NOT FOR QUOTATION
WITHOUT THE PERMISSION

OF THE AUTHORS

THEORY, SOFTWARE AND TESTING EXAMPLES
FOR DECISION SUPPORT SYSTEMS

A. Lewandowsk:
A. Wierzbick:

March 1987
WP-87-26

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

NOT FOR QUOTATION
WITHOUT THE PERMISSION

OF THE AUTHORS

THEORY, SOFTWARE AND TESTING EXAMPLES
FOR DECISION SUPPORT SYSTEMS

A. Lewandowsk:
A. Wierzbick:

March 1987
WP-87-26

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

Research in methodology of Decision Support Systems is one of the activities within
the System and Decision Sciences Program which was initiated seven years ago and is still
in the center of interests of SDS. During these years several methodological approaches
and software tools have been developed; among others the DIDAS (Dynamic Interactive
Decision Analysis and Support) and SCDAS (Selection Committed Decision Analysis and
Support). Both methodologies gained a certain level of popularity and have been success-
fully applied in other IIASA programs and projects as well as in many scientific institu-
tions.

Since development and testing the software and methodologies on real life examples
requires certain - rather high - resources, it was decided to establish a rather extensive
international collaboration with other scientific institutions in various NMO countries.
This volume presents the result of the second phase of such a cooperation between the
SDS Program and the four scientific institutions in Poland. The research performed dur-
ing this stage related mostly to converting the decision support software developed during
the previous phase, from the mainframe to the microcomputer, ensuring simultaneously
high level of rebustness, efficiency and user friendliness. Several new theoretical develop-
ments, like new non-simplex algorithm for linear programming, new algorithms for
mixed-integer programming and job shop scheduling are also described in the volume.
Finally, it presents also new theoretical developments relating to supporting the processes
of negotiations as well as the methodological issues on application the Decision Support
Systems in industry management.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program

-iii-

CONTENTS

Introduction
Andrzej Lewandowskt, Andrzej P. Wierzbicki

Decision Support Systems of DIDAS Family

(Dynamic Interactive Decision Analysis & Support)

Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowsk:,

Andrzej P. Wierzbicki

INTRODUCTION

1. CONCEPTS OF DECISION SUPPORT AND FRAMEWORKS FOR
RATIONAL DECISIONS

1.1. Concepts of decision support systems.

1.2. Frameworks for rational decisions.

2. QUASISATISFICING AND ACHIEVEMENT FUNCTIONS

3. PHASES OF DECISION SUPPORT IN SYSTEMS OF
DIDAS FAMILY

4. REVIEW OF VARIOUS IMPLEMENTATIONS OF SYSTEMS OF
DIDAS FAMILY

5. APPLICATIONS OF SYSTEMS OF DIDAS FAMILY

REFERENCES

Modern Techniques for Linear Dynamic and Stochastic Programs

Andrze)y Ruszczynskt

1.INTRODUCTION

2. DYNAMIC STRUCTURE AND STOCHASTICITY AS SOURCES
OF LARGE LINEAR MODELS

3. SPECIALIZED VERSIONS OF THE SIMPLEX METHOD

4. FEASIBLE DIRECTION METHODS

5. THE REGULARIZED DECOMPOSITION METHOD

CONCLUSIONS

REFERENCES

Theoretical Guide for NOA2: a FORTRAN Package
of Nondifferentiable Optimization Algorithms
Krzysztof C. Kiwiel, Andrze) Stachursk:

1. INTRODUCTION

2. AN OVERVIEW OF ALGORITHMS OF NOA2

2.1. Unconstrained convex minimization

2.2. Linearly constrained convex minimization

2.3. Exact penalty methods for convex constrained problems
2.4. The constraint linearization method

2.5. Feasible point methods for convex problems

2.6. Methods for nonconvex problems

REFERENCES

Implicit Utility Function and Pairwise Comparisons
Janusz Majchrzak

1. INTRODUCTION

2. MOTIVATIONS

-9

Nelier -

14

22
23
23

27

27
29
35
37
41
42

45
46
46
51
53
54
55
56
57

59
59

3. BASIC IDEAS 60
4. SOME DETAILS 61
5. CONCLUDING REMARKS 62
REFERENCES 62

Safety Principle in Multiobjective
Decision Support in the Decision Space
Defined by Availability of Resources
Henryk Goreck:, A.M. Skulimowsk:

INTRODUCTION 63
PROBLEM FORMULATION 64
THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE 65
THE SAFETY PRINCIPLE 68
AN APPLICATION TO A DESIGN PROBLEM 70
FINAL REMARKS 71
REFERENCES 72

Methodological Guide to HYBRID 3.01.:

a Mathematical Programming Package

for Multicriteria Dynamic Linear Problems
Marek Makowski and Janusz Sosnowsk:

1. INTRODUCTION 74
1.1. Executive summary 74
1.2. Short program description 76
1.2.1. Preparation of a problem formulation 76
1.2.2. Problem verification 76
1.2.3. Problem analysis 77
1.2.4. Remarks relevant to dynamic problems 78
1.2.5. General description of the package and data structure 78
1.2.6. Outline of the solution technique 79
1.3. Remarks about current implementation 80
2. STATEMENT OF OPTIMIZATION PROBLEMS 82
2.1. Formulation of LP problem 82
2.2. Classical formulation of Dynamic LP problem (CDLP) 82
2.3. Formulation of Dynamic Problem (DLP) 83
2.4, Multicriteria optimization 85
2.4.1. General remarks 85
2.4.2. Types and declaration of criteria 86
2.4.3. Transformation of multicriteria problem to an auxiliary LP 87
3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROBLEMS 89
3.1. General remarks 89
3.2. The multiplier method 89
3.3. The conjugate gradient method for the minimization

of the augmented Lagrangian penalty function 90
4. SOLUTION TECHNIQUE 93
4.1. Algorithm for minimization of augmented Lagrangian of DLP 93
4.2. Adaptation of the multiplier method 94
4.3. Solution technique for dynamic problems 95
4.4. Algorithm for minimization of augmented Lagrangian of DLP 96
4.5. Regularization 98
4.6. Scaling 99
5. TESTING EXAMPLES 101
5.1. Econometric growth model 101

5.2. Flood control problem 101

3. BASIC IDEAS

4. SOME DETAILS

5. CONCLUDING REMARKS
REFERENCES

Safety Principle in Multiobjective
Decision Support in the Decision Space
Defined by Availability of Resources
Henryk Goreck:, A.M. Skulimowsk:
INTRODUCTION

PROBLEM FORMULATION

THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE
THE SAFETY PRINCIPLE

AN APPLICATION TO A DESIGN PROBLEM
FINAL REMARKS

REFERENCES

Methodological Guide to HYBRID 3.01.:
a Mathematical Programming Package
for Multicriteria Dynamic Linear Problems
Marek Makowski and Janusz Sosnowsk:
1. INTRODUCTION
1.1. Executive summary
1.2. Short program description
1.2.1. Preparation of a problem formulation
1.2.2. Problem verification
1.2.3. Problem analysis
1.2.4. Remarks relevant to dynamic problems
1.2.5. General description of the package and data structure
1.2.6. Outline of the solution technique
1.3. Remarks about current implementation
2. STATEMENT OF OPTIMIZATION PROBLEMS
2.1. Formulation of LP problem
2.2. Classical formulation of Dynamic LP problem (CDLP)
2.3. Formulation of Dynamic Problem (DLP)
2.4. Multicriteria optimization
2.4.1. General remarks
2.4.2. Types and declaration of criteria
2.4.3. Transformation of multicriteria problem to an auxiliary LP
3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROBLEMS
3.1. General remarks
3.2. The multiplier method
3.3. The conjugate gradient method for the minimization
of the augmented Lagrangian penalty function
4. SOLUTION TECHNIQUE
4.1. Algorithm for minimization of augmented Lagrangian of DLP
4.2. Adaptation of the multiplier method
4.3. Solution technique for dynamic problems
4.4. Algorithm for minimization of augmented Lagrangian of DLP
4.5. Regularization
4.6. Scaling
5. TESTING EXAMPLES
5.1. Econometric growth model
5.2. Flood control problem

60
61
62
62

63
64
65
68
70
71
72

74
74
76
76
76
77
78
78
79
80
82
82
82
83
85
85
86
87
89
89
89

90
93
93
94
95
96
98
99
101
101
101

5.3. Full dense LP problem
5.4. Discussion of test results
6. CONCLUSIONS

7. REFERENCES

Decision Support Systems of DIDAS Family
(Dynamic Interactive Decision Analysis & Support)
Andrzej Lewandowski, Tomasz Kreglewsk:, Tadeusz Rogowski,
Andrzej P. Wierzbicki

INTRODUCTORY DOCUMENTATION

EXECUTIVE SUMMARY

SHORT PROGRAM DESCRIPTION

THEORETICAL MANUAL

REFERENCES

APPENDIX

A Solver for the Transshipment Problem with Facility Location
Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

1. INTRODUCTION

2. AN EXAMPLE

3. THE GENERALIZED NETWORK MODEL

4. INTERACTIVE PROCEDURE FOR HANDLING MULTIPLE OBJECTIVES
5. GENERAL CONCEPT OF THE TRANSLOC SOLVER

6. THE BRANCH AND BOUND SCHEME

6.1. A basic concept

6.2. The branch and bound algorithm

7. THE SIMPLEX SON ALGORITHM

7.1. Graph representation

7.2. Basis structure

7.3. Tree representation

7.4. Representation of MBT

7.5. Finding the representation of the entering vector

7.6. Finding the dual vector

7.7. Exchange rules

8. IMPLICIT REPRESENTATION OF VUB & SUB CONSTRAINTS
8.1. A basic concept

8.2. Pricing

8.3. Pivoting

REFERENCES

A Methodological Guide to the Decision Support System
DISCRET for Discrete Alternatives Problems
Janusz Majchrzak

1. INTRODUCTION

1.1. Scope of the report

1.2. Purpose of the DISCRET package

1.3. Fields of the package applications

2. BACKGROUND

2.1. The discrete multicriteria optimization problem

2.2 Overview of existing approaches

2.3. The method of dominated approximations

2.4. Selection of the representation of the nondominated set
2.5. Outline of the approach and introduction to DISCRET
3. STRUCTURE AND FEATURES OF THE PACKAGE

102
102
103
104

106
106
110
112
122
123

125
126
127
129
132
134
134
135
136
136
137
137
138
138
139
140
141
141
143
143
144

146
146
146
147
147
147
148
149
150
151
154

3.1. General description

3.2. Problem specification phase

3.3. The bounds setting phase

3.4. The DMOP solving phase

3.5. The phase of selecting final solution
4. TEST EXAMPLES

4.1. The Dyer’s "Engine Selection Problem”
4.2. The location-allocation problem
4.3. How to get started

5. CONCLUSIONS

REFERENCES

Nonlinear Model Generator

J.Paczynski, T.Kreglewsks

INTRODUCTORY DOCUMENTATION
EXECUTIVE SUMMARY

SHORT PROGRAM DESCRIPTION
THEORETICAL MANUAL

SYNTAX OF FORMULAE

SYMBOLIC DIFFERENTIATION OF FORMULAE.
INTERNAL REPRESENTATION OF FORMULAE
ARITHMETIC AND DIFFERENTIATION OPERATIONS
COMPRESSION OF STRUCTURES
EVALUATION OF FORMULAE

REFERENCES

IAC-DIDAS-N

A Dynamic Interactive Decision Analysis and Support System
for Multicriteria Analysis of Nonlinear Models

on Professional Microcomputers

T. Kreglewsk:, J.Paczynski, A.P. Wierzbick:

INTRODUCTORY DOCUMENTATION

EXECUTIVE SUMMARY

SHORT PROGRAM DESCRIPTION

THEORETICAL MANUAL

REFERENCES

An Experimental System Supporting

Multiobjective Bargaining Problem:

a Methodological Guide

Piotr Bronisz, Lech Krus, Bozena Lopuch

1. INTRODUCTION

2. PROBLEM FORMULATION AND DEFINITIONS

3. FIRST PHASE. MULTIOBJECTIVE DECISION PROBLEM
4. SECOND PHASE. COOPERATION

5. A SIMPLIFIED MODEL OF A JOINT DEVELOPMENT PROGRAM
6. SHORT PROGRAM DESCRIPTION

REFERENCES '

A Permutative Scheduling Problem
with Limited Resources

and Interoperation Constraints
Tomasz Rys, Wieslaw Ziemble
INTRODUCTION

154
155
155
155
156
158
158
159
161
161
161

163
163
166
167
167
169
170
173
174
175
175

177
177
181
183
192

193
194
196
197
199
200
201

203

PROBLEM DEFINITION

THE SOLVING ALGORITHM

GENERAL ENUMERATION SCHEME
CALCULATION OF LOWER BOUNDS
EXAMPLE

GENERAL DESCRIPTION OF THE PROBLEM
IMPLEMENTATION

CONCLUDING REMARKS

REFERENCES

Multiobjective Evaluation of Industrial Structures

MIDA application to the Case of Chemical Industry

Maciej Zebrowsk:

INTRODUCTION

FORMAL FRAMEWORK FOR THE ANALYSIS

THE MODEL

TOWARDS DECISION SUPPORT SYSTEM TOOL

EXAMPLE OF MULTIOBJECTIVE EVALUATION OF IDS

FEEDSTOCKS AND FUELS PDA - AN EXAMPLE OF
SUBSTITUTION MODEL ANALYSIS

EXPERIMENTS WITH THE MODEL

CONCLUSIONS

REFERENCES

APPENDIX

Spatial PDA Modelling

for Industrial Development

with Respect to Transportation Costs
Maciej Skocz, Wieslaw Ziembla

THE PROBLEM OVERVIEW
MATHEMATICAL MODELS

SOLVING ALGORITHM

COMMENTS AND CONCLUSIONS
REFERENCES

Ranking and Selection

of Chemical Technologies

Application of SCDAS Concept
Grzegorz Dobrowolski and Macies Zebrowsk:
INTRODUCTION

THE PROBLEM AREA

RANKING AND SELECTION OF TECHNOLOGY. THE CASE OF METHANOL
CONCLUSIONS AND PROPOSAL FOR THE FUTURE DEVELOPMENT

REFERENCES
APPENDIX

203
204
204
206
210
210
211
211
212

213
213
213
217
218

218
220
220
222
222

224
226
231
232
232

232
232
234
238
239
240

Introduction

Andrzej Lewandowski, Andrzej P. Wierzbicki

This collection of papers presents methodological reports for the contracted study
agreement ’Theory, Software and Testing Exzamples for Decision Support Systems, Stage
II’ between the International Institute for Applied Systems Analysis (IIASA), Systems
and Decision Science Program, and the Polish Academy of Sciences, represented by four
research institutes in Poland: the Institute of Automatic Control, Warsaw University of
Technology (Part A and coordination on Polish side), the Institute of Systems Research,
Polish Academy of Sciences (Part B), the Institute of Control and Systems Engineering,
Academy of Mining and Metallurgy in Cracow (Part C) and the Institute of Informatics,
Warsaw University (Part D). These methodological reports are augmented with more
detailed manuals and software documentation in the form of separate working papers.

The papers present the results of research performed in 1986 according to the con-
tracted study agreement, with slight modifications agreed upon in the course of research
with Systems and Decision Sciences Program which coordinated the cooperation on IIASA
side. Because of the need to summarize the long development of DIDAS family systems in
response to many requests from various institutions collaborating with ITASA, it was
agreed to prepare a comprehensive report ’Decision Support Systems of DIDAS family’
instead of reporting on further theoretical research in part A of the agreement; this
theoretical research has been carried on, but will be reported in Stage III of the study.
Some other minor corrections and specifications of the contracted study agreement has
been agreed upon in the course of cooperation; on the whole, however, the papers
presented here correspond to the scope of the study as specified in the contracted study
agreement.

Therefore, the papers in this collection have diverse character, corresponding to vari-
ous aspects of the theory, software and testing examples for decision support systems. All
papers contained in this volume were presented at the international Task Force Meeting
"Theory, Software and Testing Ezamples for Decision Support Systems’, organized upon
ITASA request by the Institute of Automatic Control, Warsaw University of Technology,
and the Institute of Systems Research, Polish Academy of Sciences, on December 8-9,
1986 in Warsaw. Since some of the papers are meant to be parts of self-standing software
documentation, hence they might repeat, in their theoretical manuals, various explana-
tions given in other papers of more theoretical character.

The papers in this volume are not ordered according to contracted study agreement,
nor to the order of presenting them at the Warsaw Task Force Meeting; we have chosen
instead an ordering corresponding to the subjects of theory, software and applications.

1) A special character has the first paper ’Decision Support Systems of DIDAS fam-
tly’, written by Andrze] Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski and
Andrzej Wierzbicki, which presents a comprehensive history, methodology, theory, imple-
mentation issues and various applications of systems related to the name Dynamic
Interactive Decision Analysis and Support, based upon quasisatisficing rationality

-92.

framework and reference point optimization principles.
Next four papers have mostly theoretical character:

2) The paper ’Modern Techniques for Linear Dynamic and Stochastic Programs’, by
Andrzej Ruszczynski, presents a review of modern optimization techniques for structured
linear programming problems, including non-simplex algorithm and, specifically, a new
regularized decomposition method for stochastic optimization problems.

3) The paper 'Theoretical Guide NOA2: a FORTRAN Package of Nondifferentiable
Optimization Algorithms’, by Krzysztof Kiwiel and Andrzej Stachurski presents theoreti-
cal background for a package of FORTRAN subroutines of nondifferentiable optimization
of locally Lipschitz continuous functions.

4) The paper ’Implicit Utility Function and Pairwise Comparisons’, by Janusz
Majchrzak presents an approach to estimating the utility function of decision maker for
decision support systems that process discrete alternatives.

5) The paper ’Safety Principle in Multiobjective Decision Support in the Decision
Space Defined by the Availability of Resources’ by Henryk Gorecki and A.Skulimowski
presents new theoretical results on decision analysis with uncertainty about constraints in
the criteria space and aspirations of the decision maker.

Further seven papers report on software development and are intended as parts of
software documentation.

6) The paper 'Methodological Guide to HYBRID 8.01: a Mathematical Programming
Package for Multicriteria Dynamic Linear Problems’, by Marek Makowski and Janusz
Sosnowski presents detailed methodological description of two versions of HYBRID sys-
tems of DIDAS family one for mainframe computers and one for IBM-PC compatibles.

7) The paper 'TAC-DIDAS-L, a Dynamic Interactive Decision Analysis and Support
System for Multicriteria Analysis of Linear and Dynamic Linear Models on Professional
Microcomputers’ written by Tadeusz Rogowski, Jerzy Sobczyk and Andrzej Wierzbicki,
presents introductory documentation and theoretical manual for two new, professional
microcomputer based, versions of systems of DIDAS family (one version in FORTRAN
and one in PASCAL).

8) The paper, A Solver for the Transshipment Problem with Facility Location’, by
Wilodzimierz Ogryczak, Krzysztof Studzinski, and Krystian Zorychta, reports on the work
in the Institute of Informatics, University of Warsaw. The paper describes a solver based
on branch and bound technique with novel a implementation of simplex algorithm for spe-
cially ordered network problems.

9) The paper ’A Methodological Guide to the Decision Support System DISCRET for
Discrete Alternatives Problems’, by Janusz Majchrzak presents methodological description
of the DISCRET decision support system.

10) The paper ’Nonlinear Model Generator’ by Jerzy Paczynski and Tomasz Kre-
glewski presents introductory documentation and theoretical manual for a nonlinear
model generator for decision support systems in an easy to use spreadsheet format and
with a symbolic differentiation package.

11) The paper for Multicriteria Analysis of Nonlinear Models on Professional Micro-
computers’, by Tomasz Kreglewski, Jerzy Paczynski and Andrzej Wierzbicki, presents
introductory documentation and theoretical manual for new version of nonlinear DIDAS
system, including spreadsheet format model definition and symbolic model differentiation.

12) The paper ’Ezperimental System Supporting Multiobjective Bargaining Problem -
a Methodological Guide’, by Piotr Bronisz, Lech Krus and Bozena Lopuch presents a pilot

-3-

version of a interactive decision support system in multicriteria bargaining problem.
Finally, further four papers are related to applications or testing examples:

13) The paper ’A Permutative Scheduling Problem with Limited Resources’ by
Tomasz Rys and Wieslaw Ziembla presents a specific testing example for decision support
systems with discrete scheduling alternatives.

14) The paper ’Multiobjective Evaluation of Industrial Structures - MIDA application
to the Case of Chemical Industry’, by Maciej Zebrowski presents a methodological applica-
tion of decision support systems.

15) The paper ’Spatial PDA Modelling for Industrial Development with Respect to
Transportation Cost’ by Maciej Skocz and Wieslaw Ziembla presents a multiobjective
decision problem related to the programming of the development of a spatially distributed
industrial system.

16) The paper ’Technologies Ranking and Selection in Chemical Industry - an Appl:-
cation of SCDAS’, by Grzegorz Dobrowolski and Maciej Zebrowski presents a specific
application of the Selection Committee Decision Analysis and Support (SCDAS) System.

These reports present the results of a collaborative study in the stage 1l of the con-
tracted study agreement that corresponds to the effort of circa 10 man-years, although
over 20 researchers have been involved on part-time basis in this study and the results
obtained through cooperation with independently funded projects in Poland are also par-
tially included here.

Decision Support Systems of DIDAS Family
(Dynamic Interactive Decision Analysis & Support)

Andrze; Lewandowski, Tomasz Kreglewsk:, Tadeusz Rogowski,
Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents a review of methodological principles, mathematical
theory, variants of implementation and various applications of decision
support systems of DIDAS family, developed by the authors and many
other cooperating researchers during the years 1980-1986 in cooperation
with the Systems and Decision Sciences Program of the International Insti-
tute for Applied Systems Analysis. The purpose of such systems is to sup-
port generation and evaluation of alternative decisions in interaction with
a decision maker that might change his preferences due to learning, while
examining a substantive model of a decision situation prepared by experts
and analysts. The systems of DIDAS family are based on the principle of
reference point optimization and the quasisatisficing framework of rational
choice.

Introduction

The results reported in this paper are an outcome of a long cooperation between the
System and Decision Sciences Program of the International Institute for Applied Systems
Analysis (IIASA) and the Institute of Automatic Control, Warsaw University of Tech-
nology as well as many other institutions in Poland and in other countries. This coopera-
tion concentrated on applications of mathematical optimization techniques in multiobyzc-
tive decision analysis and on the development of decision support systems. Although
many articles in scientific journals and papers at international conferences described
specific results obtained during this cooperation (in fact, four international workshops and
several working meetings were organized during these cooperation), one of the main
results - the family of Dynamic Interactive Decision Analysis and Support systems - has
not been until now comprehensively described. Such a description is the purpose of this

paper.
1.Concepts of decision support and frameworks for rational decisions.

1.1 Concepts of decision support systems.

The concept of a decision support system, though quite widely used and developed in
contemporary research, is by no means well defined. Without attempting to give a restric-
tive definition (since such definition in an early stage of development might limit it too
strongly), we can review main functions and various types of decision support.

The main function of such systems is to support decisions made by humans, in con-
trast to decision automation systems that replace humans in repetitive decisions because

-5.

these are either too tedious or require very fast reaction time or very high precision. In
this sense, every information processing system has some functions of decision support.
However, modern decision support systems concentrate on and stress the functions of
helping human decision makers in achieving better decisions, following the high tech -
high touch trend in the development of modern societies [1]. We can list several types of
systems that serve such purposes:

- simple managertal support systems, such as modern data bases, electronic
spreadsheet systems, etc;

- ezpert and knowledge base systems whose main functions relate to the help in recog-
nizing a pattern of decision situation; more advanced systems of this type might
involve considerable use of artificial intelligence techniques;

- alternative evaluation and generation systems whose main functions concentrate on
the processes of choice among various decision alternatives either specified a priori or
generated with help of the system, including issues of planning, of collective decision
processes and issues of negotiations between many decision makers; more advanced
systems of this type might involve a considerable use of mathematical programming
techniques, such as optimization, game theory, decision theory, dynamic systems
theory etc.

Some authors [2] restrict the definition of decision support systems only to the third
group while requiring that a decision support system should contain a model of decision
support. Although the systems described in this paper belong precisely to this category,
we would like to draw the attention of the reader that it is a narrow sense of interpreting
decision support systems. With this reservation, we will concentrate on decision support
systems in the narrow sense. These can be further subdivided along various attributes
into many classes:

- systems that support operational planning of repetitive type versus systems that sup-
port strategic planning, confronting essentially novel decision situations;

- systems that concentrate on the choice between a number of discrete alternatives
versus systems that admit a continuum of alternatives and help to generate interest-
ing or favorable alternatives among this continuum,;

- systems that are essentially designed to be used by a single decision maker ("the
user”) versus systems that are designed to help many decision makers simultane-
ously;

- spectalized systems designed to help in a very specific decision situation versus
adaptable system shells that can be adapted to specific cases in a broader class of
decision situations;

- systems that use versus such that do not use explicitly mathematical programming
techniques, such as optimization, in the generation or review of alternatives;

- systems that assume (explicitly or implicitly) a specific framework of rationality of
decisions followed by the user versus systems that try to accommodate a broader
class of perceptions of rationality [3].

This last distinction was an important issue in the development of decision support
systems described in this paper.

-6-

1.2 Frameworks for rational decisions.

When trying to support a human decision maker by a computerized decision support
system, we must try to understand first how human decisions are made and how to help
in making rational decisions. However, the rationality concept followed by the designer of
the system might not be followed by the user; good decision support systems must be thus
flexible, should not impose too stringent definitions of rationality and must allow for
many possible perceptions of rationality by the user.

The first distinction we should make is between the calculative or analytical rational-
ity and the deliberative or holistic rationality, the "hard” approach and the “soft”
approach. The most consistent argument for the “soft” or holistic approach was given by
Dreyfus [4]. He argues - and supports this argument by experimental evidence - that a
decision maker i1s a learning individual whose way of making decisions depends on the
level of expertise attained through learning. A novice needs calculative rationality; an
experienced decision maker uses calculative rationality in the background, while concen-
trating his attention on novel aspects of a decision situation. An expert does not need cal-
culative rationality: in a known decision situation, he arrives at best decisions immedi-
ately, by absorbing and intuitively processing all pertinent information (presumably in a
parallel processing scheme, but in a way that is unknown until now). A master expert,
while subconsciously making best decisions, continuously searches for “new angles” - for
new aspects or perspectives, motivated by the disturbing feeling that not everything is
understood, the feeling that culminates and ends in the “aha” or heureka effect of perceiv-
ing a new perspective. Thus, the holistic approach can be understood as the rationality of
the culture of experts.

However, even a master expert needs calculative decision support, either in order to
simulate and learn about novel decision situations, or to fill in details of the decision in a
repetitive situation; novice decision makers might need calculative decision support in
order to learn and become experts. These needs must be taken into account when con-
structing decision support systems that incorporate many elements of calculative rational-
ity.

There are several frameworks for calculative or analytical rationality; most of these,
after deeper analysis, turn out to be culturally dependent [3]. The utility mazimization
framework has been long considered as expressing an universal rationality, as the basis of
decision analysis; every other framework would be termed “not quite rational”. The
abstractive aspects of this framework are the most developed - see, e.g., [5], [6] - and a
monograph of several volumes would be needed to summarize them. Without attempting
to do so, three points should be stressed here. Firstly, utility maximization framework is
not universal, is culturally dependent; it can be shown to express the rationality of a small
entrepreneur facing an infinite market [3]. Secondly, its descriptive powers are rather lim-
ited; it is a good descriptive tool for representing mass economic behavior and a very poor
tool for representing individual behavior. Thirdly, it is difficult to account for various lev-
els of expertise and to support learning within this framework.

Many types of decision support systems attempt to approximate the utility function
of the user and then to suggest a decision alternative that maximizes this utility function.
Most users find such decision support systems not convenient: it takes many experiments
and questions to the decision maker to approximate his utility and, when the user finally
learns some new information from the support system, his utility might change and the
entire process must be repeated. Moreover, many users resent too detailed questions
about their utility or just refuse to think in terms of utility maximization. However, a
good decision support system should also support users that think in terms of utility

-7-

maximization. For this purpose, the following principle of interactive reference point maz-
tmization and learning can be applied.

Suppose the user is an expert that can intuitively, holistically maximize his unstated
utility function; assume, however, that he has not full information about the available
decision alternatives, their constraints and consequences, only some approximate mental
model of them. By maximizing holistically his utility on this mental model, he can specify
desirable consequences of the decision; we shall call these desirable consequences a refer-
ence point in the outcome or objective space. The function of a good decision support sys-
tem should be then not to outguess the user about his utility function, but to take the
reference point as a guideline and to use more detailed information about the decision
alternatives, their constraints and consequences in order to provide the user with propo-
sals of alternatives that came close to or are even better than the reference point.

This more detailed information must be included in the decision support system in
the form of a substantive model of the decision situation, prepared beforehand by a group
of analysts (in a sense, such a model constitutes a knowledge base for the system). Upon
analysing the proposals generated in the system, the utility function -of the user might
remain constant or change due to learning, but he certainly will know more about avail-
able decision alternatives and their consequences. Thus, he is able to specify a new refer-
ence point and to continue interaction with the system. Once he has learned enough about
available alternatives and their consequences, the interactive process stops at the max-
imum of his unstated utility function. If the user is not a master expert and might have
difficulties with holistic optimization, the system should support him first in learning
about decision alternatives, then in the optimization of his utility; but the latter is a
secondary function of the system and can be performed also without explicit models of
utility function while using the concept of reference points.

The concept of reference point optimization has been proposed by Wierzbicki (7], (8],
[9]; following this concept, the principle of interactive reference point optimization and
learning was first applied by Kallio, Lewandowski and Orchard-Hays [10] and then lead to
the development of an entire family of decision support systems called DIDAS. However,
before describing these systems in more detail, we must discuss shortly other frameworks
of calculative rationality.

A concept similar or practically equivalent to the reference point is that of espiration
levels proposed over twenty years ago in the satisficing rationality framework by Simon
[11], [12] and by many others that followed the behavioral criticism of the normative deci-
sion theory based on utility maximization. This framework started with the empirical
observation that people do form adaptive aspiration levels by learning and use these
aspirations to guide their decisions; very often, they cease to optimize upon reaching out-
comes consistent with aspirations and thus make satisficing decisions. However, when
building a rationale for such observed behavior, this framework postulated that people
cannot maximize because of three reasons: the cost of computing optimal solutions in
complex situations; the uncertainty of decision outcomes that makes most complex optim-
izations too difficult; and the complexity of decision situations in large industrial and
administrative organizations that induces the decision makers to follow some well esta-
blished dectsion rules that can be behaviorally observed and often coincide with satisficing
decision making. This discussion whether and in what circumstances people could optim-
ize substantiated the term bounded rationality (which implies misleadingly that this is
somewhat less than full rationality) applied to the satisficing behavior and drown atten-
tion away from the essential points of learning and forming aspiration levels.

-8-

Meanwhile, two of the reasons for not optimizing quoted above have lost their
relevance. The development of computers and computational methods of optimization,
including stochastic optimization techniques, has considerably decreased the cost and
increased the possibilities of calculative optimization; moreover, the empirical research on
holistic rationality indicates that expert decision makers can easily determine best solu-
tions in very complex situations even if they do not use calculative optimization. The
third reason, supported by empirical observations, remains valid: the satisficing rational-
ity s typical for the culture of big industrial and edministrative organizations (see also
[13]). However, it can today be differently interpreted: the appropriate question seems to
be not whether people could, but whether they should marimize.

Any intelligent man, after some quarrels with his wife, learns that maximization is
not always the best norm of behavior; children learn best from conflicts among themselves
that cooperative behavior is socially desirable and that they must restrict natural tenden-
cies to maximization in certain situations. In any non-trivial game with the number of
participants less than infinity, a cooperative outcome is typically much better for all par-
ticipants than an outcome resulting from individual maximization. This situation is called
a soctal trap and motivated much research that recently gave results of paradigm-shifting
importance [14], [15]: we can speak about a perspective of evolutionary rationality, where
people develop - through social evolution - rules of cooperative behavior that involve fore-
going short-term maximization of gains.

When trying to incorporate the lessons from the perspective of evolutionary rational-
ity into decision support systems, another question must be raised: in which situations
should we stop maximizing upon reaching aspiration levels? We should stop maximizing
for good additional reasons, such as avoiding social traps or conflict escalation, but if
these reasons are not incorporated into the substantive model of the decision situation,
the question about foregoing maximization should be answered by the decision maker, not
by the decision support system. This constitutes a drawback of many decision support
systems based on goal programming techniques [16], [17] that impose on the user the
unmodified satisficing rationality and stop optimization upon reaching given aspirations,
called goals in this case.

When trying to modify goal programming techniques and strictly satisficing
rationality to account for above considerations, the principle of ideal organization [18] can
be applied in construction of decision support systems. This principle states that a good
decision support system should be similar to an ideal organization consisting of a boss
(the user of the system) and the staff (the system), where the boss specifies goals (aspira-
tions, reference points) and the staff tries to work out detailed plans how to reach these
goals. If the goals are not attainable, the staff should inform the boss about this fact, but
also should propose a detailed plan how to approach these goals as close as it is possible.
If this goals are just attainable and cannot be improved, the staff should propose a plan
how to reach them, without trying to outguess the boss about his utility function and pro-
posing plans that lead to different goals than stated by the boss.

If, however, the goals could be improved, the staff should inform the boss about this
fact and propose a plan that leads to some uniform improvement of all goals specified by
the boss; if the boss wishes that some goals should not be further improved, he can always
instruct the staff accordingly by stating that, for some selected objectives, the goals
correspond not to maximized (or minimized) but stabilized variables, that is, the staff
should try to keep close to the goals for stabilized objectives without trying to exceed
them. By specifying all objectives as stabilized, the boss imposes strictly satisficing
behavior on the staff; but the responsibility for doing so remains with him, not with the

staff.

The above principle of ideal organization can be easily combined with the principle
of interactive reference point maximization and learning; jointly, they can be interpreted
as a broader framework for rationality, called quasisatisficing framework [3], [19], that
incorporates lessons from the holistic and the evolutionary rationality perspectives and
can support decision makers adherence either to utility maximization or satisficing. In
fact, the quasisatisficing framework can also support decision makers following other per-
spectives of rationality, such as the progream- and goal-oriented planning and manegement
framework. This framework, proposed by Glushkov [20] and Pospelov and Irikov [21],
represents the culture of planning, but has been independently suggested later also by
representatives of other cultures [22]. In this framework, rational action or program are
obtained by specifying first primary objectives, called goals, and examining later how to
shift constraints on secondary objectives, called means, in order to attain the goals. In dis-
tinction to the utility maximization or satisficing frameworks, the stress here is laid on
the hierarchical arrangement of objectives; but the quasisatisficing framework can also
handle hierarchical objectives.

2. Quasisatisficing and achievement functions.

The main concepts of the quasisatisficing framework, beside the principle of interac-
tive reference point optimization and learning and the principle of ideal organization, are
the use of reference points (aspiration levels, goals) as parameters by which the user
specifies his requirements to the decision support system (controls the generation and
selection of alternatives in the system) as well as the maximization of an order-consistent
achievement function as the main mechanism by which the decision support system
responds to the user requirements. Achievement functions have been used also in goal pro-
gramming [17], however, without the requirement of order-consistency [19]. When follow-
ing the principle of interactive reference point optimization and learning, an order-
consistent achievement function can be interpreted as an ad hoc approximation of the
utility function of the user [23]; if the user can holistically maximize his utility and
interactively change reference points, there is no need for any more precise approximation
of his utility function. When following the principle of ideal organization, an order-
consistent achievement function can be interpreted as a proxy for utility or achievement
function of the ideal staff (the decision support system) guided by aspirations specified by
the boss (the user); this function is maximized in order to obtain best response to the
requirements of the boss.

Based upon above principles and starting with the system described in [10], many
decision support systems have been developed with the participation or cooperation of the
authors of this paper [24], [25], [26], [27], [28], [29], [30], either in IIASA, or in several Pol-
ish institutions cooperating with IIASA. The name DIDAS (Dynamic Interactive Decision
Analysis and Support) has been first used by Grauer, Lewandowski and Wierzbicki in
[31]. Other systems based upon such principles are now being developed for implementa-
tions on professional microcomputers; all these systems we broadly call here "systems of
DIDAS family”. However, also other researchers adopted or developed parallely some
principles of quasisatisficing framework, represented in the works of Nakayama and
Sawaragi [32], Sakawa [33], Gorecki et al. [34], Steuer et al. [35], Strubegger [36], Messner
[37], Korhonen et al. [38] and others; decision support systems of such type belong to a
broader family using quasisatisficing principles of rationality.

Since the maximization of an order-consistent achievement function is a specific
feature of systems of DIDAS family, we review here shortly the theory of such functions.

-10 -

We consider first the basic case where the vector of decisions r€R", the vector of
objectives or outcomes of decisions g€ R?, and the substantive model of decision situation
has the form of a set of admissible decisions X(CR" - assumed to be compact - together
with an outcome mapping, that is, a vector-valued objective function f: X, — RP -
assumed to be continuous, hence the set of attainable outcomes @, = f(X,) be also com-
pact; further modifications of this basic case will be considered later. If the decision maker
wants to maximize all outcomes, then the partial ordering of the outcome space is implied
by the positive cone D=RE - which means that the inequality ¢'>¢"<¢'—¢"€D is under-
stood in the sense of simple inequalities for each component of vectors ¢', ¢”.

However, the cone D=R% has nonempty interior; a more general case is when the
decision maker would like to maximize only first p' outcomes, minimize next outcomes
from p'+1 until p”, while the last outcomes from p”+1 until p are to be kept close to
some given aspiration levels, that is, maximized below these levels and minimized above
these levels; such objectives or outcomes are called (softly) stabilized. In this case, we
redefine the positive cone to the form

D={q€R?: ¢;>0, 1=1,..p"; ¢,<0, i=p'+1,..p"; ¢;=0, 1=p"+1,..p} (1)

This cone D does not have an interior if p”<p. Since the cone D is closed and the set Q,
is compact, there exist D-efficient (D-optimal) elements of Q , see [18]. These are such
elements §€Q, that QuyN(§+D)=0 where D=D\{0}; if p'=p andD=RE , then D-
efficient elements are called also Pareto-optimal (in other words - such that no outcome
can be improved without deteriorating some other outcome). The corresponding decisions
£€X, such that §= f(z) are called D-efficient or Pareto-optimal as well. Although the
decision maker is usually interested both in efficient decisions and outcomes, for theoreti-
cal considerations it is sufficient to analyse only the set of all D-efficient outcomes

Qu={4€Q:QoN(§+D)=0}, D=D\{0} (2)

Several other concepts of efficiency are also important. The weakly D-efficient ele-
ments belong to the set

Q7 = {4§€Qq: QoN(§+intD)=¢} (3)

In other words, these are such elements that cannot be improved in all outcomes
jointly . Although important for theoretical considerations, weakly D-efficient elements
are not useful in practical decision support, since there might be too many of them: if
p"<p and the interior of D is empty, then all elements of @, are weakly D-efficient.
Another concept is that of properly D-efficient elements; these are such D-efficient ele-
ments that have bounded trade-off coefficients that indicate how much one of the objec-
tives must be deteriorated in order to improve another one by a unit (for various almost
equivalent definitions of such elements see [39]). In applications, it is more useful to
further restrict the concept of proper efficiency and consider only such outcomes that have
trade-off coefficients bounded by some a priori number. This corresponds to the concept of
properly D-efficient elements with (a priori) bound € or D, -efficient elements that belong
to the set

Q¢ = {§€Qy: QuN(§ + D)=0}, (4)
D, = {qeRP:dist(q,D)<¢ ||q|[}\ {#}

where €¢>0 is a given number [18]. D, -efficient elements have trade-off coefficients
bounded approximately by ¢ and 1/¢ . For computational and practical purposes, an

-11-

efficient outcome with trade-off coefficients very close to zero or to infinity cannot be dis-
tinguished from weakly efficient outcomes; hence, we shall concentrate in the sequel on
properly efficient elements with bound e.

When trying to characterize mathematically various types of efficiency with help of
achievement functions, two basic concepts are needed: this of monotonicity, essential for
sufficient conditions of efficiency, and that of separation of sets, essential for necessary
conditions of efficiency. The role of monotonicity in vector optimization is explained by
the following basic theorem [19]:

Theorem 1. Let a function r:Qo—bRl be strongly monotone, that is, let ¢'>¢”
(equivalent to ¢'€¢”"+ D) imply r(g')>r(g"). Then each maximal point of this function is
efficient. Let this function be strictly monotone, that is, let ¢">¢" (equivalent to
g'€q"+intD) imply r(g’)>r(¢"). Then each maximal point of this function is weakly
efficient. Let this function be e-strongly monotone, that is, let q’Eq”-{—D~e imply
r(¢')>r(¢"). Then each maximal point of this function is properly efficient with bound e.

The second concept, that of separation of sets, is often used when deriving necessary
conditions of scalar or vector optimality. We say that a function r:RP—R! strongly
separates two disjoint sets Q; and Q4 in RP, if there is such PeR! that r(g)<B for all
ge@, and r(g)>p for all g€ Q,. Since the definition of efficiency (2) requires that the sets
Qo and ¢+ D are disjoint (similarly for the definitions (3) or (4)), they could be separated
by a function. If Qg is convex, these sets can be separated by a linear function. If @ is
not convex, the sets Qq and §+D could be still separated at an efficient point §, but we
need for this a nonlinear function with level sets {geRP: r(¢q)>8} which would closely
approximate the cone §+D. There might be many such functions; their desirable proper-
ties are summarized in the definitions of order-consistent achievement functions [19] of
two types: order-representing functions (which, however, characterize weak efficiency and
will not be considered here) and order- approzimating functions. The latter type is defined
as follows:

Let A denote a subset of RP, containing QO but not otherwise restricted, and let
geA denote reference points or aspiration levels that might be attainable or not (we
assume that the decision maker cannot a priori be certain whether 7€Q, or §¢Q,).
Order-approximating achievement functions are such continuous functions s:QyxA—R 1
that s(g,7) is strongly monotone (see Theorem 1) as a function of ge@, for any g€4 and,
moreover, possesses the following property of order approximation:

7+ D c{qeRP: 5(q,7)20}CT+D, (5)

with some small €>&>0; together with the continuity requirement, the requirement (5)
implies that s(g¢,§)=0 for all ¢=7.

If p'=p and D=RE_, then a simple example of an order-approximating function is:

o(9,0)= min ay(g:-T)+p41 3 0:(-) ©)
1<i<p i=1

with A=RP some positive weighting coefficients a; (typically, we take a;=1/s;, where s;
are some scaling units for objectives, either defined by the user or determined automati-
cally in the system, see further comments) and some o, 1>0 that is sufficiently small as
compared to € and large as compared to € (typically, we take ap_Hze/p). This function is
not only strongly monotone, but also &strongly monotone. For the more complicated
form (1) of the positive cone D, function (6) modifies to:

-12 -

s(q,i)zlgigpzi(Qi,ﬁ)+‘1p+1‘§2i(qi,7{) (7)
where the functions z,(g,,§;) are defined by:

(qi'—ii)/si’ if 1<i<p’,

2(9;,7)=y(9:— 4}/ 5, if p'+1<i<p”, (8)
min(z/,2!"), if p"+1<i<p,

with
Ha=T)/sts o =(T-a)/s!)

The coefficients s;, s/, s/’ are scaling units for all objectives, either defined by the user (in
which case s/=s/", the user does not need to define two scaling coefficients for a stabilized
objective outcome) or determined automatically in the system; again, we use here
ap1=¢/p.

Since the definition of an order-approximating achievement function requires that
only its zero-level set should closely approximate the positive cone, many other forms of
such functions are possible. For example, in some DIDAS systems the following function
has been used:

_ . . _ 1 _ € _
5(g,8)=min| min z(g;,7), = 33 7(0.T) |+ < 3 2i(00,7) (10)
1Si<p PP =1 ?i=1

where the functions z;(¢;,7;) are defined as in (8), (9) and the coefficient p>1 indicates to
what extent the minimal overachievement is substituted by the sum of overachievements
in the level sets for positive values of this function.

At any point § that is properly efficient with bound ¢, an order-approximating func-
tion with §=¢ strictly separates the sets §+D, and @, This and related properties of
order-approximating functions result in the following characterization of D, -efficiency
[19]:

Theorem 2. Let s(q,7) be an order-approximating function with ¢>&>0. Then, for
any g€A, each point that maximizes s(g,7) over g€ Q) is efficient; if § is properly efficient
with bound ¢ (D-optimal), then the maximum of s(¢,7) with §=§ over ¢€Q,, is attained
at § and is equal zero. Let, in addition, s(g,7) be &strongly monotone with respect to g¢;
then each point that maximizes s(g,7) over g€ Q, is properly efficient with bound e.

The essential difference between order-consistent achievement functions and other
types of achievement functions, used in goal programming and based on norms, is that the
aspiration or reference point § needs not to be unattainable in order to achieve efficiency;
this is because order-consistent achievement functions remain monotone, even if the refer-
ence point crosses the efficient boundary of Q, . Somewhat simplifying, we can say that
an order-consistent achievement function switches automatically from norm minimization
to maximization when the aspiration point § crosses the efficient boundary and becomes
attainable. On the other hand, the characterization by Theorem 2 is obtained without any
convexity assumptions, because the order-approximating property of achievement func-
tions results in a constructive though nonlinear separation of sets @, and §+D even in
nonconvex cases. In fact, the set Q, needs not to be even connected and the order-
consistent achievement functions can be as well used to characterize solutions of

-13-

multiobjective discrete or mixed programming. Theorem 2 is valid even if the decision
outcomes are elements of infinite-dimensional complete normed (Banach) spaces, as in
many cases of multiobjective dynamic trajectory optimization - see [18].

Order-approximating achievement functions have several interpretations. From the
point of view of utility maximization, achievement function can be interpreted as an ad
hoc approximation of the utility function of the user, based on the information that he
conveyed to the decision support system: the partial preordering of the objective space
(which objectives are to be maximized, which minimized and which stabilized) and the
aspiration levels § for all objectives; if more information is already available, this ad hoc
approximation can be improved - see further comments. The coefficient ¢ can be then
interpreted as the weight that the user attaches to correcting the underachievement in the
worst outcome by average overachievements in other outcomes. However, such an ad hoc
approximation is not a classical utility function, since it is context-dependent: it explicitly
depends on the aspiration levels § that summarize the experience of the user and change
due to his learning during interaction, thus changing the approximation of the utility
function. On the other hand, the achievement function (6) can have cardinal form: if
a;=1/s;, then function (6) is independent on affine transformations of outcome space; the
same applies to function (7).

When following the principle of an ideal organization, an order-approximating
achievement function can be interpreted as the utility function of the staff that is aware
of aspirations set by the boss; the maximum of the achievement function is then positive,
if the staff can propose a solution that exceeds the aspiration levels, it is negative, if the
staff cannot propose a solution that satisfies aspiration levels and only comes as closely as
possible to them, and it is zero (Theorem 2) if the staff finds an efficient solution that pro-
duces outcomes strictly corresponding to the aspiration levels.

From the point of view of strictly satisficing rationality, one should take function (7)
and set p'=p”=0, that is, let all outcomes be softly stabilized; this is actually done in goal
programming approaches. From the point of view of program- and goal oriented planning,
one should either assume that the primary objectives are constrained to be equal to their
corresponding aspiration levels, thereby modifying the set of admissible decisions X,
(such objectives or outcomes are called guided or strictly stabilized), or assign much
greater weights to primary objectives than to secondary objectives. We see that the
quasisatisficing approach can be used by decision makers following either of these three
frameworks of rationality.

Further mathematical properties of order-approximating achievement functions have
been also investigated; for example, it can be shown that order-approximating functions
give the strongest characterization of efficient solutions for cases where the set Q; is of an
arbitrary, a priori unknown shape, which is a reasonable assumption in most applied cases
[18]. Another important property of an order-approximating function of the form (6) or
(7) is that its maximal point § depends Lipschitz-continuously on the aspiration point §
in all cases when the maximum of this function is unique; thus, the user of the decision
support system can continuously influence his selection of efficient outcomes by suitably
modifying the aspiration or reference point.

Computationally, the maximization of an order-approximating achievement function
is either simple - if @, is a convex polyhedral set, then the problem of maximizing (6),
(7) or (10) can be rewritten as a linear programming problem - or more complicated for
nonlinear or nonconvex problems. In such cases, we must either represent (6), (7) or (10)
by additional constraints, or apply nondifferentiable optimization techniques, since the
definition of order-approximating achievement functions imply their nondifferenttability

- 14 -

at g=7. Often, it is advisable to use smooth order-approximating functions that give
weaker necessary conditions of efficiency than in Theorem 2, but are better suited for
computational applications - see further comments.

3. Phases of decision support in systems of DIDAS family.

A typical procedure of working with a system of DIDAS family consists of several
phases:

A. The definition and edition of a substantive model of analysed process and decision
situation by analyst(s);

B. The definition of the multiobjective decision problem using the substantive model,
by the final user (the decision maker) together with analyst(s);

C. The initial analysis of the multiobjective decision problem, resulting in determining
bounds on efficient outcomes and, possibly, a neutral efficient solution and outcome,
by the user helped by the system;

D. The main phase of interactive, learning review of efficient solutions and outcomes for
the multiobjective decision problem, by the user helped by the system;

E. An additional phase of sensitivity analysis (typically, helpful to the user) and/or
convergence to the most preferred solution (typically, helpful only to users that
adhere to utility maximization framework).

These phases have been implemented differently in various systems of DIDAS fam-
ily; however, we describe them here comprehensively.

Phase A: Model definition and edition.

There are four basic classes of substantive models that have been used in various
systems of DIDAS family: multiobjective linear programming models, multiobjective
dynamic linear programming models, multiobjective nonlinear programming models and
multiobjective dynamic nonlinear programming models. First DIDAS systems have not
used any specific standards for these models; however, our accumulated experience has
shown that such standards are useful and that they differ from typical theoretical formu-
lations of such models (although they can be reformulated back to the typical theoretical
form, but such reformulation should not bother the user).

A substantive model of multiobjective linear programming type consists of the
specification of vectors of n decision variables z€R"™ and of m outcome variables ycR™
together with linear model equations defining the relations between the decision variables
and the outcome variables and with model bounds defining the lower and upper bounds
for all decision and outcome variables:

y=Az; z9<z<z%; ylo<y<y¥r (11)

where A is a mxn matrix of coefficients. Between outcome variables, some might be
chosen as guided outcomes, corresponding to equality constraints; denote these variables
by yceRm'CRm and the constraining value for them by 6 to write the additional con-
straints in the form:

yC:AC z:bc; yc,losbsyc,up (12)

where A is the corresponding submatrix of A. Some other outcome variables can be
chosen as optimized objectives or objective outcomes; actually, this is done in the phase B
together with the specification whether they should be maximized, minimized or softly
stabilized, but we present them here for the completeness of the model description. Some

- 15 -

of the objective variables might be originally not represented as outcomes of the model,
but we can always add them by modifying this model; in any case, the corresponding
objective equations in linear models have the form:

¢g=Cz (13)
where C is another submatrix of A. Thus, the set of attainable objective outcomes is

Qo=CX, and the set of admissible decisions X, is defined by:

Xo={z€R™ 20<z<z; yO<Az<y¥P; Az=b} (14)

By introducing proxy variables and constraints, the problem of maximizing func-
tions (7) or (10) over outcomes (13) and admissible decisions (14) can be equivalently
rewritten to a parametric linear programming problem, with the leading parameter §;
thus, in phases C, D, E, a linear programming algorithm called solver is applied. In initial
versions of DIDAS systems for linear programming models, the typical MPS format for
such models has been used when editing them in the computer; recent versions of DIDAS
systems include also a user-friendly format of a spreadsheet.

A useful standard of defining a substantive model of multiobjective linear dynamic
programming type is as follows. The model is defined on T+1 discrete time periods
t,0<t<T. The decision variable z, called in this case control trajectory, is an entire
sequence of decisions:

z = {z[0],...z[t],...z| T-1]}€R"T, z[t|eR" (15a)

and a special type of outcome variables, called state variables w[t]eRm’ is also considered.
The entire sequence of state variables or state trajectory:

w = {w]0],...w[t],...w[T-1],w| T|}eR™+(T+1) (15b)

is actually one time period longer than z; the initial state w|[0] must be specified as given
data. The fundamental equations of a substantive dynamic model have the form of state
equations:

w[t+1]=A[t|w[t]+ B|t]z[t]; t=0,..T—-1, w|0]—given (16a)
The model outcome equations have then the form:
y|t|]=C|t]w[t]+D[t|z[t], t=0,..T-1; (16b)
y|T|=C|T|w|T|eR™"
and define the sequence of outcome variables or outcome trajectory:
y={y[0],...9[t],-..y[T—1],9| T)}e R™"*(T+1) (15¢)

The decision, state and outcome variables can all have their corresponding lower and
upper bounds (each understood as an appropriate sequence of bounds):

20<z<z, wh<w<w"r, ylo<y<y"P (16c)

The matrices Aft/, Bjt], C[t[, D[t] of appropriate dimensions can be dependent or
independent on time t; in the latter case, the model is called time-inveriant. This distine-
tion is important in multiobjective analysis of such models only in the sense of model edi-
tion: time-invariant models can be defined easier by automatic, repetitive edition of model
equations and bounds for subsequent time periods.

-16 -

Between the outcomes, some might be chosen to be equality constrained or guided
along a given trajectory:

ye[t]=ef[t]eR™"CR™, t=0,..T; e‘={e‘[0],...,e"[t],...,e¢[T]} (17)

The optimized (maximized, minimized or stabilized) objective outcomes of such
model can be actually selected in phase B among both state variables and outcome vari-
ables (or even decision variables) of this model; in any case, they form an entire objective
trejectory:

g={q[0],...q[t],...q[T-1],q[T]}eRP*(T+V), q[t]cRP (18)

If we assume that the first components ¢;[t] for 1<i<p' are to be maximized, next
for p'+1<i<p" are to be minimized, last for p”"+1<:<p are to be stabilized (actually, the
user in the phase B does not need to follow this order - he simply defines what to do with
subsequent objectives), then the achievement function s(q,§) - for example, originally
given by (10) - in such a case takes the form:

o(¢,)=min| min min [, —t S Pzt B Bl (19)

0<t<T 0<i<p T+1)p S0 T+1) P S0

where the functions z[t|=z(¢[t],g{t]) are defined by:

(gilt]=g[t])/silt], if 1<a<p,
2i[t]={(g:lt]—gilt])/silt], if p'+1<i<p”, (20)
minz/[t],z[t], if p+1<i<p

where
z[t)=(q;[t]-q[e])/s/[t], 2[t]=(T[t]-alt])/8!"]t], (21)

The user does not need to define time-varying scaling units s;[t] nor two different
scaling units s/[t],s/"[t] for a stabilized objective: the time-dependence of scaling units and
separate definitions of s/[t],s/'[t] are needed only in the case of automatic scaling in
further phases.

A useful standard for a substantive model of multiobjective nonlinear programming
type consists of the specification of vectors of n decision variables z€R" and of m out-
come variables ye R™ together with nonlinear model equations defining the relations
between the decision variables and the outcome variables and with model bounds defining
the lower and upper bounds for all decision and outcome variables:

y=g(z); z<z<z"; ylo<y<y¥r (22)

where g:R"— R™ is a (differentiable) function. In fact, the user or the analyst does not
have to define the function g explicitly; he can also define it recursively, that is, determine
some further components of this vector-valued function as functions of formerly defined
components. Between outcome variables, some might be chosen as guided outcomes
corresponding to equality constraints; denote these variables by yceR"ICRm and the
constraining value for them by 5¢ to write the additional constraints in the form:

yczgc(z):bc; yc’IOSbCSyC’up (23)

where g° is a function composed of corresponding components of g. In phase B, some

-17 -

other outcome variables can be also chosen as optimized objectives or objective outcomes.
The corresponding objective equations have the form:

q=J(z) (24)

where f is also composed of corresponding components of g. Thus, the set of attainable
objective outcomes is Qp=/(X,) where the set of admissible decisions X, is defined by:

Xo = {zeR™ zl°<z<z¥; y"<g(z)<y"; ¢°(z)=b°} (25)

In further phases of working with nonlinear models, an order-approximating achieve-
ment function must be maximized; for this purpose, a specially developed nonlinear
optimization algorithm called solver is used. Since this maximization is performed repeti-
tively, at least once for each interaction with the user that changes the parameter g, there
are special requirements for the solver that distinguish this algorithm from typical non-
linear optimization algorithms: it should be robust, adaptable and efficient, that is, it
should compute reasonably fast an optimal solution for optimization problems of a broad
class (for various differentiable functions g(x) and f(x)) without requiring from the user
that he adjusts special parameters of the algorithm in order to obtain a solution. The
experience in applying nonlinear optimization algorithms in decision support systems [26],
[30] has led to the choice of an algorithm based on penalty shifting technique and pro-
jected conjugate gradient method. Since a penalty shifting technique anyway approxi-
mates nonlinear constraints by penalty terms, an appropriate form of an achievement
function that differentiably approximates function (7) has been also developed and is
actually used. This smooth order-approzimating achievement function has the form:

i/a

" pt1
o(a,0)=1- 1 5 (w)+ 3 moz(u,f)? (26)

1=1 ,'=pll

where w;, w;’, w;” are functions of ¢;, §; :
(qi,maz_ii)/si’ if 1<:i<p’ .
(q.7.)= , . 2
0T g i) 55 1 p ISP (1e)
wi'(qi’q-i):(qi,maz_ 7)/ s .) '

o) i p"+H1<e<p, (27b)

w;"(4;,3)=(q;— qi,min)/st

and the dependence on §; results from a special definition of the scaling units that are
determined by:

(9, maz—)/ 7> if 1<i<p/, 250
8=~ : . 1 a
' (qi—qi,min)/ri’ if p'+1<:e<p”,

Si’:(qi,ma:z"‘fi)/ri

_ , if p"+1<i<p 28b
8" =(Ti— i, min) /7 (28b)

where r; are additional weighting coefficients that might be defined by the user (however,

-18 -

the system does not need them and works also well if they are set by their default values
r;=1). In the initial analysis phase, the values g, ,,,, and 9, min are set to the upper and
lower bounds specified by the user for the corresponding outcome variables; later, they are
modified, see further comments. The parameter >2 is responsible for the approximation
of the function (7) by the function (26): if a—oo and €—0, then these functions converge
to each other (if r,=1 and while taking into account the specific definition of scaling
coefficients in (26-28)). However, the use of too large parameters results in badly condi-
tioned problems when maximizing function (26), hence a=4- - -8 are suggested to be used.

The function (26) must be maximized with ¢=f(z) over zeX, , while X, is
determined by simple bounds 2°<z<z% as well as by inequality constraints
y°<g(z)<y" and equality constraints g¢(z)=b¢ . In the shifted penalty technique, the
following function is minimized instead:

P(s, €, €7, €, o', u", v)=—s(f().0)+ (20)
+1 8 i(maz(0,(x) 9P)P+

=]
15 e maz(0,to—gi(2) 0+

i=p'

1

FL5 € (gf(e) - bero))?

i=p"

where £', £€", £ are penalty coefficients and u’, u”, v are penalty shifts. This function is
minimized over z such that z/°<z<z% while applying conjugate gradient directions,
projected on these simple bounds if one of the bounds becomes active. When a minimum
of this penalty function with given penalty coefficients and given penalty shifts (the latter
are initially equal zero) is found, the violations of all outcome constraints are computed,
the penalty shifts and coefficients are modified according to the shifted-increased penalty
technique [40] and the penalty function is minimized again until the violations of outcome
constraints are admissibly small. The results are then equivalent to the outcomes
obtained by maximizing the achievement function (26) under all constraints. This tech-
nique is according to our experience one of the most robust nonlinear optimization
methods.

We omit here the description of the useful standard for defining substantive models of
dynamic nonlinear programming lype that can be obtained by combining the previous
cases.

Phase B. The definition of the multiobjective decision analysis problem.

For a given substantive model, the user can define various problems of multiobjec-
tive analysis by suitably choosing maximized, minimized, stabilized and guided outcomes.
In this phase, he can also define which outcomes and decisions should be displayed to him
additionally during interaction with the system (such additional variables are called float-
ing outcomes). Since the substantive model is typically prepared by an analyst(s) in the
phase A and further phases starting with the phase B must be performed by the final user,
an essential aspect of all systems of DIDAS family is the user-friendliness of phase B and
further phases; this issue has been variously resolved in consequent variants of DIDAS
systems. In all these variants, however, the formulation of the achievement function and
its optimization is prepared automatically by the system once phase B is completed.

Before the initial analysis phase, the user should also define some reasonable lower

-19 -

and upper bounds for each optimized (maximized, minimized or stabilized) variable,
which results in an automatic definition of reasonable scaling units s; for these variables.
In further phases of analysis, these scaling units s; can be further adjusted; this, however,
requires an approximation of bounds on efficient solutions.

Phase C. Initial analysis of the multiobjective problem.

Once the multiobjective problem is defined, bounds on efficient solutions can be
approximated either automatically or on request of the user.

The ’upper’ bound for efficient solutions could be theoretically obtained through
maximizing each objective separately (or minimizing, in case of minimized objectives; in
the case of stabilized objectives, the user should know their entire attainable range, hence
they should be both maximized and minimized). Jointly, the results of such optimization
form a point that approximates from ’above’ the set of efficient outcomes Q, but this
point almost never (except in degenerate cases) is in itself an attainable outcome; there-
fore, it is called the utopta point.

However, this way of computing the ’upper’ bound for efficient outcomes is not
always practical; many systems of DIDAS family use a different way of estimating the
utopia point. This way consists in subsequent maximizations of the achievement function
s(¢,7) with suitably selected reference points §. If an objective should be maximized and
its maximal value must be estimated, then the corresponding component of the reference
point should be very high, while the components of this point for all other maximized
objectives should be very low (for minimized objectives, they should be very high; stabil-
ized objectives must be considered as floating in this case, that is, should not enter the
achievement function). If an objective should be minimized and its minimal value must be
estimated, the corresponding component of the reference point should be very low, while
other components of this point are treated as in the previous case. If an objective should
be stabilized and both its maximal and minimal values must be estimated, then the
achievement function should be maximized twice, first time as if for a maximized objec-
tive and the second time as if for a minimized one. Thus, the entire number of optimiza-
tion runs in utopia point computations is p”"+2(p—p”). This is especially important in
dynamic cases, see further comments. It can be shown that this procedure gives a very
good approximation of the utopia point % in static cases, whereas the precise meaning
of very high reference component should be interpreted as the upper bound for the objec-
tive minus, say, 0.1% of the distance between the lower and the upper bound, while the
meaning of very low is the lower bound plus 0.1% of the distance between the upper and
the lower bound.

During all these computations, the 'lower’ bound for efficient outcomes can be also
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim-
izations for maximized objectives and the highest ones for minimized objectives (there is
no need to record them for stabilized objectives, where the entire attainable range is any-
way estimated). However, such a procedure results in the accurate, tight 'lower’ bound for
efficient outcomes - called nadir point §"*¢ - only if p”=2; for larger numbers of maxim-
ized and minimized objectives, this procedure can give misleading results, while an accu-
rate computation of the nadir point becomes a very cumbersome computational task.

Therefore, some systems of DIDAS family offer an option of improving the estima-
tion of the nadir point in such cases. This option consists in additional p” maximization
runs for achievement function s(¢,§) with reference points § that are very low, if the
objective in question should be maximized, very high for other maximized objectives and
very low for other minimized objectives, while stabilized objectives should be considered

-920-

as floating; if the objective in question should be minimized, the corresponding reference
component should be very high, while other reference components should be treated as in
the previous case. By recording the lowest efficient outcomes that occur in subsequent
optimizations for maximized objectives (and are lower than the previous estimation of
nadir component) and the highest ones for minimized objectives (higher that the previous

estimation of nadir component), a better estimation j"“d of the nadir point is obtained.

For dynamic models, the number of objectives becomes formally very high which
would imply a very large number of optimization runs - (p"+2(p—p"))*(7T+1) - when
estimating the utopia point; however, the user is confronted anyway with p objective tra-
jectories which he can evaluate by ’Gestalt’. Therefore, it is important to obtain approxi-
mate bounds on entire trajectories. This can be obtained by p”+2(p—p") optimization
runs organized as in the static case, with correspondingly ’very high’ and ’very low’ refer-
ence or aspiration trajectories.

Once the approximate bounds §*° and §™*% are computed and known to the user,
they can be utilized in various ways. One way consists in computing a neutral efficient
solution, with outcomes situated approximately ’in the middle’ of the efficient set. For
this purpose, the reference point § is situated at the utopia point tj"to (only for maximized
or minimized outcomes; for stabilized outcomes, the user-supplied reference component g;
must be included here) and the scaling units are determined by:

si=| §¥°— g%, 1<i<p” (30a)

)

for maximized or minimized outcomes, and:

81, =;— 4P94+0.01%(§F1°— §*9

" .
s,”:j}‘to—('j‘.+0.01*(ﬁ?to“ﬁ?ad) prrlsise (30b)
for stabilized outcomes, while the components of the utopia and the nadir points are
interpreted respectively as the maximal and the minimal value of such an objective; the
corrections by 0.01%(§%— ﬁ?“d) ensures that the scaling coefficients remain positive, if
the user selects the reference components for stabilized outcomes in the range
tj:‘tos (T,-Sq‘i"“d (if he does not, the system automatically projects the reference component
on this range; the user-supplied weighting coefficients are automatically set to their
default values r,=1 when computing a neutral efficient outcome). By maximizing the
achievement function s(g,7) with such data, the neutral efficient solution is obtained and
can be utilized by the user as a starting point for further interactive analysis of efficient

solutions.

Once the utopia and nadir point are estimated and, optionally, a neutral solution
computed and communicated to the user, he has enough information about the ranges of
outcomes in the problem to start the main interactive analysis phase.

Phase D. Interactive review of efficient solutions and outcomes.

In this phase, the user controls — by changing reference or aspiration points — the
efficient solutions and outcomes computed for him in the system. It is assumed that the
user is interested only in efficient solutions and outcomes; if he wants to analyse outcomes
that are not efficient for the given definition of the problem, he must change this
definition - for example, by putting more objectives in the stabilized or guided category -
which, however, necessitates a repetition of phases B, C.

In the interactive analysis phase, an important consideration is that the user should

-921-

be able to easily influence the selection of the efficient outcomes § by changing the refer-
ence point 7 in the maximized achievement function s(g,7). It can be shown [19] that best
suited for the purpose is the choice of scaling units determined by the difference between
the slightly displaced utopia point and the current reference point:

(§¥*°—g;40.01(§¥— gP%%) /r,, if 1<i<p’

§i— . R
G- §E40.01 (¥ - g10Y) /ri, if pH1<i<p”

(31a)

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are
determined somewhat differently than in (30b):

(@:“°—q,+0 01(§¥o—gred))

/1
(éuto_q ~+0.01(§} suto Anad))/r_ , if p"+1<1<p (31b)
i i i

It is assumed now that the user selects the reference components in the range
§%9< 7,< §¥ for maximized and stabilized outcomes or §£1°< q,<<j"’“ for minimized out-
comes (if he does not, the system automatically projects the reference component on these
ranges). The weighting coefficients r; might be used to further influence the selection of
efficient outcomes, but the automatic definition of scaling units is sufficient for this pur-
pose even if r;=1 by default; thus, the user needs not be bothered by their definition. The
interpretation of the above way of setting scaling units is that the user attaches implicitly
more importance to reaching a reference component §; if he places it close to the known
utopia component; in such a case, the corresponding scaling unit becomes smaller and the
corresponding objective component is weighted stronger in the achievement function
s(q,7). Thus, this way of scaling relative to utopia-reference difference is taking into
account the implicit information given by the user in the relative position of the reference
point. This way of scaling, used also in [32], [35], is implemented only in recent versions of
systems of DIDAS family, especially in versions for nonlinear models.

When the relative scaling is applied, the user can easily obtain - by suitably moving
reference points - efficient outcomes that are either situated close to the neutral solution,
in the middle of efficient outcome set Qo , or in some remote parts of the set Qo , say,
close to various extreme solutions. Typically, several experiments of computing such
efficient outcomes give enough information for the user to select an actual decision - either
some efficient decision suggested by the system, or even a different one, since even the
best substantive model cannot encompass all aspects of a decision situation. However,
there might be some cases in which the user would like to receive further support - either
in analysing the sensitivity of a selected efficient outcome, or in converging to some best
preferred solution and outcome.

Phase E. Sensitivity analysis and forced convergence.

For analysing the sensitivity of an efficient solution to changes in the proportions of
outcomes, a multidimensional scan of efficient solutions is implemented in some systems of
DIDAS family. This operation consists in selecting an efficient outcome, accepting it as a
base (71’“" for reference points, and performing p” additional optimization runs with the
reference points determined by:

= —tfjbu-%ﬂ(~uto Anad)’ (32)

q_(jlbas) i#]) IS]SPH,

-9292.

where f is a coefficient determined by the user, —1<f<1; if the relative scaling is used
and the reference components determined by (32) are outside the range q;‘“d , é;‘“d, they
are projected automatically on this range. The reference components for stabilized out-
comes are not perturbed in this operation (if the user wishes to perturb them, he might
include them, say, in the maximized category). The efficient outcomes resulting from the
maximization of the achievement function s(¢,§) with such perturbed reference points are
typically also perturbed mostly along their subsequent components, although other their
components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction
in the outcome space - and also as a help in converging to a most preferred solution - a
directional scan of efficient outcomes can be implemented in systems of DIDAS family.
This operation consists again in selecting an efficient outcome, accepting it as a base ib as
for reference points, selecting another reference point 7, and performing a user-specified
number K of additional optimizations with reference points determined by:
qk)=0"+ 2 (7-7"), 1<k<K (33)
The efficient solutions §(k) obtained through maximizing the achievement function
s(g,q(k)) with such reference points constitute a cut through the efficient set Q, when
moving approximately in the direction §— 'q‘b“". If the user selects one of these efficient
solutions, accepts as a new 7”“" and performs next directional scans along some new direc-
tions of improvement, he can converge eventually to his most preferred solution - see [38].
Even if he does not wish the help in such convergence, directional scans can give him
valuable information.

Another possible way of helping in convergence to the most preferred solution is
choosing reference points as in (33) but using a harmonically decreasing sequence of
coefficients (such as 1/j, where j is the iteration number) instead of user-selected
coefficients k/K. This results in convergence even if the user makes stochastic errors in
determining next directions of improvement of reference points, or even if he is not sure
about his preferences and learns about them during this analysis, see [41]. Such a conver-
gence - called here forced convergence - is rather slow and, after initial experiments, has
not been yet implemented in systems of DIDAS family.

4. Review of various implementations of systems of DIDAS family.

There exist a number of various implementations of systems of DIDAS family. An
early, prototype linear version was developed by Kalio, Lewandowski and Orchard-Hays
[10]. This version utilized professional LP package SESAME available only on the IBM-
370 mainframe computers, therefore it was not transferable. The user interface was rather
poor and the usage of the system was limited to its authors and their collaborators.

The second, also linear, version of DIDAS family systems was developed by Lewan-
dowski [42]. It was designed as pre- and postprocessor programs to a commercial LP pack-
age with standard MPSX input and output. Due to such design, it was easily transferable
and many practical problems were solved using it on various computers. The main draw-
back of this system was that the interface between pre- and postprocessor and a the LP
solver was based on reading and writing disk files, which was very time consuming for
larger problems . An interaction with the user was very simple but inconvenient because
of long time responses of the system transferring large amount of data.

The design goal of the next version of DIDAS was to eliminate, if possible, disk
transfers and changes of data structures inside the system. It was done by Kreglewski and

-23-

Lewandowski |26] as a interactive multicriteria extension of MINOS linear programming
system [44]; the reference point concepts were implemented accessing MINOS internal
data structures. The user interface was redesigned and many new options added. How-
ever, the portability problems arose again: MINOS is not easily transferable.

The reference point approach was explored also by many others collaborating
authors. A DIDAS/N system developed by Grauer and Kaden [43] was the first published
nonlinear version of such a system. It was based on MINOS/Augmented [45] nonlinear
programming system, an extended version of linear MINOS. Unfortunately, this solver is
not robust and efficient enough for realistic nonlinear programming problems. Moreover,
the user interface in the DIDAS/N system was rather complicated, hence applications of
this system were rather limited. Later, Kaden and Kreglewski [30] developed another ver-
sion of nonlinear DIDAS system. Earlier versions of DIDAS were also adapted for special
purposes by Strubegger and Messper [36], [37].

Lewandowski and Kreglewski [46] developed another, general purpose nonlinear ver-
sion of DIDAS system. It was based on a solver from Modular System for Nonlinear Pro-
gramming [47] and written completely in FORTRAN, hence easily transferable to arbi-
trary computer. The user interface was reasonably simple, but preparation of data for the
system was not quite straightforward.

