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FOREWORD 

This paper is concerned with a traditional problem in decision analysis, 

that of developing simple prescriptive models of preferences between lotteries. 

A general expected-utility mdel is assumed throughout. First, the condition 

of risk neutrality is shown to belong to a family of conditions, each of which 

determines the decision maker's utility function. Second, the condition of a 

constant risk attitude is shown to belong to an analogous family of conditions, 

each of which determines the decision maker's utility function except for a 

single parameter. Assumptions of the utility function's differentiability, and 

often of its continuity, are not needed in these mdels. 'I'm contrasting 

mthods are discussed by which the mdels can be used in applications. 

Subject classification: 

851. expected utility, risk attitude 



SPECIAZ, CONDITIONS ON RISK ATTITUDES 

Introduction 

Prescriptive decision analysis mdels of individual and social preferences 

require conditions on preferences that  structure the rmdel into a tractable 

form. Such conditions should be sufficiently inclusive to allw for a 

rmdeling of the preference issues that are judqed important and yet sufficiently 

restr ict ive to allw for  an analysis of the implications of relatively simple 

value judgmnts on the relatively ccnrrplex choices between the actual alternatives. 

This paper considers an important and well-studied type of preference, that 

of risk attitudes whm the consequences are described by a single variable. 

Preliminary material describes two versions of the expected-utility &el; the 

f i r s t  implies t h a t  the u t i l i t y  function is s t r i c t ly  increasing and the second 

inplies t h a t  the u t i l i t y  function is also continuous. 

The f i r s t  part of this paper discusses a family of conditions on r isk 

attitude, one of which is the condition of r isk neutrality, here distinguished 

as "absolute r isk neutrality." Each of the conditions i n  this family is shown 

to determine a different u t i l i t y  function. 

This family of conditions includes the condition, here called "relative 

risk neutrality, " t h a t  is  introduced i n  Harvey (1981) and that  is shcrwn here 

to imply, without any assutptions of differentiability or  continuity of the 

u t i l i t y  function u ,  that u is a generalized logarithmic function, that  is, 

u (x) = log (a + x) . The constant a can be interpreted as an initial asset 

p s i t i o n .  If a is regarded as an unspecified parameter, so t h a t  the conditim 

of relative risk neutrality implies a one-parameter family of u t i l i t y  

functions, then this condition can be used in the same manner as the conditim 

of constant r isk aversion. Since relative risk neutrality represents an attitude 

of decreasing r isk aversion, it my be the m r e  appropriate condition for use in 

simple, prescriptive rmdels of r isk attitudes. 



The second part of this paper discusses another family of conditions on 

risk attitude, one of which is the condition of a constant risk attitude, here 

distinguished as  "absolute risk constancy," that is introduced in different 

f o m  in Arrow (1971), Pfanzagl (1959), and Pratt (1964).  This family of 

conditions is sham to include the condition, here called "relative risk 

constancy," that is introduced in different fonns in Pratt (1964, "constant 

proportional risk aversion") and Harvey (1981, "linear risk attitude"). Each 

of the conditions in this family is shaJn to imply, without any assmptions 

of differentiability or  continuity of the u t i l i t y  function u , that  u belongs 

t o  an associated p a r m t r i c  family of functions. 

Each of the conditions in the t m  families mt ioned  above is a "special 

condition" in that it either determines the u t i l i t y  function or implies a 

parametric form for the u t i l i t y  function. T m  different mthcds are described 

for taking advantage of the resulting simplicity in the preference rrcdd. In 

the f k s t  mthod, a special condition is used t o  evaluate a specific u t i l i ty  

function; in the second mti-03, a special condition is used to evaluate the 

inplications of differing degrees of risk aversion for preferences m n g  the 

decision roaker's actual alternatives. 

For reasons of convenience, the proofs of the results in this paper are 

placed in an appendix. lbwever, the proofs are an important part of the 

results being presented. 



This section describes t w  expected-utility d e l s  that are obtained 

by specialization of the d e l  developed i n  Herstein and Milnor (1953). An 

expected-utility &el w a s  f i r s t  developed i n  von Neumann and mrgenstern (1944). 

Other rrodels are developed in Cebreu (1960), deGroot (1970), ~ishbuxn (1970), 

(1975), (1982) , Jensen (1967), w a r d  (1971), Luce and Raiffa (19571, m~schak  

(1950), Nielsen (1984), Pfanzagl (1959), k f f a  (1968) , Roberts (1979, pp.354-360) , 

Savage (1954) , and Toulet (1986) . 
Suppose that consequences are described by the munts  x in an inter- 

v a l  C that  contains m r e  than one pint. Let R=<xi,  pi> demte a lottery 

having f in i te  numkr consequences with probabilities 

1 , . , m , and l e t  L denote the s e t  of such lot teries.  

In particular, l e t  Rx denote a lottery having the consequence x with 

probability 1, and l e t  Rx denote a lottery having the consequences x and 
I X'  

x' each with probability !j. Assume that  any consequence x is identical t o  

the lottery Ex i n  L ,  and any *stage lottery having a lottery R with 

probability p and a lottery R ' with probability 1 - p  is identical t o  the 

one-stage lottery pR+ (1-p)R' in L .  

