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ABSTRACT 

L e t X  be a s u b s e t o f  a Hilbert space H a n d  ck:X X X  -+R, (k(z, z )  = O  f o r a l l  
z EX.  Let G(z) = ay ck(x, v)ly == denote generalized dierential  with respect to 
the  second argument at the  point (z ,  z).  W e  shall  be  concerned with the  propert ies  
of the  function ck sucient to ensure the anti-monotonicity of the  map G(x). I t  will be 
shown tha t  f o r  the anti-monotonicity of the  map G(x) i t  i s  sucient to assume 
convexity-concavity of the function ck. In the case of the weakly convex-concave 
function ck t he  map G(x) i s  anti-monotone under some conditions on  the  remainder 
terms. In the case of the  quasi convex-concave function ck, the  condition similar to 
the  anti-monotonicity condition hold. 

Some propert ies  of t he  weakly convex functions used in a r t i c l e  will be proved. 

- vii - 



ON THE ANTI-MONOTONICITY OF DFFEFWMTIAL 
MF'PINGS CONNECTED WITH GENERAL 

EQUILIBRIUM PROBLEM 

SP. Urias'ev 

The mathematical problems discussed in this a r t ic le  were stimulated by the in- 

vestigations of simulation model f o r  international oil t rade  (SMIOT) developed at 

the  International Institute f o r  Applied Systems Analysis [ I ] .  

Briey the  main idea of this model is the following. There i s  a market of a single 

homogeneous product,  which consists of some sellers (exporters) and a single 

buyer (importer). Let i = 1, . . . , n be the  exporters ,  f i  (2) be  the  marginal cost  

of which any expor t e r  i produces t h e  amount z of t h e  product f o r  marketing and 

r ( z )  be  the pr ice  at which the  importer  would agree t o  buy the amount z of the  

product. If z ;  denotes t h e  amount of the  product sold by expor t e r  i ,  then the  

revenue qi ( z )  of t h e  expor t e r  i ,  can be expressed as follows: 

Let s be a number of a time point, zf be the  amount of the  product sold by ex- 

p o r t e r  i at time s .  The dynamics of the  model is  given by the relation 

xt  +l = max 0, zt - p, t aqi ( z S )  I , S = 0 ,  1 ,  ... 
a zi 

where ps , s = 0 ,  1 , .  . . are the positive sca l a r  values. 

In more general  form 

where nX(-) denotes t h e  operation of projection on feasible set 



is a dierential  map of preference. 

The aim of t h e  study is to formulate assumptions on the functions r ( 2 ) .  f i  (z) ,  

i = 1,  . . . , n such tha t  the process (1) has  a stable  cycle, converges to a Nash 

equilibrium point o r  converges to some point. The resul ts  of this ar t ic le  allow us to 

formulate conditions on the functions r (z) ,  f i  (z) ,  i = 1, . . . , n insuring the con- 

vergence of process  (1) to a Nash equilibrium point. These questions were dis- 

cussed in papers  [3] - 151 and in more general situations in 161, P I ,  etc. 

We study some conditions on the payo functions sucient f o r  the anti- 

monotonicity of mapping g ( z )  o r  others  dierential  mappings. Hence we can formu- 

late the  conditions under which many iterative algorithms f o r  search  equilibrium 

points are applicable (see, f o r  example, [8] - 1141). 

STATEMENT OF THE PROBLEM Let X be a subset of a Hilbert space H and 

<., .> denote the inner  product. W e  say  the multivalued mapping G i s  anti-monotone 

o n X i f  < g ( z ) - g ( y ) ,  y - z >  Z O f o r a l l z ,  y EX,  g ( z )  EG(z) ,  g ( y )  € G ( y ) .  

Let Y:X XX - R be a quasi o r  weakly 1151 convex-concave function, 

Y ( 2 ,  z )  = 0 f o r  all  z E X. Let G (2)  = 8Y Y (z .  y )&  ., denote generalized 

dierential  of the function Y with respec t  t o  the second argument at the point 

(282) .  

