
We shall first explain how the multiplier method may be applied directly to LP 

problems. 

Consider the problem (PO) ,  which is equivalent to  the problem (P) :  

min cx 

where d E RP, B is a p x n matrix, and m < p <_ 2 ( m + n ) .  T o  apply the multiplier 
method t o  this problem we proceed as follows: 

0 Select initial multipliers y (e.g., O = 0) and p E R ,p > 0 .  Then for k = 0,1, ..., 
" + '  ySlfl  where determine successive values of x , 

and 

where 

k 
L b , s  ) = + ( l l (yk + p ( ~ x - d ) ) + l I ~  - llyk l I2) l (2p) 

until a stopping criterion is satisfied. 

The method has the following basic properties: 
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1. A piecewise quadratic differentiable convex function is minimized a t  each iteration. 

2 .  The algorithm terminates in a finite number of iterations for any positive p. 

3. There exists a constant jT such that  for any p  > jT the algorithm terminates in the 
second iteration. 

Note that  it is assumed above that  the function L ( - , ~ ~ )  is minimized exactly and that  the 
value of the penalty parameter p  is fixed. Less accurate minimization may be performed 
provided that  certain conditions are fulfilled (see, e.g., [7,8]). For numerical reasons, a 

k non-decreasing sequence of penalty parameters { p  ) is generally used instead of a fixed p.  

3.3. The conjugate gradient method for the minimization of an augmented 
Lagrangian penalty function 

The augmented Lagrangian function for a given vector of multipliers y  will be called 
the augmented Lagrangian penalty function (221. For minimization of that  function the 
conjugate gradient method has been modified t o t a k e  advantage of the formulation of the 
problem. The method may be understood as an modification of the techniques developed 
by Polyak [ l o ] ,  O'Leary [ l l ]  and Hestenes [12] for minimization of a quadratic function on 
an interval using the conjugate gradient method. 

The problem (P)  may be reformulated as follows: 

min cx 

where z  E R m  are slack variables. 

Formulation (PS) has a number of advantages over the initial formulation (PO): 

1 .  The dimension of matrix A in (PS) is usually much smaller than that  of matrix B in 

(PO).  
2.  The problem is one of minimization of a quadratic function in (PS), and of minimi- 

zation of a piecewise quadratic in (PO).  

3. Some computations only have to be performed for subsets of variables. Note that 
slack variables are introduced only for ease of interpretation and do not have to  be 
computed. 

In (PS) the augmented Lagrangian is defined by 

We shall first discuss the problem of minimizing L ( Z , Z , ~ )  for given y,p> 0, subject 
to lower and upper bounds for z  and z.  Let us consider the following augmented Lagran- 
gian penalty function 

F ( x , z )  = ( c / p ) z  + ( I ly lp + ‘42 - b + 112 - I I Y / P  112)/2. (3.4) 

The gradient of F is defined by 
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where 

From the Kuhn-Tucker optimality condition, the following relations hold for the 
minimum point ( x i , % * ) :  

and 

For any given point such that  1 5 z <_ u it is possible t o  determine slack variables 
0  5 z  5 r  in such a way that  the optimal it^ conditions with respect to z are obeyed. 
Variables z  are defined by 

if g. I < - 0  ( a F / a z ,  > 0 )  

if g, >_ r,  ( a F / a z ,  < 0 )  (3.5) 

g, if r, > g, > 0  ( a F / a z ,  = 0 )  . 

We shall use the following notation and definitions. The vector of variables x with 
indices that  belong t o  a set J  will be denoted by zJ, and analogous notation will be used 
for variables g. We shall let q denote minus the gradient of the Lagrangian penalty func- 
tion reduced to  z-space (q = - ( a F / a z ) ) .  The following sets of indices are defined for a 
given point z :  

The set of indices I  of violated constraints, i.e., 

I  = { i :  g, 2 r,) U { i :  g, 5 0 )  . 

Tis the complement of I ,  i.e., 

T = {1,2 ,...., m)\I . 

The set of indices I can be also interpreted as a set of active simple constraints for z. The 
set of indices J  of variables that  should be equal to  either the upper or the lower bound, 
l.e., 

J  = { j :  z, = 1, and q -  < 0 )  u { j :  zj = uj and q, 2 0 )  . 
3 - 

is the complement of J ,  i.e., 

.i = {1,2  ,....., n)\ J  . 
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For the sake of illustration the matrix A may be schematically split up in the fol- 
lowing three ways (see the Figure below): first according t o  active rows, second according 
to  basic columns and third with illustrate the par t  of the matrix A for which augmented 

I Lagrangian penalty function is computed. The  contents of the matrix A.i (for which the 

augmented Lagrangian penalty function is computed) changes along with computations. 

In essence, the augmented Lagrangian penalty function is minimized using the conju- 
gate gradient method with the following modifications: 

1 .  During the minimization process z and z satisfy simple constraints and z enters the 
augmented Lagrangian in the form defined by (3.5). 

2. The conjugate gradient routine is run until no new constraint becomes active, i.e., 
neither set I nor set J increases in size. If this occurs, the computed step length is 
shortened to  reach the next constraint, the corresponding set ( I  or J) is enlarged 
and the conjugate gradient routine is re-entered with the direction set equal t o  
minus the gradient. 

3. Sets J and I are defined before entering the procedure discussed in point 2 and may 
be only enlarged before the minimum is found. When the minimum with respect t o  
the variables with indices in sets J and I has been found, sets J and I are redefined. 

4.  Minimization is performed subject only t o  those components of variables z whose 
indices belong t o  set J ,  i.e., variables t ha t  are not currently equal t o  a bound value. 

5. Minimization is performed subject only t o  those components of variables z whose 
indices d o  not belong t o  set  I ,  i.e., slack variables t ha t  correspond t o  non-active sim- 
ple constraints for z .  Note tha t ,  formally, this requires only the use of different for- 
mulae for z .  In actual fact i t  is sufficient t o  know only the set I, which defines the 
minimized quadratic function. 
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4. SOLUTION TECHNIQUE 

4.1. Algorithm for minimization of augmented Lagrangian 

We may now present the algorithm for minimization of the augmented Lagrangian 
penalty function in a more formal way. The algorithm consists of t he  following steps: 

1. For given y and  p>O choose a point z such t h a t  1 5 z 5 u 
2. Compute  g = - y / p  - A z  + b 
3.  Determine sets I  and 

I  = { i :  g ,  > r , } u { i :  g ,  < 0 1 ,  

T = {l,...,rn}\I 

4. Redefine gas follows: 

r, if g i - r ,  > O  
g ,  : = otherwise 

5. Compute the minus gradient: 

I T I  9  = -++(A ) g 

6. Determine sets  J  and J 

J = { j .  2 .  = I ,  and q < ~ } ~ { j :  z = u, and q > 0 )  
3 3 -  3 3 -  

1 = (1, ..., n}\J 

7 .  If g .  = 0 for all j E J then z is a minimum point of the  augmented Lagrangian 
3 

penalty function - - 
8. Set p J  = sJ 
9.  Compute 

s  = A - p  d 
J 

h  = llsJ 112 
d  = 11s' ! I 2  
a ( 1 )  = h l d  

Note t h a t  cr(1) is the  conjugate gradient s tep length in direction p J 

10. Find t he  s tep  length t h a t  would violate the  nearest non-active constraint,  i.e., for 
a€ F, 

4 2 )  = min {g , / s , } ,  K = { a  : i€T,s,>0} 
I'E K 

a ( 3 )  = min i~ K { ( g ,  - r , ) / s , } ,  K = { i  : ~ET,s ,<o)  
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11. Find the step length that  would enable a variable to reach a bound, i.e., 

a ( 4 )  = rnin ( 1 , - z , ) / p  , K= { j  : j € J ,  p j < O )  
jE K J 

a ( 5 )  = rnin ( u - z ) / p j  , K= { j  : j € J ,  p ,>O)  
jEK 

12. Determine step length a = rnin (a ( ; ) ) .  If a = m t n ( a ( 2 ) , a ( 3 ) )  add the row 
i=1  ...., 5 

index for which this condition hoids to set I and remove that  index from set 7. If 

a = m i n ( a ( 4 ) , a ( 5 ) )  add the column index for which this condition holds to set J 
and remove that  index from set 7. 

- - 
J 13 Compute the new point zJ : = zJ + a p  and the minus gradient at  that  point: 

gi : = gi - a s i  
- 
J -  I T I  9  - ( A J )  !J - c J / p  
- 

14. If q J  = 0 .  go to  step 2 

1 5 .  If a = a ( l )  continue with the conjugate gradient step, i.e 

J 2 a = 119 I I  i h  

P?= q J  + a p  J 

and go to step 9 

16. Go to step 8 
- 

Note that  the condition g J  = 0  is in practice replaced by l l q J  I 1 5 rk lp  The value of 
k 

E may be quite large in the first few iterations; it then decreases as the number of itera- 
tions increases. 

4.2 A d a p t a t i o n  of t h e  mul t ip l i e r  m e t h o d  
k Let the violation of i-th constraint in a point z be defined in the following way: 

and llvkll denotes the norm of violated constraints. The multiplier method will be 
presented in algorithmic form. 

1. Compute an initial vector of multipliers on the basis of the particular option chosen 
(i.e., either = 0  or corresponding to the constraints violated a t  starting point 

2 )  

2 .  Find zk+' which minimizes the augmented Lagrangian penalty function (see Section 
k 3.3.) with accuracy E . It is assumed that  
k k  c k  : = m i n  ( c k ,  I I v  J I E  ) )  

k k where the sequence E 40. In addition, cmi > E > E,, where em,,  E ,  is the 
assumed minimum and maximum accuracy, respectively. 

k 3. If g J  < E and the last step has been a multiplier update go to step 6 (where 

i! the norm of the gradient of the augmented Lagrangian penalty function). 
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4. If I I ~ T J < ~ ~  and the last iteration has been a multiplier update set 
pk . . - - min (p  k p, , p,) (where p,is the assumed maximum value of the penalty 

parameter and p, is assumed to be constant) 
k 5. If pk = p, then set rk  : = max ( r  r,,r,) where r, and r, are assumed parame- 

ters. 

If pk = p, and rk = r, go to  step 6. Otherwise go to  step 2 

6. Compute new multipliers 

(0 otherwise 

7. ~f ~\y~+l-- yk 11 > ~d then set p k + l  = min (P k P,,P,), set 
rk+'=r r,, k : = k + 1 and go to step 2 

8. Check the feasibility of the current point. If it is feasible, Jlvkl I< F E A S ,  minimize 
the augmented Lagrangian penalty function with the vector of multipliers fixed a t  
ykS1 and with accuracy rk+', and then stop 

k 9. If the point tested a t  step 8 was infeasible and p < p, then set 
p k + l  = min (pkp,,p,), set k : = k + 1 and go to step 2 

10. If step 9 was omitted, check the feasibility of the problem by minimizing the square 
Euclidian norm of the violated constraints. If the problem is infeasible, then stop. 

11. Take the feasible solution found in step 10 as the current point, set k : = k + 1, 
k update rk = max (r  r,,r,) and go to step 2. 

The list of parameters which are referred to in the User Guide to HYBRID and their 
relative symbols used above is as follows (index k is omitted): 

RO - p, ROST - p, , ROMX - p, , EPS - C,  EPSS - c,, EPSM - c,, EPSD - ~ d .  

4.3. Solution technique for DLP 
We will not repeat reasoning given in the first part of sec. 2.3. Instead, let us point 

out basic differences between the algorithms for static LP and DLP: 

1. Minimization is reduced to a subspace of decision variables. Gradient of Lagrangian 
penalty function is computed for variables that belong to  a subspace of decision vari- 
ables. This (together with arguments already presented in sec. 3.3.) shows advan- 
tages due to the use of dynamic structure of DLP problem in comparison with 
presentation of such a problem as a large LP. 