Assm that  a preference relation 5 , " i s  a t  least a s  preferred as," 

is defined on the se t  L of lotteries. Preference relations /--I " i s  indif- 

ferent to," and >, " i s  preferred to," can be specified in terms of 2 

by: R-R' provided that RZR' and R ' k R ,  and R>R' provided that RkR' 

a n d m t  R'ZR. 

Consider the following preference conditions on the lottery space 

( L ,  C l k )  : 

(A) The preference relation on L is transitive and camplete. 

(B) mnotonicity in consequences. For any x , x l  , in C ,  

g x k t x ,  i f f  x > x l  



(C) Continuity in probabilities. For any R , R I , R " in L , the sets 

{p :pR+ (1-p)R1kR") and {p :pR + (1-p)R1 5R") are closed. 

(D) Substitution principle. For any R , R ' , R " in L , R -R1 implies 

+a + +all-+ a + +all . 
Condition (D) is also called an independence axim. It implies, in 

the presence of (A) and (C) , the corresponding condition with probabilities 

p ,  1-p between 0 and 1 in place of + . 
The term increasing function will mean a strictly increasing function. 

Theorem 1. (Herstein and Milnor) A lottery space (L , C , z) satisfies 

the above conditions (A) - (Dl if and only if there exists a real-valued 
function u that is defined and increasing on the interval C such that 

m' eke1 iff L." 1-1 p.u(x. 1 1 p;u(xfi) 

A lottery space satisfying (A) - (D) and a utility function u as des- 
cribed in Theorem 1 will be called an expected-utility mdel and will be 

denoted by (L, C, 5 ,  u). Note that this definition is more restrictive 

than usual in that it includes condition (B) and the resulting property 

that u is increasing. 

As is well-known, the utility function u in an expected-utility 

&el is unique up to a positive linear transformation. When no confusion 

can result, a utility function u for a preference relation C will be 

referred to as - the utility function correswndiy to 2 . A condition on 
preferences thatdeterminesthe utility function (in this sense) or implies 



that it belongs to a paramtric family of functions w i l l  be called a special 

preference condition. Any other condition (e.g., (A)-(D) above) w i l l  be 

called a general preference condition. 

The continuity of a u t i l i t y  function is implied by each of the follwing 

general preference conditions : 

(E l )  Continuity in consequences. For any R i n  L , the sets Ix in C : 

x zR) and Ix i n  C :  x 5R)  are closed in C .  

(E2) Existence of certainty equivalents. For any R in L , there exists 

(E3) Equal-chance continuity in consequences. For any R , in L , 
Y I Y  

the se ts  Ix in C : x 2 !? 
Y r Y  

, )  and Ix in C :  x i  \ , y , )  are  closed in C .  

(E4) Existence of equal-chance certainty equivalents. For any R i n  
Y r Y '  

L , there exists an x in C such that x - R 
Y I Y '  - 

Theorem 2. In an expected-utility d e l ,  the conditions (E l ) - (E4)  are 

equivalent to each other and are sat isf ied i f  and only i f  the u t i l i t y  function 

u is continuous. In such a &el, i f  a function f is defined and increasing 

on C such that 

X - ' l Y , Y  , implies f (x) = +f (y) + +f (y' ) , (2) 

for any x ,  y , Y'  in C ,  t h e n f  i s a  u t i l i t y  function for . 
A &el (L , C ,? , u) a s  in Theorem 2 w i l l  be called a continuous 

expected-utility &el; then, : w i l l  be called a continuous preference 

relation. 

Conditions similar to (A)- (D) and (E2) that are necessary and suffi- 

cient for a continuous, increasing function u that represents 5 as  in (1) 

were established in a different context by de Finett i  (1931). (See Hardy et a l .  

(1934, pp. 158-163) for an exps i t ion  in English.) 



2 .  Conditions of Risk Neutrality 

This section discusses a family of conditions of r i sk  neutrality,  

each of which corresponds to a type of scale for  the consequences x .  

The usual condition of r i sk  neutrality for  a preference relation 

can be defined as, 

for any x + h  and x - h  in C .  This condition w i l l  be called absolute 

r isk neutrality to evnphasize that it is defined in terms of absolute 

changes in the variable x . 
A preference relation - > sa t i s f i e s  the  indifference equation (3) i f  

and only i f  the u t i l i t y  £unction u sa t i s f i e s  Jensenls functional equation, 

for any x + h  ard x - h  in C .  Ingeneral ,  (3 ) '  does not i m p l y t h a t u  is 

linear; however, i f  u is increasing a s  in the version of the expected- 

u t i l i t y  &el described i n  Theorem 1, then (3 ) '  implies that u is l inear  

(see, e.g., Darbux, 1875 and Hamel, 1905) . 
A family of conditions of r i sk  neutrality can be defined as  follows. 

