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FOREWORD

This paper is concerned with the anti-monotonicity of differential mappings
connected with general equilibrium problems. These results can be used for the in-
vestigation of different game theory problems, for example Nash equilibria for
noncooperative m-person games. Such an approach gives possibility to construct
recurrent algorithms for finding the equilibria point.
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ABSTRACT

Let X be a subset of a Hilbert space H and ¥: X XX — Kk, ¥(z, z) =0 for all
z € X. Let G(z) = ay ¥ (z, y)ly =z denote generalized dierential with respect to
the second argument at the point (z, ). We shall be concerned with the properties
of the function ¥ sucient to ensure the anti-monotonicity of the map G(x). It will be
shown that for the anti-monotonicity of the map G(z) it is sucient to assume
convexity-concavity of the function ¥. In the case of the weakly convex-concave
function ¥ the map ¢ (x) is anti-monotone under some conditions on the remainder
terms. In the case of the quasi convex-concave function ¥, the condition similar to
the anti-monotonicity condition hold.

Some properties of the weakly convex functions used in article will be proved.
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ON THE ANTI-MONOTONICITY OF DIFFERENTIAL
MAPPINGS CONNECTED WITH GENERAL
EQUILIBRIUM PROBLEM

S.P. Urias’ev

1. INTRODUCTION

The mathematical problems discussed in this article were stimulated by the in-
vestigations of simulation model for international oil trade (SMIOT) developed at

the International Institute for Applied Systems Analysis [1].

Briey the main idea of this model is the following. There is a market of a single
homogeneous product, which consists of some sellers (exporters) and a single
buyer (importer). Let ¢ =1,..., n be the exporters, f t (z) be the marginal cost
of which any exporter ¢ produces the amount z of the product for marketing and
r(z) be the price at which the importer would agree to buy the amount z of the
product. If z; denotes the amount of the product sold by exporter i, then the

revenue g, (z) of the exporter i, can be expressed as follows:

xg
pi)=r(z,+ - +z,) —ff‘(z)dz
[/}

Let s be a number of a time point, z,f be the amount of the product sold by ex-

porter i at time s. The dynamics of the model is given by the relation

b ¢, (z*)

\ =0,1,...
bz, §

zf *1 =max {0, zf — o,
where pg, s =0, 1,... are the positive scalar values.
In more general form

s +1

z ny(x® —pgg(z®)). s =0,1,... 1)

where 7y() denotes the operation of projection on feasible set



X=lz eR®"0=sz,,i=1,...,n};
¢y (z0 8¢y, (z)
glz)y=s|—m—m™...,——

z; zy

is a dierential map of preference.

The aim of the study is to formulate assumptions on the functions r(z), f!(z).
i =1,..., n such that the process (1) has a stable cycle, converges to a Nash
equilibrium point or converges to some point. The results of this article allow us to
formulate conditions on the functions r (z), f‘(z), it =1,..., n insuring the con-
vergence of process (1) to a Nash equilibrium point. These questions were dis-

cussed in papers [3] — [6] and in more general situations in [6], [7], etec.

We study some conditions on the payo functions sucient for the anti-
monotonicity of mapping g (z) or others dierential mappings. Hence we can formu-
late the conditions under which many iterative algorithms for search equilibrium

points are applicable (see, for example, [8] — [14]).

STATEMENT OF THE PROBLEM Let X be a subset of a Hilbert space # and
<+, ‘> denote the inner product. We say the multivalued mapping G is anti-monotone
onXif <g(z)—-g(y), ¥ —z>=0forallz,y €X,g(xz) €eG(z), g(y) €CG¥).

Let ¥:X XX =R be a quasi or weakly [15] convex-concave function,
¥(z,z)=0 for all z €X. Let G(z) =29, \I/(z,y)ly =y denote generalized
dierential of the function ¥ with respect to the second argument at the point
(z,z).

We shall be concerned with the properties of the function ¥ sucient to ensure
the anti-monotonicity of the map &(z). It will be shown that for the anti-
monotonicity of the map G(z), it is sucient to assume convexity-concavity of the
function ¥. In the case of the weakly convex-concave function ¥ the map G(z) is
anti-monotone under some conditions on the remainder terms. Some properties of
the weakly convex functions used in article will be proved. Investigation of such
questions can be motivated by the problem of nding the points z" € X dened by

variational inequality
* "
<g(z ),z —z>20 forallz €X , )

where g(z*)e G(z*).
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If the multivalued map G (z) is anti-monotone or strictly anti-monotone we can

use results stated in [8] — [14], etc. for solving the problem (2).

In the case of the quasi convex-concave function ¥(z, ¥) and ¥(z, ) =0 for

z € X the weaker condition then the anti-monotonicity holds:

if max ¥(z", v) =0 then
v EeX

<g(z).z‘ —z>20 forallz €X,g(z) € G(z) ,

where G(z) is a dierential of quasi concave function ¥(z, z) with respect to

second argument.