2. The structure of matrices B1 ,....., BT and Fo ,..., FT has no impact for the algorithm 
nor affects the technique of storage of data, because super-sparse technique is applied 
(cf sec.l.4.). It should be also pointed out that the method of transforming a mul- 
ticriteria problem to a parametric LP one introduces constraints (cf sec.2.4.3.) that  - 
for the proposed (cf sec.2.4.2.) types of criteria - do not fit to the staircase structure 
of CDLP (cf (171). Therefore, any technique that  would exploit the staircase struc- 
ture of DLP would also imply a reduction of a number of criteria types. The alterna- 
tive is then to treat a problem as a large LP static one or to apply a technique that  
does not exploit the classical DLP structure. 
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3. State equations are solved (for given decision variables u )  recursively and are 
fulfilled in any stage of computations. Therefore any single constraints for state vari- 
ables have to be treated as general constraints and included into the matrix. Gra- 
dient need not to be computed for those variables, but state equation is solved twice 
(for state variables and variations). 

4. A conjugate trajectory \E is computed from conjugate equation and has an interpre- 
tation of dual variables for state equations. No other variables associated with those 
rows (defined in sec. 3.3, i.e. Lagrange multipliers, shifted constraints g) are com- 
puted for state equations rows. 

5. The general structure of the algorithm for DLP is similar to that presented in sec 
3.4. To sum up basic differences one may observe that 

we consider a problem that is equivalent to a static LP but reduced to the sub- 
space of decision variables and is solved in the way similar to that described in 
sec. 3.3. and 3.4. 

state equations are solved for control variables and for variations 

a conjugate trajectory \k is computed. 

4.4. Algorithm for minimization of augmented Lagrangian for DLP 

Now we may present the algorithm for minimization of the augmented Lagrangian 
function for DLP in a more formal way. In each iteration of multiplier method, the fol- 
lowing optimization problem is solved: minimize the augmented Lagrangian penalty func- 
tion 

subject to 

with a given initial condition zo and 

where z is a vector of slack variables, which - as discussed in sec. 3.3. - are not used in the 
algorithm. The algorithm consists of the following steps: 

1. For given y and p choose a point u such that e 5 u 5 f 
2. Solve the state equation 

with given initial condition zo 
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3 .  Compute shifted constraints for constraints (2.10.) 
T 

g = - y / p  - C F t z t  - DU + d 
t=O 

and determine sets I ,  f 

I  = { i :  g ,  > r , ) u { i :  gi < 0 )  

while i i s  the complement of I .  
4.  Redefine g as follows : 

gi - ri if g,  > r, 
g ,  : = otherwise 

5. Find the conjugate trajectory by solving backwards the conjugate equations 

with boundary condition 

I T 1  
@ T =  ( F ~ )  9 - U T / P  

6. Compute the minus gradient reduced to  subspace of decision variables 

I T I  
1 

9 = -% + ( D )  9 + C B ? * t  

7. Determine sets J and J 
J = { j  : U ,  = e, and q . < ~ ) u { j  : u = 1, and q,>0)  

3 -  3 

while J is the complement of J 

8. If q .  = 0 for all j E then u is a minimum point of the augmented Lagrangian 
3 

penalty function - - 
9. Set pJ = qJ 

10. Solve s ta te  equation in variations 

with boundary condition a. = 0 

11. Compute 
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Note that  a ( 1 )  is the conjugate gradient step length in direction p 7 
12. Find the step length that  would violate the nearest non-violated constraint, i.e., 

" ( 2 )  = min {g , /s , ) ,  K = {i:i E 7 and si > 0 )  
iE K 

a (3 )  =mi, ( ( 9 ,  - r i ) / s i ) ,  K = { i : i ~  and si < 0 )  
i E  K 

13. Find the step length that  would enable a variable to reach a bound, i.e., 

a ( 4 )  = min { ( e j -  u,) / p j  ), K = { j:  j E 1 and p, < 0 )  
J E K  

a ( 5 )  = min { (!,- u,) / p , ) ,  K = { j: j E and p, > 0 )  
jE K 

14. Determine step length a = min ( a ( ! ) )  
i=1, ..., 5 

If a = min (a (2 ) , a (3 ) )  add the index for which this condition holds to set I and 

remove that  index from set f . If a = min (a (4 ) , a (5 ) )  add the index for which 
this condition holds to set J and remove that  index from set 7. 

15. Compute : 
- - 

.J. . = u J + a P J  

I 16. For the new g solve the conjugate equation (as in step 5) 

17. Compute the minus gradient : 
T 

- 
18. If qJ = 0 ,  then go to 2 

19. If a = a ( l )  continue with the conjugate gradient step, i.e. 

J 2 P = 119 I I  l h  
- - 

p J  = qJ + p P J  

and go to step 10 

20. Go to step 9 - 
Note that  the condition qJ = 0.  is in practice replaced by (qJ 11 5 ck The value of c k 

may be quite large in the first few iterations; it then decreases as the number of iterations 
increases. 

4.5. Regularization 

It is possible that  a linear programming problem may have nonunique optimal solu- 
tions. Although this is theoretically rare, in practice many problems actually have a large 
set of widely varying basic solutions for which the objective values differ very little [7]. In 
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some cases, the simplex algorithm will stop when a basic solution is recognized as optimal 
for a given set of tolerances. For problems with a nonunique optimum, the first optimal 
solution found is accepted, so that  one may not even be aware of the non-uniqueness of 
the solution reported as optimal. 

Thus we are faced with the problem of choosing an optimal (or, in most cases, to be 
more accurate, a suboptimal) solution that possesses certain additional properties 
required by the user. This problem may be overcome by applying an approach called reg- 
ularization. Regularization (Tikhonov's type ) is a means of finding the optimal solution 
with either minimum Euclidian norm or minimum distance from a given reference point. 
The second of these options has not yet been implemented; the first may be activated by a 
REGZERO statement in the specification file (see the User Guide to HYBRID). 

The minimum norm solution is obtained by carrying out a sequence of minimizations 
of regularized augmented Lagrangians rather than one minimization of an "ordinary" aug- 
mented Lagrangian 1161. Thus minimization of L (-, yk) in problem (PO) is replaced by 

. k t 1  = argmin L(z,Yk) + 11 I12/(2t)k) 

where 

q0 , q, and q m  are given parameters. 

The list of parameters which are referred to  in the User Manual to HYBRID and 
their relative symbols used above is as follows : 

RETA - qo, RSETA - q,, RMETA - q m  

4.6. Scaling 

It is generally agreed that  the choice of an appropriate scaling of a problem being 
solved can be a critical issue for numerical stability. There are obviously two approaches 
to  deal with that  problem. First, suggested by Tomlin ([15]), assume that  an experienced 
model builder, who uses sensible units may avoid unnecessarily large or small matrix ele- 
ments. This is true, but requires a lot of time consuming preparations, which are reliable 
source of frustrating bugs. Therefore, we have followed the second approach, suggested by 
Curtis and Reid ([14]) for solving the scaling problem. This approach is nowadays widely 
accepted (e.g. the new version of MINOS has also scaling option, which has removed 
many problems typical for older versions of MINOS). 

Our approach is discussed in details in [4], therefore only short description follows. 
For the sake of simplicity we consider a problem of scaling on an example of a problem in 
a form 

where A € R m x n  

According to  Curtis and Reid (1972) matrix A is considered as well-scaled if 
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for some acceptable v .  J ,  are sets of indices of columns with non-zero elements in i-th 
row. 

Therefore, instead of solving a badly conditioned problem a of type (3.6.), one can 
solve an equivalent problem in form 

Here R = d iag( r l  ,...., r,) and C = d iag(c l  ,...., c,) are two diagonal matrices with posi- 
tive components. In other words, an equivalent problem is formed by multiplying i-th row 
by r, and j-th column by c j .  

The problem of scaling boils down to finding coefficients r ,  and c j  such that  

It is easy to  observe that  the above stated problem has no unique solution (although 
the optimally scaled matrix may be unique ) .  Therefore we minimize the following perfor- 
mance index: 

where rhs and bnd are non-zero elements of RHS and bounds, respectively, sets of indices 
K and L contain indices of rows with non-zero rhs and columns with non-zero bounds, 
respectively. 

For the numerical reasons the base of logarithms is 2 and obtained coefficients are 
rounded to nearest integer number. 

For this formulation of the scaling problem, it was possible to  design a specialized 
algorithm based on conjugate gradient method. Since an excessive accuracy is not 
required, the scaling algorithm is very efficient (usually it takes less then 10 iterations 
regardless of dimension of a problem). Therefore the scaling option (which is the default) 
should not be suppressed except if special requirements apply. The values of performance 
indices (3.7.) and (3.8.) are displayed both before and (if active) after scaling. 

Usually there is no need to  change default parameters. Should a change of parame- 
ters be desired, it may be done by entering respective values in specification file (SBETA 
stands for p and SETA stands for 7 ) .  Two stopping criteria are used, which may be con- 
trolled by parameters SEPS and SEP1. Let vk be a value of the performance index (3.8.). 
The scaling routine is ended, if v k / v k - ' >  SEPS or if the norm of gradient is less then 
SEP1. In addition the number of scaling iterations in constrained by ITSCAL (cf the User 
Guide to  HYBRID). 

Scaling coefficients are displayed as additional column in MPS-type output of 
results. This has only informative purpose, since all results are rescaled internally. 
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5. TESTING EXAMPLES 
HYBRID has been tested on number of examples. For the sake of illustration of the 

package capabilities 3 known examples have been selected: two dynamic and one static. 

5.1. Econometric growth model (Manne) 

This model is a linear multicriteria version of Manne's model described in [26]. 

The variables are the following: 

t time period, t  = 1,2 ,..., T 
ct  consumption 

It investment, 

Kt capital in time period t .  

max KT 

min max J c t - ~ t l  
t = 1 , 2  ,..., 

The state equation: 

K t = K t P l + I t ,  t=1,2 ,..., T 

with KO given. 

Linear constraints for t  = 1,2, ..., T 

Bounds: 

Parameters: 

where a=(Co+ I o ) / K o .  
In the table 1 the test examples which refers to  the modified Manne problem are 

denoted by MannT, where T corresponds to  a number of periods. 

5.2. Flood control problem. 

The problem is a model (cf [25]) of the water system which consists of three general 
purpose reservoirs supplying water to the main river reach. The goal of the system 
dispatcher is t o  operate the reservoirs in such a way that  the flood peak on the main river 
do not coincide. It is assumed that  inflow forecast for each reservoir is known. 

The model consists of water balance equations for selected points and for each time 
period. The capacities of reservoirs are also constraint. Various types of criteria are 
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examined: 

FOL - corresponds to  following given trajectories of water flow in selected points, 

DER - corresponds to minimization water flow changes (in consecutive time periods) in 
selected points, 

MAX - corresponds to minimization of maximal (over time) flow in selected points. 

In the table 1 the test examples which refers to the multicriteria flood control prob- 
lems are denoted by FloodT, where T corresponds to a number of periods. 

5.3. Full dense  LP prob lem.  

This problem is a modification of the Mangasarian example [5] and has been gen- 
erated for verification of the package for fully dense LP problems. Computations are per- 
formed for one criterion and elements of matrix are equal to 1.0 with exception of diago- 
nal elements for which values of 10.0 are selected. 

In the table 1 the test examples which refers to  the modified Mangasarian example 
are denoted by MangT, where T corresponds to a dimension of LP matrix. 

5.4. Discussion of t e s t  results .  

Testing problems have been solved on a PC compatible with IBM/AT with 80287 
coprocessor. The algorithm was implemented with double precision arithmetic (the 
machine precision about 2.22e-16). The default values of all parameters (this includes ini- 
tial multipliers equal to  zero) were assumed in all runs. 

The results of some tests are summarized in the following table. 

Problem Number Rows Cols Dens. Time Mult. Outer Total 
of crit. [%I (min.) iter. iter. steps 

Manne05 3 29 2 7 12 0.4 2 13 24 
MannelO 3 54 5 2 7 0.6 2 23 2 8 
ManneZO 2 103 102 3 3.0 2 4 1 7 2 
Manne30 2 153 152 2 5.0 2 64 112 
Manne40 2 203 202 2 9.5 2 84 154 
Flood03 6 5 5 5 5 6 5.0 10 87 230 
Flood05 3 7 7 79 4 4.5 2 36 172 
Mang20 1 20 20 100 2.0 2 4 49 
Mang30 1 30 30 100 5.0 2 4 76 

Numbers of rows and columns correspond to  a single criterion LP problem, which were 
obtained by transformation of relevant multicriteria problems. The numbers of outer 
iterations and of total steps correspond to execution of step 2 and step 3 of the algorithm 
(cf sec. 4.1.). 