W e  shall be concerned with the  properties of the  function Y sucient t o  ensure 

the anti-monotonicity of the map G(z).  I t  will be shown tha t  fo r  the anti- 

monotonicity of the map G(z) ,  i t  i s  sucient t o  assume convexity-concavity of the 

function Y. In the case of t he  weakly convex-concave function * the map G(z ) i s  

anti-monotone under some conditions on the remainder terms. Some propert ies  of 

the weakly convex functions used in a r t ic le  will be proved. Investigation of such 

questions can be motivated by the  problem of nding the points z* E X  dened by 

variational inequality 

where g ( z * ) €  ~ ( z * ) .  



If the  multivalued map G ( z  ) is  anti-monotone as s t r ic t ly  anti-monotone we  can 

use resul ts  s ta ted in [8] - [14], etc. f o r  solving the problem (2). 

In the  case of t h e  quasi convex-concave function 9 (2 ,  y ) and 9 (z  , z ) = 0 f o r  

z E X the  weaker condition then the anti-monotonicity holds: 

<gr(z),z* - z > r O  f o r a l l z  ~ X , g ( z )  E G ( ~ )  , 

where G(z) i s  a dierential  of quasi concave function 9 ( z ,  z )  with r e spec t  to 

second argument. 

Let us consider some problems which can b e  reduced to the variational ine- 

quality (2). 

EXAMPLE 1 Nash equ i l i b r i a  for  noncooperat ive n -pe r son  games. Let X 

be a convex closed bounded subset  of the  production H I X  XHn of a Hilbert 

spaces  Hi,  i = 1, . . . , n .  A point zi E Hi is  a s t ra tegy of i -th player  i = 1, . . . , n 

and cpi(z) = cpi (zl ,  . . . , z,) is  his payo function. The element (z1, . . . , zi 
* * * 

yi , zi + l , .  . , zi ) is  denoted by (yi / z ). The point z = (zl , . . . , zn ) E X i s  re- 

f e r r ed  to as the Nash equilibrium of n-person game if f o r  i = 1, . . . , n 

Let us introduce the  function 9 (z , y ) : 

I t  i s  not dicult  to see tha t  '3) ( z  , z )  = 0, z  E X .  W e  suppose tha t  t he  functions vi (z  ), 

i = 1, . . . , n are continuous on X. The point z* E X is  dened as the normalized 

equilibrium point if 

LEMMA 1 (See f o r  example [16]). The normalized equilibrium point i s  the  

equilibrium point, the  r eve r se  is t r ue  if X = X l x  - . X X , ,  & C Hi. 

The condition (2)  is  a necessary optimality condition f o r  the problem (3), f o r  

this reason the  problem of nding Nash equilibrium is reduced to the problem ( Z ) ,  



EXAMPLE 2 An equilibrium point is dened in [17] as follows. Let X be a con- 

vex closed subset of a n  Euclidean space R n ,  the functions 

be concave with respect to y E X  for  each z E X  and continuous with respect t o  

z ,  y on X X X .  Let us denote 

The problem consists in nding the point z *  such that 

* * 
z*Ex(z* ) ;  max (Q,(z* ,  y ) :  y c ~ ( z * ) j  = Q,(z . I  . 

If the condition X ( z )  = X  is t rue for  all z f XI then the problem is  reduced t o  

problem (3), where Q ( z ,  y )  = Q o ( z ,  y )  - Q,(z ,  z ) .  It is easy to see 9(z, z )  = O  

for all z f X. The necessary condition (2)  can be used in this case too. 

EXAMPLE 3 Let us consider one more problem which can be reduced to (3). 

We assume the X is a subset of a Hilbert space H (or m o r e  general space), and 

9 : X  X X -4 R i s  a function satisfying sup Q ( y ,  y )  S 0. The problem consists in 
Y EX 

nding the point z * E X such that 

sup Q(z* .  y )  s o  . 
Y EX 

We suppose 9 ( z  , y ) = 4 ( z ,  y ) - Q ( z ,  z ) .  If the point z * E x satises (3), then i t  

satises (4) too. For this reason the necessary condition (2) can be used in this case 

as wel l .  

Theorems concerning the existence of problem (4) solutions were formulated 

in [18]. In the same book there a r e  references on the original papers related to 

this problem. 