Suppose that C is contained i n  (possibly is equal to) an open interval  I 

which there is a continuous group operation Then, there exists 

a scaling function that associates o with the ordinary addition of real numkrs; 

that is, there exists a continuous, increasing function g as in Figure 1 



withdamin I andrange ( - m , m )  suchthat  g ( x o x l )  = g ( x )  + g ( x l )  for 

all x , x l  in I (Aczel, 1966,p.254). Moreover, a scaling function is 

uniqye up to multiplication by a positive nukerf  i .e . ,  e(x)  =ag (x )  , a >  0 ,  

for any rn scaling functions g (x) and G(x) . It follows M a t e l y  that  the 

group ( I ,  0 )  is amrutative, that  e = d L  (0) is the identity, and that  any 

x # e has inverse x-'= g-l (-g (x) ) with e s t r i c t l y  bebeen x and x-l . 

scaling function g 

group operation 
/ o/-----\o- &tion + 

1' 

r' I \ 

e 0 
I R =  ( - m  , m )  

Figure 1. A scaling function g for a group -tion 

Definition 1. A preference relation 2 w i l l  be called 0-risk neutral 

with respect to a group operation 0 provided that 

forany x in c and h in I with x o h a n d x 0 d 1  in C .  

The condition (4 )  can be interpreted as stating that  for risk-taking 

-ses the changes £ran a fixed m u n t  x to the amounts x 0  h and x 0  h-l 

are equally serious. 

Theorem 3. The preference relation in an expected-utility &el 

is 0-r isk  neutral with respect to a group operation 0 i f  and only i f  the 

u t i l i t y  function u for 2 is det ermined as any scaling function g for o . 
Several types of 0-risk neutrality are discussed in Section 3 below and 

in Section 8. 



3. Relative Risk Neutrality 

Suppose that the consequences x are possible gains and losses, and 

the interval C is the range of such financial changes. Let a denote 

the decision maker's in i t ia l  asset position (known or unknown) as somhow 

defined, and l e t  y = a + x , x in C , m u r e  his or her final asset 

positions. Assume that the range a+C of possible final asset positions 

is contained in the interval ( O , o o )  . It my be appropriate to  evaluate 

a decision maker 's  risk attitude by considering relative changes in 

the f inal  asset positions y = a + x , x in C . For the preference relation 

< on lotteries with final asset positions, consider the condition that 
Y 

for any y in a+C and any k > l  with ky and k-ly in a + C .  For example, 

when k = 2 this condition states that the decision maker is indifferent 

between having a final asset position y for certain and having an equal- 

chance lottery in which y is either doubled or halved. 

Condition (5) can also be written in terms of percent changes. It then 

states that 

forany y in a+C wherethequantities m = k - l > O  and x- 1 - 1-->o can k 

be interpreted as percents. For -let when m = l  this condition states 



that the decision maker is indifferent between a f ina l  asse t  position y and 

an equal-chance lottexy in which y is either increased by 100% o r  is 

decreased by 50%. 

Conlition (5) ' can be written in t e r m s  of net gains x as: 

Assuming that the decision maker's preferences concerning f ina l  asse t  posi- 

t ions are "framing consistent" ( F m e y ,  1986b) with his preferences concerning 

net gains, it follaws that (5) equivalent t o  the following condition. 

Definition 2. (Harvey, 1981) A preference relat ion w i l l  be called 

relat ive r isk neutral provided that 

m for  any x in C and any m > O  with x + m ( a + x )  and x -  ( a + x )  in C .  

The group operation used in ( 6 )  is that of x 0 x'  = ( x + a )  (x'  + a )  - a  

defined on the interval Ia= (Or. . )  - a .  Here, e = l - a  anrl x-'= ( l / ( x + a ) )  - a .  

The operation o on Ia wi l l  be referred to as a s h i f t  multiplication. 

Theorem 4. The preference relation 5 in  an expected u t i l i t y  rrodel is 

relat ive r i sk  neutral with respect to an initial asset position a i f  and 

only i f  

U ( X )  = log ( a + x )  , x in C ,  (7 )  

is a u t i l i t y  W t i o n  for  ;= . 



Theorem 4 strengthens a result in Harvey ( 1981, Theorem 5 and Erratum ) 

in that its hypotheses are weaker. Here, the utility function u is not 

assumed to be twice continuously differentiable with u' positive; indeed, 

u is not even assumed to be continuous. 

The utility functions (7) are themselves well-known (see, e. g . , Grayson , 
1960 and Rubenstein, 1977) , and are called generalized logarithmic functions. 

As shown in Pratt (1964, p. 133), any generalized logarithmic function repre- 

sents an attitude of decreasing risk aversion. 

4. Assessment Wthods 

To detemine whether a decision maker's preferences are absolute risk 

neutral or are relative risk neutral with respect to a known amunt a, simply 

ask whether the indifferences (3) or (6) are true for a representative selection 

of consequences. Since a condition of risk neutrality detemines the utility 

function, m further steps are needed. 

When the initial asset position a is undefined or is defined but unknown, 

the utility functions (7) may be regarded as a one-parameter family of func- 

tions, m l y ,  the generalized logarithmic functions. Then, t m  possible (and 

very different) assessment mthcds are as follows. 