Due to  super sparse matrix technique applied for storing data,  rather long computa- 
tion time is required for fully dense matrix problems. For dynamic sparse problems better 
performance of the algorithm was observed. One should also note that  the Flood problem 
is badly conditioned and is reported by many LP packages as infeasible. 
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6. CONCLUSIONS 
First version of HYBRID was made operational in 1982. This version is documented 

in [13]. Then we had improved and extended the package for dynamic linear program- 
ming problems (DLP) and for multicriteria problems (both static and dynamic). The 
later version in documented in [27]. 

HYBRID 3.01 is still a pilot-type of software that  requires a lot of testing. It is true 
that for some problems HYBRID 3.01 performs worse than the commercial packages 
FMPS and MINOS but for some other problems HYBRID performs better, especially if a 
problem is defined as a dynamic one. If HYBRID is used not only for one run but for 
scenario analysis (solving the problem with change of multicriteria parameters, matrix 
elements, RHS etc.) its performance is much better. The reason being so is not only due 
to the fact that  MPS file is processed only in a first run but mainly because in consecutive 
runs (which uses communication region) only update of affected coefficients is made (the 
problem is generated only for the first run) and because a solution is usually obtained 
much faster then for the first run (HYBRID - contrary to  simplex approach - uses the 
same solution technique for any possible modification of a problem being solved). 

HYBRID provides very useful diagnostics for any LP problem and therefore is also 
useful for a problem verification. It could be used for that purpose as "stand alone" pack- 
age, and - also after possible modification of a problem in interactive way - one may out- 
put MPS-format file to  be used by other packages. The same approach may be used for 
transformation of multicriteria problem to equivalent single-criteria LP. 

The further development of HYBRID will proceed in following directions: 

1. Modification of the way in which the user communicates with the package. The 
modification will exploit capabilities of PC compatible with IBM/XT and will remark- 
ably ease the use of the package. 

2. Extensions of capabilities of HYBRID by introduction of new options for definition and 
handling of multicriteria problem (new types and more flexible definition of criteria, 
introduction of both aspiration and reservation levels, da ta  base for previous runs etc). 

3. Further improvement of the algorithm and its computer code (automatic evaluation of 
some parameters, experiments with possible modification of the algorithm) that  will 
result in faster execution. 

We hope that ,  despite the reservations outlined above, HYBRID 3.01. will eventu- 
ally be a useful tool with many practical applications. We would be grateful for any criti- 
cisms and comments that would help us to improve the package. 
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ABSTRACT 

This paper presents introductory documentation and a theoretical manual 
for two, professional microcomputer based, versions of decision analysis 
and support systems of DIDAS family. These versions have been developed 
in 1986, in the Institute of Automatic Control, Warsaw University of 
Technology, under a contracted study agreement with the Systems and 
Decision Sciences Program of the International Institute for Applied Sys- 
tems Analysis, and differ from previous DIDAS versions in several aspects. 
Both are implemented on professional microcomputers compatible with 
IBM-PC-XT (with a hard disk, Hercules or color graphics card and, prefer- 
ably, a co-processor) and both support graphical representation of results 
in interactive analysis. However, the first version: IAC-DIDAS-L1, uses a 
linear programming solver written in FORTRAN, which results in rela- 
tively fast execution of optimization runs during interactive analysis but 
requires the preparation of the substantive model being analysed in the 
system, in the MPS-format. The second version: IAC-DIDAS-L2, is writ- 
ten in PASCAL and supports also an interactive definition and edition of 
the substantive model by the user, in a user-friendly format of a 
spreadsheet. Both versions are designed to  work with substantive models 
of linear programming and dynamic linear programming type, that  is, to  
perform and t o  graphically represent the results of interactive multiobjec- 
tive analysis of such models. 

A. INTRODUCTORY DOCUMENTATION 

A l .  EXECUTIVE SUMMARY 
In many situations of complex decisions involving economic, environmental and 

technological decisions as well as in the cases of complex engineering design, the decision 
maker needs help of an analyst, or a team of analysts, to  learn about possible decision 
options and their predicted results. The team of analysts frequently summarizes its 
knowledge in the form of a substantive model of the decision problem that  can be formal- 
ized mathematically and computerized. 

While such a model can never be perfect and cannot encompass all aspects of the 
problem, it is often a great help t o  the decision maker in the process of learning about 
novel aspects of the decision situation and of gaining expertise in handling problems of a 
given class. Even if the final decisions are typically made judgmentally - tha t  is, are based 
on holistic, deliberative assessments of all available information without performing a cal- 
culative analysis of this information, see S.Dreyfus (1985) - the interaction of a decision 
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maker with the team of analysts and the substantive models prepared by them can be of 
great value. 

In organizing such interaction, many techniques of optimization, multicriteria deci- 
sion analysis and other tools of mathematical programming can be used. To be of value 
for a holistically thinking decision maker, however, all such techniques must be used as 
supporting tools of interactive analysis rather than as means for proposing unique optimal 
decisions and thus replacing the decision maker. The decision analysis and support sys- 
tems of DIDAS family - that is, Dynamic Interactive Decision Analysis and Support sys- 

- - 

tems, see e.g. Lewandowski et al. (1984) - are especially designed to support interactive 
work with a substantive model while using multicriteria optimization tools, but they 
stress the learning aspects of such work, such as the right of a decision maker to change 
his priorities and preferences when learning new facts. DIDAS systems can be used either 
by analysts who want to analyse their substantive models, or by teams of analysts and 
decision makers, or even by decision makers working alone with a previously defined sub- 
stantive model; in any case, we shall speak further about the user of the system. 

There are several classes of substantive models that require special technical means 
of support. The IAC-DIDAS-L1 and -L2 versions are designed to support models of linear 
programming type; specifically, multiobjective linear programming models, often with 
dynamic structure. If a model has a multiobjective dynamic structure, the objectives 
(called also criteria, outcomes, results, etc.) of decisions form trajectories, which might be 
interpreted as graphs of the dependence of an objective on time or another variable of 
similar type; these trajectories are evaluated by the user as a whole, complex objective. 
The decisions can also have the form of trajectories. 

Models of multiobjective linear programming type specify, firstly, the bounds on 
admissible decision variables, in the form of linear equations or inequalities called con- 
straints (including,for models of dynamic type, also special constraints called state equa- 
tions of the model) and, secondly, the attainable decision outcomes, in the form of linear 
equations for outcome variables among which the user can select his objectives. Actually, 
the distinction between constraints and outcome variables is not necessarily sharp (if the 
value of a constraint can be changed, it becomes an outcome variable) and the user might 
select his objectives also among constraint variables. 

There are many examples of decision problems that can be analysed by means of a 
substantive model of multiobjective linear programming type; for example, DIDAS-type 
systems with multiobjective, dynamic linear programming models have been used in plan- 
ning energy policies (see Strubegger, 1985, Messner, 1985), agricultural policies (see 
Makowski and Sosnowski, 1983) as well as in analysing various environmental or techno- 
logical problems (see Kaden, 1985, Gorecki et al., 1983). As demonstrative or tutorial 
examples, IAC-DIDAS-Ll and -L2 use a multiobjective linear programming model for a 
problem of diet composition (see Appendix), where the decision variables correspond to 
various dishes and the constraints or outcomes correspond to the amount of vitamins, 
minerals, the cost and subjectively defined taste and stimulus of the diet; another example 
might be a dynamic multiobjective linear programming model for flood control with 
several tributaries of a river and several reservoirs, where the decisions are time sequences 
- trajectories - of outflows of reservoirs and the outcomes are trajectories of flows in vari- 
ous points on the river. The user can also define substantive models of multiobjective 
(possibly dynamic) linear programming type for his own problems and analyse them with 
the help of IAC-DIDAS-L1 or -L2. 

A typical procedure of working with a DIDAS-type system consists of several phases. 
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In the first phase, a user - typically, an analyst - defines the substantive model and 
edits it on the computer. In earlier versions of DIDAS-type systems (which were mostly 
implemented on bigger mainframe computers) this phase has not been explicitly sup- 
ported in the system and the user had to separately prepare (define and edit) his model in 
the MPS format. This is a typical format for single-objective linear programming prob- 
lems and can be also used for multiobjective problems; however, working with MPS for- 
mat requires some knowledge of linear programming and thus limits the use of such 
DIDAS systems to  rather experienced analysts. On the other hand, there are many exist- 
ing linear programming models in the MPS format that  could be analysed multiobjec- 
tively with the help of a DIDAS system. Therefore the version IAC-DIDAS-L1 has been 
designed to  work with substantive models in the MPS format while the user-friendliness 
of professional microcomputers compatible with IBM-PC-XT is exploited only in the 
graphical representation of results of multiobjective analysis. 

The second version: IAC-DIDAS-L2, exploits the user-friendliness of such microcom- 
puters also by supporting the definition and edition of a substantive model in an easy for- 
mat of a spreadsheet, where the decision variables (and, possibly, some model parameters) 
are represented by the columns, the constraints and outcome variables - by the rows of 
the spreadsheet, and the coefficients of all linear functions defining the model are entered 
in the corresponding cells of the spreadsheet. Therefore, the user can define, review and 
edit his model easily; when analysing his model in further phases of work with IAC- 
DIDAS-L2, he can also return to the model definition phase and modify his model if 
necessary. The user of IAC-DIDAS-L2 can also have several substantive models recorded 
in a special model directory, use old models from this directory to speed up the definition 
of a new model, etc., while the system supports automatically the recording of all new or 
modified models in the directory. The easiness of model definition and edition has, how- 
ever, its price: models defined in the spreadsheet format should not be too large and the 
number of their variables (decision variables, constraints and outcome variables, while 
counting separately variables for each time instant in dynamic models) should not be too 
large (not greater than a hundred). 

In the second phase of work with DIDAS-type systems, the user - here typically an 
analyst working together with the decision maker - specifies a multiobjective analysis 
problem related to his substantive model and participates in an initial analysis of this 
problem. There might be many multiobjective analysis problems related to the same sub- 
stantive model: the specification of a multiobjective problem consists in designating out- 
come and constraint variables in the model that  become objectives (or objective trajec- 
tories in a dynamic case) and defining whether an objective (or objective trajectory) 
should be minimized or maximized, or kept close to a given level. For a given definition of 
the multiobjective analysis problem, the decision and outcomes in the model are subdi- 
vided into two categories: those that  are efficient with respect to the multiobjective prob- 
lem (that  is, such that  no objective can be improved without deteriorating some other 
objective) and those that  are inefficient. It is assumed that  the user is interested only in 
efficient decisions and outcomes (this assumption is reasonable provided that the user has 
listed all objectives of his concern; if he has not, or if some objectives of his concern are 
not represented in the model he can still modify the sense of efficiency by adding new 
objectives, or by requiring some objectives to be kept close to given levels, or by returning 
to the model definition phase and modifying the model). 

One of the main functions of a DIDAS-type system is to compute efficient decisions 
and outcomes - following interactively various instructions of the user - and to present 
them for analysis. This is done by solving a special parametric linear programming prob- 
lem resulting from the specification of the multiobjective analysis problem; for this 
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purpose, IAC-DIDAS-L contains a specialized linear programming algorithm called solver. 

Usually, however, the definition of a multiobjective problem admits many efficient 
decisions and outcomes; therefore the user should first learn about bounds on eficient out- 
comes. This is the main function of IAC-DIDAS-L in the initial analysis phase. The  user 
can request the system t o  optimize any objective separately; however, there are also two 
special commands in the system, related to this function. The  first, called "utopia", results 
in subsequent computations of the best possible outcomes for all objectives treated 
separately (such outcomes are practically never attainable jointly, hence the name "uto- 
pia" for the point in outcome space composed of such outcomes; in dynamic cases, only 
approximate joint bounds for entire trajectories are computed). The  second, called 
"nadir", results in an estimation of the worst possible among the efficient outcomes 
(defining precisely the worst possible efficient outcome is a very difficult computational 
task; in some simple cases, the "utopia" computations give enough information to  deter- 
mine the worst possible among the efficient outcomes, but  for more general cases this 
information is not reliable and a more reliable way of estimating the worst possible 
efficient outcome is implemented in IAC-DIDAS-L). 