Let us consider some problems which can be reduced to the variational ine-
quality (2).

EXAMPLE 1 Nash equilibria for noncooperalive n-person games. Let X
be a convex closed bounded subset of the production fyx : - - xH, of a Hilbert
spaces H;,i =1,..., n. Apoint z; € H, is a strategy of i-th player i =1,..., n

and ¢;(x) = ¢4(x4,...,Zy,) is his payo function. The element (z,, ..., z; 4

Y¢» Ty 41,-1%4) Is denoted by (y;/z). The point z* = (::;, ce i, z:) € X is re-

ferred to as the Nash equilibrium of n-persongame if fori =1,...,n

piz”) =m;xw¢(y¢/z*):(yf/z) exy .
1

Let us introduce the function ¥(z, yv):

h 1]
¥(z,y)= Y (pi(wy/2) =) ¥ =Wy -, Yp) -
i=1

It is not dicult to see that ¥(z, z) =0, z € X. We suppose that the functions ¢, (z),

1 =1,...,n are continuous on X. The point z*e X is dened as the normalized

equilibrium point if

max ¥(z", y) =0 . 3)
veX

LEMMA 1 (See for example [16]). The normalized equilibrium point is the
equilibrium point, the reverse istrue if X =X;x - -+ XX, X; CH,.

The condition (2) is a necessary optimality condition for the problem (3), for

this reason the problem of nding Nash equilibrium is reduced to the problem (2),
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EXAMPLE 2 An equilibrium point is dened in [17] as follows. Let X be a con-

vex closed subset of an Euclidean space £", the functions

Qo(zv y)v Q]_(zo y)s AR | Qn(zo y)

be concave with respect to ¥ € X for each z € X and continuous with respect to

z, yonX XX, Let us denote

X(z)=ly €X:¢,(x,y)20,i =1,...,n] .

The problem consists in nding the point z" such that
::‘EX(:‘); max EQO(::‘, Y):y €X(z‘)j = Qo(z‘, z‘) .

If the condition X(z) = X is true for all z € X, then the problem is reduced to
problem (3), where ¥(z, v) = §,(z, ¥) — ¢,(z, z). It is easy to see ¥(z, ) =0

for all z € X. The necessary condition (2) can be used in this case too.

EXAMPLE 3 Let us consider one more problem which can be reduced to (3).
We assume the X is a subset of a Hilbert space H (or more general space), and

¥:X XX — R is a function satisfying Sul}@ (¥, ¥) s 0. The problem consists in
Y€

nding the point z * € X such that

sup Q(z‘,y)so . (4)
yeX

We suppose ¥(z, v) = ¢(z, ¥) — ®(z, ). If the point z" € X satises (3), then it
satises (4) too. For this reason the necessary condition () can be used in this case

as well.

Theorems concerning the existence of problem (4) solutions were formulated
in [18]. In the same book there are references on the original papers related to

this problem.

2. WEAKLY CONVEX FUNCTIONS

In this section basic properties of weakly convex functions [15] are investi-
gated. The family of weakly convex functions includes smooth and convex functions
and is closed with respect to the summation and pointwise maximum. We give new
denition of this family useful for applications. It will be shown that this denition

and the denition given by E. Nurminski [15] are equivalent.
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DEFINITION 1 Let X be a convexr subset of a Hilbert space H. A continuous
Sunction f:X — R is called weakly convexr on X if for all z €X, y €X,
0= a=x1 the following irnequality holds.

af@z)+Q —~a)f@y)eflaz +(1 -a)y)+a(l —a)r(z,v) , )
where the remainder r . X XX — R salises

ﬁ"%’;’—ﬁ——»o ifz —z,y—z ®6)

Jor all z €X.

The set 8f (z) is called a dierential of a weakly convex function f(z) at a

pointz € XonX if for all g(z) € 8f (z)

Jy)—-r@)z<g(x).yv —z>+r(z, v) (™

forallz, ¥ €X.

We say that a function f (z) is weakly concave on X, if — f(z) is weakly con-
vex on X. A dierential of the weakly concave function f(z) is dened as a dierential

of the weakly convex function - f (z) taken with sign minus.

THEOREM 1 Let X be an open convez subsel of a Hilbert space H and the
Sunction f(z) is weakly convex on X. Then the set 8f (z), z € X is non-empty,

convez, closed bounded and

S'(xz,p) =max [<g,p>:g € 8f (z)] , (8)
where f'(z, ) is a derivative of the function f(z) at a point z along a direc-
tion p.

PROOF We start with the following lemma.

LEMMAZ Foranyx € X, p € H a derivative

Pz, p) = lim LEFAR) ~F(Z)
A40 A

exists and is nite.