The experiences of these developments led in 1985 to two new linear versions:
DIDAS-MM and DIDAS-MZ. DIDAS-MM was a further development of the version with
MINOS solver, with extended interactive features, special editor for dynamic linear
models and graphic features. DIDAS-MZ is based on a linear programming solver from
IMSL library which is widely accessible; therefore, DIDAS-MZ is much easier transferable.

In 1986, a new generation of DIDAS family systems was initiated, designed for work
on IBM-PC-XT and compatible computers. These are: IAC-DIDAS-L1 and -L2 as well as
IAC-DIDAS-N, described in other papers of this volume.

5. Applications of systems of DIDAS family.

The first implementation [10] of systems of DIDAS family was devoted to the appli-
cation in forecasting and planning of the development of Finish forestry and forest indus-
try sectors, based on a substantive model of linear dynamic type. Later, another version
of DIDAS systems was applied [25] to planning of energy supply strategies, which led to
other applications in the analysis of future energy- economy relations in Austria [36] and
of future gas trade in Europe [37].

Parallely, applications to forecasting and planning agricultural production in Poland
[29], to regional investment allocation in Hungary [49], to chemical industry planning {34]
have been initiated. A special version of linear dynamic DIDAS was adapted to flood con-
trol problems [28]. A nonlinear version of DIDAS was first applied to issues of
macroeconomic planning [48]; later applications of other nonlinear versions include prob-
lems of environmental protection of ground water quality [30].

Further applications of DIDAS family systems are reported in other papers in this
volume.

References

[1] Naisbitt, J., Megatrends: Ten New Directions Transforming our Lives. Warner
Books, New York, 1982.

2]

3]

(4]

9]

[10]

[11]
[12]
[13]
[14]

[18]
[16]
(17]
18]
[19]
[20]
[21]

[22]

-24-

Van Hee, K., Operations research and artificial intelligence approaches to decision
support systems. International Seminar: New Advances in Decision Support Sys-
tems, International Institute for Applied Systems Analysis, Laxenburg, Austria,
1986.

Wierzbicki, A.P., Negotiation and mediation in conflicts, II: Plural rationality and
interactive decision processes. In M. Grauer, M. Thompson, A.P. Wierzbicki, edi-

tors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Dreyfus, S.E., Beyond rationality. In M. Grauer, M. Thompson, A.P. Wierzbicki,
editors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Fishburn, P.C., Decision and Value Theory. Wiley, New York, 1964.

Keeney, R.L. and H. Raiffa, Decisions with Multiple Objectives: Preferences and
Value Trade-offs. Wiley, New York 1976.

Wierzbicki, A.P., Penalty methods in solving optimization problems with vector
performance criteria. VI Congress of IFAC, Boston 1975.

Wierzbicki, A.P., Basic properties of scalarizing functionals for multiobjective
optimization. Mathematische Operations- forschung und Statistik, Ser. Optimization
8, Nr 1, 1977.

Wierzbicki, A.P., The use of reference objectives in multi- objective optimization. In
G. Fandel and T. Gal, eds., Multiple Criteria Decision Making, Theory and Applica-
tions, Springer Verlag, Heidelberg 1980.

Kallio, M., A. Lewandowski and W. Orchard-Hays, An implementation of the refer-
ence point approach for multi- objective optimization. WP-80-35, International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1980.

Simon, H.A., Models of Man. Macmillan, New York, 1957.
Simon, H.A., Administrative Behavior. MacMillan, New York, 1958.
Galbraith, J.K., The New Industrial State, Houghton-MifHin, Boston, 1967.

Rapoport, A., Uses of experimental games. In M. Grauer, M.Thompson and A.P.
Wierzbicki, editors: Plural Rationality and Interactive Decision Analysis, Springer
Verlag, Berlin, 1985.

Axelrod, R., The Evolution of Cooperation. Basic Books, New York, 1985.

Charnes and Cooper, Goal programming and multiple objective optimization, J.
Oper. Res. Soc. 1, pp 39-54, 1975.

Ignizio, J.P., Goal programming - a tool for multiobjective analysis. Journal for
Operational Research, 29, pp 1109-1119, 1978.

Wierzbicki, A.P., A mathematical basis for satisficing decision making. Mathemati-
cal Modelling 3, pp 391-405, 1982,

Wierzbicki, A.P., On the completeness and constructiveness of parametric character-
izations to vector optimization problems. OR-Spektrum 8, pp 73-87, 1986.

Glushkov, V.M., Basic principles of automation in organizational management sys-
tems (in Russian), Upravlayushcheye Sistemy i Mashiny, 1, 1972.

Pospelov, G.S. and V.A.Irikov, Program- and Goal-Oriented Planning and Manage-
ment (in Russian), Sovietskoye Radio, Moscow, 1976.

Umpleby, S.A., A group process approach to organizational change. In H. Wedde,
ed., Adequate Modelling of Systems, Springer-Verlag, Berlin, 1983.

(23]

[24]

[25]

[26]

[27]

[28]

(29]

[30]

[31]

32)

[33]

(34]

35}

[36]

7

- 95-

Lewandowski, A., S. Johnson and A.P. Wierzbicki, A Selection Committee Decision
Support System: Implementation, Tutorial Example and Users Manual. Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1986; presented
also at the MCDM Conference in Kyoto, Japan, August 1986.

Lewandowski, A., and M. Grauer The reference point approach - methods of
efficient implementation. WP-82-26, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1982.

Grauer, M., A.Lewandowski and L. Schrattenholzer, Use of the reference level
approach for the generation of efficient energy supply strategies. WP-82-19, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

Kreglewski, T. and A.Lewandowski: MM-MINOS - an integrated interactive deci-
sion support system. CP-83-63, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1983.

Lewandowski, A., T. Rogowski and T. Kreglewski, A trajectory- oriented extension
of DIDAS and its applications. In M. Grauer, M. Thompson, A.P. Wierzbicki, edi-
tors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Lewandowski, A., T. Rogowski and T. Kreglewski, Application of DIDAS methodol-
ogy to flood control problems - numerical experiments. In M. Grauer, M. Thompson,
A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Processes,
Proceedings, Sopron 1984, Springer Verlag, Berlin.

Makowski, M., and J. Sosnowski, A decision support system for planning and con-
trolling agricultural production with a decentralized management structure. In M.
Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and Interactive
Decision Processes, Proceedings, Sopron 1984, Springer Verlag, Berlin.

Kaden, S., and T. Kreglewski, Decision support system MINE - problem solver for
nonlinear multi-criteria analysis. CP-86-5, International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, 1986.

Grauer, M., A. Lewandowski and A.P. Wierzbicki, DIDAS - theory, implementation
and experience. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Nakayama, H., and Y. Sawaragi, Satisficing trade-off method for multiobjective pro-
gramming. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision Analysis,
Springer Verlag, Berlin, 1983.

Sakawa, M., Interactive fuzzy decision making for multi- objective nonlinear pro-
gramming problems. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Gorecki, H., J. Kopytowski, T. Rys and M. Zebrowski, A multiobjective procedure
for project formulation - design of a chemical installation. In M. Grauer and A.P.
Wierzbicki, editors: Interactive Decision Analysis, Springer Verlag, Berlin, 1983.

Steuer, R. and E.V. Choo, An interactive weighted Chebyshev procedure for multi-
ple objective programming. Mathematical Programming 26, pp 326-344, 1983.

Strubegger, M., An approach for integrated energy-economy decision analysis: the
case of Austria. In G. Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds.,
Large-Scale Modelling and Interactive Decision Analysis, Proceedings Eisenach,
Springer Verlag, Berlin, 1985.

Messner, S., Natural gase trade in Europe and interactive decision analysis, In G.
Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds., Large-Scale Modelling
and Interactive Decision Analysis, Proceedings Eisenach, Springer Verlag, Berlin,
1985.

38

[39]
[40]

41

[42]

[43]

|44]
[45]

|46]

[47]

(48]

[49]

- 926 -

Korhonen, P. and J. Laakso, Solving a generalized goal programming approaches
using a visual interactive approach. European Journal of Operational Research 26,
pp 355-363, 1986.

Sawaragi, Y., H. Nakayama and T. Tanino, Theory of Multiobjective Optimization,
Academic Press, New York, 1985.

Wierzbicki, A.P., Models and Sensitivity of Control Systems, Elsevier, Amsterdam,
1984.

Michalevich, M.V., Stochastic approaches to interactive multicriteria optimization
problems, WP-86-10, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1986.

Lewandowski, A., A Program Package for Linear Multiple Criteria Reference Point
Optimization - Short User Manual, WP-82-80, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1982.

Grauer M. and S. Kaden, A Nonlinear Dynamic Interactive Decision Analysis and
Support System (DIDAS/N) Users Guide, WP-84-23, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1984.

Murtagh, B.A. and M.A. Saunders MINOS User’s Guide, Technical Report SOL-77-
9, Systems Optimization Laboratory, Stanford University, 1977.

Murtagh, B.A. and M.A. Saunders MINOS/Augmented, Technical Report, SOI-80-
14, Systems Optimization Laboratory, Stanford University, 1980.

Lewandowski, A. and T. Kreglewski, A nonlinear version of DIDAS system, Colla-
borative volume: Theory, Software and Test Examples for Decision Support Sys-
tems, International Institute for Applied Systems Analysis, Laxenburg, Austria,
1985.

Kreglewski, T., T. Rogowski, A. Ruszczynski, J. Szymanowski, Optimization
methods in FORTRAN, PWN, Warsaw, 1984 (in Polish).

Grauer, M. and E.Zalai, A Reference Point Approach to Nonlinear Macroeconomic
Planning, WP-82-134, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1982.

Majchrzak, J., The implementation of the multicriteria reference point optimization
approach to the Hungarian regional investment allocation model, WP-81-154, Inter-
national Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

A. Ruszczynski - 27 - Modern techniques ...

Modern Techniques for Linear Dynamic and Stochastic Programs

Andrzej Ruszczynsk:

Institute of Automatic Control, Warsaw University of Technology

1.Introduction

In the last three decades the theory and computational methods of linear program-
ming developed into a powerful tool for analysing linear models of economic planning and
control. Modern linear programming packages (see, e.g., [17],[19]) are capable of solving
problems with thousands of variables and constraints. Still, linear programming as the
area of research is far from being closed. On the one hand, the practice poses new large
and complex problems which result from the tendency to describe more and more complex
objects of decision making by mathematical models. On the other hand, the trends in
modern computer and information technology create a demand for user-friendly decision
support systems with an intimate interaction between the decision maker and the com-
puter. The computer is often just a personal computer and this implies very specific
requirements from the optimization software involved in such systems: it should be capa-
ble of solving large models, fast, use computer resources in an economic way, and it
should allow for easy changes in the model.

A detailed discussion of all these issues goes far beyond the scope of this paper. We
shall focus our attention here on two main sources of large scale linear models arising in
decision making: dynamic structure and stochasticity. We shall discuss the ways in which
general linear programming techniques can be specialized for these models to meet some
of the computational goals pointed out above. Next, we shall present two nonstandard
techniques which appear to be particularly useful for the problems in question.

2. Dynamic structure and stochasticity as sources of large linear models
It is well known that every linear optimization problem can be equivalently
expressed in the following form

minimize clz

subject to
Az=b, (2.1)
Imingzgzmaz,

where z is the vector of activities (including slack/surplus variables), ¢ is a vector of cost
coefficients associated with these activities, A is a technology matrix, and b is a vector of
resources or demands, which impose conditions on the admissible activities z. In real-life
large scale models, the dimension of z (the number of columns of A) and the dimension of
b (the number of rows of A) may go into thousands. On the other hand, it is typical that
each resource or demand condition (a row of Az = b) involves only few activities and
each activity appears in only a relatively small number of conditions. As a result, the con-
straint matrix A in (2.1) is usually sparse: most of its entries are zeros. Its density (the
proportion of the number of nonzeros to the size) may be less than 1% and it is clear that

A. Ruszezynskr - 28 - Modern techniques ...

this feature should be exploited by the methods for solving (2.1). In fact, all modern linear
programming codes make use of this feature and contain very sophisticated techniques for
storing and factorizing sparse matrices, solving equations with them, and updating the
factorization when the data change (see [5],(23]).

However, there exist important classes of problems in which sparsity alone is not the
only feature of the constraint matrix. One of these classes are linear dynamic-structured
problems, in other words - linear control problems. In the simplest formulation of such a
problem our variables (activities) are related to time stages t=0,1,2,..,T. At each stage
t, we deal with two groups of variables: state variables s; and control variables u,. The
variables from the neighboring periods are related through the state equation

st+1—_—GSt+Kut+bt, t:0,1,2,-.,T_1, (2.2)

where G and K are some matrices of appropriate dimensions and b, are some known vec-
tors. Let the initial state sy be fixed and let us write our linear objective function as
T-1
f(u,8)= tZO (g upt ey 15041)- (2.3)
Assuming that the only additional constraints on the state and control variables are sim-
ple lower and upper bounds

s["‘"gstgst”““, t=1,2,..,T, (2.4)

utmingutgut"m, t=1,2,..,T-1, (2.5)
we can easily write our problem in form (2.1) with

2=(Ug,815t158 955 U1 15 T)5

¢=(g0,¢1,91:€2>-:4T_1>CT)> (2.6)

b=(bg,bq,-.s0_1),

and

K I
-G -K I
a= —G —-K I (2.7)

-G —-K I

We see that the number of rows and columns of A increase proportionally to to the
number of periods T, and even for relatively small dimensions of the activities related to
a single period the whole problem may have a remarkable size. On the other hand, the
matrix (2.7) is not only sparse, but has a very regular staircase structure with multiple
occurrence of the same (usually also sparse) matrices G, K and I. We have to take
advantage of it if we aim at solving dynamic problems of realistic dimensions.

Let us now pass on to the second class of problems which are of special interest for
us. Let us assume that some of the entries of the technology matrix A and the right-hand
side & in the linear model (2.1) are uncertain and that this uncertainty is crucial for the
decision making. One of possible modelling approaches to such a situation (see, e.g., [12])
is to assume that A and b are random and may attain one of finite many realizations
with some known probabilities:

(Ay,b;) with probability p,>0, (2.8)
(Ay,by) with probability p,>0,

A. Ruszczynski - 29 - Modern techniques ...

(Ap,b;) with probability p;>0,

L
where Y p;=1. Under these circumstances, however, it is in general no longer possible

I=
that the éecision z satisfies the constraints A;z=»b; for all realizations I=1,2,..,L. There-
fore, we have to extend our model by introducing some corrective activities y; associated
with the realizations [=1,2,..,L, which compensate the discrepancy b—A;z. If we
describe our capabilities of correction by a matrix W and assign to y; the cost vector g
and the bounds y™" and y™*, the correction problem will take the form

mintmize qu
subject to
W!/[‘—’bz—Az-'B, ymnﬁyﬁym- (2.9)

Our aim is now to find such a decision z that makes the correction always possible and
minimizes the sum of the direct cost ¢’z and the expected future correction cost

3 p,quI. The whole problem can be again written as a large scale linear model:
=1

minimize cTz+p1qul+p2qu2+- . -+quTyL

subject to
Az + Wiy, =b;
A,z + W =b
2 2¥2 2 (2.10)
TN 4 < maz
Yy <y <y™El=12,..,L
The constraint matrix of (2.10),
AW
A, W
A= (2.11)
Ap W

has the size proportional to the number L of realizations taken into account, which leads
to very large problems already for underlying deterministic models of medium size. Still,
similarly to the dynamic case, A is not only sparse but has a very regular (so-called dual
angular) structure, with multiple occurrence of the correction matrix W and some simi-
larities of the realizations A |,A,,..,A . It is intuitively clear that we have to take advan-
tage of that in the method for solving such problems.

3. Specialized versions of the simplex method

When dealing with special classes of problems for which general efficient techniques
already exist, it is a natural direction of research to investigate the possibility of exploit-
ing the features of these special problems within the general approach. So, we shall discuss
here some most promising specializations of the acknowledged method of linear program-
ming, the primal stmplex method, for the two classes In question: dynamic and stochastic
problems.

A. Ruszczynskr - 30 - Modern techniques ...

In the primal simplex method the constraint matrix A in (2.1) is split into a square
nonsingular basis matriz B and a matrix N containing all the remaining columns of A,
not included into B. This implies division of the activities T into basic variables zg and
nonbasic variables zp; . At each iteration of the method the nonbasic variables are fixed on
their lower or upper bounds, and the values of the basic variables are given by

zg=B"1(b—Nzy). (3.1)
We always choose basis matrices B so that

TN g p < g, (3.2)
where :cb"’m and g are subvectors of 2™ and 2% implied by the division of z into

zp and zp . Such an z is called a basic feastble solution, and at each iteration we try to
find a better basic feasible solution by performing the following steps.

Step 1. Find the price vector p by solving
WTB:cTB, (3.3)
where cpg is the subvector of ¢ associated with zpg .

Step 2. Price out the nonbasic columns a; of A (i.e. columns of N) by calculating

— T
Zi=c¢;—m" a; (3.4)

. . . 1 mazr
until a column a, is found for which 2,<0 and z,=z™'", or z,>0and z,=z" °.

Step 8. Find the direction of changes of basic variables dg by solving
Bdg=a,. (3.5)
Step 4. Determine from zgl"",zgm"',zB and dpthe basic variable zp, which first
achieves its bound when z; changes.

Step 5. Replace the r-th column of B with a,,zg, with z, and calculate values of the
new basic variables from (3.1).

This general strategy can be deeply specialized to account for the features of prob-
lems under consideration. These improvements can be divided into three groups:

a) representation of the problem data, i.e. the way in which the matrix A is stored and

its columns a; recovered for the purpose of Step 2;

b) techniques for solving equations (3.1), (3.3) and (3.5), which includes special
methods for factorizing the basis matrix B and updating this factorization;

c) pricing strategies, i.e. methods for selecting nonbasic columns a; at Step 2 to be
priced out for testing whether they could be included into B at the current iteration.

Let us discuss these issues in more detail.

Problem data structures

The repeated occurrence of the matrices G, K and I in the constraint matrix (2.7)
of the dynamic model suggests a generalization of the concept of supersparsity employed
in large linear programming systems [1]. It is sufficient to store the matrices G and K as
files of packed columns (G and K may be sparse themselves). Any time a specific column
a; of A is needed, we can easily calculate from its number j an[i fro[n the dimensions of

! I
_¢| and on which posi-

activities related to a single period which column of — K or of
tion will appear in a; . Thus the problem data can be compressed in this case to the size

A. Ruszczynsk: -31- Modern techniques ...

of one period and easily stored in the operating memory of the computer, even for very
large problems. In a nonstationary problem, where some of the entries of K and G depend
on i, we can still store in this way all the stationary data, and keep an additional file of
time-dependent entries. The recovery of a column of A would then be slightly more com-
plicated, with a correction to account for the nonstationary entries, but still relatively
easy to accomplish. Storage savings would be still significant, because we have grounds to
expect that only some entries of A change in time.

The same argument applies to the constraint matrix (2.11) of the stochastic prob-
lem. It is sufficient to store the realizations A,,A,,..,A and W to reconstruct columns of
A, if necessary. But we can go here a little deeper, noting that in practical problems it is
unlikely that all the entries of the technology matrix are random. If only some of them are
stochastic, many entries of A,A,,..,A; will have identical values and our problem data
structure will still suffer from a considerable redundancy. Thus, we can further compress
the structure, as it was done in [16]: we represent each A as

A=A A,

where A® contains as nonzeros only the deterministic entries of A;, and A; contains as
only nonzeros the {-th realization of the random entries. Therefore it is sufficient to store
the nonzeros of A° together with its sparsity pattern, the sparsity pattern of the random
entries (which is common for all A,), and the nonzeros of A, , [=1,2,..,L. This structure
will only slightly exceed the storage requirements of the underlying deterministic model.

Representation of the basis inverse

It is clear that for constraint matrices of the form (2.7) or (2.11) the basis matrices
B inherit their structure. Although general techniques for factorizing sparse matrices (see,
e.g., [5],(23],(28]) are in principle able to cope with such bases, there is still room to
exploit their structure within the factorization and updating algorithms.

Let us at first discuss this matter on the simple control problem with the constraint,
"matrix (2.7). Assuming that all the state vectors s;,55,..,57 are basic, we obtain the fol-
lowing form of the basis matrix

Bo=| (3.6)

By is lower triangular and the equations involving By or Bg can be simply solved by
substitution. To solve Bgd=a, we partition d into (d;,dy,...d7) and a into
(ao,al,..,aT_l) according to the periods, and solve the state equations

dt+1:Gdt+at’ t:O,l,..,T—l (37)

with dy=0. Notm§w that in (3.4) we have ;=0 for t<7 we can start simulation in (3.7)
from 7. To solve 7° By=c we need only to back-substitute in the adjoint equations

1 T=GTr +ey, t=T,T-1,.,1 (3.8)

with 7, 1=0. Again, noting that ¢g in (3.3) changes only on one position from iteration
to iteration, we can start the simulation in (3.8) from the position at which the change
occurred.

7 In general, the basis matrix is not so simple as (3.6) and some controls are basic,
while some state variables are nonbasic. The basis matrix is still staircase, but the blocks

A. Ruszczynsk: -32- Modern technigues ...

on the diagonal (which in (3.6) are all I} are not necessarily square and invertible:
—Kl Jl

- Gl _K2 J2
By = -G, (3.9)

—Gr_y —Kp Jr

I
where J,,J,,..,J are some submatrices of I; K,K,, ,KT are submatrices of K and
G,,Gq,..,Gp_, are submatrices of G. A factorlzatlon of B is necessary to represent it in
a form suitable for solving equations with B and BT and for corrections when a column
of B is exchanged.

We can of course specialize the elimination procedures of |5| or [13], because we
exactly know where to look for nonzeros in particular rows and columns of B. This idea of
blockwise elimination has been analysed in [14], [22] and [32]. There is, however, a more
promising global approach which aims at exploiting features similar to those that led
from (3.6) to the equations (3.7) and (3.8). Namely, we would like to transform somehow
B to a staircase matrix

B,
321622 ~
By, B,s (3.10)

o 1
1

Br_y,rBr,T
having the diagonal blocks B“ square and nonsingular. Solving equations with B would
be almost as simple as with B and would require only inversion of Bttv t=1,2,..,T.

In [20] the pass from B to B is achieved by representing
B=BF (3.11)

with F' chosen in such a way that B inherits as many columns of B as possible. In partic-
ular, all the state columns of B will appear in B, so that the diagonal blocks By will have
large parts common with the identity and will be easy to invert. Moreover, F' has also a
very special structure

D
F“h:[

with D square, invertible, and of relatively low size. Solving the equations with B or BT
resolves now itself to the factorization of By (which is easy) and factorization of D (see
[20]). Updating the factors is rather involved, unfortunately.

(3.12)

Another approach has been suggested in [1]. Since By is particularly easy to invert,
we aim at using By as B. We do not construct factors as in (3.11) but rather add new
rows and columns to B, and work with a larger matrix

B,U
v

A

(3.13)

Here U contains columns which are in B but not in By, and V contains units in
columns which are in By but not in B, to explicitly nullify the variables corresponding to
these columns. The solution to

A. Ruszczynsk -33- Modern technigues ...

B Zi =a (3.14)
can be now computed by

ug =(VBy 1U)~1VByla, (3.15)

s=Bg ! (a— Uug). (3.16)

Thus we need only to solve equations with By , which is particularly simple, and to
factorize the matrix VBO_1 U, which is of much smaller size than B. Similar formulae can
be derived for the backward transformation (3.3). Updating the factors is much more sim-
ple than for (3.11),(3.12), because the general form (3.13) does not change when rows of
V and columns of U are added or deleted.

Let us now pass to the stochastic problem (2.10). Supposing that the basis contains
only the correction activities, its form is particularly simple

B, = (3.17)

where W; , 1=1,2,.. L are square nonsingular submatrices of W. The inversion of B
resolves now itself to the inversion of W, W,,..., W, which can be done independently.
We can also exploit here some similarities between the W’s (common columns) to further
simplify their inversion (see the bunching procedure discussed for other purposes in [32]).

In general, however, the basis matrix will be of the form

(3.18)

with the blocks WI [=1,2,..,L, not necessarily square and nonsingular. Again, we would
like to transform B into a form more suitable for inversion. At the first sight, since B is
lower block triangular, both approaches discussed for the dynamic problem are applicable
here. We can aim at obtaining factors as in (3.11) with a W of dual angular structure
having invertible diagonal blocks. We can also apply a method based on the Sherman-
Morrison formulae (3.15)-(3.16) and work with a matrix of the form (3.13).

The relation with the dynamic model, however, follows from rather superficial alge-
braic similarity of the problem matrices (lower block triangular structure). In fact, in the
dynamic model we deal with a phenomenon that evolves in time, whereas the stochastic
model describes a phenomenon spread in space. Thus, while we had grounds to assume
that many state variables will be basic in the dynamic model (which implied the choice of
By), we cannot claim the same with respect to the correction activities in the stochastic
model and specify in advance some of them to be included into W. Therefore, the
approach of [1] must be slightly modified here. Instead of working with B, we would
prefer to operate on a larger matrix

A. Ruszczynski -34- Modern techniques ...

W A,
Jl -
W A,
J2
B = WA, (3.19)
JL
Vl
v2
43

in which some of the rows of the matrix V, which are used to t[ull'fy the nonbasic correc-

tion activities, are added to W to make the diagonal blocks square and invertible.

Under these circumstances, however, the block diagonal part of B is no longer constant,
contrary to the matrix By in the form (3.13) for dynamic problems. The representation
(3.19) and the resulting updating schemes were analysed in the dual (transposed) form in
[12], and [27]. The resulting formulae, however, are so involved and distant from the
essence of the underlying problem, that it is not clear whether this particular direction
can bring a significant progress.

The approach (3.11) might be more prospective here, but we should be aware of the
fact that it is natural to expect that many first stage activities z will be basic, because
corrections are usually more expensive. Hence, the blocks W, in (3.18) will be far from
square and adding to them columns to achieve the block diagonal B will inevitably
increase the size of D in (3.12).

Summing up this part of our discussion, we can conclude that implementations of
the simplex method for large dynamic and stochastic problems lead to very detailed linear
algebraic techniques that try to exploit the structure of basis matrices to develop
improved inversion methods. Although there is still a lot to be done in this direction, one
can hardly expect a qualitative progress here.

Pricing strategies

Let us now pass to the problem of selecting nonbasic columns to be priced out at a
given iteration for testing whether they could be brought into the basis. Since the selec-
tion of a variable to enter the basis largely determines the variable to leave, pricing stra-
tegies have a considerable influence on iteration paths of the simplex method and this
influence grows with the size of the problem. There are two acknowledged techniques for
general large scale linear programs (cf., e.g., [18]):

a) partial pricing, where at each iteration a certain subset of nonbasic columns are
priced out to select the one to enter;

b) multiple pricing, where a list of prospective candidates is stored, and they are priced
out again at the next iteration.

These general ideas can be further specialized for the two classes of problems in
question. The lower block triangular structure of A in (2.7) and (2.11) suggests a natural
division of the set of columns into subsets treated together by partial pricing strategies.
These subsets correspond to periods in (2.7) and to the first stage decision = and the reali-
zations in (2.11). This idea was thoroughly investigated experimentally in [7] and the

A. Ruszczynski -35- Modern techniques ...

conclusions can be summarized as follows:
- rank the blocks (periods, realizations) equally and use them in a cyclic fashion;

- within each block (if it is still large enough) rank the columns equally and also use
them in a cyclic fashion.

Again, pure linear algebraic concepts seem to be insufficient to fully specialize the
pricing strategies. We should somehow exploit our knowledge of the essence of the under-
lying model to gain further improvements.

Noting that the dynamic model describes a phenomenon that evolves in time, we
have grounds to expect that similar sets of activities will appear in the basis in the neigh-
boring periods. This suggests a simple modification of the partial pricing strategy
described above: if a prospective column has been found in period k, price out the
corresponding columns from the next periods and bring them to the basis, as long as pos-
sible. The initial experiments reported in [9] indicate that this simple modification may
improve the performance significantly (by 20-30% on problems of size 1000 by 2000.on
IBM PC/XT).

In the stochastic case the situation is generally analogous, and only slightly more
complicated. If a correction variable is basic for the realization (A;,b;) , we have grounds
to expect that the corresponding variables will be basic for some neighboring realizations
(Ajabj] However, contrary to the dynamic model, the notion of neighboring realizations’
is not so clear and is difficult to implement. Nevertheless, this possibility should at least
be investigated experimentally.

4. Feasible direction methods

The main disadvantage of the simplex method when applied to dynamic or stochas-
tic models is that it changes only one nonbasic activity at a time. We have already
observed that periods in the dynamic model and realizations in the stochastic model exhi-
bit close similarities. This results in very long iteration paths of the simplex method with
some subsequences of iterations used to realize similar changes for many periods or reali-
zations. It would be much more convenient to perform these changes simultaneously.

The feasible direction methods (see [8],[20]) may help us to implement this idea (the
simplex method is a feasible direction method, too, but with particularly simple direc-
tions). The main difference between these methods and the simplex method is that we
change many nonbasic variables at a time and allow zp to have values between their
bounds at intermediate steps. We still preserve the division of z into zg and zp; and still
keep the conditions (3.1) and (3.2). However, steps 2, 3 and 4 of the simplex method are
modified as follows.

Step 2a. Price out nonbasic columns a; of A by calculating

—c.—nTlq.
zj=c;—7" a; (4.1)
and select a subset S of columns a; such that zj<0 for Ijzzjmin, 2>0 for :z:jzzjma‘x ,
40 for £MN< g < gMAX (a subset of prospective candidates)
2;70 for z; /R prosp :
Step 3a. Determine a direction dp of change of the nonbasic variables zp; such that
dJ-zj <0 for j€S, (4.2)
d]-:O for jé¢8, (4.3)

(in the simplex method dp has only one nonzero component). Determine the direc-
tion of change of the basic variables by solving

A. Ruszczynski - 36 - Modern techniques ...

578

where A, is a submatrix of N formed from the columns selected in Step 2a, and d,
is the nonzero subvector of dj;.

Step 4a. Determine from J:Ir;"in,zg‘a‘x, zp,dg and ", z"** |z and d; the variable
which as first achieves its bound, when z, moves in the direction ds .

At first we note that when one of the variables which change their values (a basic
from zg or a nonbasic from z,) will hit its bound, some nonbasic variables will be out of
their bounds. So, we should either accept the fact that nonbasics can have arbitrary
values in the course of calculation, or construct a basic sclution from the current one
without increasing the objective value. The second idea has been analysed in [20], where a
detailed auxiliary algorithm has been described to pass to such a basic solution. This,
however, involves many additional steps which may considerably diminish the advantages
of changing many nonbasics in a major step. The radical solution of 8] seems to be more
promising: we allow nonbasics to have values between their bounds. Under this assump-
tion the division of z into basics and nonbasics is no longer determined uniquely by the
algorithm. If the previous basics are still between their bounds, we can maintain the divi-
sion to save on updating. When one of the basics hits its bound we can choose among z
the variable to replace it. In general, as discussed in [8], we should aim at constructing
such a basis that allows for an efficient next iteration. This may e.g. be accomplished by
selecting a nonbasic which is possibly far away from its bounds. However, there is a need
for a more theoretically grounded approach, which could perhaps be based on the analysis
of the dual problem.

Since the algebra of the feasible direction method is close to that of the simplex
method, we can of course use here all the tricks developed for compact inversion of basis
matrices discussed in the previous section.

Leaving aside these technical points, let us now focus our attention on the specializa-
tion of the strategy of the feasible direction method to problems having dynamic or sto-
chastic structure. The crucial question here is the choice of the direction of change of non-
basic variables. Although in theory the only limitations are the conditions (4.2), (4.3), in
practice we have to use more restrictive conditions to limit the number of columns of N to
be priced out. Again, as it was in the case of the primal simplex method, we can take
advantage of the structure of the constraint matrix and of the similarities of the blocks.
Thus, we can try to select to z, at a given iteration similar activities from different
periods/realizations and then make one major step of the method. The only difference is
that previously we performed sequences of similar steps bringing to the basis correspond-
ing activities from different blocks, while here we at first select a group of related candi-
dates and then change them simultaneously.

An important feature of the feasible direction approach is the freedom for specifying
the starting point. Indeed, once we abandoned the the requirement that all nonbasic vari-
ables are on their bounds, we are free to start the calculation from a solution which need
not be basic. This may help solving practical problems, where reasonable nonbasic solu-
tions can be specified by the user.

Summing up, the feasible direction approach appears to be a promising idea for large
scale problems having a dynamic or stochastic structure. It retains the algebraic advan-
tages of the simplex method and provides more freedom for exploiting the structure to
shorten iteration paths. The potential of this approach is far from being exploited.

A. Ruszczynski -37- Modern techniques ...

5. The regularized decomposition method

The idea of applying decomposition methods to linear programs of dynamic or sto-
chastic structure has been known since 25 years [3], but it is still attractive and provides a
framework for new ideas. We shall focus our attention here on the stochastic problem
(2.10), whose structure directly suggests the application of decomposition, and we shall
discuss the application of the new regularized decomposition method suggested in [24]. As
for dynamic problems, the approaches suggested in the literature so far are entirely
different and still of rather theoretical importance (see, e.g., [5], [6], [10], [11]).

By formulating the dual to (2.10) we obtain a problem of primal angular structure,
to which the Dantzig-Wolfe decomposition method can be applied [4]. Since applying the
Dantzig-Wolfe method to the dual is equivalent to applying the Benders decomposition to
the primal [16], we shall discuss our basic ideas in primal terms.

It can be readily seen that if z is fixed in (2.10) the minimization with respect to
Y1,Y9,-- ¥, can be carried out separately by solving for [=1,2,..,[the second-stage sub-
problems

mintmsize qu
subject to
ymin<y<ymax-
Let us denote the optimal value of (5.1) by f)(z), and take the convention that

fi(z)=+o00, if (5.1) is unsolvable. Then our problem (2.10) can be equivalently formu-
lated as follows:

L
minimize F(z)=cTz+ Y pfi(z)

=1
subject to
gMiNg g gmax (5.3)
X, 1=12,.,L, (5.4)
where
Xi={z: fi(z)<+o0}. (5.5)

We introduce the condition (5.4) to the problem formulation, because we are going
to use separate approximations for f; and for their domains X .

Much is known about the functions f; and the sets X (see, e.g., [9]). In particular,
each X; is a convex closed polyhedron and each f; is convex and piecewise linear on X .
Although the pieces of f; and the facets of f; are not given explicitly, for each z we can
determine a piece of f; active at Z, or a linear constraint defining X;, which is violated at

-

I.

Indeed, let (5.1) be solvable at £=% and let denote the vector of simplex multi-
pliers associated with the solution. Then it follows from the duality relations in linear
programming that for every z

f2) 27T (b Agz), (5.6)

A. Ruszczynski - 38 - Modern techniques ...

and the equality holds for z=z£. If (5.1) is not solvable for =%, then phase I of the sim-
plex method or the dual simplex method will stop at a certain iteration, at which 1t will
not be possible to move a basic variable yg, towards its feasibility interval |y g™,y 51>

If 7 is the r-th row of the basis inverse (if the dual method is used and yg,> yg:ax), then
X, C{z: 7T (b— Ajz) <y} (5.7)
Similar formulae hold for the case of yg,< yg}_i"
simplex method.

and for the phase I of the primal

We shall call the linear inequalities following from (5.6) objective cuts, and the ine-
qualities following from (5.7) feasibility cuts. Each objective cut can be written as

a9l z< fj(2) (5.8)
with g;=—Am, a1=7rTb,. Each feasibility cut can be expressed in a similar fashion:
&,ﬂT,Ta:SO (5.9)

with _Z]‘I:—AITW and an appropriately defined &;. Functions f; and sets X, are polyhedral
and there can be only finite many (although usually quite a few) such cuts.

Next, if we have objective cuts (5.8) for all I=1,2,..,L we can construct an aggregate

cul
L T
Y rfi(z)zatg z, (5.10)
=1
where (a,g) is computed from (a,,gl) by means of averaging
L
=1
L
9=y, 79 (5.12)
=1

We can now describe the version of the Benders decomposition method for stochastic
programs, known as L-shaped algorithm [30).

Let (aj,gf),jEJ, be the set of aggregate cuts (5.10) known so far, and let

ch,—gJ), J€J, be the set of feasibility cuts generated previously. At each iteration of the
method we perform the following operations.

Step 1. Solve the master problem:

minimize F(z)=clz+v

subject to
oI+ (¢") Ta<n, jed, (5.14)
&+(g7) T2<0, jel, (5.15)
Imin<z<xmax'

Let £ be the solution to (5.13)-(5.18).

Step 2. Solve for 1=1,2,.. L. the subproblems (5.1) at z=2. If any of them is infeasible,
generate the corresponding feasibility cut (5.9), apEend it to (5.15) and go to Step 1.

If all subproblems are feasible, check whether Y] p,f;(£)=v. If this condition is
=1

A. Ruszczynski -39 - Modern techniques ...

satisfied, then stop; otherwise generate objective cuts (5.8), the aggregate cut (5.10),
append it to (5.14) and go to Step 1.

It is not difficult to observe that this method exactly corresponds to the Dantzig-
Wolfe method applied to the dual of (2.10): the cuts passed to the master (5.13)-(5.15)
are the proposals passed to the master in the Dantzig- Wolfe method.

The attractiveness of this approach follows from the fact that the solution procedure
closely reflects the structure of the original problem. It also allows for some parallelism in
subproblem solution. It has, however, inherent drawbacks common for all purely linear
cutting plane methods (cf., e.g., [29]), and for the Dantzig-Wolfe method (which is in fact
their dual counterpart):

- the number of cuts (5.14), (5.15) increases in the course of calculation;
- the master problem is unstable: new cuts may imply rapid changes of z;
- convergence is slow.

These drawbacks led to the idea of the regularized decomposition method |[24], which
“combines the Benders decomposition with modern stable techniques of nonsmooth optimi-
zation [15]. The main idea of the method is to change the master program, which gen-
erates successive points z* at which the subproblems are solved. We aim at constructing
such a master which would be able to use the information gained in the past not only in
the form of cuts, but also in the form of the best point z found so far.

The method uses objective and feasibility cuts (5.8) and (5.9) as before. It does not,
however, average them to form aggregate cuts (5.10), but rather maintains separate sets
of cuts for each component f; :

af+(gf) Tz<f)(2), jEJ, 1=1,2,.,L.

Next, the master problem, although quite similar to (5.13)-(5.16), is augmented with
a quadratic penalty term for the distance of £ to the best point £° found so far:

minimize Fk()E%Hz 2o+ T x+2p,v, (5.17)
subject to

of +(g)) Tz<y, jeJ, 1=12,.,L, (5.18)

&+(7) Tz<o0, jel, (5.19)

T™N< g g MAT, (5.20)

The existence of this quadratic term stabilizes the master problem, i.e. makes it less
sensitive to the changes in the set of cuts (5.18)-(5.19). It also allows for skipping out-
dated cuts and keeping the total size of the master limited.

The logic of the regularized decomposition method can be summarized as follows.

Step 1. Solve the regularized master (5.17)-(5.20), getting a trial point £ and objective
estimates v}, [=1,2,..,L.

Step 2. Solve for [=1,2,..,L the subproblems (5.1) at z=1%.
a) If (5.1) is infeasible, then append the feasibility cut (5.9) to (5.19).

A. Ruszczynsk: - 40 - Modern techniques ...

b) If (5.1) is feasible, but f(z)>v; , then append the objective cut (5.8) to the set of
cuts J; in (5.18).
Step 8. Change the regularizing point z* according to the following rules.
a) If there were infeasible subproblems (5.1), set ghtl=gk
L
b) If F(£)=¢T£+ Y] pyv;, then set zF+1=z
=1

L
c) If F(£)<yF(zF)+(1—7)(eT£+ Y pyv;) and exactly n+ L constraints were active
=1
n (5.17)-(5.20), then also set :l:k+1::i:'; otherwise set zFT1=zF .
Step 4. Delete from the cuts (5.18)-(5.19) some of those which were not active at the last
solution £ to the master, and go to Step 1.

It is easy to observe that the number of active cuts (i.e. linearly independent con-
straints with positive Lagrange multipliers) never exceeds n+ L, where n is the dimension
of z and L is the number of blocks (realizations). Since at Step 2 at most L new cuts may
enter (either a feasibility cut or an objective cut for each {), the total number of cuts need
not exceed n+2L. In fact, it is usually much smaller, if many bounds (5.20) are active.

It has been proved in [24] (for the general case of minimization of a sum of
polyhedral functions) that the rules for changing the regularizing point z* at Step 3
guarantee that the sequence z" is convergent in finite many iterations to the solution of
our problem. This result obviously applies also to the particular problem we are
interested in.

It i1s easy to observe that the use of the quadratic term in (5.17) implies that the
regularizing point z* hasa %reat influence on the solution of the master problem. In par-
ticular, the starting point z° influences considerably the whole iteration path, which is
obv1ously not true for the linear decomposition method. This may significantly reduce the
effort required for solving practical problems, where a good starting point is available.

These important theoretical features have been obtained at the expense of replacing
a purely linear master problem (5.13)-(5.16) by the quadratic problem (5.17)-(5.20). To
make the regularized decomposition method really competitive, we need an efficient com-
putational technique for solving the regularized master.

Such a technique can be based on the active set strategy. It consists in selecting a
subset of the constraints (5.18)-(5.20) to be satisfied as equalities, solving the resulting
equality constrained subproblem, changing the active set, solving the new subproblem,
etc. The active set is increased, when a cut not included in it is violated, and it is
decreased, when a cut in the active set has a negative Lagrange multiplier in the subprob-
lem.

The equality constraints defined by an active set can be compactly written in the
form

a+GTz—ETv=0, (5.21)

where a is composed of the constant terms aj’d'Jcorresponding to the active cuts, G has
columns g7;¢’ , and E is a zero-one matrix whose j-th column is the unit vector e! if the
J-th cut is an objective cut for f; , and is a zero column otherwise. Active bounds (5.20)
can also be put into (5.21) with particularly simple columns of G (unit vectors). Thus
each equality constrained subproblem has the form: minimize (5.17) subject to (5.21).
Denoting by A the vector of Lagrange multipliers corresponding to the active cuts (5.21),
we can formulate the following necessary and sufficient conditions of optimality:

A. Ruszezynski - 41 - Modern techniques ...

EX=p, - (5.22)

ETv+GTGA=GT(z*—c)+a, (5.23)
where p=(p;,p5,..,0;) is the vector of probabilities. The primal solution is defined by

z=zF—c—GTA. (5.24)

The number of active cuts does not exceed n+L and so does the size of the system
(5.22)-(5.23). However, the specific structure of E' (unit or zero columns and full row
rank) makes it possible to further reduce the dimension by representing

E=(I,N),
G=(Gp,Gn),
a=(ag,ay),
A=(ApAN)-

After eliminating analytically v and Apg from (5.22)-(5.23) we obtain the equivalent
system

GLG =G Lz~ c—gy)+an, (5.25)
where

Gn=GN—GpgN,

dN:aN—NTaB,

gn=Gpp-

The system (5.25) has dimension not exceeding the dimension of z, independently of
the number of blocks L, and can be solved by stable numerical techniques for least-
squares problems (see (2], [24]). In the implementation [25] additional advantages have
been drawn from the activity of simple bounds, which further reduces the dimension of
(5.25).

Summing up, not only the regularized master (5.17)-(5.20) has a smaller number of
cuts than (5.13)-(5.16), but the effort for solving it is comparable with the effort for solv-
ing linear problems of the same size. These observations have been confirmed by the ini-
tial experiments with the regularized decomposition method for large scale stochastic pro-
grams, which we shall report in an extended form elsewhere [26]|. They indicate that the
method solves medium-size problems (200 by 500) 2...3 times faster than purely linear
techniques, is capable of solving very large problems (problems of size 2500 by 5000 in ca.
1 min. on IBM 3033) and the growth of costs is sublinear when the number of realizations
L increases.

Conclusions

We discussed some modern computational approaches to large scale linear programs
arising from dynamic and stochastic models. In our opinion, two directions deserve more
attention as promising tools for decision support systems:

- feasible direction methods with special compact inverse techniques borrowed from
implementations of the simplex method and with specialized direction-finding pro-
cedures;

A. Ruszczynski - 42 - Modern techniques ...

the reqularized decomposition method with decentralized or parallel subproblem solu-
tion.

The common feature of these methods is the freedom in specifying the starting point

and its strong influence on the cost of calculations, which is crucial for decision support
systems, where we usually solve repeatedly similar models. The methods are also more
flexible than simplex-based approaches and provide a potential for an interactive control
of calculations and for some parallelism. On the other hand, they both can use computer
resources at Jeast so economically as the simplex methods and are capable of solving large

models.

References

[1] J. Bisschop and A. Meeraus, "Matrix augmentation and structure preservation in
linearly constrained control problems”, Mathematical Programming 18(1980) 7-15.

(2] J.W. Daniel et al., “Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization”, Mathematics of Computation 30(1976) 772-795.

[3] G. Dantzig, Linear Programming and Extensions, Princeton 1963.

[4] G. Dantzig and A. Madansky, “On the solution of two-stage linear programs under
uncertainty”, in Proceedings of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, vol 1, University of California Press, Berkeley 1961, pp.
165-176.

[5] J.J.H. Forrest and J.A. Tomlin, "Updated triangular factors of the basis to maintain
sparsity in the product form simplex method”, Mathematical Programming 2(1972)
263-278.

[6] R. Fourer, "Solving staircase linear programs by the simplex method, 1: inversion”,
Mathematical Programming 23(1982) 274-313.

[7] R. Fourer, "Solving staircase linear programs by the simplex method, 2: pricing”,
Mathematical Programming 25(1983) 251-292.

[8] R. Gabasov and F.M. Kirillova, Linear Programming Methods, Isdatelstvo BGU,
Minsk 1977. (in Russian)

[9] J. Gondzio and A. Ruszczynski, “A package for solving dynamic linear programs”,
Institute of Automatic Control, Warsaw University of Technology, 1986.

[10] J. Ho and E. Loute, "A set of staircase linear programming test problems”,
Mathematical Programming 20(1981) 245-250.

[11] J. Ho and A. Manne, "Nested decomposition for dynamic models”, Mathematical
Programming 6(1974) 121-140.

[12] P, Kall, "Computational methods for solving two-stage stochastic linear program-
ming problems”, ZAMT 30(1979) 261-271.

[13] P. Kall, K. Frauendorfer and A. Ruszczynski, “Approximation techniques in stochas-
tic programming”, in: Y. Ermoliev and R. Wets (eds), Numerical Methods in Sto-
chastic Programming, Springer-Verlag, Berlin 1986 (to appear).

[14] M. Kallio and E. Porteus, "Triangular factorization and generalized upper bounding
techniques”, Operations Research 25(1977) 89-99.

(15] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Springer-
Verlag, 1985.

[16] L. S. Lasdon, Optimization Theory for Large Systems, Macmillan, New York 1970.

A. Ruszczynskr - 43 - Modern techniques ...

[17]

[18]
[19]

[20]

21

|22]
23]
[24]
[25]
(26]

[27]

28]
29]

[30]

[31]

(32]

R. Marsten, "The design of the XMP linear programming library”, ACM Transac-
tions of Mathematical Software 7(1981) 481-497.

B. Murtagh, Advanced Linear Programming, McGraw-Hill, 1981.

B. Murtagh and M. Saunders, "MINOS 5.0. User’s guide”, System Optimization
Laboratory, Stanford University, 1984.

K. G. Murty and Y. Fathi, “A feasible direction method for linear programming”,
Operations Research Letters 3(1984) 121-127.

A. Perold and G. Dantzig, "A basis factorization method for block triangular linear
programs”, in I. Duff and G. Stewart (eds), Sparse Matrix Proceedings, SIAM, Phi-
ladelphia, 1979, pp. 283-313.

A. Propoi and V. Krivonozhko, “The simplex method for dynamic linear programs”,
RR-78-14, IIASA, 1978.

J. Reid, "A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases”, Mathematical Programming 24(1982) 55-69.

A. Ruszczynski, "A regularized decomposition method for minimizing a sum of
polyhedral functions”, Mathematical Programming 35(1986) 309-333.

A. Ruszczynski, "QDECOM: The regularized decomposition method. User’s
manual”, Institute of Operations Research, University Zurich, 1985.

A. Ruszczynski, "Regularized decomposition of stochastic programs: algorithmic
techniques and numerical results”, in preparation.

B. Strazicky, "Some results concerning an algorithm for the discrete recourse prob-
lem”, in: M. Dempster (ed.), Stochastic Programming, Academic Press, London
1980, pp. 263-274.

E. Toczylowski, “A hierarchical representation of the inverse of sparse matrices”,
SIAM J. Alg. Disc. Math. 5(1984) 43-56.

J. M. Topkis, "A cutting plane algorithm with linear and geometric rates of conver-
gence”, JOTA 36(1982) 1-22.

R. Van Slyke and R. J.-B. Wets, “"L-shaped linear programs with applications to
optimal control and stochastic programming”, SIAM J. on Applied Mathematics
17(1969) 638-663.

R.J.-B. Wets, “Stochastic programming: solution techniques and approximation
schemes”, in: A.Bachem et al. (eds), Mathematical Programming: The State of the
Art, Springer-Verlag, Berlin 1983, pp. 507-603.

R. J.-B. Wets, “Large scale linear programming techniques in stochastic program-
ming”, in: Y. Ermoliev and R. Wets (eds), Numerical Methods in Stochastic Pro-
gramming, Springer-Verlag, Berlin 1986 (to appear).

K. Kiwiel, A. Stachurski - 45 - Theoretical guide to NOA2

Theoretical Guide for NOA2: a FORTRAN Package
of Nondifferentiable Optimization Algorithms

Krzysztof C. Kiwtel, Andrzej Stachurskt

Systems Research Institute, Polish Academy of Sciences.

ABSTRACT

This paper forms a theoretical guide for NOA2, a package of FORTRAN
subroutines designed to locate the minimum value of a locally Lipschitz
continuous function subject to locally Lipschitzian inequality and equality
constraints, general linear constraints and simple upper and lower bounds.
The user must provide a FORTRAN subroutine for evaluating the (possi-
bly nondifferentiable and nonconvex) problem functions and their single
subgradients. The package implements several descent methods, and is
intended for solving small-scale nondifferentiable minimization problems
on a professional microcomputer.

1. Introduction

NOA2 is a collection of FORTRAN subroutines designed to solve small-scale
nondifferentiable optimization problems expressed in the following standard form

minimize f(z):=maz{ fj(z): J=1,...mp }, (1a)
subject to Fj(z) <0 for j=1,...,my, (1b)
Fj(n:) = 0 for j=m;+1,...,m;+mg, (Lc)
Az < b, (1d)
zI-L <z < x,-U for 1=1,...,n, (1e)

where the vector z:(zl,...,:l:n) T has n components, f. and Fj are locally Lipschitz con-
tinuous functions, and where the m 4 by n matrix A, the m, —vector b and the n-vectors
2L and 2Y are constant; A is treated as a dense matrix.

The nonlinear functions fj and Fj need not be continuously differentiable (have con-
tinuous gradients, i.e. vectors of partial derivatives). In particular, they may be convex.
The user has to provide a FORTRAN subroutine for evaluating the problem functions
and their single subgradients (called generalized gradients by Clarke (1983)) at each z
satisfying the linear constraints (1d,e). For instance, if F is smooth then its subgradient
gFJ_(:l:) equals the gradient VFj(z) , whereas for the max function

F(z) = max{ F,(z;z): 2€2} (2)

which is a pointwise maximum of smooth functions F]-(-,-) on a compact set Z, g (z)

may be calculated as the gradient VIF]'(z;z(I)) (with respect to z), where z(z) is an
arbitrary solution to the maximization problem in (2). (Surveys of subgradient calculus,
which generalizes rules like V(F,+F,)(z) = VF,(z)+V F,(z), may be found in Clarke
(1983) and Kiwiel (1985a).)

K. Kiunel, A. Stachurski - 46 - Theoretical guide to NOAZ

NOA2 implements the descent methods of Kiwiel (1985a-d,1986a, 1986¢,1987),
which stem from the works of Lemarechal (1978) and Mifflin (1982).

A condensed form of problem (1) is to

minimize f(z) overallz in R (3a)
satisfying F(z) <0, (3b)
Fg(z)=0, (3¢)
Az < b, (3d)
L <z< z:U, (3e)

where f is the objective function,
Fi(z) = maz {F(z): j=1,...m}
1s the inequality constraint function,
Fp(z) = max { maz[F)(z),~ F;(z)]: j=my+1,...,mp+mg}

is the equality constraint function, the m, inequalities (3d) are called the gereral linear
constraints , whereas the boz constraints (3e) specify upper and lower simple bounds on
all variables.

The standard form (1) is more convenient to the user than (3), since the user does
not have to program additional operations for evaluating the functions F; and Fp and
their subgradients. On the other hand, the condensed form facilitates the description of
algorithms.

The linear constraints are treated specially by the solution algorithms of NOAZ2,
which are feasible with respect to the linear constraints, i.e. they generate successive
approximations to a solution of (1) in the set

S; = {z: Az < b and L <z <Yy,

The user must supply an initial estimate £ of the solution that satisfies the box con-
straints (IL <z< IU); the orthogonal projection of Z onto S; is taken as the
algorithm’s starting point.

Two general techniques are used to handle the nonlinear constraints. In the first one,
which minimizes an exact penalty function for (1) over S;, the initial point need not lie in

Sp = {z: Fj(z) < 0and Fg(z) = 0}

and the successive points converge to a solution from outside of Sy . The second one uses
a feasible point method for the nonlinear inequality constraints, which starts from a point
in

S; = {z: Fy(z) < 0}

and keeps the successive iterates in S;. The choice between the two techniques is made by
the user, who may thus influence the success of the calculations. For a given level of final
accuracy, the exact penalty technique usually requires less work than the feasible point
technique. On the other hand, the feasible point technique may be more reliable and is
more widely applicable, since it does not in fact require the evaluation of f and F outside

K. Kiwiel, A. Stachurski - 47 - Theoretical guide to NOA2

NOAZ2 is designed to find solutions that are locally optimal. If the nonlinear objec-
tive and inequality constraint functions are convex within the set S;, and the nonlinear
equality constraints are absent, any optimal solution obtained will be a global minimum.
Otherwise there may exist several local minima, and some of these may not be global. In
such cases the chances of finding a global minimum are usually increased by restricting
the search to a sufficiently small set S; and choosing a starting point that is “sufficiently
close” to a solution, but there is no general procedure for determining what “close” means,
or for verifying that a given local minimum is indeed global.

NOAZ2 stands for Nondifferentiable Optimization Algorithms | version 2.0.

In the following sections we introduce some of the terminology required, and give an
overview of the algorithms used in NOA2.

2. An overview of algorithms of NOA2

The algorithms in NOA2 are based on the following general concept of descent
methods for nondifferentiable minimization. Starting from a given approximation to a
solution of (1), an iterative method of descent generates a sequence of points, which
should converge to a solution. The property of descent means that successive points have
lower objective (or exact penalty) function values. To generate a descent direction from
the current iterate, the method replaces the problem functions with their piecewise linear
(polyhedral) approximations. Each linear piece of such an approximation is a lineariza-
tion of the given function, obtained by evaluating the function and its subgradient at a
trial point of an earlier iteration. (This construction generalizes to the nondifferentiable
case the classical concept of using gradients to linearize smooth functions.) The
polyhedral approximations and quadratic regularization are used to derive a local approx-
imation to the original optimization problem, whose solution (found by quadratic pro-
gramming) yields the search direction. Next, a line search along this direction produces
the next approximation to a solution and the next trial point, detecting the possible gra-
dient discontinuities. The successive approximations are formed to ensure convergence to
a solution without storing too many linearizations. To this end, subgradient selection and
aggregation techniques are employed.

2.1. Unconstrained convex minimization

The unconstrained problem of minimizing a convex function f defined on R" is a
particular case of problem (1). In NOAZ2 this problem may be solved by the method with
subgradient selection (Kiwiel, 1985a).

Let gf(y) denote the subgradient of f at y calculated a subroutine supplied by the
user. In the convex case

f(z) = f(y) + <g4(y),z—y> for all z, (4)

where < -, - > denotes the usual inner product. Thus at each y we can construct the
linearization of f

f(zy) = fly) + <gf(y],:z:—y> for all z, (5)

which is a lower approximation to f.

Given a user-provided initial point zl, the algorithm generates a sequence of points
2% k=23...., that is intended to converge to a minimum point of . At the k—th iteration
the algorithm uses the following polyhedral approzimation to f

K. Kiuiel, A. Stachurski - 48 - Theoretical guide to NOA 2

f(z) = max{f(z;y’): jEJ}‘} (6)

derived from the linearizations of f at certain trial points y] of earlier iterations j, where
the index set JIC{I ..k} typically has n+2 elements. Note that fk may be a tight
approximation to f in the neighborhood of trial points y] for 7 in Jf, since

f(y)=F*(y7).

The best direction of descent for [at zF is, of course, the solution dF to the problem

minimize f(zF+d) —all d in R",

since zF+d* minimizes f. The algorithm finds an approximate descent direction d* to

minimize f5(z¥+d)+|d}?/2 —all d, (7)

where the regularizing penalty term |d|2/2 tends to keep zF+d* in the region where fk
may be a good approximation to f (|| denotes the Euclidean norm); without this correc-
tion term, problem (7) needs not have a bounded solution.

The nonpositive quantity
of = fFeF+d)-f(ah) (8)
is an optimality measure of zk, since
f(zF) < f(z) + |V Yz —zH—ovF for all =. (9)
The algorithm terminates if

vk < €, (1+]7(zF)), (10)

where €, 1s a positive final accuracy tolerance provided by the user. Thus for 65=10—l
and [>4, we may hope to achieve the relative accuracy of about (I-1) leading digits in the
objective value (considering also zeros after the decimal point as significant), i.e. typically
at termination

[7(z*)—1(z%)| is about 10~(""Ymaz {|f(z*)|,1}, (11)

where z* is a minimum point of f. Of course, such estimates may be false for ill-
conditioned problems In practice vk usually converges to a negative number, small rela-
tive to maz { f(z) 1}.

The stopping criterion (10) usually works with € set to 10~% or 10_6 but it is not
always reliable. For instance, if f is polyhedral and bounded from below then termination
should occur at some iteration with v¥=0 (and optimal z) In practice, computer round-
ing errors prevent the vanishing of vk, The search direction finding subproblem (7) is
solved in NOA2 by the subroutine QPDF4 for quadratic programming (Kiwiel, 1986b),
which calculates the quantity

o = JE(zF+d%)—f(b) (12)

and glves vk a nonpositive value according to some dual estimate; in theory % should
equal v®. The smallness of |vk— v | relative to |v | indicates good accuracy of QPDF4. The
accuracy usually deteriorates in the neighborhood of a minimum point of { (when too
small accuracy tolerance €, prevents termination), or earlier for ill-conditioned problems.
The case of ¢ > 0, it.e. inability to find a descent direction, enforces abnormal

K. Kiunel, A. Stachurski - 49 - Theoretical guide to NOA2

termination.

If the algorlthm does not terminate, then the negatlve value of v* (see (8)) predicts
the descent f(z*+d¥)— —f(z) for the step from z* to zk4dk. Usuall vk over-estimates
the descent because f(-)> f (-) and f* need not agree with f at z k4 d* if its linearizations
do not reflect all discontinuities in the gradient of f around zF (too few of them to make
up f or they were calculated at yJ far from :zzk] Thus two cases are possible when a line
search is made to explore f along the segment joining z* and zF+d*. Elther f is a good
model of f and it is possible to make a serious step by finding a stepsize tL>0 such that
the next iterate

L = gk ik gk

has a lower objective value than :ck, or a null step ght1_ gk (t£:0) combined with cal-
culating the linearization f(-;yk+1) at a new trial point

with tRE(O 1] may be used to get the next improved model f k+1 of f. Since 0<tL<tR ,
z and tR are called left and right step51zes respectively, although they may coincide if

17 >0. More specifically, a serious step with tL>0 is made if
S < flaF)bmy tf o, (152)
t[’iZt— or af(:ck,:ck+1) > m, |vk|, (13b)

where m;, m and 1 are positive parameters less than 1, whereas
ag(z,y) = f(z) ~ J(z3y) (14)

is the linearization error of f(-;y) at z. These conditions ensure a significant objective
decrease (1. e t_’f, and mLtfv cannot be too small). On the other hand, a null step with
tL—O and tRE[t 1] must ensure that the new linearization satisfies
k., k+1 tk k AN k
J(z*+d5y*) () 2 mp| (¥4 d¥) - 1(a*)] = mpo
for some fixed mRE(O 1), so that its mcorporatlon w1ll make fk+1 a better approxima-
tion to f along the dlrectlon d* from z%¥*! = zF than f was, thus enhancing generation
of a better next direction d*+1.

For technical reasons, the line search parameters must be positive and satisfy
mp+m,<mp<l and t<1. By changing the standard values
m;=0.1, mp=0.5, m;=0.01 and ¢=0.01, the user may strongly influence the
algorithm’s efficiency on a given problem. Note that the total amount of work in solving a
problem depends on the number of function and subgradient evaluations as well as on the
number of iterations. The algorithm may require only one objective evaluation per itera-
tion. This is justified if the cost of one objective evaluation dominates the effort of auxili-
ary operations (mainly at quadratic programming) per iteration. In the reverse case, one
may wish to decrease the number of iterations at the cost of increasing the number of
objective evaluations.

More specifically, the line search checks if trial stepsizes t€|[%,1], starting with t=1,
satisfy the sufficient descent criterion

f(2F+td¥) < f(2k)+mytof

K. Kiuzel, A. Stachurski -50- Theoretical guide to NOA2

and thus are candidates for tL Hence if the threshold stepsize £ is set to 1, only t=1 need
be tested, and a serious step with tL—l will occur if

f(zF+d¥) — 1(2F) < my [FE(k4a%) - 1(2h)]

(see (8) and (13a)), i.e. f¥ must be very close to f at zf+dF if m; approaches 1. In prac-
tice m;>0.5 may result in many null steps (the algorithm concentrates on improving its
models fk of [between infrequent serious steps), whereas m;<0.1 may produce
(damped) oscillations of {Ik} around the solution (little descent is made at each serious
step). For a smaller threshold <1, more stepsizes ¢ are tested (typically two for £=0.1,
three for £=0.01), and there are fewer null steps. In practice decreasing { from 1 to 0.01
will usually decrease the number of iterations at the cost of more function evaluations.

It is worth adding that for a polyhedral f one may frequently use the values
m; =0.9, mp=0.95, m =0.01 and i=1, which parameter values, however, are usually
inefficient for more general functions.

To sum up, it is reasonable to set m; and i in the ranges [0.1,0.9] and [0.01,1]
respectively, and use m,=0.001 and mp=(1+m;)/2.

The user may trade-off storage and work per iteration for speed of convergence by
choosing the maximum number M_ of past subgradients (linearizations) involved in the
approximations fk (whereas more linearizations increase the model accuracy). To ensure
convergence, the algorithm selects the linearizations active at the solution to subproblem
(7) for keeping (their indices enter Jf+1 together with k+1), whereas inactive past
linearizations may be dropped (i.e. overwritten in the memory by new ones, if necessary).
More linearizations enhance faster convergence by producing more accurate f*, but the
costs of solving subproblem (7) may become prohibitive. Using Mg greater than its
minimal possible value n+3, Mg:2n say, frequently increases the overall efficiency.

An additional iricrease of modelling accuracy may be possible when f is the point-
wise maximum

f(z) = max{ f;(z): 1=1,...,mp}

of several convex functions f; with subgradients g5 The user may choose a positive

activity tolerance €, and the maximum number [, of additional linearizations of f; at z*

that will augment f¥. Then subproblem (7) employs
fk(a:) = max{[(z;y?); v'eJ% fi(z)+<gf’,(zk),z—1:k>: ieL*}, (15)

where L* contains at most l, indices of the €,-active functions f’-(.’ck)Zf(zk)—ea. How-
ever, these additional linearizations may overwrite some past ones (if Mg is too small),
and this may or may not increase the accuracy of f~ at points remote from z*.

If space limitations prevent the algorithm from storing sufficiently many (Mg> n+3)
past subgradients, the algorithm may be run with Mg>3 by employing subgradient
aggregation instead of selection. This will usually -~ sometimes even drastically — decrease
the speed of convergence.

The algorithm described so far is rather sensitive to the objective scaling, especially
to the multiplication of f by a positive constant, mainly due to the presence of the arbi-
trary quadratic term in subproblem (7). For greater flexibility, the user may choose a
positive weight u in the following version of (7)

minimize fX(z*+d) + u|d?/2 —all d. (16)

K. Kiwrel, A. Stachursk: -51- Theoretical guide to NOA2

The standard va]ue u=1 suffices for well-scaled problems. If f varies rapidly, increasing u
will decrease Id |, thus localizing the search for a better point to the ne1§hborhood of zF.
For mstance if the initial derivative vl of f at z! in the direction d ‘large” (e.g.
v <—10) one may try a larger u, u=100 say, in the next algorithm’s run on the same,
or related problem. On the other hand too “large” u will produce many serious, but short
steps with very small |:l:k+1—:l:k| and convergence will be slow. We may add that for
piecewise linear objectives smaller values of u are less dangerous than too large. Moreover,
large errors may arise in the solution of (16) by the subroutine QPDF4 if u is small
(u<10_4); then it is better to multiply f by a small number and set u=1.

In the general case of u>0, the optimality estimate (9) becomes
1(zF) < f(z) + u|v"V/Yz—2* — oF for all =z (17)

This suggests that the accuracy tolerance €, should be decreased when a larger u is used;
otherwise, “false” convergence will occur.

2.2. Linearly constrained convex minimization

The box constrained problem with a convex f

mintmize f(z), (18a)
subject :cL< r; < :cU for 1=1,...,n, (18b)

can be solved in NOA2 by a modification of the method described in the preceding section
(Kiwiel, 1985¢,1986¢,1987).

The presence of finite upper and lower bounds ensures the existence of a solution and
prevents divergence of the algorithm, which must occur when there is no solution (then
I:c | tends, in theory, to infinity; in practice - until an arithmetic overflow terminates the
calculatlon). It is always advisable to place bounds of the form —1000<z,<1000, which
should not be active when the solution lies inside the box.

The objective f and its subgradient g will be evaluated only inside the box [z©,2Y]
This may be used to eliminate regions where [is undefined. For example, if
f(z)=2; 1 2—+—e:cp(:l:2) it is essential to place bounds of the form 11210“5, z,<20.

If the user spemﬁes an infeasible initial point z! , 1t 1s projected on the box (by
replacing z, ! with ma.x{:z: mm(:z',:l:,U)}). Successive :t:’C remain in the box.

At the k-th iteration, an approximate feasible descent direction d* is found to

minimize f*(zF+d) + u|d?/2, (19a)
subject xL< :ck+d < :cU for 1=1,...,n. (19b)

This subproblem is a natural extension of (16). Consequently, the preceding remarks on
the choice of parameters remain in force.

We may add that the introduction of box constraints only slightly increases the
work at the search direction finding.

For the problem with general linear constraints

minimize f(z), subject Az <b, (20)

K. Kiwiel, A. Stachursk: -52- Theoretical guide to NOA2

the search direction finding subproblem becomes

minimize [¢(z5+d) + u|d]*/2, (21a)
subject A (zF+d) < b. (21b)

Due to rounding errors, the calculated direction d* need not be “strictly” feasible. To
measure the infeasibility of a direction d we use the constraint violation function

v,(d) :rriim:{ h(z*+d),0}

defined in terms of

h(z) = maz { A;z—b':i=1,..,m,}, (22)

where A; denotes the t-th row of A. Subproblem (21) is equivalent to the unconstrained
problem

minimize f¥(z¥+d) + u|d?/2 + cv,(d) —all d (23)

when the penally parameter ¢ is sufficiently large. Hence we may test increasing values
of ¢ until the solution of (23) is feasible, and hence solves (21). Starting from c¢=p, where
p>0 may be provided by the user, each successive ¢ is multiplied by 10 until the solution
d* of (23) passes the feasibility test

h(zF+d¥) < ep, (24)

where €y is a positive absolute feasibility tolerance. If this test is failed by even “very
large” c, the calculation terminates. This occurs if ¢>1/¢€,y, where €, is the relative
machine accuracy (the smallest positive € for which 1+€>1 in the computer’s arithmetic).

No computational difficulties should arise if the linear constraints are well-scaled and
the feasibility tolerance ¢ is large enough. In particular, it may be necessary to ensure
that the coefficients of A are of order 1 and GFEEMZ- For instance, if the coefficients of A
result from measurements corrupted by errors of magnitude 10_6, one should set
EF: 10_6.

If the initial point specified by the user is not feasible to within the tolerance €, the
algorithm tries to project it onto the feasible set (by using a version of (23)). If the projec-
tion is successful, each successive z* satisfies the linear constraints to within €. More-
over, f(y) and gf(y) are calculated only at € - feasible points with A(y)<ep.

A combination of the preceding techniques is used for the problem
minimize f(z) —all z
< o L U
satisfying Az < b, " <z < z".

In this case, all trial points satisfy the simple bounds exactly, and the general linear con-
straints to within €.

K. Kiwtel, A. Stachurski -53- Theoretical guide to NOA2

2.3. Exact penalty methods for convex constrained problems

The convex minimization problem

minimize f(z) —all z (25a)
satisfying Fi(z) <0 for j=1,..,m; (25b)
FJ'(I) =0 for j:mﬁ-l,...,mﬁ-mE, (25C)

where the functions [and F]-, J=1,..,m;, are convex and the functions
F]', J=my+1,...mp+mpg, are affine (linear), may be solved in NOA2 by the uncon-
strained minimization of the ezact penalty function

e(zip) = f(z) + p F (2), (26)
where p>01s a fized penalty coefficient, and the constraint violation is measured by
F,(z) = max{F(z) 0},
F(z) = max{F;(z): j=1,...,my, |Fj(z)|: j=m;+1,....;my+mpg}.
Each solution z, to the problem

minimize e(z;p) —all z in R" (27)

solves (25) if it is feasible (F(IP)SU)~ This holds if p is sufficiently large, (25) has a solu-
tion and its constraints satisfy the generalized Slater constraint qualification, i.e. for some
Is

F].(IS)<0’].:1,...,7711, F].(IS):O’ J:m1+1,.,m1+mE

The methods with a fixed penalty coefficient require the user to specify a sufficiently
large p. For well-scaled problems one may usually choose p in the interval [10,100]. If p is
too small, (27) need not be equivalent to (25), and the algorithm may diverge when the
penalty function has no finite minimum. On the other hand, too large p hinders the
minimization of the penalty function, which becomes ill-conditioned. (If p is large, the
algorithm must hug the boundary of the feasible set.)

The first method in NOA2 solves (26) by one of the algorithms for unconstrained
minimization. At the k-th iteration, a polyhedral approximation ék(-;p) to e(-;p) is con-
structed from the past linearizations of €(-;p) (see (5) and (6)). (These linearizations are
calculated as in (5) from subgradients of the functions of (25), which are evaluated by the
user’s subroutine.) The k-th search direction dF is chosen to

minimize éX(z%+d;p) + u |d[}/2 —all d (28)
(see (16)). Termination occurs if

|09 < e (1+]e(z%0)) (292)
and :

F(zF) < ep, (29b)

where €5 and €p are positive final accuracy and feasibility tolerances, provided by the
user, whereas v is a dual estimate of the predicted descent ék(:z:k+ dk;p)—e(:rk;p), which

K. Kiunel, A. Stachurski - 54 - Theoretical guide to NOA2

satisfies the optimality estimate
1) < () + w2 |2t~ ¥ — ok, (30)

where z* is a solution to (25). This method does not exploit the specific structure of
e(-p).

The second method exploits the additive structure of e(-;p) by constructing separate
polyhedral approximations fk and F* to the objective f and constraint function F. Thus
the method may use a more accurate polyhedral approximation to e(-;p)

é5(z;p) = f¥(z) + p max{F*(z),0} (31)

in the search direction finding subproblem (28), which usually enhances faster conver-
gence.

Both methods may be allowed to choose the penalty coefficient automatlcal]y during
the calculations (Kiwiel, 1985d). Then at the k-th iteration we set p= ok in (28) and (31).
The 1nitial p1 may be specified by the user. The penalty coefficient is increased only if
is an approximate solution to (27) (i.e. zF minimizes e(-;pk) to within some positive toler-
ance 0"), but it is significantly infeasible (i.e F(:t:k) is “large”). The specific rule for
updating plc

if —vf>6F or F(zk)g—vk set pFtl=pk and &kt1=¢F, (32a)
otherwise set pk+1:pk and 6k+1:cv5k, (32b)

where ¢ >1 and ¢ E(O 1) are parameters that increase the penalty and decrease the accu-
racy tolerance of unconstrained minimization 5k 5l—|v1| Usually one may use
P =10 cp:2 or ¢,=10, and ¢,=0.1. Larger values of ¢, and ¢, enable a faster
growth of the penalty coefficient at earller iterations, if the initial p was too small. On
the other hand, very large values of penalty coefﬁaents slow down convergence.