The  "utopia" and "nadir" computations give important information to  the user 
about reasonable ranges of decision outcomes; in order to give him also information about 
a reasonable compromise efficient solution, a neutral eficient solution can be also com- 
puted in the initial analysis phase following a special command. The  neutral solution is an 
efficient solution situated "in the middle" of the range of the efficient outcomes, while the 
precise meaning of being "in the middle" is defined by the distances between the utopia 
and the nadir point. After analysing the utopia point, the nadir point and a neutral solu- 
tion (which all can be represented graphically for the user), the initial analysis is com- 
pleted and the user has already learned much about the ranges of the attainable efficient 
objectives and the possible trade-offs between these objectives. Each change of the 
definition of the substantive model or of the multiobjective analysis problem, however, 
necessitates actually a repetition of the initial analysis phase; on the other hand, the user 
can omit this repetition if he judges tha t  the changes in the model or in multiobjective 
analysis definition have been small. 

The  third phase of work with DIDAS-type systems consists in interactive scanning 
of efficient outcomes and decisions, guided by the user through specifying aspiration levels 
for each objective (or aspiration trajectories , in a dynamic case; called also reference 
points or trajectories). The user has already reasonable knowledge about the range of pos- 
sible outcomes and thus he can specify the aspiration levels tha t  he would like to  attain. 
IAC-DIDAS-L utilizes the aspiration levels as a parameter in a special achievement func- 
tion, coded in the system, uses its solver t o  compute the solution of a linear programming 
problem, equivalent t o  maximizing this achievement function, and responds to  the user 
with an attainable efficient solution and outcomes (or outcome trajectories) tha t  strictly 
correspond t o  the user-specified aspirations. 

If the aspirations are "too high" (better than attainable), then the response of the 
system is a solution with attainable, efficient outcomes that  are uniformly as close to the 
aspirations a s  possible. If the aspirations are "too low" (if they correspond t o  attainable 
but inefficient outcomes tha t  can be improved), then the response of the system is a solu- 
tion with outcomes tha t  are uniformly better than the aspirations. The precise meaning of 
the uniform approximation or improvement depends on scaling units for each objective 
tha t  can be either specified by the user or defined automatically in the system as the 
differences between the utopia point and the current aspiration point. This second, 
automatic definition of scaling units has many advantages t o  the user who is not only 



T. Rogowski et al. - 110-  IA C- DIDA S- L 

relieved of specifying scaling units but also has a better control of the selection of efficient 
outcomes by changing aspiration levels in such a case. 

After scanning several representative efficient solutions and outcomes controlled by 
changing aspirations, the user usually learns enough to  select either an actual decision, 
subjectively, (which needs not t o  correspond to  the decisions proposed in the system, since 
even the best substantive model might differ from real decision situation) or an efficient 
decision and outcome proposed in the system as a basis for actual decisions. 

Rarely, the user might be still uncertain about what decision to choose; for such a 
case, several additional options can be included in a system of DIDAS type. Such options 
include two more sophisticated scanning options: multidimensional scanning, resulting 
from perturbing current aspiration levels along each coordinate of objective space, direc- 
tional scanning, resulting from perturbing current aspiration levels along a direction 
specified by the user (see Korhonen, 1985). Another option is forced convergence, tha t  is, 
such changes of aspiration levels along subsequent directions specified by the user t ha t  the 
corresponding efficient decisions and outcomes converge to  a final point tha t  might 
represent the best solution for the preferences of the user. However, not all these addi- 
tional options are implemented in IAC-DIDAS-L, since the experience of working with 
DIDAS-type systems shows tha t  these options are rarely used. 

A2. SHORT PROGRAM DESCRIPTION 
The IAC-DIDAS-L1 and -L2 systems (Institute of Automatic Control, Dynamic 

Interactive Decision Analysis and Support,  Linear versions 1 and 2) are decision support 
systems designed to  help in the analysis of decision situations where a mathematical 
model of substantive aspects of the situation can be formulated in the form of a multiob- 
jective linear programming problem, possibly of dynamic structure. 

The  IAC-DIDAS-Ll and -L2 systems are recorded on two separate diskettes tha t  
should be installed on an IBM-PC-XT or a compatible computer with a hard disk, Her- 
cules or a color graphic card and, preferably, a coprocessor. Both diskettes contain com- 
piled codes, partly in FORTRAN and partly in PASCAL for IAC-DIDAS-L1, and entirely 
in PASCAL for IAC-DIDAS-L2. After installing them in the users directory, they can be 
activated (by the command didasl  or didas2 Cr)  and used in a program system. Both sys- 
tems support the following general functions: 

1) The definition and edition of a substantive model of the decision situation, in a 
linear programming form. IAC-DIDAS-L1 uses the M P S  format of linear program- 
ming for this purpose, while IAC-DIDAS-L2 supports model definition and edition in 
a user-friendly format of a spreadsheet. 

2) The  specification of a multiobjective decision analysis problem related t o  the sub- 
stantive model. This  is performed by several commands from the main menu of 
IAC-DIDAS-L1, and by specific features of spreadsheet edition in IAC-DIDAS-L2. 

3) The initial multiobjective analysis of the problem, resulting in estimating bounds on 
efficient outcomes of decisions and in learning about some extreme and some neutral 
decisions. In both IAC-DIDAS-L1 and -L2, these functions are supported by some 
specific commands from the main menu. 

4) The interactive analysis of the problem with the stress on learning by the user of 
possible efficient decisions and outcomes, organized through systems' response t o  
user-specified aspiration levels or reference points for objective outcomes. In both 
IAC-DIDAS-L1 and -L2, the system responds with efficient solutions and objective 
outcomes obtained through the maximization of an  achievement function tha t  is 
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parameterized by the user-specified reference points. The maximization is performed 
through a linear programming algorithm called solver, written in FORTRAN for 
IAC-DIDAS-Ll and in PASCAL for IAC-DIDAS-L2. In both systems, the interac- 
tive analysis is supported by specific commands from the main menu, including com- 
mands that  might help in convergence to the most preferred solution; however, the 
main function of both systems is helping the user to learn about novel aspects of the 
decision situation, not necessarily forcing him to converge to one, most preferred 
solution. 

The main menu of commands in IAC-DIDAS-L1 is the following: 

1)Problem setting phase 

? Cr - displays help. 

MAX I MIN I GUI I FLO ( REM objectivename Cr - includes new objectives (from 
the list of names of outcome and decision variables of the model), changes status (to max- 
imized, minimized, guided - that  is, corresponding to an equality constraint, or floating - 
that  is, displayed only for information purposes) or removes an objective from the 
definition of the multiobjective analysis problem. 

UPP I LOW I FIX objectivename value Cr - sets bounds for objective values (UPP 
for upper bounds, LOW for lower bounds, FIX for equality constraints of GUI type; all 
objectives except of GUI and FLO types must have specified bounds in this phase; 
defaults are zero and rhs or bounds - as specified in the model). 

SCA objectivename value Cr - sets user-specified scaling units for an objective (all 
objectives except of GUI and FLO types must have specified scaling units in this phase; 
default is 1). 

RAS binary (0 or 1) Cr - sets off or on automatic utopia- reference scaling (after 
computing utopia point, see further commands, the user-supplied scaling can be replaced 
by a more convenient type of scaling). 

EPS value Cr - sets the value of parameter O<eps<l in the achievement function. 

XRH value Cr - sets the value of parameter p > l  in the achievement function. 

EPS 1 XRH Cr - displays the value of parameter eps or rho. 

2) Initial analysis phase 

FOR objectivename Cr - results in the calculation and paphical display of an 
extreme solution, that  is, the optimal solution for a given, single objective. 

UTO Cr - calculates and displays graphically utopia and approximate nadir points 
( that  is, upper and lower bounds for efficient decision outcomes). 

NAD Cr - improves and displays graphically the approximation of nadir point. 

NEU Cr  - calculates and displays graphically a neutral solution using scaling 
coefficients based on utopia-nadir differences. 

GRA Cr - graphic displays. 

REU Cr - changes scale of graphical displays to utopia-nadir relative. 

REB Cr - changes scale of graphical displays to relative to bounds. 3) Interactive 
analysis phase 

R F P  I REF objectivename value (%) Cr - sets reference point for an objective (if the 
option % is used, this point is given in % of current graphical display scale). 
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GO Cr - calculates and displays graphically an efficient solution related to  the last 
specified reference point. 

DIS BOU 1 UTO I SOL I Cr - displays numerically bounds, or utopia and nadir 
points, or the last solution. 

SCN value Cr - starts the SCAN procedure with the step d = 'value'. 

ACC objname Cr - accepts the solution obtained during the SCAN process, when the 
reference point component corresponding to 'objname' was perturbed, as a new reference 
point. 

PRI Cr - writes the last results on the file RESULTS. 

PSC Cr - writes the results of the last scan on the file RESULTS. 

BAS Cr - makes possible manipulating with the data  base for solution (up to 10 
items). After invoking this command the following menu appears a t  the screen: 

(1) save (2) load (3) remove (4) list (5) quit. 
The user ought to select the option number: 

- option (1) save - a t  this point the program asks: 
save as ?: 

and the user gives a name to  the last solution to be saved in the data  base, 

- option (2) load - at  this point the user gives the names of the data  and the solution 
to be retrieved from the data  base, 

- option (3) remove - removes a name from the data base, 

- option (4) list - lists the names saved in the data base, 

- option (5) quit - returns to  the main menu. 

STOP Cr - ends work with the system. 

The main menu of IAC-DIDAS-L2 performs also all the above functions, with the 
distinction that  most of the functions of phase 1) and 2) are specific commands of 
spreadsheet edition: the decision variables are defined as columns of the spreadsheet, the 
outcome variables are defined as rows, model coefficients are entered in the corresponding 
cells, there are special rows and columns for scaling units, lower and upper bounds, for 
defining objective outcomes and their type, for reference points, utopia and nadir points, 
for solutions corresponding to the reference points. The data  for tutorial example, con- 
tained in the Appendix, is illustrated by several screen outprints that are related to vari- 
ous functions of model edition in IAC-DIDAS-L2. The functions of other phases are exe- 
cuted by macrocommands using various controlling keys; the user can get various help 
displays that  suggest in an easy fashion the commands useful in a current phase of work 
with the system. 

IAC-DIDAS-L1 and -L2 systems have been developed in the Institute of Automatic 
Control, Warsaw University of Technology, Warsaw, Poland, in a contracted study 
agreement "Theory, Software and Testing Examples for Decision Support Systems" with 
the Systems and Decision Sciences Program of the International Institute for Applied Sys- 
tems Analysis, Laxenburg, Austria, which has the copyright for these systems. 

B. THEORETICAL MANUAL 
The standard form of a multiobjective linear programming problem is defined as fol- 

lows: 

mazimize ( q =  Cx); X = {XE Rn:  Ax= b , x > O )  (1 )  
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where zcRn ,  ~ E R P ,  A is a m x n matrix, C is a p x n matrix and the maximization of 
the vector q of p objectives is understood in the Pareto sense: f , $ are solutions of (1) iff 
$=Cf, ? E X  and there are no such z,q,  with q=Cz ,  z E X  that  q>$,  q#q. Such solu- 
tions f and g^ of (1) are called an efficient decision i and the corresponding efficient out- 
come G, respectively. If, in the above definition, it were only required that  there would be 
no z and q,  with q= Cz, z E X ,  such that  q>$, then the solutions f ,  i would be called 
weakly e f i c i e n t .  Equivalently, if the set of all attainable outcomes is denoted by 

Q={QERP: q = C z ,  EX) (2) - 
and so called positive cones D= RP+ , D=RT \{o) and 6 = i n t ~ p  are introdu-ced (thus, 

;t 
9 2 6  can be written as g - $ ~ D , g > $ , g # i  as q - + ~ ~  and q>q  as q - i E d  then the 
sets of efficient outcomes Q and of weakly efficient outcomes Q W  can be written as: 

The set of weakly efficient outcomes is larger and contains the set of efficient out- 
comes; in many practical applications, however, the set of weakly efficient outcomes is 
decisively too large. For multiobjective linear programming problems, the efficient out- 
comes are always properly e f i c i e n t ,  that  is, they have bounded tradeoff coe f i c i en t s  that 
indicate how much an objective outcome should be deteriorated in order to improve 
another objective outcome by a unit. 