2. WEAKLY CONVM FUNCTIONS 

In this section basic properties of weakly convex functions [15] a r e  investi- 

gated. The family of weakly convex functions includes smooth and convex functions 

and i s  closed with respect to the summation and pointwise maximum. We give new 

denition of this family useful for applications. It will be shown that this denition 

and the denition given by E. Nurminski [I51 a r e  equivalent. 



DEFINITION 1 Let X be a convez subset of a Hilbert space H. A con t inuous  

funct ion  f :X 4 R is called weakly  convex o n  X i f  for all z E X, y E X, 

0 S a S 1 the following inequa l i t y  holds. 

where the remainder r : X x X 4 R sat i ses  

for all 2 EX. 

The set Bf ( z )  i s  ca l led  a d ie ren t i a l  of a weakly convex function f ( z )  at a 

p o i n t z  ~ X o n X i f  f o r a l l g ( z )  E B f ( z )  

f o r  all z ,  y E X  

W e  say  t h a t  a function f ( z )  i s  weakly concave on X, if - f ( z )  i s  weakly con- 

vex on X. A die ren t ia l  of t h e  weakly concave function f ( z )  i s  dened as a d ie ren t ia l  

of t h e  weakly convex function - f ( z )  taken with sign minus. 

THEOREM 1 Let X be an open convez subset of a filbert space H and the 

f i n c t i o n  f ( z )  is weakly  convez o n  X. Then thR set B f ( z ) ,  z E X is  non-empty, 

convez, closed bounded a n d  

where f l ( z ,  p ) is a derivat ive of the  fimtwn f ( z )  at a point  z along a direc- 

t i o n  p .  

PROOF W e  start with t h e  following lemma. 

LEMMA 2 For a n y  z E X, p E H a derivat ive 

z + A p )  - f ( z )  / ' ( z .  p )  = 1imJ" 
A 4 0  A 

ex i s t s  and i s  nite. 

PROOF Fi r s t  of all we prove  a n  exis tence of t h e  nite or innite der ivat ive  

f l ( z ,  p )  f o r  any z E X, p E H .  For  0 S A2 < A, inequality (5)  implies 



consequently 

The last inequality implies the existence of the derivative fl(z, p ) because 

(Z +.'P* z, -P 0 f o r  A r 0 . 

The derivative fl(z, p) can  not take the value + -. Let us prove  that  the  derfva- 

Live f'(z, p) bounded below. For E > 0 ,  A > 0 the inequality (5) implies 

After the  equivalent transformation 

If E and A are suciently small. then from (6) obtain 

- + P s  + > 6 = const . 
A + &  

consequently 

LEMMA 3 The der i va t i ve  fl(z, p) is a convez positive-homogeneous *no 

twn cont inuous  at the  po in t  0 w i t h  respect t o  p. 

PROOF Let us prove  a positive-homogeneity of t h e  function fl(z, p). Accord- 

ing to the denition of a derivative f o r  a > 0 

fl(z, up) = lim f(z +Asp) -f(z) 
A 4 0  h 

For A,, A, r 0, A,  + X2 = 1 the  inequality (5) implies 



Passing to limit A r 0 

Prove that t h e  function f ' ( z  , p ) is  continuous with respect  t o  p at the  point 0 

for  any z E X .  To check this i t  is sucient to  prove boundedness of the function 

f ' ( 2 ,  p )  in a neighborhood of the point 0 (see for  example [19]). 

Passing t o  limit A2 r 0 in (9) obtain 

The condition (6) implies that  the re  exists a neighborhood U(0) of the  point 0 

r ( z  + Alp, z )  
such that 1 I < 6 = const for  all  p E U(0). Since f ( z )  is continuous, 

A1 

then w e  can suppose that the  function f (z + Alp ) is bounded on U(0) with respect  

to p . Therefore the boundedness above of f ' ( 2 ,  p ) with respect  to p in the neigh- 

borhood U(0) follows from the last inequality. 

LEMMA 4 A dierential Bpf ' (2 ,  0 )  of the convez &nction f ' (2 ,  p ) wtth 

respect to argument p at the point 0 coincides with 8 f  (2). 