Wthod 1. To verify the condition of relative risk neutrality with respect to 

an unknown munt a, assess indifference ccmparisons (6) for several different 

ranges of consequences in C, a d  ask whether the values of the parameter a cal- 

culated f m  these assessmnts are approxhntely equal. If so, then relative 

risk neutrality is an appropriate condition for the decision maker's preferences, 

and a generalized logarithmic function (7) is determined in terms of the c m n  

value of a; if not, then relative risk neutrality is not an appropriate condition 

for the decision mker's preferences. 



e thod  2. ~etermine tha t  the issue of risk is important and that preferences 

can be qualitatively described by the property of decreasinq r isk aversion. 

Then, select a single even-chance lottery P , x,, such that the consequences 

x' , x" span much of the interval C and are relatively convenient to consider. 

For any possible certainty equivalent x of the lottery 8 i .e. ,  any 

consequence x between x' and x" , calculate f i r s t  the corresponding value 

of the parameter a and thm , by using u (x) = log (a + x) , the resulting prefer- 

ences between the decision roaker's alternative choices. Wwrt this information 

by shd.ng for which intervals of certainty equivalents x each of the alterna- 

t ive choices is mst preferred. 

Method 1 w i t h  sensitivity testing follows the usual approach to preference 

d e l i n g  i n  decision analysis; that is, a person i n  a decision rraking role is 

asked to  make specific lot tery comparisons and a u t i l i t y  function is calculated 

f m  this information. Discussions and references may be found, for example, 

in Faquhar (1984) and Keeney (1982). 

Method 2 follows an approach that has not been much used in decision analysis. 

An application of this approach (involving a different preference issue) is pre- 

sented i n  Hawey (1983) , and a related approach is discussed in Hammnd (1974) . 
As an i l lustrat ion of Iktkd 2, we w i l l  apply it t o  a case study presented in 

Elagee (1964). Here, a manufacturing firm called Stygian chemical ~ndustries,  ~td. 

"must decide whether t o  build a sroall plant or a large one with an w e d  market 

l i f e  of ten years. The decision hinges on what size the market for the product 

wil l  be." 

If each consequence is described by its net present value using a discount 

rate of l o % ,  and an attitude of r isk aversion is a s d ,  then the decision tree 



. fo r  the choices faced by Stygian Chemical Indus t r i es  can be reduced to a 

comparison of  t he  following tm l o t t e r i e s :  

$3,759,000 ,' 
$1,014,000 

z<-$ plan t  606,000 $1,499,000 

-$2,324,000 

Suppose that we introduce, f o r  example, t h e  follawing s h p l e r  camparison: 

For each hypothetical  c e r t a i n ty  equivalent xc between -$2,500,000 and 

$0, it is poss ible  to calculate t h e  corresponding u t i l i t y  function 

x 2  + (2,500,000) 2 
C 

U ( X )  = log  ( a + x )  , a = 

and hence a corresponding preference f o r  one of the tm p l an t  s i zes .  These 

implications are sham in Figure 2. 

Small p l a n t  
preferred 

Large p l an t  
preferred 

Figure 2.  Preferred p l an t  s i z e  as a function of r i s k  a t t i t u d e  



Analyses similar to that ~~GWII i n  Figure 2 are also p s s i b l e  for m r e  

than t m  alternative plant sizes. I f  there is a f i n i t e  nLrmber of plant sizes, 

then a diagram l ike  that i n  Figure 2 can be reported sh- a f in i te  number of 

intervals. I f  there is a continuum of plant sizes, then a graph can be reported 

showing for each m u n t  xc the corresponding mst preferred plant size. 

The above example can also be v i m  as  a "what-if" analysis having 

the tm-step structure s h m  i n  Figure 3. 

I f :  Various d e l i n g  assumptions are satisfied (e.g., consequences can 

be adequately described by their  net present values); the general conditions 

of expected-utility are satisfied; and the specific condition of relative risk 

neutrality is satisfied. 

Then: 

1f xc ) - $200.000, then the alternative of building a 

large plant is preferred. 

I f  xc < - $200,000, then the alternative of building a 

srrall plant is preferred. 

Figure 3. A "what-if" analysis of preferred plant sizes 

The distinctive feature of Methcd 2 is that it does not depend u p n  

specific assessnwts by an identified decision maker. Instead, it r e y r t s  

the implications of preferences between relatively simple outcames to  

preferences between the relatively c q l e x  actual choices. This approach m y  

be useful for applications i n  which it is f e l t  that an assimption of risk 

neutrality is not appropriate and that the issue of risk aversion should be 

d e l e d  as simply as possible. In particular, this approach my  be useful 

for applications to public policy evaluation as a means of clarifying the 

inpact of different possible attitudes tward risk on the part of the public. 



5. Conditions of Risk Constancy 

This section f i r s t  discusses several specializations of the condition of a 

constant r i sk  a t t i tude  i n  the  form specified in Harvey (1981) and Pfanzagl (1959) . 
Then, a family of conditions of risk constancy is defined that  corresponds to the 

family of mnditions of r i sk  neutrality in Section 2. Other constant r i sk  pro- 

pert ies  have been discussed in Arrow (1971), P ra t t  (1964) and, mre recently, 

in Bell (1984), w i g  ard Lippm (1983), Epstein (1985) , Farquhar and 

Nakarraua (1985) , W-dstrom et  al. (1981) , Machina (1982) , Faiffa (1986, p. 90) , 

mss (1981) , and mthblum (1975). 