The abstract problem of multiobjective linear programming consists in determining 
the entire sets Q or Q W  , or a t  least all vertices or basic solutions of the linear program- 
ming problem that  corresponds to efficient decisions and outcomes. 

The practical problem of multiobjective decision support ,  using linear programming 
models, is different and consists in computing and displaying for the decision maker (or, 
generally, for the user of the decision support system) some selected efficient decisions and 
outcomes. This selection of efficient decisions and outcomes should be easily controlled by 
the user and should result in any efficient outcome in the set Q he might wish to attain, in 
particular, also in efficient outcomes that  are not necessarily basic solutions of the original 
linear programming problem; moreover, weakly efficient outcomes are not of practical 
interest for the user. 

Before turning to  some theoretical problems resulting from these practical require- 
ments, observe first that  the standard formulation of multiobjective linear programming 
is not the most convenient for the user. Although many other formulations can be rewrit- 
ten to the standard form by introducing proxy variables, such reformulations should not 
bother the user and should be automatically performed in the decision support system. 
Therefore, we present here another basic formulation of the multiobjective linear pro- 
gramming problem, more convenient for typical applications. 

A substantive model  of multiobjective linear programming type consists of the 
specification of vectors of n decision variables z cRn  and of m outcome variables y c R r n ,  
together with linear model equations defining the relations between the decision variables 
and the outcome variables and with model bounds defining the lower and upper bounds for 
all decision and outcome variables: 

where A C  is a m x n matrix of coefficients. Among the outcome variables, some might be 
chosen as corresponding to equality constraints;  let us denote these variables by 
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y c ~ ~ m ' ~ ~ m  and the constraining value for them - by bc  and let us write the additional 
constraints in the form: 

where A is the corresponding submatrix of A .  The outcome variables corresponding to  
equality constraints will be called guided outcomes  here. Some other outcome variables 
can be also chosen as optimized objectives or object ive outcomes .  Denote the vector of p 
objective outcomes by g € R P c R m  (some of the objective variables might be originally 
not represented as outcomes of the model, but we can always add them by modifying this 
model) to  write the corresponding objective equations in the form: 

where C is another submatrix of A .  Thus, the set of attainable objective outcomes is 
again Q= C X ,  but the set of admissible decisions X is defined by: 

Moreover, the objective outcomes are not necessarily minimized; some of them might 
be minimized, some maximized, some stabilized or kept close to  given aspira t ion levels  
( that  is, minimized if their value is above aspiration level and maximized if their value is 
below aspiration level). All these possibilities can be summarized by introducing a 
different definition of the positive cone D: 

where the first p '  objectives are to be maximized, the next, from p'+l to  p", are to  be 
minimized, and the last, from p"+l to  p ,  are to  be stabilized. Actually, the user needs 
only to  define what t o  do with subsequent objectives; the concept of the positive cone D 
is used here only in order to define comprehensively what are efficient outcomes for the 
multiobjective problem. Given some aspiration levels for stabilized objectives and the 
requirement that  these objectives should be minimized above and maximized below 
aspiration levels, the set of efficient outcomes can be defined only relative to  the aspira- 
tion levels. 

However, since the user can define aspiration levels arbitrarily, of interest here is the 
union of such relative sets of efficient outcomes. Let D=D\ (0); then the outcomes that 
might be efficient for arbitrary aspiration levels for stabilized objectives can be defined, as 
before, by the relation (3 ) .  The weakly efficient outcomes are of no practical interest in 
this case, since the cone D ,  typically, has empty interior which implies that  weakly 
efficient outcomes coincide with all attainable outcomes. 

The stabilized outcomes in the above definition of efficiency are, in a sense, similar 
to the guided outcomes; however, there is an important distinction between these two 
concepts. Equality constraints must be satisfied; if not, then there are no admissible solu- 
tions for the model. Stabilized objective outcomes should be kept close to  aspiration lev- 
els, but they can differ from those levels if, through this difference, other objectives can be 
improved. The user of a decision support system should keep this distinction in mind and 
can modify the definition of the multiobjective analysis problem by taking, for example, 
some outcomes out of the guided outcome category and putting them into the stabilized 
objective category. 

By adding a number of proxy variables and changing the interpretation of matrix A ,  
the substantive model formulation (5), (6), (7), (8) together with its positive cone (9) and 
the related concept of efficiency could be equivalently rewritten to the standard form of 
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multiobjective linear programming (1); this, however, does not concern the user. More 
important is the way of user-controlled selection of an efficient decision and outcome from 
the set (3). For stabilized objective outcomes, the user can change the related aspiration 
levels in order to influence this selection; it is assumed here that  he will use, for all objec- 
tive outcomes, the corresponding aspiration levels in order to  influence the selection of 
efficient decisions. The aspiration levels are denoted here ij, or, as a vector, i j  and called 
also, equivalently, reference points. 

A special way of parametric scalarization of the multiobjective analysis problem is 
utilized for the purpose of influencing the selection of efficient outcomes by changing refer- 
ence points. This parametric scalarization is obtained through maximizing the following 
order-approzimating achievement junction (see Wierzbicki 1983, 1986): 

where the parameter 6 should be positive, even if very small; if this parameter would be 
equal to  zero, then the above function would not be order-approximating any more, but 
order-representing, and its maximal points could correspond to  weakly efficient outcomes. 
The parameter p should be p z l ;  the interpretation of both these parameters is given 
later. 

The functions z,(q,,ij,) are defined as follows: 

where 

The coefficients si,sti and sf' are scaling units for all objectives, either defined by 

the user (in which case sti=sf', the user does not need to  define two scaling coefficients for 
a stabilized objective outcome) or determined automatically in the system (see further 
comments). 

The achievement function s(q,ij) is maximized with q= Cz over ZEX; its maximi- 
zation in the system is converted automatically to  an equivalent linear programming 
problem, different than the original one, and having more basic solutions that  depend on 
the parameter ij. If the coefficient c>O, then the achievement function has the following 
properties (see Wierzbicki, 1986): 

a)  For an arbitrary aspiration level or reference point ij, not necessarily restricted to  be 
attainable or not attainable, each maximal point 3 of the achievement function 
s(q,ij) with q = C z  over ZEX is a D, -efficient solution,that is, a properly efficient 
solution with tradeoff coefficients bounded approximately by 6 and 116. 

b) For any properly efficient outcome q* with trade-off coefficients bounded by 6 and 
116, there exist such reference points i j  that  the maximum of the achievement func- 
tion s(q,ij) is attained at  the properly efficient outcome q*. In particular, if the user 
(either by chance or as a result of a learning process) specifies a reference point i j  
that  in itself is such properly efficient outcome, i j=t ,  then the maximum of the 
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therefore, it is called the utopia point tuto 
However, this way of computing the 'upper' bound for efficient outcomes is not prac- 

tical for problems of dynamic structure (see further comments); thus, IAC-DIDAS-Ll and 
-L2 use a different way of estimating the utopia point. This way consists in subsequent 
maximizations of the achievement function s ( q, q) with suitably selected reference points. 
If an objective should be maximized and its maximal value must be estimated, then the 
corresponding component of the reference point should be very high, while the com- 
ponents of this point for all other maximized objectives should be very low (for minimized 
objectives - very high; stabilized objectives must be considered as floating in this case that  
is, should not enter the achievement function). If an objective should be minimized and its 
minimal value must be estimated, then the corresponding component of the reference 
point should be very low, while other components of this point are treated as in the previ- 
ous case. If an objective should be stabilized and both its maximal and minimal values 
must be estimated, then the achievement function should be maximized twice, first time 
as if for a maximized objective and the second time as if for minimized one. Thus, the 
entire number of optimization runs in utopia point computations is pU+2(p-p").  It can 
be shown that ,  for problems with static structure (no trajectory objectives), this pro- 
cedure gives a very good approximation of the utopia point tuto, whereas the precise 
meaning of 'very high' reference should be interpreted as the upper bound for the objec- 
tive plus, say, twice the distance between the lower and the upper bound, while the mean- 
ing of 'very low' is the lower bound minus twice the distance between the upper and the 
lower bound. 

During all these computations, the lower bound for efficient outcomes can be also 
estimated, just by recording the lowest efficient outcomes that  occur in subsequent optim- 
izations for maximized objectives and the highest efficient outcomes for minimized objec- 
tives (there is no need to record them for stabilized objectives, where the entire attainable 
range is estimated anyway). However, such a procedure results in the accurate, tight 
'lower' bound for efficient outcomes - called nadir point in& - only if p"=2; for larger 
numbers of maximized and minimized objectives, this procedure can give misleading 
results, while an accurate computation of the nadir point becomes a very cumbersome 
computational task. 

Therefore, IAC-DIDAS-Ll and -L2 offer an option of improving the estimation of the 
nadir point in such cases. This option consists in additional p "  maximization runs for 
achievement function s(q,@) with reference points i j  that are very low, if the objective in 
question should be maximized, very high for other maximized objectives, and very low for 
other minimized objectives, while stabilized objectives should be considered as floating. If 
the objective in question should be minimized, then the corresponding reference com- 
ponent should be very high, while other reference components should be treated as in the 
previous case. By recording the lowest efficient outcomes that  occur for maximized objec- 
tives in subsequent optimizations (and are lower than the previous estimation of nadir 
component) and the highest efficient outcomes for minimized objectives (higher that  the 

-nad previous estimation of nadir component), a better estimation q of the nadir point is 
obtained. 

Once the approximate bounds iuto and id are computed and known to the user, 
they can be utilized in various ways. One way consists in computing a neutral eficient 
solution, with outcomes situated approximately 'in the middle' of the efficient set. For 
this purpose, the reference point q is situated a t  the utopia point tuto (only for maxim- 
ized or minimized outcomes; for stabilized outcomes, the user-supplied reference com- 
ponent i j ,  must be included here) and the scaling units are determined by: 
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s.=~(j"tO 1 1 - 9 ;  A nad 1, l < t < p  - - ( 1 3 4  

for maximized or minimized outcomes, and: 

for stabilized outcomes, while the components of the utopia and the nadir points are 
interpreted respective] as the maximal and the minimal value of such an objective; the 
correction by 0.01 (i?'-i:d) ensures that  the scaling coefficients remain positive, if the 
user selects the reference components for stabilized outcomes in the range q,< iyd 
(if he does not, the system automatically projects the reference component on this range). 
By maximizing the achievement function s ( q , q )  with such data, the neutral efficient solu- 
tion is obtained and can be utilized by the user as a starting point for further interactive 
analysis of efficient solutions. 

In further interactive analysis, an important consideration is that  the user should be 
able t o  influence easily the selection of the efficient outcomes q̂  by changing the reference 
point in the maximized achievement function s ( q , q ) .  It can be shown (see Wierzbicki, 
1986) that  best suited for this purpose is the choice of scaling units determined by a 
difference between the slightly displaced utopia point and the current reference point: 

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are 
determined somewhat differently than in (13b): 

It is assumed now that  the user selects the reference components in the range 
@ y d < q , <  4yt0 or iyt0<qi<i,Md (if he does not, the system automatically projects the 
reference component on these ranges) for all objectives. Observe that ,  similarly as in the 
case of the neutral solution, the scaling units are determined automatically once the uto- 
pia, nadir and reference points are known; the user is not bothered by their definition. 
The interpretation of the above way of setting scaling units is that  the user attaches 
implicitly more importance to  reaching a reference component if he places i t  close t o  the 
known utopia component; in such a case, the corresponding scaling unit becomes smaller 
and the corresponding objective component is weighted stronger in the achievement func- 
tion s ( q , q ) .  Thus, this way of scaling, relative to utopia-reference diflerence, is taking 
into account the implicit information, given by the user, specified by the relative position 
of the reference point. 

When the relative scaling is utilized, the user can easily obtain - by moving suitably 
reference points - efficient outcomes that  are either situated close t o  the neut!al solution, 

A 

in the middle of efficient outcome set Q ,  or in some remote parts of the set Q ,  say, close 
to  various extreme solutions. 