PROOF Dierential Bpf ' (2 ,  0 )  is  dened as followed 

The inequality (5) implies 

z + a ( y  - 2 ) )  - j ( z )  
f ( 2 4 )  - f ( z )  2 1( + (1 - a)r (z ,  y), a > 0 . 

a 

Passing to limit a & 0 

Let z belong t o  $ f f ( z ,  0 ) ,  then from the last inequality w e  have 

consequently Bpf ' (2 ,  0 )  c d f  ( z  ). 



Let u s  prove the  r eve r se  conclusion. If z E 8 f  ( z ) ,  then 

Hence 

J ( z  + X P )  - f  ( 2 )  r ( z  + Xp,  z )  
A 

Z < z , p >  + 
X 

and f ' ( z ,  p )  2 <z, p >, consequently 8 1  ( z )  c 8 p f ' ( z ,  o ). According t o  Minkovski 

duality, since f l ( z ,  p )  i s  a convex positive homogeneous function with respec t  to p 

and continuous at the point 0 then the  set Bpf l ( z ,  0 )  is non-empty bounded convex 

closed and 

Consequently the  set a f  ( z )  i s  non-empty bounded convex close and relation (8) is 

true.  The theorem has been proved. 

W e  shall give equivalent denition of the  weakly convex functions. 

DEFINITION 2 Let X be a convez subset of a Hilbat space H .  We s a y  thut a 

f i nc t i on  continuous on X is weakly convez o n  X I  i f f o r  a n y  z E X the set G (z  ) 

consisting of the vectors g ,  such  thut 

is empty, and remainder t a m  <(z , y ) in each compact subset K c X is uniform- 

l y  small relatively to llz - y 11, i.e. for a n y  & > 0 there ez is ts  6 > 0 that  

f i r l l z  - y I I < & z , u  fK. 

E. Nurminski 1151 has introduced this denition in case X = H = Rn where Rn 

i s  an Euclidean n-dimenional space. 

THEOREM 2 Let X be a convez open subset of a Hilbert space H ,  then the  

den i twns  1 and 2 are equivalent in the fillowing sense: 

a )  i f  a N n c t i o n  i s  weakly convez in the sense of the den i twn  2, then i t  i s  

weakly convez in the sense of the  denit ion 2 and <(z , y ) = r ( z  , y ); 

b) i f  a N n d i o n  i s  weakly convez in the sense of the denit ion 2, then i t  i s  

weakly convez in the sense of the denit ion 1 and 



PROOF It is  not dicult to see tha t  (6) implies the uniform convergence on a 

compact subset K.  Hence the statement a )  of the  theorem follows from the denition 

of a weakly convex function and theorem 1. 

Let us prove the statement b). In the view of ( l o ) ,  w e  have 

for  a l ,  a2  2 0 ,  a 1  + a 2  = 1. 

From last t w o  inequalities w e  obtain 

A s  < ( z , y ) / l l z - y l ( - * O  fo r  z + z , y  - + z ,  then n'r ( ( ( 2 ,  Z + 
aI  + a E = l  
cri.%+" 

a 2 ( v  - z ) ) / a $ l y  - z ( (  + < ( y . y  + a l ( z  - y ) ) / a l l l y  -211) - + O  f o r  z - 2 ,  

y  --+ 2 .  

The theorem has been proved. 

W e  shall note some cases, where the remainder terms in the  denitions 1, 2 

coincide. 

COROLLARY 1 Let X be a  convex open subset o f a  Hilbert space H .  u a  weakly 

convez function p (z ) satises 

fo r  all z ,  y  E X ,  then 



Conversely the second inequality implies the rst one f o r  any g E 8f ( z  ). 

This corollary i s  w e l l  known, if p > 0, in this case the function f ( z )  i s  strong- 

ly convex. 

Let us  consider the case when function f ( z )  is twice continuously dierentiable 

at each z E X, where X is  an open subset of a Hilbert space H, i.e. f o r  all z ,  y EX 

Vf ( z )  i s  a gradient at a point z ; A ( z )  :X + H i s  a l inear opera tor  generating the 

symmetric bilinear function 

The function i s  called twice continuously dierentiable on X c H, if i t  is  

dierentiable at each point z E X and 

COROLLARY 2 V a funct ion f ( z )  is twice con t inuous l y  dierent iable  o n  an 

open subset X of a Hilbert space H ,  i .e .  the  condi t ions  @I), &?) a r e  t rue ,  then  

where 

Conversely,  the  i n e q u a l i t y  (23) impl ies  @I). 