The term "constant r i sk  aversion" is due to Pra t t  (1964). In this paper, 

there w i l l  be no requirmt of a risk averse at t i tude,  and the adjective 

"absolute" w i l l  be used to W i z e  tha t  preferences are constant for  

absolute changes in the decision maker's financial position. 

A preference relation w i l l  be called absolute risk constant provided 

that, for  any amounts %, h2, h3 and any probability 0 < p < 1 , if the 

indifference 

is W s f i e d f o r m  x with x + h l , x + 3 , a n d  x + h  in C ,  h i t i s  3 

sa t i s f ied  for  any x with x +  I r x + h 2 ,  and x + h j  in C .  This definition 

is t h a t  in Harvey (1981, "general 6 (x) r i sk  at t i tude" with 6 (x) = 1) ardt 

is a restaterent  of that in Pfanzagl (1959, "consistency axiom"). For reasons 



of brevity, any phase of the fom "i f  ... for some x ,  then ... for any x" 

as  in the above definition w i l l  be stated as ". . . uniformly in x  ." 
In this paper, the condition of absolute r isk constancy is weakened 

by reducing the class of lot teries on which it mt be verified. 

Definition 3. Consider a l o t t q  space (L , C , < 1 : 

(a) Preferences w i l l  be called - p.absolute - r isk constant provided that, 

for any amunt h  > 0 and any probability 0 < p <  1 , the indifference 

x + h  

x - h  

is satisfied uniformly in x  with x + h  and x - h  in C .  

(b) Preferences w i l l  be called - c. absolute - r isk constant provided that, 

for any amxlnts h  > 0 and h' , the indifference 

x + h  

x - h  

is satisfiedunifolmly i n  x  with x + h a n d  x - h  i n  C .  

(c) Preferences w i l l  be called - g. absolute - r isk constant provided that, 

for any m u n t s  h  > 0 and h' > 0 , the indifference 

is sat isf ied uniformly i n  x  with x + h '  and x - h  i n  C .  



In these definitions, the terms p., c., and g. are abbreviations for 

probability equivalent, certainty equivalent, and gain equivalent. These 

"equivalents" refer to  the probability p , certainb-y amunt h' , or  qain h' 

that is t o  be assessed for a fixed arrount h .  A fourth definition could be included, 

that of R. absolute risk constant preferences i n  which the roles of h and h' - - 
i n  (10) are reversed: for a fixed m u n t  h' > 0, the decision m&er is to 

assess a "loss equivalent" h so that the indifference (10) is satisfied. For 

discussions of similar lot tery ~ i s o n s ,  see, e.g., Farquhar (1984), Harvey 

(1981) , and Wehrung e t  al. (1984) . 
The verification of absolute r isk constancy for any one of the classes of 

lot teries i n  (8) ,  (9) ,  (10) suffices to imply that the u t i l i t y  function u 

belongs to the parametric family of linear-exponential functions, that is, 

that u is one of the functions, 

up to a positive linear transformation. 

Theorem 5. For an epc t ed -u t i l i t y  &el, the following are equivalent: 

(a) The preference relation I; is p. absolute r isk constant. 

(b) The preference relation 1; is c. absolute r isk constant and 

continuous. 

(c) The preference relation 1; is g. absolute r isk constant and 

continuous. 

(d) The u t i l i t y  function u for k belongs t o  the f h l y  of linear- 

w n e n t i a l  functions (11) . 



Theorem 5 differs from similar previous results i n  that the hypotheses 

(a) - (c) are weaker. Unlike results i n  Arrow (1971), Harvey (1981), and 

Pratt  (1964), it is not assumed that u is twice continuously differentiable 

with u' positive; unlike the result i n  Pfanzagl (1959, Theorem 5) , mller 

classes of lo t ter ies  are considered and in (a) it is not assumed that u is 

continuous. (This non-assuqtion of continuity is used i n  Harvey, 1986b. ) 

bbreover, the proofs i n  Theorem 5 are quite different - and perhaps m r e  direct - 
than the proofs of similar previous results. 

P a r t s  (b) and (c) raise the question of whether the continuity assumption 

used there is needed or can be d t t e d .  

Proposition 1. For any interval C ,  there exists a function u defined on C that 

is increasing but discontinuous on C ,  and such that the preference relation 

corresponding to u is c. absolute risk constant and g. absolute r isk constant. 

In the Fppendix, such counterexample functions are constructed by mans 

of a Cantor-type subdivision of the interval (0 , 1). 

A family of conditions of risk constancy can be defined in terms of the 

group operations xo x' discussed in Section 2. Preferences w i l l  be called 

0-risk constant provided t h a t  for any m u n t s  hl, h2 ,h3 and any probability 

0 < p < 1 , the iradi f ference 

is satisf ied uniformly in x .  A s  in Cefinition 3, the class of lo t ter ies  to 

be considered can be reduced. 