When employing the exact penalty methods, the user should place sensible upper
and lower bounds on all variables. If the box defined by such bounds is not too large, the
penalty coefficient will quickly reach a suitable value and then will stay constant. More-
over, box constraints ensure the existence of a solution and prevent the algorithm from
diverging.

We may add that the automatic choice of the penalty coefficient may produce a very
large value of p The methods terminate at the k-th iteration if p +1>1/£M, where €,/
is the relative machine precision. Such abnormal termination may indicate that the con-
straints are not regular (e.g. are inconsistent), or that they are ill-scaled.

In the current version of NOA2 additional general linear constraints Az<b can be
handled only by the first method that does not exploit the structure of the penalty func-
tion.

2.4. The constraint linearization method

The convex constrained problem
minimize f(z), subject F(z) <O (33)

with a convex [and a convex F satisfying the Slater condition (F(zg)<O for some zg)
may be solved in NOA2 by the constraint linearization method (Kiwiel, 1987), which is
frequently more efficient than the algorithms of the preceding section.

K. Kwwiel, A. Stachurski -55- Theoretical guide to NOA2

At the k-th iteration the algorithm uses polyhedral approximations fk and F* to f
and F in the search direction finding subproblem

minimize f*(z*+d) + u|d]?/2 (34a)
subject F¥(zF+d) <o, (34b)

where u >0 is the weight of the regularizing quadratic term. Its solution d¥is an approxi-
mate descent dlrectlon for the exact penalty function (26), provided that the penalty

parameter p= p eater than the Lagrange multiplier ﬁk of the constraint (34b). Hence
the algorithm sets p p Lif p <p 1; otherwise
p* = max {p , cppk_l}, (35)

where ¢,>1 is a user-specified parameter (usually cp:2), and pOZO. With ék(-;pk) given
by (31), the predicted descent

~k
vk = ¢ (zk+dk;pk) - e(zk;pk)
satisfies the o Etlmahty estimate (30), which justifies the termmatlon test (29). The line

search from z" along d* uses the rules of Section 2. 1, applied to €(-;p)
Subproblem (34) is solved by finding d* to

minimize [¥(z%+d) + uld]?/2 + ¢ maz {F*(z*+d),0}, (36)

where the penalty coefficient ¢ is chosen as in Section 2. (cf. (23)). Abnormal termination
with c>1/eM may indicate violation of the Slater constraint qualification, ill-scaling of
the constraints, or that the 1nfea51b111ty tolerance ey is too tight. These factors also may
enforce termination due to p >1/eM

Additional linear constraints
Az < b, zL <z< 2V
are handled by the techniques of Section 22 In this case the Slater constraint

qualification reads: F(:z:s)<0 Az <b and L <zg < zY for some Zg. Once again, we
stress that the presence of box constraints may be crucial to the algorithm’s convergence.

2.5. Feasible point methods for convex problems

The convex constrained problem (33) may be solved in NOA2 by the feasible point
method (Kiwiel, 1985a), which uses polyhedral approximations f and F* of fand F in
the search direction finding subproblem

minimize H*(z*+d) + u|d?/2 —all d, (37)

where ©>0 is a scaling parameter, whereas
8Y(z) = maz { f¥(z)-1(z*),F*(2)}

is the k-th polyhedral approximation to the improvement function
H(z;2F) =maz { f(z)—f(¥),F(2)} for all z.

T u s, 1f F (z)<0 we wish to find a feasible (ﬁk(zk+dk)<0) direction of descent
2), whereas for F(z)>0 d* should be a descent direction for F at z*
, since then we would like to decrease the constraint violation.

K. Kiunel, A. Stachursk: - 56 - Theoretical guide to NOA2

The algorithm runs in two phases. At phase I successive points z* are infeasible, and

the line search rules of Section 2.1 are applied to F. Finding a feasible z* starts phase 1I,
in which the line search rules are augmented to ensure feasibility of successive iterates. Of
course, phase I will be omitted if the initial point z! is feasible.

The algorithm requires the Slater constraint qualification (F(zg)<0 for some IS);
otherwise, it may terminate at a point z* that is an approximate minimizer of F.

The algorithm is, in general, more reliable than the exact penalty methods of Sec-
tions 2.3 and 2.4, because it does not need to choose penalty coefficients. Unfortunately,
its convergence may be slower, since it cannot approach the boundary of the feasible set

at a fast rate.

Additional linear constraints are handled as in Section 2.2.

2.6. Methods for nonconvex problems

Minimization problems with nonconvex objectives and constraints are solved in
NOA2 by natural extensions (Kiwiel, 1985a, 1985b, 1986a, 1986c) of the methods for con-
vex minimization described in the preceding sections. Except for the constraint lineariza-
tion method of Section 2.4, each method has two extensions, which differ in the treatment
of nonconvexity. The methods use either subgradient locality measures, or subgradient
deletion rules for localizing the past subgradient information. Advantages and drawbacks
of the two approaches depend on specific properties of a given problem.

For simplicity, let us consider the unconstrained problem of minimizing a locally
Lipschitz continuous function f, for which we can calculate the linearization

f(z3y) = f(y) + <gy(y),z—y>

by evaluating f and its subgradient gy at each y. At the k-th iteration, several such
linearizations computed at trial points y7,]'GJ}C, are used in the following polyhedral
approximation to f around the current iterate r

F(z)=1(z*)+ maz{—a(z*,y7) +<g (y7) o~ F>: jesE), (38)
where the subgradient locality measures
ay(zF,y?) = maz { |f(c*) - F(5,7)], vl -9} (39)

with a parameter '7%20 indicate how much the subgradient gf(y]) differs from being a
subgradient of f at z". Observe that in the convex case with ,=0 the approximation (38)
reduces to the previously used form (6) (cf. (4)). More generally, for 7,>0 the subgra-
dients with relatively large locality measures cannot be active in f in the neighborhood
of z¥. Thus even in the nonconvex case fk may be a good local approximation to f; pro-
vided that it is based on sufficiently local subgradients. This justifies the use of [~ in the

search direction finding subproblems of the preceding sections (cf. (7), (16), (19), (21),
(28), (37)).

Ideally, the value of the locality parameter -y, should reflect the degree of noncon-
vexity of f. Of course, for convex f the best value is y,=0. Larger values of v, decrease
the influence of nonlocal subgradient information on the search direction finding. This, for
instance, prevents the algorithm from concluding that zF is optimal because f* indicates
that f has no descent direction at zF. On the other hand, a large value of 7y, may cause
that after a serious step all the past subgradients will be considered as nonlocal at the
search direction finding. Then the algorithm will be forced to accumulate local

K. Kiwtel, A. Stachursk: -57- Theoretical guide to NOA2

subgradients by performing many null steps with expensive line searches.

In the strategy described so far the influence of a subgradient on fk decreases
“smoothly” when this subgradient becomes less local. More drastic is the subgradient
deletion strategy , which simply drops the nonlocal past subgradients from f In this case,
we set 7, =0 in (39) and define the locality radius

a* = max{ [ZF—y7|: jEJ}‘} (40)

of the ball a.round z* from which the past subgra.dlents were collected. As before, the
approximation f is used to generate a search direction dk. A locality reset of the approxi-
mation occurs if

|dk| < m, a*, (41)

where m, is a p051t1ve parameter. This involves dropping from J}c an index] with the
largest value of |:1: —yJ, i.e. the most nonlocal subgradient is dropped so as to decrease
the locality radius a*_ If the next dF satisfies (41), another reset is made, etc. Thus resets
decrease the locality radius until it is comparable with the length of the search direction
|a¥.

Dropping the j-th subgradient corresponds to replacing « ,y’ in (38) by a large
number. Moreover, the frequency of resets is proportional to tée value of m, in the test
(41). Therefore, our preceding remarks on the choice of 7, are relevant to t.he selection of
m,.

In practice one may use 7,=1 and m;=0.1, increasing them to v;=10 and m;=0.5
for strong nonconvexities.

Both strategies use line searches similar to that of Section 2.1. Additionally, the
k+1 k
subgradlent resetting strategy requires that a null step (r z") should produce a trial
point y 1 close to :z in the sense that |y -z | is of order a¥. Since |yk“L1 k| tk|dk|
the right stepsize tR should be sufficiently small. This can be ensured either by testing
progressively smaller initial trial stepsizes, or by introducing the direct requirement

|yk+1 _ Ikl < cg ak if zk+1:1:k,

where cd6[0.1,0.5] 1s a parameter, e.g. c4=Mm,.

References:

Clarke, F.H.(1983). Optimization and Nonsmooth Analysis. Wiley Interscience, New
York.

Kiwiel, K.C.(1985a). Methods of Descent for Nondifferentiable Optimization. Springer-
Verlag, Berlin.

Kiwiel, K.C.(1985b). A linearization algorithm for nonsmooth minimizalion. Mathemat-
ics of Operations Research 10, 185-194.

Kiwiel, K.C.(1985c). An algorithm for linearly constrained conver nondifferentiable
mintmization problems. Journal of Mathematical Analysis and Applications 105,
452-465.

Kiwiel, K.C.(1985d). An ezact penalty function algorithm for nonsmooth convez con-
strained minimization problems. IMA Journal of Numerical Analysis 5, 111-119.

K. Kwwiel, A. Stachurski -58- Theoretical guide to NOA2

Kiwiel, K.C.(1986a). An aggregate subgradient method for nonsmooth and nonconvez
mintmization. Journal of Computational and Applied Mathematics 14, 391-400.

Kiwiel, K.C.(1986b). A method for solving certain quadratic programming problems aris-
ing in nonsmooth optimization. IMA Journal of Numerical Analysis 6, 137-152.

Kiwiel, K.C.(1986c). A method of linearizations for linearly constrained nonconvez
nonsmooth minimization. Mathematical Programming 34, 175-187.

Kiwiel, K.C.(1987). A constraint linearization method for nondifferentiable convez
minitmization. Numerische Mathematik (to appear).

Lemarechal, C.(1978). Nonsmooth optimization and descent methods. Report RR-78-4,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Miffiin, R.(1982). A modification and an eztension of Lemarechal’s algorithm for
nonsmooth mintmization. Mathematical Programming Study 17, 77-90.

J. Majchrzak - 59 - Implicit Utility Function

Implicit Utility Function and Pairwise Comparisons

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences.

1. INTRODUCTION

A new approach for multicriteria decision making is briefly presented here exploiting
the pairwise comparisons of alternatives and assuming the existence of an implicit utility
function of the decision maker. We plan to extend DISCRET along this direction in the
future.

The basic problem in the area of the interactive decision support systems is the
extraction and utilization of the preferences of decision maker (DM). A rather large
number of approaches have been developed during last decade. This chapter reports some
basic ideas of a new approach, which seems to be promising because of its conceptual and
methodological simplicity. The presented approach is based on the pairwise comparisons
of alternatives and linear approximations of the DM’s utility function. Since the approach
is at an early stage of development and its several aspects still have to be investigated,
just some basic ideas and motivations will be presented.

The basic feature of the approach is that th DM is not forced to compare pairs of
alternatives which are presented to him but he chooses himself a subset of alternatives to
be evaluated. An underlying quasiconvex DM utility function is assumed.

2. MOTIVATIONS

Let us consider the following multicriteria decision making problem. A decision
maker (a person or an institution) wants to buy a new car and has some difficulties in
choosing from the variety of models available on the market. He is not an expert in cars
and he knows just a few models: his old car and those possessed by his friends and rela-
tives. So, all he is able to say about his preferences is a number of statements concerning
cars he knows, like for example:

VW Golf is preferred to Opel Kadett,
Fiat Uno is preferred to Peugeot 205, etc.

He refuses to compare cars he doesn’t know or to supply any other kind of information
about them. The reference point approach might be adopted in this case, but what if the
DM would not be satisfied with the result?

The task can be formulated as follows. A relatively small number of pairwise com-
parisons of alternatives is available. What can be said about the DM’s preferences on the
basis of this small amount of information and what can be said about the quality of that
information ? Note that a statement: "a cheap good car is preferred to an expensive bad
car” is a rather low quality information since, once price and performance have been esta-
blished as criteria, this is an obvious statement. The DM should be informed about the
quality of the alternatives evaluation he had made. Also his inconsistencies should be
discovered.

J. Majchrzak - 60 - Implicit Utility Function

3. BASIC IDEAS

Let F be the space of m criteria, A = RT' be the domination cone and let Q@ C F
be the set of feasible alternatives. We will assume that there exist an underlying implicit
quasiconvex utility function U: — R behind the DM’s preferences. The DM need not
recognize it existence; however, we will assume that whenever he decides that alternative
bEQ is preferred to alternative a€Q, it is equivalent to U(b) > U(a).

The DM’s utility function U is in general a nonlinear function of criteria. Identifying
such function usually requires large amount of data and a significant computational effort.
Therefore, keeping nonlinearity of U in mind, we shall restrict ourselves to a set of linear
approximations of U only.

Suppose that k pairs of alternatives were compared by the DM:
b, is preferred to a;, a;,b; € Q, 1 =1,....k
This set of data may be considered as a set W of k vectors in the criteria space F, point-
ing from a less preferred alternative g, to a more preferred alternative b;.
W = { w' : ‘w‘ = [a",b‘-] , a",b" € Q , i:I,...,k }
Let us also consider the set V of normalized vectors w; € W :
V= { B i=1,k)
={v: vy=7-—= t=1,..,,
U wl

Each of the vectors v; represents a direction of improvement in the space of criteria

of the function U(f). Hence, the cone C spanned by vectors v; € V is the cone of
improvement for U(f) and can be defined as:

1=k
C={Youv,: ;e R, v,€ V}
=1

The cone C* is the corresponding polar cone and can be defined as:
C*={y€F: <yv>>0, yeV, 1=12,...k}

Both cones C and C* can be expressed by their generators. The set of cone generators is
the minimal subset of vectors belonging to that cone that still span the cone. The genera-
tors of cones C and C* will be denoted by ¢ and c¢*, respectively.

C:{Ea]vc]-, a;€ R, c]-eé}

J
C*={Yeje;, aq;€R;, ¢;EC}
-

~ ~y)
where C and C” are corresponding generator sets.

Let us return to the pairwise comparisons. Since we shall consider linear approxima-
tions of the utility function, for the sake of presentation simplicity, assume that U is
linear. If the DM has decided that alternative b € Q is preferred to alternative a € Q,
then U(b) > U(a). 1t is clear that <v,u> > 0, where v = [a,b], and u is a vector nor-
mal to hyperplanes U(f) = const. Hence, the vector u is contained in cone C*.

From the above analysis it follows that an accurate determination of the vector u
normal to the hyperplanes of U will be possible only in the case when the cone C* is
spanned by a single vector (namely u). In this case the DM’s utility function (or rather
actually its linear approximation only) has been obtained and we can easily calculate the

J. Meychrzak - 61 - Implicit Utility Function

DM’s most preferred solution by minimizing U over the set Q.

In general, because of obvious reasons, the cone C will be smaller than a halfspace
and its polar cone C* will have a nonempty (relative) interior. In such a case, each of the
vectors contained in C* may appear to be the vector u. Fortunately, we can restrict our-
selves to the generators ¢* of the cone C* only. Considering each c; to be the vector u
(minimizing linear function based on ¢) one can obtain a set of g, € @Q being the linear
approximation minimizers of DM’s utility function. These elements g_. define a subset
S C @ of nondominated elements of @ in which the DM’s most preferred alternative
(minimizer of iU) is contained.

As it can be seen now, our approach does not pretend to determine the DM’s most
preferred solution exactly. It will rather tend to find a domain in which it is contained.
The more information about DM’s preferences is contained in alternatives pairwise com-
parisons supplied, the smaller this domain will be. Besides, also a good candidate for the
most preferred solution may be presented to the DM. It can be obtained a kind of average
vector for the cone C*: a sum of ¢, a sum of v;, a gravity center of v;, etc. The author’s
favorite method for the candidate selection is the calculation of the minimal (Euclidean)
norm element from the convex hull spanned by the cone C* generators ¢. This technique
based on the method of P. Wolfe [1] appeared to be very useful in our approach, serving
also for some other purposes. Let us denote the minimal norm element from the convex
hull spanned by the set V of vectors v as

z = MNECH(C*)

The minimizer of the linear function based on vector z will be chosen as the candidate for
the DM’s most preferred solution.

4. SOME DETAILS

In this chapter, we shall discuss the basic cases that can occur for different sets of
pairwise comparisons of alternatives supplied by the DM.

Case 1. Cone C is a halfspace of F and |z] = 0.

As it has been already mentioned, in this case the linear approximation of the DM’s util-
ity function is defined by the vector v normal to the halfspace spanned by C. The DM’s
most preferred solution may be found by the optimization of the linear function based on
u.

Case 2. Cone C is not a halfspace of F and || = 0.

Since the DM’s utility function is assumed to be quasiconvex, the set V of pairwise com-
parisons supplied by the DM is inconsistent. Conflicting elements should be selected from
the set V and presented to the DM. They are those elements which spann a convex hull
containing zero and hence cause ||z]] = 0. Their selection is automatic during the calcula-
tion of the element z.

Case 3. Cone C is contained in a halfspace of F, it contains the domination cone A and
Il > o.

This is the basic case. After the set of linear functions based on vectors ¢* optimization, a
subset of nondominated elements of set ¢ will be obtained. This subset is defined by the
set of linear approximation optimizers of the utility function. A candidate for the DM’s
most preferred solution will be found by optimizing over the set the linear function
based on vector z. Notice that if the number of supplied pairwise comparisons is small
(too small to spann a non-degenerate cone C), then generators of the domination cone A

J. Majchrzak -62- Implicit Utility Function

can be added to the set V.

Case 4. Cone C is contained in the domination cone A and [2]|>0. This is the case of a
low quality of information contained in pairwise comparisons of alternatives supplied by
the DM (and corresponds to statements like: “a good cheap car is preferred to an expen-
sive bad car”). The DM should be informed about this fact and perhaps he will be able to
give some more restrictive statements. If he refuses for some reasons, we cannot proceed
along the Case 3 line. However, instead of of considering the supplied information as
being of a discriminative type we can treat it as an instructive type information. Each of
the vectors vEV can be treated now as an approximation of the DM’s improvement
direction or his utility gradient approximation. Hence, we can proceed just like in Case 3,
taking the cone C instead of C* into consideration. Of course the DM should be aware of
the new interpretation of the information he has supplied.

Cases 3 and 4 can be distinguished a priori by checking whether CDA or CCA,
respectively.

5. CONCLUDING REMARKS

If the DM is able to supply a large amount of results on alternatives evaluations,
then a technique similar to one presented in [2] should be used in order to eliminate dom-
inated alternatives from further considerations. If it is not the case, the DISCRET pack-
age methodology should be applied. Actually, the presented approach is planned to be
included into the DISCRET framework.

Several aspects of the presented approach are still to be further investigated. The
main one is how to select a small sample of such alternatives that their evaluation by the
DM may result in significant improvement of an approximation of DM’s preferences.

REFERENCES

[1] P.Wolfe,”Finding the Nearest Point in a Polytope”,
Mathematical Programming, Vol.11, pp 128-149, 1975.

[2) M.Koksalan, M.H.Karwan, S.Zionts, “An Improved Method for Solving Multiple
Criteria Problems Involving Discrete Alternatives”, IEEE Transactions on Systems,
Man and Cybernetics, Vol. SMC-14, No.1, pp.2{-54, 1984.

[3] J.Majchrzak,”Methodological Guide to the Decision Support System DISCRET for
Discrete Alternatives Problems”, in this volume.

-B83-

Safety Principle in Multiobjective
Decision SupXort in the Decision Space
Defined by Availability of Resources

Henryk Gorecki, A.M. Skulimowski

Institute of Automatic Control
Academy of Mining and Metallurgy, Krakow.

ABSTRACT

We consider the situation where a decision-maker in a multicriteria optim-
ization problem must follow additional constraints in the criteria space
defined by availability of resources. The set defined by such constraints -
called demanded set - is assumed to be uncertain as a result of a priori
experts estimations. The analysis of numerous real-life situations showed
that a method of looking for a non-dominated solution on the so-called
skeleton allows to find a solution maximally safe with respect to the ran-
dom perturbations of the demanded set. We formulate a maximal safety
principle as a requirement that the expected value of distance from the
solution chosen to the boundary of the demanded set were maximal. Then
we prove that the search executed on the skeleton curve satisfies this prin-
ciple for a class of demanded sets defined by aspiration levels.

1. INTRODUCTION

The choice of a compromise solution fulfilling additional conditions with regard to
its Jocation in the criteria space is essential in numerous real-life multiple criteria optimi-
zation problems. For instance, the choice of a technological process from many variants
proposed by experts, taking into account the total cost of investment and the minimal
necessary time to start the production, is often based on the analysis of upper and lower
bounds for values of the above criteria, (Gorecki, 1981). Such bounds are usually not
strict; they are called aspiration levels and are assumed to be imposed independently by
experts or the decision-maker after the formulation of the problem, therefore serving as an
additional information for selecting the compromise solution.

The nature of aspiration levels is often uncertain and the arising set of demanded
values of criteria may be represented as random or fuzzy set. When selecting a comprom-
ise solution, the decision-maker is obliged to take into account the possibility of unex-
pected change of aspiration levels using an uncertainty handling technique. For the case
where the demanded set is defined by two aspiration levels such a method has been pro-
posed by Gorecki (1981). In his approach the search for a non-dominated solution has
been executed on a line which joins the aspiration levels, and lies inside of so-called skele-
ton of the demanded set. An outline of the skeleton method may be found in Gorecki
(1981) and Wiecek (1984). The numerical implementation of this method has then been
developed by Gorecki et al. (1982, 1985). Here, we will present some of its theoretical
foundations.

Throughout this paper we will assume that the set defined by the lower and upper
aspiration levels, called demanded set, and the attainable set of the criteria values have a

H. Goreck:, A. Skulimowsk: - 64 - Safety principle ...

non-empty intersection. Then we will analyse the problem of selecting a non-dominated
compromise solution from this intersection which is - in some sense - most reliable to the
changes of the demanded set. Namely, we look for a problem solution on a specific class of
lines called the ordinal skeleton curves of the demanded set. The solution thus obtained
will possess the property that the expected value of the distance from the boundary of the
demanded set is maximal, or equivalently, that the probability of remaining within the
demanded set — which boundary changes according to some random rules - is maximal.

In this paper we will concentrate our attention on the particular case of the criteria
space constraints, namely on the sets defined by aspiration levels of the form

Q := (¢:—0)N(g2+0) (1)

where: ¢, and ¢, are the aspiration levels for criteria, denoting the minimal admissible,
and the most desired values of the criteria, respectively, and © is the positive cone of the
partial order in the criteria space. Usually GzRﬁ, and

N_
Q= 1:]_1,‘111‘;‘12{] (2)

where ¢;=(q115---»q1n) 2nd ¢2=(G21,---,92n), 91:<¢g; for 1<i<N and the product of
intervals is understood in the Cartesian sense.

2. PROBLEM FORMULATION

Let us consider multicriteria minimization problem /MMP/
(F:U—RM)—min(0) (3)

where F=(F,,F,,...,Fy) is the vector objective function, U is a subset of the decision
space, and O is a closed, convex and pointed cone defining the partial order <g in the cri-
teria space RN We assume that the set U and the function F are convex, therefore the
attainable set F(U) is also convex.
The solution u to the problem will be called non-dominated
iff
(F(u)—8) N F(U)={F(u)} (4)

The set of non-dominated decision will be called the Pareto set and denoted by
P(U,F,B) while the corresponding set of non-dominated valuations

FP(U,0):=F(P(U,F,0)))
will be called the compromise set . We will also use the notation P(V,0):=P(V, idg,0)
whenever VCE.

Moreover, we assume that in the criteria space two points are distinguished,
91:=(411,--,41n) and ¢2:=(g21,922,--,92n) such that ¢;<gg;. The points ¢; and g3 will
be called the upper, and the lower aspiration levels for the problem (3), respectively.

The aspiration levels are set up by experts independently from the base problem for-
mulation and define so-called demanded set Q for the values of the criteria (cf. formula
(1)). We will assume that ¢, is attainable and that

P((g:—©) N F(V),0)=(q:—©) N FP(U,0) (6)

H. Gorecki, A. Skulimowsk: - 65 - Safety principle ...

On the contrary, g, is assumed to be unattainable strictly dominating point for the
attainable set F(U), i.e.

FP(U®) N (g,1+0) # ¢ (7)
and
P(qi+0) N F(U),0)=(5:+6) 1 FP(U,0) (%

(cf. Skulimowski (1986a)).

Another additional assumption which will be used at this stage of problem solution
is that there exist reasonable estimates of the scale coefficients for each scalar criteria
F,,...,Fy. This will enable us to measure the distance of the criteria inside the demanded
set basing on locally comparable units of the coordinates of the criterion function. A
method of deriving locally comparable units has been proposed by Gorecki (1981) who
used the differences between the coordinates of the barycenter of) and g, as the relative
units of criteria.

Since this kind of information imposes certain knowledge of the trade-offs between
criteria which in our model are uncertain, in the real-life applications we will repeat the
execution of the algorithm described in the following section interactively, with the
slightly varying values of the scale coefficients.

The demanded set Q plays the role of additional constraints imposed on the solution
to the MMP. At this stage we will assume that every non-dominated solution found inside
Q is admissible for the decision maker. However, the estimates of q; and g, are usually
uncertain and the satisfactory solution to the problem is the one which lies inside of the
actual demanded set @, perturbed by a random factor 7. To maximize the probability of
Uopt€ @, we will define a special class of algorithms of the line-search for a non-dominated
solution to MMP inside of Q.

3. THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE

The idea of the algorithm of finding a compromise non-dominated solution presented
below consists in replacing the original MMP (3) by a search for a non-dominated solu-
tion belonging to a curve g which lies inside the demanded set Q. If @ is defined by (1), ¢
begins at an attainable reference point g; and ends at an unattainable dominating one, g,
ie. g(0)=g¢; and g(1)=gq,. The solution thus found belongs to the intersection of
FP(U,®) and ¢*:=g¢([0;1]), and is non-dominated provided that the set FP(U,O)
divides the demanded set into two parts. The latter condition is fulfilled e.g. when F(U)
is convex and (6) is satisfied.

The algorithm of the search.

The choice of the curve g is based on the analysis of the specific properties of ele-
ments of g*. Consequently we will consider the curves which satisfy the maximal safety
principle, i.e. those for which the probability that the compromise solution chosen will
remain within the randomly perturbed demanded set is maximal.

This may be achieved by selecting the curve maximizing the mean value of distance
from the boundary of the demanded set. Considering moreover the fact that some criteria
may turn out to be redundant leads us to choosing the so-called ordinal skeleton curve
(Gorecki (1981), Wiecek {1984)) as the curve the search should be expected on.

The general algorithm of the search on a curve g may be sketched as follows:

H. Goreckt, A. Skulimowsk: - 66 - Safety principle ...

Step 0 : selection of g, the choice of the algorithm A of detection of a non-dominated
point p on g°,

fo=ay =1, ryi=1
Step 1:
fi:A(fi—l’ri——l)a

Step 2 : check whether f; is attainable; set r;:=1 if f; is attainable,

otherunse r;:=0,

Step 8-

e = | fi—=fic1 |
if T,'S ri_1 and e;<e€g
then

_ Jitfia

p: 9

stop

else 1:=1+1, goto 1.
The result of an execution of the algorithm is a non-dominated solution p. The Pareto-
optimality of p is an immediate consequence of the assumption that ¢, and g, are
separated by the non-dominated surface FP(U,®). The uniqueness is assured if g is a
linearly ordered subset of ¢ which will be assumed further on. The maximal safety of p
will be discussed in the following section.

In selecting a curve g so that safety principle is satisfied, a crucial role is played by
the norm in the criteria space since it determines the value of the distance of the solution
chosen from the exterior (or, equivalently, boundary) of @. On the other hand, choice of
distance influences the properties of the probability distribution of finding a non-
dominated point along a curve. The justification of the choice of the norms {; or [, in the
criteria space is contained in the following subsection.

The algorithm is assumed to possess the following properties
a) A(f,r)€g" whenever feg*

b) | fisa—Sfill < Ifi —fizall fori>1

c) the assumed number of iterations of A depends only on the value of ||g,—¢z] |, not
on the shape of g¢*.

To check whether a point F; belonging to g* is attainable one should examine the
existence of solutions to the equation

fi=F(u)

In convex cases this may be done as proposed by Wiecek (1984).

The value of ey must be sufficiently small to assure the accuracy of the method. The
recommended value which proved to be adequate in numerical experiments is

e0:=10"*min{p;(Q); 1<i< N}

H. Goreck:i, A. Skulimowsk: - 67 - Safety principle ...

where p;(@) is the diameter of the projection of @ on the i-th axis in the criteria space.

The choice of a distance in the criteria space
We will start this section from the following definition:
Definition 1 : A curve ¢:{0,1]— E is linearly ordered iff

for each t1,t,€[0,1]: t;<t; = g(t;)<eg(ts) (9)

where <g is the partial order in E. The set of all linearly ordered curves linking the
points z and y will be denoted by L(z,y).

Further on we will require that the following property of the line-search for a non-
dominated solution, imposed by the choice of the class searching algorithms, is satisfied.

Assumption 1 . Let T and y be two elements of the demanded set @ such that z<gy.
Then the probability of finding a non-dominated point on a linearly ordered curve con-
necting z and y is constant and does not depend on the choice of this curve.

On the other hand we may require that the search on a curve gives better results
when the curve is longer which can be formalized as
Assumption 2. The probability of detecting a non-dominated point on a curve linking two
points is proportional to the length of this curve.

Consequently, the Assumptions 1 and 2 imply that all linearly ordered curves linking
two fixed points in the criteria space should have the same length. The above require-
ments imply the limitations in the choice of the distance and the derived differential form
(element of distance) which defines the length of the curve.

It is easy to see that the following statement is true.

Proposition 1 : The Assumptions 1 and 2 are fulfilled by the length of the curve gen-
erated by the [; or [, norm, i.e. by

n
M(g):=[dz(h)= [(L |g;(t)])dt (10)
7 [0,1] i=1
where g=(gy,...,gn) is the curve considered, and z(l,) is the element of length associated
to the Ly norm. The length of g for [, norm is defined similarly to (10).
Proof of the Proposition 1 is given in Gorecki and Skulimowski (1986b), i.e. we
prove that

Jor each z,y€Q, a,beL(z,y): A (a)=X(b) (11)

Observe that only certain distances in RY satisfly the above requirement (11), e.g. it
is not fulfilled by the Euclidean distance.

The Assumptions 1 and 2, and the subsequent distance in the criteria space are in
compliance with the assumption about the class of algorithms applied for looking for a
non-dominated point on a curve, namely we will assume that these algorithms satisfy:
Assumption § . The a priori imposed maximal number of steps of an algorithm of detect-
ing a non-dominated point on a curve g connecting the elements z and y of the criteria
space does not depend on the choice of g but on the differences between coordinates of z
and y. In particular, it may be defined as

Vi— T

Sy

max) Ent () 1<t <Ny,

H. Gorecki, A. Skulimowsk: - 68 - Safety principle ...

where Ent(r), r€R, is the smallest integer exceeding r, and s;, 1<t<N, are desired
steps of quantification of criteria.

4. THE SAFETY PRINCIPLE

We will start this section with some basic definitions and properties. Let us recall
that the demanded set @ is a closed and connected subset of the criteria space such that

FP(U®O)NQ + ¢ (12)

Remark 1 : When (12) is not satisfied but @ contains some dominating points for the
attainable set then @ may be regarded as a target set and a distance scalarization tech-
nique may be applied (Skulimowski, 1985a).

Further on we will restrict our consideration to the case where the demanded set
appears as a result of upper and lower estimates for the values of the criteria.

Definition 2. The interval demanded set for the problem (3) is given by the formula
Qr:=(q,+0)N(g,—0)
where:

01542, q1 ¢ F(U), q,€F(V)

Interval demanded set in the case @::Rf may be represented as
N o
Q=11 [gi;a3]

where qi ,q; are lower and upper estimates of the i-th criterion demanded values respec-
tively.
Definition 8 . The subset S; of the interval demanded set @ defined by the formula
Sp={z€Qr: 3G,,G,, 1#;5 —facets of Q;, such that (13)
d(Z,an):d(I,Gi)Zd(Z,G:‘)}

where Q) - the boundary of Q - will be called the skeleton of Q.

Now, let C(Q) be the subset of @ consisting of points maximally distant from the
boundary of @, i.e.

C(Q):={z€Q: V yeQ,d(y,0Q<d(z,0Q)]} (14)

and let g, and g5 be two distinct elements of Q) such that ¢,<ggq,. If @ is convex then
for each element ¢ of the boundary of @ there exist a unique half-line v(q) starting in ¢
and such that the function d(e,0@Q) grows fastest on v(q) in a neighborhood of each point
belonging to v(gq). It is easy to see that v(q) links ¢ and C(Q) and it is linearly ordered.
Thus we may formulate the following

Definition 4 . The ordinal skeleton of Q) is the set
So':U(ql)UU(qZ)UC(Q)
It is evident that if @ = Qj then S,CS;.

Observe that the narrower are the experts’ estimations concerning a criterion F; the
smaller scope of decision is left to the decision-maker. Consequently, in some extreme
cases certain criteria can be regarded rather as the constraint functions. Moreover, when

H. Gorecki, A. Skulimowski -70 - Safety principle ...

Remark 2: The property (15) of the curve S can serve as a definition of the ordinal skele-
ton curve in the case when the demanded set is different from @);. The proved property
(15) of the skeleton curve is closely related to another definition of the safety of the solu-
tion admitted.

Definition 6. A non-dominated y solution to the problem (3) will be called mazimally safe
with respect to the change of bounds of Q iff for each z€ FP(U,0)

P(z€Q,)<P(yeQy) (16)

where 7 is a probability distribution in the space of closed and convex subsets of the cri-
teria space.

Now let us observe that Proposition 3 implies the following result concerning the
safety of the solution to MMP chosen on the skeleton curve S.

Theorem 1. Let X be an arbitrary subset of Q. The probability distribution 7 defining
the changes of 3@ is assumed uniform. Then the maximally safe element of X with
respect to the changes of @ belongs to S whenever SN X+0.

Corollary 2 : A maximal safe non-dominated point belongs to S or is closest to S in

F(U)NQ.

5. AN APPLICATION TO A DESIGN PROBLEM

Let us consider the problem of designing a construction lift taking into account the
set of parameters which decide about the commercial success of the product. These cri-
teria include the time of evaluation of the project F'y, the lifting capacity F';, the maximal
range of the arm F3. We assume that may exist other criteria such as reliability
coefficient F4 or the production price per unit Fs which should be simply optimized,
without paying attention to the constraints in the criteria space and are not included in
the model of preferences here presented. The total cost of design and investment may be
regarded as a constraint, together with the employment, materials and technology limita-
tions. We assume that all constraints form a set U of admissible design strategies. The
annual net income anticipated I may serve as an aggregated utility function which, how-
ever, depends on the above listed criteria in an unknown way. We can only assume that |
is monotonically depending on the measure of fulfillment of the market’s expectations
which are expressed by the set Q.

According to the preference model presented in the preceding subsections U is
defined by upper and lower limitations for the values of criteria. These parameters can
have the following practical interpretation:

F{; - the minimal time necessary to distribute an announcement about the new product
to the potential customers, also - if all or a prevailing part of lifts is to be sold to one
company - the minimal supply time required by this company;

F,, - estimated upper limit of period warranting a sufficient market’s demand, or the
maximal supply time required by the commissioning company, or the estimated time
a similar lift will be designed and offered by other producers;

F,; - minimal lifting capacity admissible for lifts of this type;

F,, - maximal reasonable lifting capacity estimated basing on the knowledge of potential
scope of applications of lifts;

H. Gorecki, A. Skulimowski -T71- ~ Safety principle ...

F3,F3, - similarly as above - the minimal admissible, and maximal reasonable values of
the range of arm.

Each criterion should be optimized inside of the bounds Fy,F;,, 1<t<3, whereas
F should be minimized, the other criteria - maximized. To treat the functions F; in an
uniform way we will instead maximize the function (—FI).

The demanded set @ can be expressed in the form
3
Q:il;[l[Fil’Fiu]

The bounds of @ are uncertain as the values of Fy; and F,,, 1<1<3 are only esti-
mates of the real user’s needs. By Theorem 1 the strategy chosen on the skeleton set S
ensures that the probability of remaining within a perturbed set @, maximal, 7 being a
random perturbation coefficient of . Roughly speaking, the better the solution chosen
fits into the set Q,, the higher is the income I, on the other hand I should be monotonic
with respect to the criteria Fj,F,,....Fy. Thus we can conclude that I should be mono-
tonically proportional to the utility function defined by the formula

G(u)=d(F(u),0Q)[)(F(u))+1y(F(x)) (17)
-where d(e,0Q) is the distance to the boundary of Q, f:(FI,F2,F3], ﬁ———(F,,,Fs) and I;

and I, are certain order representing functions defined so that the maximum of G were
non-dominated and situated within Q x R? (cf. also formula in the final subsection). Let

us note that the values of I; and I, are entirely independent if the values of F and F are
not depending on each other.

Hence it follows that the maximal safety with respect to F of a compromise solution
chosen is not conflicting with the goal of optimizing F in Qx R2. According to the results
of the preceding subsection such a compromise value of F' should be found on the skeleton
curve S.

Since we do not impose any decision choice rule for the remaining criteria F'y and Fg
we might consider two subcases:

1. F and F are independent - then we get a family of solutions of form
(Fc’f)feF"P(U,8)

where F . 1s the compromise value of F found on the skeleton curve S.

2. the values of F are uniquely determined by F - then we get a unique solution

(FF(F))-

6. FINAL REMARKS

The algorithm of solving the MMP basing on the search on the skeleton curve has
been implemented in FORTRAN and applied to solve real-life problems. The reader is
referred to Gorecki et al. (1982, 1985) for a detailed study of decision making in the
development analysis in the chemical industry.

The applications presented there show the adequacy of the decisions made via the
skeleton method. Some properties of the MMP solution choice algorithm based on apply-
ing the skeleton curve have also been discussed by Wiecek (1984). The main idea of this
algorithm is the same as in the general algorithm with the curve g replaced by the skele-
ton curve S. This algorithm can be repeated interactively, with the modified scale

H. Goreck:, A. Skulimowski -72- Safety principle ...

coefficients and the lower, and upper experts’ estimations, g, and ¢q;, respectively.

The method turned out to be useful as well in case where the existence of the inter-
section of S and the set of non-dominated points could not been taken for granted basing
on the assumptions concerning the objective F' and the feasible set U. In particular, a
heuristic version of the method could be applied to select a compromise solution in the
case of non-convex attainable set F(U) provided the decision-maker is modifying the
upper and lower estimates q; and g, in accordance with the initial information about the
location of FP(U,®) he is assumed to posses. The theoretical analysis of such a class of
methods, applying the search on the skeleton curve as a single step of the procedure, with
the demanded set systematically modified during and interactive decision-making process
challenges the perspectives of the further development of the method.

Another possibility of investigating the theoretical fundamentals of the method con-
sists in interpreting the search for a non-dominated solution on S as maximizing certain
utility function ¢ which admits its local maxima on S. In this approach ¢ can be taken
as the membership function of certain fuzzy set which describes the uncertainty of the
demanded set @. This function can have the form

.o dza) d(z,0Q)
PQ(2)= g0) max{d(y.0Q):y<ee}

It follows immediately from the above formula that ¢ g has the desired property men-
tioned above, i.e.

0<pqg(z)<1

polz)=1 & =gy,
argmaz{pg(z):z<eq } €S

and, moreover, © ¢ is order representing (Wierzbicki, 1980).

) These properties could provide for a combination of fuzzy set theory and the skele-
ton method.

REFERENCES

Gorecki H., (1981). Problem of choice of an optimal solution in a multicriteria space.
Proceedings of the 8th IFAC World Congress . Kyoto 1981; Pergamon Press, Lon-
don, Vol. 10, pp 106-110.

Gorecki, H., A.M. Skulimowski (1986a). A joint consideration of multiple reference
points in multicriteria decision-making. Found. Contr. Engrg. 11; No. 2.

Gorecki, H., A.M. Skulimowski (1986b). Group Decision-Making Maximally Safe with
Respect to the Change of Aspiration Levels. (to appear).

Gorecki, H., G. Dobrowolski, J. Kopytowski, M. Zebrowski (1982). The Quest for a
Concordance between Technologies and Resources as a Multiobjective Decision Pro-
cess. In: M. Grauer, A. Lewandowski, and A.P. Wierzbicki Eds. Multiobjective and
Stochastic Optimization, [IASA Collaborative Proc. Ser. CP-82-S12, Laxenburg,
Austria, pp 463-476.

Gorecki, H., G. Dobrowolski, T. Rys, M. Wiecek, M. Zebrowski (1985). Decision Sup-
port System Based on the Skeleton Method - the HG Package. Interactive Dectsion
Making, Proc. Sopron 1984 , pp 269-280.

H. Gorecki, A. Skulimowski -73 - Safety principle ...

Skulimowski, A.M. (1985a). Solving vector optimization problems via multilevel analysis
of foreseen consequences.
Found. of Control Engrg., 10; No. 1.

Skulimowski, A.M. (1985b). Generalized distance scalarization in Banach spaces, Rev.
Belge de Stat., Inf. Rech. Operationelle, 25, No.1 , pp 3-14.

Skulimowski, A.M. (1986). A sufficient condition for ©-optimality of distance scalarizing
procedures. To appear in: Proc. of the Int. Conference on Vector Optimization
(J.Jahn, W.Krabs (Eds.)), Darmstadt, 5-8 August 1986.

Wierzbicki, A.P. (1980). On the Use of Reference Objectives in Multicriteria Optimiza-
tion. In: W.Fandel, T.Gal (Eds.) Multiple Criteria Decision Making - Theory and
Application.

Wiecek, M. (1984). The Skeleton Method in Multicriteria Problems. Found. Contr.
Engrg., 9, No.4, pp 193-200.

M. Makowsks, J. Sosnowski -74 - HYBRID 8.01

Methodological Guide to HYBRID 3.01.:
a Mathematical Programming Package
for Multicriteria Dynamic Linear Problems

Marek Makowski and Janusz Sosnowsk:

Systems Research Institute of the Polish Academy of Sciences

1. INTRODUCTION

The purpose of this report is to provide sufficient understanding of mathematical,
methodological and theoretical foundations of the HYBRID package. Section 1 contains
executive summary, short program description and general remarks on solution tech-
niques and package implementation. Section 2 contains mathematical formulation of
various types of problems that can be solved by HYBRID. Section 3 presents methodolog-
ical problems related to solution techniques. Section 4 presents foundations of the chosen
solution technique and documents the computational algorithm. Section 5 contains short
discussion of testing examples.

1.1. Executive summary

HYBRID is a mathematical programming package which includes all the functions
necessary for the solution of linear programming problems. The current version of
HYBRID is referred to further on as HYBRID 3.01. HYBRID 3.01. may be used for both
static and dynamic LP problems (in fact also for problems with structure more general
then the classical formulation of dynamic linear problems). HYBRID 3.01. may be used
for both single- and multi-criteria problems. Since HYBRID is designed for real-life prob-
lems, it offers many options useful for diagnostic and verification of a problem being
solved.

HYBRID is a member of a decision analysis and support system DIDAS family
which is designed to support usage of multicriteria optimization tools. HYBRID can be
used by an analyst or by a team composed of a decision maker and an analyst or - on last
stage of application - by a decision maker alone. In any case we will speak further on
about a user of a HYBRID package.

HYBRID can serve as a tool which helps to choose a decision in a complex situation
in which many options may and should be examined. Such problems occur in many situa-
tions, such as problems of economic planning and analysis, many technological or
engineering design problems, problems of environmental control. To illustrate possible
range of applications, let us list problems for which the proposed approach either has been
or may be applied: planning of agriculture production policy in a decentralized economy
(both for governmental agency and for production units) [2], flood control in a watershed
[25], planning formation and utilization of water resources in an agricultural region,
scheduling irrigation, planning and design of purification plant system for water or air
pollution.

To avoid a possible misleading conclusion that the usage of HYBRID may replace a
real decision maker, we should stress that HYBRID is designed to help a decision maker
to concentrate on real decision making while HYBRID takes care on cumbersome

M. Makowski, J. Sosnowsk: -75- HYBRID 8.01

computations and provides information that serves for analysis of consequences of
different options or alternatives. A user is expected to define various alternatives or
scenarios, changing his preferences and priorities when learning about consequences of
possible decisions. This problem is shortly discussed in Section 5 and illustrated in the
tutortal example.

HYBRID could be used for that purpose as a “stand alone” package, however - after
a possible modification of a problem in an interactive way - one can also output the
MPS-format file from HYBRID to be used in other packages. The later approach can be
used also for a transformation of a multicriteria problem to an equivalent single-criteria
LP. Diagnostic functions are not performed by many other linear programming packages,
e.g., by MINOS - it is interesting to note that the authors of MINOS actually advise the
user to debug and verify the problem with another package before using MINOS.

HYBRID can be used for solving any linear programming problem but it is specially
useful for dynamic problems; this covers a wide area of applications of operation
researches. Many optimization problems in economic planning over time, production
scheduling, inventory, transportation, control dynamic systems can be formulated as
linear dynamic problems [17]. Such problems are also called multistage or staircase linear
programming problems [18],[19]. A dynamic problem can be formulated as an equivalent
large static LP and any commercial LP code may be used for solving it, if the problem
corresponds to single objective optimization. For multicriteria problems, a preprocessor
may be used for transformation of that problem to an equivalent LP one. The system
DIDAS, described in other papers in this volume, is a package that is composed of prepro-
cessor and postprocessor for handling transformation of multicriteria problem and pro-
cessing results respectively [20]. Those pre- and postprocesors are linked with an LP pack-
age. HYBRID 3.01. has generally similar structure . The main difference is that - instead
of an LP package - another algorithm is applied, which exploits the dynamics of a prob-
lem. Similarly as some other systems of DIDAS family, HYBRID has the advantage of
handling a problem as a dynamic one which results in an easy way of formulation of cri-
teria and of interpretation of results, since one may refer to one variable trajectory con-
trary to a “static” formulation of dynamic problems which involves separate variables for
each time period.

HYBRID has been designed more for real-world problems that require scenario
analysis than for academic (e.g., randomly generated) problems. Thus HYBRID is
oriented towards an interactive mode of operation in which a sequence of problems is to
be solved under varying conditions (e.g., different objective functions, reference points,
values of constraints or bounds). Criteria for multiobjective problems may be easily
defined and updated with the help of the package.

The HYBRID 3.01 is available in two versions: one for mainframes and one for PC.
Each version require a FORTRAN compiler that accepts full standard of FORTRAN-77.
Implementation on a particular computer requires only changes in a routine that reads
system date and time.

The package has been tested on VAX 11/780 (for f77 compiler under Berkeley UNIX
4.2) and on a PC compatible with PC IBM/XT. The minimal configuration of PC con-
sists of 512kB RAM. Intel coprocessor 8087 is strongly recommended (in fact required by
some FORTRAN compilers).

M. Makowsk:, J. Sosnowski -76 - HYBRID 3.01

1.2. SHORT PROGRAM DESCRIPTION

1.2.1. Preparation of a problem formulation
A problem to be solved should be defined as a mathematical programming model.

Firstly, a set of variables that sufficiently describe the problem - for the sake of the
desired analysis - should be selected. It is desired - however not necessary - to define the
problem in such a way as to possibly exploit the problem structure (further on referred to
as a dynamic problem). Secondly, a set of constraints which defines a set of admissible
(i.e. acceptable or recognized as feasible by a decision maker) solutions should be defined.
Finally a set of criteria which could serve for a selection of a solution should be defined.

The formal definition of criteria can be performed in HYBRID in an easy way. How-
ever, it should be stressed that any definition of a complex problem usually requires
cooperation of a specialist - who knowns the nature and background of the problem to be
solved - with a system analyst who can advise on a suitable way of formal definition. It
should be clearly pointed out that a proper definition can substantially improve the use of
any computational technique. For small problems used for illustration of the method, it is
fairly easy to define a problem. But for real life problems, this stage requires a close
cooperation between a decision maker and a team of analysts as well as a substantial
amount of time and resources.

For real life problems, the following steps are recommended:
1. Mathematical formulation of the problem being solved should be defined.

2. A data base for the problem should be created. This may be done on PC with a help
of a suitable commercial product (such as Framework, dBase, Symphony, Lotus 1-2-
3). Original data should be placed in this data base. A user need not worry about
possible range of quantities (which usually has an impact on computational prob-
lems) because HY BRID provides automatic scaling of the problem.

3. Verification of the data base and of the model formal definition should be performed.

The corresponding MPS standard file should be created. This may be done by a spe-
cialized problem generator (easily written by a system analyst), or an universal gen-
erator such as GEMINI (developed at IIASA) or GAMMA (part of FMPS package
on UNIVAC) or by any appropriate utility program of data base software. We
strongly discourage the user from creating the MPS file with help of a standard text
editor.

1.2.2. Problem verification

This stage serves for the verification of model definition which is crucial for real
application of any mathematical programming approach.

First stage consists of preprocessing the MPS file by HYBRID, which offers many
options helpful for that task. HYBRID points to possible sources of inconsistency in model
definition. Since this information is self-explaining, details are not discussed here. It is
also advisable to examine the model printout by rows and by columns, which helps to ver-
ify model specification and may help in tracing possible errors in MPS file generation.

Second stage consist of solving optimization problems for selected criteria which
helps in the analysis of consistency of solutions. For larger problems a design and applica-
tion of a problem oriented report writer is recommended. HYBRID optionally generates a
"user__file” for that purpose which contains all information necessary for the analysis of a
solution.

M. Makowsk:r, J. Sosnowski -77 - HYBRID 3.01

After an analysis of a solution, a user may change any of the following parameters:
values of coefficients, values of constraints and also any parameters discussed in next sec-
tion. This may be done with help of the interactive procedure which instead of MPS file
uses “communication region” that contains problem formulation processed by HYBRID.
Therefore, a user needs no longer to care about original MPS file which has the backup
function only.

1.2.3. Problem analysis

Problem analysis consist of consecutive stages:
. analysis of obtained solution
. modification of the problem

. solution of modified problem.

Analysis of a solution consists of following steps (some of which are optional):

1. The user should examine of values of selected criteria. Since the solution obtained in
HYBRID is Pareto optimal, the user should not expect improvement in any criteria
without worsening some other criteria. But values of each criterion can be mutually
compared. It is also possible to compute the best solutions for each criterion
separately. A point (in criteria space) composed of best solutions is called the "utopia”
point (since usually it is not attainable). HYBRID provides also a point composed of
worst values for each criterion. This point is called "nadir” point. Such information
help to define a reference point (desired values of criteria) because it is reasonable to
expect values of each criterion to lie between utopia and nadir point.

2. The user may also at this stage make modifications to the original problem without
involving the MPS file.

3. For dynamic problems, HYBRID allows also for examination (in also a problem
oriented report writer.

Modzification of the problem may be done in two ways:

1. At this stage, the user can modify the formulation of the original problem. But main
activity in this stage is expected after the model is well defined and verified and no
longer requires changes in parameters that define the set of admissible (acceptable)
solutions. It should be stressed, that each change of this set usually results in change
of the set of Pareto-optimal solutions and both utopia and nadir points should be
computed again.

2. If the values of all constraints and coefficients that define the admissible set of solu-
tions are accepted, the user should start with computations of utopia point. This can
be easily done in an interactive way. After utopia and corresponding nadir points
are obtained (which requires n solutions of the problem, where n is the number of
criteria defined) the user can also interactively change any number of the following
parameters that define the selection of an efficient solution to the multicriteria prob-
lem:

- Reference point (i.e. desired values for each criterion) might be changed. This
point may be attainable or non-attainable (cf sec.2.4.).

M. Makowsk:, J. Sesnowsk: -78- HYBRID 3.01

- Weights attached to each criterion can be modified.
- Reference trajectories in dynamic case can be changed as reference points.
- Regularization parameters in selection function can be adjusted.

3. Additionally, the user can temporarily remove a criterion (or a number of criteria)
from analysis. This option results in the computation of a Pareto optimal point in
respect to remaining “active” criteria but values of criteria that are not active are
also available for review.

Solution of a problem. The problem defined by a user (after possible modification) is
transformed by HYBRID to an equivalent LP problem which is solved without interac-
tion of a user (an experienced user may however have an access to the information that
characterizes the optimization run).

1.2.4. Remarks relevant to dynamic problems.

HYBRID allows for solving both static and dynamic LP problems. Static problems
can be interpreted as problems for which a specific structure is not recognized nor
exploited. But many real life problems have specific structure which - if exploited - can
result not only in much faster execution of optimization runs but also remarkably help in
problem definition and interpretation of results.

Numerous problems have dynamic nature and it is natural to take advantage of its
proper definition. HYBRID offers many options for dynamic problems, such as:

1. In many situations, the user may deal with generic names of variables. A generic
name consists of 6 first characters of a name while 2 last characters corresponds to
the period of time. Therefore, the user may for example refer to the entire trajectory
(by generic name) or to value of a variable for a specific time period {by full name).
Such approach corresponds to a widely used practice of generating trajectories for
dynamic problems.

2. The user may select any of 4 types of criteria that correspond to practical applica-
tions. Those can be defined for each time period (together with additional “global”
conditions), but this requires rather large effort. Therefore, for dynamic problems,
criteria are specified just by the type of criterion and the generic name of the
corresponding variable. Types of criteria are discussed in detaiis later.

3. A problem can be declared as a dynamic one by the definition of periods of time. For
a dynamic problem, additional rules must be observed. These rules correspond to the
way in which the MPS file has to be sorted and to the way in which names for rows
and columns are selected. These rules follow a widely accepted standard of genera-
tion of dynamic problems. The formulation of a dynamic problem, which is accepted
by HYBRID is actually an extension of the classical formulation of dynamic problem
(cf Section 2.2.}. In this formulation a model may contain also a group of constraints
that do not follow the standard of state equations.

1.2.5. General description of the package and data structure

The package is constructed in modules to provide a reasonably high level of fiexibil-
ity and efficiency. This is crucial for a rational use of computer resources and for planned
extensions of the package and possible modification of the algorithm (see Section 5).

The package consists of three subpackages:

M. Makowski, J. Sosnowsk: -79- HYBRID 3.01

° Preprocessor that serves to process data, enables a modification of the problem, per-
forms diagnostics and may supply information useful for verification of a problem.
The preprocessor also transforms a multicriteria problem to a parametric single cri-
teria optimization problem, helps in the interactive change of parameters, etc.

J Optimization package called solver of a relevant optimization problem (either static
or dynamic)

. Postprocessor that can provide results in the standard MPS format and can also gen-
erate the "user file” which contains all information needed for the analysis of a solu-
tion; the later option makes it easier to link HYBRID to a specialized report-writer
or a graphic package.

All three subpackages are linked by communication region, that contains all data
packed in an efficient way. From the user point of view, HYBRID 3.01 is still one package
that may be easily used for different purposes chosen via specification file.

The chosen method of allocating storage in the memory takes maximal advantage of
the available computer memory and of the features of typical real-world problems. In
general, the matrix of constraints is large and sparse, while the number of all essential,
non-zero coefficients that take different numerical values is much smaller than the number
of all non-zero coefficients. A super-sparse-matrix technique is therefore applied to store
the data that define the problem to be solved. This involves the construction of a table of
these essential coefficients. In addition, all indices and logical variables are packed so that
one four-byte word is being used for four indices (2 logical and 2 integer). All data is
packed in blank common to minimize the storage area used.

Special commands of HYBRID support model verification and problem modification.
This is necessary to facilitate scenario analysis and to reduce the problems caused by
inappropriate scaling (cf sec. 3.8.).

The data format for the input of MPS file and the output of LP results follows stan-
dards adopted by most commercial mathematical programming systems (cf e.g. [24]).

1.2.6. Outline of the solution technique

HYBRID uses a particular implementation of the Lagrange multiplier method for
solving linear programming problems. General linear constraints are included within an
augmented Lagrangian function. The LP problem is solved by minimizing a sequence of
quadratic functions subject to simple constraints (lower and upper bounds). This minimi-
zation is achieved by the use of a method which combines the conjugate gradient method
and an active constraints strategy.

In recent years many methods oriented for solving dynamic linear problems (DLP)
have been developed. Most of those methods consists of adaptation of the simplex method
for problems with a special structure of constraints. In HYBRID, a different approach is
applied. A DLP, which should be defined together with a state equation, is solved
through the use of adjoint equations and by reduction of gradients to control subspaces
(more exactly, to a subspace of independent variables). The method exploits the sparse-
ness of the matrix structure. The simple constraints (lower and upper bounds for
non-slack variables) for control variables are not violated during optimization and the
resulting sequence of multipliers is feasible for the dual problem. The global constraints
(i.e constraints other then those defined as simple constraints) may be violated, however,
and therefore the algorithm can be started from any point that satisfies the simple con-
straints.

M. Makowsk:, J. Sosnowsk: - 80 - HYBRID 8.01

The solution technique can be also used to solve single-criteria quadratic problems
with virtually no changes in the algorithm. However, a routine to input and handle the
relevant data and a corresponding standard for data input have yet to be designed and
implemented. The solution method for multi-criteria quadratic problems requires
modification of the algorithm. However the necessary modifications will be based on
HYBRID 3.01 (cf sec.7 for details).

In order to provide general information about capabilities of HYBRID, the main
options are listed below. HYBRID offers the following features:

° Input of data and the formulation of an LP problem follow the MPS standard.
Additional rules (that concern only sequencing of some rows and columns) should be
observed in order to take advantage of the structure of a dynamic problem. An
experienced user may speed up computations by setting certain options and/or

parameters (cf the HYBRID User Manual).

. Solution is available in the standard MPS format and optionally in a user file which
contains all data that might be useful for postoptimal analysis and reports.

. A main storage area, called the communication region, contains all the information
corresponding to a run. The communication region is stored on disk in certain situa-
tions to allow continuation of computations from failed (or interrupted) runs or to
run a modified problem while using previously obtained information without the
necessity of reading and processing the MPS input file.

. The multicriteria problem is formulated and solved as a sequence of parametric
optimization problems modified in interactive way upon analysis of previous results.

° For static or dynamic problem, the solution technique can be chosen.

. The problem can be modified at any stage of its solution (i.e., by changing the
matrix of coefficients, introducing or altering right-hand sides, ranges or bounds).

. A special problem scaling is implemented (as described by the authors in [4] and
briefly discussed in Section 3.8).

. A comprehensive diagnostics is implemented, including the checking of parallel rows,
the detection of columns and rows which are empty or contain only one entry, the
splitting of columns, the recognition of inconsistencies in right-hand sides, ranges
and bounds, and various other features that are useful in debugging the problem for-
mulation.

) The package supports a display of a matrix by rows (printing the nonzero elements
and names of the corresponding columns, right-hand sides and ranges), as well as a
display of a matrix by columns (analogous to displaying by rows).

) A check of the feasibility of a problem prior to its optimization is optionally per-
formed.

° The optimization problem solver uses a regularization of the problem (see Section

3.7).

. More detailed information for an infeasible or unbounded problem is optionally pro-
vided by the package.

1.3. Remarks on implementation

HYBRID 3.01 is an extended version of HYBRID 2.1 documented in {27|. Therefore
there are only small changes in the methodological guide in comparison to the methodol-
ogy presented in [27], because the solution techniques are basically the same. However,
there are some important methodological innovations:

M. Makowski, J. Sosnowsk: - 81- HYBRID 8.01

) A modification of the problem formulation and of the solution technique as well as
resulting changes in the algorithm allow for solving dynamic problems with delays in
both control and state variables.

) Instead of state equations for a dynamic problem, the user may specify state inequal-
ities.
. The optimization algorithm has been improved by an automatic evaluation of some

parameters, a different technical implementation of scaling, some changes in control
flow, which results in its faster execution.

. The code has been modified in a way that allows for implementation on a personal
computer (compatible with IBM PC/XT). A new approach to data handling pro-
vides for easier use of the package.

. Diagnostics have been improved and several observed bugs have been removed.

M. Makowski, J. Sosnowsk: - 82 - HYBRID 8.01

2. STATEMENT OF OPTIMIZATION PROBLEMS

2.1. Formulation of an LP problem

We will consider a linear programming problem (P) in the following standard form
(see, e.g., [9]):

min cz (2.1)
b—r <Az <b (2.2)
[<z<u (2.3)

where z,c,l,u € R" , b,r € R™ and A is an m X n matrix.

The constraints are divided into two groups: general constraints (2.2) and simple
constraints (2.3). In the input data file (MPS file) the vectors b is called RHS and the vec-
tor r - RANGES. The vector ! and u are called LOWER and UPPER BOUNDS, respec-
tively. Obviously, some of bounds and/or ranges may have an infinite value. Therefore
HYBRID may be used for solving any LP problem formulated in the way accepted by
most of commercial packages.

2.2. Classical formulation of a Dynamic LP problem (CDLP)

Before discussing a formulation of a dynamic problem that can be solved by
HYBRID 3.01., let us first consider a classical formulation of a dynamic linear program-
ming problem (CDLP) (cf {17]) in the following form:

Find a control trajectory
t = (Ug,e.,ur)
and a state trajectory
T = (Zq,,Z7)
satisfying the state equations with initial condition zg

T, = Ap_134_1 + Byuy — ¢ (2.4)

and constraints

e,<u,<f, t=1,.,T (2.6)
Frzp<dy (2.7)
which minimize the performance index
T
Y (a2, + byuy) (2.8)
t=1

where:

- t=1,...T denote periods of time

M. Makowskt, J. Sosnowsk: - 83 - HYBRID 38.01

- state variables z,, control variables u,, both for each period, are elements of Eucli-
dian spaces of appropriate dimensions;

- matrices A,;,B;,D,;,F, are assumed to be given,

- RHS vectors ¢, and d,, as well as range vector r, and bounds for control variables
e; and f, are given,

- initial condition z; is given.
The above given formulation has been chosen for the purpose of simplification of

presentation only. Actually, the following modifications are accepted:

1. Instead of inequality (2.5), equality constraints can be used;

2. Since no constraints of bounds type (2.6) are allowed for state variables z, such con-
straints may be specified in columns section of MPS file, thus formally are handied
as inequality constraints of type (2.5);

3. Performance index (goal function) can either be specified as single objective or will
be replaced by a dummy goal function that is defined by the transformation of a
multicriteria problem to a parametric LP problem;

The structure of an CDLP problem (formulated above as in [17]) may be illustrated
by the following diagram (example for T = 3, uy,u,,u3,20,21,I9,Z3 are vectors, slack
variables are not shown)

ug Uy Usg Ty Ty Ty T rhs var.
B, 0 0 Ay, -1 0 0 cq state eq.
0 B, 0 0 Ay, -1 0 cy state eq.
0 0 By 0 0 Ay =1 3 state eq.
D, 0 0 Fy O 0 0 dg constr.
0 Dy 0 0 F, 0 0 dq constr.
0 0 D; 0 0 Fy 0 d, constr.
0 0 0 0 0 0 Fq ds final state
by by bs 0 ay ay G3 @ — goal

where [is identity matrix and O is a matrix composed of zero elements

2.3. Formulation of a Dynamic Problem (DLP)

The formulation of CDLP has been chosen for the purpose of simplification of
presentation only. Actually HYBRID 3.01 is capable to solve problems of more general
class, which will be referred to as Dynamic Linear Programming problems (DLP).
Namely, the matrices B = diag(B;), D = diag(D;), F = diag(F;) need no longer be
block diagonal matrices. Also matrices below identity matrices need no longer have any
specific structure. Therefore the CDLP is a specific example of DLP. One of main gen-
eralizations — from a practical point of view - is that a problem with delays for control
variables (which is not CDLP-class problem) may be solved by HYBRID. In fact,
HYBRID accepts also problems with delays for both state and control variables, provided

M. Makowsk:, J. Sosnowski -84 - HYBRID 8.01

that state variables for periods “before” initial state do not enter state equations. A
choice of criteria for CDLP—class problem is also limited in comparison with that for DLP
(cf sec.4.3).

All variables are divided into two groups: decision variables u and state variables z;,
the latter are specified for each period of time

Find a trajectory z; and decision variables u such that both:

state equations

-1
_Htxt + Z At—-l,izi + Btu:ct, t:].,,T (29)
1=0

with given initial condition z

and constraints

T
d-r< Y Fzr,+Du<d (2.10)
t=0
e<u<f (2.11)
are satisfied and the following function is minimized:
T
Yoz, + bu (2.12)
t=1

The following two symbols can be used in the specification file for definition of DLP:
NT - number of periods (stands for T in the above formulation)
NSTV - number of state variables in each period (the dimension of vectors z;)

The user can define state inequalities instead of state equations (2.9). The slack
variables for such inequalities are generated by HYBRID. For the sake of the presenta-
tion simplicity only the state equation will be considered further on.

The structure of an DLP problem may be illustrated by the following diagram:
(corresponding to an example analogous to the above example for CDLP)

u Ty Ty Ty T3 rhs var.
By, Ay -H; 0 0 ¢y state eq.
B, A, A —-H, O Cq state eq.
By Ay Ay Aqg —Hy ¢4 state eq.
D F, F F, Fq d constr.
b 0 ay ay as — goal

where H, is diagonal matrix and 0 is a matrix composed of zero elements

M. Makowsk:, J. Sesnowsk: - 85- HYBRID 3.01

2.4. Multicriteria optimization

2.4.1. General remarks

The specification of a single-objective function, which adequately reflects preferences
of a model user is perhaps the major unresolved difficulty in solving many practical prob-
lems as a relevant optimization problem. This issue is even more difficult in the case of
collective decision making. Multiobjective optimization approaches make this problem
less difficult, particularly if they allow for an interactive redefinition of the problem.

The method adopted in HYBRID 3.01 is the reference point approach introduced by
Wierzbicki [21]. Since the method has been described in a series of papers and reports and
has been applied to DIDAS (cf [1],[20]), we give only general outline of the approach
applied. This approach may be summarized in form of following stages:

1. The user of the model (referred to further as the decision maker — DM) specifies a
number of criteria (objectives). For static LP problem a criterion is a linear combi-
nation of variables. For DLP problems one may also use other types of criteria (cf
sec. 2.4.2). The definition of criteria in HYBRID can be performed in an easy way
described in the User Guide to HYBRID.

2. The DM specifies an aspiration level § = {(71,....,¢7NC}, where g; are desired values
for each criterion. Aspiration level is called also a reference point.

3. The problem is transformed into an auxiliary parametric LP (or DLP) problem. Its
solution gives a Pareto-optimal point. If specified aspiration level § is not attain-
able, then the Pareto-optimal point is the nearest (in the sense of a Chebyshev
weighted norm) to the aspiration level. If the aspiration level is attainable, then the
Pareto-optimal point is uniformly better then §. Properties of the Pareto-optimal
point depend on the localization of the reference point (aspiration level) and on
weights associated with criteria.

4. The DM explores various Pareto-optimal points by changing either the aspiration
level § or/and weights attached to criteria or/and other parameters related to the
definition of the multicriteria problem.

5. The procedure described in points 3 and 4 is repeated until satisfactory solution is
found.

To give more formal presentation, let us introduce following notation:
NC is the number of criteria

g; is the i-th criterion

g; is the aspiration level for i-th criterion

w,; is a weight associated with i-th criterion (whereas the user specifies its absolute
value which is internally changed to negative depending on the type of criteria -
cf sec. 2.4.3).

€,, I1s a given non-negative parameter.

A Pareto-optimal solution can be found by the minimization of the achievement
scalarizing function in the form

NC
i:rll,l.&.L.),(NC(w‘*(qi—qi)) " Em*igwi faT e

This form of achievement function is a slight modification of a form suggested by
A.Lewandowski [20] and by A.Wierzbicki [23]. Note that for €,,=0 only weakly Pareto-

M. Makowski, J. Sosnowski - 86 - HYBRID 38.01

optimal points can be guaranteed as minimal points of this function. Therefore, the use of
very small €,, will result in practice (except of situations in which reference point has
some specific properties) in almost weakly Pareto-optimal solution. On the other hand,
too big values of ¢€,, could drastically change properties associated with the first part of
the scalarizing function.

2.4.2. Types of criteria

A user may define any number of criteria. To facilitate the definition 6 types of cri-
teria are available and a user is requested to declare chosen types of criteria before their
actual definition. Two types of criteria are simple linear combination of variables and
those criteria may be used for both static and dynamic problems. Four other types of cri-
teria correspond to various possible performance indices often used for dynamic problems.
Since the latter criteria implicitly relate to the dynamic nature of the problem, they may
be used only for dynamic problems.

For the sake of simplicity, only the variables of the type z; (which otherwise is used
in this paper to distinguish a state variable in DLP) are used in the following formulae,
but in fact one can use in the definition of criteria both control and/or state variables.
The only exception is the type DER of criteria, which may be defined by state variables
only. Note that z; = {z;,}, t=1,..T.

An k-th criterion g is defined in one of following ways, for static and dynamic LP:

Type MIN

T n

G = Y. Y, 64T — min
t=11=1

where n is number of (state and control) variables, T is number of periods; T=1 is
assumed for static LP.

Type MAX

T
G =)
t=1

M=

a"tzit — Imax
1=1

and exclusively for dynamic LP:

Type SUP .
= max (z, — T,;) — min
Qx t:l,..T(12 st)

where 1z, is a selected state or control variable, Z; - its reference trajectory

Type INF

= min (z; — T,) — max
Gk t:l,..T(it it)

Type FOL

M. Makowsk:, J. Sosnowski - 87 - HYBRID 38.01

% = t__f_nlaXT(abS(-'fit — Z)) — min

yoo

Type DER

= max (abs(z, — z, —min
T t:l,..T((i it-1))

which applies only to state variables.

2.4.3. Transformation of multicriteria problem to an auxiliary LP

The transformation is done by HYBRID 3.01, therefore its description here has only
informative purpose. This description may be useful in case of using the MPS file (option-
ally created after modifications and transformation of a problem) as input for another LP
package.

Following notation is used throughout this subsection:
v - name of the auxiliary variable v
w, - weight coefficient for i-th criterion
cn, - name of i-th criterion
chy - string (2-characters) which identifies t-th period of time
g, - reference point (aspiration level) for i-th criterion
g; - linear combination of variables that defines a criterion of the type MAX or MIN
¢ ‘. delimiters of a string

T - number of time periods

T; = {:l:jt},tZI,...,T is a variable that defines a criterion of a type SUP,INF FOL or
DER.

Transformation will be discussed for each type of criteria:

Type : MIN

additional row (with name which is concatenation of following three strings:
‘<‘eng, ‘- - - is generated in form:

—v+ WS wg;
Type : MAX

is transformed in the way similar to type MIN, with additional (internal, for compu-
tations only) change of the signs of w; to negative.

Type : SUP

additional T rows (with names which are concatenations of strings
‘<, eny, ¢ chy, where t=1,...,T) are generated in forms:

—v + w,-:cjtg wifjt + w;q;

Type : INF

M. Makowskt, J. Sosnowski - 88 - HYBRID 3.01

is transformed in the way similar to type SUP, with additional (internal, for compu-
tations only) change of the signs of w; to negative.

Type : FOL

additional T columns (with names which are concatenations of strings
‘“+¢ eng, ¢, ch,, where t=1,...,T) are generated ; in the following formulae this
name is replaced by C’QL

additional T columns (with names which are concatenations of strings
€ 4 [4

—¢ eny, “¢, chy, where t=1,...,T) are generated ; in the following formulae this
name is replaced by ¢

additional T rows (with names which are concatenation of strings

‘= en; ., chy, where t=1,...,T) are generated in form :

+ _ - _ — _ =
Cit Ci¢ — Tjp = — Tt
additional T rows (with names which are concatenations of strings
‘<t eny, ¢, chy, where t=1,...,T) are generated in the form:
—v + wpr(ef +)<,

Type : DER

additional 2x T columns are generated in the same way as described for a criterion
of the type FOL;

additional T rows (with names with are concatenations of strings

‘=* cn, ‘¢, chy, where t=1,...,T) are generated in form :

1)
+ _ .- _pJ PO

ci — ¢ —Blu—(Ayy — V71 = —cy,

where A;_;, By, ¢j; are parameters of the state equations (cf sec.3.3.3), I is the
identity matrix and B and (A,_;—I) denote the j-th row of matrices B, and
(At_l——f) respectively; :
additional T rows (with names which are concatenations of strings
‘<t eny, “¢, chy) are generated in form :

—v + wir(ef + e)<y,

Auxiliary goal function, which is to be minimized, is generated in the following form:

v+ em*(Pwig + Zt(z_wjxjt + Eklwk(cléf + ¢g)))
']

where summation is done over corresponding sets of respective criteria, i.e. indices 1i,
j, k correspond to criteria of type: MIN or MAX, SUP or INF and FOL or DER,
respectively; €, is given parameter.