PROOF The converse statement follows from the a )  of the theorem 2. Let us 

prove the  d i rec t  statment using the  b) of the  theorem 2. In this case w e  can denote 

consequently 



Thus, the inequality (13) i s  t rue.  

3. ON THE ANTI-HONOTONICITY OF THE DIFFERENTIAL MAPS FOE THE 

WEAKLY CONVEX FUNCTIONS 

Let * : X X X -., R be a function dened on a product X X X, where X i s  a convex 

open subset of a Hilbert space  H. The function 9 ( z ,  y )  i s  weakly convex on X with 

respec t  t o  the rst argument, i.e. 

f o r a l l z ,  y ,  z EX; al + a 2 = l ;  a l ,  a z 2 0 a n d  

r , (z ,  24) 
- 0  if llz - y((-.,O f o r a l l  z EX . 

llz - u I1 
W e  suppose that  t h e  function *(z, y )  i s  weakly concave with respect  t o  the  second 

argument on X, i.e. 

~ ( z S  u )  
- 0  if 112 - y(1- 0 f o r  all z E X  . 

llz - u I I  

We say the function *(z, y )  i s  weakly convex-concave, if i t  sat ises  (14), (15). 

Let 

Q(z, x )  i O  f o r a l l  z E X  . (16) 

Denote G ( z  ) = By *(z , y ) 1 ==, i.e. G ( z  ) i s  a dierential  of the function *(z, z ) 

with respec t  to the second argument at a point ( z ,  z ) .  



We shall formulate the sucient conditions of the anti-monotonicity of the mul- 

tivalued map G(z) ,  i.e. for all g( z )  E G(z) ,  g ( y )  E G ( y )  

<g(z) - g ( y ) ,  y - z > r O  fo ra l l  z ,  y E X  . 

THEOREM 3 Let X be an open convez subset of a Hilbert space H, a mnction 

9:  X x X --, R be weakly convez-concave, the remainder r, ( z  , y ) be continuous 

with respect to z ,  the function 9 satis& condition (323). Then jbr all z ,  y E X ;  

g ( z )  E G(z), g ( y )  E G(y)  

PROOF We can assume y = 0. It  also can be assumed that  g (0)  = 0 as an  anti- 

monotonicity of the map G(z)  does not depend upon a linear t e r m  of the function 

9(z y )  with respect  to the second argument. It is necessary to prove that 

In the view of (14) w e  get 

aQ(z ,  a z )  + (1 - a)9(0, a z )  2 9 ( a z ,  a z )  + a(1 - a)ra,(z, 0 )  . 

Taking into account the properties of the weakly concave functions f r o m  the last 

inequality obtain 

a[9(z ,  a z )  - 9(z ,  z ) ]  r (1 - a)[9(0, 0 )  - 9(0, a z ) ]  + a(1 - a)ra,(z,  0 )  

Since &(a z , 0)/ a -+ 0 if a 4 0,  then the last inequality implies 

9(z ,  0 )  - 9(z ,  z )  = lim [9(z ,  a z )  - 9(z ,  z ) ]  r 
a40 

Consequently, taking into account the weakly concavity of the function 9(z ,  y )  

with respect to the second argument, we obtain 

Theorem has been proved. 



REMARK W e  c a n  see f r o m  t h e  p r o o f  o f  t h e  t h e o r e m  t h a t  c o n d i t i o n  (14) c a n  be 

r e p l a c e d  b y  

*(z ,  y )  - * ( z , z ) S  < g ( z ) ,  y - z >  +@,(y ,  z )  f o r a l l  z ,  y EX 

COROLLARY 1 Let all  condit ions of t he  theorem 9 be fullled and 

r g ( z ,  y )  -&(us  Z )  2 O f o r a l l z .  y EX, t h e n t h e m a p G ( z )  i san t i -mono toneon  

X. 