PROOF First of all we prove an existence of the nite or innite derivative
J'(x,p)forany x € X,p € H. For 0 < A, < A, inequality (5) implies

Az AL — A
TS +Mp) S f(@)ESf(z +Ap)+——F—r(z + A, 2) ,
Ay Ay Af



consequently

J(x + M\p) =S (z) > J(x +Ap) —f(z) . M —Ay 1z +Mp, 2)

9

The last inequality implies the existence of the derivative f'(z, p) because

r{iz +Ap, z)
A

-0 forAd40 .
The derivative f’(z, p) can not take the value + «. Let us prove that the deriva-
tive f'(z, p) bounded below. For £ >0, A > 0 the inequality (5) implies

A
(A + &)

S(@ —ep)+ oSz +Ap) RS (@) + r(z —zp.z +2p) .

A+eE

After the equivalent transformation

Sz +Ap)—s(x)  S()=-f(z —&p) | 1

—-&p, T + .
A E )‘+£r(z £P. T +AP)

If £ and A are suciently small, then from (6) obtain

r(z —&p, % +J\m>6

= const ,
A4+e

consequently

r@) -f& ~—2p) .,

JS'(z.p)= -

LEMMA 3 The derivative f'(z, p) is a convez positive-homogeneous func-

tion continuous at the point 0 with respect to p.

PROOF Let us prove a positive-homogeneity of the function f’(xz, p). Accord-
ing to the denition of a derivative for a >0

lim S +Aap) =Sf(z)

f’(z'ap)=mo A
ot +aip) ~f(x) _ ,
—a}‘l% oY =af’'(x,p)

For Ay, A, 20, Ay + A, =1 the inequality (5) implies

S + AApy +A50)) = f(2)
5 =

S (A(z + Apq) + Aa(z + Ap3)) — Ay f (x) = Apf (z) <
A
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Sz +Apy) —S(z) J(x +Apy) =S (z) AMAyr(z +Apy, z + Apyp)
1 A * A2 A - A

Passing to limit A ¢4 0

f’(zl A117]_ + Azpz)s A]_.f'(zr P1) + Aaf’(zv Pz) .

Prove that the function f’'(z, p) is continuous with respect to p at the point 0
for any z € X. To check this it is sucient to prove boundedness of the function

J'(z, ) in a neighborhood of the point 0 (see for example [19]).

Passing to limit A, ¢ 0 in (9) obtain

S +Ap)—S(z) riz + \p, z)

=7 (z, +
W J'(z,p) W

The condition (6) implies that there exists a neighborhood U(0) of the point O
r(z + \yp, )
Ay

such that | | < 6 = const for all p € U(0D). Since f (z) is continuous,

then we can suppose that the function f(z + A,») is bounded on U(0) with respect
to ». Therefore the boundedness above of f'(z, p) with respect to p in the neigh-
borhood U(0) follows from the last inequality.

LEMMA 4 A diereniial Opf’(z. 0) of the convexr function f'(z, p) with

respect to argument p at the point U coincides with 8f (z).

PROOF Dierential Bp J’(z, 0) is dened as followed
bpf’(z, O)=fz €eH: <<z, p><sf'(z,p) JSorall p € H] .

The inequality (5) implies

J(z +a(y —z)) = f(z)

a

Jwy)—-r(z)=z +(1-a)r(z,y)a>0 .

Passing to limit a ¢ 0
SJW)-r@@zr'E,yv-z)+r(z,y) .
Let z belong to 6pf’(z, 0), then from the last inequality we have

W)~ r@)z<z,y-z>+r(z,y) .,

consequently apf (x,0)caf(z).
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Let us prove the reverse conclusion. If z € 81 (z), then
S +Ap)~f(@)=A<z,p>+r(x +Ap,z) .
Hence

r{(z +Ap, )
A

J(x +Ap) —F(z)
A

=2<z,p>+

and f'(z, p) = <z, p >, consequently 8f(z) C Opf’(:r:, o). According to Minkovski
duality, since f’'(z, p) is a convex positive homogeneous function with respect to p
and continuous at the point 0 then the set Dpf (=, 0) is non-empty bounded convex

closed and
f(z,p)=max{<z,p>:z € 6pf(:r:, 0){ .

Consequently the set 8 f (z) is non-empty bounded convex close and relation (8) is

true. The theorem has been proved.
We shall give equivalent denition of the weakly convex functions.

DEFINITION 2 Let X be a convex subset of a Hilbert space H. We say that a
Sunction continuous on X is weakly convez on X, if for any z € X the set G(z)

consisting of the vectors g, such that
fy)~sr@E@)e<g,y —z>+¢(z,y) forall y €X (10)

is empty, and remainder term {(z, ¥) in each compact subset K C X is uniform-

ly small relatively to ||z — y ||, i-e. for any £ > 0 there exists § > O that
r(z, ¥)| <&
lz =%l
Sforllz —y|| <6z, v €X.
E. Nurminski [15] has introduced this denition in case X = # = " where F™
is an Euclidean n -dimenional space.