Typically, several experiments of computing such efficient outcomes give enough 
information for the user t o  select an  actual decision - either some efficient decision sug- 
gested by the system, or even a different one, since even the best substantive model 
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cannot encompass all aspects of a decision situation. However,there might be some cases 
in which the user would like to  receive further support - either in analysing the sensitivity 
of a selected efficient outcome, or in converging t o  some best preferred solution and out- 
come. 

For analysing the sensitivity of an efficient solution t o  changes in the proportions of 
outcomes, a multidimensional scan of efficient solutions is implemented in IAC-DIDAS-L1 
and -L2. This operation consists in selecting an efficient outcome, accepting it as a base 
$as for reference points, and performing p" additional optimization runs with the refer- 
ence points determined by: 

-bas nuto -Md - -bas ipj, l < j < p ~  
qj='?j +7(9 j  - P j  )i 9i=9i (15) 

where 7 is a coefficient determined by the user, - l < r < l ;  if the relative scaling is used - nad - uto and the reference components determined by (15) are outside the range q .  , qj , they 3 
are projected automatically on thid range. The reference components for stabilized out- 
comes are not perturbed in this operation (if the user wishes to perturb them, he might 
include them, say, in the maximized category). The efficient outcomes, resulting from the 
maximization of the achievement function s(q ,q)  with such perturbed reference points, 
are typically also perturbed, mostly along their subsequent components, although other 
their components might also change. 

For analysing the sensitivity of an efficient solution when moving along a direction 
in the outcome space - and also as a help in converging t o  a most preferred solution - a 
directional scan of eficient outcomes is implemented in IAC-DIDAS-L1 and -L2. This 
operation consists again in selecting an efficient outcome, accepting it as a base eas for 
reference points, selecting another reference point q, and performing a user-specified 
number K of additional optimizations with reference points determined by: 

The efficient solutions t ( k ) ,  obtained through maximizing the achievement function 
s(q ,q(k))  with such reference points, constitute a cut through the efficient set Q when 
moving approximately in the direction ~ - 8 ~ .  If the user selects one of these efficient 
solutions, accepts i t  as a new $" and performs the next directional scans along some new 
directions of improvement, he can converge eventually to his most preferred solution (see 
Korhonen, 1985). Even if he does not wish the help in such convergence, the directional 
scans can give him valuable information. 

Another possible way of helping in convergence to  the most preferred solution is 
choosing reference points as in (16) but using a harmonically decreasing sequence of 
coefficients (such as l / j ,  where j is the iteration number) instead of user-selected 
coefficients k / K .  This results in convergence even if the user makes stochastic errors in 
determining next directions of improvement of reference points, or even if he is not sure 
about his preferences, and learns about them during this analysis (see Michalevich, 1986). 
Such a convergence, however, is rather slow and is thus not implemented in IAC-DIDAS- 
L1 and -L2. 

A separate problem is multiobjective decision analysis and support based on s u b  
stantive models of dynamic structure. A useful standard of defining a substantive model 
of multiobjective linear dynamic programming type is as follows. 

The model is defined on T+l  discrete time periods t , O < t  < T (where t is a discrete 
time variable counted in days, years or any other time units; models of dynamic structure 
can also have other interpretations of the variable t ,  such numbers of subsequent 
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operations, etc). The decision variable z, called in this case control trajectory, is an entire 
sequence of decisions: 

and a special type of outcome variables, called state variables, W ( ~ ) E R ~ '  , is also con- 
sidered. The entire sequence of state variables, or state trajectory: 

is actually one time period longer than z; the initial state w(0) must be specified as given 
data, while the decision z(T) in the final period is assumed to influence the state 
w ( T+ 1) only, thereby of no interest for the interval (0, ..., T). This is because the funda- 
mental equations of a substantive dynamic model have the form of state equations: 

w ( t + l )  = A( t )w( t )+B( t ) z ( t ) ;  t=O,l, ... T-1, w(0) - given (18a) 

The model outcome equations have, then, the form: 

and define the sequence of outcome variables, or outcome trajectory: 

The decision, state and outcome variables can all have their corresponding lower and 
upper bounds (each understood as an appropriate sequence of bounds): 

The matrices A ( t ) ,  B ( t ) ,  C(t) and D ( t ) ,  of appropriate dimensions, can dependent 
on or can be independent of time t ;  in the latter case, the model is called time invariant 
(actually, in a fully time-invariant model, the bounds should also be independent of time 
t ,  that is, they should be constant for all time periods). This distinction is important, in 
multiobjective analysis of such models only in the sense of model edition: time-invariant 
models can be defined easier by automatic, repetitive edition of model equations and 
bounds for subsequent time periods. 

Some of the outcomes might be chosen to be equality constrained, or guided along a 
given trajectory: 

The optimized (maximized, minimized or stabilized) objective outcomes of such a 
model can be actually selected among both state variables and outcome variables (or even 
decision variables) of this model; in any case, they form an entire objective trajectory: 

Various positive cones could be defined to specify the sense of efficiency of such 
objective trajectory; however, it is assumed here that the sense of efficiency cannot change 
along the trajectory, that is, a component qi(t) that will be maximized in one period t 
must be also maximized in other time periods, etc. (however, not necessarily in all time 
periods: if the user wishes to maximize,minimize or stabilize some outcome only in one or 
several time periods, he can always change suitably the definition of objective outcomes). 
Thus, assume that the first components q,(t), for l< i<p ' ,  are to be maximized, next, for 
p f+ l< i<p" ,  are to be minimized, and the last components, for pU+1<i<p ,  are to be 
stabilized. The achievement function s(q,q) in such a case takes the form: 
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T 

min min z,(t), p(T+l)p c fi zi(t)/t ( 
T P 

0 ~ t l  TI<,<P t=Oi=l T + ~ ) P  ,=,,=I C C z,(t) (21) 

where the functions z, ( t  ) = z,[qi(t) ,q,(t)] are defined by: 

where 

The user does not need to define time-varying scaling units s i ( t )  nor two different 
scaling units si(t),s:(t) for a stabilized objective: the time-dependence of scaling units 
and separate definitions of s{(t),sj'(t) are needed only in the case of automatic, relative 
scaling. 

The estimation of utopia and nadir points in the space of objective trajectories 
would create, in the dynamic case, major computational difficulties ( p  ( T+ 1) subsequent 
optimization runs) if exact estimates were needed; moreover, even if the utopia point in 
itself is not attainable, it can be better interpreted if each of its components - in this case, 
each objective component trajectory - is attainable for the model. These considerations 
indicate that the way of estimating utopia point by p (or by prr+2(p-p"), when stabil- 
ized objectives are included) subsequent maximizations of the achievement function (21) 
with suitably 'very high' or 'very low' components of reference trajectories: 

q={@(O),q(l),.....,q( T) )ER ~ ( ~ + l ) ,  ~ ( t ) €  RP (24) 

is much more adequate for the dynamic case than an exact computation of the utopia 
point. Denote the results of such maximizations with subsequent reference trajectories 
q(') by tj('),i=l, ...,p, (we do not include here stabilized outcomes for the simplicity of 
denotations); then the components of an approximate utopia trajectory can. be determined 
as : 

whereas the components of an approximate nadir trajectory (in the case of maximized tra- 
jectories, with obvious modifications in the minimized case) should be determined as: 

-nad 
q, ( t ) a =  rnin tj!j)(t), t=O,l,.,,, p 

l < _ j l p  
(25b) 

Unfortunately, the components of such nadir approximation cannot be interpreted as 
attainable trajectories for the model (since the minimization in (25b) can result in 
different j for various t ) ;  however, this is less important than in the utopia trajectory 
case. A more precise approximation of nadir point can be obtained, similarly as in the 
static case, by additional p (or only p", if stabilized objectives are included in the model) 
maximizations of achievement function (21) with yet other reference trajectories 
4i) . q , ~ = p +  1, ...,, 2p,  and by extending the minimization in (25b) to 1 < j s 2 p .  

Once the approximations of utopia and nadir trajectories are determined, a neutral 
solution as well as the automatic relative scaling can be defined similarly as in the static 
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case. Other aspects of interactive multiobjective analysis of dynamic models are similar to 
the static case; naturally, the graphical representation of results of analysis is in some 
cases more straightforward (for single optimization runs) or, in other cases, more involved 
(for repetitive runs, as in utopia, nadir and scanning computations) than in the static 
case. 
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APPENDIX 

A shortened spreadsheet format of the tutorial model of 
multiobjective diet selection. 

Dish Lo/Up Rolls Cereals Butter Cheese Fruitfre Milk Coffee 
Unit 50 g 50 g 10 g 5 0 g  150g 250 g 1 cup 

Lo.bound 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Up.bound 5 2 5 3 2 3 3 
Cost 0/100 5 4 5 9 14 6 18 
Taste 61100 2 2 2 2 2 1 2 
Stimulus 4/60 3 2 4 3 0.5 5 10 
Calorie 300/1500 124 179 75 98 79 137 0.0 
Proteins 4 3 0.1 12 0.5 7 0.0 
Carbohyd. 26 36 0.0 1 11 10 0.0 
Fats  1 2 8 - 5 0.5 7 0.0 
Calcium l00/800 8 10 2 235 9 295 0.0 
Magnesium 12 23 0.2 3.5 5 30 0.0 
Phosphor. 42 103 - 1 .G 187 13 213 0.0 
Iron 1 1 0.0 0.2 0.4 0.25 0.0 
Vit.A 200/1GOO 0.0 0.0 270 172 160 277 0.0 
Vit.B 0.12 0.14 0.0 0.23 0.06 0.73 0.0 
Vit.C 0.0 0.0 0.0 0.0 30 2.5 0.0 
Vit.PP 0.4 1 .O 0.01 0.05 0.23 0.25 0.0 

The following example is spreadsheet format of IAC-DIDAS-L2 (a screen print, oth- 
er parts of the data accessible through scrolling). 

Names Rolls Cereals Butter Cheese FrultFre 
Model editing Units 50 g 50 g 10 g 50 g 150 g 

va 1 ue 
Bounds upper 5. 00E+00 2. 00E+00 5. 00E+00 3. 00E+00 2. 00E+00 

1 ower 

cost 
Taste 
Stlmulu 
Cal lor1 
Proteln 
Carbohy 
Fats 
Calclum 
Magnesl 
Phospho 
Iron 
Vlt. A 
Vit. B 

I Zl 
I -"- ' --  - r r - A  I ' 1. 00E+02 5. 00E+00 4. OOE+00 5. 00E+00 9. 00E+00 1. 4OE+Ol 

artun 6. 00E+00 1. 00E+02 3. 00E+00 2. 00E+00 2. 00E+00 2. 00E+00 2. 00E+00 
artun 4. 00E+00 6. 00E+Ol 3. 00E+00 1. 00E+00 4. 00E+00 3. 00E+00 5. 00E-01 
Kcal 3. 00E+02 1. 50E+03 1. 24E+02 1. 79E+02 7. 50E+Ol 9. 80E+Ol 7. 90E+Ol 

4. 00E+00 3. 00E+00 1. 00E-01 1. 20E+Ol 5. 00E-01 
2. 60E+Ol 3. 60E+Ol l.OOE+OO 1. lOE+Ol 
1. 00E+00 2. 00E+00 8. 00E+00 5.  00E+00 5. 00E-01 

1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol 2. 00E+00 2. 35E+02 9. 00E+00 
1. 20E+Ol 2. 30E+Ol 2. 00E-01 3. 50E+00 5. 00E+00 
4. 20E+Ol 1. 03E+02 1. 60E+00 1. 87E+02 1. 30E+Ol 
1. 00E+00 1.00E+00 2.OOE-01 4.00E-01 

2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02 
1. 20E-01 1. 40E-01 2. 30E-01 6. 00E-02 

Press Fl for help 
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Editing help during model editing in IAC-DIDAS-L2 
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Press Fl forhelp < INSERT ) 

Help 
F 1 - Help 
F2 - Qult edltlng - dlscard changes 
Return - Exlt edltlng - save changes 
BacKspace - Delete character left 
De 1 - Delete character on cursor 
Ins - Insert mode on / off 
Arrows - Move cursor 
Home - Move to begln of llne 
End - Move to end of line 
ESC - Exit help 