COROLLARY 2 Let X be a n  open subset of a filbert space H ,  a func t ion  

@ ( z ,  - y )  be con t inuous  a n d  convex-concave o n  X X X, t he  f?unction @(z ,  z )  be 

concave o n  X, then the  mult ivalued map G ( z )  = By  @(z , y ) l y  =, is antimonotine 

o n  X. 

PROOF I t  i s  easy to get t h i s  s t a t e m e n t  i f  a s s u m e  

COROLLARY 3 Let all condi t ions  o f t h e  theorem 9 beful l led and 

jbr a l lz ,  y EX, where 

0 ' 1 ~  - Y ' " )  -0 if 2 - 2 ,  y - 2  

llz - Y 112 

un.igormly with respect t o  z EX, then 

jbr a l l z ,  y EX a n d j b r  a l l g ( z )  E G ( z ) ,  g ( y )  E G ( y ) .  

PROOF L e t  z ,  y EX; z # y .  In t h e  v iew o f  (17),  (18) w e  get 

< g ( z ) - g ( y ) , v - z > =  l im 
n +- 

(2 



Corollary has been proved. 

Let us  suppose that  function O(z,  y )  i s  twice dierentiable on each argument. 

Denote by A (z , y ) = 9= (z  , y ) the second derivative with respec t  t o  the rst argu- 

ment (see (ll)), and i the same way B (z , y ) = 9yy (z  , y ) with respec t  t o  the  second 

argument and g ( z )  = Vy 9 ( z ,  y ) l y  =, . 

THEOREM 4 Let X be a n  open convez subset of a Hilbert space H ,  function 

9:  X X X -+ R be twice dierentiable with respect to  each argument, and 

J J A ( z , ~ ) - A ( z , z ) J I - + o ,  if z - 2 ,  y 4 2  uniformlyfor z E X  ; 

JIB(z ,  y ) - B ( z , z ) l ( - - 0 ,  if z 4 2 ,  y -+z uniformly'for z EX ; 

the  opera tor  Q ( z  , z )  = A (z  , z )  - B ( z  , z )  satisfy 

f o r a l l z  E X ,  h E H a n d  Y do m t d e p e n c i o n z ,  h. Then 

1 
< g ( z )  - g ( y ) ,  y - z >  r -vl lz  - y f o r  all z ,  y EX . 

2 (20 

PROOF The statement of the theorem follows from the corollary 2 of the  

theorem 2, and the corol lary 3 of the theorem 3. According t o  the corol lary 2 d 

the  theorem2 

In the view of (19) 

Thus, the conditions of the corollary 3 of the theorem 3 are satised. 



Let us  consider the  example which il lustrates the last theorem. 

EXAMPLE 4 Model for  i n t e r n a t i o n a l  o i l  t r a d e  [Z]. There i s  a market of a 

single homogeneous product,  which consists of some sellers (exporters)  and a sin- 

gle buyer  (importer). Let i = 1, . . . , n be the  exporters ,  f i ( z )  be the  marginal 

cost  of which any expor t e r  i produces t h e  amount z of the product f o r  marketing 

and r ( z )  be t h e  pr ice  at which the importer would ag ree  to buy the amount z of 

the  product. If zi denotes t h e  amount of the product sold by expor te r  i ,  then the  

revenue p i ( z )  of t he  expor t e r  i , can be expressed as follows: 

N o t e t h a t t o t h e s e n s e o f  t h e p r o b l e m z t r 0 , f i ( z ) 2 0 ,  r ( z ) r O , i  = 1 ,  . . . ,  n .  

W e  assume also tha t  expor t e r  i ,  i = 1, . . . , n i s  able  to sell  no more then & 

amount of t he  product. If w e  suppase tha t  each seller i s  going to choose the  amount 

zi in o r d e r  to maximize his revenue in any market's situation characterized by a 

vector  z = (zl, . . . , z,), then the  problem wil l  be  as follows: t o  nd a n  

* * * 
equilibrium's situation z = (z l  , . . . , zn ) such tha t  

The admissible set X = [z E R n  :O s zt s p i ,  i = 1, . . . , n 1 i s  convex and 

compact, The function +(z , y ) (see example 1 )  denes as 

W e  assume tha t  t he  functions f z ) i = 1 . . . , n are continuously 

dierentiable and the  function r ( z )  i s  twice continuously dierentiable on some open 

subset [ z  E R : z = C r = l z t ,  z E U c R~ 1, where U i s  open subset such tha t  

X c U c R n .  Denote 



It is not dicult to nd 

Let us investigate under what conditions the matrix Q ( z ,  z )  satises (19). Let 

e = (1, . . . , 1)  be the ndimensional vector, and 

Assume that 

r Z ( z ) 4 O  r z z ( z ) 2 0  for z E X  . 