THEOREM 2 Let X be a conver open subsel of a Hilbert space H, then the
denilions 1 and 2 are egquivalent in the following sense:

a) if a funciion is weakly convezxr in the sense of the denition 1, then it is

weakly convezx in the sense of the denition 2 and {((z, y) =r(z, ¥),

b) if a funciion is weakly convex in the sense of lhe denition 2, then it is

weakly convex in the sense of the denition 1 and

rz,y)= inf ¢z, z + ax(y —z)) LSyt -¥))

a+ag=1 az ay
&y ag>0
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PROOF It is not dicult to see that (6) implies the uniform convergence on a
compact subset X. Hence the statement a) of the theorem follows from the denition

of a weakly convex function and theorem 1.

Let us prove the statement b). In the view of (10), we have

af(z) 2 ayf (a3 + ayy) + aya<g(ayz+azy), z —y>
+ ayé(z, ayz + ayy) ,

axf (¥) 2 azf (a4 + ay) + aja<g(ayz+ ay), ¥y — x>
+ ax$(y, ayz + azy)

for ay, a, 20, ay + a, =1.

From last two inequalities we obtain
a,f(z) + a,f (y) &S (ayz + ayy) + &y (z, ayz + a,¥) +
aé(y, gz + ayy) & f(ayz + ay) +

{z,z +a(y —z) . ¢y, ¥y +ay(z ~v))

aqax i
! 2¢1+§£=1 az x
ay, age0
As ¢z, y)/ |z —y||—0 for z —2z,y — 2z, then inf . Uz, z +
a;+ap=
ay. ag0

ay(y —z)/a]lv —z|| + (v, v +aiz —y))/ aly —z|) —0 for z — 2z,

v —z.
The theorem has been proved.

We shall note some cases, where the remainder terms in the denitions 1, 2

coincide.

COROLLARY 1 Let X be a convex open subset of a Hilbert space H. If a weakly

convez function f(x) satises

Fy)—rf@)z<g,y~-z>+pullz-y|f.nekr

forall z, y € X, then
af (¥) + azf (z) 2 f(az + azy) + agaqullz —v P

fora, +a, =1, a3, az 20; z,y €X.
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Conversely the second inequality implies the rst one for any g € 8 f (z).

This corollary is well known, if & > 0, in this case the function f(z) is strong-

ly convex.

Let us consider the case when function f(z) is twice continuously dierentiable

at each z € X, where X is an open subset of a Hilbert space H, i.e. forallz,y € X
1
Jy)=r()+<vrz) v —z>+ ;<.4(z)(y -z)y —z>

(11)

+o(ly —zIP) .

Vf/ (z) is a gradient at a point z; A(z):X — H is a linear operator generating the

symmetric bilinear function

2
<A(z)h,z> h, z EH;ilgllhlL"lzl—)—’O for ||A||—0 .

The function is called twice continuously dierentiable on X C #, if it is

dierentiable at each point z € X and

lA(z + ) —A(z)||—0 if ||| —0 forall z,z +h €X . 12)

COROLLARY 2 If a function f(z) is twice continuously dierentiable on an
open subset X of a Hilbert space H, i.e. the conditions (11), (12) are true, then

a f(y) +af(z) 2 f(aqyz +ayy) + alag[-%- AEz)z -y)z-y>

13)
+o(l|lz —y"z)] forall z, v € X ,

where

o(lz =y
—0 for |z —y|| =0, a;+a;=1; a;, az; 20 .

lz -y IF
Conversely, the inequality (1L3) implies (11).

PROOF The converse statement follows from the a) of the theorem 2. Let us

prove the direct statment using the b) of the theorem 2. In this case we can denote
1
Hz y) =5 <A@y —z)y ~z>+o(ly —=z|P) .

consequently
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] .z +a(y —z)) v,y +ai(x—v))
r(z,y)= inf +

al+ag=1 az ai
ayagx0

= inf |LToapd@E)z —y)z —u>+ 2 a<AW)y - z),
a;tag=1 2 2

al.nzzo

v —z>+o(|z —yllz)] =%<A(z)(y —z),y —z>+o(lz —v|P) .

Thus, the inequality (13) is true.

3. ON THE ANTI-MONOTONICITY OF THE DIFFERENTIAL MAPS FOR THE
WEAKLY CONVEX FUNCTIONS

Let ¥:X X X — R be a function dened on a product X X X, where X is a convex
open subset of a Hilbert space H. The function ¥(z, ) is weakly convex on X with

respect to the rst argument, i.e.
a1¥(z, z) + a;¥(y, z) 2 ¥(ayz + azy, z) + ajazr(z, ¥) (14)
forallz, ¥,z €X; a; + az =1; ay, a0 and

ry(z, v)

—0 if [z —y||—0 forall z€X .
lz - vl

We suppose that the function ¥(z, ¥ ) is weakly concave with respect to the second

argument on X, i.e.
a,¥(z, y) + ax¥(z, ¥) < ¥(z, ayz + azy) + ayau,(z, v) @1s)
foralz,y,z €X;, ay + a; =1, a,, az 2 0 and also

M (Z, V)

———— —0 |if ||z -y||—0 forall ze€X .
lz =l

Ve say the function ¥(z, y) is weakly convex-concave, if it satises (14), (15).
Let
Y(z,z)=0 forall z €X . 1e)

Denote G(z) = By\l’(z- y)Iy =z, l.e. G(z) is a dierential of the function ¥(z, z)

with respect to the second argument at a point (z, z).
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We shall formulate the sucient conditions of the anti-monotonicity of the mul-

tivalued map G(z), i.e. forall g(z) € G(z), g(¥) € G(y)

<g(z)~-gw), ¥y —z>20 forall z,y €X .