Further editing help in IAC-DIDAS-L2 

real s Butter Cheese FrultFre 
g 10 g 50 g 150 g 

00E+00 5.00E+00 3.00E+00 2.00E+00 

00E+00 5. 00E+00 9. 00E+00 1. 40E+Ol 
00E+00 2.00E+00 2.00E+00 2.00E+00 
00E+00 4.00E+00 3.00E+00 5.00E-01 
79E+02 7. 50E+Ol 9. 8OE+Ol 7. 90E+Ol 
00E+00 1. 00E-01 1. 20E+Ol 5. 00E-01 

Carbohy 2. 60E+Ol 3. 60E+Ol l.OOE+OO 1. lOE+Ol 
Fats l.OOE+OO 2.00E+00 00E-01 

Help 
F 1 - Help 
F2 - Edit cell 
Alt/Del - Delete row 
A1 t/Ins - Insert row 
Ctrl/Del - Delete column 
Ctrl/Ins - Insert column 
Arrows - Move cursor 
CTRL/Arrows - Move cursor to header 
F9 - Return to maln menu 
FlO - Start interaction 
ES c - Exit help 

eals Butter Cheese FrultFre 
8 10 g 50 g 150 g 

OE+OO 5.00E+00 3.00E+00 2.00E+00 

OE+OO 5. 00E+00 9. 00E+00 1. 40E+Ol 
OE+OO 2.00E+00 2.00E+00 2.00E+00 
OE+OO 4.00E+00 3.00E+00 5.00E-01 
9E+02 7. 50E+Ol 9. 80E+Ol 7. 90E+Ol 
OE+OO 1. 00E-01 1. 20E+Ol 5. 00E-01 
OE+Ol 1.00E+00 1. lOE+Ol 

00E+00 Calcium 1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol 

Fats 1. 00E+00 2.00E+00 8. 00E+00 5.00E+00 5.00E-01 
Calcium 1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol 2. 00E+00 2. 35E+02 9. 00E+00 
Magnesl 1. 2OE+Ol 2. 30E+Ol 2. 00E-01 3. 50E+00 5. 00E+00 
Phospho 4. 20E+Ol 1. 03E+02 1. 60E+00 1. 87E+02 1. 30E+Ol 
Iron 1. 00E+00 1. 00E+00 2.00E-01 4.00E-01 
Vit. A 2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02 
Vlt. B 1. 2OE-01 1. 40E-01 2. JOE-01 6. 00E-02 

Press Fl for help 

Magnesl 1. 20E+Ol 2. 30E+Ol 00E+00 
Phospho 4. 20E+Ol 1. 03E+02 1. 6OE+OO 1. 87E+02 1 .  30E+Ol 
Iron ~ . O O E + O O  i.ooE+oO 2.00E-01 4.00E-01 
Vit. A 2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02 
Vlt. B 1. 20E-01 1. 40E-01 2. 3OE-01 6. OOE-02 

2. 
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A Solver for the Transshipment Problem with Facility Location 

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta 

Institute of Informatics, Warsaw University. 

ABSTRACT 

This paper describes the initial results of research, development and imple- 
mentation of the Dynamic Interactive Network Analysis System (DINAS) 
which will make opportunity for solving various multiobjective transship 
ment problems with facility location on IBM PC/XT microcomputers. The 
main result of this stage is the development and implementation of the 
TRANSLOC solver which provides the DINAS with solutions to  single- 
objective problems. It is based on the branch and bound scheme with a 
pioneering implementation of the simplex special ordered network (SON) 
algorithm with implicit representation of the VUB & SUB constraints. The 
paper describes in details backgrounds of techniques used in the 
TRANSLOC solver. A real example of the transshipment problem with 
facility location is also discussed and an outline of the designed procedure 
for handling multiple objectives in the DINAS is given. 

1. Introduction. 

The distribution - location type problems belong to  the class of most significant 
problems directly leading to real life applications of mathematical programming methods. 
Steadily rising costs and inflation as well as legal and political considerations, competi- 
tion, fuel scarcity and many other factors have led, in recent years, many organizations to  
examine more closely their present and planned distribution patterns or facility locations. 
For instance, the impact of the energy crisis in the 70-th caused real impetus for re- 
evaluation of existing and often outmoded distribution patterns and methods. 

Suppose we have a number of facilities and a number of customers or customer 
zones. Finding the distribution pattern is a fairly straightforward mathematical program- 
ming problem, e.g. transportation problem. When we add the possibility of removing or 
adding a number of facilities with their associated fixed costs, we have a more complex 
facility location problem which is in general an integer programming problem. Many real 
world problems in industry, business, government and nonprofit organizations include a 
variety of conflicting goals and objectives as functions of their distribution patterns and 
facility locations. Adding these functions as the criteria of optimization we expand our 
problem into a multicriteria transportation and facility location problem. However, real 
life situations create even more complex problems. Therefore the problem considered in 
the paper will be precisely described and formulated once more in the next sections. 

Due to the multiple objective formulation and to  the integrity of location variables, 
the problem is complicated and computationally complex. Hence the method designed for 
solving the problem should be stable and fast in order to  produce a correct result or its 
acceptable approximation in a reasonable time. 
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This paper describes the initial results of research, development and implementation 
of the Dynamic Interactive Network Analysis System (DINAS) which is being developed 
with the purpose of solving various multiobjective transshipment problems with facility 
location on IBM PC/XT microcomputers. The main result of this stage is the develop 
ment and implementation of the TRANSLOC solver which provides the DINAS with 
solutions to  single-objective problems. It is based on the branch and bound scheme with a 
pioneering implementation of the simplex special ordered network (SON) algorithm with 
implicit representation of the VUB & SUB constraints. The paper describes in details 
backgrounds of techniques used in the TRANSLOC solver. A real example of the trans- 
shipment problem with facility location is also discussed and an outline of the designed 
procedure for handling multiple objectives in the DINAS is given. 

2. An example 

As an illustration of the transshipment-location type problem mentioned in the pre- 
vious section, the problem of location of depots in a sugar-beet distribution system is con- 
sidered. The problem was studied by Jasinska & Wojtych in [7]. They were dealing with a 
real-life p;oblem concerning a sugar enterprise in Lower Silesia, in Poland. 

There are 1588 villages in the considered region. Each of them is treated as a farm 
that  produces the sugar-beet. Every farm is characterized by its total supply in the 
sugar-beet harvesting period. The sugar-beet is supplied to  sugar-mills directly or through 
some depots. There are 12 sugar-mills in the region. Each sugar-mill is characterized by 
two amounts: the total storing capacity and the total production capacity in one produc- 
tion season. 

A sugar production season in Poland lasts about three months. The total amounts of 
the sugar-beet must be shipped between the farms and the sugar-mills in this period. 
There are three types of shipping: between the farms and depots, between the depots and 
sugar mills, and directly between the farms and the sugar-mills. Each of the types is 
characterized by a unit cost of the shipping. 

Climatic conditions and poor storage facilities may cause losses of sugar-beet volume 
or sugar content in the sugar beet. To avoid the losses, the deliveries from farms should 
be carried out within the harvesting season (the beginning phase of the sugar production 
season). However, the sugar-mills stores have limited capacities and cannot take all the 
amount of the sugar-beet in the short time. Therefore, a part of the sugar-beet supply has 
to  be delivered to  depots and stored there temporarily. But the technological and 
economic analysis indicates that  the density of the existing network of small depots is 
insufficient in the case of an increased supply. Hence, some existing depots should be 
modernized to  increase their throughputs and some new depots should be built. 

The sugar industry decision maker chose 49 possible depot locations in the con- 
sidered region. Each location is characterized by the lower bound (20 000 tons) and the 
upper bound (55 000 tons) of throughput. Every potential depot is considered as two 
separate depots: the basic one with the throughput within the interval [20 000, 34 OOC)] 
and the additional one with the throughput belonging to [O, 20 0001. The additional depot 
can be opened a t  the same site if the basic depot reaching its upper throughput limit is 
opened there. 

Thus in the given site: 



W .  Ogryczak  et  al.  A so lver  for .... 

- no depot need to  be located; 
- the basic depot may be located; 
- both the basic depot and the additional one may be located provided the basic depot 

reaches the upper bound of its throughput. 

Each depot location is evaluated by the operating and the investment costs. The 
investment cost is defined as the annual fixed charge of the basic or additional depot. 

The problem is to  determine the number, location and sizes of the depots to be 
selected from the candidate set and to  find the corresponding sugar-beet flows from farms 
to sugar-mills directly or through depots so as to  minimize the total transportation and 
depot investment and operating cost (provided the total amount of sugar-beet is delivered 
from farms to  sugar-mills). 

As reported in the quoted paper [7], the problem could not be solved in a reasonable 
time due to its large size. Fortunately, the size can be reduced by an aggregation of farms 
into supply zones. The farms located in the neighborhood of the same depot or sugar-mill 
or situated along the same route were aggregated. In consequence, instead of 1588 farms 
128 zones were generated and a reduced problem was solved using the MPSX and MIP 
systems. 

The problem described above represents a class of transshipment problem with facil- 
ity location. It is a single-objective optimization problem. However, the single-objective 
optimization is insufficient in real-life circumstances and additional objectives should be 
taken into consideration. For instance, the total amount of the sugar-beet flow through 
depots should be minimized. This criteria seems to be very important because of the 
direct flows from farms to sugar-mills are technologically most efficient. As another objec- 
tive, minimization of the total amount of the sugar-beet delivered by rail or maximization 
of the sugar production volume can be considered. The objectives need not be, in general, 
comparable; therefore our problem should be considered as a multicriteria optimization 
problem. The multicriteria optimization approach to the transshipment-location type 
problem will be developed more precisely in next sections. 

3. T h e  general ized n e t w o r k  m o d e l  

In the previous section, we have introduced a class of transshipment problems with 
facility location. In this section, we define the mathematical model of such problems more 
precisely. 

A network model of the problem consist of nodes that  are connected by a set of 
direct flow arcs. The set of nodes is partitioned into two subsets: the set of fixed nodes 
and the set of potential nodes. The fixed nodes represent "fixed points" of the transporta- 
tion network, i.e., points which cannot be changed. Each fixed node is characterized by 
two quantities: supply and demand. The potential nodes are introduced to represent pos- 
sible locations of new points in the network. Some groups of the potential nodes represent 
different versions of the same facility to  be located (e.g., different sizes of a warehouse). 
For this reason, potential nodes are organized in the so-called selections, i.e., sets of nodes 
with the multiple choice requirement. Each selection is defined by the list of included 
potential nodes as well as by a lower and upper number of nodes which have to  be 
selected (located). Each potential node is characterized by a capacity which bounds maxi- 
mal flow through the node. The capacities are also given for all arcs but not for the fixed 
nodes. 

Several linear objective functions are considered in the problem. The objective func- 
tions are introduced into the model by given coefficients associated with several arcs and 
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potential nodes. They will be called cost coefficients independently of their real character 
in the objective functions. The cost coefficients for potential nodes are, however, under- 
stood in different way than for arcs. The cost coefficient connected to an arc is treated as 
the unit cost of the flow along the arc whereas the cost coefficient connected to  a potential 
node is considered as the fixed cost associated with using (locating) of the node rather 
than as the unit cost. 

We assume two restrictions on the network structure in our model: 

(1) there are no arcs that  directly connect two potential nodes; 

(2) each potential node belongs to  one or two selections. 

Both the restriction are not very strong. The first one does not imply any loss of 
generality since every two of potential nodes can be separated by an introduction of an 
artificial fixed node if necessary. The second requirement, in general, restricts the class of 
problems. However, each potential node in practical models usually belongs to  exactly one 
selection or sometimes to  two selections in more complex problems. 

For simplification of the model and the solution procedure, we transform the poten- 
tial nodes into artificial arcs. The transformation is performed by duplication of all poten- 
tial nodes. After the duplication all the nodes can be considered as fixed and each poten- 
tial node is replaced by an artificial arc which leads from the node to its copy. Due to  the 
transformation we get a network with fixed structure since all the nodes are fixed. Poten- 
tiality of artificial arcs does not imply any complication because each arc in the network 
represents a potential flow. Moreover, all the bounds on flows (i.e., capacities) are con- 
nected to  arcs after this transformation. Additional nonstandard discrete constraints on 
the flow are generated only by the multiple choice requirements associated with the selec- 
tions. Cost coefficients are connected only to arcs, but the coefficients connected to  
artificial arcs represent fixed costs. 