We can write the following inequality 



Hence, [-2dnx:=lpfr,(z) + 2p(z) 1 .+ v > O  implies (19). The lastinequality 

is correc t  if 

f o r  all  z E XI 1 6 i 6 n .  Consequently (21), (22) imply (20) and the  map g  (z) = 
(V, ,pl, . . . , V,, p, ) is  anti-monotone. 

It  should be noted tha t  in the view of the (21), (22) the function *(z, y )  is  

strongly concave with respect  t o  y because the matrix B (z, y ) is  negatively dened 

and the Nash point equilibrium exists [20]. 

4 THE YONOTONICITY OF DIFFERENTIAL MAP FOR QUASI 

CONVEX-CONCAVE F'UNCTIONS 

Let X  be a closed convex subset of a Hilbert space H, U be an open subset of 

H  and X  c U. A function * :X X X  --, R is  quasiconvex with respect  t o  the rst argu- 

ment, i.e. 

for all al, a2 2 0; al + a2 = 1 and fo r  all z , y , z E X  and quasiconcave with 

respect  t o  the second argument, i.e. 

fo ra l l  al, ,a2 2 0 ;  al + a 2  = l a n d f o r a l l z ,  z ,  y E X .  

For the fur ther  development we assume that  the function ck(z, y )  satises re- 

gularity condition with respect  to the second argument, i.e. fo r  any z € X  and any 

y such that y # a r g  max, ,X 9(z, z ) 

int fu  E U :  +(z, u )  = ck(z, y ){  = 0 , 

where int A denotes the interior  of a set A and *(z, z )  = 0 for all  z E X. The fam- 

ilies of weakly convex and quasiconvex functions intersect but are not embedded 

into each other. 

A cone Df(z) = fg € H : < g ,  y - z > 6 0  for all y €CL(z)l is called a 

dierential of a quasiconvex function f (z ) at a point z on a se t  U C H, where M(z ) 

= f y : f (y ) 6 f (z ), y E U 1. A dierential of the quasiconcave function p(z ) is  



dened as a dierential  of the quasiconvex function - q ( z )  taken with sign minus. 

We say a function Q ( z ,  y )  i s  quasi convex-concave if i t  is  quasiconvex with 

respec t  t o  the  rst argument and i s  quasiconcave with respec t  t o  the  second one. 

Denote G ( z )  = Dy Q (z  , y ) ly =, where Dy is  a dierential of a function Q ( z ,  y ) 

with respec t  to y in the sense described above. 

Let a point z * E X be a solution of the  equation 

max * ( z S ,  y )  = o . 
Y E X  

W e  will prove tha t  (25)  implies 

f o r  all z E X and f o r  all g ( z )  E G ( z ) .  Consequently f o r  nding a point z * resul ts  of 

the pape r  [14] can  be used, f o r  example. 

THEOREM 5 Let U be an open subset o f a  Hilbert space H,  X be a closed con- 

v e z  subset of H a n d  X c U, a f i n c t i o n  * : X X X 4 R be c o n t i n u o u s  o n  X X X a n d  

q u a s i  conuez-concave o n  X X X, at least one of the inequa l i t i e s  @), @4) be 

s tr ic t  @oral # O ,  al # I ) .  Y ( z , z )  =Ofbrallz ~ X . f l a ~ o i n t z * ~ ~ s a t i r a s  (23) 

t h e n  the  var ia t iona l  i n e q u a l i t y  (26) holds for all z EX  a n d  for al l  

~ ( 2 )  f G ( z ) .  