The name of auxiliary variable v is ’..dummy.’, whereas the name of auxiliary goal
function i1s .dummy..’.

Value of €,, may be changed by the command MEPS in a routine for modification of
multicriteria parameters.

M. Makowski, J. Sosnowski -89 - HYBRID 8.01

3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROB-
LEMS

3.1. General remarks

The most popular methods for solving linear programming problems are based on
the simplex algorithm. However, a number of other iterative non-simplex approaches
have recently been developed [5-7]. HYBRID belongs to this group of non-simplex
methods. The solution technique is based on the minimization of an augmented Lagran-
gian penalty function using a modification of the conjugate gradient method. The
Lagrange multipliers are updated using a modified version of the multiplier method [8]
(see Sections 3.2 and 3.4).

This method is useful not only for linear programming problems but also for other
purposes, as described in Section 1.2. In addition, the method may be used to solve prob-
lems with non-unique solutions (as a result of regularization - see Section 3.7).

The following notation will be used:
a, denotes the t-th row of matrix A
z; denotes the j-th component of vector z
|z|| denotes the Euclidian norm of vector z

(#), denotes the vector composed of the non-negative elements of vector u (where nega-
tive elements are replaced by zeros)

AT denotes transposition of matrix A

3.2. The multiplier method

We shall first explain how the multiplier method may be applied directly to LP
problems.

Consider the problem (PO), which is equivalent to the problem (P):
min cz
Bz < d (PO)

where d € RP, B is a p X n matrix, and m < p < 2(m+n). To apply the multiplier
method to this problem we proceed as follows

Select initial multipliers y e g, ﬁt/ =0)and p € R ,p > 0. Then for £k =0,1,...,

determine successive values of zk where

¥+l = argmin L(:z:,yk)

T

and

4 = (5 plBryer—d). (31
where

L(z,y*) = k Bz—d)), |? - Iv*IP)/(2 3.2)

(z,4%) = ez + ((y* + p(Bz—d)) . |I* = ly" I} /(20) (3.

until a stopping criterion is satisfied.

The method has the following basic properties:

M. Makowsks, J. Sosnowsk: -90 - HYBRID 3.01

A piecewise quadratic differentiable convex function is minimized at each iteration.
The algorithm terminates in a finite number of iterations for any positive p.

There exists a constant 7 such that for any p > p the algorithm terminates in the
second iteration. '

Note that it is assumed above that the function L(-,yk) is minimized exactly and that the
value of the penalty parameter p is fixed. Less accurate minimization may be performed
provided that certain conditions are fulfilled (see, e.g., [7,8]). For numerical reasons, a
non-decreasing sequence of penalty parameters {pk} is generally used instead of a fixed p.

3.3. The conjugate gradient method for the minimization of an augmented
Lagrangian penalty function

The augmented Lagrangian function for a given vector of multipliers y will be called
the augmented Lagrangian penalty function [22|. For minimization of that function the
conjugate gradient method has been modified to take advantage of the formulation of the
problem. The method may be understood as an modification of the techniques developed
by Polyak [10], O’Leary [11] and Hestenes 12| for minimization of a quadratic function on
an interval using the conjugate gradient method.

The problem (P) may be reformulated as follows:
min cz
Az + z=1>
[<z<u (PS)
0<Lz<r

where z € R™ are slack variables.

Formulation (PS) has a number of advantages over the initial formulation (PO):

1. The dimension of matrix A in (PS) is usually much smaller than that of matrix B in
(PO).

2. The problem is one of minimization of a quadratic function in (PS), and of minimi-
zation of a piecewise quadratic in (PO).

3. Some computations only have to be performed for subsets of variables. Note that
slack variables are introduced only for ease of interpretation and do not have to be
computed.

In (PS) the augmented Lagrangian is defined by
L(z,2,9) = ez + (ly + p(Az+2=0) P — Iy I)/(20) . (3.3)

We shall first discuss the problem of minimizing L(z,z,y) for given y,p> 0, subject
to lower and upper bounds for £ and z. Let us consider the following augmented Lagran-
gian penalty function

F(z,2) = (c¢/p)z+ (ly/o + Az — b+ z [P — ly/o [P)/2. (3.4)
The gradient of F is defined by

oF _ T(,_

ax - C/p + A (Z g)

oF

_—y —
0z g

M. Makowski, J. Sesnowski -91- HYBRID 3.01

where
g=—y/p— Az + b

From the Kuhn-Tucker optimality condition, the following relations hold for the
minimum point (z*,2%):

?9{: 20 if 27 =1, 86{: <0 if of = u; ,

%i: >0 if 25=0, ai: <0 if 27 =71,
and

?95; =0 if [j <z <u

%I::O if 0<z'<r; .

)

For any given point such that { < z < u it is possible to determine slack variables
0 < 2 < r in such a way that the optimality conditions with respect to z are obeyed.
Variables z are defined by

2z =41 if g;>r, (0F/02 <0) (3.5)
g if ;,>¢,>0 (3F/32 =0)

We shall use the following notation and definitions. The vector of variables z with
indices that belong to a set J will be denoted by :z:J, and analogous notation will be used
for variables g. We shall let ¢ denote minus the gradient of the Lagrangian penalty func-
tion reduced to z-space (¢ = —(98F/dz)). The following sets of indices are defined for a
given point z:

The set of indices I of violated constraints, i.e.,
I={i:g;>2r}U{i:g, <0} .

I is the complement of I, i.e.,
I={12,...m}\I .

The set of indices I can be also interpreted as a set of active simple constraints for z. The
set of indices J of variables that should be equal to either the upper or the lower bound,
le.,

J:{j::cj:lj and qJ-SO}U{j::z:jzuj and quO} .

J is the complement of J, i.e.,

M. Makowski, J. Sosnowsk: -92- HYBRID 3.01

For the sake of illustration the matrix A may be schematically split up in the fol-
lowing three ways (see the Figure below): first according to active rows, second according
to basic columns and third with illustrate the part of the matrix A for which augmented
Lagrangian penalty function is computed. The contents of the matrix A§ (for which the

augmented Lagrangian penalty function is computed) changes along with computations.

. . J J

I Al A} | Al
- Ay | A5) -

T Al Ay Al

m

In essence, the augmented Lagrangian penalty function is minimized using the conju-
gate gradient method with the following modifications:

1. During the minimization process T and z satisfy simple constraints and 2 enters the
augmented Lagrangian in the form defined by (3.5).

2. The conjugate gradient routine is run until no new constraint becomes active, i.e.,
neither set I nor set J increases in size. If this occurs, the computed step length is
shortened to reach the next constraint, the corresponding set (I or J) is enlarged
and the conjugate gradient routine is re-entered with the direction set equal to
minus the gradient.

3. Sets J and [are defined before entering the procedure discussed in point 2 and may
be only enlarged before the minimum is found. When the minimum with respect to
the variables with indices in sets J and [has been found, sets J and [are redefined.

4. Minimization is performed subject only to those components of variables £ whose
indices belong to set J, i.e., variables that are not currently equal to a bound value.

5. Minimization is performed subject only to those components of variables z whose
indices do not belong to set I, i.e., slack variables that correspond to non-active sim-
ple constraints for 2. Note that, formally, this requires only the use of different for-
mulae for z. In actual fact it is sufficient to know only the set I, which defines the
minimized quadratic function.

M. Makowskt, J. Sosnowsk: -93 - HYBRID 8.01

4. SOLUTION TECHNIQUE

4.1. Algorithm for minimization of augmented Lagrangian

We may now present the algorithm for minimization of the augmented Lagrangian
penalty function in a more formal way. The algorithm consists of the following steps:

1. For given y and p>0 choose a point £ such that [< z < u
2. Compute g = —y/p —Az + b
3. Determine sets [and I

I={is g > r}Uli g; < 0},

I={1,.,m}\I

4. Redefine gas follows:

g;—r;, if gg—r. >0

%= g otherwise

5. Compute the minus gradient:
g =—c/p+(4")Tq’

6. Determine sets J and J
J = {j: z; = l; and ¢;<O} J{J: z; = u; and ¢,;>0}
J={1,.,n}\J

7. If q; =0 for all § € J then z is a minimum point of the augmented Lagrangian
penalty function

8. Set pj = qJ—
Compute
s = Ajpj
h=lg' I
d =|s" |
a(l) = h/d

Note that (1) is the conjugate gradient step length in direction p’
10. Find the step length that would violate the nearest non-active constraint, i.e., for
el
a(2) = milr(l {9,/5,}, K ={i:1€l;5,>0}
1C

o(3) = min {(g; =r)/5;}, K ={i:icls<0}

M. Makowskt, J. Sosnowsk: -94 - HYBRID 3.01

11. Find the step length that would enable a variable to reach a bound, i.e.,
a(4) = r],réi;} (i—z)/p;, K={j:jeJ, p;<0}

a(5) = rjréllré (vj—z;)/p;, K={J: JEJ, p;>0}

12. Determine step length (¢ = min (aft)). If X=min(a(2},(3)) add the row
t=1,...., -
index for which this condition holds to set I and remove that index from set I. If
Ot=min(a(4),a(5)) add the column index for which this condition holds to set J
and remove that index from set J.
J.

13 Compute the new point 7 : = + apJ and the minus gradient at that point:

g = g, — Qs

¢/ = (A))Tg' = c'/p

14. If qj = 0. go to step 2
15. If (X=a(1) continue with the conjugate gradient step, i.e.
B=1lg" /b
p! = ¢’ + gp’
and go to step 9
16. Go to step 8
Note that the condition q‘7 = 0 is in practice replaced by ||q‘7| | < ek/p The value of

ek may be quite large in the first few iterations; it then decreases as the number of itera-
tlons increases.

4.2 Adaptation of the multiplier method

Let the violation of i-th constraint in a point ¥ be defined in the following way:

v,k = max{a‘-:z’c - b, — al-Ik + b, —r;,0}
and ||vk|| denotes the norm of violated constraints. The multiplier method will be
presented in algorithmic form.

1. Compute an initial vector of multipliers on the basis of the particular option chosen
(i.e., either y0 =0 or y0 corresponding to the constraints violated at starting point
z)

2. Find z%¥*! which minimizes the augmented Lagrangian penalty function (see Section
3.3.) with accuracy €. 1t is assumed that

€€ : = min (&, [o*)

where the sequence 0. In addition, €,,; > e > €gs Where €
assumed minimum and maximum accuracy, respectively.

mi> €Emg 15 the

3. If fIJ | < ¢* and the last step has been a multiplier update go to step 6 (where
lg° | is the norm of the gradient of the augmented Lagrangian penalty function).

M. Makowski, J. Sosnowski -95- HYBRID 8.01

10.

11.

If ||QJ||S€k and the last iteration has been a multiplier update set

p" . = min (p P ,pm) (where P pis the assumed maximum value of the penalty
parameter and p, is assumed to be constant)
If pF = p,, then set ¢* . = max (ekes,em) where €, and €, are assumed parame-

ters.
If plc = p,, and ek = €,,, 80 to step 6. Otherwise go to step 2

Compute new multipliers

y,l~c + pl°(¢1,~.'::lc+1 - b)) if yF + ,0'°(¢1,~.'::lc+1 -b)>0
yf = (uF 4 oM (et — b+) B vR o+ (e — b 4) <0
0 otherwise
If |Lyk+1‘— y,c | > €q4 then set pk'H = min (pkps,pm), set

ekl €, k:=k + 1 and go to step 2

Check the feasibility of the current point. If it is feasible, ||vk| |< FEAS, minimize
the augmented Lagrangian penalty function with the vector of multipliers fixed at

y,c+l and with accuracy ek+1, and then stop

If the point tested at step 8 was infeasible and pk<pm then set

¥t = min (pkps,pm), set k : = k 4+ 1 and go to step 2

If step 9 was omitted, check the feasibility of the problem by minimizing the square
Euclidian norm of the violated constraints. If the problem is infeasible, then stop.

Take the feasible solution found in step 10 as the current point, set k: =k + 1,

update e® = max (ekes,em) and go to step 2.

The list of parameters which are referred to in the User Guide to HYBRID and their

relative symbols used above is as follows (index k is omitted):

RO - p, ROST - p, , ROMX - p,... , EPS - ¢, EPSS - ¢, EPSM - €., EPSD - ¢,.

4.3. Solution technique for DLP

We will not repeat reasoning given in the first part of sec. 2.3. Instead, let us point

out basic differences between the algorithms for static LP and DLP:

1.

Minimization is reduced to a subspace of decision variables. Gradient of Lagrangian
penalty function is computed for variables that belong to a subspace of decision vari-
ables. This (together with arguments already presented in sec. 3.3.) shows advan-
tages due to the use of dynamic structure of DLP problem in comparison with
presentation of such a problem as a large LP.

The structure of matrices B,,.....,Br and F\,...,Fr has no impact for the algorithm
nor affects the technique of storage of data, because super-sparse technique is applied
(cf sec.1.4.). It should be also pointed out that the method of transforming a mul-
ticriteria problem to a parametric LP one introduces constraints (cf sec.2.4.3.) that -
for the proposed (cf sec.2.4.2.) types of criteria - do not fit to the staircase structure
of CDLP (cf [17]). Therefore, any technique that would exploit the staircase struc-
ture of DLP would also imply a reduction of a number of criteria types. The alterna-
tive 1s then to treat a problem as a large LP static one or to apply a technique that
does not exploit the classical DLP structure.

M. Makowski, J. Sosnowski - 96 - HYBRID 3.01

State equations are solved {for given decision variables u) recursively and are
fulfilled in any stage of computations. Therefore any single constraints for state vari-
ables have to be treated as general constraints and included into the matrix. Gra-
dient need not to be computed for those variables, but state equation is solved twice
(for state variables and variations).

A conjugate trajectory ¥ is computed from conjugate equation and has an interpre-
tation of dual variables for state equations. No other variables associated with those
rows (defined in sec. 3.3, i.e. Lagrange multipliers, shifted constraints g) are com-
puted for state equations rows.

The general structure of the algorithm for DLP is similar to that presented in sec.
3.4. To sum up basic differences one may observe that

e we consider a problem that is equivalent to a static LP but reduced to the sub-
space of decision variables and is solved in the way similar to that described in
sec. 3.3. and 3.4.

e state equations are solved for control variables and for variations

e a conjugate trajectory V¥ is computed.

4.4, Algorithm for minimization of augmented Lagrangian for DLP

Now we may present the algorithm for minimization of the augmented Lagrangian

function for DLP in a more formal way. In each iteration of multiplier method, the fol-
lowing optimization problem is solved: minimize the augmented Lagrangian penalty func-

tion
T
F(Ivu’z) = E (a’t/p)xt + (b/p)u +
t=1
T 2 2
+ (ly/p + X Fyzy + Du — d + o° — |ly/of*) /2.
t=0 .
subject to
t—1
—HtIt+ Z At_l’ix" + Btu = Ct t:1, ..T
1=0

with a given initial condition zy and

e<u<f
0<2<r

where z is a vector of slack variables, which - as discussed in sec. 3.3. - are not used in the
algorithm. The algorithm consists of the following steps:

1.
2.

For given y and p choose a point u such that e < u < f

Solve the state equation

t—1
Htxt = Z At_l,’l" + Btu - Ct t:].,...,T
1=0

with given initial condition z

M. Makowski, J. Sosnowski - 97 - HYBRID 8.01

10.

11.

Compute shifted constraints for constraints (2.10.)
g=-y/p - ZT]FtIt—D“+ d
t=0
and determine sets I, T
I={t:g;,> r}J{s: 9; <O}
while T is the complement of .

Redefine g as follows :

9 - = g; otherwise

Find the conjugate trajectory by solving backwards the conjugate equations

t—1
T
1—=1
with boundary condition
- FI T I _
r=(Fr)"¢" —ag/p
Compute the minus gradient reduced to subspace of decision variables

T
g=-b/p+ (DNT¢' + ¥ B,
t=1

Determine sets J and J
J={j:u;=¢ and ¢;<O} J{s: u; = J; and ¢;>0}

while J is the complement of J

If 9; = 0 for all j € J then u is a minimum point of the augmented Lagrangian
penalty function

Set p‘] = qJ
Solve state equation in variations
Ut - At__IUt_l + BtJPJ t:].,--.,T

with boundary condition g = 0

Compute
- = T
s=D'pl + Y Fyoy
t=0
=g’ I?
v =" |?

M. Makowsk:, J. Sosnowsk: - 98 - HYBRID 8.01

12.

13.

14.

15.

16.
17.

18.
19.

20.

Note that (1) is the conjugate gradient step length in direction pJ

Find the step length that would violate the nearest non-violated constraint, i.e.,

a(2) = I'Iéllr(! {9,/s5;3, K={ix eI and s; > 0}

a(3) = I’Iéllr(! {(g; —r;)/s;}, K={izie T and s <0}

Find the step length that would enable a variable to reach a bound, i.e.,
o(4) = min {(ej~u;)/p; }, K={5:j€J and p; <0}
]

of5) = T;g;} {(/;=v;)/p;}, K={jj€ J and p; > 0}

Determine step length @ = min (e(t))
1=1,...,5

If & = min(a(2),x(3)) add the index for which this condition holds to set I and

remove that index from set I . If @ = min(a(4),a(5)) add the index for which
this condition holds to set J and remove that index from set J.

Compute :
uj: = uj + O:pj
T =1 + oy
g9 =g — Qs

For the new gI solve the conjugate equation (as in step 5)

Compute the minus gradient :

- T
¢) = -bJ/P + (D§)T91 + 3 (Bt)jT‘I’t
t=1

If qj =0, then go to 2
If =0c(1) continue with the conjugate gradient step, i.e.
J 2
B =l 17/h
pl = ¢’ + Bp’
and go to step 10

Go to step 9

Note that the condition ¢’ = 0. is in practice replaced by "q‘] | < ¢F The value of ¢

may be quite large in the first few iterations; it then decreases as the number of iterations
increases.

4.5. Regularization

It is possible that a linear programming problem may have nonunique optimal solu-

tions. Although this is theoretically rare, in practice many problems actually have a large
set of widely varying basic solutions for which the objective values differ very little [7]. In

M. Makowskz, J. Sosnowsk: -99- HYBRID 8.01

some cases, the simplex algorithm will stop when a basic solution is recognized as optimal
for a given set of tolerances. For problems with a nonunique optimum, the first optimal
solution found is accepted, so that one may not even be aware of the non-uniqueness of
the solution reported as optimal.

Thus we are faced with the problem of choosing an optimal (or, in most cases, to be
more accurate, a suboptimal) solution that possesses certain additional properties
required by the user. This problem may be overcome by applying an approach called reg-
ularization. Regularization (Tikhonov’s type) is a means of finding the optimal solution
with either minimum Euclidian norm or minimum distance from a given reference point.
The second of these options has not yet been implemented; the first may be activated by a
REGZERO statement in the specification file (see the User Guide to HYBRID).

The minimum norm solution is obtained by carrying out a sequence of minimizations
of regularized augmented Lagrangians rather than one minimization of an “ordinary” aug-
mented Lagrangian [16]. Thus minimization of L(-,yk) in problem (PO) is replaced by

£t = argmin L(:c,yk) + |z "2/(2'7k)
¥
where

o0
n* =00, (/N2 <o, F = min(n*, n,,n,)
1=1

Mo, N and 1., are given parameters.

The list of parameters which are referred to in the User Manual to HYBRID and
their relative symbols used above is as follows :

RETA - 15, RSETA - n,, RMETA -7,

4.6. Scaling

It is generally agreed that the choice of an appropriate scaling of a problem being
solved can be a critical issue for numerical stability. There are obviously two approaches
to deal with that problem. First, suggested by Tomlin ([15]), assume that an experienced
model builder, who uses sensible units may avoid unnecessarily large or small matrix ele-
ments. This is true, but requires a lot of time consuming preparations, which are reliable
source of frustrating bugs. Therefore, we have followed the second approach, suggested by
Curtis and Reid ([14]) for solving the scaling problem. This approach is nowadays widely
accepted (e.g. the new version of MINOS has also scaling option, which has removed
many problems typical for older versions of MINOS).

Our approach is discussed in details in [4], therefore only short description follows.
For the sake of simplicity we consider a problem of scaling on an example of a problem in
a form

Az =) (3.6.)
d<z<q

where ACR™xn
According to Curtis and Reid (1972) matrix A is considered as well-scaled if

ST Y (log(abs(ay)))?<v (3.7)

1=1 jeJ;

M. Makowski, J. Sosnowski - 100 - HYBRID 8.01

for some acceptable v. J; are sets of indices of columns with non-zero elements in i-th
row.

Therefore, instead of solving a badly conditioned problem a of type (3.6.), one can
solve an equivalent problem in form

(RAC)y=Rb
cld<y<clyg
z=Cy

Here R = diag(ry,....,r,,) and C = diag(cy,....,¢,)) are two diagonal matrices with posi-
tive components. In other words, an equivalent problem is formed by multiplying i-th row

by r,; and j-th column by c;-

The problem of scaling boils down to finding coefficients r; and c_ such that

J
m
DY (log(ric]~abs(a,~]-)]]2—>min
i:leJ,-

It 1s easy to observe that the above stated problem has no unique solution (although
the optimally scaled matrix may be unique). Therefore we minimize the following perfor-
mance index:

m
E E (log(r,-c]-abs(a,-]')])2 +ﬁ* E (log(abs(r,-rhs,-)))2 + (3’8')
1=1y€J; ek
7Y (log(abs(c]-bnd,-]))2—+min
1€l
where rhs and bnd are non-zero elements of RHS and bounds, respectively, sets of indices

K and L contain indices of rows with non-zero rhs and columns with non-zero bounds,
respectively.

For the numerical reasons the base of logarithms is 2 and obtained coefficients are
rounded to nearest integer number.

For this formulation of the scaling problem, it was possible to design a specialized
algorithm based on conjugate gradient method. Since an excessive accuracy is not
required, the scaling algorithm is very efficient (usually it takes less then 10 iterations
regardless of dimension of a problem). Therefore the scaling option (which is the default)
should not be suppressed except if special requirements apply. The values of performance
indices (3.7.) and (3.8.) are displayed both before and (if active) after scaling.

Usually there is no need to change default parameters. Should a change of parame-
ters be desired, it may be done by entering respective values in specification file (SBETA
stands for # and SETA stands for). Two stopping criteria are used, which may be con-
trolled by parameters SEPS and SEP1. Let v* be a value of the performance index (3.8.).
The scaling routine is ended, if vk/vk_lz SEPS or if the norm of gradient is less then
SEP1. In addition the number of scaling iterations in constrained by ITSCAL (cf the User
Guide to HYBRID).

Scaling coefficients are displayed as additional column in MPS-type output of
results. This has only informative purpose, since all results are rescaled internally.

M. Makowski, J. Sosnowsk: - 101 - HYBRID 3.01

5. TESTING EXAMPLES

HYBRID has been tested on number of examples. For the sake of illustration of the
package capabilities 3 known examples have been selected: two dynamic and one static.

5.1. Econometric growth model (Manne)
This model is a linear multicriteria version of Manne’s model described in [26].
The variables are the following:

t time period, t = 1,2,...,T

¢; consumption

I; investment,

K; capital in time period t.

T
max Y, B¢, (MAX)
t=1
max K (MAX)
min max |¢,—¢, FOL
t:1,2,...,7J t t| ()

The state equation:
K=K, +1I;, t=12,.,T
with K given.
Linear constraints for t = 1,2,...,T
ctli<ay 1Ky
K,>Ky+1,
Bounds:
C>Co
1,<(1.04)!1,

Parameters:
8,=0.95!, b=0.25, g=0.03, c,=0.65,
1,=0.16, K,=3.0, at=a(1+g)(1—b)t
where a=(Cy+1;)/ K.

In the table 1 the test examples which refers to the modified Manne problem are
denoted by MannT, where T corresponds to a number of periods.

5.2. Flood control problem.

The problem is a model (cf [25]) of the water system which consists of three general
purpose reservoirs supplying water to the main river reach. The goal of the system
dispatcher is to operate the reservoirs in such a way that the flood peak on the main river
do not coincide. 1t is assumed that inflow forecast for each reservoir is known.

The model consists of water balance equations for selected points and for each time
period. The capacities of reservoirs are also constraint. Various types of criteria are

M. Makowsk:, J. Sosnowski - 102 - HYBRID 8.01

examined:
FOL - corresponds to following given trajectories of water flow in selected points,

DER - corresponds to minimization water flow changes (in consecutive time periods) in
selected points,

MAX - corresponds to minimization of maximal (over time) flow in selected points.

In the table 1 the test examples which refers to the multicriteria flood control prob-
lems are denoted by FloodT, where T corresponds to a number of periods.

5.3. Full dense LP problem.

This problem is a modification of the Mangasarian example [5] and has been gen-
erated for verification of the package for fully dense LP problems. Computations are per-
formed for one criterion and elements of matrix are equal to 1.0 with exception of diago-
nal elements for which values of 10.0 are selected.

In the table 1 the test examples which refers to the modified Mangasarian example
are denoted by MangT, where T corresponds to a dimension of LP matrix.

5.4. Discussion of test results.

Testing problems have been solved on a PC compatible with IBM/AT with 80287
coprocessor. The algorithm was implemented with double precision arithmetic (the
machine precision about 2.22e-16). The default values of all parameters (this includes ini-
tial multipliers equal to zero) were assumed in all runs.

The results of some tests are summarized in the following table.

Problem Number Rows Cols Dens. Time Mult. Outer Total

of crit. (%] (min.) iter. iter. steps
Manne05 3 29 27 12 04 2 13 24
Mannel0O 3 54 52 7 0.6 2 23 28
Manne20 2 103 102 3 3.0 2 41 72
Manne30 2 153 152 2 5.0 2 64 112
Manne40 2 203 202 2 9.5 2 84 154
Flood03 6 55 55 6 5.0 10 87 230
Flood05 3 77 79 4 4.5 2 36 172
Mang20 1 20 20 100 2.0 2 4 49
Mang30 1 30 30 100 5.0 2 4 76

Numbers of rows and columns correspond to a single criterion LP problem, which were
obtained by transformation of relevant multicriteria problems. The numbers of outer
iterations and of total steps correspond to execution of step 2 and step 3 of the algorithm
(cf sec. 4.1.).

Due to super sparse matrix technique applied for storing data, rather long computa-
tion time is required for fully dense matrix problems. For dynamic sparse problems better
performance of the algorithm was observed. One should also note that the Flood problem
is badly conditioned and is reported by many LP packages as infeasible.

M. Makowski, J. Sosnowski - 103 - HYBRID 38.01

6. CONCLUSIONS

First version of HYBRID was made operational in 1982. This version is documented
in [13]. Then we had improved and extended the package for dynamic linear program-
ming problems (DLP) and for multicriteria problems (both static and dynamic). The
later version in documented in [27].

HYBRID 3.01 is still a ptlot-type of software that requires a lot of testing. It is true
that for some problems HYBRID 3.01 performs worse than the commercial packages
FMPS and MINOS but for some other problems HYBRID performs better, especially if a
problem is defined as a dynamic one. If HYBRID is used not only for one run but for
scenario analysis (solving the problem with change of multicriteria parameters, matrix
elements, RHS etc.) its performance is much better. The reason being so is not only due
to the fact that MPS file is processed only in a first run but mainly because in consecutive
runs (which uses communication region) only update of affected coefficients is made (the
problem is generated only for the first run) and because a solution is usually obtained
much faster then for the first run (HYBRID — contrary to simplex approach - uses the
same solution technique for any possible modification of a problem being solved).

HYBRID provides very useful diagnostics for any LP problem and therefore is also
useful for a problem verification. It could be used for that purpose as “stand alone” pack-
age, and - also after possible modification of a problem in interactive way - one may out-
put MPS-format file to be used by other packages. The same approach may be used for
transformation of multicriteria problem to equivalent single-criteria LP.

The further development of HYBRID will proceed in following directions:

1. Modification of the way in which the user communicates with the package. The
modification will exploit capabilities of PC compatible with IBM/XT and will remark-
ably ease the use of the package.

2. Extensions of capabilities of HYBRID by introduction of new options for definition and
handling of multicriteria problem (new types and more flexible definition of criteria,
introduction of both aspiration and reservation levels, data base for previous runs etc).

3. Further improvement of the algorithm and its computer code (automatic evaluation of
some parameters, experiments with possible modification of the algorithm) that will
result in faster execution.

We hope that, despite the reservations outlined above, HYBRID 3.01. will eventu-
ally be a useful tool with many practical applications. We would be grateful for any criti-
cisms and comments that would help us to improve the package.

M. Makowskti, J. Sosnowsk: - 104 - HYBRID 3.01

7. REFERENCES

1.

10.

11.

12.

13

14

15

16

17
18

19

M. Kallio, A. Lewandowski and W. Orchard-Hays. An implementation of the refer-
ence point approach for multiobjective optimization. WP-80-35. International Insti-
tute for Applied Systems Analysis, Laxenburg, Austria, 1980.

M. Makowski and J. Sosnowski. A decision support system for planning and control-
ling agricultural production with a decentralized management structure. In: Plural
Rationality and Interactive Decision Processes. Eds. M. Grauer, M. Thompson, A.P.
Wierzbicki. Springer — Verlag, 1985.

A.P. Wierzbicki. A methodological guide to multiobjective decision making. WP-
79-122. International Institute for Applied Systems Analysis, Laxenburg, Austria,
1979.

M. Makowski and J. Sosnowski. Implementation of an algorithm for scaling
matrices and other programs useful in linear programming. CP-81-37. International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1981.

O.L. Mangasarian. Iterative solution of linear programs. SIAM Journal for Numeri-
cal Analysis, 18(4): 606-614, 1981.

B.T. Polyak and N.V. Tretiyakov. An iterative method for linear programming and
its economic interpretation. FEconomic and Mathematical Methods, 8: 740-751, 1972
(in Russian).

J.S. Sosnowski. Linear programming via augmented Lagrangian and conjugate gra-
dient methods. In S. Walukiewicz and A.P. Wierzbicki (Eds.), Methods of
Mathematical Programming, Proceedings of a 1977 Conference in Zakopane. Polish
Scientific Publishers, Warsaw, 1981.

D.P. Bertsekas. Multiplier methods: a survey. Automatica, 12: 133-145, 1976.

B.A. Murtagh and M.A. Sanders. MINOS - A large-scale nonlinear programming
system (for problems with linear constraints). User guide. Technical Report, Sys-
tems Optimization Laboratory, Stanford University, 1977.

B.T. Polyak. The conjugate gradient method in extremal problems. Computational
Mathematics and Mathematical Physics, 9: 94-112, 1969.

D.P. O’Leary. A generalized conjugate gradient algorithm for solving a class of qua-
dratic problems. Linear Algebra and its Applications, 34: 371-399, 1980.

M.R. Hestenes. Conjugate Gradient Methods in Optimization. Springer Verlag, Ber-
lin, 1980.

M.Makowski, J. Sosnowski Hybrid: A mathematical programming package | IIASA,
1984, CP-84-9.

A.R. Curtis, J.K. Reid On the automatic scaling of matrices for Gausstan elimina-
tion , Journal of Mathematics and its applications , 1972, no 10, pp.118-124.

J.A.Tomlin, On scaling linear programming problems , Mathematical Programming
Study 4. North Holland Publishing Company, 1972, Amsterdam

J.S. Sosnowski, Dynamic optimization of multisectorial linear production model.
Systems Research Institute, Warsaw, Ph.D. Thesis, (in Polish), 1978.

A. Propoi, Problems of Dynamic Linear Programming, IIASA, RM-76-78

R. Fourer, Solving staircase linear programs by the simplex method, 1,2. Mathemat-
ical Programming 23 (1982) 274-314, 25(1983) 3.01-292

J.K.Ho, A.S. Hanne, Nested decomposition for dynamic models. Mathematical Pro-
gramming 6 (1974) 121-140

M. Makowsks, J. Sosnowsk: - 105 - HYBRID 8.01

20

21

22

23

24

25

26

27

A. Lewandowski and Grauer M., The reference point optimization approach -
methods of efficient implementation. CP-12-S12, IIASA Collaborative Proceedings
Series: Multiobjective and Stochastic Optimization Proceedings of an IIASA Task
Force Meeting

A.Wierzbicki ,A mathematical basis for satisficing decision making, WP-80-90,
IIASA, 1980).

R.Flecher, Practical methods of optimization, vol II, Constrained optimization,
Wiley, New York, 1981

A.Wierzbicki, On the use of penalty functions in multi- objective optimization, Insti-
tute of Automatics, Technical University of Warsaw, 1978.

B.A. Murtagh, Advanced Linear Programming: Computation and Practice, Mc
Graw-Hill, New York, 1982.

Kreglewski, T., Lewandowski, A. and Rogowski, T. (1984) Dynamic Extension of
the DIDAS system and its Application in Flood Control. In: Plural Rationality
and Interactive Decision Processes. Eds. M. Grauer, M. Thompson, A.P. Wierzbicki.
Springer — Verlag, 1985.

Murtagh B.A. and Sanders M.A., A projected Lagrangian algorithm and its imple-
mentation for sparse nonlinear constraints, Mathematical Programming Study 16
(1982), 84-117

Makowski M., Sosnowski J., HYBRID 2.1: A mathematical programming package
for multicriteria dynamic problems. In: A.Lewandowski, A. Wierzbicki eds., Theory
Software and Testing Examples for Decision Support Systems, IIASA, Laxenburg,
September 1985.

T. Rogowsk: et al. - 106 - IAC-DIDAS-L

JAC-DIDAS-L
A Dynamic Interactive Decision Analysis and Support System
for Multicriteria Analysis of Linear and Dynamicl},mear odels
on Professional Microcomputers

Tadeusz Rogowski, Jerzy Sobczyk, Andrzej P. Wierzbick:

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents introductory documentation and a theoretical manual
for two, professional microcomputer based, versions of decision analysis
and support systems of DIDAS family. These versions have been developed
in 1986, in the Institute of Automatic Control, Warsaw University of
Technology, under a contracted study agreement with the Systems and
Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis, and differ from previous DIDAS versions in several aspects.
Both are implemented on professional microcomputers compatible with
IBM-PC-XT (with a hard disk, Hercules or color graphics card and, prefer-
ably, a co-processor) and both support graphical representation of results
in interactive analysis. However, the first version: TAC-DIDAS-L1, uses a
linear programming solver written in FORTRAN, which results in rela-
tively fast execution of optimization runs during interactive analysis but
requires the preparation of the substantive model being analysed in the
system, in the MPS-format. The second version: IAC-DIDAS-L2, is writ-
ten in PASCAL and supports also an interactive definition and edition of
the substantive model by the user, in a user-friendly format of a
spreadsheet. Both versions are designed to work with substantive models
of linear programming and dynamic linear programming type, that is, to
perform and to graphically represent the results of interactive multiobjec-
tive analysis of such models.

A.INTRODUCTORY DOCUMENTATION

Al. EXECUTIVE SUMMARY

In many situations of complex decisions involving economic, environmental and
technological decisions as well as in the cases of complex engineering design, the decision
maker needs help of an analyst, or a team of analysts, to learn about possible decision
options and their predicted results. The team of analysts frequently summarizes its
knowledge in the form of a substantive model of the decision problem that can be formal-
1zed mathematically and computerized.

While such a model can never be perfect and cannot encompass all aspects of the
problem, it is often a great help to the decision maker in the process of learning about
novel aspects of the decision situation and of gaining expertise in handling problems of a
given class. Even if the final decisions are typically made judgmentally - that is, are based
on holistic, deliberative assessments of all available information without performing a cal-
culative analysis of this information, see S.Dreyfus (1985) - the interaction of a decision

T. Rogowsk: et al. - 107 - IAC-DIDAS-L

maker with the team of analysts and the substantive models prepared by them can be of
great value.

In organizing such interaction, many techniques of optimization, multicriteria deci-
sion analysis and other tools of mathematical programming can be used. To be of value
for a holistically thinking decision maker, however, all such techniques must be used as
supporting tools of interactive analysis rather than as means for proposing unique optimal
decisions and thus replacing the decision maker. The decision analysis and support sys-
tems of DIDAS family - that is, Dynamic Interactive Decision Analysis and Support sys-
tems, see e.g. Lewandowski et al. (1984) - are especially designed to support interactive
work with a substantive model while using multicriteria optimization tools, but they
stress the learning aspects of such work, such as the right of a decision maker to change
his priorities and preferences when learning new facts. DIDAS systems can be used either
by analysts who want to analyse their substantive models, or by teams of analysts and
decision makers, or even by decision makers working alone with a previously defined sub-
stantive model; in any case, we shall speak further about the user of the system.

There are several classes of substantive models that require special technical means
of support. The IAC-DIDAS-L1 and -L2 versions are designed to support models of linear
programming type; specifically, multiobjective linear programming models, often with
dynamic structure. If a model has a multiobjective dynamic structure, the objectives
(called also criteria, outcomes, results, etc.) of decisions form trajectories, which might be
interpreted as graphs of the dependence of an objective on time or another variable of
similar type; these trajectories are evaluated by the user as a whole, complex objective.
The decisions can also have the form of trajectories.

Models of multiobjective linear programming type specify, firstly, the bounds on
admissible decision variables, in the form of linear equations or inequalities called con-
straints (including,for models of dynamic type, also special constraints called state equa-
tions of the model) and, secondly, the attainable decision outcomes, in the form of linear
equations for outcome variables among which the user can select his objectives. Actually,
the distinction between constraints and outcome variables is not necessarily sharp (if the
value of a constraint can be changed, it becomes an outcome variable) and the user might
select his objectives also among constraint variables.

There are many examples of decision problems that can be analysed by means of a
substantive model of multiobjective linear programming type; for example, DIDAS-type
systems with multiobjective, dynamic linear programming models have been used in plan-
ning energy policies (see Strubegger, 1985, Messner, 1985), agricultural policies (see
Makowski and Sosnowski, 1983) as well as in analysing various environmental or techno-
logical problems (see Kaden, 1985, Gorecki et al., 1983). As demonstrative or tutorial
examples, IAC-DIDAS-L1 and -L2 use a multiobjective linear programming model for a
problem of diet composition (see Appendix), where the decision variables correspond to
various dishes and the constraints or outcomes correspond to the amount of vitamins,
minerals, the cost and subjectively defined taste and stimulus of the diet; another example
might be a dynamic multiobjective linear programming model for flood control with
several tributaries of a river and several reservoirs, where the decisions are time sequences
- trajectories - of outflows of reservoirs and the outcomes are trajectories of flows in vari-
ous points on the river. The user can also define substantive models of multiobjective
(possibly dynamic) linear programming type for his own problems and analyse them with
the help of IAC-DIDAS-L1 or -L2.

A typical procedure of working with a DIDAS-type system consists of several phases.

T. Rogowsk: et al. - 108 - IAC-DIDAS-L

In the first phase, a user - typically, an analyst - defines the substantive model and
edits it on the computer. In earlier versions of DIDAS-type systems (which were mostly
implemented on bigger mainframe computers) this phase has not been explicitly sup-
ported in the system and the user had to separately prepare (define and edit) his model in
the MPS format. This is a typical format for single-objective linear programming prob-
lems and can be also used for multiobjective problems; however, working with MPS for-
mat requires some knowledge of linear programming and thus limits the use of such
DIDAS systems to rather experienced analysts. On the other hand, there are many exist-
ing linear programming models in the MPS format that could be analysed multiobjec-
tively with the help of a DIDAS system. Therefore the version IAC-DIDAS-L1 has been
designed to work with substantive models in the MPS format while the user-friendliness
of professional microcomputers compatible with IBM-PC-XT is exploited only in the
graphical representation of results of multiobjective analysis.

The second version: IAC-DIDAS-L2, exploits the user-friendliness of such microcom-
puters also by supporting the definition and edition of a substantive model in an easy for-
mat of a spreadsheet, where the decision variables (and, possibly, some model parameters)
are represented by the columns, the constraints and outcome variables - by the rows of
the spreadsheet, and the coefficients of all linear functions defining the model are entered
in the corresponding cells of the spreadsheet. Therefore, the user can define, review and
edit his model easily; when analysing his model in further phases of work with IAC-
DIDAS-L2, he can also return to the model definition phase and modify his model if
necessary. The user of IAC-DIDAS-L2 can also have several substantive models recorded
in a special model directory, use old models from this directory to speed up the definition
of a new model, etc., while the system supports automatically the recording of all new or
modified models in the directory. The easiness of model definition and edition has, how-
ever, its price: models defined in the spreadsheet format should not be too large and the
number of their variables (decision variables, constraints and outcome variables, while
counting separately variables for each time instant in dynamic models) should not be too
large (not greater than a hundred).

In the second phase of work with DIDAS-type systems, the user - here typically an
analyst working together with the decision maker - specifies a multiobjective analysis
problem related to his substantive model and participates in an initial analysis of this
problem. There might be many multiobjective analysis problems related to the same sub-
stantive model: the specification of a multiobjective problem consists in designating out-
come and constraint variables in the model that become objectives (or objective trajec-
tories in a dynamic case) and defining whether an objective (or objective trajectory)
should be minimized or maximized, or kept close to a given level. For a given definition of
the multiobjective analysis problem, the decision and outcomes in the model are subdi-
vided into two categories: those that are effictent with respect to the multiobjective prob-
lem (that is, such that no objective can be improved without deteriorating some other
objective) and those that are inefficient. It is assumed that the user is interested only in
efficient decisions and outcomes (this assumption is reasonable provided that the user has
listed all objectives of his concern; if he has not, or if some objectives of his concern are
not represented in the model he can still modify the sense of efficiency by adding new
objectives, or by requiring some objectives to be kept close to given levels, or by returning
to the model definition phase and modifying the model).

One of the main functions of a DIDAS-type system is to compute efficient decisions
and outcomes - following interactively various instructions of the user - and to present
them for analysis. This is done by solving a special parametric linear programming prob-
lem resulting from the specification of the multiobjective analysis problem; for this

T. Rogowski et al. - 109 - IAC-DIDAS-L

purpose, IAC-DIDAS-L contains a specialized linear programming algorithm called solver.

Usually, however, the definition of a multiobjective problem admits many efficient
decisions and outcomes; therefore the user should first learn about bounds on efficient out-
comes. This i1s the main function of IAC-DIDAS-L in the initial analysis phase. The user
can request the system to optimize any objective separately; however, there are also two
special commands in the system, related to this function. The first, called "utopia”, results
in subsequent computations of the best possible outcomes for all objectives treated
separately (such outcomes are practically never attainable jointly, hence the name "uto-
pia” for the point in outcome space composed of such outcomes; in dynamic cases, only
approximate joint bounds for entire trajectories are computed). The second, called
“nadir”, results in an estimation of the worst possible among the efficient outcomes
(defining precisely the worst possible efficient outcome is a very difficult computational
task; in some simple cases, the "utopia” computations give enough information to deter-
mine the worst possible among the efficient outcomes, but for more general cases this
information is not reliable and a more reliable way of estimating the worst possible
efficient outcome is implemented in IAC-DIDAS-L).

The "utopia” and “nadir” computations give important information to the user
about reasonable ranges of decision outcomes; in order to give him also information about
a reasonable compromise efficient solution, a neutral effictent solution can be also com-
puted in the initial analysis phase following a special command. The neutral solution is an
efficient solution situated “in the middle” of the range of the efficient outcomes, while the
precise meaning of being “in the middle” is defined by the distances between the utopia
and the nadir point. After analysing the utopia point, the nadir point and a neutral solu-
tion (which all can be represented graphically for the user), the initial analysis is com-
pleted and the user has already learned much about the ranges of the attainable efficient
objectives and the possible trade-offs between these objectives. Each change of the
definition of the substantive model or of the multiobjective analysis problem, however,
necessitates actually a repetition of the initial analysis phase; on the other hand, the user
can omit this repetition if he judges that the changes in the model or in multiobjective
analysis definition have been small.

The third phase of work with DIDAS-type systems consists in interactive scanning
of efficient outcomes and decisions, guided by the user through specifying aspiration levels
for each objective (or aspiration trajectories , in a dynamic case; called also reference
points or trajectories). The user has already reasonable knowledge about the range of pos-
sible outcomes and thus he can specify the aspiration levels that he would like to attain.
IAC-DIDAS-L utilizes the aspiration levels as a parameter in a special achievement func-
tion, coded in the system, uses 1ts solver to compute the solution of a linear programming
problem, equivalent to maximizing this achievement function, and responds to the user
with an attainable efficient solution and outcomes (or outcome trajectories) that strictly
correspond to the user-specified aspirations.

If the aspirations are "too high” (better than attainable), then the response of the
system is a solution with attainable, efficient outcomes that are uniformly as close to the
aspirations as possible. If the aspirations are "too low” (if they correspond to attainable
but inefficient outcomes that can be improved), then the response of the system is a solu-
tion with outcomes that are uniformly better than the aspirations. The precise meaning of
the uniform approximation or improvement depends on scaling units for each objective
that can be either specified by the user or defined automatically in the system as the
differences between the utopia point and the current aspiration point. This second,
automatic definition of scaling units has many advantages to the user who is not only

T. Rogowski et al. - 110 - TAC-DIDAS-L

relieved of specifying scaling units but also has a better control of the selection of efficient
outcomes by changing aspiration levels in such a case.

After scanning several representative efficient solutions and outcomes controlled by
changing aspirations, the user usually learns enough to select either an actual decision,
subjectively, (which needs not to correspond to the decisions proposed in the system, since
even the best substantive model might differ from real decision situation) or an efficient
decision and outcome proposed in the system as a basis for actual decisions.

Rarely, the user might be still uncertain about what decision to choose; for such a
case, several additional options can be included in a system of DIDAS type. Such options
include two more sophisticated scanning options: multidimensional scanning, resulting
from perturbing current aspiration levels along each coordinate of objective space, direc-
tional scanning, resulting from perturbing current aspiration levels along a direction
specified by the user (see Korhonen, 1985). Another option is forced convergence, that is,
such changes of aspiration levels along subsequent directions specified by the user that the
corresponding efficient decisions and outcomes converge to a final point that might
represent the best solution for the preferences of the user. However, not all these addi-
tional options are implemented in IAC-DIDAS-L, since the experience of working with
DIDAS-type systems shows that these options are rarely used.

A2. SHORT PROGRAM DESCRIPTION

The TAC-DIDAS-L1 and -L2 systems (Institute of Automatic Control, Dynamic
Interactive Decision Analysis and Support, Linear versions 1 and 2) are decision support
systems designed to help in the analysis of decision situations where a mathematical
model of substantive aspects of the situation can be formulated in the form of a multiob-
jective linear programming problem, possibly of dynamic structure.

The IAC-DIDAS-L1 and -L2 systems are recorded on two separate diskettes that
should be installed on an IBM-PC-XT or a compatible computer with a hard disk, Her-
cules or a color graphic card and, preferably, a coprocessor. Both diskettes contain com-
piled codes, partly in FORTRAN and partly in PASCAL for IAC-DIDAS-L1, and entirely
in PASCAL for IAC-DIDAS-1.2. After installing them in the users directory, they can be
activated (by the command didasl or didas2 Cr) and used in a program system. Both sys-
tems support the following general functions:

1) The definition and edition of a substantive model of the decision situation, in a
linear programming form. IAC-DIDAS-L1 uses the MPS format of linear program-
ming for this purpose, while IAC-DIDAS-L2 supports model definition and edition in
a user-friendly format of a spreadsheet.

2) The specification of a multiobjective decision analysis problem related to the sub-
stantive model. This is performed by several commands from the main menu of
IAC-DIDAS-L1, and by specific features of spreadsheet edition in IAC-DIDAS-L2.

3) The initial multiobjective analysis of the problem, resulting in estimating bounds on
efficient outcomes of decisions and in learning about some extreme and some neutral
decisions. In both IAC-DIDAS-L1 and -L2, these functions are supported by some
specific commands from the main menu.

4) The interactive analysis of the problem with the stress on learning by the user of
possible efficient decisions and outcomes, organized through systems’ response to
user-specified aspiration levels or reference points for objective outcomes. In both
IAC-DIDAS-L1 and -L2, the system responds with efficient solutions and objective
outcomes obtained through the maximization of an achievement function that 1is

T. Rogowsk: et al. - 111 - IAC-DIDAS-L

parameterized by the user-specified reference points. The maximization is performed
through a linear programming algorithm called solver, written in FORTRAN for
IAC-DIDAS-L1 and in PASCAL for IAC-DIDAS-L2. In both systems, the interac-
tive analysis is supported by specific commands from the main menu, including com-
mands that might help in convergence to the most preferred solution; however, the
main function of both systems is helping the user to learn about novel aspects of the
decision situation, not necessarily forcing him to converge to one, most preferred
solution.

The main menu of commands in IAC-DIDAS-L1 is the following:
1)Problem setting phase

? Cr - displays help.

MAX | MIN | GUI | FLO | REM objectivename Cr - includes new objectives (from
the list of names of outcome and decision variables of the model), changes status (to max-
imized, minimized, guided - that is, corresponding to an equality constraint, or floating -
that is, displayed only for information purposes) or removes an objective from the
definition of the multiobjective analysis problem.

UPP | LOW | FIX objectivename value Cr - sets bounds for objective values (UPP
for upper bounds, LOW for lower bounds, FIX for equality constraints of GUI type; all
objectives except of GUI and FLO types must have specified bounds in this phase;
defaults are zero and rhs or bounds - as specified in the model).

SCA objectivename value Cr - sets user-specified scaling units for an objective (all
objectives except of GUI and FLO types must have specified scaling units in this phase;
default is 1).

RAS binary (0 or 1) Cr - sets off or on automatic utopia- reference scaling (after
computing utopia point, see further commands, the user-supplied scaling can be replaced
by a more convenient type of scaling).

EPS value Cr - sets the value of parameter 0<eps<1 in the achievement function.

XRH value Cr - sets the value of parameter p>>1 in the achievement function.

EPS | XRH Cr - displays the value of parameter eps or rho.

2) Initial analysis phase

FOR objectivename Cr - results in the calculation and graphical display of an
extreme solution, that is, the optimal solution for a given, single objective.

UTO Cr - calculates and displays graphically utopia and approximate nadir points
(that is, upper and lower bounds for efficient decision outcomes).

NAD Cr - improves and displays graphically the approximation of nadir point.

NEU Cr - calculates and displays graphically a neutral solution using scaling
coefficients based on utopia-nadir differences.

GRA Cr - graphic displays.
REU Cr - changes scale of graphical displays to utopia-nadir relative.

REB Cr - changes scale of graphical displays to relative to bounds. §) Interactive
analysis phase

RFP | REF objectivename value (%) Cr - sets reference point for an objective (if the
option % is used, this point is given in % of current graphical display scale).

T. Rogowsk: et al. - 112 - IAC-DIDAS-L

GO Cr - calculates and displays graphically an efficient solution related to the last
specified reference point.

DIS BOU | UTO | SOL | Cr - displays numerically bounds, or utopia and nadir
points, or the last solution.

SCN value Cr - starts the SCAN procedure with the step d = ‘value’.

ACC objname Cr - accepts the solution obtained during the SCAN process, when the
reference point component corresponding to ‘objname’ was perturbed, as a new reference
point.

PRI Cr - writes the last results on the file RESULTS.
PSC Cr - writes the results of the last scan on the file RESULTS.

BAS Cr - makes possible manipulating with the data base for solution (up to 10
items). After invoking this command the following menu appears at the screen:
(1) save (2) load (3) remove (4) list (5) quit.
The user ought to select the option number:
- option (1) save - at this point the program asks:
save as 7:
and the user gives a name to the last solution to be saved in the data base,

- option (2) load - at this point the user gives the names of the data and the solution
to be retrieved from the data base,

- option (3) remove - removes a name from the data base,
- option (4) list - lists the names saved in the data base,
- option (5) quit - returns to the main menu.

STOP Cr - ends work with the system.

The main menu of IAC-DIDAS-L2 performs also all the above functions, with the
distinction that most of the functions of phase 1) and 2) are specific commands of
spreadsheet edition: the decision variables are defined as columns of the spreadsheet, the
outcome variables are defined as rows, model coefficients are entered in the corresponding
cells, there are special rows and columns for scaling units, lower and upper bounds, for
defining objective outcomes and their type, for reference points, utopia and nadir points,
for solutions corresponding to the reference points. The data for tutorial example, con-
tained in the Appendix, is illustrated by several screen outprints that are related to vari-
ous functions of model edition in IAC-DIDAS-L2. The functions of other phases are exe-
cuted by macrocommands using various controlling keys; the user can get various help
displays that suggest in an easy fashion the commands useful in a current phase of work
with the system.

IAC-DIDAS-L1 and -L2 systems have been developed in the Institute of Automatic
Control, Warsaw University of Technology, Warsaw, Poland, in a contracted study
agreement “Theory, Software and Testing Examples for Decision Support Systems” with
the Systems and Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, which has the copyright for these systems.

B. THEORETICAL MANUAL

The standard form of a multiobjective linear programming problem is defined as fol-
lows:

mazimize (¢=Cz); X = {z€R™: Az=b,z>0} (1)

T. Rogowski et al. -113- IAC-DIDAS-L

where € R™, bERP, A is a mxn matrix, C is a pxn matrix and the maximization of
the vector g of p objectives is understood in the Pareto sense: £,§ are solutions of (1) iff
¢=Ct, € X and there are no such z,q, with ¢=Cz, z€ X that ¢>§, ¢7#q. Such solu-
tions £ and § of (1) are called an efficient decision Z and the corresponding efficient out-
come g, respectively. If, in the above definition, it were only required that there would be
no r and ¢, with ¢g=Cz, z€X, such that ¢>¢§, then the solutions £, § would be called
weakly effictent. Equivalently, if the set of all attainable outcomes is denoted by

Q={q€RP: q=Cz, z€ X} (2)

and so called positive cones D=RE_| D~=Ri\{0} and l'th'ntR_’jr are introdyced (thus,
g>§ can be written as ¢—§€D,q>§,q#§ as ¢—§¢€D and ¢>§ as g—GED then the
sets of efficient outcomes @ and of weakly efficient outcomes Q" can be written as:

Q = {4€Q: (§+D)NQ=¢} (3)
Q" = {4€Q: (§+D)nQ=¢} (4

The set of weakly efficient outcomes is larger and contains the set of efficient out-
comes; In many practical applications, however, the set of weakly efficient outcomes is
decisively too large. For multiobjective linear programming problems, the efficient out-
comes are always properly effictent, that is, they have bounded tradeoff coefficients that
indicate how much an objective outcome should be deteriorated in order to improve
another objective outcome by a unit.

The abstract problem of multiobjective linear progremming consists in determining
the entire sets @ or Q% , or at least all vertices or basic solutions of the linear program-
ming problem that corresponds to efficient decisions and outcomes.

The practical problem of multiobjective decision support, using linear programming
models, is different and consists in computing and displaying for the decision maker (or,
generally, for the user of the decision support system) some selected efficient decisions and
outcomes. This selection of efficient decisions and outcomes should be easily controlled by
the user and should result in any efficient outcome in the set Q he might wish to attain, in
particular, also in efficient outcomes that are not necessarily basic solutions of the original
linear programming problem; moreover, weakly efficient outcomes are not of practical
interest for the user.

Before turning to some theoretical problems resulting from these practical require-
ments, observe first that the standard formulation of multiobjective linear programming
is not the most convenient for the user. Although many other formulations can be rewrit-
ten to the standard form by introducing proxy variables, such reformulations should not
bother the user and should be automatically performed in the decision support system.
Therefore, we present here another basic formulation of the multiobjective linear pro-
gramming problem, more convenient for typical applications.

A substantive model of multiobjective linear programming type consists of the
specification of vectors of n decision variables z€ R™ and of m outcome variables ye R™,
together with linear model equations defining the relations between the decision variables
and the outcome variables and with model bounds defining the lower and upper bounds for
all decision and outcome variables:

y=Az; 2°<z<z¥P; yo<y<y*? (5)

where A€ is a mxn matrix of coefficients. Among the outcome variables, some might be
chosen as corresponding to equelity constraints; let us denote these variables by

T. Rogowsk: et al. -114 - IAC-DIDAS-L

1
y°€R™ CR™ and the constraining value for them - by b° and let us write the additional
constraints in the form:

yC:ACz:bC; yc,lo§chyc,up (6)

where A€ is the corresponding submatrix of A. The outcome variables corresponding to
equality constraints will be called guided outcomes here. Some other outcome variables
can be also chosen as optimized objectives or objective outcomes. Denote the vector of p
objective outcomes by ge RPCR™ (some of the objective variables might be originally
not represented as outcomes of the model, but we can always add them by modifying this
model) to write the corresponding objective equations in the form:

¢=Cr (7)

where C is another submatrix of A. Thus, the set of attainable objective outcomes is
again Q=CJX, but the set of admissible decisions X is defined by:

X={zecR™ z’°§x§z"1’; ylogAzSy“p; ACz=H¢} (8)

Moreover, the objective outcomes are not necessarily minimized; some of them might
be minimized, some maximized, some stabilized or kept close to given aspiration levels
(that is, minimized if their value is above aspiration level and maximized if their value is
below aspiration level). All these possibilities can be summarized by introducing a
different definition of the positive cone D:

D = {q€RP: ¢,>0, i=1,..,p" ¢<0, i=p"T1P"; ¢.=0,i=p",...p} (9)

where the first p’ objectives are to be maximized, the next, from p't1 to p”, are to be
minimized, and the last, from p”+1 to p, are to be stabilized. Actually, the user needs
only to define what to do with subsequent objectives; the concept of the positive cone D
is used here only in order to define comprehensively what are efficient outcomes for the
multiobjective problem. Given some aspiration levels for stabilized objectives and the
requirement that these objectives should be minimized above and maximized below
aspiration levels, the set of efficient outcomes can be defined only relative to the aspira-
tion levels.

However, since the user can define aspiration levels arbitrarily, of interest here is the
union of such relative sets of efficient outcomes. Let D=D\{0}; then the outcomes that
might be efficient for arbitrary aspiration levels for stabilized objectives can be defined, as
before, by the relation (3). The weakly efficient outcomes are of no practical interest in
this case, since the cone D, typically, has empty interior which implies that weakly
efficient outcomes coincide with all attainable outcomes.

The stabilized outcomes in the above definition of efficiency are, in a sense, similar
to the guided outcomes; however, there is an important distinction between these two
concepts. Equality constraints must be satisfied; if not, then there are no admissible solu-
tions for the model. Stabilized objective outcomes should be kept close to aspiration lev-
els, but they can differ from those levels if, through this difference, other objectives can be
improved. The user of a decision support system should keep this distinction in mind and
can modify the definition of the multiobjective analysis problem by taking, for example,
some outcomes out of the guided outcome category and putting them into the stabilized
objective category.

By adding a number of proxy variables and changing the interpretation of matrix A,
the substantive model formulation (5), (6), (7), (8) together with its positive cone (9) and
the related concept of efficiency could be equivalently rewritten to the standard form of

T. Rogowski et al. - 115- IAC-DIDAS-L

multiobjective linear programming (1); this, however, does not concern the user. More
important is the way of user-controlled selection of an efficient decision and outcome from
the set (3). For stabilized objective outcomes, the user can change the related aspiration
levels in order to influence this selection; it is assumed here that he will use, for all objec-
tive outcomes, the corresponding aspiration levels in order to influence the selection of
efficient decisions. The aspiration levels are denoted here §; or, as a vector, § and called
also, equivalently, reference points.

A special way of parametric scalarization of the multiobjective analysis problem is
utilized for the purpose of influencing the selection of efficient outcomes by changing refer-
ence points. This parametric scalarization is obtained through maximizing the following
order-approrimating achievement function (see Wierzbicki 1983, 1986):

_ . . - 1 — € _
3(‘1,‘1):""" lg"?gpzi(qi,‘h), ;I;éjlzi(qiaqi) +;‘_§ 2,‘(%‘1,‘) (10)

where the parameter ¢ should be positive, even if very small; if this parameter would be
equal to zero, then the above function would not be order-approximating any more, but
order-representing, and its maximal points could correspond to weakly efficient outcomes.
The parameter p should be p>1; the interpretation of both these parameters is given
later.

The functions z‘-(q’-,(']'i-) are defined as follows:
(4;—8)/s; if 1<i<ph
2i(00:8)={(G—q;) /s> if p'TI<i<p”, (11)

min(z"',zi”), if p"+1<1<p

where

1

2"=(q;—)/s", Z'=(T—a)/s! (12)

The coefficients si,s"' and s;" are scaling units for all objectives, either defined by
the user (in which case s'izsi", the user does not need to define two scaling coefficients for

a stabilized objective outcome) or determined automatically in the system (see further
comments).

The achievement function s(g,g) is maximized with g=Cz over z€X; its maximi-
zation in the system is converted automatically to an equivalent linear programming
problem, different than the original one, and having more basic solutions that depend on
the parameter §. If the coefficient €>0, then the achievement function has the following
properties (see Wierzbicki, 1986):

a) For an arbitrary aspiration level or reference point g, not necessarily restricted to be
attainable or not attainable, each maximal point § of the achievement function
s(q,q) with ¢=Cz over zEX is a D, -efficient solution,that is, a properly efficient
solution with tradeoff coefficients bounded approximately by € and 1/e.

b) For any properly efficient outcome § with trade-off coefficients bounded by ¢ and
1/e, there exist such reference points g that the maximum of the achievernent func-
tion s(g,) is attained at the properly efficient outcome §. In particular, if the user
(either by chance or as a result of a learning process) specifies a reference point §
that in itself is such properly efficient outcome, §=¢, then the maximum of the

T. Rogowsks et al. - 117 - IAC-DIDAS-L

therefore, it is called the utopia point (juto.

However, this way of computing the ‘upper’ bound for efficient outcomes is not prac-
tical for problems of dynamic structure (see further comments); thus, IAC-DIDAS-L1 and
-L2 use a different way of estimating the utopia point. This way consists in subsequent
maximizations of the achievement function s(g,) with suitably selected reference points.
If an objective should be maximized and its maximal value must be estimated, then the
corresponding component of the reference point should be very high, while the com-
ponents of this point for all other maximized objectives should be very low (for minimized
objectives - very high; stabilized objectives must be considered as floating in this case that
is, should not enter the achievement function). If an objective should be minimized and its
minimal value must be estimated, then the corresponding component of the reference
point should be very low, while other components of this point are treated as in the previ-
ous case. If an objective should be stabilized and both its maximal and minimal values
must be estimated, then the achievement function should be maximized twice, first time
as if for a maximized objective and the second time as if for minimized one. Thus, the
entire number of optimization runs in utopia point computations is p”+2(p—p"). It can
be shown that, for problems with static structure (no trajectory objectives), this pro-
cedure gives a very good approximation of the utopia point éuto, whereas the precise
meaning of ‘very high’ reference should be interpreted as the upper bound for the objec-
tive plus, say, twice the distance between the lower and the upper bound, while the mean-
ing of ‘very low’ is the lower bound minus twice the distance between the upper and the
lower bound.

During all these computations, the lower bound for efficient outcomes can be also
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim-
izations for maximized objectives and the highest efficient outcomes for minimized objec-
tives (there is no need to record them for stabilized objectives, where the entire attainable
range is estimated anyway). However, such a procedure results in the accurate, tight
‘lower’ bound for efficient outcomes - called nadir point énad - only if p"=2; for larger
numbers of maximized and minimized objectives, this procedure can give misleading
results, while an accurate computation of the nadir point becomes a very cumbersome
computational task.

Therefore, IAC-DIDAS-L1 and -L2 offer an option of improving the estimation of the
nadir point in such cases. This option consists in additional p” maximization runs for
achievement function s(g,g) with reference points g that are very low, if the objective in
question should be maximized, very high for other maximized objectives, and very low for
other minimized objectives, while stabilized objectives should be considered as floating. If
the objective in question should be minimized, then the corresponding reference com-
ponent should be very high, while other reference components should be treated as in the
previous case. By recording the lowest efficient outcomes that occur for maximized objec-
tives in subsequent optimizations (and are lower than the previous estimation of nadir
component) and the highest efficient outcomes for minimized objectives (higher that the
previous estimation of nadir component), a better estimation ﬁnad of the nadir point is

obtained.

Once the approximate bounds Quto and (j"ad are computed and known to the user,

they can be utilized in various ways. One way consists in computing a neutrel efficient
solution, with outcomes situated approximately ‘in the middle’ of the efficient set. For
this purpose, the reference point 7 is situated at the utopia point Q“to (only for maxim-
ized or minimized outcomes; for stabilized outcomes, the user-supplied reference com-
ponent §; must be included here) and the scaling units are determined by:

T. Rogowsk: et al. - 118 - IAC-DIDAS-L

si=laf* - P, 1<i<p (13a)
for maximized or minimized outcomes, and:

5{=T a-0.01(41o— 474, (135)

5/=4"0+0.01(¢**~ §/*) -, p"+1<i<p

for stabilized outcomes, while the components of the utopia and the nadir points are
interpreted respectivelty as the maximal and the minimal value of such an objective; the
correction by 0.01(§;"°— (j," ad) ensures that the scaling coefficients remain positive, if the
user selects the reference components for stabilized outcomes in the range §; Sq,S('j,-n ad
(if he does not, the system automatically projects the reference component on this range).
By maximizing the achievement function s(q,§) with such data, the neutral efficient solu-
tion is obtained and can be utilized by the user as a starting point for further interactive

analysis of efficient solutions.

In further interactive analysis, an important consideration is that the user should be
able to influence easily the selection of the efficient outcomes § by changing the reference
point 7 in the maximized achievement function s(q,7). It can be shown (see Wierzbicki,
1986) that best suited for this purpose is the choice of scaling units determined by a
difference between the slightly displaced utopia point and the current reference point:

§H°+0.01(g¥to—grd) —g;, if 1<i<p’
§i=) '
g 61e-0.01(gP* - g), if p'+1<i<p”,

(14a)
for maximized or minimized outcomes. For stabilized outcomes, the scaling units are
determined somewhat differently than in (13b):
A suto anady ~
5/="°+0.01(¢;*~ %) ~;,

1
. . 14b
si/l:i'__qA:lto_O_Ol(qA:lad_ (i:ltO) if p'+1<i<p", ()

It is assumed now that the user selects the reference components in the range
g “"g q,s(j;‘” or §' “’g g, <q; ad (if he does not, the system automatically projects the
reference component on these ranges) for all objectives. Observe that, similarly as in the
case of the neutral solution, the scaling units are determined automatically once the uto-
pia, nadir and reference points are known; the user is not bothered by their definition.
The interpretation of the above way of setting scaling units is that the user attaches
implicitly more importance to reaching a reference component if he places it close to the
known utopia component; in such a case, the corresponding scaling unit becomes smaller
and the corresponding objective component is weighted stronger in the achievement func-
tion s(g¢,g). Thus, this way of scaling, relative to utopia-reference difference, is taking
into account the implicit information, given by the user, specified by the relative position

of the reference point.

When the relative scaling is utilized, the user can easily obtain - by moving suitably
reference points - efficient outcomes that are either situated close to the neutral solution,
in the middle of efficient outcome set Q, or in some remote parts of the set @, say, close
to various extreme solutions.

Typically, several experiments of computing such efficient outcomes give enough
information for the user to select an actual decision - either some efficient decision sug-
gested by the system, or even a different one, since even the best substantive model

T. Rogowsk: et al. -119- IAC-DIDAS-L

cannot encompass all aspects of a decision situation. However,there might be some cases
in which the user would like to receive further support - either in analysing the sensitivity
of a selected efficient outcome, or in converging to some best preferred solution and out-
come.

For analysing the sensitivity of an efficient solution to changes in the proportions of
outcomes, a multidimensional scan of efficient solutions is implemented in IAC-DIDAS-L1
and -L2. This operation consists in selecting an efficient outcome, accepting it as a base
g% for reference points, and performing p” additional optimization runs with the refer-
ence points determined by:

I=0" (- Y g=a™ i#5, 1<5<p” (15)
where 7 is a coefficient determined by the user, —1<~+<1; if the relative scaling is used
and the reference components determined by (15) are outside the range §7°, @;‘to, they
are projected automatically on this range. The reference components for stabilized out-
comes are not perturbed in this operation (if the user wishes to perturb them, he might
include them, say, in the maximized category). The efficient outcomes, resulting from the
maximization of the achievement function s(g,7) with such perturbed reference points,

are typically also perturbed, mostly along their subsequent components, although other
their components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction
in the outcome space - and also as a help in converging to a most preferred solution - a
directional scan of efficient outcomes is implemented in IAC-DIDAS-L1 and -L2. This
operation consists again in selecting an efficient outcome, accepting it as a base ﬁbas for
reference points, selecting another reference point §, and performing a user-specified
number K of additional optimizations with reference points determined by:

7(k)=0*+ (-7, 1<k<K (16)
The efficient solutions §(k), obtained through maximizing the achievement function
s(g,g(k)) with such reference points, constitute a cut through the efficient set) when
moving approximately in the direction §— ¢7b @ If the user selects one of these efficient
solutions, accepts it as a new (71"” and performs the next directional scans along some new
directions of improvement, he can converge eventually to his most preferred solution (see
Korhonen, 1985). Even if he does not wish the help in such convergence, the directional
scans can give him valuable information.

Another possible way of helping in convergence to the most preferred solution is
choosing reference points as in (16) but using a harmonically decreasing sequence of
coefficients (such as 1/j, where j is the iteration number) instead of user-selected
coefficients k/K. This results in convergence even if the user makes stochastic errors in
determining next directions of improvement of reference points, or even if he is not sure
about his preferences, and learns about them during this analysis (see Michalevich, 1986).
Such a convergence, however, is rather slow and is thus not implemented in IAC-DIDAS-
L1 and -L2.

A separate problem is multiobjective decision analysis and support based on sub-
stantive models of dynamic structure. A useful standard of defining a substantive model
of multiobjective linear dynamic programming type is as follows.

The model is defined on T+1 discrete time periods t, 0<t< T (where ¢ is a discrete
time variable counted in days, years or any other time units; models of dynamic structure
can also have other interpretations of the variable t, such numbers of subsequent

T. Rogowski et al. -120- IAC-DIDAS-L

operations, etc). The decision variable z, called in this case control trajectory, is an entire
sequence of decisions:

z = {2(0),z(1),....,2(T—1)}eR"T, z(t)eR" (17b)

and a special type of outcome variables, called stete variables, w(t)ERm' , is also con-
sidered. The entire sequence of state variables, or state trajectory:

w = {w(0),w(1),....,w(T—1)}eR™ (T+1) (17b)

is actually one time period longer than z; the initial state w(0) must be specified as given
data, while the decision z(7T) in the final period is assumed to influence the state
w(T+1) only, thereby of no interest for the interval {0,...,T'}. This is because the funda-
mental equations of a substantive dynamic model have the form of state equations:

w(t+1) = A(t)w(t)+B(t)z(t); t=0,1,...T—1, w(0) — given (18a)
The model outcome equations have, then, the form:

y(t)=C(t)w(t)+D(t)z(t), t=0,1,...,T—1; y(T)=C(T)w(T)eR™" (18b)
and define the sequence of outcome variables, or outcome trajectory:

y={v(0),..0,y(t)5-,y(T—1),y(T) }ER™ (T +1) (17c)

The decision, state and outcome variables can all have their corresponding lower and
upper bounds (each understood as an appropriate sequence of bounds):

g<z<z®, wP<w<w", y<y<y® (18c)

The matrices A (t), B(t), C(t) and D(t), of appropriate dimensions, can dependent
on or can be independent of time t; in the latter case, the model is called time invariant
(actually, in a fully time-invariant model, the bounds should also be independent of time
t, that is, they should be constant for all time periods). This distinction is important, in
multiobjective analysis of such models only in the sense of model edition: time-invariant
models can be defined easier by automatic, repetitive edition of model equations and
bounds for subsequent time periods.