THEOREM 3 Let X be an open convezx subsel of a Hilbert space H, a function

¥:X XX — R be weakly convez-concave, the remainder r,(z, v) be continuous
with respect to z, the function ¥ satisfy condition (16). Then for all z, y € X;
9(z)€C(z) g(y) €G(Y)

<) -9gW)h v -—z>2ry(z,y) e (y.z) foral z,y €X . @av)

PROOF We can assume ¥ = 0. It also can be assumed that g (0) =0 as an anti-
monotonicity of the map ¢(z) does not depend upon a linear term of the function

¥(z ) with respect to the second argument. It is necessary to prove that
<g(z), —z>2ry(z,0) —u, 0, z) .

In the view of (14) we get
a¥(z,az)+ (1 ~-a)¥0, az)z=¥az, az) +a(l —a)r,.(z,0) .

Taking into account the properties of the weakly concave functions from the last

inequality obtain
a[¥(z, az) —¥(z,z)]2 1 — a)[¥0, 0) = ¥(0, az)] + all —a)r ,.(z,0)
2(1-a)<g(©0), —az>— uy(az,0)] + a(l —a)r,,.(z,0)
=(a —1)puy(az,0) + a(l —a)r,,.(z,0) .
Since uy(az, 0)/ a — 0 if a ¢ 0, then the last inequality implies

Y (z,0) - ¥z, z)= ‘lliir:)[\lf(z, az)—-¥z,z)]l =

, 0
lim |[(«x —1)M + A —a)ry.(z,0)|=ry(z, 0) .
aill a

Consequently, taking into account the weakly concavity of the function ¥(z, v)

with respect to the second argument, we obtain
<g(z), ~z>2¥z,0)—-¥z,z)—u, 0, z)2ro(z,0) — . (0, z) .

Theorem has been proved.
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REMARK We can see from the proof of the theorem that condition (14) can be
replaced by

Y z,y) - ¥z, z)s<g(), ¥y —2> + u(y,z) forall z,y €X .

COROLLARY 1 Let all conditions of the theorem 8 be fullled and
Ty (z,v) - (w.z)20forallz, y €X, then the map G(x) is anti-monolone on
X.

COROLLARY 2 Let X be an open subset of a Hilbert space H, a function
&(z, — y) be continuous and convez-concave on X XX, the function ¢(z, =) be
concave on X, then the multivalued map G(z) = ay &(z, y)|y =z 15 anlimonotine

on X.

PROOF It is easy to get this statement if assume

Y(z,y)=%z, y)—- ¥z, z) .
COROLLARY 3 Let all conditions of the theorem 3 be fullled and

ry(z. V) = (Y, )2V —y B+o(z —%|P). v>0 18)

Jorallz, y € X, where

- 2
olz =D o 52—z y e
Iz -l |

uniformly with respect to z € X, then

<g(z)~gW) vy —z>=v|z —y|f

Jorallzx,y €X and for allg (z) € G(z), g(v) € G(y).
PROOF lLetz, ¥ €X; z # v. Inthe view of (17), (18) we get

. O i i —1
<g(x)—-gy)y—z>= lim <Y |gly +—(= -y)|-9g|ly + (z
n —w i=1 n n
n i i—1
—yjly—z>= lim n Y <gly+—(z-y)|-gly + (z-v)|

‘y+"_1

>

(z -vy)—-(v +—i(z-y)
n

n -
2 lim n ) u||a’¥n—"u2 +o0

n

= lim v]z -y |Fx
n —w
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LC -z
Y odE=1P
i1=1
1+ — . =v|z-y|f .
vy IE—=F

1=1 n

Corollary has been proved.

Let us suppose that function ¥(z, ¥) is twice dierentiable on each argument.
Denote by A(z, ¥) = ¥, (z, ¥) the second derivative with respect to the rst argu-
ment (see (11)), and i the same way B(z, ¥) = \Ilw (xz, v) with respect to the second
argument and g (z) = Vy ¥(z, y)|y =z~

THEOREM 4 Let X be an open convex subset of a Hilbert space H, function

¥:X XX — R be twice dierentiable with respect to each argument, and
lA(z, ¥) = A(z, z)|]| =0, if z —2z,y — 2z uniformlyfor z €X ;
|lB(z, ¥) ~B(z,z)|| =0, if £z —2z,y — 2z uniformly'for z €X ;

the operator @(z, ) = A(x, z) — B(z, x) satisfy
<Qz,z)h, R>2V|R|% v >0 (19)

Jorallz € X, h € H and v do not depend on z, h. Then

<g(x)—gw) v —z>z-;—v||z —y"z forall z, v €X . (20)

PROOF The statement of the theorem follows from the corollary 2 of the
theorem 2, and the corollary 3 of the theorem 3. According to the corollary 2 of
the theorem2

ry(z, ¥) =%<A(x.:c)(z -y)hz—y>+ollz -y .

b (Y, x) =%<B(z.z)(z —y)hz-y>+ollz -~y [P .