Definition 4.  Consider a lottery space (L , C , 2 ) and a group operation 

defined on C . 
(a) Preferences w i l l  M called E. 0-risk constant provided that, for 

any munt h > e and any probability 0 < p .: 1 , the indifference 

is satisfied uniformly in  x w i t h  x 0 h and x 0 h-l i n  C . 
(lo) Preferences w i l l  be call& c. - 0-risk constant provided that, for 

any munts h > e and h ' , the indifference 

is satisfied uniformly in x with x 0 h arid x 0 h-l in C . 
(c) Preferences w i l l  be called - g. o -risk constant provided that,  for any 

munts h > e and h' > e , the indifference 

is satisfied uniformly in x with xo h' and x o h-l in c . 
Any one of the above conditions implies that the u t i l i t y  function u belongs 

t o  the following parametric family of functions, 

where g (x) is a scaling fux t ion  for the group operation . 



Theorem 6. For an expected-utility &el, the following are equivalent: 

(a) The preference relation t is p. .-risk constant. 

(b) The preference relation t is c. 0-risk constant and continuum. 

(c) Tk preference relation ;= is g. 0-risk constant and continuous. 

(d) The u t i l i t y  f i x t i o n  u for Z belongs to the parametric family 

of functions (16). 

A s  in Theorem 5, the continuity assumption in parts (b) and (c) cannot be 

omitted since, for a function u as in Propsit ion 1 that  is defined on g(C) , 

the function u (g (x ) ) ,  x in C, is a discontinuous u t i l i t y  function for a 

preference relation 5 that is c. 0-risk constant and g. .-risk constant. 

6. Relative Risk Constancy 

This section discusses those conditions of 0-risk constancy which are 

concerned with relative changes in consequences. .The distinction discussed 

in Section 3 between a decision maker's net gains x and his or  her f inal  

asset positions y = a + x  is also inportant here. 

For f inal  asset positions y ,  consider the condition that, for any 

multiplier changes k ,k ,k > 0 and any probability 0 < p < 1 , the indifference 
1 2 3  

is satisfied uniformly in y .  This codi t ion  is a version of the condition 

of constant proportional r isk aversion defined in Pratt  (1964). 

For net gains x ,  the corresponding condition is that, for any proprtions 

mlrrn2, l ' "3  > - 1 and any probability 0 < p < 1 , the indifference 



satisfied unifolmly in x .  This condition is a version of the condition of 

a linear risk attitude defined in Harvey (1981) . 
The concern here is to weaken the condition (17) ' in the same manner t h a t  

the condition of absolute risk constancy was weakened in Definition 3. The 

following three conditions are restatmts of the 0-risk constant conditions 

in Definition 4 where changes are viewed as percent changes arid thus the group 

operation o is sh i f t  rrolltiplication with respect to an initial asset position a .  

Definition 5. Consider a lottery space (L , C, ) arid an i n i t i a l  asset position a : 

(a) Preferences w i l l  be called p. relative risk constant provided t h a t  for - 

any proportion m >  0 arid any probability 0 < p < l ,  the indifference 

m is satisfied uniformly in x w i t h  x + m(a + x) and x - - 
mt-1 ( a+x)  in C .  

(b) Preferences w i l l  be called c. relative risk constant provided - 

that, for any proprtions m >  0 and m' > -1, the indifference 

m is satisfied uniformly in x w i t h  x+m(a+x) and x -  - 
mt-1 ( a+x)  in C .  

(c) Preferences w i l l  be called q. relative risk constant provided that, 

for anyproportions O < m < l  andm'> 0 ,  the indifference 

is satisfied uniformly in x with x+m1(a+x)  and x-m(a+x) in C .  



A s  observed in Theorem 4, the function g (x) = log (a + x) is a scaling 

function for the group operation of sh i f t  rruiitiplication with respect to an 

initial asset position a .  Thus, the parametric family of functions (16) 

is here, 

log (a+x)  , r = 0 

r - ( a + x )  , r < O .  

Theorem 6 implies as  the following corollary that the verification of 

relative r isk constancy for any one of the classes of lo t ter ies  in (18) , (19) , (20) 

suffices to imply that the u t i l i t y  function u belongs to the parametric family 

of functions (21) .  

Theorem 7 .  For an w t e d - u t i l i t y  model, the folluwing are equivalent: 

(a) The preference relation is p. relative r isk constant. 

(b) The preference relation ;= is c. relative r isk constant and continuous. 

(c) The preference relation is g. relative r isk constant and continuous. 

(d) The u t i l i t y  function u for belongs to the parametric family of 

functions (21) . 
Theorem 7 differs fram similar previous results in that the hypotheses 

(a)- (c) are @er. Unlike results in Harvey (1981) and Pratt  (1964), it is 

not a s d  that u is twice continuously differentiable with u' positive. 

That the continuity assuption in parts (b) , (c) cannot be &tted follows 

frcnn the remrk on parts (b) ,  (c) in Theorem 6. 