Some of the outcomes might be chosen to be equality constrained, or guided along a
given trajectory:

ye(t)=e(t)eR™ " CR™", t=0,1,...,T; € = {e(0),...,e°(T)} (19)

The optimized (maximized, minimized or stabilized) objective outcomes of such a
model can be actually selected among both state variables and outcome variables (or even
decision variables) of this model; in any case, they form an entire objective trajectory:

¢={4(0),.,9(t),-,q(T—1),q(T) }eRP(TH) ¢(t)eRP (20)

Various positive cones could be defined to specify the sense of efficiency of such
objective trajectory; however, it is assumed here that the sense of efficiency cannot change
along the trajectory, that is, a component ¢;(t) that will be maximized in one period t
must be also maximized in other time periods, etc. (however, not necessarily in all time
periods: if the user wishes to maximize,minimize or stabilize some outcome only in one or
several time periods, he can always change suitably the definition of objective outcomes).
Thus, assume that the first components g,(t}, for 1<i<p’, are to be maximized, next, for
p'+1<i1<p", are to be minimized, and the last components, for p"+1<i<p, are to be
stabilized. The achievement function s(g,7) in such a case takes the form:

T. Rogowsk: et al. -121- IAC-DIDAS-L

5(¢,§)=min{ min min z(¢), E i by i z,(t) (21

O<t<T1<i<p T'H)P Z0i=1 T+1)pt:0i:1
where the functions z;(t)=z;[¢,(t),7;(t)] are defined by:

[q:(t)—q;(t)]/s;(2), if 1<i<p’

z(t)=q[g;(t)— q;(1)]/s:(t), if p'+1<i<p” (22)
min{z{(t),2/(t)], if p"+1<i<p,

where
z;(t)=f, 2 (t)=—— (23)

The user does not need to define time-varying scaling units s,(t) nor two different
scaling units s/(t),s;”(t) for a stabilized objective: the time-dependence of scaling units
and separate definitions of s/(t),s/'(t) are needed only in the case of automatic, relative
scaling.

The estimation of utopia and nadir points in the space of objective trajectories
would create, in the dynamic case, major computational difficulties (p(7T+1) subsequent
optimization runs) if exact estimates were needed; moreover, even if the utopia point in
itself is not attainable, it can be better interpreted if each of its components - in this case,
each objective component trajectory - is attainable for the model. These considerations
indicate that the way of estimating utopia point by p (or by p”+2(p—p"), when stabil-
ized objectives are included) subsequent maximizations of the achievement function (21)
with suitably ‘very high’ or ‘very low’ components of reference trajectories:

7={3(0),3(1),-...,q(T)}e RP(T+D) | 7(t)eRP (24)

is much more adequate for the dynamic case than an exact computation of the utopia
point. Denote the results of such maximizations with subsequent reference trajectories

by (j('),iZI,...,p, (we do not include here stabilized outcomes for the simplicity of
denotations); then the components of an approximate utopia trajectory can be determined
as:

a1 =4{(1), 1=0,1,...,T; i=12,...p (252)

whereas the components of an approximate nadir trajectory (in the case of maximized tra-
jectories, with obvious modifications in the minimized case) should be determined as:

§P(t)a= min (1), t=0,1,.,,,p (25b)
1<5<p

Unfortunately, the components of such nadir approximation cannot be interpreted as
attainable trajectories for the model (since the minimization in (25b) can result in
different j for various t); however, this is less important than in the utopia trajectory
case. A more precise approximation of nadir point can be obtained, similarly as in the
static case, by additional p (or only p”, if stabilized objectives are included in the model)
maximizations of achievement function (21) with yet other reference trajectories
E(]),]'=p+l,...,,2p, and by extending the minimization in (25b) to 1<7<2p.

Once the approximations of utopia and nadir trajectories are determined, a neutral
solution as well as the automatic relative scaling can be defined similarly as in the static

T. Rogowskt et al. - 122 - IAC-DIDAS-L

case. Other aspects of interactive multiobjective analysis of dynamic models are similar to
the static case; naturally, the graphical representation of results of analysis is in some
cases more straightforward (for single optimization runs) or, in other cases, more involved
(for repetitive runs, as in utopia, nadir and scanning computations) than in the static
case.

REFERENCES

Dreyfus, S. (1984): Beyond rationality. In M.Grauer, M.Thompson,
A .P.Wierzbicki(eds), Plural Rationality and Interactive Decision Processes, Proceed-
ings Sopron 1984. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture
Notes in Economic and Mathematical Systems 248).

Kaden, S. (1985): Decision support system for long-term water management in open-pit
lignite mining areas. In G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki
(eds), Large Scale Modelling and Interactive Decision Analysis, Proceedings
Eisenach 1985. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes
in Economic and Mathematical Systems 273).

Korhonen, P. (1985): Solving discrete multiple criteria decision problems by using visual
interaction. In G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki(eds), Large
Scale Modelling and Interactive Decision Analysis, Proceedings Eisenach 1985.
Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic
and Mathematical Systems 273).

Lewandowski, A., M.Grauer, A.P.Wierzbicki (1983): DIDAS - theory, implementation
and experiences. In M.Grauer, A.P.Wierzbicki (eds), Interactive Decision Analysis,
Proceedings Laxenburg 1983. Springer Verlag, Berlin Heidelberg New York Tokyo
(Lecture Notes in Economic and Mathematical Systems 229).

Makowski, M. and J.Sosnowski (1984): A decision support system for planning and con-
trolling agricultural production with a decentralized management structure. In
M.Grauer, M. Thompson, A.P.Wierzbicki (eds), Plural Rationality and Interactive
Decision Processes, Proceedings Sopron 1984. Springer Verlag, Berlin Heidelberg
New York Tokyo (Lecture Notes in Economic and Mathematical Systems 248).

Messner, S. (1985): Natural gas trade in Europe and interactive decision analysis. In
G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki (eds), Large Scale Modelling
and Interactive Decision Analysis, Proceedings Eisenach 1985.Springer Verlag, Ber-
lin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Sys-
tems 273).

Michalevich, M. (1986): Stochastic approaches to interactive multicriteria optimization
problems. IIASA WP-86-10. International Institute for Applied Systems Analysis,
Laxenburg, Austria. Wierzbicki, A.P. (1983): A mathematical basis for satisficing
decision making. Mathematical Modelling 3, 391-405.

Wierzbicki, A.P. (1986): On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR Spektrum 8, 73-87.

T. Rogowsk: et al. -123- IAC-DIDAS-L

APPENDIX
A shortened spreadsheet format of the tutorial model of
multiobjective diet selection.

Dish Lo/Up Rolls Cereals Butter Cheese Fruitfre Milk Coffee

Unit 50¢g 50 g 10g 50g 150 g 250 g 1 cup
Lo.bound 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Up.bound 5 2 5 3 2 3 3
Cost 0/100 5 4 5 9 14 6 18
Taste 6,/100 2 2 2 2 2 1 2
Stimulus 4/60 3 2 4 3 0.5 5 10
Calorie 300/1500 124 179 75 98 79 137 0.0
Proteins 4 3 0.1 12 0.5 7 0.0
Carbohyd. 26 36 0.0 1 11 10 0.0
Fats 1 2 8" 5 0.5 7 0.0
Calcium 100/800 8 10 2 235 9 295 0.0
Magnesium 12 23 0.2 3.5 5 30 0.0
Phosphor. 42 103 ° 1.6 187 13 213 0.0
Iron 1 1 0.0 0.2 0.4 0.25 0.0
Vit.A 200/1600 0.0 0.0 270 172 160 277 0.0
Vit.B 0.12 0.14 0.0 0.23 0.06 0.73 0.0
Vit.C 0.0 0.0 0.0 0.0 30 2.5 0.0
Vit.PP 0.4 1.0 0.01 0.05 0.23 0.25 0.0

The following example is spreadsheet format of IAC-DIDAS-L2 (a screen print, oth-
er parts of the data accessible through scrolling).

IAC - DIDAS - L2 V3.1 Names [Rolls Cereals Butter Cheese FruitFre
Model editing Units |50 g 50 g 10 g 50 g 150 g
Value
Bounds upper 5. OOE+00 2. OOE+00 5, OOE+00 3. OOE+00 2. O0E+00
Names |Units lower
lower—T—upper

Cost zl 1. OOE+02 5. OOE+00 4, OOE+00 5. OOE+00 S. OOE+00 1. 40E+0O1
Taste artun 6. OOE+00 1. OOE+02 3. OOE+00 2. OOE+00 2. OOE+00 2. OOE+00 2. OOE+00
Stimulu artun 4. OOE+00 6. OOE+0O1 3. OOE+00 1. OOE+00 4. OOE+0Q0 3. OOE+00 5. OOE-01
Callori Kcal 3.00E+02 1.50E+03 {.24E+02 1.79E+02 7. 50E+01 9. 80E+O1 7. 90E+O0O1
Protein 4, OOE+00 3. OOE+00 1. 00E-01 1.20E+01 5. 00E-01
Carbohy 2. 60E+01 3, 60E+01 1. OCE+00 1. 10E+0O1
Fats 1. OOE+00 2. OOE+0QQ 8. COE+00 5. OOE+00 S. OOE-0O1
Calcium 1. OOE+02 8. OOE+02 8. OOE+00 1.0O0E+01 2. OOE+00 2. 35E+02 9. OOE+00
Magnes: 1. 20E+01 2. 30E+01 2. OOE-01 3, SOE+00 5. O0E+00
Phospho 4, 20E+01 1. O3E+02 1. 60E+00 1. 87E+02 1. 30E+0O!
Iron 1. OOE+00 1. OOE+00O 2. OOE-01 4. OOE-0O1
Vit. A 2. OOE+0Q02 1. 60E+03 2. TOE+02 1. TRE+02 1. 60E+02
Vit. B 1. 20E-01 1. 40E-01 2. 30E-01 6. OOCE-02

=

Press F1 for help

T. Rogowsk: et al. -124 .

IAC-DIDAS-L
Editing help during model editing in IAC-DIDAS-L2
Help

F1 - Help reals Butter Cheese FruitFre
F2 - Quit editing - discard changes g 10 g 50 g 150 g
Return - Exit editing - save changes
BacKkspace - Delete character left OOE+00 5. COE+00 3. OOE+00 2. OOE+00
Del - Delete character on cursor
Ins - Insert mode on / off
Arrows - Move cursor OOE+00 5. OOE+00 9, OOE+00 1. 40E+0O1
Home - Move to begin of line OOE+00 2. OOE+00 2. 00E+00 2. OOE+00
End - Move to end of line OOE+00 4. OOE+00 3. OOE+00 5. OOE-0O1
Esc - Exit help T79E+02 7. S0E+01 9. 80E+01 7. 90E+01

OOE+00 1. 0O0OE-01 1, 20E+01 5, OOE-0O1
Carbohy 2. 60E+01 3. 60E+01 1. OOE+00 1. 10E+0O1
Fats 1. OOE+00 2. OOE+00 OOE-01
Calcium 1. OOE+02 8. OOE+02 8. OOE+00 1. O0OE+01 |2. OOE+00
Magnesi 1. 20E+01 2. 30E+01 OOE+00
Phospho 4, 20E+01 1. 03E+02 1. 60E+00 1. 87E+02 1. 30E+01
Iron 1. OOE+00 1. OOE+00O 2. OOE-0! 4. OOE-01
Vit. A 2. OOE+02 1. 60E+0O3 2. TOE+02 1. 7T2E+02 1. 60E+02
Vit. B 1, 20E-01 1. 40E-01 2. 30E-01 6. OOE-02
Press F1 for help < INSERT >

Further editing help in IAC-DIDAS-L2
Help
F1 - Help eals Butter Cheese FruitFre
F2 - Edit cell g 10 g 50 g 150 ¢
Alt/Del - Delete row
Alt/Ins - Insert row OE+00 5. OOE+00 3. OOE+00 2. O0E+00
Ctrl/Del ~ Delete column
Ctrl/Ins - Insert column
Ar'rows - Move cursor OE+00 5. OOE+00 9. OOE+00 1. 40E+01
CTRL/Arrows - Move cursor to header OE+00 2. OOE+00 2. O0OE+00 2. O0OE+00
F9 - Return to main menu OE+00 4. OOE+00 3. OOE+00 5, OOE-01
F10 - Start interaction 9E+02 7. 50E+0! 9. 80E+01 7. GOE+O1
Esc - Exit help OE+00 1. 0O0OE-01 1. 20E+01 5. OOE-0O1
OE+01 1. OOE+00 1. 10E+01

Fats 1. OOE+00 2. OOE+00 8. OOE+00 5. OOE+00 5. OOE-0O1
Calcium 1. OCE+02 8. OOE+02 8. O0OE+00 1. 00E+0{ 2, OOE+00 2, 35E+02 9. OOE+00
Magnesi 1. 20E+01 2. 30E+01 2. 00E-01 3. 50E+00 5. OOE+00
Phospho 4, 20E+01 1. O3E+02 1. 60E+00 1. 87E+02 1. 30E+01
Iron 1. OOE+00 1. OOE+00 2. OOE-01 4. OOE-01
Vit A 2. OOE+02 1. 60E+03 2. TOE+02 1., 7T2E+02 1. 60E+02
Vit. B 1. 20E-01 1. 40E-01 2. 30E-01 6. OOE-02

Press F1 for help

W. Ogryczak et al. -125- A solver for

A Solver for the Transshipment Problem with Facility Location

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Institute of Informatics, Warsaw University.

ABSTRACT

This paper describes the initial results of research, development and imple-
mentation of the Dynamic Interactive Network Analysis System (DINAS)
which will make opportunity for solving various multiobjective transship-
ment problems with facility location on IBM PC/XT microcomputers. The
main result of this stage is the development and implementation of the
TRANSLOC solver which provides the DINAS with solutions to single-
objective problems. It is based on the branch and bound scheme with a
pioneering implementation of the simplex special ordered network (SON)
algorithm with implicit representation of the VUB & SUB constraints. The
paper describes in details backgrounds of techniques used in the
TRANSLOC solver. A real example of the transshipment problem with
facility location is also discussed and an outline of the designed procedure
for handling multiple objectives in the DINAS is given.

1. Introduction.

The distribution - location type problems belong to the class of most significant
problems directly leading to real life applications of mathematical programming methods.
Steadily rising costs and inflation as well as legal and political considerations, competi-
tion, fuel scarcity and many other factors have led, in recent years, many organizations to
examine more closely their present and planned distribution patterns or facility locations.
For instance, the impact of the energy crisis in the 70-th caused real impetus for re-
evaluation of existing and often outmoded distribution patterns and methods.

Suppose we have a number of facilities and a number of customers or customer
zones. Finding the distribution pattern is a fairly straightforward mathematical program-
ming problem, e.g. transportation problem. When we add the possibility of removing or
adding a number of facilities with their associated fixed costs, we have a more complex
facility location problem which is in general an integer programming problem. Many real
world problems in industry, business, government and nonprofit organizations include a
variety of conflicting goals and objectives as functions of their distribution patterns and
facility locations. Adding these functions as the criteria of optimization we expand our
probiem into a multicriteria transportation and facility location problem. However, real
life situations create even more complex problems. Therefore the problem considered in
the paper will be precisely described and formulated once more in the next sections.

Due to the multiple objective formulation and to the integrity of location variables,
the problem is complicated and computationally complex. Hence the method designed for
solving the problem should be stable and fast in order to produce a correct result or its
acceptable approximation in a reasonable time.

W. Ogryczak et al. - 126 - A solver for ...

This paper describes the initial results of research, development and implementation
of the Dynamic Interactive Network Analysis System (DINAS) which is being developed
with the purpose of solving various multiobjective transshipment problems with facility
location on IBM PC/XT microcomputers. The main result of this stage is the develop-
ment and implementation of the TRANSLOC solver which provides the DINAS with
solutions to single-objective problems. It is based on the branch and bound scheme with a
pioneering implementation of the simplex special ordered network (SON) algorithm with
implicit representation of the VUB & SUB constraints. The paper describes in details
backgrounds of techniques used in the TRANSLOC solver. A real example of the trans-
shipment problem with facility location is also discussed and an outline of the designed
procedure for handling multiple objectives in the DINAS is given.

2. An example

As an illustration of the transshipment-location type problem mentioned in the pre-
vious section, the problem of location of depots in a sugar-beet distribution system is con-
sidered. The problem was studied by Jasinska & Wojtych in [7]. They were dealing with a
real-life problem concerning a sugar enterprise in Lower Silesia, in Poland.

There are 1588 villages in the considered region. Each of them is treated as a farm
that produces the sugar-beet. Every farm is characterized by its total supply in the
sugar-beet harvesting period. The sugar-beet is supplied to sugar-mills directly or through
some depots. There are 12 sugar-mills in the region. Each sugar-mill is characterized by
two amounts: the total storing capacity and the total production capacity in one produc-
tion season.

A sugar production season in Poland lasts about three months. The total amounts of
the sugar-beet must be shipped between the farms and the sugar-mills in this period.
There are three types of shipping: between the farms and depots, between the depots and
sugar mills, and directly between the farms and the sugar-mills. Each of the types is
characterized by a unit cost of the shipping.

Climatic conditions and poor storage facilities may cause losses of sugar-beet volume
or sugar content in the sugar beet. To avoid the losses, the deliveries from farms should
be carried out within the harvesting season (the beginning phase of the sugar production
season). However, the sugar-mills stores have limited capacities and cannot take all the
amount of the sugar-beet in the short time. Therefore, a part of the sugar-beet supply has
to be delivered to depots and stored there temporarily. But the technological and
economic analysis indicates that the density of the existing network of small depots is
insufficient in the case of an increased supply. Hence, some existing depots should be
modernized to increase their throughputs and some new depots should be built.

The sugar industry decision maker chose 49 possible depot locations in the con-
sidered region. Each location is characterized by the lower bound (20 000 tons) and the
upper bound (55 000 tons) of throughput. Every potential depot is considered as two
separate depots: the basic one with the throughput within the interval [20 000, 34 000]
and the additional one with the throughput belonging to [0, 20 000]. The additional depot
can be opened at the same site if the basic depot reaching its upper throughput limit is
opened there.

Thus in the given site:

W. Ogryczak et al. - 127 - A solver for ...

- no depot need to be located;
- the basic depot may be located;

- both the basic depot and the additional one may be located provided the basic depot
reaches the upper bound of its throughput.

Each depot location is evaluated by the operating and the investment costs. The
investment cost is defined as the annual fixed charge of the basic or additional depot.

The problem is to determine the number, location and sizes of the depots to be
selected from the candidate set and to find the corresponding sugar-beet flows from farms
to sugar-mills directly or through depots so as to minimize the total transportation and
depot investment and operating cost (provided the total amount of sugar-beet is delivered
from farms to sugar-mills).

As reported in the quoted paper [7], the problem could not be solved in a reasonable
time due to its large size. Fortunately, the size can be reduced by an aggregation of farms
into supply zones. The farms located in the neighborhood of the same depot or sugar-mill
or situated along the same route were aggregated. In consequence, instead of 1588 farms
128 zones were generated and a reduced problem was solved using the MPSX and MIP
systems.

The problem described above represents a class of transshipment problem with facil-
ity location. It 1s a single-objective optimization problem. However, the single-objective
optimization is insufficient in real-life circumstances and additional objectives should be
taken into consideration. For instance, the total amount of the sugar-beet flow through
depots should be minimized. This criteria seems to be very important because of the
direct flows from farms to sugar-mills are technologically most efficient. As another objec-
tive, minimization of the total amount of the sugar-beet delivered by rail or maximization
of the sugar production volume can be considered. The objectives need not be, in general,
comparable; therefore our problem should be considered as a multicriteria optimization
problem. The multicriteria optimization approach to the transshipment-location type
problem will be developed more precisely in next sections.

3. The generalized network model

In the previous section, we have introduced a class of transshipment problems with
facility location. In this section, we define the mathematical model of such problems more
precisely.

A network model of the problem consist of nodes that are connected by a set of
direct flow arcs. The set of nodes is partitioned into two subsets: the set of fixed nodes
and the set of potential nodes. The fixed nodes represent “fixed points” of the transporta-
tion network, i.e., points which cannot be changed. Each fixed node is characterized by
two quantities: supply and demand. The potential nodes are introduced to represent pos-
sible locations of new points in the network. Some groups of the potential nodes represent
different versions of the same facility to be located (e.g., different sizes of a warehouse).
For this reason, potential nodes are organized in the so-called selections, i.e., sets of nodes
with the multiple choice requirement. Each selection is defined by the list of included
potential nodes as well as by a lower and upper number of nodes which have to be
selected (located). Each potential node is characterized by a capacity which bounds maxi-
mal flow through the node. The capacities are also given for all arcs but not for the fixed
nodes.

Several linear objective functions are considered in the problem. The objective func-
tions are introduced into the model by given coefficients associated with several arcs and

W. Ogryczak et al. -128- A solver for ...

potential nodes. They will be called cost coefficients independently of their real character
in the objective functions. The cost coefficients for potential nodes are, however, under-
stood in different way than for arcs. The cost coefficient connected to an arc is treated as
the unit cost of the flow along the arc whereas the cost coefficient connected to a potential
node is considered as the fixed cost associated with using (locating) of the node rather
than as the unit cost.

We assume two restrictions on the network structure in our model:
(1) there are no arcs that directly connect two potential nodes;
(2) each potential node belongs to one or two selections.

Both the restriction are not very strong. The first one does not imply any loss of
generality since every two of potential nodes can be separated by an introduction of an
artificial fixed node if necessary. The second requirement, in general, restricts the class of
problems. However, each potential node in practical models usually belongs to exactly one
selection or sometimes to two selections in more complex problems.

For simplification of the model and the solution procedure, we transform the poten-
tial nodes into artificial arcs. The transformation is performed by duplication of all poten-
tial nodes. After the duplication all the nodes can be considered as fixed and each poten-
tial node is replaced by an artificial arc which leads from the node to its copy. Due to the
transformation we get a network with fixed structure since all the nodes are fixed. Poten-
tiality of artificial arcs does not imply any complication because each arc in the network
represents a potential flow. Moreover, all the bounds on flows (i.e., capacities) are con-
nected to arcs after this transformation. Additional nonstandard discrete constraints on
the flow are generated only by the multiple choice requirements associated with the selec-
tions. Cost coeflicients are connected only to arcs, but the coefficients connected to
artificial arcs represent fixed costs.

A mathematical statement of this transformed problem takes the form of the follow-
ing generalized network model:

minimize Y i+ Y fhy; p=1.2,.,nobj (3.1)
(1,7)€A\A, (5,7)€A,
subject to
IU — 2 IJ"' = b" i:1,2,...,nn0d6 (32)
(1.7)eA (5,9)€4
0<z;<c¢ (11)€EA (3.3)
0 <z < ey (7)€EA4, (3.4)
< Y Yij < by, k=1.2,..,nsel (3.5)
(4,7)€S;
y;;=00or 1, (1,5)EA, (3.6)
where
nobj number of objective functions,

nnode number of nodes (including copies of potential nodes),

nsel number of selections,

W. Ogryczak et al. - 129 - A solver for ...

A set of arcs (including artificial arcs),

A, set of artificial arcs,

]E- cost coefficient of the p-th objective associated with the arc (i,j),

b, supply-demand balance at the node i (supply is denoted as a positive quantity
and demand as negative),

€ij capacity of the arc (i)

gk,hk lower and upper number of (artificial) arcs to be selected in the k-th selection,

Sy set of (artificial) arcs that belong to the k-th selection,

T;; decision variable that represents flow along the arc (i,j),

Vi decision variable equal 1 for selected arc and O otherwise.

The generalized network model of this form includes typical network constraints
(3.2) with simple upper bounds (3.3) as well as a special discrete structure {3.5)-(3.6) con-
nected to the network structure by variable upper bounds (3.4). While solving the model
we have to take advantages of all these structures. -

Taking into consideration an artificial arc, we notice that its capacity limits not only
the flow along this arc but also many other flows. Let (io, jo) be an artificial arc. Then
(1, 7,) is the only arc which emanates from the node 7, and only arc which reaches the
node j . Due to this fact we can introduce additional bounds on flow along each arc which
reaches the node 7, or emanates from the node j_. In such a way we get additional ine-
qualities:

Ty < ey and T < ¢y, (N,I)EA,, (E1)EA, (7,t)eA (3.7)

which makes the constraints of our model tighter and improves effectiveness of the solu-
tion process.

4. Interactive procedure for handling multiple objectives

There are many different concepts for handling multiple objectives in mathematical
programming. We decided to use the so-called reference point approach. The reference
point approach introduced by Wierzbicki (see [16]) was developed in many papers (see
[9]) and was used as a basis for construction of the software package DIDAS (Dynamic
Interactive Decision Analysis and Support system). The DIDAS package developed at
ITASA proved to be useful in analyzing conflicts and assisting in decision making situa-
tions (see [4],[5]).

The reference point approach is a generalization of the well-known goal program-
ming method (see [6]) and of the method of displaced ideals (see {18]). The basic concept
of this approach is as follows:

(1) the decision-maker (DM) forms his requirements in terms of aspiration levels, i.e., he
specifies acceptable values for given objectives;

(2) the DM works with the computer in an interactive way so that he can change his
aspiration levels during the sessions of the analysis.

In our system, we extend the DIDAS approach. The extension depends on additional
use of reservation levels which allow the DM to specify necessary value for given objec-
tives (see [17]).

Consider the multi-objective program associated with the generalized network
model:

W. Ogryczak et al. - 130 - A solver for ...

minimize ¢

subject to
g = F(z,y)
(z,y)€Q
where

q represents the vector,
F is the linear vector-function defined by (3.1),

Q denotes the feasible set of the generalized network model, i.e., the set defined by con-
ditions (3.2)-(3.7).

The reference point technique works in two stages. In the first stage the DM is pro-
vided with some initial information which gives him an overview of the problem. The ini-
tial information is generated by minimization of all the objectives separately. More pre-
cisely, a sequence of single objective programs is solved defined as follows:

nobj

min{?(0) + LB S @) ¢ (20)€Q), p=120mmobi (4.1)

where fP denotes the p-th objective function and p is an arbitrarily small number.

The so-called decision-support matrix (or pay-off matrix) D:(qp]-) p=1,...,nobj;
7=1,...,n0bj which yields information on the range of numerical values of each objective
is then constructed. The p-th row of the matrix D corresponds to the vector {zP,yP)
which solves the p-th program (4.1). Each quantity gy; Tepresents a value of the J-th
objective at this solution (i.e., gy, f(,yp)) The vector with elements ¢, 3 e., the
diagonal of D, defines the utopia (71deal) point. This point, denoted further by q , 18 usu-
ally not attainable but it is presented to the DM as a lower limit to the numerlcal values
of the objectives.

When analysing a column j of the matrix D, we notice that the minimal value in the
column is qpp:qnp. Let an be the maximal value, i.e.,

qnj = max g,;

1<p<n=ob; pJ

The point ¢" is called the nadir point and may be presented to the DM as an upper

guideline to the values of the objectives. Thus, for each objective fP a reasonable but not

necessarily tight upper bound ¢" and a lower bound ¢" are known after the first stage of
the analysis.

In the second stage, an interactive selection of efficient solutions is performed. The
DM controls the selection by two (vector-) parameters: his aspiration level ¢ and his
reservation level ¢", where

g¥<q¢%<q¢"<q"

The support system searches for the satisfying solution while using an achievement scalar-
izing function as a criterion in single-objective optimization. Namely, the support system
computes the optimal solution to the following problem:

nobj

E up(q 7%.q") (42)

minimize max pp(q q ,qr) + ——=

1<p<nobj nob]

subject to

W. Ogryczak et al. - 131 - A solver for ...

q=F(z,y)
(z,y)€Q

where p is an arbitrarily small number and Hp 1s a function which measures the deviation
of results from the DM’s expectations with respect to the p-th objective, depending on
given aspiration level ¢® and reservation level ¢".

The computed solution is an efficient (Pareto-optimal) solution to the original mul-
tiobjective model. It is presented to the DM as a current solution. The DM is asked
whether he finds this solution satisfactory or not. If the DM does not accept the current
solution he has to enter new aspiration and/or reservation levels for some objectives.
Depending on this new information supplied by the DM, a new efficient solution is com-
puted and presented as a current solution. The process is repeated as long as necessary.

The function up(q,qa,qr) is a strictly monotone function of the objective vector ¢
with value p,=0 if ¢=¢°® and py=1 if ¢=q". In our system, we intend to use a piece-
wise linear function Kp defined as follows:

Bpap—p)/(4p—ap) ifq,<qp
tp(9,0%.0")=1(ap—ap)/(qp—ap), ifgp<g,<qp
vp(ap—ap)/ (ap—) +1, ifgy<gq,

where ﬂp and p (p=1,2,...,n0bj) are given positive parameters. In particular, the
parameters ﬂp and 7y, may be defined (similarly as in [17]) according to the formulae

Bp=(a,—4p)/(ap—a;)*B
p=(ap—ap)/(qp—ap)*7
with two arbitrarily given positive parameters § and 7.

If the parameters ﬂp and Yp satisfy inequalities ﬁp<1 and '7p>1, then the achieve-
ment functions g, are convex. Minimization of the function By is then equivalent to
minimization of a variable Kp defined as follows:

K=Vt Yptp — pv,;‘" (4.3)

v,— v+, =(g,—45)/ (g5~ q5) (4.4)

0<v,<1 (4.5)
+ —_

vy 20, v, >0 (4.6)

To provide for a special treatment of the equalities (4.3) in the single objective
solver, we perform substitutions:

g+ — -

ﬂpvp _-dp and YpUp —dp

Finally, we form the problem (4.2) in terms of linear programming as the following
program:

. N p nobj (4 7
min 2z . .
nobj pglu p

subject to

W. Ogryczak et al. -132- A solver for

up<z, p=1,2,...,nobj (4.8)
p="Yp +d‘—d+ p=1,2,...,n0bj (4.9)

vp—ﬂ—d++“pd_ (ap—9p)/(9p—9p)s P=1.2,...,n0bj

Ogvpgl, p=1,2,...,n0bj (4.11)

d,f >0, d, >0, p=12,..,nobj (4.12)

q=F(z,y) (4.13)

(z,y)€Q (4.14)

5. General concept of the TRANSLOC solver

The TRANSLOC solver has been prepared to provide the multiobjective analysis
procedure with solutions to single-objective problems. According to the interactive pro-
cedure described in Section 4 the TRANSLOC solver has to be able to solve two kinds of
single-objective problems: the first one associated with calculation of the decision support
matrix (problems (4.1)) and the second one associated with minimization of the scalariz-
ing achievement function (problems (4.2)). Both kinds of the problems have, however, the
same main constraints which represent the feasible set of the generalized network model.
Moreover, the other constraints of both kinds of problems can be expressed in very similar
ways. So, we can formulate a general single-objective problem for the TRANSLOC solver
as follows:

max § (5.1)
subject to
by Ty — Y, z;=0b; 1=1,2,.. nnode (5-2)
(1,7)eA (7,9)€A
wk + Z y‘] = hk k:1,2,...,nSCl (53)
(I‘,]A)Gsk
p — vy + df —d7 =0 p=12....,nobj (5.4)
1 4 1 ,-
v, — —d +—d —o (Y f Tt Py.) = (5.5)
14 p 97y
S (1) €AA, ()€ Aq
= 5p p=1,2,...,noby
nobj
- Yu, =0 59)
p=1
p _
s+ z+ o, =0 5.7
nob; ™o (5.7)
0 <z, <e¢; (1,7)€A (5.8)
0 S Wy S hk — G k=1,2,...,nsel (59)
Iij S ijy,']'v I] = ‘]y‘_’?]t Uyg] (iaj)eAaa (t,i)EA,(j,t)GA (5'10)
by < 2 p=1,2,...,n0b) (5.11)
y;=0or1 (1,7)€4, (5.12)

W. Ogryczak et al. - 133 - A solver for ...

and depending on the kind of optimization:

d;’ =0,d, =0 p=1,2,...,nobj (5.13)
for the utopia point calculation or

dp+ >0, dp_Z 0, 0<y, <1 p=1,2,....,noby (5.14)
for the achievement scalarizing function optimization, respectively, where: op = 1 and

a
_ _ 1 9 .
6p = 0 during utopia point calculation, o, = — and 6p = -0 during the
9~ q a9 — 4

minimization of the achievement scalarizing function, whereas all the other quantities are
the same as in Sections 3 and 4.

The above single-objective problem is a typical mixed integer linear program, i.e., it
is a typical linear program with integrity conditions for some variables (namely Yi;).
Mixed integer linear programs are usually solved by branch and bound approach with
utilization of the simplex method. The TRANSLOC solver also uses this approach. For-
tunately, only very small group of decision variables is required to be integer in our
model. Therefore, we can use a simple branch and bound scheme in the solver. Back-
ground of this scheme is described in Section 6.

Even for a small transshipment problem with facility location the corresponding
linear program (5.1) - (5.11) has rather large size. For this reason it, cannot be solved
directly with the standard simplex algorithm. In order to solve the program on IBM
PC/XT microcomputers, it is necessary to take advantages of its special structure.

Note that the main group of equality constraints (5.2) represents typical network
relations. Similarly, the equalities (5.3) and (5.4) include only variables with unit
coefficients. All the rows (5.2) - (5.4) can be handled in the simplex method as the so-
called special ordered network (SON) structure. Basic rules of the SON technique used in
the TRANSLOC solver are developed in Section 7.

The inequalities (5.8) - (5.9) and (5.13) or (5.14) are standard simple upper bounds
(SUB) which are usually processed out of the linear programming matrix. Similarly, ine-
qualities (5.10) and (5.11) can be considered as the so-called variable upper bounds
(VUB) and processed out of the matrix due to a special technique. Basic rules of the tech-
nique for SUB & VUB processing are developed in Section 8.

Thus, only a small number of inequalities (5.5) - (5.7) has to be considered as typical
rows of linear program. While taking advantage of this fact, the TRANSLOC solver can
process transshipment problems of quite large dimensions. As a proper size of problems
for IBM PC/XT microcomputers we regard:

- a few objective functions,

- about one hundred of fixed nodes,

- a few hundreds of arcs,

- several potential nodes (artificial arcs) organized in a few selections.

Initial experiences with the TRANSLOC solver show that such problems can be
solved on IBM PC/XT microcomputers in reasonable time.

6. The branch and bound scheme

W. Ogryczak et al. -134- A solver for ...

6.1. A basic concept

As mentioned in Section 5, the TRANSLOC solver uses the branch and bound
approach for handling the discrete structure of the single-objective programs (5.1) -
(5.14). The branch and bound technique was introduced by Land and Doig (see [8]) and
further developed by many authors (see e.g. [1]). It is implemented in most of the com-
mercial codes for solving mixed integer linear programs. The branch and bound approach
proved to be the most effective for linear programs with large number of continuous vari-
ables and relatively small number of integer variables. The single-objective programs (5.1)
- (5.14) have just such a structure.

The problem (5.1) - (5.14) can be shortly written in the form:
P,: max f(z,y): (z,y)€G,0 < yi; < 1, y;,€Z for (1,5)€A,
where:
T represents a vector of all the continuous variables,
G is the feasible set defined by conditions (5.2) - (5.11) and (5.13) or (5.14), respectively,
Z denotes the set of integer numbers.

A basic concept of the branch and bound approach to solving the problem P, may
be summarized as follows (see [10]). At first, the continuous variable problem associated
with P_ is solved. If one or more variables y;; turn out to be noninteger, i.e., 0 <y, <1
in the optimal solution, then one such variable is chosen as the so-called branching vari-
able to generate two subproblems P; and Pp, :

P; : problem P, with the added constraint Yi; = 0;
Pp : problem P, with the added constraint y; = 1.

The same procedure can be, obviously, repeated with respect to new problems P,
or/and Pp. In such a way, we construct a general process which generates a binary tree of
(sub)problems.

Consider a parent problem Pp from which two subproblems of types L and R are
generated. Let C; denote the optimum value of the objective function of the continuous
problem corresponding to the problem P, and let I, denote the value of the objective
function at an optimal integer solution to P,. The following relations are easily seen to be
true:

IN = rnaxIL,IR
Cn2Cp, Oy 2 Cp

Let T denote the so-called candidate set of problems, that is the set of indices identi-

fying all the terminal nodes at any stage of the development of the tree. Then

max C; > I, > I}

ieT
where I is the value of the objective function of any Pk,kE T, such that Cp=1I; and I,
corresponds to the optimal integer solution sought. Thus by recurring the process of
branching and solving continuous problems the optimal integer solution will be finally
found as an optimal solution to a continuous problem corresponding to one of the sub-
problems from the candidate set.

W. Ogryczak et al. - 135 - A solver for

6.2. The branch and bound algorithm

At each stage of the branch and bound process it is necessary to know whether or
not an integer (feasible) solution to Py has been found so far. If it has, it is also necessary
to know the value of the objective function of the best of these. Existence is recorded in
the algorithm by an integer solution marker and the best solution value so far found by
the so-called cutting-value V. A basic branch and bound algorithm may be written as fol-
lows:

(0) Initial step. Define the integer solution marker and the cutting-value according to
the best known integer solution or clear the marker and initialize the cutting-value
to a large negative value. Solve the continuous LP problem corresponding to Py. If
an optimal solution exists put P into the candidate set and go to (1). Otherwise go
to (4).

(1) Subproblem selection. If the candidate set is empty, go to (4). Otherwise choose a
subproblem from the candidate set (deleting it from the set) and test whether the
objective value of the continuous optimal solution is greater than the cutting-value
V. If it is not, enter (1) again.

(2) Branching. Select a branching variable y,, such that 0<y,,<1 for optimal solution
to the continuous subproblem and generate two subproblems P; and Pp,.

(3) Subproblems solution. Solve the continuous problems corresponding to the P; and
Pp subproblems using a simplex algorithm. If some subproblem has no feasible solu-
tion then it is regarded as fathomed. If the objective function value is less than or
equal to V, then the corresponding subproblem is regarded as fathomed. If the solu-
tion satisfies the integrity conditions (i.e., Yy;;=0 or 1 for (1,5)€A,), then the
corresponding subproblem 1is regarded as fathomed, the integer solution marker is set
and the cutting-value V is updated. Add the subproblems which are not fathomed
to the candidate set and go to (1).

(4) Ezit. If the integer solution marker is not set, then no integer (feasible) solution
exists to the original problem. Otherwise output the best integer solution as the
optimal solution.

Effectiveness of an implementation of the branch and bound algorithm depends on
techniques used for putting through the following tasks: a) solving of continuous LP sub-
problems, b) subproblem selection, c) choice of branching variable.

Solving of continuous subproblems should be organized in such a way that the
optimal basis to the parent subproblem is restored as an initial basis for optimization of
the current subproblem. Usually the dual simplex method is used for performing the LP
optimization (see [19]). It was impossible, however, to use the dual simplex method in our
code due to the VUB structure processed out of the basis. For this reason we decided to
use the so-called composite primal simplex algorithm (see [11]) which also is very effective
in reoptimization of slightly modified linear programs.

There are many heuristic strategies for subproblem selection and choice of branching
variable. They use some special statistical estimations (the so-called pseudo-costs) and are
reported to be very effective while solving extremely large integer programs. However, our
solver was designed for solving rather small problems on microcomputers. Therefore, we
chose techniques which intend to restrict the growth of the tree. We use the so-called
LIFO (Last In - First Out) strategy for subproblem selection, i.e., we always select the
most recently created subproblem for branching. This strategy implies that the candidate
set is added to and subtracted from in a linear fashion. As a branching variable we choose
the closest one to the integer value, i.e., a variable which minimizes min(y,-j, l—ytj).

W. Ogryczak et al. -136 - A solver for ...

Such a strategy used together with the LIFO rule for subproblem selection aims at minim-
izing the number of the so-called backtrackings in the branch and bound process. In result
we get a simple branch and bound algorithm which appears to be rather effective in solv-
ing problems of type (5.1) - (5.14) on IBM PC/XT microcomputers.

7. The simplex SON algorithm

7.1. Graph representation

The simplex special ordered network (SON) procedure was developed by Glover &
Klingman in (2],{3]. It is a partitioning method for solving LP problems with embedded
network structure. The procedure is based on the network topology of the basis embodied
in a specially constructed master basis tree. The main features of this approach are fast
multiplication algorithms with basis inverse, accelerated labelling algorithms for modify-
ing the master basis tree in an efficient manner and a compact form of the basis inverse
occupying a small memory space only.

Let A denote the matrix of an auxiliary LP problem (excluding the SUB and VUB

constraints). Without loss of generality it will be assumed that A has full row rank. As it
was discussed in Section 5 the matrix A has a special form

ANN ANL

ALN ALL

where ANN (m x n) denotes the matrix corresponding to a pure network problem.

Thus each column of the submatrix ANN contains at most one +1, one -1 end zeros
elsewhere. It will be assumed that there is no column with all zeros in the matrix ANN.
The other submatrices ANL (mxp), ALN (gxn), ALL (gxp) consist of any real ele-
ments.

The matrix ANN defines a digraph G(V,E) as follows. Each constraint represented
by a row of ANN corresponds to a node of the graph and will be referred to as node con-
straint or simply node. Each variable represented by a column of ANN corresponds to an
arc of the graph and will be referred to as arc variable or simply arc. There are two
classes of arcs: ordinary arcs which have exactly two non-zero entries in ANN and slack
arcs which have exactly one non-zero entry in ANN. The -1 entry in a column indicates
the node where the arc begins and the +1 entry in a column indicates the node where the
arc ends. For a slack arc (column with only one non-zero entry) the endpoints of the arc
are incident at the same node. Such arc is called simple loop.

7.2. Basis structure

W. Ogryczak et al. - 137 - A solver for

The SUB and VUB simplex algorithms use a basis B which is composed of a linearly
independent set of column vectors selected from the matrix A. Any basis B will be a non-
singular matrix of order (m+q)x(m+q) and may be partitioned as follows

Xp1 Xp2

|
Bll B12 |
|
i
|
, By B,
Lo

where B is a nonsingular submatrix of ANL and IB:(IBI,IBz) denotes the basic part
of z. It appears to be better for the effectiveness of the algorithm if rank of B, is as large
as possible.

Thus the basic variables zp, are exclusively arc variables.The basic variables zp,
may also contain arc variables. Analogous principle holds for rows of B. The rows of By,
are exclusively node rows. The matrix (By;,B4,) may also contain node rows.

The basis inverse B~ may be written as follows

—_—— e m e m - = - = -y
|

—1 ~1 _
By, + By B1a V™ "By By, —B1 B, V! :
|

|
. -v=!1B, B! y—1
|

where V=B,, — B, B];!B,.

7.3. Tree representation of B,

Define the so called master basis tree (MBT) associated with a given basis. The set
of nodes of the tree contains all nodes of our LP/embedded network problem plus another
node called the master root. Thus MBT always contains m+1 nodes

N =01,...m
where 0 is the master root, and m arcs. The nodes of MBT that correspond to rows of
B, are called externalized roots (ER’s).

All of the ordinary arcs in B{; belong to MBT. There may be two types of simple
loops associated with B ;. If the simple loop in B is a slack arc of ANN then the simple
loop is replaced by an arc between the master root and its unique node. If the simple loop

W. Ogryczak et al. -138- A solver for ...

in By, is an ordinary arc in ANN, it is replaced by an arc between its nodes in ANN (one
of the endpoints of the arc is ER node). Each ER is connected to the master root by an
externalized arc (EA).

The arcs in the master basis tree have a natural orientation defined as follows: if the
edge (u,v) belongs to MBT and node u is nearer the master root than v, then u is called
the predecessor of v and v is called the immediate successor of u. Thus we will refer to a
basis arc as conformable if its ANN direction agrees with its MBT orientation, and refer
to the arc as nonconformable otherwise.

7.4. Representation of MBT
The master basis tree is represented by the following node functions.
(1) PRED. The values of the function are defined as follows PRED]i| = predecessor of
node i in MBT. For convenience PRED|[0] = -1.

(2) THREAD. The function defines a connecting link (thread) which passes through
each node exactly once. If i is a node on the thread, then THREAD/i] is the next
one. The alternation of the nodes on the thread is defined by using the preorder
method of tree passage.

(3) RETHREAD. 1t is a pointer which points in the reverse order of the thread. That
is, if THREADIi] = j then RETHREAD{j] = i.

(4) DEPTH. The value DEPTH]i| specifies the number of arcs in the predecessor path
of node i to the master root.

() CARD. Let T(i) denotes the subtree of MBT associated with node i. (The node i is
the root of the subtree and each node j such that predecessor path from j to the mas-
ter root contains i, belongs to the subtree.) CARDJi] indicates the number of nodes
contained in T(i).

(6) LAST. The value LAST]i| specifies the node in the subtree T(i) that is the last node
of this subtree in thread order.

(7) CONF. Each node i in MBT represents the predecessor arc of the node. If the arc is
conformable then CONF|i] = +1, otherwise CONF|i] = -1.

7.5. Finding the representation of the entering vector

Let P = (Pl,Pz)T denote the column vector selected to enter the basis matrix (P,
specifies the part of P associated with B;; and P, the part associated with By,). Simi-
larly a = (aBlvaBz)T denotes the representation of P in terms of B.

We have @ = B 1P and hence using the partitioning formula for B~1 we obtain
the following system of equations

agy = V1 (=By; Bii' Py + Py)
ap; = Byi' (Py — Bipags)
The execution of the formulas may be decomposed into five steps
(1) Gy = Byi' Py
(2) Gy = Py — ByGy
(3) G5 = V7lG,

W. Ogryczak et al. - 139 - A solver for ...

(4) G4 = Py — By,G,
(5) G5 = B1y' Gy
Suppose that the matrix D= V 1 is attained in the explicit form (it is the right

down corner part of the matrix B~) The first and fiveth steps consist in computing the
multiplication z= Bll G where either G=P; or G=G* Consider a multiplication pro-
cedure which uses the master basis tree structure for B;;. In the procedures the system of
linear equations B;;z=G is solved instead of computing the multiplication z= BlllG
The system B11z=G is transformed via the MBT structure to an equivalent system
Blllx G with an upper triangular matrix Bll The unknowns and equations are ordered
in the triangular system as the arcs and nodes on the thread line, respectively.

Let x[k| denote the value of the basis variable represented by the node k in MBT.
The result z=(z[1],...,z[m|)= Bll G may be computed by the algorithm:

Algorithm A.
(0) k := LAST|0];
While k = 0 do:
(1) if q := PREDJk] is not ER then G|q):=G|[q]+Gk];
(2) x[k] := CONF k|*Glk];
(3) k := RETHREAD[k];
End of while loop.

The cost of the algorithm 1s proportional to the number of nodes in MBT. There are
other versions of the algorithm for special cases when a column of G contains either two
non-zero entries or one non-zero entry only.

7.6. Finding the dual vector

Let cp=(cpq,;cpy) denote the vector of basis cost coefficients. The dual vector
w:(wl,wz):cBB_l is needed at the pricing step of the simplex method and may be
computed as follows:

— -1 —1
wy = (epy—cp1B1y Bg) V
— —1
wy = (ep1—wyByy) By
The formulas may be executed by decomposition into following steps:
— —1

(1) Hy = ¢pg1Bpy

(2) Hy = cpy ~ H By,

(4) Hy=cp — H3le
The multlpllcatlon at the step 3 may be directly computed since the matrix D=V~ 1 s
assumed to be kept in the explicit form. The steps 1 and 5 use the matrix Bll1 for the
multiplication w= HBll , where either H=cg, or H=H,. The multiplication can be exe-
cuted using the master basis tree structure for By;.

Computing the dual vector is equivalent to solving the system of equations
w311:~H~ By using the MBT structure we can solve an equivalent lower triangular sys-

tem WB,;=H. In the last system, unknowns and equations are ordered as the nodes and
the arcs on the thread line, respectively.

W. Ogryczak et al. - 140 - A solver for ...

Let w(k] denote the component of w corresponding to the node k, and H[k| denote
the component of H that corresponds to the arc represented by node k. Computation of
the vector w is performed by the following algorithm:

Algorithm B.

(0) 1i:= THREAD|0];
While 1 = 0 do:
(1) q:= PRERDJ[i|;
(2) if q is not ER then w[i] := w{q]+CONF i|*H][i];
(3) 1i:= THREADIij;
End of while loop.

The cost of the algorithm depends linearly on the number of nodes. Another version

of the algorithm solves the special case when a row vector of H contains one non-zero
entry only.

7.7. Exchange rules

Consider a single step of the simplex method. When the incoming and outgoing
variables are chosen, then the whole basis representation has to be changed and adjusted
to the new situation. Thus the problem arises how to change, in a single simplex iteration,
the matrix D and the functions describing the master basis tree.

Let z, and z, denote the incoming and outgoing variables, respectively, and let z,
be the so called transfer variable that belongs to zg, and replaces z, in zpg,, if it is pos-
sible.

At each iteration, the variables can alter by the transitions:
— Incoming variable z, : zy—zpg, or zg,
- Outgoing variable z, : zpg, or Zgy—zy
— Transfer variable z, : zp,—Zp,, or no change

- Transfer ER nodes : zpg;—Z2p, (one ER more), or zg,—zp; (one ER less), or no
change.

If an arc is added to the master basis tree, then a loop is closed. In order to have a
tree in the next iteration also, the loop must be cut and exactly one arc from the loop
must be deleted. It is the fundamental exchange rule for the master basis tree. Now we
will discuss in details all cases that can be met in the exchange.

When zp; is maximal relative to zp,, exactly one of the seven types of basis
exchange steps, listed below, will occur, and their updating prescriptions will maintain
Tpg) maximal.

Type 1. The outgoing variable z, leaves the zp, part of the basis and either z is not
an arc or its lop in MBT does not contain an EA. The master basis tree is not
changed. D is transformed by elimination (the pivot row z, lies in the zp, part of
B~1).

Type 2. The outgoing variable z, leaves the zg, part of zp, z, is an arc and the loop
for the arc contains an EA. D is transformed by elimination and the pivot row lying
in the g, part of B~ ! is deleted from D. The column of D corresponding to the ER
representing the mentioned EA is dropped also. The z, arc is added to MBT and
the EA is deleted from the z, loop. The ER representing the deleted EA changes

W. Ogryczak et al. - 141 - A solver for

into an ordinary node.
Remark: In all of the remaining types of basis exchange the outgoing variable leaves
the g, part of the basis. Hence the pivot row is always generated outside of D.

Type 3. The incoming variable z, is not an arc or else its loop contains neither an EA
nor the arc z,. There exists an arc z; in g, whose loop contains z,.
When the elimination is finished, the D part of the pivot row is added to D and z,
row of D is dropped. The z, arc is added to MBT and the z, arc is deleted.

Type 4. Variable z, is not an arc or else its loop contains neither an EA nor the arc z,.
No arc z, exists in g, whose loop contains z,
Let n be the node representing the z, arc. Generate the D part of the column of
B~ that corresponds to LAST|n,| and add it to D. Add the pivot row to D after
execution of elimination. Add the arc (0,LAST[n,|) to MBT as a new EA and
change the ordinary node LAST|n,| into an ER.

Type 5. Variable z, is an arc and its loop contains the z, arc. If the loop contains an
EA also, there is no z; in zg, whose loop contains z,.
Execute the elimination of D. Add z, to MBT and delete (from its loop) z

Type 6. The incoming variable z_ is an arc and its loop contains an EA. There is an arc
7, in zg, whose lo-op contains the outgoing arc z,.
Elimination of D is executed. The z; row of D is dropped. The column of D associ-
ated with the node which represents the mentioned EA is also dropped. The master
basis tree is twice transformed:

(1) z,is added and the EA is deleted;

(2) 1z, is added and z, is deleted. The ER associated with the deleted EA changes
into an ordinary node.

Type 7. Variable z; is an arc and its loop contains an EA, but does not contain the arc
z,. There is no an arc z; lying on a loop containing z,
Let n, denotes the node representing the outgoing arc z,. Add to D the D part of the
column of B~ ! associated with the node LAST|n, | and delete the column associated
with ER representing deleted EA. Execute the elimination of D. Add the arc z, to
MBT and remove an EA lying in the loop for z,. The ER associated with the EA
changes into an ordinary node. The arc (0,LAST|n,|) is added also to MBT as a new
EA and the z, arc is deleted. The ordinary node LAST(n,] is changed into an ER.

8. Implicit representation of VUB & SUB constraints

8.1. A basic concept

The single-objective program (5.1) - (5.14) includes many inequalities of special sim-
ple forms. They can be partitioned into two groups. The first one consists of the so-called
simple upper bounds (SUB), i.e., inequalities of the form

0< T < ¢ for some variables z; and constants ¢

such as conditions (5.8), (5.9), (5.14) with respect to variables v, and continuous form of
(5.12). The second one includes the so-called variable upper bounds (VUB), i.e., inequali-
ties of the form

z; <e¢; %k for some variables ;s T and constants ¢

such as conditions (5.10) and (5.11).

W. Ogryczak et al. - 142 - A solver for ...

SUB constraints are usually implicitly represented in commercial simplex codes (see
[19]). Schrage (see [12]) proposed some technique for implicit representation of VUB con-
straints. The technique was further developed and led to effective implementations (see
13],]14)).

The techniques presented in the literature deals, however, only with a simple form of
VUB constraints. Namely, it is assumed that ¢;=1 in all VUBs and there are no upper
bounds on z; variables. The restriction of consideration to only unit variable upper
bounds usually does not imply any loss of generality since it can be attained by a proper
scaling of the problem. Unfortunately, in our model such scaling techniques cannot be
used without destroying of the special SON structure (see Section 7). Therefore, we were
forced to extend the VUB techniques in such a way that nonunit variable upper bounds as
well as some simple upper bounds on z; variables were acceptable.

With respect to the VUB & SUB structure the linear program under consideration
can be formulated as follows. The numerical data consist of an mxn matrix A of rank
m, a column m-vector b, a row n-vector f and a column n-vector ¢. In addition, the
index set N=1,2,...,n is partitioned into JUK, where J represents the so-called sons, i.e.,
variables which appear on the left-hand-side of variable upper bounds, and K represents
the so-called fathers, i.e., variables which appear on the right-hand-side of variable upper
bounds. Any variable that is not involved in any variable upper bound is regarded as a
childless father. The set J is further partitioned into the sets J(k), k€ K, where J(k) is
the set (possible empty) of sons of the father k€ K. It is assumed that the son has only
one father and that no father has a father. The father connected to a son z; will be
denoted by k(7). The problem is then

maz fz
subject to
Az=b

z; < ¢z for all k€K and jeJ(k)
5 < ¢ for all ke K
z>0
Let 8y be a slack variable for the variable upper bound -’E]'S €; Ty, SO that
z; + 55 = €T, I >0, 85 > 0.

Consider a basic solution to the problem. The basis consists of the m-+v columns
corresponding to some sons Z;, some fathers 7; and some slacks s; (where v denotes the
number of VUBs). From each VUB either one slack s, or one son z, belongs to the basis.
Calculation of the basic slacks is out of our interest and they can be simply dropped from
the basis, i.e., the corresponding rows and columns can be dropped. Further, the basic
sons which arrive in the other VUBs can be eliminated by submission T;=¢;%. So, the
whole basic solution can be computed from an mxm basis consisting of some linear com-

binations of columns from matrix A.

A basic solution to the problem is characterized as follows. The set of sons is parti-
tioned into the three sets J=JLUJUUJB, where JL denotes the set of nonbasic sons
fixed at their lower limits (i.e., £.=0), JU denotes the set of nonbasic sons fixed at their
upper limits (i.e., T, =¢;T) and JB denotes the set of basic sons. Similarly, the set of

]
fathers is partitioned into three sets K=KLUKUUKB, where KL denotes the set of

W. Ogryczak et al. - 143 - A solver for ...

nonbasic fathers fixed at their lower limits (i.e., ;=0), KU denotes the set of nonbasic
fathers fixed at their upper limits (i.e., zy=c;), and KB denotes the set of basic fathers.
The basis B consists of the columns corresponding to basic sons BJ‘:A]' and of the
columns corresponding to basic fathers given by the formula
Bk = Ak + A Z C ~Aj
JEJE)NJU

8.2. Pricing
Consider a basic solution given by a basis B and sets JL, JU, JB, KL, KU, KB.

For the determination of a nonbasic variable to be enter the basis in the simplex algo-
rithm it is necessary to compute the so-called reduced costs. Let z; denote an ordinary
reduced cost connected to the column A, i.e.,

7= f,— fgB71A; icJK

where fp denotes the basic part of the cost vector f. Due to implicit representation of
VUBs the reduced costs associated with several nonbasic variables take then form

dj = z; for jeJ
dg =2+ Y ¢z forkek
jEIR)NIU

Thus, in comparison with pricing in the standard simplex algorithm, the pricing
with implicit representation of VUBs needs a calculation of linear combinations of ordi-
nary reduced costs as the only one additional operation.

Due to the handling of the SUB structure together with the VUB constraints a non-
basic variable z or z; is considered as potential incoming variable if one of the following
conditions fulfills:

(A) d;j<0 and jeJL,
(B) d;>0 and j€JU,
(C) dy<0 and k€KL,
(D) d;>0 and ke KU.

Implicit representation of VUBs makes some degenerated simplex iterations so simple
that they can be performed on line during pricing. Namely, if z_ is an incoming variable
and k(7)€ KL, then the corresponding simplex iteration depends only on a change in the
sets JL. and JU, i.e., z. is moved from the set JL to the set JU or vice versa. Such an
operation can be performed while pricing before the computation of reduced costs for
fathers.

8.3. Pivoting

Let z, (s€J or s€K) be a variable chosen for enter the basis. Consider changes in
the basic solution while the value of z, is either increased for s€JLUKL or decreased for
s€JUUKU by a nonnegative parameter 6. Values of the variables z; for jeJL, z; for
k€KL and k€ KU remain on the same level but values of the variables z; for k€ KB
and z; for j€JB as well as values of the variables z; for 3€JU change proportionally
to ©. Namely, the following relations hold

W. Ogryczak et al. - 144 - A solver for ...

7;(©) = 1, — ©a; for 1€ KBUJB
z,(0) = z; - Oayyc; for jEJU and k(;)€KB

J
where
B~ 14, Jor seJL
—B_lAs for seJU
*= B YA, + % ¢jA;) for s€KL
jeJ(s)JU
-B7H A, + Y ¢;A)) for seKU
J€EJ(s)JU

Taking into consideration constraints of the linear program we get the following res-
trictions on © :

(1) z%—-©ay >0 for k€KB and z,-©a; >0 for ;cJB

(2) 2—©0p < ¢, for k€KB and 1,—00; < cje ;) Jor jEJB , k(J)EKU
(3) :cj-(-)aj < Ik(j)(")ak(j) fOT JEJB

(4) © <, for s€K and © < c,c(,) for s€J, k(s)eKU

(5) © < e (zp()—Oo0yyy) Jor s€J, k(s)EKB

(6) z,—0a,; < cj(cs—(')) Jor s€eKU, jeJ(s)NJB

Hence, we get six formulae for upper bounds on the parameter © and six correspond-
ing formulae for determination of the outgoing variable. Crossing these formulae with four
types of incoming variables we get 19 types (five criss-crossings are not allowed) of the
simplex transformations performed in the algorithm with implicit representation of the
VUB & SUB structure. The simplest transformation depends only on moving some vari-
able from one set to another without any change of the basis. Most of the transformations
depend on performing one of the following operations:

(a) some basic column multiplied by a scalar is added to another basic column;
(b) some basic column is replaced by a nonbasic column or a linear combination of non-
basic columns.

More complex transformations use both the above operations and the most complex
one needs two operations of type (a) and one operation of type (b).

References

(1] Forrest J.J.H., Hirst J.P.H., Tomlin J.A.: Practical solution of large mixed integer
programming problems with UMPIRE. Management Science 20 (1974), pp.736-773.

[2] Glover F., Klingman D.: The simplex SON method for LP/embedded network prob-
lems. Mathematical Programming Study 15 (1981) pp.148-176.

[3] Glover F., Klingman D.: Basis exchange characterization for the simplex SON algo-
rithm for LP/embedded networks. Mathematical Programming Study 24 (1985)
pp-141-157.

[4] Grauer M.: A dynamic interactive decision analysis and support system (DIDASS) -
user’s guide. WP-83-60. International Institute for Applied Systems Analysis, Laxen-
burg, Austria (1983).

W. Ogryczak et al. - 145 - A solver for ...

[5]

(6]
7]

[10]

1]
12]

[13]

[14]

Grauer M., Lewandowski A., Wierzbicki A..: DIDASS - theory, implementation and
experiences. In: Grauer M., Wierzbicki A.P. (eds): Interactive Decision Analysis.
Springer, Berlin 1984.

Ignizio J.P.: Goal Programming and Extensions. Heath, Lexington, MA (1976).

Jasinska E., Wojtych E.: Location of depots in a sugar-beet distribution system.
EJOR 18 (1984), pp.396-402.

Land A.H., Doig A.G.: An automatic method of solving discrete programming prob-
lems. Econometrica 28 (1960) pp. 497-520.

Lewandowski A., Grauer M.: The reference point optimization approach - methods
of efficient implementation. WP-82-019, International Institute for Applied Systems
Analysis, Laxenburg, Austria (1982).

Mitra G.: Investigation of some branch and bound strategies for the solution of
mixed integer linear programs. Mathematical Programming 4 (1973) pp.155-170.
Techniques. McGraw-Hill, New York (1968).

Schrage L.: Implicit representation of variable upper bounds in linear programming.
Mathematical Programming Study 4 (1975), pp.118-132.

Schrage L.: Implicit representation of generalized variable upper bounds in linear
programming. Mathematical Programming 14 (1978), pp.11-20.

Todd M.J.: An implementation of the simplex method for linear programming prob-
lems with variable upper bounds. Mathematical Programming 23 (1982), pp.34-49.

Wierzbicki A.P.: A mathematical basis for satisficing decision making. Math. Model-
ling 3 (1982), pp. 391-405.

Wierzbicki A.P.: On the completeness and constructiveness of parametric characteri-
zations to vector optimization problems. OR Spectrum 8 (1986), pp.73-87.

Zeleny M.: The theory of displaced ideal. In: Zeleny M. (ed), Multiple Criteria Deci-
sion Making - Kyoto. Springer Verlag, Berlin (1976).

Zorychta K., Ogryczak W.: Linear and Integer Programming - The Branch and
Bound Approach (in Polish). WNT, Warsaw, Poland (1981).

J. Majchrzak - 146 - DISCRET

A Methodological Guide to the Decision Support System
DISCRET for Discrete Alternatives Problems

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences

1. INTRODUCTION

1.1. Scope of the report
This report aims to:

- provide the information necessary to use the DISCRET package and to understand
its structure as well as the capabilities of the implemented approach,

- discuss such methodological issues associated with the implemented approach, which
might be interesting for the user and which justify the chosen approach,

- attract and encourage the reader to take the advantage of the package utilization,

It is assumed that the reader and the package user possess just the very basic infor-
mation about multicriteria optimization and discrete choice problems.

1.2. Purpose of the DISCRET package

DISCRET is a package created to solve basic multicriteria choice problems in which
a finite set of feasible alternatives (and decisions) is explicitly given and, for each alterna-
tive, the values of all criteria describing its attributes interesting to the decision maker
(DM) were evaluated and listed. The DM is assumed to be rational in the sense that he is
looking for an efficient {Pareto-optimal) solution as his final solution of the problem.

Such a discrete multicriteria optimization problem is rather a problem of choice than
optimization, since all the information necessary to make a decision is readily available.
Such a problem is rather trivial for any human being as long as the number of alternatives
is small (say, less than ten or twenty). However, if the number of alternatives and/or cri-
teria grows, the limits of human information processing capabilities are reached and some
decision support facilities have to be utilized to guarantee a proper and efficient decision
making.

The purpose of the DISCRET package is to support the DM in his search for final
decision in an interactive and user-friendly manner. It is assumed that the DM has only a
limited knowledge of the problem he wants to solve at the beginning of the session with
DISCRET. Therefore, during the session no difficult questions are asked (for example,
about criteria trade-offs, DM’ utility function or pairwise comparisons of alternatives).
The package-provided information enables the DM to gather the experience related to his
problem’s specific features as well as his own preferences.

The implemented approach seems to be easy to understand and approve even for a
user who is not very familiar with multicriteria optimization techniques.

The DISCRET package has been designed to solve medium-size discrete multicri-
teria problems with the number of alternatives ranging from few hundreds to few
thousands. The number of criteria is in the current version restricted to 20 (mainly due to

J. Majchrzak - 147 - DISCRET

the limitations of display facilities).

During the session the user controls the decision-making process by choosing suitable
options from the displayed “menu”. Therefore, he does not have to learn and remember
any command pseudo-language. This feature, together with special procedures for han-
dling user’s mistakes and with self-explanatory package messages, makes the package
user-friendly and allows for an unexperienced user.

1.3. Fields of the package applications

In many real-life problems, decision variables take their values from a discrete set
rather than from a continuous interval. Usually, there is a finite number of available facil-
ity location sites, the facility size or production capability may be chosen from a discrete
set of values, during a design process the components are chosen from a set of typical ele-
ments available on the market, etc. Such problems form the “natural” field of applications
for the DISCRET package.

Another field of possible applications of the DISCRET package consists of cases in
which the original problem is actually continuous (rather than discrete) but the analysis
restricted just to a finite number of alternatives appearing in this problem may be
interesting and useful for the DM, since it may result in an enlightening and a more pre-
cise definition of his preferences, region of interest or aspiration levels.

Situations falling under the latter category may occur for at least two following rea-
sons. Firstly, if a sample of alternatives together with the corresponding criteria values is
readily available, the utilization of the DISCRET package may enable the DM to gain an
insight into the original multicriteria problem. The analysis of an assembly of runs of a
simulation model is an example of this case. Secondly, for the purpose of an initial
analysis of a problem in which the decision variables actually take their values from con-
tinuous intervals, the DM may take into consideration just a few values for each decision
variable or to generate a random sample of alternatives.

An encouraging factor that may attract the DM is the fact that the DISCRET pack-
age makes no restrictions on the forms of the criteria. Therefore, attributes as compli-
cated as required may be considered.

2. BACKGROUND

2.1. The discrete multicriteria optimization problem

Package DISCRET has been created to support — in an interactive manner — mul-
ticriteria optimization and decision making for problems with a finite number of discrete
alternatives. Such problems are frequently referred to as implicit constraints or explicit
alternatives problems.

Let us consider the following discrete multicriteria optimization problem (DMOP).
It is assumed that a set X? of feasible discrete alternatives is explicitly given and for each
of its elements all criteria under consideration have been evaluated. The criteria values for
all feasible discrete alternatives form the set @ of feasible outcomes or evaluation.

min, {(z)

X0 = {z,,25,...,2,} C X = R®

1(z) = (f1(2),£3(2) 5 ™(2))
[:X°—=Q

J. Majchrzak - 148 - DISCRET

Q={fifo»-. s Ju} CF=R™
f;= f(zj) , 1=12,...,n

Furthermore, it is assumed that a domination cone A is defined in the objective
space F'. As in most applications the positive orthant is considered, A = R:'LL and
A= R:’J\{O} The domination cone introduces the partial pre-order relation “<" into
the objective space:

Vfl’f2€Fa f1<f2 <=> f1€f2—1(

The element f; dominates f, in the sense of the partial pre-order induced by the
domination cone A.

Element TEQ is nondominated in the set of feasible elements @, if it is not dom-
inated by any other feasible element. Let N = N(Q) C Q denote the set of all nondom-
inated outcomes in the objective space and let NX = N(XO) C XY denote the set of the
corresponding nondominated alternatives (decisions) in the decision space. To solve the
DMOP it means to find the set N of nondominated outcomes and the corresponding set
Ny of nondominated decisions.

Notice that DMOP is described by the two sets Q@ and X° defined above (together
with m, n and s). Therefore the package input files supplied by the user must contain
these two sets.

Observe also that no assumptions were made about the nature of the criteria func-
tions f,. In fact, the only requirement for them is that they should assign numerical values
to the alternatives, indicating their attractiveness with respect to the attribute under con-
sideration. In particular, the criteria functions may be of the quantitative type. The single
restriction is that values assigned to alternatives by criteria should be expressed by
numbers and that the user is able to indicate whether he wishes to increase or decrease
these numbers.

2.2 Overview of existing approaches

The discrete multicriteria optimization problem (DMOP) is a combinatorial problem
involving sorting and one could expect a large number of papers in the bibliography
devoted to this subject. However, the problem did not focus much attention of the
researchers — except in its utility theoretical variant that actually transforms the problem
to a single—criteria one — and the bibliography we are able to point at consists only of [7]-
[9], plus some reports of the earlier research summarized there.

The insignificant interest in methods for solving DMOP could be explained by the
fact that the solution of the DMOP, the whole set of nondominated alternatives is not the
solution of the multicriteria decision making problem (MCDMP), a selected preferred
alternative. However, since the efficiency of methods dealing with MCDMP usually
depend on the number of alternatives, it is wise to reject the dominated alternatives.

A rather large number of approaches have been suggested for the solution of the
MCDMP involving discrete alternatives. They differ both in the problem formulation and
the assumptions about the decision maker (DM). Let us mention here just some most
interesting ones. The method suggested in R.L. Keeney, H. Raiffa [17] is based on utility
functions constructed first for each criterion and then combined into a global utility func-
tion. In S. Zionts [16] a linear, while in M. Koksalan et al. [13] a quasiconvex underlying
utility function of the DM is assumed and the best alternative according to an approxima-
tion of this utility function is found by asking for answers to a number of comparisons

J. Majchrzak - 149 - DISCRET

between pairs of alternatives. Other methods, e.g. B.Roy [18] or J. Siskos [19], are based
on outranking relations. In P. Rivett [11], multidimensional scaling techniques are used to
obtain a graph pointing from least to most preferred alternatives.

Other group of approaches (some of them were proposed originally for some different
problems) is based on an observation that if the number of the alternatives is small, then
the DM is able to make a decision intuitively, without any formalism of expressing his
preferences. If the number of alternatives is larger, then one has to reduce it for the DM
by selecting a small but representative sample. Several methods for obtaining such a
representation were proposed. They utilize cluster analysis (A.A. Torn [4], J.N. Morse
[14]), filtering (R.E. Steuer, F.W. Harris [10]) or random sampling (S. Baum et al. [15]).

Approaches from the first of the two above-mentioned groups place the burden on
the DM. He is asked to supply the information about his preferences by the evaluation of
the alternatives - by pairwise comparisons or rankings for example. These evaluations are
substantial for the methods. Each of these methods is based on certain implicit or explicit
assumptions about the DM, such that, for example, he has an utility function expressing
his preferences. The size of the problems that can be solved is limited by the DM’s ability
to provide the required amount of information by ranking or comparing pairwise the
alternatives.

In the approaches from the second group, the burden is placed rather on the com-
puter. The crucial point here is whether the obtained representation of the nondominated
set, will be illustrative for the DM. No special assumptions about the DM are made. He is
only expected to prefer the nondominated alternatives rather than the dominated ones.

Our approach presented in this report may be classified as one of the second group.
It is based on a new efficient method for DMOP, which also can efficiently produce a
representation of the nondominated set.

2.3. The method of dominated approximations

The implemented method is of the explicit enumeration type. It is called the
method of dominated approximations and is based on the following concept.

Def.1 Let @ be the set of all feasible alternative outcomes, N the set of corresponding
nondominated alternative outcomes and A the domination cone. Set A is called a
dominated approximation of N iff

NCA-A
In other words, A is a dominated approximation of N iff for each f; € N there exists

fj € A such, that f; < fj in the sense of the partial pre-order induced by A.

We will say that the approximation A, dominates the approximation A of the non-
dominated set N iff

A C Ay + A
Hence, as the worst approximation of N we can consider the entire set @, while the best

approximation is the set NV itself. The method of dominated approximations generates a
sequence of approximations Ay , k = 0,1,2,...,] such that

Q=A43DA; DA DAyD - DAD -+ DA=N

J. Majchrzak - 150 - DISCRET

The method of dominated approximations

Given @ and A we are supposed to determine N = N(Q). Assume that all criteria are to
be minimized.

Step_ 1 1f Ay \ Ny =¢ then STOP with N, = N, else choose any index
i€ l=1{12..m} and find f € Q such that the i-th component of it is
minimal in A\ N

?: min [

Ap \ N

(See Remark 2).

Step__2 Create the new approximation A, ; by rejecting from Ay \ Np,, all elements
dominated by f (See Remark 1)

Apig = ({4 \ Ngyod\ {7+ 45N (A \ Nep1d) U Mgy
Set k = k + 1 and go to Step__1.

Remark 1. While rejecting the elements dominated by f it is sufficient to compare ele-
ments of the set A \ Np .y with f according to all but i-th criterion, since /' is minimal

among all f*in Ay \ N.

Remark 2. The minimum may happen to be non-unique. Let B be the set of those ele-
ments f]' € A; \ N for which f'] appear to be minimal in Ay \ ;. Actually not all ele-
ments of B are nondominated. One has to solve the following problem. Given B and A
select N(B). The above presented method may be used for this task with Ay = B and
I =1\ {1}. This recurrence is applied until an unique minimum is found in the Step__1
of the algorithm. Then, after the execution of Step__2 one has to return to the lower level
of recurrence. On each level Remark I holds.

Note that if the recursion described in Remark2 would not be applied, then the set
of weakly nondominated alternatives would be determined by the above algorithm.

In order to measure the efficiency of the method, let us consider the number of scalar
comparisons S(m,n;p) required by the method to solve the DMOP with m criteria, n
feasible alternatives and p nondominated alternatives. From the analysis of the method
one can easily obtain

S(m,n,p) < % (2n —p—1)

As one can see, the method solves easily problems with small p. In practical problems p
is usually a small fraction of n; the worst case is for p = n, i.e. when all alternatives are
nondominated. Note that the performance of the method does not depend on the permuta-
tion of the alternatives.