In the view of (19)
ry(z, v) — (¥, %) =%<A(x. z)-B(z,z)(z —y)xz -y>+
ollz -y By =Zvlz -y IF+odiz -~y IP). v>0 .

Thus, the conditions of the corollary 3 of the theorem 3 are satised.
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Let us consider the example which illustrates the last theorem.

EXAMPLE 4 Model for international oil irade [1]. There is a market of a
single homogeneous product, which consists of some sellers (exporters) and a sin-
gle buyer (importer). Let ¢ =1,..., n be the exporters, f’(z) be the marginal
cost of which any exporter i produces the amount z of the product for marketing
and r(z) be the price at which the importer would agree to buy the amount z of
the product. If z; denotes the amount of the product sold by exporter i, then the
revenue ¢,(z) of the exporter i, can be expressed as follows:

4
p@)=r(zy+ - +zy) - [rl(z)dz
(/]

Note that to the sense of the probiem z; 20, f‘(z) 20, r(z)20,1 =1,...,n.
We assume also that exporter i, i =1,..., n is able to sell no more then u,

amount of the product. If we suppose that each seller is going to choose the amount

z; in order to maximize his revenue in any market's situation characterized by a

vector z =(zy, ..., zn). then the problem will be as follows: to nd an
. . » - »
equilibrium's situationz = (z,, ..., z,) such that
- - - o,
(pt(z*) = max @u(zq,... ,3::_1, Yir Ty 101 Tt =1,...,n .
0= {5y
The admissible set X =z €eR":0<z;,<u,, i =1,...,n{ is convex and

compact. The function ¥(z, ¥) (see example 1) denes as

n

Y(z,y) = 2 r(zy+ - vy _ gty +T59F 0 + )Yy
i=1 :
n ¥ n n T
=3 frieyz = Y r(@ +-- +z)z + Y [ rizaz
1=1 0 1 =1 1=10
We assume that the functions f‘(z), 1 =1,...,n are continuously

dierentiable and the function r(z) is twice continuously dierentiable on some open
subset {z € R:z = )l '-yz;, £ €U CR™}, where U is open subset such that
X cU cR™. Denote

a.11 ce. Qqp 611 ‘e bl‘n.
Az, z)=| - : |, Bz, z)=| - : N

Qi1 nn bn 1 bnn
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931 -+ Qin n
Qlz,z)=| . . ,z=Ezt.
n1 """ 9an k=1

It is not dicult to nd
@y == Ty (2)z —2r,(2) + 17 (z). i =1..n ;
@y ==r,(z)z, +zj) —2r,(z), i #j:i.J=1...,n ;
by =1y, (z)x; +2r,(z) —f.,:‘(:ct), i=1,...,n ;
by, =0,i#j:;i,7=1....n ;
@ =—2rg,(2)z, —4r,(2) +2f7 (z) i =1,...,n ;
@y == Ty (z)xy +24) —2r,(2), i Fr:t,5=1,...,n ;

1¥1 ... *1 1Tz ... %

n
Z oz ce. X T4 PP -
Qz,z)=—r@) 22 "1 TR —p @)V E "
ZnZ¥n Zn 1Tz *°° ZTq
1 -
ii . i le(zi) T'z(Z) 0
~2r,(z)|". . +2
11 --- 1 0 f:,,(zn)_rz(z)

Let us investigate under what conditions the matrix @(z, z) satises (19). Let

e =(,...,1) be the n-dimensional vector, and

p@) = min (P @) —r2(2) -
Assume that

r,(2)<0,7r,,(z)=20 for z €X . (1)
We can write the following inequality

<Q(z,z)h, h> 2 —2r,,(z)<z, h><e, h> — 2r,(z)<e, h>% +

2p)n | = -2r,(2)lz || VR ||k |E +2p(z) R | =

—_—r—
-2 n Y ufr(z)+2p)|r|F .
1 =1
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Hence, [-— 2N/ n Y o uir (2) + 2p(x)|.+ v >0 implies (19). The last inequality

is correct if

" 2 1 1
- n Y mirem (@) + 1 @) —r(z) =SV >0 (22)
{1 =1

for all z € X, 1 =i <n. Consequently (21), (22) imply (20) and the map g(z) =

(Vz,#1, - - -+ Yz, ¢y ) is anti-monotone.