PROOF W e  can  assume z* = 0 .  Consequently i t  is  necessary t o  prove that  

Assume at rst tha t  the inequality (23)  i s  s t r ic t ,  then 

max [ Q ( z ,  az), Q(0, a z ) ]  > Q ( a z ,  am)  = 0 ,  0 < a < 1 

The equality (25) implies 

Q(0, am)  r Q(0,O) = 0 f o r  0 r a s 1 ,  z f X . 

W e  ge t  Q ( z ,  am)  > 0 f o r  0 < a < 1 taking into account (27). Passing to limit 

when a .( 0 obtain Q ( z ,  0 )  2 0 and Q ( z ,  0 )  - Q ( z ,  z )  2 0.  In accordance to the 

denition of the dierential  of a quasiconcave function w e  obtain statement of the 

theorem from the last inequality. 



Let us  consider t he  case with the s t r i c t  inequality (24). In this case 

Q ( O , ~ U C ) < Q ( O , O ) = O  f o r  O < a < l , z   EX,^ # O  . 

The inequality (23) implies 

m a x [ Q ( z , a z ) , Q ( O , c l u : ) ] 2 Q ( a ~ , a z ) = O  f o r  0 4 a 4 l .  

Taking into account the last two inequalities w e  ge t  Q ( z ,  az) 2 0 f o r  0 < a < 1. 

Fur ther  consideration coincides with the  previous case. The theorem i s  proved. 

Let us consider the case when a function Q(z , y ) is  dierentiable with respec t  

to the  argument y . Denote 

COROLLARY Let all conditions of the theorem 5 be satised and the fiLnction 

*(z,  y )  i s  dierentiable w i th  respect to the second argument. Then the equality 

(25) implies. 

PROOF The theorem statement follows from the  inclusion q ( z )  € G ( z ) ,  where 

G(z  ) i s  a dierential  of quasiconcave function Q(z , z ) with respect  to the second 

argument. 

Let us consider an example illustrating this corollary. 

EXAMPLE Wald's production model [ Z ] .  Let n products are produced and r 

resources used in an economy, a . . . , a,  be the  amounts of these resources.  The 

values ai j ( i  = 1, . . . , n ;  j = 1, . . . , r )  denote t he  input of j - th  resource neces- 

sary to produce the  unit of i - th  product. The pr ices  of the  products depend on the  

amounts of t he  produced products. Let fi  ( z )  = f i  (z l ,  . . . , zn)  (i = 1, . . . , n )  be 

the pr ice  of a unit of i-the product if the products are produced in the amounts 

z . . . , zi ,... z,; X be a feasible set 

n 
X = z (  aijzi 4 a,, j = I , .  . . , r ; z i  2 0 ,  i = I , .  . . , n I i = l  t 

Under some conditions on t h e  functions f i  ( z ) ,  (i = 1, . . . , n )  the existence of a 

* * 
non-negative production vector  z * = (z l ,  . . . , 2,) and non-negative resource 

pr ice vector such that  



r * * * f: a i j z ; ~ a j ( j  =I . .  . .  , r ) ;  x ayUj  Z Y i ( z l n . .  ..z,,) 
i =l j =l 

w a s  proved in [Z], [I?]. For all  non-negative and continuous on the  s e t  z Z 0 func- 
* 

tions t h e  existence of a non-negative production vector  z E X being the solution 

of the following linear programming problem 

n 
max C li ( z  * )zi = C f t  (2 *)z; 
E € X i  =l i =l 

w a s  proved in [Zl]. The existence of vectors  z * ,  U* satisfying (29) follows from 

the  last equality and the  duality theorem of the l inear programming. 

Denote 

Since the function 9(Z,  y )  i s  l inear  with respec t  t o  y then i t  i s  concave in y.  

If t h e  point z * i s  a solution of the  problem (30), then z * is  also the solution of the 

problem (25). Hence in o r d e r  to satisfy inequality (28) it i s  sucient tha t  the func- 

tion 9 ( z ,  y )  be s t r ic t ly  quasiconvex with respec t  t o  z on X, i.e. 

max [*(z, y ), Wz , y ) l  > 9 ( a l z  + 4 2 2  I Y 

fo r  all a l ,  a 2  0 ,  # 1 ,  Q l  + a2 = 1 and f o r  a l l z ,  z ,  y EX,  z # 2. 
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