A mathematical statement of this transformed problem takes the form of the follow- 
ing generalized network model: 

minimize C f + C fEyij p=1,2 ,..., nobj (3.1) 
(ilj)EA\Aa (;!j)€Aa 

subject to  

C 'ij- C Z- = b ,  i=1,2, ..., nnode 
3' 

(;,;)€A (j,;)EA 

gk < C yij < hk, k=1,2 ,..., nsel 
(1rj)ESk 

where 

nobj number of objective functions, 

nnode number of nodes (including copies of potential nodes), 

nsel number of selections, 
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A set of arcs (including artificial arcs), 

' a  set of artificial arcs, 

rP, cost coefficient of the p-th objective associated with the arc ( i j ) ,  

t, i supply-demand balance a t  the node i (supply is denoted as a positive quantity 
and demand as negative), 

C . .  
'I 

capacity of the arc (i j) 

gk,hk lower and upper number of (artificial) arcs to be selected in the k-th selection, 

sk set of (artificial) arcs that  belong to  the k-th selection, 

2.. 
'I 

decision variable that  represents flow along the arc ( i j ) ,  

Y i j  decision variable equal 1 for selected arc and 0 otherwise. 

The generalized network model of this form includes typical network constraints 
(3.2) with simple upper bounds (3.3) as well as a special discrete structure (3.5)-(3.6) con- 
nected to the network structure by variable upper bounds (3.4). While solving the model 
we have to take advantages of all these structures. 

Taking into consideration an artificial arc, we notice that  its capacity limits not only 
the flow along this arc but also many other flows. Let ( t o ,  jo )  be an artificial arc. Then 
( t o ,  j ,) is the only arc which emanates from the node 2 ,  and only arc which reaches the 
node j, .  Due to this fact we can introduce additional bounds on flow along each arc which 
reaches the node i ,  or emanates from the node j,. In such a way we get additional ine- 
qualities: 

'ti 5 c;jYi j  and 32 < - c y  81 '3 ( t , j ) € A a ,  ( t , i ) ~ A ,  ( j , t ) ~ ~  (3.7) 

which makes the constraints of our model tighter and improves effectiveness of the solu- 
tion process. 

4. Interactive procedure for handling multiple objectives 

There are many different concepts for handling multiple objectives in mathematical 
programming. We decided to use the so-called reference point approach. The reference 
point approach introduced by Wierzbicki (see [16]) was developed in many papers (see 
[9]) and was used as a basis for construction of the software package DIDAS (Dynamic 
Interactive Decision Analysis and Support system). The DIDAS package developed a t  
IIASA proved to be useful in analyzing conflicts and assisting in decision making situa- 
tions (see 141, [ 5 ] ) .  

The reference point approach is a generalization of the well-known goal program- 
ming method (see (61) and of the method of displaced ideals (see [18]). The basic concept 
of this approach is as follows: 

(1) the decision-maker (DM) forms his requirements in terms of aspiration levels, i.e., he 
specifies acceptable values for given objectives; 

(2) the DM works with the computer in an interactive way so that  he can change his 
aspiration levels during the sessions of the analysis. 

In our system, we extend the DIDAS approach. The extension depends on additional 
use of reservation levels which allow the DM to specify necessary value for given objec- 
tives (see 1171). 

Consider the multi-objective program associated with the generalized network 
model: 
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minimize q 

subject to 

where 

q represents the vector, 

F is the linear vector-function defined by (3.1), 

Q denotes the feasible set of the generalized network model, i.e., the set defined by con- 
ditions (3.2)-(3.7). 

The reference point technique works in two stages. In the first stage the DM is pro- 
vided with some initial information which gives him an overview of the problem. The ini- 
tial information is generated by minimization of all the objectives separately. More pre- 
cisely, a sequence of single objective programs is solved defined as follows: 

P 
nobj . 

min{fp(z,y) + -- C f ( 2 , ~ )  : ( z , y ) ~ Q ) ,  p=1,2 ,..., nobj 
no61 ,=I 

where fP denotes the p-th objective function and p is an arbitrarily small number 

The so-called decision-support matrix (or pay-off matrix) D= (q .) p =  1, ..., no6 j ;  
P3 

j=l, ..., nobj which yields information on the range of numerical values of each objective 
is then constructed. The p-th row of the matrix D corresponds to the vector (zP,yP) 
which solves the p-th program (4.1). Each quantity q . represents a value of the j-th 

P3 
objective a t  this solution ( e .  qp.= f3(zp y )). The vector with elements qpp, i.e., the ' P 
diagonal of D, defines the utopia (ideal) point. This point, denoted further by qu ,  is usu- 
ally not attainable but it is presented to the DM as a lower limit to the numerical values 
of the objectives. 

When analysing a column j of the matrix D, we notice that  the minimal value in the 
n n .  

column is qpp=q P. Let q ' be the maximal value, i.e., 

qnj= max 
l<p<n=obj q ~ j  

The point qn is called the nadir point and may be presented to the DM as an upper 
guideline to the values of the objectives. Thus, for each objective fP a reasonable but not 
necessarily tight upper bound qn and a lower bound qU are known after the first stage of 
the analysis. 

In the second stage, an interactive selection of efficient solutions is performed. The 
DM controls the selection by two (vector-) parameters: his aspiration level qa and his 
reservation level qr, where 

The support system searches for the satisfying solution while using an achievement scalar- 
izing function as a criterion in single-objective optimization. Namely, the support system 
computes the optimal solution to  the following problem: 

nobj 
minimize max pp(q,qa,qr)  + 

1 <_p 5 no83 
n04i C P~(P,P" ,P ' )  

subject to 
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where p is an arbitrarily small number and p is a function which measures the deviation 
P 

of results from the DM'S expectations with respect to  the p-th objective, depending on 
given aspiration level qa  and reservation level q r .  

The computed solution is an efficient (Pareto-optimal) solution to  the original mul- 
tiobjective model. It is presented to  the DM as a current solution. The DM is asked 
whether he finds this solution satisfactory or not. If the DM does not accept the current 
solution he has to  enter new aspiration and/or reservation levels for some objectives. 
Depending on this new information supplied by the DM, a new efficient solution is com- 
puted and   resented as a current solution. The process is repeated as long as necessary. 

The function pp(q,qa,qr) is a strictly monotone function of the objective vector q 
with value p =O if q=qa and pp=l  if q=qr .  In our system, we intend to  use a piece- 

P 
wise linear function pp defined as follows: 

where pp and yp (p=1,2, ..., nobj) are given positive parameters. In particular, the 
parameters pp and yP may be defined (similarly as in [17]) according to the formulae 

Dp=(9;-9;)/(9;-9;)*D 

7p=(9;-9;)/(9;-9;)*7 

with two arbitrarily given positive parameters fl and 7 .  

If the parameters pp and 7 p  satisfy inequalities Dp< 1 and yp> 1 ,  then the achieve- 
ment functions p are convex. Minimization of the function p is then equivalent to  

P P 
minimization of a variable pp defined as follows: 

To  provide for a special treatment of the equalities (4.3) in the single objective 
solver, we perform substitutions: 

ppf =d: and qpvp=d; 

Finally, we form the problem (4.2) in terms of linear programming as the following 
program: 

P 
nobj 

min z+- pp 
nobj p=l  

subject to 
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p p < z ,  p=1,2 ,..., n o b j  

pp=vP+d~-d: ,  p=1,2 ,..., n o b j  

1 + 1 -  
v --dp +-dp =(qp-q;)/(qL-q;), p=1,2, ..., n o b j  

P P  Y P  
O < v p I l ,  p=1,2 ,..., nob j  

d:>0, dPp>O, p=1,2 ,..., nob j  

q = F ( z , y )  

( ~ , Y ) E Q  

5. General concept of the TRANSLOC solver 

The TRANSLOC solver has been prepared to provide the multiobjective analysis 
procedure with solutions to  single-objective problems. According to  the interactive pro- 
cedure described in Section 4 the TRANSLOC solver has to be able to solve two kinds of 
single-objective problems: the first one associated with calculation of the decision support 
matrix (problems (4.1)) and the second one associated with minimization of the scalariz- 
ing achievement function (problems (4.2)). Both kinds of the problems have, however, the 
same main constraints which represent the feasible set of the generalized network model. 
Moreover, the other constraints of both kinds of problems can be expressed in very similar 
ways. So, we can formulate a general single-objective problem for the TRANSLOC solver 
as follows: 

max s (5.1 ) 

subject to  

C z i j -  C zji = b; 1=1,2, ..., nnode 
(i,j)EA ( j , i ) ~ A  

w k +  C y . . = h k  13 k=1,2, ..., nsel 
(i,j)€Sk 

pP - vp  + d: - d; = 0 p=1,2, ..., n o b j  (5.4) 

= lip p=1,2, ..., n o b j  
nob I 

0 < 2 . .  < c . .  
11 - 13 ( i , j )  A (5.8) 

0 I wk 5 hk - gk k=1,2, ..., nsel (5-9) 

2 . .  $3 < - c . . y - . ,  t j  1) z tt . < - c . .  t j y i j )  z -  jt < - c . . y , .  t j  t j  ( i , j ) ~ A , ,  ( t , i ) ~ A , ( j , t ) ~ A  (5.10) 

P p  5 2 p=1,2, ..., n o b j  (5.11) 

y . .  = 0 or 1 
0 ( : , ~ ) E A ~  (5.12) 
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and depending on the kind of optimization: 

d + = O , d p - = O  P p=1,2, ..., nobj (5.13) 

for the utopia point calculation or 

d , f > O ,  dp-20 ,  O < % < l  p=1,2 ,..., nobj 

for the achievement scalarizing function optimization, respectively, where: ap = 1 and 
- " 0  

6 = 0 during utopia point calculation, a = 
P P 

and 6 = 
P 

' "  during the 

9; - 9; 9; - 9; 
minimization of the achievement scalarizing function, whereas all the other quantities are 
the same as in Sections 3 and 4. 

The above single-objective problem is a typical mixed integer linear program, i.e., it 
is a typical linear program with integrity conditions for some variables (namely y . .  ) .  

' I  
Mixed integer linear programs are usually solved by branch and bound approach with 
utilization of the simplex method. The TRANSLOC solver also uses this approach. For- 
tunately, only very small group of decision variables is required to be integer in our 
model. Therefore, we can use a simple branch and bound scheme in the solver. Back- 
ground of this scheme is described in Section 6. 

Even for a small transshipment problem with facility location the corresponding 
linear program (5.1) - (5.11) has rather large size. For this reason it,  cannot be solved 
directly with the standard simplex algorithm. In order to solve the program on IBM 
PC/XT microcomputers, it is necessary to  take advantages of its special structure. 

Note that  the main group of equality constraints (5.2) represents typical network 
relations. Similarly, the equalities (5.3) and (5.4) include only variables with unit 
coefficients. All the rows (5.2) - (5.4) can be handled in the simplex method as the so- 
called special ordered network (SON) structure. Basic rules of the SON technique used in 
the TRANSLOC solver are developed in Section 7. 

The inequalities (5.8) - (5.9) and (5.13) or (5.14) are standard simple upper bounds 
(SUB) which are usually processed out of the linear programming matrix. Similarly, ine- 
qualities (5.10) and (5.11) can be considered as the so-called variable upper bounds 
(VUB) and processed out of the matrix due to  a special technique. Basic rules of the tech- 
nique for SUB & VUB processing are developed in Section 8. 

Thus, only a small number of inequalities (5.5) - (5.7) has to be considered as typical 
rows of linear program. While taking advantage of this fact, the TRANSLOC solver can 
process transshipment problems of quite large dimensions. As a proper size of problems 
for IBM PC/XT microcomputers we regard: 
- a few objective functions, 
- about one hundred of fixed nodes, 
- a few hundreds of arcs, 
- several potential nodes (artificial arcs) organized in a few selections. 

Initial experiences with the TRANSLOC solver show that  such problems can be 
solved on IBM PC/XT microcomputers in reasonable time. 

6. The branch and bound scheme 






































































































































































































