It should be noted that in the view of the (1), (22) the function ¥(z, v) is
strongly concave with respect to ¥ because the matrix B (z, ¥ ) is negatively dened

and the Nash point equilibrium exists [20].

4. THE HONOTONICITY OF DIFFERENTIAL MAP FOR QUASI
CONVEX-CONCAVE FUNCTIONS

Let X be a closed convex subset of a Hilbert space H, U be an open subset of
Hand X Cc U. A function ¥:X XX — R is quasiconvex with respect to the rst argu-

ment, i.e.
max [¥(z, ¥), ¥(z, ¥)] 2 ¥(a;z + ayz, V) (23)

for all a4, a,20;a, +a; =1 and for all z, ¥, z €X and quasiconcave with

respect to the second argument, i.e.
min[¥(y, z), ¥(¥, )] < ¥ (¥, a4, + ayz) (24)

forall @y, .a, 20; a3 + @y =1l andforallz, z, y €X.

For the further development we assume that the function ¥(z, y) satises re-
gularity condition with respect to the second argument, i.e. for any z € X and any

v such that y # argmax, .y ¥(z, z)
intfu eUV:¥(z,u)=¥z,y)] =0,

where int A denotes the interior of a set 4 and ¥(z, ) =0 for all £ € X. The fam-
ilies of weakly convex and quasiconvex functions intersect but are not embedded

into each other.

A cone Df(z)=}g €H:<g,y —xz>=<0 for all y € u(z)] is called a
dierential of a quasiconvex function f(z) at a point z ona set U C H, where M(x)

= {y:f(y)ssf(x), v €UJ. A dierential of the quasiconcave function ¢(z) is
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dened as a dierential of the quasiconvex function — ¢(z ) taken with sign minus.

We say a function ¥(z, ¥) is quasi convex-concave if it is quasiconvex with

respect to the rst argument and is quasiconcave with respect to the second one.

Denote G(z) =D, ¥(z, ¥)|, = where D, is a dierential of a function ¥(z, y)
Yy Yy =z v

with respect to ¥ in the sense described above.

Let a point z" € X be a solution of the equation

max ¥(z", ¥) =0 . (25)
veX

We will prove that (25) implies
<g(z),z‘—z>20 (26)

for all z € X and for all g(z) € G(z). Consequently for nding a point z” results of

the paper [14] can be used, for example.

THEOREM 5 Let U be an open subset of a Hilbert space H, X be a closed con-
vezx subsel of H and X Cc U, a function ¥:X XX — R be continuouson X XX and
quasi conver-concave on X XX, at least one of the inegqualilies (23), 24) be
strict (for a; #0, &y #1), ¥(z,z) =0 for allz €X. U’a.pointz* € X satises (25)
then the wvariational ineguality @6) holds for all z € X and for all
g9(z) € G(z).

PROOF We can assume z¥=0. Consequently it is necessary to prove that

<g(z), —z>=20 forall z €X, g(z) €CG(z) .

Assume at rst that the inequality (23) is strict, then
max [¥(z, az), ¥(0, az)] > ¥(az, ax) =0,0< a <1 . (7)
The equality (25) implies

¥(0, az)s ¥(0,0) =0 for 0sa=<l,z€X .

We get ¥(z, azx) >0 for 0 < a <1 taking into account (27). Passing to limit
when a {0 obtain ¥(z,0) 20 and ¥(z,0) — ¥(z, z) 20. In accordance to the
denition of the dierential of a quasiconcave function we obtain statement of the

theorem from the last inequality.
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Let us consider the case with the strict inequality (24). In this case
¥(0, ax) < ¥(0,0) =0 for 0<a<il,ze€X,z #0 .
The inequality (23) implies
max [¥(z, az), ¥(0, ax)]2 ¥ (ax, az) =0 for 0sas1l .
Taking into account the last two inequalities we get ¥(z, az)20 for 0 < a <1.

Further consideration coincides with the previous case. The theorem is proved.

Let us consider the case when a function ¥(z, y) is dierentiable with respect

to the argument ¢ . Denote
g(z) = vy ¥(z, y)ly =z -

COROLLARY Let all conditions of the theorem 5 be salised and the funciion
Y(z, y) is dierentiable with respect to the second argument. Then the equalily

25) implies.

<g¢(z),z" —z>=0 forall z €X (28)

PROOF The theorem statement follows from the inclusion ¢(z) € G(xz), where
G(z) is a dierential of quasiconcave function ¥(z, z) with respect to the second

argument.

Let us consider an example illustrating this corollary.