Proposition 2. Suppose that preferences are risk averse and relative r isk 

constant. Then: 

(a) Preferences are represented by a u t i l i t y  function (21) with r < l .  

(b) (Pratt (1964) ) There is decreasing r isk aversion for all x in C . 
(c) The risk at t i tude tends b r isk neutrality as  x tends to +a ;  

that is, for any fixed h the difference between x and the certainty equiva- 

lent of an even-chance lottery x-h 
t ends to  0 as  x t ends to  + m .  



7.  Assessment M e t b d s  

In order to verify one of the above conditions of r isk constancy, it suffices 

to consider only one of the types of indifference comparisons (8)-(10) or  (18;)-(20). 

For the certainty equivalence and gain equival-e cases, (9)-(10)  and (19)-(201, one 

of the continuity conditions ( E l )  - (E4) must also be verif id. For this step, 

attention should be focused on m u n t s  x such as x=O , the "status quo," that 

my have a special significance for the decision maker. To evaluate continuity 

a t  x = 0 , for example, choose a fixed loss o r  gain h # 0 and determine the certainty 

equivalents of various lot teries pih + ( 1 - p) i as  the probability p tends to zero. 

Harvey (1986b) discusses a &el i n  which the continuity conditions are not satis- 

f i e d a t  x=O.  

If a decision maker 's preferences are absolute r isk constant o r  are relative 

r isk constant w i t h  respect to a known amount a , then a u t i l i t y  function (11) o r  

(21) is determined up to a single parameter r .  Thus, the Methods 1 and 2 in 

Scion 4 can use either of these conditions in the same manner as  the condition 

of relative r isk neutrality with respect to an unknown m u n t  a .  

I f  a decision maker's preferences are relative r isk constant w i t h  respect to 

an unknown munt a ,  then the u t i l i t y  function belongs to the --parameter family 

of functions (21) with parameters r and a . The following assessment methcds that 

are analogous to Methods 1 and 2 use these u t i l i t y  functions. 

Method 1'. To verify the condition of relative r isk constancy with respect to an 

m u n t  a , assess indifference camparisom (18) , (19) , or  (20) for - 
different ranges of consquences and calculate th.e resulting values of r and a 

(thereby 0 btaining the u t i l i t y  function). Then, assess indifference ccanparisons 

for other ranges of consequences, and ask whether these assessments are in accord 

with the calculated u t i l i t y  function. 

A u t i l i t y  function (21) represents an at t i tude of decreasing r isk aversion 

when the parameter r has a value r <  1. The following method is based on the idea 

that these u t i l i t y  functions form a sufficiently rich family of functions to 

&el the preference issue of decreasing r isk aversion. 



Method 2 ' .  Determine that the issue of risk is important and that it w i l l  be 

helpful to consider the degree of risk aversion for tsm different, e.g., o w -  

s i t e ,  ranges of consequences. For each of these ranges, select an even-chance 

lottery in that range that is relatively convenient to consider. For any possible 

certainty equivalents of these lot teries,  calculate f i r s t  the corresponding values 

of the paramtezs r and a, and then the resulting preferences between the deci- 

sion maker's alternative actions. Report this information by showing for w h i c h  

carbinations of the tsm certainty equivalents each of the alternative actions is 

mst preferred. 

8. Other Types of Special Conditions 

This section discusses three directions in which the results in the 

preceding sections can be extended. 

9.1. There are conditions of 0-risk constancy 0 t h . ~  than those of 

absolute risk constancy and relative r isk constancy. T w  such conditions 

are as follows. 

Double-exponential u t i l i t y  functions. Consider an eqonential scaling function, 

-1 cx g(x) = c e , where the constant c is positive or negative. The correspord- 

ing operation is xoy = c-I log (ecx + eq) , which is a semi-group operation on 

( 4 , m )  . It is related to addition mch as addition is related to rrailtipli- 

cation; for example, addition is distributive over O ,  i .e. ,  (x+z)  (y+z)  = 

(xoy)  + 2 .  

The condition (12) of .-risk constancy for this operation requires that, 

for any munts kl,k2,kj > 0 ard any probability O < p < l ,  the indifference 

is satisf ied uniformly in x . H e r e ,  the base a equals eC . 



The family (15) of u t i l i t y  furrctions implied by (22) is: 

For r # O ,  these are the double-exponential u t i l i t y  functions introduced 

As dmm i n  tha t  paper, a doubl-nential u t i l i t y  function represents 

an at t i tude of decreasing r i sk  aversion for any parameter values c <  0 and r <  0 .  

For such values of c ard r , preferences a lso  have the p r o w  that the r i sk  

at t i tude tends to r i sk  constancy with parameter c as  x tends to + r n .  

Double-logarithmic u t i l i t y  functions. In symrretry to the a b v e  mwe £ran 

absolute r i sk  constancy i n  an exponential direction, it is possible to  mve 

from relat ive r i sk  constancy i n  a logarithmic direction. Consider a scaling 

function of the form g (x) = log (a + log (a2 + x) , and assume for  simplicity 1 

that  al,a2 = 0 Kd C = (1 ,a) . The corresponding operation is x 0 y = 

The condition (12) of 0 -risk constancy for  this operation requires that, 

for any munts klfk2,k3 > 0 and any probability 0 < p < 1 , the indifference 

is sat isf ied uniformly i n  x . 