2.4. Selection of the representation of the nondominated set

The biggest advantage of the method of dominated approximations 1s its ability to
select a representation of the nondominated set N instead of the entire set N. Unlike
other known approaches which find the entire nondominated set first and then select a
representation (differently defined for each of those methods), the presented method
selects a representation at once. This fact profits inefficiency.

J. Majchrzak - 151 - DISCRET

Let t,, t = 1,...,m be some given tolerance coefficient for the m criteria under con-
sideration, t; > 0, and T; = (t1>t2"“’ti—l’o’ti—}-l’“'7tm.) be a vector in the objective
space. For the sake of simplicity let us assume that all criteria are to be minimized. The
following modification of the method of dominated approximations suffices to obtain a
representation instead of the whole nondominated set. In the Step__2 of the method not
only the elements dominated by the nondominated element f (found in the Step__1 by
minimization over the i-th criterion values) have to be rejected, but also elements dom-
inated by f = f — T;. Hence, in Step__2 is modified to:

Ak+1:({Ak\Nk+1}\{(7—Ti+&)ﬂ(Ak\Nk+1)}UNk+1

Observe that because the representation contains less elements than the nondom-
inated set, it will be obtained with a smaller computational effort. Figure 1 illustrates the
role of the tolerance coefficients in the process of selecting a representation.

The author is not aware of the existence of any other methods that could be
effectively applied for a problem with few hundreds or few thousands of alternatives.

2.5. Outline of the approach and introduction to DISCRET

To start the session with DISCRET the user has to supply the file containing set @
of the criteria values for all feasible alternatives and (optionally) the file containing the
set X0 of feasible decisions. These files, called the data and the additional data file respec-
tively, describe the problem under consideration.

The next step is the problem specification phase in which the user is asked for some
more detailed information about the problem such as the total number of criteria, the
number of alternatives and the additional data on dimensionality (the command spectfy).
He is also asked to indicate for each criterion whether it should be minimized, maximized
or ignored and to specify the criterion value tolerance. If, for two alternatives, the
difference of criterion values is lower than the criterion tolerance, then the criterion values
are assumed to be equal (during the problem solving phase - the command solve). This
mechanism of tolerances is also used to obtain a representation of the set of nondominated
solutions.

After the problem generation and implementation phase the user may obtain the
information about the criteria values ranges and he may put the lower and/or upper
bounds on the values of some/all criteria (the
bounds command).

The bounds setting may be utilized by the user for several purposes. This is the list
of some most relevant:

- to eliminate irrelevant alternatives from further considerations,
- to specify his current region of interest in the objective space,

- to redefine his problem as a problem with a fewer criteria as the original one (as in
the method of equality/inequality constraints - see [6]), for example, a bicriteria
problem.

In the next step the user may run the DMOP solver (by executing the command
solve) to eliminate the dominated alternatives by an explicit enumeration technique. The
tolerances for criteria values play an important role here. If they are all equal zero or have
small positive values that correspond to indifference limits of the DM’s for criteria values,
the whole set of the nondominated solutions will be obtained. If the values of tolerances
are equal to some significant fractions of the corresponding criteria ranges, then a

J. Majchrzak

f2 A

- 152 -

c)

f-t2+A

DISCRET

Figure 1. Selection of the representation R = R(N) = R(Q) of the nondominated set
N = N(Q). Only nondominated elements are marked for the sake of simplicity of illus-

tration.

a) the nondominated set N.

b) the representation R of the set N.

c) illustration of the tolerance mechanism.

J. Majchrzak - 153 - DISCRET

representation of the set of nondominated solutions will be obtained. The representation
is a subset of the set of nondominated solutions preserving its shape and containing the
smaller number of elements, the larger were chosen tolerance coefficients.

The nondominated set or its representation may be sorted according to some or all
criteria values (command sort) to provide a better analysis. As a result of this analysis,
the user may proceed in one of the following paths:

- choose a new region of his interest by a proper bounds setting (by using the com-
mand bounds),

- obtain a more or less dense representation by decreasing or increasing the tolerances
(by using the commands specify, solve),

- use graphic display to learn more about the problem and utilize the reference point
approach (by using the command anelyse).

It is worth to mention here that — unlike in other known techniques of obtaining a
representation of the nondominated set — our approach not only does not require any
additional computational effort but even decreases the time of computation with the ratio
of #R to #N, where #N and #R are the number of elements in the nondominated set N
and its representation R, respectively.

Once any subset of the set N of nondominated solutions has been obtained, one can
select the corresponding decisions from the the additional data file (the command pick).

The DISCRET package provides also some more detailed information about the
problem under consideration. A nondominated and a dominated linear approximations of
the set of nondominated solutions are calculated (the command analyse). These approxi-
mations are obtained in the following way. A linear function is defined by the combina-
tion of the criteria with coefficients determined by the criteria ranges. This function is
then minimized and maximized over the set of nondominated elements to obtain the non-
dominated and dominated approximation, respectively.

The information contained in the lower and upper bounds for criteria, in criteria
ranges, in nondominated and dominated approximations and the corresponding solutions
gives a good overview of the shape of nondominated set. To learn more about the variety
of available alternatives, the user may use another facility provided by the DISCRET
package (in the command analyse), namely the graphical display of two-dimensional sub-
problems on the terminal screen. The user chooses two criteria for the vertical and hor-
izontal axes, while the other criteria are:

- left unbounded - the whole problem is projected on the two-dimensional subspace of
the space of objectives, just as if all but the two selected criteria were ignored,

- restrictively bounded - a two-dimensional “slice” is cut out of the original m-
dimensional problem.

Enlargements of the chosen display fragments may be obtained simply by specifying
new bounds for the criteria on the axes. Another display option indicates how many ele-
ments does each of the 800 display points represent. This feature may be useful to detect
and investigate the cluster structure of the problem.

The powerful tool of the reference point approach [1] is also available for the user (in
the command analyse). By determining a reference point, he exhibits his aspiration levels
for criteria values, confronts them with the obtained solution and modifies them and the
reference point. The graphical displays mentioned above could also be useful on this stage
of the decision making process.

J. Majchrzak - 154 - DISCRET

During a session with DISCRET the user does not have to necessarily follow the
entire procedure presented above. Once the problem generation and specification phase
has been completed, he may utilize the package facilities in any order, repeat some steps
(commands) or their sequences.

The ability of ignoring some of the criteria temporarily (by specifying that they are
to be neither minimized nor maximized) opens to the DM a possibility of using a lexico-
graphic or group-lexicographic approach. He may also, besides the actual criteria, intro-
duce in an identical way some additional criterion expressing his utility, goal or prefer-
ence function or any global criterion and use them on any arbitrary chosen stage of the
decision making process. Such additional criteria have to be evaluated for each alternative
during the problem generation phase (just as in the case of the original criteria).

The package offers also the possibility of an immediate return to any of the previous
stages of the session, provided that the corresponding files were not removed by the user.

3. STRUCTURE AND FEATURES OF THE PACKAGE

3.1. General description

The current pilot version of the DISCRET package consists of eight FORTRANT77
programs. In order to run any of them the user has to type an appropriate program name
(command) on his terminal. A list of DISCRET programs is presented below.

- testl - first test problem generator (the Dyer’s Engine Selection Problem).
- test? - second test problem generator (the location-allocation problem).

- specify - supports a detailed specification of the user problem.

bounds - informs about the criteria values ranges (utopia and nadir points), non-
dominated and dominated approximations of the set of alternatives and supports
setting of new bounds on criteria values.

- solve - solves the discrete multicriteria optimization problem with explicit alterna-
tives (implicit constraints), i.e. finds the set of nondominated or weakly nondom-
inated elements or its representation, keeping or rejecting duplicate elements.

- analyse - supports the reference point approach and simple graphic displays of the
nondominaned set.

- sort - sorts the alternatives in increasing/decreasing order with respect to the
values of a specified criterion.

ptck - finds decisions corresponding to the chosen outcomes in criteria space.

During the command execution, the user controls the process by choosing suitable
items from the displayed menu (a list of options available at the moment). The menu sys-
tem has been chosen instead of a pseudo-language of control commands because it does
not require from the user to learn and remember a set of commands.

Each menu contains an amount of information sufficient to make the decision which
of the displayed options is the most suitable one. If the user is asked to enter some infor-
mation, everything he types is checked. If he makes a mistake, a message is displayed on
the screen. Usually the message not only indicates the error but also shows the correct
form of the required input.

In the next chapters the package commands will be briefly presented. We will not go
into details of each menu since they are self-explanatory. The user will gather all the
necessary experience during an introductory session with DISCRET. The test problems
may be created by the commands test! and test2. The description of the test problems can

J. Majchrzak - 155 - ' DISCRET

be found in the user’s training manual.

3.2. Problem specification phase

The command spectfy either creates the specification file for the user’s problem
from scratch or modifies an already existing one. In each of these two cases, by replying to
the displayed questions, the user will provide all the necessary information describing
specific aspects of his problem in detail without bothering about the format and order of
the entered information.

3.3. The bounds setting phase

The command bounds reads the input data file and input specification file, evalu-
ates the criteria values ranges and displays them together with the nondominated and
dominated approximation of the set of alternatives. If the user is not satisfied with the
ranges of criteria values or with the values of approximations he can change them.

Knowing the ranges of criteria values, the DM may decide that some of the values of
criteria does not interest him at all or at least temporarily. The command bounds makes
it possible to change the DM’s region of interest. By setting the appropriate lower and/or
upper bounds for criteria values, the DM restricts further considerations to a smaller
region of the objective space - his current region of interest.

Only these alternatives that satisfy the bounds will be contained in the output data
file produced by the command bounds. Also sections SPSA and BOUNDS of the
specification file are modified.

Notice that the command bounds can select only a subset of alternatives from the
input data file. If the DM wants to consider a completely different region of interest, he
has to supply the input data file containing that set of alternatives.

To illustrate this point assume, just for the sake of simplicity, that all criteria are to
be minimized. Observe that if the decreasing of an upper bound for one criterion results in
increase of the lower value for some other criterion, then it indicates that a part of the
nondominated set did not satisfy the bounds and was rejected. If this was not the purpose
of the user, he should return to less restrictive bounds. This remark may be useful on the
initial stage of the problem analysis, when the user should become aquitanted with the
entire variety of the available alternatives.

3.4. The DMOP solving phase

The command solve results in solving the DMOP i.e. it selects the nondominated
outcomes out of the set of feasible solutions. If the tolerances for all criteria values (con-
tained in the section SPSB in the input specification file) are equal to zero or have some
small positive values corresponding to the computer arithmetic accuracy (for example,
1.0e-10), then all nondominated outcomes are found. If the tolerances have larger positive
values equal to some significant fractions of the criteria ranges, then just a subset of the
nondominated set, called its representation, is selected.

The command solve asks the user also about the type of the solution he is looking
for. It has the ability to find either the set of nondominated outcomes or weakly nondom-
inated outcomes. If there are duplicate outcomes (that is, if the same outcome vector
corresponds to two different decisions), then they can be treated as distinguished ones
(and all preserved) or as identical ones (and all but one rejected). Options more sophisti-
cated than the default option (nondominated outcomes, duplicates rejected) do make
sense in the cases when some of the criteria are more important then the other.

J. Majchrzak - 156 - DISCRET

3.5. The phase of selecting final solution

Once the nondominated set (or its representation or a part of it corresponding to the
current region of interest of the user selected by setting of bounds) has been obtained, the
user may wish to list its elements and analyse them.

The command sort sorts the elements of the input data file according to increasing
or decreasing values of criteria chosen by the user. Another option is to sort the alterna-
tives in increasing or decreasing order according to their identifiers. When sorted before
being printed, any set of alternatives appears to be more readable and hence more useful
for analysis.

The command pick selects from the additional input data file any additional infor-
mation corresponding to the elements contained in the data file. Typically, this additional
information describes the decisions leading to the obtained nondominated solutions.

The mechanism provided by the commands sort and pick may be especially useful
in the case when the package user is an analyst. Properly sorted data (a nondominated set
representation adequate to the current stage of the decision making process) will be more

readable for the DM.

The command analyse was designed to help the user to define his region of interest
in a more precise way or to find his final solution.

At the beginning, the user will be informed about the criteria best and worse values -
the utopia and nadir points. In order to provide some more detailed but still aggregated
information about the the shape of the nondominated set (or its representation or just a
part of it) the nondominated and dominated linear approximations are evaluated.

A linear combination of criteria with coefficients proportional to the criteria ranges
is minimized and maximized over the nondominated set to obtain its nondominated and
dominated approximation respectively. Each of these approximations may be character-
ized by a single parameter standing for the percentage of the range it cuts off out of each
criterion values range, see Figure 2 for illustration. Solutions obtained from the linear
approximations are also displayed. This aggregated information seems to provide good
aggregate data on the shape of the nondominated set, no matter how many criteria are
under considerations.

In order to learn more about the criteria trade-offs, the user may display on the
screen of his terminal a simple graphic figure for a two-dimensional subproblem. By set-
ting bounds on all but two criteria he is able to cut a "slice” out of the m-dimensional
problem. The entire subset selected in this way will be represented by 800 fields on the
screen.

Finally, the user may enter the reference point approach, interactively introduce
reference point exhibiting his aspiration levels for criteria values and analyse the obtained
solutions. The reference points need not to be attainable and the obtained solution is the
nondominated point nearest to the reference point in the sense of the scalarizing function.
A scalarizing function based on the Euclidean-norm is used. Let g be the reference point
introduced by the user. Then, assuming that all criteria are to be minimized, the follow-
ing scalarizing function is minimized:

S(f—q)=—If — > + Al(f — ¢), PP

where (f — q)+ denotes the vector with components maz(0, f — g), | ® | denotes the
Euclidean norm and p > 1 is a penalty scalarizing coefficient. See Wierzbicki [1], for
example, for more information about the reference point approach.

J. Majchrzak

- 157 -

%

|

__

\

\

.

NS

\

.

DISCRET

y =

f1

Figure 2. Two types of the aggregated information about the nondominated set N.

a) Information about the nondominated set N offered by the utopia point and the na-

dir point.

b) Information carried by the nondominated (70%) and dominated (90% of criteria
range) approximations of the set N.

J. Majchrzak - 158 - DISCRET

4. TEST EXAMPLES

4.1. The Dyer’s "Engine Selection Problem”

For the purpose of testing the package and to be used during introductory sessions
with DISCRET, a generator of the Dyer’s "Engine Selection Problem” (see [3] or [4]) has
been implemented. This is a very simple example of a DMOP. However, it is rather well
known in the literature devoted to this field of research and therefore it seems that it will
suit well as a small illustrative test problem.

Let us consider a DM who designs a new automobile and he has to choose an engine
for that car. Suppose that the variety of available engines is described by three parame-
ters (decision variables):

T, - compression ratio
I, - carburation ratio (in square inches)
T3 - piston displacement (in cubic inches)
Suppose that the DM’s preferences are described by the following three criteria:
f1 - cost of the engine
fy - horsepower
f3 - mileage per gallon
The following DMOP was proposed by Dyer [3] in 1973 - see also Térn [4] (1980).
Problem definition:

mintmize: f,(z) 133(z; — 8) + 10z, + =z3 + 2000
mazimize: fo(z) = 20(zy — 8) + z,+ 0.5z4

-1.67(z; — 8) — 0.2z, — 0.05z5 + 35

mazimize: fa(z)

subject to:
bounds:
8<z, <11
zo < 40
100 < z5 < 200
constraints:

50z, — 30z, + z5 < 400
20z, — 3z, <160
z
3 <20
z2
Problem generation:
Dyer and Torn proposed the following scheme to generate uniformly a set of decisions :
for £, = I, step sy until u
for z, = I, step sq untsl uy

for z5 = I; step s3 until ug

J. Majchrzak - 159 - DISCRET

where [; , u; are the lower and upper bounds for z; , t=1,2,3 while s, are the correspond-
ing step size. If - following Dyer and T6rn - the initial data are:

L s

i=1 8 1 11

t=2 10 10 40

t=3 100 20 200

Uy

then 84 generated points satisfy the problem constraints. Another way to generate a test
problem is a random generation of decision vectors £ within bounds /[and u. This test
problem is generated by the DISCRET’s command test1.

4.2. The location-allocation problem

The second test problem is a facility location-allocation problem. It is based on the
problem presented by Lee, Green and Kim [5].

A firm is evaluating six potential sites of plant location (in four different states) that
would serve four customer centers. The problem is where should the plants be opened and
what should be the production volume of each of the new opened plants. Let

t = 1,2,...,¢ ..=6 be the locations index and let j = 1,2,...,5, . =4 be the customer
center index.
Decision variables:
y; = 0/1if a plant is not opened / opened at location ¢,
z; — production volume (size) of a plant opened at location t.
Model variables and parameters:
p; — total demand of customer center 7,
iy — unit transportation cost from facility ¢ to the customer center j,

g, — fixed cost of opening a facility at location ¢ (in $1000),
I; — life quality score for location ¢,

u
%

quality standards),
[

— production upper limit for facility at location t (due to the state environment

z; — production lower limit,
zf — production increment step size,
k' — location f production limits due to state environment quality standards,
d,-j — demand placed on facility ¢ by the customer center 7,
_bc.
go= % "
'.7 o —bC"J' ’

dyie

1
Ty — quantity of units transported from location t to the customer center 7,

d..
Zij = Y min{z , Ydi}
2. dy j

J

J. Majchrzak - 160 -

n — number of opened facilities.
Constraints:
1. Fixed cost limitation (in $1000):

Y gy, < 2000
t

2. Production limitations due to state environment quality standard:

Z‘Sk‘ , 1:1,...,1ma_x

3. Favored customer center service level :
z1y1 + 2945 2 50
4. Number of opened facilities :

n

I
i
IA
S
INA
e
Il
3

min max

Criteria:
1. Unsatisfied demand level :

min f; = ZZ(d‘-j——:c‘j)
L)
2. Favored customer center (no. 1) service level :
Zyizil
1
max fo =
P1
3. Total cost :
min f3:f5+f6+f7
4. Average life quality score :
uil;
1
LY
1

max f, =

5. Fixed cost :

1

6. Transportation cost :

min f6 = ZZS“]'Z"]'
J

1
7. Production cost :

min f; = Zzie_az‘
1

8. Unsaled production :

min fg = Y max{0, (z—Yz;;)}

$

DISCRET

J. Majchrzak - 161 - DISCRET

Alternatives generation scheme:
The set of feasible alternatives is generated by the following three nested loops.

mins - - - s P max facilities.

1. Consider opening n = n
2. Generate all n locations subsets of the set of locations (n - elements combinations of

! max €lements set).

3. For each facility opened at location t consider its all available sizes 2; ranging from zf
to 2 with the increment step size 2.

4.3 How to get started

At the very beginning of the session a problem to be solved has to be supplied. For
the first session execute the DISCRET command test!. When the test problem is already
generated, look at three files that were produced: the specification file, the data file and
the additional data file. Only the data file (and optionally the additional data file) has to
be supplied in order to start a session.

Whenever you do not remember the names of the files you have created during the
session, display the history.fil from your current directory. This file contains the history of
your session.

In order to learn how to describe the details of your problem for DISCRET, print
the specification file produced by the command testl. Then execute the specify command
and try to create a specification file identical to that obtained from test1.

If you already know how to specify your problem, try some other DISCRET com-
mands. For the first time, execute them in the following order : bounds, solve, analyse,
sort, pick, just to learn what they can actually do for you.

Later on try to select your most preferable solution(s). Notice that DISCRET com-
mands can be executed in any order (if only it does make any sense for you). Referee to
the history.fil to recall the history of your session.

5. CONCLUSIONS

The DISCRET package for multicriteria optimization and decision making problems
with finite number of discrete alternatives has been briefly presented. It is the author’s
hope that this report will attract the reader and encourage him to use the package.

DISCRET is an interactive package. The user may execute its commands in any
order once the problem generation and specification phase has been completed. The
variety of paths the user may follow guarantees flexibility in meeting his demands.

The author will be grateful for any critical remarks and comments concerning both

the approach and the package itself. All such suggestions would be very helpful and may
result in further package improvements.

REFERENCES

[1] A.P. Wierzbicki, A methodological guide to multiobjective decision making, WP-
79-122, International Institute for Applied Systems Analysis, Lazenburg, Austria,
1978.

J. Majchrzak - 162 - DISCRET

2]

3]

4]

[5]

6]

[7]

8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]
18]

[19]

J. Majchrzak, Package DISCRET for multicriteria optimization and decision making
problems with discrete alternatives,

IIASA Conference on Plural Rationality and Interactive Decision Processes, Sopron,
Hungary, 16-26 August, 1984.

J.S. Dyer, An empirical investigation of a man-machine interactive approach to the
solution of a multiple criteria problem, in Maultiple Criterta Decision Making,
T.L.Cochrane and M.Zeleny (eds.), University of South California Press, 1973.

A.A. Térn, A sampling-search-clustering approach for exploring the feasible/efficient
solutions of MCDM problems, Comput. and Ops Res., Vol. 7, No 1-2, pp. 67-79,
1980.

S.M. Lee, G.I. Green, C.S. Kim, A multiple criteria model for the location-allocation
problem, Comput. and Ops Res., Vol. 8 pp.1-8, 1981.

J.G. Lin, Three methods for determining Pareto-optimal solutions of multiple-
objective problems,

in Ho and Mitter (eds.), Directions in Large-Scale Systems. Many-Person Optimiza-
tion and Decentralized Control, Plenum Press, New York and London, 1976.

H.T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors,
Journal of the Association for Computing Machinery, Vol. 22, No. {, pp. {69-476,
1975.

E. Polak, A.N. Payne, On multicriteria optimization,
in Ho and Mitter (eds.), Directions in Large-Scale Systems. Many-Person Optimiza-
tion and Decentralized Control, Plenum Press, New York and London, 1976.

H. Stahn, U. Petersohn, Discrete polyoptimization, Systems Science, Vol. 4, No. 2,
pp.101-109, 1978.

R.E. Steuer, F.W. Harris, Intra-set point generation and filtering in decision and cri-
terion space, Comput. and Ops Res., Vol. 7, No. 1-2, pp. 41-58, 1980.

P. Rivett, Multidimension scaling for multiobjective policies,
Omega, Vol. 5, pp. 867-879, 1977.

A.N. Payne, E. Polak, An interactive rectangle elimination method for biobjective
decision making, IEEE Transactions on Automatic Control, Vol. AC-25, No. 8, pp.
421-432, 1980.

M. Koksalan, M.H.Karwan, S. Zionts, An improved method for solving multiple cri-
teria problems involving discrete alternatives,

IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-14, No. 1, pp. 24-
34, 1984.

J.N. Morse, Reducing the size of the nondominated set: pruning by clustering, Com-
put. and Ops Res., Vol. 7, No. 1-2, pp. 55-66, 1980.

S. Baum, W. Terry, U. Parekh, Random sampling approach to MCDM,

in J.N. Morse (ed.), Organisations: Multiple Agents with Multiple Criteria, Lecture
Notes in Economics and Math. Systems, 190.

S. Zionts, A multiple criteria method for choosing among discrete alternatives, Eur.
J. Op. Res., Vol. 7, pp.D 148-147, 1981.

R. L. Keeney, H. Reiffa, Decisions with Multiple Objectives: Preferences and Value
Tradeoffs, New York, Wiley, 1976.

B. Roy, Problems and methods with multiple objective functions,
Math. Programming, Vol. 1, pp.239-266, 1971.

J. Siskos, A way to deal with fuzzy preferences in multi-criteria decision problems,
Eur. J. Op. Res., Vol. 10, pp. 814-324, 1982.

J. Paczynski, T. Kreglewsk: - 163 - Nonlinear model generator

Nonlinear Model Generator

J.Paczynski, T.Kreglewskt

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents introductory documentation and a theoretical manual
for a nonlinear model generator aimed to help in formulation and evalua-
tion of nonlinear models for applications in interactive decision analysis
and support systems implemented on professional microcomputers. It was
developed in 1986 in the Institute of Automatic Control, Warsaw Univer-
sity of Technology, under a contracted study agreement with the Systems
and Decision Sciences Program of the International Institute for Applied
Systems Analysis. It is the first proposal of a standard for models’ formu-
lation, easy to use for non-computer specialists. Definition and edition of
models is done in an easy but flexible format of a spreadsheet. All deriva-
tives necessary for a robust optimization algorithm are automatically cal-
culated by a symbolic differentiation package. This model generator was
used in the IAC-DIDAS-N system presented in this report.

A.INTRODUCTORY DOCUMENTATION

Al. EXECUTIVE SUMMARY

In many situations a decision maker needs help of an analyst or a team of analysts
to learn about possible decision options and their predicted results. Such situations
include both purely engineering complex design and mixed social economical and environ-
mental problems. A team of analysts frequently summarizes its knowledge in the form of
a substantive model of the decision problem that can be formalized mathematically and
computerized. A mathematical model can never be perfect but, nevertheless, it can often
be of great help to a decision maker in the process of learning about novel aspects of a
decision situation.

The learning process needs interaction of a decision maker with a team of analysts
and substantive models prepared by them. In organizing such interaction, many tech-
niques of optimization,multicriteria decision analysis and other tools of mathematical pro-
gramming can be used. However, all such techniques must be used as supporting tools of
interactive analysis rather than as means for proposing unique optimal decisions and thus
replacing the decision maker.

Such considerations led to the construction of the decision analysis and support sys-
tems of DIDAS family - that is, Dynamic Interactive Decision Analysis and Support sys-
tems, see e.g. Lewandowski at al. (1983). DIDAS systems are addressed to analysts or
teams of analysts who want to analyse their substantive models and, if the system is
user-friendly, even to decision makers working alone.

The most general classification of models is into linear and nonlinear ones. Problems
described by mathematical models of linear structure were investigated by many authors
and several approaches to defining such problems interactively were proposed. The

J. Paczynski, T. Kreglewski - 164 - Nonlinear model generator

situation is much more complicated in the case of nonlinear models. A short review (see
Lewandowski 1985) of problem interfaces in existing implementations of nonlinear DIDAS
systems will underline the main points. Before the fulfillment of the present contract there
existed three versions of nonlinear DIDAS: DIDAS-N developed by Grauer and Kaden
(1983), a specialized system developed by Kaden and Kreglewski (1985) and general pur-
pose DIDAS implemented by Kreglewski and others (Kreglewski at al. 1985). In the
Grauer and Kaden’s version, the equations describing objective and constrains functions
must be programmed in FORTRAN. The authors supply a “skeleton” FORTRAN subrou-
tine with empty” holes” where the user must locate his FORTRAN code. This is rather a
complicated task - separate parts of the problem definition must be located in various
places of the code, and the code itself must be written taking into account the variable
names and structures used in this skeleton subroutine. Next, the user must calculate
analytically the derivatives of the objective and the constraints functions. This is needed
in each version of DIDAS, since practically only differentiable optimization methods are
sufficiently efficient and robust to be applied in interactive decision support systems. This
task is time consuming and can be a source of errors. A warning for persons who believe
in their error-free analytic calculations can be found in Pavelle at al. (1981), in a slightly
different context. They state that a computer verification (by means of symbolic compu-
tation) of eight widely employed tables of indefinite integrals discovered that about 10
percent of the formulae were erroneous; one of the tables was found to have an error rate
of 25 percent. Errors in gradients are typically difficult to detect - they can only be
detected when the behavior of an optimization process is observed by a user qualified in
optimization techniques. After completing analytical calculation of derivatives, the user
must properly augment his formulae with penalty function terms and their derivatives.
This is conceptually rather difficult for a user who is not familiar with mathematical pro-
gramming algorithms, and can also lead to numerous errors. The conflict of variable
names is also probable.

The specialized system of Kaden and Kreglewski is of no interest in the present con-
text, since its model was programmed once and the user interacts only on the level of
input data and reference point selection. The general purpose version developed by Kre-
glewski and others (1985) also needs a FORTRAN subroutine containing the problem
description, but there are less programming constrains put on the user. He must preserve
only the general structure of the subroutine header (formal parameter declaration) and
the COMMON block. No variable conflict can occur, and the standards according to
which the body of the subroutine must be composed are straightforward. The task of
analytical computation of derivatives remains but the errors can most probably be
detected aposteriori by the method of Wolfe (1982).

Concluding, the following basic disadvantages of problem generation are found in
the past implementations of nonlinear DIDAS:

- the user must compute analytically all derivatives of the objective and the constraint
functions,

- programmed in FORTRAN according to the specification supplied by the manual of
the system; this specification can be difficult to understand for non-experienced user,

- the user must be familiar with the details of the computing environment of the com-
puter on which he is working, such as editor, compiler, linker, operating system com-
mand language etc.

J. Paczynski, T. Kreglewsk: - 165 - Nonlinear model generator

- any changes of the model - the process being in fact one of the important stages of
interactive work with the system - cannot be performed within the system, but must
go through the chain: program editor - FORTRAN compiler - linker - operating sys-
tem. This slows down the interaction process, makes it difficult and inefficient.

The new problem generator is aimed at a user, who is neither an experienced com-
puter user nor an expert in optimization techniques. The work done can be divided into
three parts:

- a proposal of a standard for not linear model formulation (thus extracting a concrete
subclass from the universe of nonlinear problems: “a nonlinear problem is a prob-
lem, which is not linear”),

- imbedding of this model in an easy and user-friendly format of a spreadsheet,

- automatic computing of the necessary derivatives by symbolic differentiation pro-
cedures.

The standard for model formulation helps to classify thinking about model in the
user’s mind. Variables are divided into input and output.The input variables can be
further subdivided into decision variables and parametric variables. The outcome vari-
ables can be further subdivided into guided outcomes (which are subject to equality con-
straints), floating outcomes (having only informative importance for the user), objectives
i.e. optimal outcomes, and intermediate outcomes, introduced for ease of model formula-
tion. Classification of the outcome variables can be changed by the user. The model
includes lower and upper bounds for all the input and the outcome variables. The model
equations are of explicit type: outcome variables are defined consecutively, depending on
input variables and previously defined outcome variables (may be intermediate out-
comes).

Formulae defining derivatives of outcome variables are computed automatically.
However it must be stressed that it is the user’s responsibility to ensure that formulae
which have to be differentiated are differentiable. Differentiability cannot be checked
automatically, because values of (future) input variables are unknown (e.g. the derivative
of ABS (absolute value) is taken as SIGNUM, which is formally incorrect but gives good
results unless argument of function crosses zero value. It is the user’s responsibility to
assure that the argument of ABS remains in the same open semiaxis.)

In the present version, the spreadsheet contains formulae for partial derivatives
(with respect to input variables and intermediate outcomes) which can be inspected like
any other formulae. Total derivatives are computed numerically, by suitable combina-
tions of values of partial derivatives. This solution was chosen from speed considerations.
However, sometimes it may be interesting to view the formulae of total derivatives. This
option will be implemented in a later version of the generator. The shape of computed
derivatives may differ from those computed by hand. They are mathematically correct
but may not be presented in the simplest form (depending on the particular formula). In
the program, there is a very intensive simplification applied “locally” to the graph of
internal representation of a computed derivative. In the first version, however, there are
no “global” simplifications, such as gathering of common simple expressions, terms etc.
Such transformations present, as a rule, the most complicated part of any computer alge-
bra system, are time consuming, and the most “handsome” form cannot be chosen
automatically without interaction with the user. Global simplifications will be included in
a later version of the generator, after gaining experience for their proper tuning (final
form versus computing speed) on the experimental model.

J. Paczynski, T. Kreglewsk: - 166 - Nonlinear model generator

However, this approach has a well hidden source of potential errors. Usually it is
tacitly understood that formulae are entered into a spreadsheet in a “natural” form and
very little attention is paid to their syntax. The danger is that what is natural to the
implementer may not be natural for the user and vice versa. Habits (of expressing
mathematical formulae) are formed by one’s education in mathematics and one’s experi-
ence with programming languages. A closer look on these sources reveals immediately
that there is no consensus on the syntax (and even semantics - the results of evaluation)
of mathematical formulae. Most confusion arises from the relation between the unary
minus and the power operator. If the unary minus has higher precedence than power (i.e.
evaluates as first) then the following identities hold true:

-2°2=4 but 4-2"2=0.

(In the first formula, the minus sign denotes the unary operator,in the second - binary).
When the precedence relation is reversed, we have
-2°2=-A4.-

The second source of confusion is the associativity of the power operator, i.e.
whether the sequence a"b"c evaluates as a"(b"c) or (a"b) c. In the first case (right associa-
tivity) 2°2°3=256, while in the second (left associativity) 2°2°3=64. What is more, this
associativity affects not only the process of formula evaluation but even the process of
computation of derivatives. For the right-associative power operator (e in this example
denotes the base of natural logarithms):

d(e’z°2)/dz=2z¢"2" 2,
see e.g. Fichtenholz (1966), vol.l, par.99; while for the left-associative operator

d(e’z"2)/dz=2¢"(2z).

The moral is, one cannot be too confident when starting work with “evidently sim-
ple” piece of software.

A2. SHORT PROGRAM DESCRIPTION

The nonlinear model generator was designed as a part of a new nonlinear version of
the DIDAS system, however it is available as a separate program. It is recorded on a sin-
gle diskette that should be installed on an IBM-PC-XT or a compatible computer with
Hercules or color graphic card, preferably with a hard disk. A diskette contains compiled
code of a Pascal program and several data files with examples of nonlinear models gen-
erated by the generator. The program can be activated by the command NGENER at the
DOS prompt. The nonlinear model generator supports the following general functions:

1) The declaration of the numbers of outcomes (dependent variables) and independent
variables. Those numbers are used to form a spreadsheet of appropriate dimensions.
Rows of the spreadsheet represent outcomes (dependent variables), whereas columns
represent independent variables. Separate row and column are used for user-defined
names of both kinds of variables. One dedicated row is used for the entry of user-
defined values of all independent variables, and one dedicated column is reserved for
program- calculated values of outcomes (they are used as inputs and outputs, respec-
tively, in the simulation of the model).

2) The definition and edition of a nonlinear model in the form of mathematical formu-
lae. A spreadsheet column intended for outcome values is used also as a storage place
for this formulae. It is not wide enough , however, for the edition of formulae up to
255 characters long, therefore an edited formula is displayed in the bottom line of
the screen and scrolled left and right, if necessary, in this line. In the spreadsheet cell
three asterisks are displayed if the formula related to this cell is already defined.

J. Paczynski, T. Kreglewsk: - 167 - Nonlinear model generator

3) The generation of all partial derivatives. The derivative of an outcome, say y, with
respect to an independent variable, say z, is stored in the i-th row of the j-th column
of the spreadsheet. There are also additional columns of the spreadsheet for the for-
mulae of the cross-reference derivatives among outcomes. Although formulae for
derivatives are generated automatically, they could be viewed and edited by the user
in same way as outcome formulae.

4) The simulation of the model. The calculation of all values of outcomes and deriva-
tives is performed. Numerical results are displayed in the spreadsheet cells intended
for formulae, each three asterisks marker is replaced by an appropriate number.

The nonlinear model generator has been developed in the Institute of Automatic
Control, Warsaw University of Technology, Warsaw, Poland, in a contracted study
agreement “Theory, Software and Testing Examples for Decision Support Systems” with
the Systems and Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, which has the copyright for this system.

Bl THEORETICAL MANUAL

B1.1 SYNTAX OF FORMULAE

When working with such a user-friendly tool like a spreadsheet, one can be tempted
with the following thoughts: "I am so qualified in mathematics and 1 have so much com-
putational experience that everything is self-evident to me”. In fact there may be prob-
lems, and with such seemingly harmless things as formulae in the spreadsheet. Their syn-
tax is as "natural” as possible, 1.e. near to one’s notational habits. These habits are
created by mathematical education and by experience in programming languages. A closer
look reveals that those sources are completely inconsistent.

Formulae are composed usually of numerical constants, cell names, parenthesis,
some set of standard functions and operators denoted by the characters +, -, x, /, *. Two
of them, + and -, have nonunique meaning - they denote both the binary operators of
addition and subtraction and the unary operators of plus and minus (change of sign). The
operator properties are usually described by their precedence and associativity. It seems
however that school mathematics establishes accepted conventions only for binary opera-
tors. Further patterns can be sought in popular programming languages and tools. Such
review depicts only the total lack of commital conventions.

The most exotic rules are used in APL. All operators have the same precedence level
and are right-associative. This contradicts even the "school” rules. Leaving this case out
of considerations, most problems arise from the treatment of unary minus. Aho and Ull-
man (1977) give a dramatic warning: “Beware the treatment of unary minus!”. Three
different syntaxes can be considered as eligible candidates for the spreadsheet. They will
be presented below using the notation of Modified Backus-Naur Form. The meaning of
meta-symbols is as follows:

= - denotes the definition,
| - separates alternative options within the clause,
- terminal symbols are quoted,
(...) - exactly one of the enclosed alternatives must be selected,

[...] - zero or one occurrence of the enclosed subclause,

J. Paczynski, T. Kreglewsk: - 168 - Nonlinear model generator

{...} - zero or any number of occurrence of the enclosed subclause.

The syntax definitions below are left unfinished. Lacking definition of factor will be
presented later in two variants, any of them can be composed with previous syntaxes giv-
ing the total number of six variants.

Syntax S1
expression= |"+"] simple__expression {("+" |"-") simple__expression}
simple__expression = term {(” * " | “/") term }
term = signed__factor {""" signed__factor }
signed__factor = ["-"] factor

Syntax S2
expression= ["+"| simple__expression {("+” ["-”) simple__expression}
simple__expression = signed__term {(" * " | ”/")signed__term }
signed__term = ["-"] term
term = factor {""” factor }

Syntax S3
expression=|"+"|"-"]simple__expression {("+"|"-")simple__expression}
simple__expression = term {(" * " |"/") term }
term = factor { """ factor }

The S1 syntax is used e.g. in ALGOL 68, SNOBOL, MICROCALC (a demonstration
spreadsheet program supplied by Borland together with TURBO-PASCAL). From the
definition, the following operator precedences can be read:

-(unary) > °~ > *,/ > + -(binary).

The S2 syntax is used e.g. in FORTRAN, BASIC, PL/I, Lotus 1-2-3 by Lotus
(1983), MUSIMP (the implementation language for MUMATH symbolic computation
system by Microsoft(1983)). It has the following precedences:

* > -(unary) > =%,/ > ,-(binary).

”

The S3 syntax is that of PASCAL extended with the power operator. Its precedences
are:

N

> x,/ > +,-(unary and binary).

Each syntax has its peculiarities, e.g.
in S1: -2°2=4, 4-2°2=0;
in S2,S3: -2"2=-4.

The syntax rules must be supplemented by associativity rules. In our context they
are essential only for the power operator. The problem is whether it is right-associative,
l.e. a’b"c evaluates as a"(b"c), or left-associative: (a"b)"c. Both cases lead to completely
different values, e.g. 2°(2°3)=256 while (2°2)"3=64. Thus the semantics of a formula
depends on the chosen rule. Associativity affects not only the process of formula evalua-
tion, but even the process of computation of derivatives. For right-associative power
operator

d(e’z°2)/dz=2z¢"2" 2,
(e denotes here the base of natural logarithms), while for left- associative
d(e’z"2)/dz=2¢"(2z).

It seems that courses in differential calculus do not explicitly declare associativity
but tacitly use the first variant, see e.g.examples in the classical Russian textbook
Fichtenholz (1966), vol. I, par. 99. MUMATH assumes right associativity (under normal
setting, properties of all operators can be freely modified by the user). Similarly does
MACSYMA, perhaps the world’s largest computer algebra system, see an differentiation
example in Pavelle (1985).

J. Paczynski, T. Kreglewsk: - 169 - Nonlinear model generator

Associativity rules used in programming languages are nonunique. Aho and Ull-
man(1977) state on p. 47: "ALGOL evaluates all binary operators left-associatively. FOR-
TRAN lets the compiler designer choose the associativity, and PL/I evaluates all binary
operators left-associatively, except for exponentiation, which is right-associative”. In
implementations of BASIC used by the author the power operator was left-associative,
and that of FORTRAN - right-associative. In hand calculators it is left associative,
perhaps due to hardware and software limitations.

In this work, the following rules were accepted for associativity of binary operators:
- the power operator is right-associative,
- all other operators are left-associative.

The lacking part of syntax definition can have two forms:
Syntax S4
factor = constant | variable | "(” expression ”)” |
standard__function factor.
Syntax S5
factor = constant | variable | “(” expression ”)"
standard__function (" expression ")".

The difference between S4 and S5 is in the allowed forms of arguments of standard
functions. Syntax S5 is conservative; each argument must be put into parenthesis, e.g.

sin(z), arctan(25.6), exp(sin(log(y})).

Syntax S4 is more flexible, it allows for simplified forms for “simple” arguments
but includes also the forms from S5. Thus in S4 the following formulas are equivalent:
sinz, sin(z)
cos 55, cos(55)
ezp sin log y, ezp(sinflog(y))).
By clever implementation of the lexical analyzer, even the delimiting spaces may be
unnecessary, thus
sinz, cos55, expsinlogy can be made acceptable too.

Arguments which are not factors must of course be put into parenthesis e.g.
sinfa+b), log(2« z).
A search for inspiration gives as usual no results. Handbooks of mathematics do not

use parenthesis, majority of computer languages do use but some of them do not. Some
BASIC dialects even differ between themselves in this point.

Of course any syntax convention will do, as long as formula evaluation and
differentiation are consistent and the user is aware of its properties. The present imple-
mentation uses the syntax S1+S5.

B1.2 SYMBOLIC DIFFERENTIATION OF FORMULAE.

PARSING

Programmers recognized very early that computers can work not only with numbers
themselves but also with more abstract symbols. Computer programs for symbolic mani-
pulation have been appearing since late fifties. However the popularity of symbolic com-
puting is orders of magnitude less then that of numeric computing. Many people are even
not aware of their existence. There are numerous reasons of this situation. Restricted
availability - at first at some university centers and only some types of computers and/or
operating systems, high cost - large computers, high demand of operating memory and

J. Paczynski, T. Kreglewsk: - 170 - Nonlinear model generator

usually long (and unpredictable) computation time. The situation has changed at first
with the introduction of computer networks and then with the era of microcomputers.
However, a professional system for symbolic computation needs a powerful workstation
with the operating memory of some mega bytes. In the IBM-PC class there is a
MUMATH system by Microsoft. The use of it in this work was excluded for two reasons:

- licence problem,

- interface with the rest of program would be possible only at the operating system
level via exchange of files.

It is worth noticing that besides systems which produce the formula of a derivative
there are systems which give the value of a derivative. Examples of such systems can be
found e.g. in series of papers by Rall; the book by Rall (1981) is the good and most
detailed representative.

A program for any symbolic computations resembles strongly the compiler of a pro-
gramming language. Therefore some knowledge of elements of compiler-writing problems
would be of great help in understanding the following. An excellent source of information
is Wirth (1976), Chap. 5.

It is customary to partition the compilation process into a series of subprocesses
called phases. At first the input language must be specified. In our case it is very simple,
it consists only of formulae and is defined by means of syntax MBNF clauses or syntax
diagrams. The first phase of compilation, called the lexical analysis, separates characters
of the source language (the formula) into groups that logically belong together. They are
called symbols or tokens, they are e.g. identifiers of variables, identifiers of standard func-
tions, symbols of operators and punctuation symbols. The output of the lexical analyzer is
a stream of symbols, which is passed to the next phase, to the syntax analyzer or parser.

The parser checks whether the symbols appearing at its input form a legal sequence
of the input language (defined by its syntax rules). Besides, it does some other functions.
In the model generator there are three parsers differing by these functions. During edition
of a formula parser detects errors (if any) and interacts with the user on their correction.
During “compilation” of a formula it produces code for a stack machine. During
differentiation it produces a binary tree - an internal representation of a formula.

Many parsing methods have been developed and applied in practice. In this work a
recursive-descent parsing was implemented (top-down parsing without backtracking).
This method is easy to implement by hand and enables to express the generation of out-
put directly in terms of the syntactic structure of the source language. Presentation of
syntax in the form of a diagram gives immediately the block scheme of the parser. Each
occurrence of a terminal symbol corresponds to the instruction, which recognizes this
symbol and reads the next symbol from the input. Each occurrence of a nonterminal sym-
bol corresponds to the call of a procedure, whose structure is given by its own diagram.

B1.3 INTERNAL REPRESENTATION OF FORMULAE

The majority of languages, in which systems for symbolic computation are imple-
mented, are of list-processing type, i.e. a list is their primal informational structure. An
external representation of a list can be e.g. (A,B,C,D,E), while the internal representation
consists of chained nodes. Each node contains some information (in the above example - a
letter character) or the pointer (an address) to “own” information, and the pointer to the
next element of the list. There is a pointer constant, usually called NIL, which means
“pointer to nowhere” and is used to denote the end of a list. The simplest “units” of infor-
mation stored in a node (or pointed to from a node) are called atoms. Usually they are

J. Paczynski, T. Kreglewsk: - 171 - Nonlinear model generator

numbers, identifiers and pointers. The simplest and most commonly used list representa-
tion of formulae corresponds to their prefix form, e.g. z+y becomes (+,z,y). Each element
of a list can be a list themselves, e.g. the expression z+2 * y+8 can correspond to the list
(+,z,(*,2,y),3).

Thus a tree of large complexity can be created. In PASCAL nodes will be
represented by records and connections between them by pointers. There are no stiff rules
for choosing a particular representation of a node; it depends on habits, experience and
preferences of the implementer. Many decisions must be taken in connection with the
usual trade-off between the range of needed memory and the speed of execution. E.g. some
redundant information can be stored in nodes thus being immediately available (but more
memory is used for data). In the other variant it can be extracted from the tree structures
when needed - thus more memory is used for program code for additional procedures, and
the execution is slower.

In the presented implementation, there are two pointers in each node. It means that
the structure formed with the use of them is a binary tree. The usual form of visualization
of such structure is with the root being most upper and leaves dangling down. In the
present context it is, however, more convenient to imagine, that the binary tree is turned
counter-clockwise so that the right branches are horizontal and the left - vertical. To
limit the number of procedures needed for operations on structures, the internal represen-
tation of structures does not use the binary minus and the division. Instead the addition
and multiplication is used with the right arguments multiplied by -1 or taken to power -1,
respectively.

The above-mentioned list representation is used in MUMATH symbolic program-
ming system. Its code is known and some conclusions about the efficiency of this represen-
tation can be deduced, although the code has been written in a specialized MUSIMP pro-
gramming language and therefore any comparison with a PASCAL implementation must
be rather rough. The main advantage of this representation is the economy of memory.
The price is the relative complexity of arithmetic operations, since a list contains only
very condensed syntactic information. For example, the process of adding two formulae
represented by lists (+,z,y) and (* ,2,y) must at first reconstruct their syntactic rela-
tions. Arithmetic and algebraic packages contain about 100 functions { not to mention the
“primitive” MUSIMP functions) and from the programming point of view are the most
complicated part of the whole system. Functions are highly recursive and the number of
their calls during evaluation the expression is rather high. An experiment with tracing (of
main algebraic functions only) was performed for two simple expressions el=z+y and
e2=2 % z-y. In the process of their addition there were 18 function calls, in the process of
subtraction - 62 calls. The solution is computed (and simplified) recursively e.g. by
adding successive simple expressions. It means that simplification is repeated many times,
but when the final result is obtained it is already in a simplified form.

In the presented implementation quite reverse principles were chosen, basing on the
following considerations. At a time there exist only two structures, that of a differentiated
formula and that of a derivative. After the derivative is compressed into the formula
form, the memory used for representation of structures is released. Thus the data storage
presents no special limitation. On the other hand, the Turbo PASCAL limits the amount
of program code to 64 Kbytes (and overlays decrease speed). PASCAL is rather talkative
for such type of problems, program grows large - so it was thought desirable to limit the
number of procedures. The chosen structure expresses the syntactic properties of a for-
mula in an explicit form, at the cost of larger number of nodes. In MUMATH a n-
argument sum, product or power expression is represented by a (n+1)-element list. In the

J. Paczynski, T. Kreglewski -172- Nonlinear model generator

presented implementation the number of nodes is equal to $n, 2n-+1 and n+2 respectively
(the more complicated is the formula - the better is the comparison). As the result, there
are only about 20 "algebraic” procedures. Once the formulae are converted into internal
form, their addition is achieved in 1 procedure call. Compression of structures into formu-
lae is divorced from the arithmetic and differentiating operations, i.e. analytical opera-
tions are performed on structures and only the final result is transformed into a formula
form (and simplified). To improve speed further, the iterative methods are used whenever
possible.

Below, there are some examples of internal representations of simple formulae. The
rules of visualization are as follows. To each node, there corresponds one row of text;
“lower” nodes are recursively intended. Nodes from the same “level” have the same inden-
tation. Characters +’, ’ * ’, ’"’ denote consecutive levels of the graph. Simple-expressions
are linked together via nodes at the '+’ level, terms - at the ’ * ’ level, signed-factors - at

the >*’ level.
expression 1: a expression 2: z+y
structure: structure:
+ +
* *
" a "X
+
*
Ty

Structures corresponding to formulae without parentheses are three nodes "deep”.
The highest level, denoted by '+’ sign, corresponds to simple-expressions. Addition of two
formulae corresponds to linking of two structures at this level. In the expression 2 there
are two simple-expressions, each consisting of a simple term, each of them being a single
signed-factor, each being a factor (without sign).

expression 3: z * y expression 4: z"3
structure: structure:
+ +
* *
"X "X
* "3
Ty

The middle level, denoted by ’ * ’ sign, corresponds to terms. Linking of structures
at that level corresponds to multiplication. The low level, denoted by '*’ sign, corresponds
to signed-factors. Constants and names of variables are contained only in nodes of the ~
level, nodes from levels + and * are used only for structuring. The expression 3 consists
of one simple-expression, which has two terms. The expression 4 has one term consisting
of two signed-factors, each of them being a factor.

J. Paczynski, T. Kreglewski - 173 - Nonlinear model generator

expression 5: -2 % z+y 2+ (a-3.5) expression 6: sin(z)

structure: structure:
+ +
* *
"2 " sin
* +
- N
* " x
B |
+
*
Ty
z
*
+
*
" a
+
*
" 35
*
" o-1

In the example 5 there are two simple-expressions. The first one consists of 3 terms.
Each of these terms is a single factor. The second simple-expression has two terms. The
first one consists of two factors, the second has one factor, which is an expression in
parentheses. Each pair of nested parentheses increases the depth of a structure by three
nodes. Standard functions are just another form of factors. Their names appear in nodes
of the " level. Arguments in parentheses are expressed by a lower "layer” of structure,
three nodes deep.

expression 7: sin z expression 8: sin ln cos z

structure: structure:
+ +
* *
" sln x " sin
" In
" cos x

In the S4 syntax, standard functions have factors as arguments. When this factor is
a variable or a constant, the whole “compound” factor corresponds to one node (expres-
sion 6). An interesting situation occurs, when the argument is an standard function (see
expression 8). The up to here recursive structure of the graph is perturbed.

B 1.4 ARITHMETIC AND DIFFERENTIATION OPERATIONS

All mathematical operations are performed on structures - on copies of their argu-
ments. The addition is the simplest, the corresponding structures are linked together at
the + level (see the structure of expression 2). In the multiplication procedure a skeleton
structure is produced as in expression 3, but without the variables z, y in " nodes. The
copies of arguments are linked under those nodes, instead. The power procedure acts simi-
larly using the structure presented for expression 4. Subtraction and division appear only
in the “external” formula representation and never - in the "internal” structural form, so

J. Paczynski, T. Kreglewsk: -174 - Nonlinear model generator

they need not be implemented. Operations of standard functions are performed according
to patterns presented for expressions 6,7 and 8.

Differentiating procedures take structures as their input and produce structures
representing derivatives, basing on rules of differentiation and using the library of
mathematical operations. The derivative of an expression is formed as the sum of deriva-
tives of simple- expressions. A simple-expression has the form of t * ¢t * .. * t , where ¢
denote a term. Its derivative if formed as the sum of all products of the form t * .. * dt
/dz = ..+ t . Differentiation of these both syntactic constructs can (and is) be imple-
mented iteratively. A term has the general form f °f *.."f, where f/ denote signed-factors.
The derivative of a term is computed according to the formula

d(f"R)/dz={ "R * In f + dR/dz+R + {*(R-1) * df /dz,

where f denote the first factor and R - the rest of a term. It is a recursive definition and
must be implemented recursively. The derivative is produced by creating all necessary
factors and linking them into two simple-expressions and finally into one expression. The
derivative of a signed-factor (or a factor) is computing according to its form. A derivative
of a constant or a variable is the structure corresponding to the constant 0 or 1. When a
factor has the form of an expression enclosed in parentheses, its derivative is computed by
the recursive call of the expression differentiating procedure. When a factor is a standard
function, its derivative is computed by creating a structure corresponding to the deriva-
tive of this function and multiplying it by the derivative of its argument.

B 1.5 COMPRESSION OF STRUCTURES

SIMPLIFICATION

Differentiating procedures give the result in the form of a structure. It must be
compressed to the form of an expression. This structure is highly redundant, e.g. the
derivative of 2 * z is computed as 0 * z+2 * 1, so the compression must be accompanied
by the simplification.

Implementation of any simplification procedure presents a real problem. First, there
exists no universal “simplest” form of an expression, e.g. for el=(1+a) -3 * a -a the good
result would be obtained after expanding powers, while for e2=(1+a] just the reverse.
Large symbolic systems try several possibilities and automatically choose the most concise
form. Small systems, like MUMATH, apply automatically only a reduced set of simplify-
ing actions. The user can interactively invoke other, more complicated but also more time
consuming actions, but it requires both some experience and patience. Both approaches
rather cannot be used in the presented program. Second, it is rather a complicated pro-
gramming task because of large number of interactions between operators, variables and
special values (such as O and 1} used subconsciously by anyone trained in mathematics -
all of them must be modelled in the program in order to produce the output in the
expected form.

There are two possible approaches to simplification of formulae. The first - by
transforming a structure into another, simpler structure and the second - by transformin&
a structure into a simplified formula. Both methods are used in the program. Procedures
of the first method recognize some characteristic patterns of the argument structure and
create another structure by copying suitable parts of the arguments into proper places of
the result structure. The second method gives (partial) simplification with simultaneous
compression of a structure into a formula. It is implemented as a recursive procedure. The
structure is searched in post-order. For a given node there is a formula or a value
corresponding to the (part of original) structure pointed to by the "low” pointer of this

J. Paczynski, T. Kreglewsk: -175 - Nonlinear model generator

node and a formula or a value corresponding to the structure pointed to by the “right”
pointer. These two arguments are combined together into a formula or a value, according
to the “contents” of the node, i.e. they are added, multiplied, exponentiated, the sign is
changed or a standard function is applied. The simplification may be partial only, because
it has “local” character (the number of intermediate expansions of a formula into a struc-
ture and subsequent compressions is kept to minimum).

The kind of necessary simplifying actions and their order depend on the particular
expression. There are some typical transformations, which are often used:

- distribution of the base of an expression over the simple expressions of an exponent,
which is a sum;

- distribution of the exponent of an expression over the base, which is a product;

- different kinds of distributions connected with the numerator and the denumerator
of an expression;

- expansion of powers of sums;

- factoring of the base from the simple expressions of an exponent, which is a sum;
- factoring of the exponent from the base, which is a product;

- factorials connected with the numerator and the denumerator.

For expressions of modest complexity, usually only one or two of them gives
improvement, while others only increase processing time without producing essentially
simpler result. Therefore a compromise should be sought between computing speed and
“simplification power”, based on the expected average "complexity level” of differentiated
formulae.

B 1.6 EVALUATION OF FORMULAE

Two variants of the formulae evaluation were implemented. In the first one a spe-
cialized parser was used for the analysis of a formulae and accumulating its value. The
speed of this method proved too slow for applications in DIDAS, although it was satisfac-
tory for the problem generator needs. In the second method there is a procedure imple-
menting a virtual computer. Formulae are compiled into the code for that computer. This
code is stored in the spreadsheet and is used for computing of formulae value.

REFERENCES
Aho A.V. and Ullman .D.(1977). Principles of Compiler Design. Addison Wesley.

Fichtenholz G.M.(1966). Handbook of Differential and Integral Calculus. Nauka.(in Rus-
sian).

Kaden S. and Grauer M.(1984). A Nonlinear Dynamic Interactive Decision Analysis and
Support System (DIDAS-N). User’s Guide. WP-84-23. IIASA. Kreglewski T. and
Kaden S.(1985). Decision Support System MINE. Problem Solver for Nonlinear Mul-
ticriteria Analysis. IIASA.

Lewandowski A., Kreglewski T. and Rogowski T.(1985). DIDAS-NL -the Nonlinear Ver-
sion of DIDAS System. In: Theory,Software and Test Examples for Decision Support
Systems. A.Lewandowski and A.Wierzbicki,Eds. IIASA.

Lewandowski A.(1985). Problem Interface for Nonlinear DIDAS. Draft. Pavelle
R.(1985). MACSYMA: Capabilities and Applications to Problems in Engineering
and the Science. In: EUROCAL’85, European Conference on Computer Algebra.
B.Buchberger,Ed. Lecture Notes in Computer Science, Vol.203.Springer.

J. Paczynski, T. Kreglewsk: - 176 - Nonlinear model generator

Pavelle R.,Rothstein M. and Fifch J.(1981). Computer Algebra. Scientific American,
December,1981.

Rall L.B.(1981). Automatic Differentiation:Techniques and Applications. Lecture Notes
in Computer Science, Vol.120.Springer.

Wirth N.(1976). Algorithms + Data Structures = Programs. Prentice Hall.1976.

Wolfe P.(1982). Checking the Calculation of Gradients. ACM Trans. Math. Software.
Vol.8, December, 1982.

T. Kreglewski et al. - 177 - IAC-DIDAS-N

IAC-DIDAS-N
A Dynamic Interactive Decision Analysis and Support System
for Multicriteria Analysis of Nonlinear Models
on Professional Microcomputers

T. Kreglewsk:, J.Paczynski, A.P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents introductory documentation and theoretical manual
for a version of decision analysis and support systems of DIDAS family
that is designed for work with nonlinear models on professional microcom-
puters. This version has been developed in 1986 in the Institute of
Automatic Control, Warsaw University of Technology, under a contracted
study agreement with the Systems and Decision Sciences Program of the
International Institute for Applied Systems Analysis and differs from pre-
vious nonlinear DIDAS versions in several aspects. It can be run on profes-
sional microcomputers compatible with IBM-PC-XT (with Hercules or
color graphics card and, preferably, with a numeric co-processor and a
hard disk) and supports graphical representation of results in interactive
analysis. Moreover, this version called IAC-DIDAS-N is equipped with a
new nonlinear model generator and editor that supports, in an easy stan-
dard of a spreadsheet, the definition, edition and symbolic differentiation
of nonlinear substantive models for the multiobjective decision analysis. A
specially introduced standard of defining nonlinear programming models
for multiobjective optimization helps to connect the model generator with
other parts of the system. The optimization runs helping the interactive,
multiobjective decision analysis are performed with the help of a new
solver, that is, a new version of nonlinear programming algorithm espe-
cially adapted for multiobjective problems. This algorithm is based on
shifted penalty functions and projected conjugate directions techniques
similarly as in former nonlinear versions of DIDAS, but it is further
developed and written in PASCAL together with other algorithms and
programs of [AC-DIDAS-N system.

A.INTRODUCTORY DOCUMENTATION

Al. EXECUTIVE SUMMARY

In many situations of complex decisions involving economic, environmental and
technological decisions as well as in the cases of complex engineering design, the decision
maker needs help of an analyst or a team of them to learn about possible decision options
and their predicted results. The team of analysts frequently summarizes its knowledge in
the form of a substantive model of the decision problem that can be formalized mathemati-
cally and computerized. While such a model can never be perfect and cannot encompass
all aspects of the problem, it is often a great help to the decision maker in the process of
learning about novel aspects of the decision situation and gaining expertise in handling

T. Kreglewsk: et al. - 178 - IAC-DIDAS-N

problems of a given class. Even if the final decisions are typically made judgementally -
that is, are based on holistic, deliberative assessments of all available information without
performing a calculative analysis of this information, see S.Dreyfus (1984) - the interac-
tion of a decision maker with the team of analysts and substantive models prepared by
them can be of great value when preparing such decisions.

In organizing such interaction, many techniques of optimization, multicriteria deci-
sion analysis and other tools of mathematical programming can be used. To be of value
for a holistically thinking decision maker, however, all such techniques must be used as
supporting tools of interactive analysis rather than as means for proposing unique optimal
decisions and thus replacing the decision maker. The decision analysis and support sys-
tems of DIDAS family - that is, Dynamic Interactive Decision Analysis and Support sys-
tems, see e.g. Lewandowski et al. (1983) - are especially designed to support interactive
work with a substantive model while using multicriteria optimization tools, but they
stress the learning aspects of such work, such as the right of a decision maker to change
his priorities and preferences when learning new facts. DIDAS systems can be used either
by analysts who want to analyse their substantive models, or by teams of analysts and
decision makers, or even by decision makers working alone with a previously defined sub-
stantive model; in any case, we shall speak further about the user of the system.

There are several classes of substantive models that all require special technical
means of support. The IAC-DIDAS-N version is designed to support models of multiobjec-
tive nonlinear programming type. While some nonlinear DIDAS versions have been
developed before, they did not follow any standards of defining such models, since such
standards did not exist. In order to support the work with a user that is not necessarily a
specialist in computer programming and nonlinear optimization programming, it has
become necessary to introduce such standards.

Models of multiobjective nonlinear programming type specify, firstly, the following
classes of variables: input variables that can be subdivided into decision variables (that is,
means of multiobjective optimization) and parametric variables (that is, model parame-
ters that are kept constant during multiobjective analysis but might be changed during
parametric or sensitivity analysis) - and outcome variables that can be subdivided into
guided outcomes (that should be kept constant, subject to equality constraints), floating
outcomes (either used only for the easiness of definition of the nonlinear model or having
only informative importance for the user) and optimized outcomes or objectives (the ends
of multiobjective optimization that can be either maximized or minimized or stabilized,
that is, kept close to a desired level). Actually, the distinction between various types of
outcome variables is not necessarily sharp and the user might change their classification
and select his objectives among various outcome variables when defining the multiobjec-
tive analysis problem.

For all input and outcome variables, a reasonably defined nonlinear model should
include lower and upper bounds, that is, reasonable ranges of admissible changes of these
variables. Moreover, an essential part of a nonlinear model definition are model equations,
that is, nonlinear functions that define the dependence of all outcome variables on input
variables. To make the model definition easier for the user, it 1s assumed that outcome
variables are defined consecutively and that they can depend not only on input variables,
but also on previously defined outcome variables. However, all outcome variables must be
defined explicitly (an implicit definition of an outcome variable is also possible, but is per-
formed indirectly - see theoretical manual).

There are many examples of decision problems that can be analysed while using a
substantive model of multiobjective nonlinear programming type; for example, DIDAS-

T. Kreglewsk: et al. - 179 - IAC-DIDAS-N

type systems with multiobjective nonlinear programming models have been used in ana-
lysing various environmental or technological problems (see Kaden, 1985, Grauer et al.,
1983). As a demonstrative or tutorial example, IAC-DIDAS-N uses a multiobjective non-
linear programming model for a control system design, where the decision variables are
the parameters of a controller and the objectives are various performance indices of the
control system, either in time-domain or in frequency domain. The user can also define
substantive models of multiobjective nonlinear programming type for his own problems
and analyse them with the help of IAC-DIDAS-N.

A typical procedure of working with a DIDAS-type system consists of several phases.

In the first phase, a user - typically, an analyst - defines the substantive model and
edits it on the computer. In earlier versions of nonlinear DIDAS-type systems (which were
mostly implemented on bigger mainframe computers) this phase has not been explicitly
supported in the system and the user had to separately prepare (define and edit) his non-
linear model, typically in the form of a FORTRAN procedure that contained also user-
supplied formulae for the derivatives of all outcome functions with respect to decision
variables. It is a known fact that most mistakes in applying nonlinear programming
methods are made when determining analytically derivatives; thus, this form of prepara-
tion of a substantive model required rather much experience in applications of nonlinear
programming.

The new features of IAC-DIDAS-N are, firstly, the definition and edition of substan-
tive models in an easy but flexible standard format of a spreadsheet, where the input vari-
ables correspond to spreadsheet columns and the outcome variables - to spreadsheet rows;
special cells are reserved for types of variables, scaling units, lower and upper bounds for
all variables, constraining values for guided outcomes as well as aspiration or reference
levels for stabilized, maximized and minimized outcomes, for results of various optimiza-
tion computations, etc. However, another unique new feature of IAC-DIDAS-N is an
automatic support of calculations of all needed derivatives by a symbolic differentiation
program. The user does not need to laboriously calculate many derivatives and to check
whether he did not make any mistakes; he must only define model equations or outcome
functions (possibly in recursive, but explicit form) and make sure that these functions are
differentiable and admissible for the symbolic differentiation program - which admits
functions from a rather wide class. The spreadsheet format currently implemented does
limit somehow the size of substantive models that can be defined in it (in the particular
implementation of IAC-DIDAS-N, to 26 decision variables, 26 parameters and 26 outcome
variables) but reasonable models of nonlinear programming type that can be usefully
analysed on professional microcomputers should not be too large anyway; on the other
hand, the spreadsheet format allows also for display of automatically determined formulae
for derivatives or their computed values in appropriate cells. The user of IJAC-DIDAS-N
can also have several substantive models recorded in a special model directory, use old
models from this directory to speed up the definition of a new model, etc., while the sys-
tem supports automatically the recording of all new or modified models in the directory.

In the second phase of work with DIDAS-type systems, the user - here typically an
analyst working together with the decision maker - specifies a multiobjective analysis
problem related to his substantive model and participates in an initial analysis of this
problem. There might be many multiobjective analysis problems related to the same sub-
stantive model: the specification of a multiobjective problem consists in designating
guided outcomes (constraints) and optimized outcomes (objectives) between outcome
variables, defining whether an objective should be minimized, or maximized, or stabilized
- kept close to a given level. Moreover, the user can also shift bounds on any variable

T. Kreglewski et al. - 180 - JAC-DIDAS-N

when specifying a multiobjective analysis problem. For a given definition of the multiob-
Jective analysis problem, the decision and outcomes in the model are subdivided into two
categories: those that are effictent with respect to the multiobjective problem (that is,
such that no objective can be improved without deteriorating some other objective) and
those that are inefficient. It is assumed that the user is interested only in efficient deci-
sions and outcomes (this assumption is reasonable provided he has listed all objectives of
his concern; if he has not, or if some objectives of his concern are not represented in the
model, he can still modify the sense of efficiency by adding new objectives, or by requiring
some objectives to be kept close to given levels, or by returning to the model definition
phase and modifying the model).

One of main functions of a DIDAS-type systems is to compute efficient decisions and
outcomes - following interactively various instructions of the user - and to present them
for analysis. This is done by solving a special parametric nonlinear programming problem
resulting from the specification of the multiobjective analysis problem; for this purpose,
IAC-DIDAS-N contains a specialized nonlinear programming algorithm called solver. Fol-
lowing the experiences with previous versions of nonlinear DIDAS systems, a robust non-
linear programming algorithm based on shifted penalty functions and projected conjugate
directions techniques was further developed for IAC-DIDAS-N; this specialized algorithm
is written in PASCAL, similarly as all other parts of the system.

However, a multiobjective problem definition admits usually many efficient decisions
and outcomes; the user should first learn about bounds on effictent outcomes. This is the
main function of IAC-DIDAS-N in the initial analysis phase. The user can request the sys-
tem to optimize any objective separately; however, there are also two special commands
in the system related to this function. First, called "utopia”, results in subsequent compu-
tations of the best possible outcomes for all objectives treated separately (such outcomes
are practically never attainable jointly, hence the name “utopia” for the point in outcome
space composed of such outcomes). Second, called "nadir”, results in an estimation of the
worst possible between efficient outcomes (defining precisely the worst possible between
efficient outcomes is a very difficult computational task; in some simple cases, the "uto-
pia” computations give enough information to determine the worst possible between
efficient outcomes, but for more general cases this information is not reliable and a more
reliable way of estimating the worst possible between efficient outcomes is implemented in
IAC-DIDAS-N). The "utopia” and "nadir” computations give important information to
the user about reasonable ranges of decision outcomes; in order to give him also informa-
tion about a reasonable compromise efficient solution, a neutral effictent solution can be
also computed in the initial analysis phase following a special command. The neutral solu-
tion is an efficient solution situated “in the middle” of the range of efficient outcomes,
while the precise meaning of being “in the middle” is defined by the distances between the
utopia and the nadir point. After analysing the utopia point, the nadir point and a neu-
tral solution (which all can be represented graphically for the user), the initial analysis is
completed and the user has already learned much about ranges of attainable efficient
objectives and the possible tradeoffs between these objectives. Each change of the
definition of the substantive model or of the multiobjective analysis problem, however,
necessitates actually a repetition of the initial analysis phase; on the other hand, the user
can omit this repetition if he judges that the changes in the model or multiobjective
analysis definition have been small.

The third phase of work with DIDAS-type systems consists in interactive scanning
of efficient outcomes and decisions, guided by the user through specifying aspiration levels
for each objective, called also reference points. The user has already reasonable knowledge
about the range of possible outcomes and thus he can specify aspiration levels that he

T. Kreglewskt et al. - 181 - IAC-DIDAS-N

would like to attain. IAC-DIDAS-N utilizes the aspiration levels as a parameter in a spe-
cial achievement function coded in the system, uses its solver to compute the solution of a
nonlinear programming problem equivalent to maximizing this achievement function, and
responds to the user with an attainable, efficient solution and outcomes that strictly
correspond to the user-specified aspirations.

If the aspirations are "too high” (better than attainable), then the response of the
system is a solution with attainable, efficient outcomes that are uniformly as close to the
aspirations as possible. If the aspirations are "too low” (if they correspond to attainable
but inefficient outcomes that can be improved), then the response of the system is a solu-
tion with outcomes that are uniformly better than the aspirations. The precise meaning of
the uniform approximation or improvement depends on scaling units for each objective
that can be either specified by the user or defined automatically in the system as the
differences between the utopia point and the current aspiration point. This second,
automatic definition of scaling units has many advantages to the user who is not only
relieved of specifying scaling units but also has a better control of the selection of efficient
outcomes by changing aspiration levels in such a case.

After scanning several representative efficient solutions and outcomes controlled by
changing aspirations, the user learns typically enough either to select subjectively an
actual decision (which needs not to correspond to the decisions proposed in the system,
since even the best substantive model might differ from real decision situation) or to
select an efficient decision and outcome proposed in the system as a basis for actual deci-
sions. Rarely, the user might be still uncertain what decision to choose; for this case,
several additional options can be included in a system of DIDAS type. Such options
include two more sophisticated scanning options: a multidimensional scanning, resulting
from perturbing current aspiration levels along each coordinate of objective space, and a
directional scanning, resulting from perturbing current aspiration levels along a direction
specified by the user (see Korhonen, 1985). Another option is forced convergence, that is,
such changes of aspiration levels along subsequent directions specified by the user that the
corresponding efficient decisions and outcomes converge to a final point that might
represent the best solution for the preferences of the user. However, these additional
options are not implemented in IAC-DIDAS-N, since the experience of working with
DIDAS-type systems shows that these options are rarely used.

A2. SHORT PROGRAM DESCRIPTION

The IAC-DIDAS-N system (Institute of Automatic Control, Dynamic Interactive
Decision Analysis and Support, Nonlinear version) is decision support system designed to
help in the analysis of decision situations where a mathematical model of substantive
aspects of the situation can be formulated in the form of a multiobjective nonlinear pro-
gramming problem, possibly of dynamic structure.

The IAC-DIDAS-N system is recorded on a single diskette that should be installed
on an IBM-PC-XT or a compatible computer with Hercules or a color graphic card and,
preferably, with a numeric coprocessor and a hard disk (if a numeric coprocessor is
present then special version of the IAC-DIDAS-N system can be used taking advantage of
the coprocessor computational capacity). A diskette contains compiled code of a PASCAL
program and several data files supporting windows and graphics of the system. After
installing it in the user directory, it can be activated (by the command DIDASN at the
DOS prompt). System supports the following general functions:

T. Kreglewski el al. - 182- IAC-DIDAS-N

1} The definition and edition of a substantive model of the decision situation in a user-
friendly format of a spreadsheet.

2) The specification of a multiobjective decision analysis problem related to the sub-
stantive model. This is performed by specific features of spreadsheet edition.

3) The initial multiobjective analysis of the problem, resulting in estimating bounds on
efficient outcomes of decisions and in learning about some extreme and some neutral
decisions. These functions are supported by some specific commands and the results
are presented to the user in the spreadsheet form.