EXAMPLE Wald’s production model [2]. Let n products are produced and r
resources used in an economy, a4, . . ., &, be the amounts of these resources. The
values a.u(i =1,...,n;5 =1,..., r) denote the input of j-th resource neces-

sary to produce the unit of i-th product. The prices of the products depend on the

amounts of the produced products. Let f;(z) = f;(z4, ..., z,) (1 =1,..., n) be
the price of a unit of i-the product if the products are produced in the amounts
Z4 ..., ZTy4,.--Ty; X be a feasible set
n
X=qz| ) ayz;sa,j=1...,rz,20,i=1,...,n
1=1
Under some conditions on the functions f,(z), (i =1,..., n) the existence of a
non-negative production vector z = (= ; s e e z;) and non-negative resource

price vector such that



-20 -

S * . L2 = = -
121“11’1 sa;(=1....7) jZIGuUJ SR I 3y B
(t=1,...,n) ;
X I 7 T = » » (29)
a.',,—za.uxi U,:O(j:l,...,r); Za.uUj - fizx )xg =0,
i=1 =1
(i=1,...,n) .

was proved in [2], [17]. For all non-negative and continuous on the set z & 0 func-

tions the existence of a non-negative production vector z‘ € X being the solution

of the following linear programming problem
L ] n » =
max 2 Sz )z, = Z Jilz )z, (30)
TeX oy 1=1

was proved in [21]). The existence of vectors z*, u* satisfying (29) follows from

the last equality and the duality theorem of the linear programming.

Denote

n n
’P(x, y) = 2 f{(z)yi - 2 fi(z)xt .
i=1 1=1

Since the function ¥(z, ¥ ) is linear with respect to ¥ then it is concave in y.

If the point = * is a solution of the problem (30), then z " is also the solution of the
problem (25). Hence in order to satisfy inequality (28B) it is sucient that the func-

tion ¥(z, ¥) be strictly quasiconvex with respect to z on X, i.e.

max [¥(z, ¥), ¥z, ¥)] > ¥Y(ayz + azz, V)

forall ay, az 20, @y #1, ay +az =l andforallz, z,y €X, z #z.

REFERENCES

1 Ermoliev, Ju. and A. Papin: An approach to simulating international oil trade.
Working Paper May 1981: Laxenburg, Austria, International Institute for Ap-
plied Systems Analysis.

2 Wald A.: Uber die Productionsgleichungen der Okonomischen Wertlehre, Ergeb-
nisse eines Mathematischen Kolloquiums, No. 7 (1934~1935).

3 Rosen 1.B.: Existence and Uniqueness of Equilibrium Points for Concave N-
Person Games. Econometrica, 1965, 33, No. 3.

4 Primak, M.E.: On the algorithm for search of the equilibrium points. Kiberneti-
ka, 1973, No. 1, (in Russian).



10

11

12

13

14

15

16

17

18

19

20

21

-21-

Ermoliev, Ju. M. and S.P. Urias'ev: On search for equilibrium by Nash in many-
person Games. Kibernetika, 1982, 3, (in Russian).

Pau, Z.F.: Dierential games and a Nash equilibrium searching algorithm. SIAM J.
Control, 1975, V. 13, No. 4.

Bensoussan A., J.L.. Lions and R. Teman: Methodes numeriques d’analyse de sys-
temes, Tome 2: methodes de decomposition. Cahier No. 11, IRIA, Paris, 1972.
Gajewski, H., K. Groger and K. Zacharias: Nichtlineare operatorgleichungen

und Operatordierentialgleichungen. Akademie — Verlag Berlin, 1974.

Bakushinskij, A.B. and B.T. Poljak: On the solving of the variational inequality.
Dokl. Akad. Nauk SSSR, 1974, V. 219, No. 5, (in Russian).

Goldshtein, E.G.: The method of modication of the monotone mappings. Econ. and
Math. Meth., 1975, V. XI, 6, (in Russian).

Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM
J. on Control and Optimization, 1976, 14.

Lions P.L.: Une methode iterative de resolution d’'une inequation variationnelle.
1.J. Math., 1978, V. 31, No. 2.

Bruck, R.: On weak convergence of an ergodic iteration for the solution of
variational inequalities for monotone operators in Hilbert space. J. Math. and
Appl. V. B1, 1.

Nemirovskij, A.S.: The ecient methods of solving equations with monotone
operators. Econ. and Math. 1981, V. 17, 2, (in Russian).

Nurminski, E.A.: Numerical methods for solving Deterministic and Stochastic
Minimax Problem, Naukova Dumka, Kiev, 1979, (in Russian).

Aubin, J.P.: Mathematical methods of game and economic theory. North Holland
Publishing Company, 1979.

Primak, M.E.: On the generalized equilibrium-optimal problems and some
economic models. Dokl. Acad. Nauk SSSR, 1971, 200, No. 3, (in Russian).

Nirenberg, L.: Topies in nonlinear functional analysis. Mir, Moscow, 1977, (in
Russian).

Pshenichnyl, B.N.: Necessary conditions for an extremum. Dekker, New York,
1971.

Nikaido, H., and K. Isoda: A note on noncooperative convex games. Collection.
Innite antagonistic games, Fizmatgiz. Moscow, 1963, (in Russian).

Kuhn, H.W.: Collection. Linear inequalities and other questions. Inostrannaja
Literatura, Moscow, 1959 (in Russian).