4) The interactive analysis of the problem with the stress on learning by the user of
possible efficient decisions and outcomes, organized through system’s response to
user-specified aspiration levels or reference points for objective outcomes. The TAC-
DIDAS-N system responds with efficient solutions and objective outcomes obtained
through the maximization of an achievement function that is parameterized by the
user-specified reference points and, optionally, user-specified scaling coefficients. The
maximization is performed through a nonlinear programming algorithm called
solver, written entirely in PASCAL. The interactive analysis is supported by enter-
ing user data into specific cells in the spreadsheet and executing commands from the
current menu.

The main menu of IAC-DIDAS-N performs various functions used in several phases
of the interactive analysis process. Most of the functions of phase 1) and 2) are specific
commands in the spreadsheet edition (the decision variables are defined as columns of the
spreadsheet, the outcome variables are defined as rows, outcome formulae are entered in
the corresponding cells, there are special rows and columns for scale units, lower and
upper bounds, for defining user names of objective outcomes and their types, reference
points, utopia and nadir points, for solutions corresponding to the reference points). The
functions of other phases are executed by macrocommands using various function keys;
the user can get various help displays that suggest in an easy fashion the commands useful
in a current phase of work with the system.

All commands from the main menu are invoked with function keys. Main menu com-
mands are as follows:

F3 Select a model: this command enters another menu called directory menu. Com-
mands from this menu allow changing a drive and a path where models and their
data are stored, displaying contents of selected directory, renaming and deleting

files.

F4 Create new model: this command enters the spreadsheet for a definition of a new
model. Old, previously defined models could by used in several ways as templates for
a new one for farther editing.

F5 Edit a model: this command enters the spreadsheet for editing an existing model.
F6 Multiobjective analysis: this command enters another part of the spreadsheet where

data related to multiobjective analysis are stored. Menu of commands available here
contains commands for phases 2) and 3)

F9 Graphical representation: Data from the spreadsheet together with some data from
database are presented in several graphical forms selected by the user from a
displayed menu.

T. Kreglewski et al. - 183 - IAC-DIDAS-N

F10 Quit: this command conditionally ends the work with the system, it is checked
whether the current model and its data were saved on disk, if no the command must
be confirmed by the user.

JAC-DIDAS-N system has been developed in the Institute of Automatic Control,
Warsaw University of Technology, Warsaw, Poland, in a contracted study agreement
“Theory, Software and Testing Examples for Decision Support Systems” with the Systems
and Decision Sciences Program of the International Institute for Applied Systems
Analysis, Laxenburg, Austria, which has the copyright for this system.

B1. THEORETICAL MANUAL.

The standard form of a multiobjective nonlinear programming problem is defined as
follows:

mazimize [g=f(z)]; (1)
X={z€R": ¢'(z)=0, g"(z)<0}

where :cER",qERP fR"—+Rp is a given function (assumed to be differentiable),
g :R"R™ and g R"—R™" are also given functions (of the same class as f) and the
maximization of the vector q of p objectives is understood in the Pareto sense: £, § are
solutions of (1) iff §=f(z), 26X and there are no such z, ¢ with ¢=/(z), z€X that
q>§, g7#4. Such solutions £, § of (1) are called, respectively, an efficient decision £ and
the corresponding effictent outcome q. If, in this definition, it were only required that
there would be no such z,g with ¢=f(z), z€X that ¢>§, then the solutions £,§ would
be called weakly efficient. Equivalently, if the set of all attainable outcome is denoted by

Q={qeRP:q=/(z), z€X} (2)

and so called positive cones D= Rp D RP \{¢} —intRp are introduced (thus, ¢>§
can be written as ¢—4€D, ¢>¢, q;éq as q GeD and q>q as ¢q—§€ D), then the sets of
efficient outcomes Q and of weakly efficient outcomes Q can be written as:

Q={9€Q: (#+D)nQ=¢} (3)
Q¥={¢€Q: (¢+D)NQ=¢} (4)

The set of weakly efficient outcomes is larger and contains the set of efficient out-
comes; in many practical applications, however, the set of weakly efficient outcomes is
decisively too large. Some efficient outcomes for multiobjective nonlinear programming
problems might have unbounded trade-off coefficients that indicate how much an objec-
tive outcome should be deteriorated in order to improve another objective outcome by a
unit; therefore, it is important to distinguish also a subset QPCQ called the set of prop-
erly efficient outcomes, such that the corresponding trade-off coefficients are bounded.

The abstract problem of multtob]ectwe nonlinear programming consists in determin-
ing the entire sets Qp or Q or Q . The practical problem of multiobjective decision sup-
port using nonlinear programming models is different and consists in computing and
displaying for the decision maker (or, generally, for the user of the decision support sys-
tem) some selected properly efficient decisions and outcomes. However, a properly
efficient outcome with trade-off coefficients that are extremely high or extremely low does
not practically differ from a weakly efficient outcome. Thus, some a priori bound on
trade-off coefficients should be defined and properly efficient outcomes that do not satisfy
this bound should be excluded. This can be done by defining a slightly broader positive
cone:

T. Kreglewski et al. - 184 - IAC-DIDAS-N

D ={qeRP:dist(q,D)<e|q| } (5)

where any norm in RP is used, also to define the distance between q and D. The
corresponding, modified definition of D, -efficiency:

QP*={4eQ:(¢+D)NQ=¢}; D.=D\{¢} (6)

applies to properly efficient outcomes that have tradeoff coefficients a priori bounded by
approximately € and 1/¢ ; such outcomes are also called properly efficient with (a priori)
bound.

The selection of properly efficient outcomes with bound and the corresponding deci-
sions should be easily controlled by the user and should result in any outcome in the set
Qf might wish to attain. Before turning to some further theoretical problems resulting
from these practical requirements, observe first that the standard formulation of multiob-
jective nonlinear programming is not the most convenient for the user. Although many
other formulations can be rewritten to the standard form by shifting scales or introducing
proxy variables, such reformulations should not bother the user and should be automati-
cally performed in the decision support system. Therefore, we present here another basic
formulation of the multiobjective nonlinear programming problem, more convenient for
typical applications.

A substantive model of multiobjective nonlinear programming type consists of the
specification of vectors of n decision variables z€ R™ and of m outcome variables yc R™
together with nonlinear model equations defining the relations between the decision vari-
ables and the outcome variables and with model bounds defining the lower and upper
bounds for all decision and outcome variables:

y=g(z); z°<z<z%; ylo<y<y® (7

where g: R —R™ is a (differentiable) function that combines the functions f, g’ and g¢"
from the standard formulation. Thus, m=m’'+m"+p; but the choice, which of the com-
ponents of the outcome variable y correspond to constraints and which correspond to
objectives, is flexible and can be modified by the user. Between outcome variables, some
might be chosen as corresponding to equality constraints; denote these variables by
yCERm’CRm and the constraining value for them by b° to write the additional con-
straints in the form:

vo=g(z)=b%; yelo<heye ®

where ¢° is a function composed of corresponding components of g. The outcome variables
corresponding to equality constraints will be called guided outcomes here. Some other out-
come variables can be also chosen as optimized objectives or objective outcomes. Denote
the vector of p objective outcomes by g€ RPC R™ (some of the objective variables might
be originally not represented as outcomes of the model, but we can always add them by
modifying this model) to write the corresponding objective equations in the form:

9={(z) (9)
where f is also composed of corresponding components of g. Thus, the set of attainable
objective outcomes is again @=f(X), but the set of admissible decisions X is defined by:

X={zeR™ zP<z<z"P; yP<q(z)<y"; ¢°(z)=0°} (10)
Moreover, the objective outcomes are not necessarily maximized; some of them

might be minimized, some maximized, some stabilized or kept close to given aspiration
levels (that is, minimized if their value is above aspiration level and maximized if their

T. Kreglewski et al. - 185- IAC-DIDAS-N

value is below aspiration level). All these possibilities can be summarized by introducing a
different definition of positive cone D:

D={q€R: ¢;>0, 1<i<p'; ¢,<0, p'+1<:i<p"; ¢,=0, p"+1<i<p} (11)

where the first p’ objectives are to be maximized, the next from p'+1 until p” - minim-
ized, and the last from p”+1 until p - stabilized. The definition of the cone D, does not
change its analytical form (5), although the cone itself changes appropriately. Actually,
the user needs only to define what to do with subsequent objectives; the concept of the
positive cones D and D, is used here only in order to define comprehensively what are
efficient and properly efficient outcomes for the multiobjective problem.

Given some aspiration levels g; for stabilized objectives and the requirement that
these objectives should be minimized above and maximized below aspiration levels, the
set of efficient outcomes can be defined only relative to the aspiration levels. However,
since the user can define aspiration levels arbitrarily, of interest here is the union of such
relative sets of efficient outcomes. Let D=D\{0} and D =D\ {0}; then the outcomes
that might be efficient or properly efficient with bound for arbitrary aspiration levels for
stabilized objectives can be defined, as before, by the relations (3) or (6). The weakly
efficient outcomes are of no practical interest in this case, since the cone D typically has
empty interior which implies that weakly efficient outcomes coincide with all attainable
outcomes. '

The stabilized outcomes in the above definition of efficiency are, in a sense, similar
to the guided outcomes; however, there is an important distinction between these two
concepts. Equality constraints must be satisfied; if not, then there are no admissible solu-
tions for the model. Stabilized objective outcomes should be kept close to aspiration lev-
els, but they can differ from those levels if, through this difference, other objectives can be
improved. The user of a decision support system should keep this distinction in mind and
can, for example, modify the definition of the multiobjective analysis problem by taking
some outcomes out of the guided outcome category and putting them into the stabilized
objective category.

By adding shifting scales, adding a number of proxy variables and changing the
interpretation of the function g, the substantive model formulation (7), (8), (9), (10)
together with its positive cone (11) and the related concept of efficiency could be
equivalently rewritten to the standard form of multiobjective nonlinear programming (1);
this, however, does not concern the user. More important is the way of user-controlled
selection of an efficient decision and outcome from the set (3) or (6). For stabilized objec-
tive outcomes, the user can change the related aspiration levels in order to influence this
selection; it s assumed here that he will do so for all objective outcomes, that is, use the
corresponding aspiration levels in order to influence the selection of efficient decisions.
The aspiration levels are denoted here §; or § as a vector and called also, equivalently,
reference points.

A special way of parametric scalarization of the multiobjective analysis problem is
utilized for the purpose of influencing the selection of efficient outcomes by changing refer-
ence points. This parametric scalarization is obtained through maximizing an order-
approzimating achievement function (see Wierzbicki 1983, 1986). There are several forms
of such functions; properly efficient outcomes with approximate bound ¢, 1/¢ are obtained
when maximizing a function of the following form:

p
_ . - € _
S(q,q)=1rsrlilgpzi(qi,qi)+;§1z,~(q,~,q,-) (12)

T. Kreglewski et al. - 186 - IAC-DIDAS-N

where the parameter € should be positive, even if very small; if this parameter would be
equal zero, then the above function would not be order-approzimating any more, but
order-representing, and its maximal points could correspond to weakly efficient outcomes.

The functions z(¢;,3;) are defined by:
(q{_qj]/sp lf 1_<J.SP’a

(95, 3;)=(T—q,) /s, if p'+1<i<p”, (13)
min(z/, z"), if p"+1<i<p”,

where
z/=(q;—q)/s{, #'=(q,—q,)/s/ (14)

The coefficients s;, s/, s;"are scaling units for all objectives, either defined by the
user or determined automatically in the system, see further comments.

The achievement function s(q,7) can be maximized with ¢=f(z) over z€X; how-
ever, the function (12) is nondifferentiable (for example, if ¢=§). On the other hand, if
the function g(z) (and thus also f(z)) is differentiable, then the maximization of function
(12) in the system can be converted automatically to an equivalent differentiable non-
linear programming problem by introducing proxy variables and substituting the min
operation in (12) by a number of additional inequalities. If the coefficient ¢ > 0, then the
achievement function has the following properties (see Wierzbicki, 1986):

a) For an arbitrary aspiration level or reference point §, not necessarily restricted to be
attainable (§€ Q) or not attainable (§¢ @), each maximal point § of the achieve-
ment function s(q,§) with g=f(z) over z€X is a D -efficient solution, that is, a
properly efficient solution with tradeoff coefficients bounded approximately by ¢ and
1/e.

b) For any properly efficient outcome § with tradeoff coefficients bounded by € and 1/,
there exist such reference points § that the maximum of the achievement function
s(q,g) is attained at the properly efficient outcome §. In particular, if the user
(either by chance or as a result of a learning process) specifies a reference point §
that in itself is such properly efficient outcome, §=¢, then the maximum of the
achievement function s(g,q), equal zero, is attained precisely at this point.

c) If the reference point § is ’too high’ (for maximized outcomes; too low’ for minim-
ized outcomes), then the maximum of the achievement function, smaller than zero,
is attained at an efficient outcome § that best approximates uniformly, in the sense
of scaling units s;, the reference point. If the reference point 7 is ’too low’ (for max-
imized outcomes; ’too high’ for minimized outcomes and it can happen only if there
are no stabilized outcomes), then the maximum of the achievement function, larger
than zero, is attained at an efficient outcome § that is uniformly, in the sense of scal-
ing units s;, ’higher’ than the reference point.

d) By changing his reference point §, the user can continuously influence the selection
of the corresponding efficient outcomes § that maximize the achievement function.

The parameter ¢ in the achievement function determines bounds on tradeoff
coefficients: if an efficient solution has tradeoff coefficients that are too large or too small
(say, lower than 10 or higher than 10) than it does not differ for the decision maker from
weakly efficient outcomes - some of its components could be improved without practically

T. Kreglewski et al. - 187 - IAC-DIDAS-N

deteriorating other components. Another interpretation of this parameter is that it indi-
cates how much an average overachievement (or underachievement) of aspiration levels
should correct the minimal overachievement (or maximal underachievement) in the func-
tion (12).

The maximization of an achievement function in IAC-DIDAS-N is performed by a
specially developed nonlinear optimization algorithm, called solver. Since this maximiza-
tion is performed repetitively, at least once for each interaction with the user that
changes the parameter g, there are special requirements for the solver that distinguish
this algorithm from typical nonlinear optimization algorithms: it should be robust, adapt-
able and efficient, that is, it should compute reasonable fast an optimal solution for
optimization problems of a broad class (for various differentiable functions g(x) and f(x))
without requiring from the user that he adjusts special parameters of the algorithm in
order to obtain a solution. The experience in applying nonlinear optimization algorithms
in decision support systems (see Kreglewski and Lewandowski, 1983, Kaden and Kre-
glewski, 1986) has led to the choice of an algorithm based on penalty shifting technique
and projected conjugate gradient method. Since a penalty shifting technique anyway
approximates nonlinear constraints by penalty terms, an appropriate form of an achieve-
ment function that differentiably approximates function (12) has been also developed and
is actually used in IAC-DIDAS-N. This smooth order-approzimating achievement function
has the form:

/e
g)= 1 p" o P ' myo
s(g,7)=1—{—| 3 (w)*+ ¥ +1(maz(w/, v)) (15)
1=1 ":pu
where w;, w/, w;" are functions of ¢, §;:

(qi,maz—qi)/si’ if IS"SP'

v q,a - 1 ! N " (16)
(43) (9i— i min) /5 if p'+1<i<p

wil(qiaqi):(qi,maz_qi)/si .

. if p"+1<i<p, (16b)

0/ (95,%)=(9i— % min) /5

and the dependence on g; results from a special definition of the scaling units that are
determined by:

(qi,maz—‘ji)/'ia if 1<i<p’, 17a
S, = . . 17a
Y U@ 4 an) /i B 1P,

si’:(qi,max_q—i)/ri’ if 1<:<p’,

g, i 1eiepn P PIHISISD, (17b)
(@i— i min) /i if p'+1<2<p”,

!
54

where r; are additional weighting coefficients that might be defined by the user (however,
the system does not need them and works also well if they are set by their default values
r,=1). In the initial analysis phase, the values 4 maz and g, ..., are set to the upper and

T. Kreglewsk: et al. - 188 - IAC-DIDAS-N

lower bounds specified by the user for the corresponding outcome variables; later, they are
modified, see further comments. The parameter a>2 is responsible for the approximation
of the function (12) by the function (15): if @ — co and € — 0 then these functions con-
verge to each other (if r,=1 and while taking into account the specific definition of scaling
coefficients in (15)). However, the use of too large parameters « results in badly condi-
tioned problems when maximizing function (15), hence a=4- - -8 are suggested to be
used.

The function (15) must be maximized with ¢g=f(z) over z€ X, while z is determined
by simple bounds z/°<z<z" as well as by inequality constraints yIOSg(I)Sy“p and
equality constraints ¢°(z)=50° . In the shifted penalty technique, the following function is
minimized instead:

' ! ! " — 1 P !) !
P(x,x"x",x,u',u ,v)=~3(f(1),q)+5 Y x/max(0,g;(z)—y T+ u/)) 2+ (18)
=1

1 P n " 1 m]]
+5 Y ximaz(0,y—g(2)+u") 23 xi0%(2) -0 +vy))?
1=1 1=1

where x',x",x are penalty coefficients and u’,u”,v are penalty shifts. This function is
minimized over x such that J:IOSISI“” while applying conjugate gradient directions, pro-
jected on these simple bounds if one of the bounds becomes active. When a minimum of
this penalty function with given penalty coefficients and given penalty shifts (the latter
are initially equal zero) is found, the violations of all outcome constraints are computed,
the penalty shifts and coefficients are modified according to the shifted-increased penalty
technique (see, e.g., Wierzbicki, 1984), and the penalty function is minimized again until
the violations of outcome constraints are admissibly small. The results are then
equivalent to the outcomes obtained by maximizing the achievement function (15) under
all constraints. This technique, though it might seem cumbersome, is according to our
experience one of the most robust nonlinear optimization methods; the user of the system
is not bothered with its details, since the adjustment of penalty shifts and coeflicients is
done automatically in this technique.

Another advantage for the user is that he is not bothered with the definition of
derivatives of penalty function (18), needed in the conjugate gradient method, nor even
with the definition of the derivatives of outcome functions g;(z). This is unique feature of
IAC-DIDAS-N: all needed derivatives are automatically (symbolically) determined and
computed either in the nonlinear model generator that supports the model definition
phase or in the solver algorithm using shifted penalty technique.

The only parameter that might influence the interaction of the system with the user
is the parameter a in the smooth order-approximating function (15). Thus, the user can
select this parameter; if this parameter is very large, his control of efficient outcomes
obtained by maximizing (15) is somewhat easier, but the solver might take long time or
produce not quite robust results in this case. Therefore, the user is advised not to exceed
the reasonable range 2<a<8 ; the default value is @ = 4.

The maximization of an achievement function is a convenient way of organizing the
interaction between the model and the user. Before the interactive analysis phase, how-
ever, the user must firstly define the substantive model, then define the multiobjective
analysis problem by specifying outcome variables that should be maximized, minimized,
stabilized, guided or floating (that is, displayed for users’ information only, but not
included as optimized or guided objectives; various decision variables of interest to the
user can be also included into one of these categories). Before the initial analysis phase,

T. Kreglewski et al. - 189 - IAC-DIDAS-N

the user should also define some reasonable lower and upper bounds for each variable,
which results in an automatic definition of reasonable scaling units s; for optimized out-
come variables. In further phases of analysis, these scaling units s can be further adjusted;
this, however, requires an approximation of bounds on efficient solutions. Such an approx-
imation is performed in the initial analysis phase.

The ’upper’ bound for efficient solutions could be theoretically obtained through
maximizing each objective separately (or minimizing, in case of minimized objectives; in
the case of stabilized objectives, the user should know their entire attainable range, hence
they should be both maximized and minimized). Jointly, the results of such optimization
form a point that approximates from ’above’ the set of efficient outcomes ¢, but this
point almost never (except in degenerate cases) is in itself an attainable outcome; there-
fore, it is called the utopia point.

However, this way of computing the ’upper’ bound for efficient outcomes is not
always practical; thus, IAC-DIDAS-N uses a different way of estimating the utopia point.
This way consists in subsequent maximizations of the achievement function s(gq,7) with
suitably selected reference points §. If an objective should be maximized and its maximal
value must be estimated, then the corresponding component of the reference point should
be very high, while the components of this point for all other maximized objectives should
be very low (for minimized objectives, very high; stabilized objectives must be considered
as floating in this case, that is, should not enter the achievement function). If an objective
should be minimized and its minimal value must be estimated, the corresponding com-
ponent of the reference point should be very low, while other components of this point are
treated as in the previous case. If an objective should be stabilized and both its maximal
and minimal values must be estimated, then the achievement function should be maxim-
ized twice, first time as if for a maximized objective and the second time as if for a minim-
ized one. Thus, the entire number of optimization runs in utopia point computations is
p"+2(p—p"). It can be shown that this procedure gives a very good approximation of the
utopia point §*° , whereas the precise meaning of very high reference component should
be interpreted as the upper bound for the objective minus, say, 0.1% of the distance
between the lower and the upper bound, while the meaning of very low is the lower bound
plus 0.1% of the distance between the upper and the lower bound.

During all these computations, the ’lower’ bound for efficient outcomes can be also
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim-
izations for maximized objectives and the highest ones for minimized objectives (there is
no need to record them for stabilized objectives, where the entire attainable range is any-
way estimated). However, such a procedure results in the accurate, tight ’lower’ bound for
efficient outcomes - called nadir point ti"ad - only if p"=2; for larger numbers of maxim-
ized and minimized objectives, this procedure can give misleading results, while an accu-
rate computation of the nadir point becomes a very cumbersome computational task.

Therefore, IAC-DIDAS-N offers an option of improving the estimation of the nadir
point in such cases. This option consists in additiona} p"” maximization runs for achieve-
ment function s{q,§) with reference points § that are very low, if the objective in ques-
tion should be maximized, very high for other maximized objectives and very low for
other minimized objectives, while stabilized objectives should be considered as floating; if
the objective in question should be minimized, the corresponding reference component
should be very high, while other reference components should be treated as in the previ-
ous case. By recording the lowest efficient outcomes that occur in subsequent optimiza-
tions for maximized objectives (and are lower than the previous estimation of nadir com-
ponent) and the highest ones for minimized objectives (higher that the previous

T. Kreglewski et al. - 190 - IAC-DIDAS-N

estimation of nadir component), a better estlmatlon qnad

uto

of the nadir point is obtained.

Once the approximate bounds §“*° and §™*® are computed and known to the user,
they can be utilized in various ways. One way consists in computing a neutral efficient
solution, with outcomes situated approximately ’in the middle’ of the efficient set. For
this purpose, the reference point § is situated at the utopia point q ° (only for maxim-
ized or minimized outcomes; for stabilized outcomes, the user-supplied reference com-
ponent g; must be included here) and the scaling units are determined by:

5,=1g; juto é‘"‘"ﬂ, 1<i<p” (19a)

for maximized or minimized outcomes, and:
J=q;— Anad_+_0 01(auto é‘nad)
Py uto q‘_+_0 01(auto énad)

1 1

p"+1<i<p (19b)

for stabilized outcomes, while the components of the utopia and the nadir points are
interpreted respectively as the maximal and the minimal value of such an objective; the
corrections by O. 01(juto_ (j‘na ensures that the scaling coeflicients remain positive, if the
user selects the reference components for stabilized outcomes in the range §; d< q‘<¢j‘“°
(if he does not, the system automatically projects the reference component on this range;
the user-supplied weighting coefficients are automatically set to their default values r;=1
when computing a neutral efficient outcome). By maximizing the achievement function
s(q,g) with such data, the neutral efficient solution is obtained and can be utilized by the

user as a starting point for further interactive analysis of efficient solutions.

In further interactive analysis, an important consideration is that the user should be
able to easily influence the selection of the efficient outcomes § by changing the reference
point § in the maximized achievement function s(¢,7). It can be shown (see Wierzbicki,
1986) that best suited for the purpose is the choice of scaling units determined by the
difference between the slightly displaced utopia point and the current reference point:

(§H0—g,+0.01(go—gr2d) /r,, if 1<i<p’

§;= (20a)

1 (‘71 Auto_+_001(Anad é,Uto))/r,', ifp'+ISi§P"

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are
determined somewhat differently than in (19b):

=(«i.“‘°—q.+o 01(g10— o) |
| T PIHISISP (20b)

U= (g;— qr*4+0.01(g0— %) /v

o
”

It is assumed now that the user selects the reference components in the range
‘i,n d_<_q‘§ql for maximized and stabilized outcomes or §; uto <g;<§;"" for minimized
outcomes (if he does not, the system automatically projects the reference component on
these ranges). The weighting coefficients r; might be used to further influence the selec-
tion of efficient outcomes, but the automatic definition of scaling units is sufficient for this
purpose even if r;=1 by default; thus, the user needs not be bothered by their definition.
The interpretation of the above way of setting scaling units is that the user attaches
implicitly more importance to reaching a reference component g; if he places it close to

T. Kreglewsks et al. - 191 - IAC-DIDAS-N

the known utopia component; in such a case, the corresponding scaling unit becomes
smaller and the corresponding objective component is weighted stronger in the achieve-
ment function §(¢,§). Thus, this way of scaling relative to utopia-reference difference is
taking into account the implicit information given by the user in the relative position of
the reference point.

When the relative scaling is applied, the user can easily obtain - by suitably moving
reference points - efficient outcomes that are either situated close to the neutral solution,
in the middle of efficient outcome set ¢, or in some remote parts of the set Q, say, close
to various extreme solutions. Typically, several experiments of computing such efficient
outcomes give enough information for the user to select an actual decision - either some
efficient decision suggested by the system, or even a different one, since even the best sub-
stantive model cannot encompass all aspects of a decision situation. However, there might
be some cases in which the user would like to receive further support - either in analysing
the sensitivity of a selected efficient outcome, or in converging to some best preferred
solution and outcome.

For analysing the sensitivity of an efficient solution to changes in the proportions of
outcomes, a multidimensional scan of efficient outcomes is applied in IAC-DIDAS-N. This
operation consists in selecting an efficient outcome, accepting it as a base tjbas for refer-
ence points, and performing p sup ” additional optimization runs with the reference
points determined by:

+ﬂ(~uto Anad), 171 —bas, l#], 1<J<P, (21)

where ﬂ is a coefficient determined by the user, —1<A<1 ; if the relative scalmg IS used
and the reference components determined by (21) are outside the range qJ Ana , they
are projected automatically on this range. The reference components for stablllzed out-
comes are not perturbed in this operation (if the user wishes to perturb them, he might
include them, say, in the maximized category). The efficient outcomes resulting from the
maximization of the achievement function s{¢,§) with such perturbed reference points are
typically also perturbed mostly along their subsequent components, although other their
components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction
in the outcome space - and also as a help in converging to a most preferred solution - a
directional scan of efficient outcomes is implemented in IAC-DIDAS- N ThlS operation
consists again in selecting an efficient outcome, accepting it as a base q % for reference
points, selecting another reference point §, and performing a user-specified number K of
additional optimizations with reference points determined by:

q(k) =7+ (7-7'), 1<k<K (22)
The efficient solutions §(k) obtained through maximizing the achievement function
5(q,q(k)) with such reference points constitute a cut through the efficient set Q when
moving approximately in the direction §— 171’ . If the user selects one of these efficient
solutions, accepts as a new g and performs next directional scans along some new
directions of improvement, he can converge eventually to his most preferred solution (see
Korhonen, 1985). Even if he does not wish the help in such convergence, directional scans
can give him valuable information.

Another possible way of helping in convergence to the most preferred solution is
choosing reference points as in (22) but using a harmonically decreasing sequence of
coefficients (such as 1/j, where j is the iteration number) instead of user-selected

T. Kreglewsk: et al. - 192 - IAC-DIDAS-N

coefficients k/K. This results in convergence even if the user makes stochastic errors in
determining next directions of improvement of reference points, or even if he is not sure
about his preferences and learns about them during this analysis (see Michalevich, 1986).
Such a convergence, called here forced convergence, is rather slow. Neither the forced con-
vergence nor multidimensional nor directional scan are yet implemented in the first pilot
version of IAC-DIDAS-N, but they will be implemented in later versions.

REFERENCES

Dreyfus, S. (1984) Beyond rationality. In M.Grauer, M.Thompson, A.P.Wierzbicki
(eds), Plural Rationality and Interactive Decision Processes, Proceedings Sopron
1984. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes in
Economic and Mathematical Systems 248).

Kaden, S. (1985) Decision support system for long-term water management in open-pit
lignite mining areas. In G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki
(eds), Large Scale Modelling and Interactive Decision Analysis, Proceedings
Eisenach 1985. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes
in Economic and Mathematical Systems 273).

Kaden, S. and T.Kreglewski (1986) Decision support system MINE - problem solver for
nonlinear multi-criteria analysis. CP-86-5, International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria.

Kreglewski, T. and A.Lewandowski (1983) MM-MINOS - an integrated decision support
system. CP-83-63. International Institute for Applied Systems Analysis, Laxenburg,
Austria. Korhonen, P. (1985) Solving discrete multiple criteria decision problems by
using visual interaction. In G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki
(eds), Large Scale Modelling and Interactive Decision Analysis, Proceedings
Eisenach 1985. Springer Verlag, Berlin Heidelberg New York Tokyo {Lecture Notes
in Economic and Mathematical Systems 273).

Lewandowski, A., M.Grauer, A.P.Wierzbicki (1983) DIDAS: theory, implementation. In
M.Grauer, A.P.Wierzbicki (eds), Interactive Decision Analysis, Proceedings Laxen-
burg 1983. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes in
Economic and Mathematical Systems 229).

Makowski, M., and J.Sosnowski (1984) A decision support system for planning and con-
trolling agricultural production with a decentralized management structure. In
M.Grauer, M.Thompson, A.P.Wierzbicki (eds), Plural Rationality and Interactive
Decision Processes, Proceedings Sopron 1984. Springer Verlag, Berlin Heidelberg
New York Tokyo (Lecture Notes in Economic and Mathematical Systems 248).

Messner, S. (1985) Natural gas trade in Europe and interactive decision analysis. In
G .Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki (eds), Large Scale Modelling
and Interactive Decision Analysis, Proceedings Eisenach 1985. Springer Verlag, Ber-
lin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Sys-
tems 273).

Michalevich, M. (1986) Stochastic approaches to interactive multicriteria optimization
problems. WP-86-10. International Institute for Applied Systems Analysis, Laxen-
burg, Austria. Wierzbicki, A.P. (1983) A mathematical basis for satisficing decision
making. Mathematical Modelling 3, 391-405.

Wierzbicki, A.P (1984) Models and Sensitivity of Control Systems. Elsevier, Amster-
dam.

Wierzbicki, A.P. (1986) On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR Spektrum 8, 73-87.

P. Bronasz et al. - 193 - An Ezperimental System

An Experimental System Supporting
Multiobjective Bargainh&g roblem:
a Methodological Guide

Piotr Bronisz, Lech Krus, Bozena Lopuch

Systems Research Institute, Polish Academy of Sciences.

ABSTRACT

The experimental system illustrates a new algorithm of interactive search
for a cooperative, efficient solution in a multicriteria bargaining problem.
The paper presents the methodological basis for the algorithm together
with an outline of the program. The system and parts of the theoretical
research have been done under a contracted study agreement with the Sys-
tems and Decision Sciences Program of the International Institute for
Applied Systems Analysis. The system is implemented on professional
microcomputers compatible with IBM-PC-XT (with Hercules or Color
graphics card). It is written in Turbo Pascal utilizing Turbo Graphix Tool-
box.

1. INTRODUCTION

In most approaches (see Nash [1950|, Raiffa [1953], Kalai and Smorodinsky [1975],
A.E.Roth [1979]), the bargaining problem has been considered in the case of unicriterial
payoffs of players, i.e. when the preferences of particular players are expressed by utility
functions. In many practical applications however, players trying to balance a number of
objectives might have difficulties while constructing such utility functions. Moreover, the
classic literature considers mostly axiomatic models of bargaining which yield one-shot
solutions and do not result in procedures describing a process of reaching a binding agree-
ment.

In this paper we consider n players each with m objectives. We are dealing with a
multiobjective bargaining problem; in this problem, the players are faced with an agree-
ment set of feasible outcomes, and any such outcome can be accepted as the result if it is
specified by an unanimous agreement of all players. In the event that no unanimous agree-
ment is reached, the players act independently; the joint outcome of such independent
actions is called the disagreement solution. If there are feasible outcomes which all partici-
pants prefer to the disagreement solution, then there is an incentive to reach an agree-
ment. In most situations, players differ in their opinions which outcome is most prefer-
able, hence there is a need for bargaining and negotiation.

Dealing with multiple payoffs, we do not assume that there exist explicitly given
utility functions of the players. In this paper, under a suggestion of Wierzbicki [1983], an
interactive process is discussed starting from the disagreement solution and leading to a
nondominated, individually rational solution belonging to the agreement set. During the
interaction, players can express their preferences and can influence the course of the itera-
tive process. The proposed process consists of two phases. In the first phase, the players
act independently on their disagreements sets and select the disagreement solution. In the
second phase, the cooperative action on the agreement set is considered.

P. Bronisz et al. - 194 - An Ezperimental System

International cooperation can give many examples of bargaining problems. Let us
consider several countries interested in the development of production of some kind of
goods. Each country can decide to realize its own independent development program or
they can create a joint program. A program is characterized by volumes of produced
goods, and required resources. The development programs are typically described by
linear programming problems in which the cost of resources is minimized under the given
volumes of developed production, or the production is maximized under the constraints
resulting from the given resources. Such unicriterial models are not suitable for real deci-
sion making problems. Decision makers, especially in nonmarket economy countries, have
various preferences related to the particular kind of resources and the volume of developed
production. Let us observe that prices in nonmarket economies are not necessarily a good
way for aggregating resources into a joint cost. Therefore, we might also consider a Mul-
ticriteria model in which particular resources are considered as independent criteria to be
minimized and the produced good to be maximized. In such an example, linear program-
ming problems related to independently considered development programs describe the
disagreement sets in the space of goals, where the linear programming problem related to
joint project describes the agreement set.

As it has been mentioned before, the theory of multiobjective bargaining problem
has not been fully developed yet. Moreover, concepts of iterative solutions of a bargaining
problem have not been considered. Therefore, the main effort in this research has been
directed towards theoretical and methodological problems. Experimental software has
been developed to compute examples illustrating theoretical and methodological results; it
cannot be treated as a transferable software yet. However, this software has been useful in
testing and checking various theoretical concepts. In this state of research, we have
assumed a relatively simple description of disagreement and agreement sets. Two players
are considered, each of them having three goals - one produced good and two kinds of
resources (capital investments and labor force). The development programs are described
by functions that assign required volumes of resources to the volume of produced goods.
In the final version of the software, more complex linear programming description of the
development programs will be also investigated.

2. PROBLEM FORMULATION AND DEFINITIONS

Let N = {1,2,...,n} be the finite set of players, each player having m objectives.
A multiobjective bargaining problem can be described in the form

(5551552""5571)5

where S;€R™ is a disagreement set of the i —th player, i€ N, SER™™™ is an agreement
set of all the players.

The bargaining problem has the following intuitive interpretation: every point

T, 2=(21,29,...,2,)> L;=(Z;1,%;9s---1%;y) € R™, in the agreement set S represents

payoffs for all the players that can be reached when they do cooperate with each other (

denotes the payoff of the j—th objective for the t—th player). If the players do not

cooperate each player t€N can reach the payoffs from his disagreement set S;. The

players are interested in finding an outcome in S which will be agreeable to all the
players.

We employ a convention that for :I:,yERk, and 2>y implies z,>y, for all zEN
z>y implies >y, z#y and z>>y implies z;>y, for all t€N. We say that zeR*is a
weak Pareto optimal point in X if zEX and there is no y€X such that y>z; z€X is a
Pareto optimal point in X if there is no y€X such that y>=z.

P. Bronisz et al. - 195 - An Experimentel System

In this paper, we assume that each player tries to maximize his every objective. As it
was mentioned, the proposed interactive process consists of two phases. In the first phase,
each player 1€ N acts independently of the others on his disagreement set S; to select the
most preferable point d;. In the second, the players bargain over the agreement set S

assuming that d=(d,,d,,...,d,,) is the status quo or disagreement point.

Let Rf = {yERk : y>z}. We say that a set XcRF belongs to the class B* if and
only if X satisfies the following conditions.

(i) For any z€ X, the set X N Rf is compact.
(i) The set X is comprehensive, i.e. for any z€ X, if yERk is such that z>y then
yeX.

(111) For any z€X, let Q(X,z) = {1 : y>z, y,>z;, for some y€X}. Then for any
€ X, there exists y€X such that y>z , y,>z; for each 1€Q(X,z).

In the paper, we confine our consideration to the multiobjective bargaining problems
satisfying: SEB"*™, S,€ B™ for t€N .

Intuitively, Condition (i) states that the set X is closed and upper bounded. Condi-
tion (ii) says that objectives are disposable, i.e. that if the players can reach the outcome
z then they can reach any outcome worse than z. Q(X,z) is the set of all coordinates in
R¥, payoffs of whose members can be increased from z in X. Condition (iii) states that
the set of Pareto optimal points in X contains no "holes”. Figure 1 shows an example of a
set that does not fulfill Condition (iii). It is easy to notice that, for example, any convex
set satisfies Condition (iii).

Fig 1. An example of a set which does not satisfy Condition (iii)

P. Bronisz et al. - 196 - An Ezperimental System

3. FIRST PHASE. MULTIOBJECTIVE DECISION PROBLEM

Let us consider the t1—th player, t1€N. To simplify notation, let X = S; and
M={12,...,m}.

We define an affine transformation of R™ by
T(,2 2% : R™ - R™, T = (T,Ty,...,T,,) ,
T,(z,2",2°) = (z;,—20)/(z/—20) for tcM ,

1
where z9€ X, "€ R™, £">>z0. The transformation T depends on two points settled by
the player, the point 20 define lower bounds on efficient outcomes (it may be, for example,
the “nadir” point of X), the point z’, called a reference point, reflects preferences of the
player. The transformation T normalizes the problem in a sense that
T(z%,2",2z% = (0,0,...,0) and T(z",2",z% = (1,1,...,1).

To select a Pareto optimal outcome in X according to z° and z", we utilize the
Rawlsian lexmin principle (see Rawls [1971], [1983]). Let ! be the lexicographical order-
ing on R™, ie. for z,ycR™ , I>Iy if and only if there is t€M such that z,>y; and
.=y for 7<i. Let L : R™ — R™ be such that for z€R™, there is a permutation on
M , 7, with L(z)=n"z and L (2)<Ly(z)<:--<L, (2). Then the lexicographical max-
min > ordering on R™ (with respect to z° and z"), is defined by

>y & L(T(z,2",2%) -1 L(T(y,z",z%)
for z,yc R™.

Let F(X,:c',:co) denote the lexicographical maxmin outcome of X according to z”
and z0, and is defined by F(X,:c',:co)::c & 1 is a maximal element in X according to
>

0

Theorem 1. (Bronisz and Krus [1987b]) For XeB™ | z%cX , z"cR™ , z2">10 ,
F(X,:c',:co) exists uniquely and is Pareto optimal in X.

Theorem 1 is a generalization of the result in Schmeidler [1969] for a nonconvex set
X. The proposed approach is very close to the achievement function concept (Wierzbicki
[1982]) from the point of view of the user. Analogously, a special way of the parametric
scalarization of the multiobjective problem is utilized to influence on the selection of
Pareto optimal outcomes by changing reference points. However, in place of parametric
scalarization through the order-approximating achievement function (for example,
weighted sum of /; and ! Chebyshev norm), we propose the scalarization by the
weighted [_ norm and then the lexicographical improvement of a weak Pareto point to a
Pareto optimal outcome. The proposed solution, under not quite restrictive assumptions
about the set X (X€B™) can be determined in a simple way (even in a case of compli-
cated nonconvex sets where the problem of maximizing the Chebyshev norm can be ill-
conditioned).The corresponding algorithm is based on several (at most m) directional
maximizations using, for example, a bisection method which works very quickly and
effectively.

The procedure for locating the lexicographical maxmin outcome can be formalized as
follows. If @ is a subset of M, let €(Q)ER™ be such that ci(Q)Z(I{——I?) for 1€Q and
e,(@)=0 otherwise. Given y€ X with Q(X,y)#@, define z(X,y)€X by

(X,y) = maz., {z€X : z=y+ae(Q(X,y)) for some acR}.

We construct a sequence {Ij}?io such that z0¢X is fixed by the player, and

P. Bronisz et al. -197 - An Ezperimental System ...

g = I(X,zj—l] for 7=1,2,- - -. Such sequence is uniquely defined and the following
theorem can be proved (Bronisz and Krus [1987b]). It is a generalization of the results in
Imai [1983] for nonconvex set X.

Theorem 2. For Xc B™ | z GX 2"€R™ |, 27>10, let k be the smallest 7 with
2/=27%1 Then k<m and F(X z",20) = zF ie. the sequence {I]}] —p Yields the lexico-
graphical maxmin outcome in X in at most m steps.

4. SECOND PHASE. COOPERATION

Let d,€S; be the lexicographical maxmin outcome in S; calculated in the first phase
by the t—th player, t€N, and let d=(d;,d,,...,d,) be the resulting disagreement solu-
tion or status quo point. Now we reduce the problem to the pair (S,d), where S is the
agreement set. If the point d belongs to S and is not Pareto optimal point in S then there
is an incentive to cooperation among the players; in the other case cooperation is not
profitable. We assume that d€.S and there exists €S such that z>d.

We are interested in a constructive procedure that is acceptable by all players, starts
at the status quo point and leads to a Pareto optimal point in S. The procedure can be
described as a sequence {dt}t —g» of agreement points d? such that
d°=d , dteS , dt>d' 1, for t=1,2,..., and d* is a Pareto optimal point in S. The
assumptlon dt dt-1 follows from the fact that no player will accept improvement of
payoffs for other players at the cost of his concession. At every round t, each player 1€ N
spec1ﬁes his improvement direction)\tERm)\t>0 and his conﬁdence coefficient
oy (R, 0<at<1 The improvement d1rectlon)\ 1nd1cates the 1—th players preferences
over hls objectlves at round t. The confidence coefﬁc1ent a; ! reflects his ability at round t
to describe preferences and to predict precisely all consequences and possible outcomes in
S. For more detailed justification, see Fandel, Wierzbicki [1985], and Bronisz, Krus,
Wierzbicki [1987].

We propose an interactive negotiation process defined by a sequence
{d*}2, such that d°=d,
dt = d'71 4 eu(S,d Y ~ dtY for t=1.2,...,

where Mle R™*™ A= ()\t)\)\n] is the improvement direction specified jointly by
all players, u(S, dt 1)\)ER"X"l is the utopia point relative to the direction At at round
t defined by

u(S,dt I = (u (S,d LAY, uy(S,d 1Y), u, (S,dE T LAYL))
ui(S,dt_l,)\t) = ma:c>{zi€Rm . €8, £>dt 1, :c:df_1+a)\f for some a€R }.

Moreover, €' = mm(a{ al,. at JER, where at max 15 the maximal number o
such that ! +alu(S, dt_)\) dt T] belongs to S.

Intu1t1vely, the utopia point u(S, dt—1)zt) relative to the dlrectlon Al reflects the
"power” of the particular players when the improvement direction Alis specified at round
t. The 1nd1v1dual outcome u,(S, d= 1,21 is the max1mal payoff in S for the 1—th player
from d'! according to improvement direction)\ while € is the minimal confidence
coefficient of the players at round ¢ (we assume t;hat; no player can agree on a coefficient
greater than his) such that a new calculated agreement point belongs to S.

P. Bronisz et al. - 198 - An Ezperimental System

Theorem 8. For an agreement set SEB"*™ and a status quo point d€S, let
improvement directions of the players, A}€ Rnx m, A= ()\t,)\é,..., A,tl], be such that
)\f]->0 if the coordinate ij belongs to Q(S,dt—l) and)\1-[1:0 in the other case, for
t=1,2,- - -. Then the interactive negotiation process {dt}zo yields a Pareto optimal out-
come in S. If k is the smallest ¢ with d*=d!*! then d* is a Pareto optimal outcome in S.
In other case, if there 1s a number a>0 such that a,-tZa for te N , t=1,2,- - -, then the

limit lim d! exists and it is a Pareto optimal outcome in S. Moreover, for each
t— oo

t=1,2,- - - and for each 1€ N there is a number 8 such that df—df—l = ﬂ)\f, i.e. at each
round ¢ the improvement of players’ payoffs is compatible with their improvement direc-

tions.

Proof. From the proposed construction of the sequence idt}go and from the
assumptions (i)-(iit) for S, it follows that if dF=d**! then Q(S,d*)=¢, i.e no coordinate
of d* may be improved in S. Thus d" is a Pareto optimal outcome in S. In other case let
us consider a sequence {d }t:O' This sequence is monotonically increasing and limited so

it is convergent. Let dj;,, = lim d'. From the proposed construction, d;m€S. Let us
t—oo
assume that dlim is not a Pareto optimal outcome in S. Then for any round t, we have

= dt= 1) = [efu(S,d A =d] > xS diim)~ digl >
> coxmin{fu(S,dyyy) — i : A€ER™FT,
)‘ij>0 if 17¢Q(S,dyim),)‘,']:0 otherwise } = v>0.

Thus the sequence {dt}zo is not convergent. Contradiction. This proves that dy;, is a
Pareto optimal outcome in S.

The statement d,-t—df_1 = ﬂ)\f follows from the fact that u(S,dt_l,)\t) = d" 1460 for
some 6 R. Q.E.D.

The interactive negotiation process, {dt}zo, 1s a generalization of the iterative
negotiation model for the unicriterial bargaining problem proposed and discussed by
Bronisz, Krus [1986a] and Bronisz, Krus, Wierzbicki [1987].

The presented approach has been examined in a case of one-round process with
confidence coefficients of the players equal one (Bronisz, Krus [1987a]). Given an improve-
ment direction of the players A=(A},A,,...,A,,JER™*™, the one-round process yields an
outcome G(S,d,)) d! such that

G(S,d,\) = max, {z€S : z=d+a[u(S5,d,A)—d]| for some acR} .

G(S,d,\) may be only a weak Pareto optimal point in S. Intuitively, the outcome
G(S,d,)\) is a unique point of intersection of the line connecting u(S,d,A) to d with the
boundary of S.

We show that the one-round process can be characterized axiomatically. Let D
denote the class of all pairs (S,d) satisfying SEBnxm , d€S, and that there exists a
z€ S such that z>>d.

Let f: D x R"™™ — R™ ™ be a function which associates a point of S, denoted
f(S,d,)), to each (S,d)€D), and each improvement direction A>>0. Let us impose the fol-
lowing axioms on the function f.

Al. Weak Pareto optimality. There is no £€S such that z>> f(S,d,]).

A2 Invariance under Positive Affine Transformations of Objectives. Let

P. Bronisz et al. - 199 - An Ezperimental System

TI: - (Tlxl,...,TnIIn)

be an arbitrary affine transformation such that
Tz, = (aijxij+bij)j:l,...,m ; @;;>0,1€N, and let Lz = (Lzy,...,L,1,) be a linear
transformation connected with T, ie. L.z, = (,t€N. Then
J(TS,Td,LX\) = T (S,d,)).

A8, Symmetry. For any point z€ and for any permutation on N, m, let
W*I:(xﬂ(l),...,xﬂ(n)). We say that (S,d) is a symmetric game if dl=d?=...=d" and
z€S imply that, for every permutation 7 on N, 7*z€S. If (S,d) is a symmetric game and
Aj=Ay=---=A, then [,(S,d,A) = [,(S,d,A) = - - = [.(S,d,]).

A4. Restricted Monotonicity. If (S,d),(T,d),AeRnxm are such that
u(S,d,A) = u(T,d,\) and SCT then f(S,d,A) < f(T,d,)).

aijxij 1=1,...,m

RTle

Theorem 4. (Bronisz and Krus [1987a]|) There is a unique function satisfying the
axioms Al — A4. It is the function defined by [(S,d,\) G(S,d,A) for
(S,d)eD , A\éeRnxm , A>>0.

It is easy to note in the unicriterial case, i.e. when m=1, that each game (S,d) has a
unique utopia point which coincides with the ideal point and the solution G(S,d,A) coin-
cides with the Raiffa solution (see Raiffa [1953], Roth [1979]).

5. A SIMPLIFIED MODEL OF A JOINT DEVELOPMENT PROGRAM

The model relates to two countries (treated as players) which consider realization of
a development program. The program requires some amount of resources of various kinds
and gives as a result some volume of production. Each country can realize the project
independently, or both the countries can decide on a joint development program. Joint
program, due to scale effects, can allow for a decrease of required resources at a given pro-
duction volume or an increase of the production under given resources in comparison to
two independent programs.

In the model, two kinds of resources are considered : labor resources and capital
assets. Each player is assumed to maximize the obtained production volume and to
minimize the resources put in the joint program, but they can differ in preferences among
the quantities. The problem consists in a choice of the production scale of the joint pro-
gram and the sharing of the required resources and of the production volume - which
should be agreeable and possibly close to the preferences of the players.

To deal with the case of maximization of objectives only, we assume that each
player has given a disposable fund of capital assets CiER+, and a disposable labor
resources L,ER t=1,2, and tries to maximize slack variables sc;=C;~c;, and
sl;=L;~1;, where c,, l; are the capital and labor resources, respectively, which should be
put into the joint project by the 1 —th player.

The development program, which can be realized in various scales i1s described by
two functions:

c:R, -R_,and I:R, >R,

where ¢(p) are capital assets required in the program of the scale or production volume
p , I(p) are labor resources required in the program. Assumed shapes of the functions are
presented in Figure 2. Similar shapes has been obtained by Bronisz, Krus [1986b] in an
example of joint water resources project. In the model, the same forms of the functions are

P. Bronisz et al. - 200 - An Ezperimental System

assumed for independently and jointly realized programs, but even in this case the prob-
lem is not trivial.

A ¢ Al

p‘

y©

Fig.2 Examples of functions ¢(p) and I(p).

Each player 1=1,2 maximizes three objectives: p; , sc, , sl;. The disagreement sets
are described by : S,-CR3 , 1=1,2, where

S; =4 (pi,sc,-,sl,-)ER?’ e(p)) <L Ci—scy, U(p) << Li—sl; b,

3

The agreement set has the form SCR_QF X 3 where
S = {(pl,scl,sll,p2,3c2,312)€R6 :
c(p1+pg) SC1+Cy—scy—scq, I(p;+py) <L +Ly—sl —sly}.

On this example, the negotiation process proposed above has been included into an
experimental system of bargaining support.

6. SHORT PROGRAM DESCRIPTION

The experimental system of bargaining support with multiple objectives has been
built for the simplified model outlined in the previous section. It can be considered as an
illustration of the theoretical results related to the interactive process in multiobjective
bargaining problem and its application in support of negotiations.

The system supports two players, each maximizing three objectives, to find an
acceptable, cooperative, Pareto optimal solution in an interactive procedure. This is done
in two phases:
first: a status quo is derived,
second: a cooperative solution is found.

The status quo is defined as being a composition of the outcomes preferable to
players in the noncooperative case. The cooperative solution is found in an iterative pro-
cess starting from the status quo point.

The first phase deals with the noncooperative case, in which the players look for
preferable outcomes assuming independent realizations of the development programs.
Each player tests efficient solutions and selects the preferable one. This is done in two

P. Bronisz et al. - 201 - An Ezperimental System

steps. In the first step, the player defines reference points in his objective space according
to his preferences. The system calculates related efficient solution using the approach
described in Section 3. In the second step the player selects the preferable solution among
the obtained efficient solutions.

The second phase deals with the cooperative case. It proceeds in a number of itera-
tions. Each iteration consists of two stages:

first: both players define their desired, preferable directions for improvements of out-
comes.

second: the system calculates the cooperative outcome on the basis of the status quo
point and directions of improvement specified by the players according to the
solution concept presented in Section 4.

In the first stage, each player tests directions that improve his outcome and selects a
preferable one. This is done in three steps. In the first step, the player defines a step
coefficient. In the second step, the player defines directions according to his preferences.
Then the system calculates related improved outcomes, assuming the same improvement
direction of the counterplayer as in the previous iteration. In the third step, the player
selects a preferable direction among the tested directions.

Given the preferable directions of both players, the cooperative outcome is calcu-
lated in the second stage. The cooperative outcome is assumed as a new status quo point
for the next iteration, and the process is repeated until an efficient cooperative solution is
reached.

REFERENCES

Bronisz P., L. Krus, [1986a], "A New Solution of Two-Person Bargaining Games”,
ZTSW-17-1/86, Report of Systems Research Institute, Polish Academy of Sciences,
Warsaw.

Bronisz P., L. Krus, [1986b], “"Resource Allocation and Cost Sharing in Common Enter-
prise. Game Approach”, Proceedings of the Polish-DDR Symposium on Nonconven-
tional Optimization, Prace IBS PAN, Warsaw.

Bronisz P., L. Krus, [1987a], "The Raiffa Solution for Multicriterial Bargaining Prob-
lems”, ZTSW-17-1/87, Report of Systems Research Institute, Polish Academy of Sci-
ences, Warsaw. :

Bronisz P., L. Krus, [1987b], "Application of the Rawlsian Maxmin Principle in Multicri-
teria Decision Support”, draft paper, Systems Research Institute, Polish Academy of
Sciences, Warsaw.

Bronisz P., L. Krus, A.P. Wierzbicki, [1987], "Towards Interactive Solutions in Bargain-
ing Problem”, (forthcoming).

Fandel G., A.P. Wierzbicki, [1985], "A Procedural Selection of Equilibria for Super-
games”, (private unpublished communication).

Imai H., [1983], "Individual Monotonicity and Lexicographical Maxmin Solution”,
Econometrica, Vol.51, pp. 389-401.

Kalai E., M. Smorodinsky, [1975], "Other Solutions to Nash’s Bargaining Problem”,
Econometrica, Vol. 43, pp. 513-518.

Nash J.F., [1950], “The Bargaining Problem”, Econometrica, Vol. 18, pp. 155-162.

Raiffa H., [1953|, “Arbitration Schemes for Generalized Two-Person Games”, Annals of
Mathematics Studies, No. 28 pp. 361-387, Princeton.

P. Bronisz et al. - 202 - An Ezperimental System

Rawls J., [1971], “A Theory of Justice”, Cambridge: Harvard University Press.

Roth A.E., [1979], “Axiomatic Model of Bargaining”, Lecture Notes in Economics and
Mathematical Systems, Vol. 170, Springer-Verlag, Berlin.

Schmeidler D.,[1969], “The nucleus of a Characteristic Function Game”, SIAM Journal
on Applied Mathematics, Vol.17, pp. 1163-1170.

Wierzbicki A.P., [1982], “A Mathematical Basis for Satisficing Decision Making”,
Mathematical Modelling, Vol. 3, pp. 391-405.

Wierzbicki A.P., [1983],"Negotiation and Mediation in Conflicts I: The Role of
Mathematical Approaches and Methods”, Working Paper WP-83-106, IIASA, Lax-

enburg; also in H. Chestmat et al., eds: Supplemental Ways to Increase International
Stability, Pergamon Press, Oxford, 1983.

- 203 -

A Permutative Scheduling Problem
with Limited Resources
and Interoperation Constraints

Tomasz Rys, Wieslaw Ziembla

Joint System Research Department,
Institute for Control and Systems Engineering,
Academy of Mining and Metallurgy, Cracow,
Industrial Chemistry Research Institute, Warsaw.

1. Introduction.

Dynamic development in the area of scheduling and operational control of produc-
tion processes is observed recently. It evolves from natural tendency to realize given task
in the optimal way and in the optimal (shortest) time. Actually, the theory of scheduling
as an area of operation research is well known but still many problems arise in practical
implementation. It results from high computational complexity of those problems (e.g.:
Garey, Johnson, 1979; Lenstra, Rinnoy Kan, 1978) - in a computer, they are time and
memory consuming. Therefore, the solutions are often obtained by means of heuristic
methods and sub-optimal solutions are considered as sufficient instead of optimal solu-
tions.

This work deals with scheduling problems designed in the classification (Grabowski,
Smutnicki 1980; Lenstra, Rinnoy Kan 1978) as flow-shop i.e. permutative problems with
limited resources and interoperation constraints. These problems arise in production sys-
tems (machine-building industry, chemical industry), computer systems and in other ser-
vice systems. It was the intention of the authors to propose a universal algorithm for
solving these problems basing on branch and bound method (Lageweg et al. 1978). This
method is particularly recommended in the case of NP-complete problems, which class
comprises also scheduling tasks of flow-shop type. The authors assume that the reader is
acquainted with scheduling problems in terms of terminology, classification and issues of
computational complexity.

2. Problem definition.

In flow-shop production system with limited resources and interoperation constraints
a set of tasks may be defined

J=/{ JyJa,-5dn }
while each of above J; is composed of a sequence of operations
< 041,045, Oimm >

performed on machines My M,...,M,,. The time necessary for performing an operation
O} is p;. In addition, conditions of machine-to-machine transitions are determined. We
consider “no wait” (nw), "no store” (ns), "limited waiting” (lw) and “limited temporary
storage” (ls) types of constraints (while maximal durations of interoperation waiting and
capacities of temporary storages are given). A relation of partial order RT on set J is
defined as follows: (J; J;J€RT implies that task J; is started on the first machine only

T. Rys, W.Ziembla - 204 - Permutative scheduling. ..

when task J; has been completed at the last machine. It is assumed that the graph of
relation RT is acyclic. Moreover requirements for resources p;; in each moment of reali-
zation of operation Oj;; are determined, i.e. in each moment from starting operation Oy
to the moment of its completion resources of type ! are required in the amount p;;. Max-
imal availability of a resource [in the moment t is R;. For each task, a cost function of
its realization f; is defined depending on the time of completion of the task (problems
Cpax With minimization of performing time required for all the tasks and Tp,., with
minimization of maximal tardiness are most frequently met in literature).

An optimization problem of flow-shop production consists usually in designing such
times of starting and completing the tasks which minimize the following optimization cri-
terion:

/= maxfi (Cin)

1<i<n

where: C,,,, - time of completion of the task ¢ at the last (m-th) machine.

The following assumptions are made:

- a machine can not perform at the same time more than one operation at any
moment,

- the realization of a started operation can not be interrupted,

- the sequence of performing tasks on each machine is the same for each task,
- the sequence of performing tasks accords with relation RT,

- the resource and interoperation constraints are satisfied.

It is assumed that functions f;(C,,,) are nondecreasing in their arguments.
3. The solving algorithm.

3.1. General enumeration scheme.

The optimization problem defined above can be equivalently stated as to find an
admissible permutation 7€ P(RT) (where P(RT) - set of all permutations that accord
with RT) for which minimum value of objective function is reached. The following scheme
is typically used for generating admissible scheduling permutations. A node by branch ¢ of
the search tree defines a partial admissible scheduling

o= (o(1),0(2),---,0(t—1))

This means that task Jy(;) is performed on all machines as an 1—th one. Such a node
defines at the same time the set of all permutations which are such continuations of per-
mutation o that relation RT still holds.

_ Consider the following denotations:
J? - a set of non-scheduled tasks,
t - the number of elements in this set,
G - the complement of permutation .

Thus:
J? = {J;eJ | 1 #o(k), k= 1,2,...,t—1}
t=|J|=n—-t+1

= 00 = (0(1),0(2),...,0(t—1),6(1),6(2),...,6(%))

T. Rys, W.Ziembla - 205 - Permutative scheduling...

A consecutive node in the search tree is obtained by the choice of task J;, not scheduled
so far, at position t.

o1 = (o(1),0(2),...,0(t—1),i) , where J;cJ7.

Some of partial solutions obtained in this way can be eliminated due to different par-
tial scheduling and assumed optimization criterion. Let or and or represent some partial
scheduling and &r and &n be their complements to full permutations, o1 &1, on on
€ P(RT), and let H(o) denote optimal value of objective function for permutation o.
Partial scheduling o# dominates over o1 if for any complement &/ of partial permutation
o1, there exists such complement &n of permutation on that:

H(on 0"y < H(o167)

Rules for rejecting partial solutions in the way presented above result from specific
features of the regarded problem. They are called elimination rules. In our algorithm we
do not use such rules; instead a partial solution o7 is eliminated if:

1. The value of objective function. for a partial solution is not less than the value of an
upper bound

H(o) > UB

2. The value of a lower bound 1n a node of the search tree is not less than the value of
the upper bound

LB > UB

The method of designing upper bound will be presented now and in the next chapter
we will deal with the problem of designing lower bounds.

The value of objective function for currently best solution is the upper bound of
objective function for all nodes of the search tree until a new permutation 7 is generated,

mEP(RT) such that H(m)<UB

A problem arises how to assign the first upper bound. In many papers (Grabowski,
1979; Lageweg et al., 1978; Smutnicki, 1981) heuristic rules were used (for problems with
no resource constraints, in which optimization criterion was of type Cp,.x, rules H; and
H,, while for criterion L ,,, rule Hj):

H, (Palmer, 1965) Arrange the tasks according to nondecreasing coefficient A;, where

,\i:fj p_mtl

Pik
k=1 2 '

H, (Campbell et al. 1970) According to the optimal permutation for 2-machines prob-
lem, where
!
Pi1=) Pik
k=1

and

M
pio= >, pi.forl=1,..m—1
k=141

T. Rys, W.Ziembla - 206 - Permutative scheduling...

Hj (Grabowski, 1979) According to a nondecreasing coefficient A;, where

m
M= pR T+
=

m

ri— ¢; | stgn(r; — qq

where:
m
gi=di —ri— 3 Pyt
k=1

d; - desired completion time of task J;
r; - earliest starting time of task J;

In our algorithm rules Hy and H; are used. It should be noted that the methods
described above may be used for improving the value of upper bound in each node of
search tree as well.

3.2. Calculation of lower bounds.

For each node t in the search tree while designing a partial schedule o, a lower
bound is to be assigned for all continuations 6€ P(RT). Calculation of lower bounds
can be based on a relaxation of constraints imposed on process and a modification of
optimization criterion. Resource limits, interoperation constraints and assumptions con-
cerning machines’ capacity can be subject of relaxation. The assumption that a given
machine may at any moment perform at most one task can be replaced by not limiting
the number of tasks performed by the machine.

When designing a lower bound LB, a similar method as in (Grabowski, 1979;
Lageweg et al., 1978; Smutnicki, 1981) will be used. Only two machines M, and M,
among all machines (1 < u <v < m) will be left unrelaxed. Adjoining relaxed
machines will be aggregated to a single machines of unlimited capacity M ,, M,,, M, .
Thus the problem is reduced to 5 machines, 3 of which that have unlimited capacity i.e.
problem of nl|5|P, M,, M,,, M, - not of bottleneck type, Ir (limited resources),
RT‘fmaX'

Times of performing operations for these machines can be assigned as follows:

u-—1
Piy = lrgfgxu{ Ca(z_1)1+k2=]1p,-k} (1)

v—1

Piww = 2, Pik (2)
k= u+l

for each J,€J7, where Co(t—1)1 is the time of completing the last task in a schedule ¢
assigned according to the principle of maximal usage of machines and resources (which
principle holds for nondecreasing functions f;). In the case when u = v a 3-machines
problem is obtained with one machine of limited capacity — it is a problem of n|3|P,
M ,,M, not of bottleneck type, Ir, RT|fp.x- Then for designing lower bounds resource
limits will not be taken under consideration. The computation will be performed for a
continuation ¢ of the problems n — t|5|P,M,,M,,,M, - not of bottleneck type,
RT | fmax, when the criterion is assigned as follows:

1??2:‘ Ji{Coiyy + Piv.)

for the 5-machines problem, and

T. Rys, W.Ziembla - 207 - Permutative scheduling...

 pax 1i(Cxiyy + P1u)

for the 3-machines problem. Both problems mentioned above are NP-complete (Gra-
bowski, Smutnicki, 1980; Smutnicki, 1981).

Next relaxation consists in eliminating the machine of unlimited capacity. In prob-
lems obtained in this way, the cost functions f,-u(C’(?(’»)v), fiuv(Ca-(i)v)’ fiv(Cc?(i)u) will be
defined as follows:

iucaiv = iCaiv+m' 1. 4

fiu(Coiye) = Ji(Ciyy e P) (4)

iuvcgiu = iCaiu+ i Tuy 9

fio(Caiye) = il C) min, P) (5)

iUCaiv = iCaiv+ i . 6

fi(Cotiye) = filCayy ;21515?) (6)
opgogo

T N T

ogonov vaoodo emoeme OCIV[O

b XX

ogvoOv vooov \A [J [

\ / \ vOVOO /emVEe

vOvOv vyEemvy

\A A}

Figure 1. Graph of domination for {2 sequences.

The problems with cost functions as in (4)- (6) may be relaxed further on by eliminating
the cost according to the formula:
fi(t) = min fi(t) , Cyi1p <t < o0 (7)
1eJ?
Instead of the problem with objective function as in (7), the problem with criterion Cp,y
can be solved and then the cost equal to f,{Cp,.x) can be assumed.

We shall classify now the methods of computing LB. Each of those methods may be
characterized by a sequence {} composed of three or five symbols from the set {V,PI,O},
or the set {V,I[,O}, where

T. Rys, W.Ziembla - 208 - Permutative scheduling...

Il - stands for a machine with limited capacity,

(O - stands for a machine with unlimited capacity,

V - stands for a machine with unlimited capacity, eliminated according to the for-
mula (4) - (8)

Vk,ﬁ,O~ - stand for problems, in which the costs were eliminated according to (7).

Lower bound LB(u,v,0},RT;) is the value of optimal solution for a problem with
machines M, M,,, of I] type and O type with compensation of eliminated machine of V -
type (eventually with eliminated cost). As LB(u,v,0},RT}) is the lower bound for any of
the pairs (u,v),1 < u < v < m, we may define:

LB (,RT,) = max LB(u,v,Q,RT;)
1<u<svm
A relation of domination may be defined on the set of sequences {1. The graph of that
relation is showed on Fig.1. An arch (2,{1/) in that picture means that sequence {1/ dom-
inates over sequence {1 i.e. for each pair (u,v) another pair (u/,vs) may be found such
that the following inequality holds:

LB(u,0,0,RT, < LB(unv,,RT),)

The relation of domination is transitive but not all sequences are comparable (in Fig.1 -
the sequences not connected directly or by other intermediary sequences).

Only 6 from resulting methods of LB calculation can be executed by means of poly-
nomial time algorithms (e.g.: Grabowski, 1979; Lageweg at al., 1978). These methods will
be described here and compared with other methods occurring in the literature. Sym-
metric sequences which are not marked on Fig.1 (due to equivalence of scheduling prob-
lems) will not be considered.

(A) (VIIV)
Eliminating the first and the last machine and the costs, problem of minimization

Cpax Wwill be obtained for the M, machine i.e., the problem has the form
n—t|1|R T Crax

LB(uau(ﬁﬁﬁ)aRTa') = fi { 2 Diu + m"l (pi.u + p]u)}
Jes I d €07 i
It is the least stringent lower bound from the mentioned above. For f,,, = Cp.y it was

used together with another bound, as described inter alia in (Grabowski, 1979; Lageweg
at al., 1978). Computational complexity of the algorithm is O(n—t).

(B) (V,ILO)
Eliminating the costs and machine M , the problem of maximal tardiness in per-
forming the tasks with given times of completion p;, is obtained.

LB(u,u,(VIIO),RT; = f{LB*(u,u,(VIIQ),RT;) + minﬁ Diu}
Jel

The value of LB*(u,u,(ﬁﬁO), RT;) can be computed using an algorithm which
requires O(n—t)? iterations (Lawler, 1964).

(ONV)
The problem is analogous to (B). By omitting the last machine of unlimited capacity and
modifying the criterion according to (7) the problem of minimization of Cp,,, is obtained
on one machine with nonzero times of starting the tasks: n—t[l|r;, RTCy,x. The
optimal value of the objective function for that problem is equal to

T. Rys, W.Ziembla - 209 - Permutative scheduling...

LB‘(u,u,(Oﬁ‘ﬂ,R T%—) and may be computed by means of a polynomial time algorithm
of complexity O(n—t)* (Lawler, 1964). Thus
LB(u,u,(ONV),RT, = f{LB*(u,u,(ONIV),RT;) + min p,, }
JeJe
(C)y(viiv)
By omitting the first and the last machine of unlimited capacity the scheduling prob-
lem n—t|1|R T 5| /max will be obtained, where:

fmax = .IlnaJX— fl{ Cg(i)u + Ji’J]I.IEI:lII;"-#j(pj-U + pi“')}
€J7

LB*(u,u,(VIIV),RT;) = fn.x and may be computed by means of an algorithm
described in (Smutnicki, 1981) in O(n—t)? iterations.

D) (VIIO)
By omitting the first machine with unlimited capacity, the scheduling problem
n—t|1|RT | fnax will be obtained, where
fmax = max il Cotiyy + Piw. + min Pi.ul
LB(u,u,(VIIQ),RT5)=fma.x may be computed in O(n—t)? iterations (Smutnicki,
1981).
All other problems are NP-complete. Two of them for RT, = ¢ are polynomial

~~~~~ 4

problems; these are {1 = (VﬁéﬁV’J) and for 1 = (VIIVIIV)

~ o o~~~

(E) (VIIVIIV)

By eliminating machines M, M,, M, and modifying the costs (7),
LB*(u,v,(VIIVIIV)) can be computed with Johnson’s algorithm in O(n—t)in(n—t)

iterations.
LB(u,v,(VIIVIIV)) =

:f*{LB*(u,v,(VHVHV)) + min_(piuu + miI_l (P:’.u + pju.)}
J:eJ” JiJ;€J7, i#g
(F) ( VIIOTIV)
While eliminating machines M, and M, and modifying costs in (7), the problem of
minimization of Cp,,, is obtained which also can be solved by means of Johnson’s algo-
rithm by changing the times of operating on machines M, and M, according to:

Pliv = Piu T Piuw
Pliy = Piju. + Piuy

LB(u,v,(VIIONV)) = [{LB*(u,v,(VIIONV)) +  min (piy + Pj.)}
Ji, J,€07, it

Such a criterion for f,x = Cpa.x Was considered in (Lageweg et al., 1978) and the cri-
terion:

LB} = Co'(t)u + maifr{Pm + Piuy + Pip + by min(p]‘u’pjm)}
JieJ J€JT\{Ji}

used in (Mc Mahon et al., 1975) is an approximation of LB(n,m,(ffé‘?)) not surpassing



T. Rys, W.Ziembla - 210 - Permutative scheduling...

that value. In computations following lower bound [9] can also be used:

LBy (McM) = f.( 121(1SszBl*)

and
(G) (McM)
LBy(McM) = maz {LB{(McM),LB(VIIV)}

All other problems defined by the sequences from Fig.1 are NP-complete, and as lower
bounds are computed in each node of the search tree, such methods will not be used in
proposed algorithms.

4. Example.

As an example of using the methods presented above a problem of designing the
optimal schedule and resource allocation in medical service system will be presented. Such
an example was chosen due to its illustrative character. The data are easy to obtain and
the description is clear. Therefore, no detailed description or identification of industrial
technology was required. It is obvious that this system can be easily adapted for indus-
trial conditions - it is sufficient to replace operation rooms by machines and prescribed
treatments by production tasks. In fact our team has worked at a real chemical produc-
tion problem. However, due to an agreement with the client, it was not released for publi-
cation.

Presented example concerns a hospital of sanatorium type - the computer system
created for solving the optimization problem is called SANATORIUM.

4.1. General description of the problem.

The scheduling problem presented here may be briefly described as follows:

For a given sanatorium turn (a group of patients) a treatment for each patient
is designed, a set of cabins (operation rooms) is fixed as well as the set of opera-
tors working in these rooms. Daily schedules for patients, rooms and operators
are to be found for each day of patients’ stay in the sanatorium.

Following assumptions were made when designing the system:

a) for each patient, the term of his arrival and leaving the sanatorium as well as the
treatment (number of operations) are defined,

b) operations of the same type are to be distributed uniformly during the patient’s stay,
c) one patient can be submitted only to a limited number of operations per day,

d) for each treatment, a relation may exist imposing a sequence of realization of partic-
ular operations,

e) the treatment is to be started according to the assumption of uniform usage of
resources,

f)  a given number of patients may be submitted to operation in one room at a given
moment,

g) each room is attended by an operator - one operator may attend more than one
cabin but not at the same time,



T. Rys, W.Ziembla - 211 - Permutative scheduling...

h) time of operations as well as the time necessary for the operator to stay with the
patients are fixed,

1) an operation can not be interrupted,

j)  only the patients of the same sex may be treated in the same room at the same
moment,,

k) the schedule is to satisfy the condition of minimization of daily usage of the rooms
(machines).

4.2. Implementation.

The computer system is functionally divided into three modules. First of them is a
problem generator devised for storage and correction of input data, two others are solver
modules that solve the presented scheduling problem.

The first module creates a data base concerning-the resources i.e. cabins and opera-
tors as well as defines the problem by creating the actual data base concerning the
patients and prescribed treatments.

Division of the system into two other modules results from assumed the method of
solving that consists in a division of the task into two parts concerning two different hor-
izons of scheduling, with different units of time (minutes and days).

In the first part of solver module, the schedule of treatment for a given day is
worked out so as to satisfy the assumptions a,b,c,d,e, (see 4.1). This problem is solved by
a heuristic algorithm of pseudo-polynomial complexity of computations.

In the second part of solver module, exact times are to be determined for starting
and finishing the treatment and assignment of machines rooms, and operators that are
required for consecutive days of sanatorium work. Solving this problem is based on the
method described in chapter 3; the algorithm is of NP-complete computational complex-
ity.

The system SANATORIUM was written in TURBO-PASCAL (Borland Interna-
tional) for IBM-XT computer and includes graphical display of results.

5. Concluding remarks.

The work presented here has an experimental character (especially regarding the
software). It was aimed at a numerical test of chosen heuristic and optimization algo-
rithms that are used for solving a class of scheduling problems, namely permutative prob-
lems with limited resources and interoperation constraints. This type of problems was
chosen because they frequently occur in real life.

The intention of the authors is to create a software library devised for a personal
computer. The structure of programs is unified and they could be applied to a wide range
of problems. It seems that this task can be realized due to the fact that scheduling prob-
lems are well systematized. The class of problems being defined, a user can chose
appropriate procedures and construct (or select) an interface for this particular problem.
Introductory phase of preparing any problem consists always in input data definition or
updating and the final phase is the output of results mostly in the form of bar-charts. In
both phases, it is possible to use some standard software tools - e.g. dBase III or INFOR-
MIX in the introductory phase and Turbo Graphics or other integrated packages in the
final phase. Therefore, it is possible to prepare a standard shell for an interface with the
user.



T. Rys, W.Ziembla -212- Permutative scheduling...

In the field of theoretical research, a number of important problems are still unsolved

or even not well formulated. The authors want to focus their future interest on the follow-
ing problems:

the analysis of other optimization criteria such as e.g. cost criteria in connection
with the time of starting and ending the tasks, as well as the use of limited resources
and limited quantity of machines. Solving these problems could help in a new appli-
cation of the approach presented here, namely, in the design of optimal production
structures;

various issues of multiobjective analysis in process scheduling, interactive problem
definition and selection between efficient alternative solutions.

REFERENCES.

1.  Blazewicz J. (1979). Computational Complezity of Algorithms and Scheduling Prob-
lems., Technical University of Poznan, series: Essays, No 104 , Poznan.

2. Campbell H.H., Dudek R.A., Smith M.L. (1970). A Heuristic Algorithm for the n
Job m Machine Sequencing Problem. Management Sci. Vol. 16 , pp. B 630-637.

3. Garey M.R., Johnson D.S.; (1979). Computer and Intractability: A Guide to the
Theory of NP-Completeness. ed. W.H. Freeman, San Francisco.

4.  Grabowski J.(1979). General Problems of Optimal Scheduling in Discrete Production
Systems. Scientific Bulletin of Institute for Cybernetics, Technical University of
Wroclaw, Monographies No 50, Wroclaw.

5. Grabowski J., Smutnicki C., (1980). Scheduling Problems: Classification and Com-
putational Complezity of the Algorithms. Report PRE 141/890, Technical University
of Wroclaw.

6. Lageweg B.J., Lenstra J.K., Rinnoy Kan A.H.G. (1978). A General Bounding
Scheme for the Permutation Flow-Shop Problem. Opus Res., Vol. 26 , pp.33-67.

7. Lawler E.L. (1964). On Scheduling Problems with Deferal Costs. Management Sci-
ence, Vol. 11, pp.280-288.

8. Lenstra J.K., Rinnoy Kan A.H.G. (1978). Complezity of Scheduling under Pre-
cedence Constraints. Opus Res., Vol. 26 , pp. 22-35.

9. McMahon G.B., Florian M. (1975). On Scheduling with Ready Times and Due Dates
to Minimize Mazimum Lateness. Opus Res., Vol 23 | pp. 475-482.

10. Palmer D.S. (1965). Sequencing Jobs through a Multi-Stage Process in the Minimum
Total Time - a Quick Method of Obtaining a Near-Optimum. Optimal Res. Quart.,
Vol. 16 , pp.101-107.

11. Slowinski R. (1980) Algorithms for Control of Resource Allocation of Different Types
in ¢ Complex of Operations. Technical University of Poznan, series: Essays No 114 |
Poznan.

12. Smutnicki C. (1981) Problem of Operation Sequence Optimization in Discrete Pro-

duction Systems. PhD Thesis, Technical University of Wroclaw.



- 213 -

Multiobjective Evaluation of Industrial Structures
MIDA application to the Case of Chemical Industry

Mactey Zebrowsks

Joint Systems Research Department
Institute for Control and Systems Engineering
Academy of Mining and Metallurgy, Cracow
Industrial Chemistry Research Institute, Warsaw.

1. Introduction

This paper reports the results of continuation of research in the area of decision sup-
port for industrial development strategy (see Dobrowolski and Zebrowski, 1985).

The research was sponsored by the Polish Government Energy Program, but since
the sponsor willingly accepted collaboration with IIASA specifically with the Study on
Theory, Software and Testing Examples for Decision Support Systems, the concepts ori-
ginated in the initial project were further developed and as such presented here.

The first part of the paper conveys a theoretical background, the core of which is a
substitution model based on the concept of a Production Distribution Area (PDA, see
Dobrowolski et al.. 1979, 1984). This model describes general properties of an industrial
branch when a development process is investigated. The mode! discussed here deals with
the phenomena of substitution. Three types of substitution are considered:

- substitution of feedstock,
- substitution of final products,
- substitution of technologies.

Physically, it is the substitution of technologies - old by new - that enables the two
other types of substitution to take place. The goal of the substitution model based on
PDA concept is to provide a decision maker via decision support system (DSS) that con-
stitutes a practical tool for the control of substitution processes. The practical usefulness
of the proposed model comes from the fact that some intuitively obvious and pragmati-
cally applied industrial rules of substitution analysis are formally embedded in this model.

An application of the model is presented. It is based on the case of feedstock and
fuels PDA (PDA-FF). Purposefully, the same area was chosen as in the phase I of the
project (Dobrowolski, Zebrowski, 1985), although the numerical data used are different
and modified. For obvious reasons, numerical results do not precisely correspond to those
used in the originally sponsored program.

2. Formal framework for the analysis.

2.1. The model.

An industrial branch or production distribution area of chemical industry can be
described in terms of a PDA model (Dobrowolski et al. 1979, 1984), regarded here as a
model of technological network. This model can be developed into a substitution model:

yl

(B—A)z = y©




M. Zebrowsk: - 214 - MIDA application ...

where:

(B - A) - matrix of technological links seen from the production level of particular instal-

lattons,
y’ - input resources,
yo - output resources.

Only two types of resources are considered - consumed or utilized by PDA and those
that can be obtained from the PDA. The resources of y’ and yo type could be chemical
raw materials, semi-products and products as well as water, technological energy and
investment. The set of solutions of this model designates, a maximum range of substitu-
tion dependent on the repertoire of technologies considered in the network. In real life
cases, the range of substitution is narrowed by additional restrictions imposed on y’
resources (availability) and y© resources (salability and/or demand patterns) and the
production level (production capacities). Such constraints may either represent actual
information (as a result of identification) or also be postulated in order to obtain addi-
tional information on the substitution properties of the network.

We specify now some general assumptions that enable further formalization of the
control of substitution process and thus will be useful for carrying out the pre-decision
analysis for an object as complex as PDA-FF.

Assumption 1. Effective-feasible solution.

The solutions of the substitution equation that satisfy specific additional constraints
are considered as feasible, whereas such feasible solutions that:

yo — max

y’ — min

are regarded as effective-feasible. The assumption that we might restrict the analysis to
effective-feasible solutions limits the substitution range. Therefore at this stage of con-
siderations we restrict the substitution analysis to such cases which are most effective. As
it will be explained below, effectiveness can be formally expressed in a number of other
ways.

Although this assumption may seem to be intuitively obvious, it is practically
difficult to satisfy 1t if the number of yl and yo flows is large. This obstacle may be over-
come by following a modified assumption instead:

Assumption 2. Aggregate effectiveness.

Instead of optimizing each component of flow of the resources y’ and y° a smaller
number of attributes can be defined to characterize the resources yl and y© thus enabling
for their aggregation. These aggregates will be used for representation of the area
resources. The price of a product or a raw material, or their heating values may be
regarded as examples of such attributes.

We assume that it is possible to characterize the input resources by n; aggregate
quantitative attributes that will be minimized and the output resources by ng attributes
that will be maximized:

a](y]) c Rni
aO(yO) c R"O



M. Zebrowski - 215 - MIDA application ...

where R™, R"™ - the corresponding spaces of real vectors.

Aggregate attributes can be also obtained through subtraction of other attributes
provided those attributes have the same physical meaning and formal rules of subtraction
are followed. Economic effectiveness calculated as a difference between value of the total
sale of PDA and the total cost of production in a particular state of the fiows of resources,
or the total energy balance of the PDA calculated as the difference between total energy
consumed and total energy obtained (in products) may serve as examples of such aggre-
gates.

We shall thus assume that:

- the attributes of resources of both I and O type can be quantified in positive
numbers only,

- attributes of 1,0 resources are classified accordingly as consumed (minimized) and
obtained (maximized),

- the difference between two attributes of O-I type can be defined in cases of attributes
of the same nature, whereas for O>1, the result of subtraction O-I brings gain to the
system while for O<I the result of I-O means loss. )

Thus, the Assumption 1 is modified to the following:

(10 — maX

a! — min

and correspondingly for attributes that allow from subtraction:

ao— a] — max

al — ¢ — min

Three other remarks are related to the above principles of aggregation:

1) The number of attributes al, a® decreases with aggregation, hence satisfying
Assumption 2 is easier than satisfying Assumption 1.

2)  The substitution may be limited also by imposing constraints on aggregate attri-
butes.

3) Substitution may take place both on the side of input aggregates and on the side of
output aggregates. Should such a substitution occur, each state of the PDA can be
characterized by different effectiveness of the transition from inputs to outputs.
Therefore, the concept of effectiveness is fundamental for the model and it will be
explained further in detail.

Assumption 3. Equivalence and effectiveness.

Either the resources or their aggregate attributes are considered as hierarchically
equivalent. It results from the fact that in Assumptions 1 or 2 the optimization applies
equivalently to all resource components or individual attributes, which corresponds to
multiobjective optimization in Pareto sense.

A hierarchy of resources or attributes can be introduced first when entering the
sphere of the formulation of a development thesis (see Dobrowolski, Zebrowski, 1985).
Such a formulation, however, goes beyond the problem of substitution.



M. Zebrowski - 216 - MIDA application ...

Within the formal framework of the substitution model one should solve the problem
of how to represent the effectiveness of substitution. The effectiveness rules are to provide
a formal interface between substitution and preferences assigned by a decision maker
when formulating a development thesis.

Therefore let us analyze again Assumption 1. As it was mentioned, it comprises the
operations min, max and connects de facto substitution with its effectiveness. Observe
that in order to consider a substitution of that kind at least two resources of the same
type and one of the opposite must be considered - i.e. two output resources and one input
resource or vice versa. For instance, raw materials substitution usually means a substitu-
tion of a raw material 1 for a raw material 2; obviously the effectiveness of such an opera-
tion must be related to the product or products obtained.

The problem arises how to express effectiveness of obtaining a given product y0 from
raw materials y{ or yé. It may be solved by introducing the concept of effectiveness ratios
where:

0 0
y—l, y]2 , — max
Yy Yy
denotes the effectiveness of obtaining y{ from yé, respectively, and
1 I
0’ 0’
Yy Yy

denote the effectiveness of consuming y{ from yé, respectively, and obtain yo. Therefore,
they may be regarded as equivalent inverse intensity ratios. The same applies also for the
aggregate attributes:

a_] —min
aO
aO
—I —mazxr
a

while, in the above example, the attribute ol might jointly characterize the case of
resources y{, yé. The above ratios are a natural generalization and provide very practical
effectiveness indicators. The same applies to ratios built on differential aggregates; a
good example of such combined ratio may be:

of — af
—= — maX
of — af

where denominator expresses resources consumed (such as net energy balance) while the
numerator expresses resources obtained (such as added value).

We can conclude this discussion by following remarks:

- Assumptions 1, 2 and 3 provide for a simple analysis of substitution of elementary
resources (of 1,O type) based on a chosen set of intensity ratios.

- The area of substitution is limited by the assumptions of optimization of chosen
indicators.

When formulating a development thesis in the multiobjective industrial development
analysis (MIDA) for a given PDA, the key issue is that of a critical resource. The deci-
sion maker may, for the sake of the formulation of the development thesis, assign a status



M. Zebrowsk: - 217 - MIDA application ...

of critical resource to any of the resources of O or I type as well as their aggregates
(Dobrowolski et al. 1984) According to the MIDA methodology, a critical resource is
defined as single resource or an aggregate attribute which obtained this status through the
decision maker’s choice, as it was considered by him as crucial (critical) for the implemen-
tation of the development thesis.

In the context of the substitution model considered here, the status of a critical
resource could be assigned e.g. to the resource that was chosen in order to examine possi-
bility and effectiveness of its substitution by another resource. A PDA model is then used
to enable the analysis of substitution effectiveness as a part of analysis resulting from
development thesis.

2.2. Towards decision support system tool for multiobjective evaluation of
industrial development strategy.

Before discussing a real life example let us make some additional observations. The
intensity ratios built on the input and output aggregates when used as criteria for mul-
tiobjective problem, attain their extreme values in vertices of Pareto optimal surface. We
have proposed (Dobrowolski, Zebrowski, 1984) to define this area denoted by the efficient
vertices in the criteria space as Attainable Performance Area (APA).

Let us remind also that a technological repertoire or a set of technologies is naturally
divided into two subsets. The first represents existing technologies while the second -
potentially available technologies that require additional investment. Therefore two types
of respective industrial structures must be distinguished: the first, that assures the attai-
nability of current production goals by existing technologies and the second that
comprises those technologies that can be attained by means of investment.

The formal framework presented above provides a good point of departure for devis-
ing a DSS tool for the evaluation of industrial development strategies in terms of intensity
ratios which are practically used and well interpretable by decision makers. This
approach becomes then naturally a part of MIDA methodology (Dobrowolski et al. 1985).

To make this extension applicable, following methodological steps are to be con-
sidered. The starting one is the evaluation of APA which is to be represented by selected
set of intensity ratios and which is to be agreed with the decision maker as a complete set
for a given stage of analysis. All the necessary conditions for the evaluation of the exist-
ing state in terms of its performance such as production goal as well as a set of other
defining conditions (see an example below and also (Dobrowolski, Zebrowski, 1985)) are
to be known. Another distinguished structure is the one that may be called an ultimate
or goal structure. This is defined by a similar set of parameter and conditions as those
describing the existing structure with the fundamental difference that they correspond to
the aspirations of the decision maker.

The above provides a first step in the analysis. Next comes the analysis of Attain-
able Performance Area (APA). There is no unique way of analyzing this type of Pareto
set. It should be adjusted to the particular needs of a decision maker when solving a par-
ticular case; however, the necessary information, that is, the efficient vertices must be
designated. Then a feasible method for acquiring knowledge about the properties of APA
is to be chosen. APA, let us remind, reflects properties of the available repertoire of tech-
nologies assembled into alternative industrial structures. These structures represent
potential alternatives for industrial development strategy that are Pareto optimal with
respect to intensity ratios (criteria) accepted for their evaluation. A practical feasible
indication for devising such a method is to define some cross sections of APA, parameter-
ized by a ratio representing a decision variable which is a driving force for the



M. Zebrowsk: - 218 - MIDA application ...

development. This could be represented for example, by intensity ratio built on invest-
ment. Obviously such a ratio is indispensable when a set of intensity ratios is being con-
sidered by a decision maker.

Next comes, as a natural step, the evaluation of various development trajectories
expressed in terms of horizon of implementation of alternative development strategies.
This gives to the decision maker an idea about the dynamics of achieving the goal struc-
ture as represented by a completion of a chosen industrial development strategy. From
that stems a natural mode of parameterizing an implementation horizon by the period of
investment return.

Having all the above information, the decision maker can also obtain the resulting
values of critical resources which are to be consumed or can be obtained with respective
strategies. This knowledge compared with corresponding data from the analysis per-
formed for the existing state is a very practical method of evaluating substitution of criti-
cal resources due to the substitution of technologies within respective industrial struc-
tures. All the above considerations will be now illustrated by means of a practical indus-
trial example.

3. Example of multiobjective evaluation of IDS - Industrial Development Stra-
tegy

3.1. Feedstocks and Fuels PDA - an example of substitution model analysis.

Based on the formal background presented above, the problem may be referred to a
particular PDA. We choose an area that was described before in many works (Dobrowol-
ski, Zebrowski, 1985), and may serve as a good illustration.

The necessary information about the PDA may be ordered as follows:

1 Technological repertoire is given (described by respective parameters and production
capacities).

2. Substitution of critical resources that are primary energy carriers (a basic feedstock)
is to be evaluated. These are:

- crude oll,

- hard coal,

- lignite,

- natural gas.

3. It is assumed that the range of substitution is limited through demand for the out-
put critical resources imposed by the strategy of higher level (macroeconomic pro-
duction goals). This comprises following products:

- ethylene,

- benzene,

- methanol,

- diesel oil,

- carbonizate from coal,

- carbonizate from lignite.
This demand describes a goal production level while existing production levels are

also defined.



M. Zebrowsk: -219- MIDA application ...

4.  The following values are assumed to be the attributes that enable for aggregation:
- prices of I, O resources (including technological energy, that is, steam and elec-
tric energy),
- heating values of raw materials and products existing in the PDA.
5.  The following aggregates are defined:
- IE - input energy - technological energy used by PDA and energy contained in
raw materials,
- OE - output energy - energy gained in the products,
- II - input investment,
- IV - input value value of purchase of raw materials and energy,
- OV - output value - value of sale of the products.

Additionally a differential aggregate can be formulated:
AV = OV - IV - which is interpreted as the Added Value.

6. Effectiveness ratios expressed in terms of the defined aggregates are as follows:
- OE/IE - Energy Conversion Efficiency
- OV /IV - economic effectiveness ratio,

- AV/Il - effectiveness of investment, which is equivalent to RI - Return of
Investment.

Let us consider the multiobjective problem based on the following three effectiveness
ratios:

OE/IE — max ;
OV/IV — max ;
AV/Il — max ;

A set of states of the PDA-FF model defining possible substitution will be a solution to
this problem. Observe that:

- Assumptions 1 and 2 are satisfied for the representation of the assumed attributes;

- The problem is formulated in the Pareto sense {(equivalence of criteria) and, there-
fore, Assumptions 3 is also satisfied;

- Effectiveness of substitution is considered in the sense of assumed criteria.

Therefore, the set of solutions comprises only such alternatives of substitution, for
which the three effectiveness ratios have greater value than the rejected ones. Such set of
solutions can be presented as a surface in the criteria space, which will be shown in the
next paragraph. In such a way, the substitution area for all input and output resources
existing in PDA-FF was obtained. It can be expressed in terms of assumed effectiveness
criteria and in absolute values of critical resources gained or consumed. These two types
of parameters describe industrial structure rather adequately from point of view of a deci-
sion maker since they provide information about the scale or level of operation and its
intensity (Skocz, Zebrowski, 1986). At the same time, this information serves best for the
comparison of various development alternatives. The completeness of ratios as well as list
of critical resources taken into consideration may vary from case to case but the principle
remains unchanged.

In the case discussed here the surface representing the set of solutions of the problem
of optimal substitution is spanned by three vertices of this Pareto surface. They may be
interpreted as follows:



M. Zebrowsk: - 220 - MIDA application ...

OE/IE (max)denotes the state of PDA-FF with the greatest energetical effectiveness.
OV/IV {max)denotes the state of PDA-FF with the greatest economical effectiveness.
AV/II (max) denotes the state of PDA-FF with the best investment effectiveness.

3.2. Experiments with the model.

Experiments with a PDA-FF model are summarized in Tables 1-4 and visualized by
Fig.1.

APA or Attainable Performance Area of PDA-FF is shown in Table 1. This gives
an idea of the substitution flexibility of the technological repertoire as expressed in terms
of the three selected ratios. Another important information given in that table it the cost
of investment (II) which is to be involved to attain a structure corresponding to respec-
tive vertices. The difference in calculated values of II is more than 10 fold, while the
corresponding ratios are not so dramatically different however the experienced decision
maker knows that even several per cent difference in intensity ratios should not be
underestimated. Table 4 - which is a summary table - provides a relation between the
existing industrial structure and APA. It shows also the consumption of critical resources
for respective industrial structures and their substitution as related to their intensity
ratios.

Table 2 contains cross sections of APA as visualized on Fig.1. Cross sections are
defined by the fixed value of the rate of return on investment, namely AV /IL

With the above knowledge it is useful to perform the following evaluation of APA
(illustrated by Table 3.). This evaluation is done in order to figure out the implementa-
tion horizon and the rate of return on investment as parameterized by a return period.
This is a better methodological approach than the one based only on a pre-defined return
of investment ratio.

The reader is invited to get a closer insight by evaluating the data himself. It may
be added that - with such simple calculations - a good feeling of dynamic properties of the
evaluated strategies can be achieved by a decision maker. This is meant in the sense of
feasibility of a given strategy in time related to the indispensable investment level. Natur-
ally the value of the information on development dynamics lies rather in the comparison
of various industrial development strategies than in the calculation of static indices.
Without a preliminary comparison of basic indices, however, the choice of alternatives for
further investigation cannot be carried out.

Finally, Table 4 provides information which summarizes the results of the analysis.

4. Conclusions.

We can conclude that multiobjective industrial development analysis (MIDA}, owing
to the concepts presented in this paper, is extended with the new tool of decision support
type. The simple theoretical framework provides a good communication means between
the system and a decision maker.

The concept of APA utilized in this paper proved to be very useful owing to its prac-
tical and clear interpretation. The progress described here demanded, however, a very
substantial effort on the side of software implementation, specifically a linear fractional
programming solver developed by Dr G. Dobrowolski, which will be implemented and
embedded in the MIDA system. Similarly, an ’Optimist’ software package implemented
by T. Rys was an important software tool enabling MIDA to be used for the type of
analysis described in this paper.



M. Zebrowsk: -221- MIDA application ...

V,LE vertices

VE projection of Pareto surface on plane of economic efficiency (OV/IV) and energy conversion
efficiency (OE/IE)

VI-1, EI-1 lines corresponding to constant value of return of investment

VL2,E
VI-3, VE-3
VI-4, VE-4
? ov
Y,
18
17}
16|
15
14 EXISTING
e STRUCTURE
OE
IE
2 ] o )
07 08 09

Figure 1. Pareto set for substitution model.
Acknowledgements.

Author feels deeply indebted to his co-workers from JSRD and would like to express
his special gratitude to Dr G. Dobrowolski who helped in conceiving the substitution
model. W. Ziembla helped significantly in the last stage of completion of the paper when
the concept of APA was utilized for IDS evaluation. The above does not take off the
responsibility from the author for any faults that may occur in the presented paper.



M. Zebrowsk: -222- MIDA application ...

References.

Borek A.,Dobrowolski G., Zebrowski M., (1979). Applications of System Analysis in
Management of Growth and Development of the Chemical Industry. Report
CHEM/SEM.8/R.16 Chemical Industry Committee of the United Nations.

Dobrowolski G.,Kopytowski J., Wojtania J., Zebrowski M. (1984). Alternative Routes
from Fossil Resources to Chemical Feedstocks. 11ASA Research Report RR-84-19,
Laxenburg, Austria.

Dobrowolski G., Zebrowski M., (1985). Decision Support in Substitution Analysis for
IDS - Industrial Development Strategy Ezemplified by the Fuel and Feedstocks Sector
of the Chemical Industry. The Application of DIDAS. in "Theory, Software and Test
Examples for Decision Support Systems”, A. Lewandowski and A. Wierzbicki eds.,
Laxenburg, Austria.

Dobrowolski G., Rys T., Zebrowski M., (1985). MIDA - Multiobjective Interactive Dect-
ston Atd in the Development of the Chemical Industry. in "Theory, Software and
Test Examples for Decision Support Systems”, A. Lewandowski and A. Wierzbicki
eds., Laxenburg, Austria.

Skocz M., Zebrowski M. (1986). An Extended Resources Allocation Method in Design of
Industrial Development Strategy. Proceedings of IFAC Symposium on Large Scale
Systems, Zurich.

TAB 1. APA - Attainable Performance Area - Vertices

Symbol of Criterion OV/IV OE/IE AV /I 1
experiment name (Input Investment)
\' Economic efficiency 1.80516  0.72361  0.25237 15576
(OoV/1V)
E Energy conversion 1.561682  0.87435 0.62281 4340
efficiency
(OE/IE)
I Return of Investment  1.48720  0.77076  2.02212 1130
(AV /1V)

TAB 2. APA - Attainable Performance Area - Cross Sections parameterized by value of

AV/1I
No Valueof Symbolof OV /IV OE/IE i Symbolof OV /IV OE/IE i
AV /Il  Experiment | min $§  Experiment | min $
1 1.00000 VI-1 1.61349 0.83056 2646 El-1 1.48593 0.86807 2573
2 0.62281 VI-2 1.68658 0.8260 4724 E 1.51682 0.87435 4340
3 0.45372 VI-3 1.73178 0.79939 7348 VE-3 1.70738 0.82508 6612
4 0.30815 VI- 4 1.78349 0.7291 12545 VE - 4 1.77041 0.77374 11728




M. Zebrowsk: - 223 - MIDA application ...

TAB 3. Implementation Horizon (years) and Rate of Return of Investment (%/year) of
Development Strategy (parameterization by return period).

Symbol of | Vi-1 VI-2 VI-3 VI-4 v
experiment El-1 E VE-3 VE-4

Return period

4years %/yr 177.21 75.00 37.28  20.37 5.82 0.24

yr 056 1.33  2.68 491 1719 421.94
5 years %/yr  182.21 80.00 42.28 2537  10.82 5.24
yr 0.55  1.25  2.37 3.94 9.24  19.09
6 years %/yr  185.55 83.33 45.61  28.71  14.15 8.57
yr 054 120  2.19 3.48 7.07 1167

TAB 4. BASIC PARAMETERS and VALUES DESCRIBING:
1.  Existing Industrial Structure
2. APA - Attainable Performance Area

Symbol of Unit Existing 1 E A%
experiment Structure AV/II->max OE/IE->max OV/IV->max
Criterion Value — 2.022 0.873 1.805
Basic Results:
Added Value min § 1026 2285 2703 3931
Output Value mln § 3799 6975 7933 8811
Input Value min $ 2772 4690 5230 4881
Input Investment min $ ---- 1130 4340 15576
Output Energy mln Gealll7 232 341 288
Input Energy mln Gcall67 301 390 398
Energy Balance mln Geal51 69 49 109

Consumption of
Critical Feedstocks:

Gas mln m3 1613.5 1453.7 543.8 0 e
Crude Oil tht 13390.1 22797.0 18151.1 13655.4
Coal tht 478.5 7444.7 4911.6 42358.2
Lignite tht e e 44715.1 26473.6

Pirite Coal tht e 1050.0 18375.0 1050.0




- 224 -

Spatial PDA Modelling
for Industrial Development
with Respect to Transportation Costs

Macieg Skocz, Wieslaw Ziembla

Joint Systems Research Department,
Institute for Control and Systems Engineering,
Academy of Mining and Metallurgy, Cracow
Industrial Chemistry Research Institute, Warsaw.

ABSTRACT

A modular approach for programming development of a spatially distri-
buted industrial system is proposed in the paper. The problem comprises
two decision tasks: technological development of the system with multiob-
jective goals, and an allocation of production units according to minimiza-
tion of transportation cost. For such a two-fold problem, a two-level
decomposition method is applied. A heuristic coordination procedure aims
at giving an easy insight into the solving process and enables on-line
verification during computations of assumptions and data selected in the
course of the problem identification. The method is being implemented as
an interactive decision support system to be applied to programming
development of the so-called Spatial Production-Distribution Area (PDAS)
in the chemical industry.

1. THE PROBLEM OVERVIEW

Let us call a Spatial Production-Distribution Area a large technological network-
like system comprising a set of locally concentrated production networks named local
PDAS. The set of local PDAS is arbitrarily determined as a possibly widest set of techno-
logical alternatives reasonably preselected according to spatially dependent conditions. A
final choice of locations as well as technologies to be developed in the given locations is
the ultimate goal of the development programming procedure.

The problem of programming development without regard to spatial allocation of
technology has been widely described ( Borek et al.,1978; Dobrowolski et al., 1982, 1984,
1985; Rys et al., 1986; Skocz et al., 1986 ). This problem will be also of concern here, as a
major decision task incorporated in the framework of programming development of
PDAS. Moreover, the concepts delineated in the works quoted above will be maintained
and used in the approach presented here, so that this contribution can be viewed as an
extension including transportation factors into the methodology worked out earlier for
programming the development of chemical industry.

It is important to note that transportation factors are only one of many others asso-
ciated with possible spatial distribution of PDAS. Among the others factors worth men-
tioning are spatially allocated untransportable resources (ground, infrastructure etc.)

Before presenting the problem and its solution procedure in a formal way, let us look
at the basic assumptions that resulted from problem identification:



M. Skocz, W. Ziembla - 225 - Spatial PDA ...

a) Model decision variables of diverse kind and range are to be distinguished in PDAS,
such as technological variables, transportation variables, etc.

b) Transportation cost (TC) is considered as an active factor that influences the loca-
tion of production units and as such is one of driving forces of PDAS structure
development. Hence, the arising optimization problem (min TC) does not constitute
a classical transportation problem but is a kind of location problem.

c) The transportation variables should be carefully selected in order to delete variables
of negligible influence on spatial allocation of technological units. Similarly, parame-
ters of transportation network should be aggregated to assure consistency between
the scale of technological model and the scale of transportation model.

d) The PDAS model and the solution procedure should make it possible to analyse
parameters that determine final solution comprising a selected technological reper-
toire and the location of units. In other words, the model should better explain how
technological and transportation conditions influence the spatial structure of PDAS
to be developed.

The above assumptions imposed strong requirements on the formal description of the
problem. According to the points a), c), the proposed model has a hierarchical structure
where the submodels are oriented towards technological and transportation data.

The coordination scheme of solving the whole problem enables interactive insight
into the solving process. Therefore, on-line verification and modification of selected
parameters during computations is possible. The idea of the two-level solving procedure is
as follows:

Level 1

The problem of an overall PDAS development is formulated and solved. The
identification of the problem comprises possible technological alternatives, global con-
straints either of technological or economic type, as well as strategic goals of develop-
ment. Location of technological units is not taken into account at this stage of the algo-
rithm, so only the selection of technologies that best suit conditions and goals forms a
solution to the problem. More specifically, given a foreseen demands for some products,
availability of resources and economic conditions, the development program is worked
out. This program is expressed in terms of capacities of production processes. Moreover,
various characteristics of the solution are given according to the assumed goals (e.g
overall profit, consumption of resources).

Level 2

The overall development program of the PDAS is decomposed into a series of
development programs concerning local PDAS. The decomposition is performed according
to minimization of the transportation cost objective. At this stage, capacities of local
technological processes are determined subject to local constraints (both of PDA-type and
transportation-type). This implies an interactive use of two models; a PDA-like model
and a transportation model. A mode of interaction, as well as of communication with the
Level 1, is proposed following a coordination procedure that makes the algorithm conver-
gent to a suboptimal solution.

The proposed approach results in a modular structure of a decision support system
that has numerous advantages from the theoretical and practical point of view.



M. Skocz, W. Ziembla - 226 - Spatial PDA ...

2. MATHEMATICAL MODELS

Let us now present the idea described above in a formalized way.

Level 1

At this Jevel, the problem of development programming is formulated within a

framework of so-called PDA concept (Dobrowolski et al., 1982, 1984, 1985). For the sake
of comprehensive presentation of the whole algorithm, we are recalling a basic form of the
PDA model. The model takes into account:

the processing and flows of chemicals with specification of hazardous substances and
hazardous processes within the PDA,

the flows of chemicals (with specification of hazardous substances) into and out of

other areas and industries representing the marketing or business activity of the
PDA,

the flow of investment, revenue and other resources such as energy, manpower, etc.

It should be emphasized that the version of the model described here has been con-

structed according to the other main assumptions of the basic model, i.e.:

1.
2.

it represents the equilibrium state of the PDA,

it includes only easily quantifiable physical elements of the system (without taking
into account important but not quantifiable social or political factors).

Before describing the network of the PDA, we define its links with the environment

(Fig.1). From this figure we can write the following equation describing the outflow of any
chemical 3:

ycp 3 > yCs

T

w

i
PDA
|

|

Figure 1. The links between a Production Distribution Area and its environment.

vi=y -yt —yP, je€J ,JDJ (1)

y;™* - market sale of chemical 7,

y;"? - market purchase of chemical j,

y;* - coordinated sale of chemical j,

y;P - coordinated purchase of chemical 7,

J - set of indices representing chemicals of the PDA,

J; - set of indices of substances that cause transportation cost of substantial value.



M. Skocz, W. Ziembla - 227 - Spatiwal PDA ...

eik Zk

Ly v
e Z, —

—

2 PE [Tew
Wiz, —>

VoYY

bjk Zx

Figure 2. Processes element PE} and the associated variables and parameters.

The variables in Fig.1-2 may be defined as follows:
2} - production level of PEy,
%4 - production capacity of PEy,
aji 2g - quantity of chemical j consumed by PEj,
bjx z - quantity of chemical j produced by PEj,
di 2 - quantity of waste ! produced by PE},
qi(z;) - necessary resources,
ex 2; - quantity of energy consumed by PE,,
Wy, 2} - quantity of water consumed by PE},
lp 2 - quantity of labor consumed by PE},
ny 2j - investment for PE},

For the balance nodes, the following equations are satisfied:
Y= D obpa— Y apzn
ke K ke K

By combining the above results with (1) we obtain:
y™ -y +y® -y =(B-A): @

To complete this description of the network we have to add the constraints imposed
on production capacity:

2 <2 (4)

For multiprocess installations, where processes run simultaneously, instead of the latter
equation we use the following constraint:



M. Skocz, W. Ziembla - 228 - Spatial PDA ...

Zk<2,' ,1.61 (43)

where I, K; denote correspondingly the sets of indices of installations and processes run
on i-th installation. In addition, the model describes redevelopment of installations, i.e.
substitution of an old process by a new one run on the same installation. For a given k-th
process it is formulated as follows:

Lo+ Lp<a (5)
27 g

where: 3 , 2]’ denote capacities of an old and new k-th process, 2{ , zf denote production
levels of an old and new k-th process.

The introduction of new technologies is fundamental to this approach for develop-
ment programming, as it opens the way to technological restructuralization of the PDA.

It is obviously necessary to add some additional constraints on resource availability
or waste production limits and a set of criteria which reflect preference or goals of the
decision maker. Since formulation of the constraints seems to be straightforward, here we
present only some optimization criteria which may be of interest in the analysis.

First, we assume that for a fixed production goal we are interested in maximizing
the added value (or revenue) that leads us to the problem:

Qv = 2 6 (¥ + 47" ) — ] (¥ + y/7) — max (6)
jedJ

with constraints given by market conditions and production capacities.

Following another decision strategy, resource consumption may be minimized, which
results in the set of criteria:

Qener = kEKek zy — min (73)
€
Q:’nu = kZKnk g — min (7b)
€
Qlabor = kEKlk 2y — min (7C)
€

From the above objective functions, it is possible to derive other useful optimization
problems based on linear fractional functions (e.g. Qe / @ener) as well as various mul-
tiobjective problems. Of course, any objective (6) - (8) can be transposed onto a
corresponding constraint. Discussions of the problem of choice of relevant objectives go,
however, beyond this formal description of the model.

For brevity, it will be sometimes convenient to represent the above described model
as an optimization problem in a compact form called P-PDA:

Q(zy) — min (8)
s.t.



M. Skocz, W. Ziembla - 229- Spatial PDA ...

G(zy) >0

where y = { y;,7€JDJ; },z={2,k€ K}, Jis aset of indices representing
chemicals, J; denotes set of indices of substances that cause transportation cost of sub-
stantial value.

Note also that every y; can be split into the following components:

y}m - market sale of chemical 7,

mep - market purchase of chemical 7,

y;s - coordinated sale of chemical 7,

y;p - coordinated purchase of chemical 7,

As usual, z; denotes production level of process k, K is a set of all technological
processes in the PDAS.

To summarize, as an output of the optimization procedure at Level I one obtains
outflows of chemicals y; split into y;"*, y", y;*, y;7, 7 € J. These variables and associ-
ated with them z; , k€ K represent global directions of the whole PDAS development.

It should be emphasized that the above model includes all the assumptions of the
basic PDA model, which will not be quoted here. It is obvious, however, that both the
objective function(s) and type of constraints that occur in the PDAS version are
implementation-specific.

Models of local PDAS have an analogous form. They are distinguished from the gen-
eral PDAS model with superscript | designating all components of the model.

Level 2

Let us now denote by L a set of possible locations of local PDAS. Chemical sub-
stances that are consumed in technological processes in a given location can be either pro-
duced in the same local PDAS, other local PDAS, or can be purchased on the market
beyond the whole PDAS. Moreover, chemicals can be transported between given sites
along different routes that cause different transportation cost.

The entire transportation cost in the whole PDAS can be evaluated according to the
following formula:

c=% I Y ¥ zdP,+ ¥ ¥ vd P;] (9)

jeJ,lel nelreR, meMreR,
where:
Jq - set of chemicals that cause meaningful transportation cost,
Ry, Ry, - set of routes that connect locations n,! and /,m
Tjy - amount of substance j transported between sites by the route r,
M - set of markets,
Vjy - amount of substance j imported and/or exported by the route r,
d, - distance along r,
Pj, - price for transportation of unit product j along route r.

In order to formulate an optimization problem for minimization of TC, the following
constraints are taken into account:

E Yy < ij (10)
le Lre R,



M. Skocz, W. Ziembla - 230 - Spatial PDA ...

> Z}{ vy < ST (11)

leLre Im
XX X Y zp<T (12)
jeJyleLnelreR,
2 2 Ty < tj ’ .7 € Jt (13)
leLnelreR,
Zjy < Rr (14)
j€Jy
where:
ij - availability of substance j from market m,
ST* - salability of substance j from market m,
T - total transportation potential,
t; - transportability of substance j,

R, - maximal transportation flow along route r

It is important to observe that the above model has a natural connection with the
PDA model, because the following equations hold:

Y X z=y (15)

nELrERln

YN vr=y™ (16)

meMreR,,

Y ¥ zi=y (17)

nELYER"J

YN v=y™, (18)

mEMrERm,

;“, y;- P, y;- ms y;- ™P, 1 € L, denote spatial coordinates of vectors y;°, y/¥, y/™,

where y
;.

As follows from the above observation, the solution to the transportation problem
can provide a feasible decomposition of the PDA model outputs ( ¥, y;7, y;™, y/'7), as

far as the conditions:

¥ oy <y (19)
€L :
B ymes g (20)
€

¥ oy P <y (21)
leL

Y oyim <y (22)
le L

are assumed to hold in the transportation problem.

Concluding, the transportation problem consists of the objective (9), transportation
constraints (10)-(14) and linking constraints with the PDAS model (15)-(22). The latter
are put down in a redundant form to better visualize the link between the two models.



M. Skocz, W. Ziembla -231- Spatial PDA ...

It is important to note, however, that the above spatial decomposition of the global
solution takes into account only transportation factors and as such neglects local condi-
tions that may influence technological development of the local PDAS. For the above
reason, a coordination procedure that combines solutions derived from the PDAS and the
transportation model is proposed.

3. SOLVING ALGORITHM
The proposed algorithm consists of the following steps:

Step 1.
Generation of the overall PDAS development program, i.e determination of the vari-
ables {y;, 7 € J}, {2, k € K}. For further considerations the set K (potential tech-
nologies) will be always limited to those selected by non-zero variables z; (K = {k;

z; 0}.
Step 2
Solving the problems regarding development of local PDAS,, | € L);
Q' (Z,y) — min (23)
s.t.

G (4y) > 0
where G' represents also a set of local constraints on resources (manpower, water,

energy etc.). The solution obtained at this step is ﬁl , gl

Step 3
Solving the transportation problem:

TC(z,y,2) — min (24)
s.t.

. N
y=1lyb ¥ yl<y; jeJ, and y. < §
lel

The solution to the above problem y;- = fj; will be used in the next step.

Step 4
Choice of the PDAS; that satisfies the following condition:

Il g;— 4§ — min (25)
The solution is | = s.

Step 5
Generating eventual optimal structure of the PDAS' through solving the PDA®,
s.t. additional constraint yf < 37; The solution is denoted gT;, then y; obtained from
solving P-PDA 1s updated (yj < yj — 37;) The selected set of technologies K*° will
be substracted from the set K (K := K\K*). Similarly, L will be diminished by
s(L:=L\{s}).

If L # 0, go to step 2, otherwise the procedure is terminated.



M. Skocz, W. Ziembla - 232- Spatial PDA ...

4. COMMENTS AND CONCLUSIONS

The concept of a hierarchical coordination of programming of the development of a
spatially allocated PDA, described in this paper, is suggested as a basis for a decision sup-
port system for these purposes. The preliminary character of this concept should be
stressed, however; many questions require further analysis and research before construct-
ing such decision support system. The role of the decision maker interacting with the
coordination algorithm at its both levels should be clarified, the convergence of such a
hierarchical interactive procedure should be analysed, alternative procedures of interac-
tive hierarchical coordination should be taken into account. Nevertheless, the example
presented in this paper stresses the importance of research on hierarchical formulations of
models in decision support systems.

References.

Borek A., Dobrowolski G., Zebrowski M. (1978). GSOS - Growth Strategy Optimization
System for the Chemical Industry. Proc. of MECO-78, Athens.

Dobrowolski G., Kopytowski J., Lewandowski A., Zebrowski M. (1982). Generating
Efficient Alternatives for Development in the Chemical Industry. Collaborative
Paper CP-82-54, ITASA, Austria.

Dobrowolski G., Kopytowski J., Wojtania J., Zebrowski M. (1984). Alternative Routes
from Fossil Resources to Chemical Feedstocks. Research Report RR-84-19, IIASA,
Austria.

Dobrowolski G., Kopytowski J., Rys T., Zebrowski M. (1985). MIDA: Multiobjective
Interactive Decision Aid in the Development of the Chemical Industry. in Theory,
Software and Practical Examples for Decision Support Systems, IIASA, pp.235-251.

Rys T., Skocz M., Ziembla W., Zebrowski M. (1986). Modelling the Chemical Industry
for Hazardous Waste Management. Proc. of AMSE Conf. on Modelling and Simula-
tion, Sorento, Italy.

Skocz M., Zebrowski M., Ziembla W. (1987) A Method for Design of Industrial Invest-
ment Strategy Paper accepted for X IFAC Congress in Munich, 1987.



-233-

Ranking and Selection
of Chemical Technologies
Application of SCDAS Concept

Grzegorz Dobrowolski and Mactes Zebrowskr

Joint Systems Research Department,
Institute for Control and Systems Eng.,
Industrial Chemistry Research Institute

1. INTRODUCTION

In the design of Industrial Development Strategy (IDS) two phases may be dis-
tinguished. The first is generation of efficient development alternatives, the second is
selection and ranking of these alternatives. Regardless of particular line of responsibility
In a given organization the decision process in this case involves a group of experts. They
should be able to arrive at the conclusive results of their search so that a decision could be
made.

The second phase starts when a given number of alternatives have been generated as
a result of methodologically ordered process. The methodology considered is MIDA or
Multiobjective Interactive Decision Aid (Dobrowolski et al., 1985; Zebrowski, 1986). This
process 1s performed on two consecutive levels of MIDA hierarchy. The higher level cov-
ers a global IDS referring to the whole industrial branch such as described by so called
PDA or Production Distribution Area model (Dobrowolski et al. 1984). The alternatives
are understood here as development strategies. On the second, lower level called Com-
parative Study of Technologies individual technologies are considered (Dobrowolski et al.,
1984, Gorecki et al., 1984).

In the decision support systems designed for MIDA the process of selection and rank-
ing of alternatives is built 1n a form of heuristic procedures based on judgement of a deci-
sion maker and his experts. It is to be explored how we could support these procedures
with formally constructed decision support tools.

We have selected an approach called SCDAS or Selection Committee Decision
Analysis and Support System (Lewandowski et al., 1986).

In this paper the first attempt to apply SCDAS type of approach to the group dect-
sion in the area of the design of IDS is reported. We begin with description how SCDAS
can be incorporated in MIDA decision support system. The problem is exemplified by
selection and ranking of alternative technologies for methanol production. The paper con-
cludes with proposal for continuation of the effort reported here aimed at developing a
specialized tool for group decision support that is foreseen to be incorporated as MIDA
module.

2. THE PROBLEM AREA

Design of IDS for the chemical industry is a mainstream of our research since almost
a decade ( e.g. Borek et al., 1978; Dobrowolski et al., 1984). From this experience came a
strong demand for development of tools that could efficiently help in ranking and selection
of development alternatives. Development of advanced decision support system tools
based on the efficient multiobjective optimization software (e.g. DIDAS see Dobrowolski



G.Dobrowolski, M.Zebrowski ~-234- Ranking ...

et al. 1985), made the generation of decision alternatives well equipped. The easier is gen-
eration process, the richer is the array of possibilities to be evaluated and selected by a
decision maker and his experts.

The problem discussed here i.e. ranking of a finite set of alternatives and selection of
one of them by a group of experts is a classical decision problem. Without going into
details we may conclude that strong need exists for developing simple but advanced deci-
ston support system of tools for evaluation, ranking and selection of decision alternatives.

We decided to consider here an approach that led to development of the package
called SCDAS. Several other approaches to the above problem may be considered. One of
the very promising, which deserves more attention is the one described by Siskos (Siskos
et al., 1986). This is a multicriteria ranking of alternatives utilizing method called Electra
(Roy,1978; Skalka et al.,1983).

The SCDAS can be located in the quasi-satisficing framework of decision support
(see e.g. Wierzbicki 1982) which is an extension of the satisficing framework (as intro-
duced by Simon 1958). As it was assumed in the SCDAS approach, there are several
alternatives and a group of experts who are to make a selection. They form a committee
with equal or varying voting power. The voting power as well as procedural terms of
reference for the case to be considered should be formulated in the committee’s charter.
Each alternative is described by a set of attributes that may be expressed by numbers.
The procedural variant preferred in SCDAS is an aspiration level-led process: each expert
(committee member) is asked to specify anchor levels (aspiration and reservation levels)
for all attributes. The aspiration and reservation levels are used to obtain an achievement
function — which can be interpreted as an approximate multivariable cardinal utility func-
tion that is further averaged and maximized in the system (Wierzbicki, 1986).

Next the experts enter the evaluation process. Having in mind their aspiration and
reservation levels, the experts are to assign levels of attributes for all alternatives. While
using the achievement function, either individual or the group ranking is obtained. A
decision analysis process results in final ranking and selection of the alternatives in a way
that is rational, understandable and acceptable to the committee members. The pro-
cedural framework for the decision process assumes that set of attributes as well as alter-
natives may be changed by the experts.

Two levels in MIDA hierarchy were selected for application of that new tool for
selection and ranking of development alternatives. First comes the level aimed at evalua-
tion and selection of an IDS for the whole industrial branch as described by the PDA type
of the model {Dobrowolski et al., 1985). Thus development strategies become the alterna-
tives. Second would be the lower level which is closely related to the above. That would
be a Comparative Study of Technologies (Dobrowolski et al., 1984; Gorecki et al., 1984).
Here technologies will be ranked. We can describe jointly tasks for both levels.

The result of SCDAS session is to be presented to a decision maker in form of rank-
ing of alternatives obtained from the earlier stage of MIDA predecision analysis. Most of
the attributes would be common for both cases under consideration. This results from the
MIDA methodology and reflects real life decision environment: attributes must be homo-
genous throughout the process of predecision analysis and at least some of them must
assure continuity and coherence when results are obtained from level to level.

There are two types of attributes. First is represented by intensive parameters such
as rate of return, investment, production capacity, wastes etc. They are easy for com-
parison since they are usually backed by engineering and economic type of data. Some of
them are expressed in absolute numbers and some in relative values. In terms of



G.Dobrowolski, M.Zebrowski =235~ Ranking ...

industrial experts these attributes describe scale (volume) or intensity of industrial opera-
tion.

Second type of attributes are those describing some trends or character of the
phenomena. These are e.g. availability of resources, marketing forecasts, etc. They are
much less reliable, more difficult for quantification and therefore the role of expert’s
experience and judgement is decisive at the stage of attributes’ evaluation.

Following is a proposed list of attributes with some comments; in any individual
case, a selection or an aggregation of this list should be made in order to limit the number
of attributes to a reasonable one.

1. Rate of return of investment.
This parameter should be related to the current rate of interest.

2.  Productivity of the capital.

Thermal efficiency.
It is equivalent to ECE or Energy Conversion Efficiency calculated from the lower
heating values of media in question.

4. Investment to manpower intensity.
It is to express cost of creating a new work place. As investment cost battery limits
investment is considered.

5.  Cost of investment.
The following elements of the cost should be analyzed: battery limits, construction
cost, offsides as well as working capital.

Terms of trade impact.
Income.

Cost of production.
It may be calculated using yields and consumption coefficients and assumed prices.
Overheads, taxes, insurance and other factors may be also incorporated.

9.  Availability of raw materials.
It should reflect the proportion of the demand for the raw material due to the new
investment related to the markets share.

10. Availability of technology.
This may be related either to the number of potential suppliers and/or to potential
necessity of imports as opposed to domestic source of technology.

11. Environmental impacts.
It serves the purpose of evaluation of particular dangers to the environment
expressed in amounts of wastes.
In individual case it can be also expressed in terms of emission of a particular waste
agent per unit of main product.

The above would be a brief description of the background of the problem area. The
idea emerging from it can be explained further by an example.

3. RANKING AND SELECTION OF TECHNOLOGY. THE CASE OF
METHANOL.

This case was selected for its simplicity and generality. It was also used by us previ-
ously; therefore, it provides a good material for testing and comparison (Dobrowolski et
al., 1984). The software used was an original SCDAS package version (Lewandowski et
al., 1986).



G.Dobrowolski, M.Zebrowski ~-236- Ranking ...

The scope.

Suppose that, from the higher level of MIDA analysis, it became evident that pro-
duction of methanol is to be located in a particular region. The estimated demand for
methanol production was 500,000 MTPY.

The region in question is rich in low grade coal which is not suitable for power gen-
eration. Since its mining cost is low due to its easy accessibility it is to be evaluated as a
feedstock for the chemical processing. The cost of this coal is estimated at 22 USD per
MT as opposed to the average market price of coal being 34 USD per MT of coal used for
power generation. One of the possible locations for methanol production is a large chemi-
cal plant which, among many other products, produces carbide.

The acethylene obtained from carbide is a very valuable chemical feedstock. As a
by-product from carbide plant so called carbide gas (rich in carbon monoxide) is obtained.
This can be used in combination with methane for chemical synthesis, specifically for
methanol production.

Another potential location to be considered is a site next to the open lignite pit. The
lignite at the price of 15 USD per MT is therefore another possible domestic feedstock.
Other feedstocks would have to be imported.

There are two conflicting strategies for the future development of the region.

The first assumes autarchic development that strongly favors domestically available
raw materials. It also represents restrained approach to the investment. The autarchic
approach leads to depreciation of economic and market factors. Consequently the environ-
mental effects may become relatively less important.

The second strategy as opposed to the previous one is an open approach, economy
and market oriented. Nevertheless factors such as environmental impacts are also to be
considered.

Alternatives.

Methanol is usually produced on the industrial scale from syngas, a 1:2.2 mixture of
carbon monooxide and hydrogen, in the presence of a catalyst and under specific tempera-
ture and pressure conditions.

Syngas may be obtained from any raw material containing carbon, and therefore all
fossil resources are potential starting materials. The following are the most commonly
used:

- natural gas;

- natural gas combined with a source of carbon monooxide, such as the residual gas
from carbide ovens;

- heavy fractions and the heavy residue from distillation of crude oil;
- hard coals and lignite.

The choice of raw material depends largely on the resources and conversion technolo-
gies available.

Nine technologies of methanol based on the above raw materials are the alternatives
presented to the experts. The design office prepared technical information for all units for
the same capacity of 500,000 MTPY (metric tones per year). Instead of numeration, 3-
character symbols are provided here for the sake of identification during the SCDAS ses-
sion.



G.Dobrowolski, M.Zebrowsk: =237~ Ranking ...

NG.
N+C

HR.
LG.

FT.
TEX

HTC
HTL
KT.

From natural gas to methanol through steam reforming of methane.

As above, but with the addition of ( carbon monooxide containing ) residual gas
from carbide ovens.

From heavy residues to methanol through partial oxidation.

From coal to methanol through medium-pressure gasification of the coal, followed
by SNG ( synthetic natural gas ) production and subsequent steam reforming of
methane.

Coal gasification followed by Fisher-Tropsch synthesis.

From coal through pressure gasification of coal-water paste in oxygen atmosphere -
TEXACO process.

High temperature (1400 K) Winkler process for hard coal.
As above, but for lignite.

From coal to methanol through low-pressure gasification of the coal ( Koppers-
Totzek-type process ).

So called Fisher-Tropsch technology falls out of the line of others due to the scale of

its operation since it produces very large quantities of of SNG (Synthetic Natural Gas)
and 500,000 MTPY of methanol is, in fact, not the main product of this plant. It produces
also other feedstock apart from SNG. But due to the specific role of coal in the region it
was also included as one of the technological alternatives.

been

To give a good foundation for ranking and selection all the committee members have
equipped with the description of the alternative processes. Table 1 contains techno-

logical parameters for the first considered technology. The reader can find the data of this

type

for all alternatives in Appendix B. Such data ought to be accepted by the whole

committee as long as local aspects of implementation of the technologies can be neglected
at this stage.

TABLE 1: Information sheet for NG. technology.

General
Battery Limits 184220 th.USD
Manpower 105 men
Capacity 500000 tons/year
Inputs unit/year
electric energy 8.000 4000000 kWh
steam 0.080 40000 Geal
water 11.000 5500000 m3
natural gas 0.922 461000 th.m3
Co-Mo catalyst 0.030 15000 kg
ZnO catalyst 0.100 50000 kg
reforming catalyst 0.033 16500 kg
catalyst of synthesis 0.200 100000 kg
Outputs unit/year
waste water 5.048 2524000 m3

methanol 1.000 500000 tons




G.Dobrowolski, M.Zebrowski -238- Ranking ...

Attributes

The set of the attributes for the case has been proposed. They are enumerated in
Table 2.

TABLE 2: List of attributes.

Techno-economical:

RoR  Rate of Return

TE{ Thermal Efficiency

Pro  Productivity

B/L Battery Limits / Labor Intensity
Inv Cost of Investment

Miscellaneous:

Raw  Availability of Raw Materials
FoT Impact on Foreign Trade ( Import )
Env  Environmental Impacts

In the Appendix C formula for calculating the above attributes are given.

As the auxiliary material values of the intensive parameters for the alternatives have
been calculated and presented to the experts.

TABLE 3: Intensive parameters for the technologies.

Intenstve parameters:

UCo  Unit Cost

Uln Unit Income

RoR  Rate of Return

Pro Productivity

TEf Thermal Efficiency

B/L  Battery Limits / Labour Intensity

TABLE 4: Values of the intensive parameters.

UCo Uln RoR  Pro TEf B/L
(UsD/t] (USD/t] (%] (%] [%] [ml.USD/man]

NG. 214.82 26.18 7 65 62 1.754
N+C 201.79 43.67 12 G5 72 1.676
HR. 330.92 -82.32 -13 39 50 1.611
LG. 347.09 -70.73 -8 33 37 1.498
KT. 404.31 -155.52 -16 26 30 1.558
FT. 1595.88 -870.75 -15 13 49 2.494
TEX 232.92 15.59 3 44 42 1.405
HTC 272.07 -23.38 -3 35 37 1.764
HTL 282.60 -34.58 -5 33 44 1.854

The calculation was based on assumed prices and average lower heating values
which are reproduced in Appendix A. Negative numbers for Uln mean simply that a
technology in question brings loss, consequently RoR has a negative value.



G.Dobrowolski, M.Zebrowski ~239- Ranking ...

Ranking obtained.

Having obtained all the above information the group of five experts enter upon the
stage of evaluation of the methanol technologies and they express their views through
evaluating each alternative. Final ranking that was generated by SCDAS basing on the

votes is given in Table 5.

TABLE 5: Final ranking

1 2 3 4 5 6 7 8 9
N+C NG. TEX HR. LG. HTC HTL KT. FT.

The result can be commented briefly as follows. All technologies bringing loss in
monetary or economical terms are ruled out and therefore the score is in full agreement
with the technological and economical data provided to the experts. It can be seen that
the second type of attributes practically does not play significant role in evaluation and
selection of alternatives except for environmental impacts. The TEX technology being the
third choice proves this point.

Although both development strategies for the region — namely the autarchic one and
the open market oriented one — were represented by the experts in the voting process, it
can be seen that the latter one became prevalent. To illustrate better the SCDAS appli-
cation another case may be considered when aspiration levels and scores for attributes:
availability of resources and impact on foreign trade were modified as if the experts
tended to an autarchic development of the region. The resulting order is presented in

Table 6.
TABLE 6: Technology ranking (autarchic tendency)

1 2 3 4 5 6 7 8 9
N+C TEX LG. KT. HTC HTL FT. NG. HR.

Comparing the results presented in both above tables it can be seen that in the first
case (i.e. of market oriented strategy) the impact of techno-economic attributes is
decisive, while in the second (hypothetical) case the other attributes referring to
knowledge and experience of the experts are essential. It should be stressed, however,
that the subjective factor remains present in the analysis with all its negative and positive
aspects.

4. CONCLUSIONS AND PROPOSAL FOR THE FUTURE DEVELOP-
MENT.

The experience gained from application of SCDAS package for extending MIDA
methodology proves its usefulness, although the package was originally developed not for
this kind of application. The conclusions formulated here are obtained from the point of
view of the proposed new application of SCDAS concept — that is, ranking and selection of
alternatives in the process of design of industrial development strategies.

This kind of application requires an open construction of the decision support sys-
tem. In MIDA system free access to various databases such as technological database is

*We do not reproduce here the 360 numbers which were the scores given by experts.



G.Dobrowolski, M.Zebrowsk: =240~ Ranking ...

assumed . Moreover, results can be stored for future processing and evaluation. Therefore,
special commands in SCDAS enabling data transfer would be useful. Additionally, a pos-
sibility for calling in the command interpreter of the operating system would be very
practical.

It may be also concluded that an important area of future research will be the
identification and methodological structuring of selection and ranking processes for the
various attributes: their impacts, subjectivity versus objectivity etc. A basic condition for
a successful application of the proposed approach will be an explicit and clear understand-
ing by experts and decision makers of the above problems and their impact on the selec-
tion and ranking process. This is necessary in order to assure fairness of representation of
experts views and knowledge as well as to avoid hidden biases of results owing to lack of
understanding of the method.

It would be also useful to trace the progress in ranking by separate scoring of various
subsets of attributes; for example, first ranking according only to ratios, then according
to subset of attributes expressed in absolute numbers, etc. This would show the impact of
attributes considered on the judgement of committee members and could provide a feed-
back which may help to arrive at conclusive results. Such an analysis may be especially
useful in a more complex case, for example, when alternatives for IDS on the higher level
are to be considered.

With the help of the functions proposed above we intend to develop various pro-
cedures related to designating aspiration and reservation levels, evaluating alternatives,
etc. It may be concluded that further identification and methodological structuring of the
selection and ranking process is an important area of future research. All this would pro-
vide for an useful application of SCDAS concept in MIDA environment.

References.

Borek A., Dobrowolski G., Zebrowski M. (1978) GSOS - Growth Strategy Optimization
System for the Chemical Industry. Proceedings of MECO-78, Athens, Vol. 3.

Gorecki H. et al. (1984). Multiobjective Approach to Project Formulation. Design of the
Chemical Installation. Springer Verlag, Proceedings of MECO-78, Athens, Vol. 3.

Dobrowolski G., Kopytowski J., Wojtania J., Zebrowski, M. (1984) Alternative Routes
from Fossil Resources to Chemical Feedstock. Research Report RR-84-19, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria

Dobrowolski G., M. Zebrowski (1985) Decision Support for Substitution Analysis in IDS
{ Industrial Development Strategy ) Ezemplified by Fuel and Feedstock Sector of the
Chemical Industry; An Application of DIDAS. Theory, Software and Test Examples
for Decision Support Systems, Editors A.Lewandowski and A.Wierzbicki, pp. 219-
234, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.

Dobrowolski G., J. Kopytowski, T. Rys, M. Zebrowski (1985) MIDA (Multiobjective
Interactive Decision Aid) in the Development of Chemical Industry. Theory,
Software and Test Examples for Decision Support Systems, Editors A.Lewandowski
and A.Wierzbicki, pp. 235-251, International Institute for Applied Systems Analysis,
2361 Laxenburg, Austria.

Keeney R.L.,Lathrop J.F, Sicherman A. (1985) An analysis of Baltimore Gas and Elec-
tric Company technology choice. J. Oper. Res., vol.34, No. 1.

Lewandowski A., S. Johnson, A. Wierzbicki (1986) A Prototype Selection Committee
Decision Analysis and Support System SCDAS: Theoretical Background and Com-
puter Implementation. Working paper WP-86-27, International Institute for Applied
Systems Analysis, 2361 Laxenburg, Austria.



G.Dobrowolski, M.Zebrowski =241~ Ranking ...

Siskos J., Hubert Ph. (1983) Multicriteria analysis of the impacts of energy alternatives: a
survey and a new comparative approach. Eur. J. Oper. Res., 13, pp.278-299.

Siskos J., Lombard J. and Oudiz A. (1986) The use of Multicriteria Outranking Methods
in the Comparison of Control Options Against Chemical Pollutant. J.Op.Res. Soc.,
vol.37, No 4, pp. 357-371.

Roy B. (1978) ELECTRE III: Un algorithme de classement fonde sur une representation
floue des preferences en presence des criteries multiples. Cah. Cent. Etud. Rech. Opl.
20. pp. 3-24.

Skalka J.M., Boyussou D., Bernabeu Y.A. (1983). ELECTRE III et IV: aspects metho-
dologiques et guide d’utilisation. Document LAMSADE No 25, LAMSADE, Univer-
site Paris-Dauphine, Paris.

Skocz M., Ziembla W., Zebrowski M., (1986). Multiobjective Design of Dynamic Indus-
trial Development Trajectories. An Ezxtension of MIDA Methodology. in
Theory,Software and Test Examples for Decision Support Systems Phase II. Eds
A.Lewandowski & A. Wierzbicki, IIASA, Laxenburg, Austria. (in print).

Wierzbicki A. P. (1982). A Mathematical Basis for Satisfying Decision Making. Math.
Modeling, vol.3, pp. 391-405.

Wierzbicki, A.P. (1986). On the Completeness and Constructiveness of Parametric
Characterizations to Vector Optimization Problems. OR - Spectrum 8, pp. 73-87.
Zebrowski M. (1986). MIDA Application - Multiobjective Evaluation of Industrial Struc-
ture. The Case of Chemical Industry. in Theory, Software and Test Examples for
Decision Support Systems. Phase II. Eds A.Lewandowski & A.Wierzbicki, ITASA

Laxenburg, Austria. (in print)

APPENDIX A

In this appendix, prices and lower heating values for each media involved in the
analysis are reproduced. These parameters were used for calculation of all techno-
economical indicators of the technologies.

TABLE A.1:Prices and LHV (Lower Heating Values) for the media under consideration.

Price Heating unit

[unit]  [Geal/unit]
ammonia 209.80 4.45 tons
carbide gas 27.50 2.50 th.m3
coal 22.00 4.07 tons
diesel oil 306.20 10.00 tons
electric energy 0.06 0.00068 kWh
heating gases 68.70 5.07 th.m3
heating oil 142.30 9.60 tons
heavy residue 142.00 9.60 tons
lignite 15.00 2.15 tons
liquid gases LPG 353.70 10.80 th.m3
methanol 241.00 4.60 tons
natural gas 110.00 8.00 th.m3
raw phenols 546.60 7.50 tons
steam 13.50 1.00 Geal
sulphur 95.20 2.20 tons
superior alcohols 120.50 6.44 tons




G.Dobrowolsky, M.Zebrowsk: -242-

APPENDIX B.

This appendix contains basic

Renking ...

information on the technologies of methanol. The

information is given on the special sheets that are presented to the committee members.
TABLE B.1:Information sheet for NG. technology.

General
Battery Limits 184220 th.
Manpower 105 men
Capacity 500000 tons/year
Inputs unit/year
electric energy 8.000 4000000 kWh
steam 0.080 40000 Geal
water 11.000 5500000 m3
natural gas 0.922 461000 th.m3
- catalyst 0.030 15000 kg
catalyst 0.100 50000 kg
reforming catalyst 0.033 16500 kg
catalyst of synthesis 0.200 100000 kg
Outputs unit/year
waste water 5.048 2524000 m3
methanol 1.000 500000 tons
TABLE B.2:Information sheet for N+C technology.
General
Battery Limits 187810  th.
Manpower 112 men
Capacity 500000 tons/year
Inputs unit/year
electric energy 40.000 20000000 kWh
steam 0.260 130000 Gecal
water 11.000 5500000 m3
natural gas 0.730 365000 th.m3
carbide gas 0.224 112000 th.m3
Co-Mo catalyst 0.030 15000 kg
ZnO catalyst 0.136 68000 kg
reforming catalyst 0.033 16500 kg
catalyst of synthesis 0.200 100000 kg
Qutputs unit /year
waste water 4.636 2318000 m3
methanol 1.000 500000 tons
superior alcohols 0.037 18500 tons




G.Dobrowolski, M. Zebrowski -243- Ranking ...

TABLE B.3:Information sheet for HR. technology.

General
Battery Limits 315810 th.
Manpower 196 men
Capacity 500000 tons/year
Inputs unit/year
electric energy 63.000 31500000 kWh
steam 0.296 148000 Gecal
water 15.000 7500000 m3
heavy residue 0.992 496000 tons
conversion catalyst 0.080 40000 kg
catalyst of synthesis 0.200 100000 kg
air 3.520 1760000 th.m3
Outputs unit/year
waste water 6.910 3455000 m3
gas waste 0.116 58000 th.m3
methanol 1.000 500000 tons
sulphur 0.033 16500 tons
superior alcohols 0.037 18500 tons

TABLE B.4:Information sheet for LG. technology.

General
Battery Limits 421100 th.
Manpower 281 men
Capacity 500000 tons/year

Inputs unit/year
electric energy 123.000 61500000 kWh
steam 4.160 2080000 Geal
water 18.000 9000000 m3
coal 3.032 1516000 tons
air 3.637 1818500 th.m3
catalyst of synthesis 0.200 100000 kg

Outputs unit/year
waste water 8.132 4066000 m3
gas waste 1.028 514000 th.m3
ashes 0.355 177500 tons
methanol 1.000 500000 tons
ammonia 0.021 10500 tons
raw phenols 0.014 7000 tons
heating oil 0.109 54500 tons
sulphur 0.035 17500 tons

superior alcohols 0.037 18500 tons




G.Dobrowolski, M.Zebrowski

-244-

TABLE B.5:Information sheet for FT. technology.

General
Battery Limits 473710 th.
Manpower 304 men
Capacity 500000 tons/year
Inputs unit/year
electric energy 300.000 150000000 kWh
steam 6.170 3085000 Geal
water 21.000 10500000 m3
coal 2.444 1222000 tons
air 4.792 2396000 th.m3
catalyst of synthesis 0.200 100000 kg
heating gases 0.024 12000 th.m3
conversion catalyst 0.070 35000 kg
Outpuls unit/year
methanol 1.000 500000 tons
superior alcohols 0.037 18500 tons
sulphur 0.035 17500 tons
waste water 13.506 6753000 m3
gas waste 1.126 563000 th.m3
ashes 0.306 153000 tons
TABLE B.6:Information sheet for TEX technology.
General
Battery Limits 2990610 th.
Manpower 1199 men
Capacity 520000 tons/year
Inputs unit/year
coal 17.162 8924240 tons
electric energy 2.000 1040000 kWh
water 20.000 10400000 m3
Oulpuls unit/year
natural gas 3.113 1618760 th.m3
liquid gases LPG 0.065 33800 tons
diesel oil 0.203 105560 tons
heating oil 0.060 31200 tonms
superior alcohols 0.146 75920 tons
ammonia 0.060 31200 tons
sulphur 0.220 114400 tons
ashes 2.308 1200160 tons
methanol 1.000 520000 tons

Ranking ...



G.Dobrowolski, M.Zebrowsk: -245- Ranking ...

TABLE B.7:Information sheet for HTC technology.

General
Battery Limits 281110 th.
Manpower 200 men
Capacity 500000 tons/year

Inputs unit/year
coal 2.488 1244000 tons
air 5.218 2609000 th.m3
electric energy 210.000 105000000 kWh
water 16.000 8000000 m3
steam 1.450 725000 Gecal

Outputs unit/year
superior alcohols 0.037 18500 tons
methanol 1.000 500000 tons
sulphur 0.032 16000 tons
ashes 0.335 167500 tons

TABLE B.8:Information sheet for HTL technology.

General
Battery Limits 352890 th.
Manpower 200 men
Capacity 500000 tons/year

Inputs unit/year
coal 2.633 1316500 tons
air 3.144 1572000 th.m3
electric energy 120.000 60000000 kWh
water 5.000 2500000 m3
steam 2.400 1200000 Gecal

Outputs unit/year
methanol 1.000 500000 tons
superior alcohols 0.037 18500 tons
sulphur 0.034 17000 tons

ashes 0.319 159500 tons




G.Dobrowolski, M.Zebrowski

=246~

TABLE B.9:Information sheet for KT. technology.

General
Battery Limits 370830 th.
Manpower 200 men
Capacity 500000 tons/year

Inputs unit/year
lignite 3.837 1918500 tons
air 3.771 1885500 th.m3
electric energy 120.000 60000000 kWh
water 5.000 2500000 m3
steam 2.660 1330000 Geal

Oulputs unit /year
methanol 1.000 500000 tonms
superior alcohols 0.037 18500 tons
sulphur 0.027 13500 tonms
ashes 0.422 211000 tons

APPENDIX C.

Ranking ...

The way of intensive parameter calculations is explained here. Although it consti-

tutes only an example, the below described method of cost approximation is widely used
for the development problem; we assume that members of the committee are acquaitanted
with this method and agree with it, at least generally. If they disagree, they can always

modify their scores for all the attributes corresponding to the production cost.

UCo Unit Cost is calculated for one ton of methanol based on the prices and consump-
tion coefficients, the labor cost and the battery limits construction cost ( see appen-

Uln

dices A and B ) for all raw materials. The whole procedure looks like:

UCo = a x material_cost + b x labor__cost + ¢ x blcc__cost

The unit material cost is calculated as follows:

material_cost = Y, ( price X consumption__coef. )

(C.1)

(C.2)

The coefficients a, b, ¢ in eq. C.1 are obtained from well-known factors the values of

which are imposed by the local conditions.

a
b

c

1 + general__overhead

1 + general__overhead + direct__overhead

maintenance__cost X {1 + general__overhead ) +

insurance&taz + blcc__depreciation

Unit Income is a difference between the unit value of production ( see equation
below ) and Unit Cost. Methanol as well as all by-products are taken into account.

untt__production__value = Y, ( price X yield__coef. )

RoR Rate of Return arises as a relative factor of the shape:

RoR =

Uln x capacity
battery  limits

(C.6)

(C.7)



G.Dobrowolsk:, M.Zebrowsk: -247- Ranking ...

Pro Productivity is calculated using eq. C.6 as follows:
Pro — unit__production__value X capacity
battery__limits

(C.8)

TEf Thermal Efficiency is a relative factor calculated on the base of the lower heating
value as the energy equivalent for chemicals. Exact values are reproduced in appen-
dix A. The energy equivalent of methanol and by-products is divided by the energy
equivalent of raw materials.

37 ( heating__value x yield__coef. )

TEf = . - C.9
/ 3> ( heating_value x consumption__coef. ) (C.9)

B/L This parameter is calculated as follows:
B/L = battery__limits (C.10)

manpower

It is assumed in the calculations above that the investment cost is sufficiently represented
by the battery limits construction cost.