The family (15) of u t i l i t y  functions impled by (24) is: 

, r > O  

U ( X )  = { l og logx  , r = O  
1 
(- , r < o  

These functions w i l l  be called double-logarithmic u t i l i t y  functions. 

A double-logarithmic u t i l i t y  function represents an attitude of 

decreasing risk aversion for all x > l  when r l l  and for x sufficiently 

large w h m  r > 1 . For any r , the risk attitude tends to risk neutrality 

as x tends to + w .  

9.2 There are a variety of conditions on risk attitude that  are closely - 
related to that of absolute risk constancy. Farquhar and Nakamura (1985), 

for example, introduce a nunha of such conditions; e.g., their  augmented 

constant exchanqe property implies that u(x) belongs to a parametric 

family that contajns the linear and exponential functions and also contains 

four other types of functions, one of wh ich  is the suwc fucntions. Thus, 

this condition is a weakening of absolute risk constancy. By means of the 

scaling function c j  (x) = loq (a + x) , it would be possible to  define a 

"relative exchange property" and to show that this condition implies a u t i l i t y  

function of the form u (g (x) ) where u belongs t o  the above family of functions. 

Harvey (1986b) introduces t m  conditions that res t r ic t  preferences arrong 

lot teries when a pair of lot teries stochastically dclminates another pair 

of lotteries. One condition is equivalent to that of absolute r isk 

consistency and the other condition is equivalent to relative r isk constancy. 

Epstein (1985) and Machina (1982) are concerned with s t r e n e h g  the 

condition of decreasing absolute risk aversion (DARA) i n  an exPected-utili.ty 



&el and, m r e  generally, in a mdel having a Frechet differentiable prefer- 

ence function. Several of their conditions are a strenq-thening of absolute 

risk constancy in the sense that they imply risk neutrality in an expected- 

u t i l i t y  &el. See, for exanple, the conditions C . l  and C.2 in M a c b  (1982) 

and the conditions R-DARA together w i t h  R . l ,  R.2, and R.3 in Epstein (1985). 

It might be of interest to examine the implications of conditions in the 

present paper, e.g., relative risk constancy, in  a variety of non-expected- 

u t i l i ty  d e l s .  

9.3 For thepreferenceconditions that are discussed in this paw, the - 
single variable x is regarded as a maswe of mnetary changes. However, 

these preference conditions my also be appropriate in decision problems in 

which the consequences are described by a single m-mnetary variable x .  In 

a medical decision problem, for example, x might detlote extra days of l i f e  in 

normal health. 

For decision problem in which each consequence c is described by a 

number of variables, tha t  is, c =  (x , ... , xn) , conditions of preferential 

independence and expected u t i l i t y  imply tha t  preferences are represented by 

a u t i l i t y  function of the form, 

where v = v (x ) + . . . + vn (xn) is an additive value function. I f  x denotes 1 1  

one of the variables xl , ... , xn, then preference coni5tions regar- x 

are conditions on conditional risk attitude, while i f  x denotes the additive 

value function v , then preference conditions regarding x are conditions on 

d t i v a r i a b l e  risk attitude. A l l  these remarks are w e l l  known. 

Phen x measures the munts of an additive value function v , it is 

often useful to restate a preference condition in terms of the consequences 

(xl , . . . , xn) rather than in terms of the amunts v . The following list provides 



tenrimlogy and references for  the restaterrents of several preference 

andi t ions  : 

(a) Absolute r i sk  neutrality: additive u t i l i t y  i n d e w a c e  (Fishburn, 

1965, 1970) and d t i v a r i a t e  r i sk  neutrality (Richard, 1975). 

(b) Relative r isk neutrality: proportional multiperiod r i sk  neutrality 

(Harvey, 1986a). 

(c) Absolute risk constancy: mtual u t i l i t y  independence (Keaey, 1968, 

1974, I'kyer, 1970, 1972, and Wer and Prat t  ( i n  Keeney and Raiffa, 1976, 

p. 330) ) , and weak additivity (Pollak, 1967). 

(d) Relative r i sk  constancy: proportional u t i l i t y  dependence (Harvey, 1984) , 

coinciding standard and equal u t i l i t y  (Harvey , 1985) , and timing independence 

(Harvey, 1986a) . 
The results in this paper imply that assmptions of differentiabi l i ty of 

the function f i n  (26) are not needed as part of the conditions on multi- 

variable r i sk  at t i tude ci ted above. Thus, the rn r w a l  of inessential 

assumptions is possible for  the nodeling of multivariable preferences a s  for  

the nodeling of single-variable preferences. 



Apendix: Proofs of Resu l t s  

Proof of Theorem 1. Herstein and Milnor (1953) have shown the hard part of 

this result, n a y  that conditions (A),  (C) , (Dl imply the existence of a 

function u defined on C that represents the preference relation as  

in (1) . Then, (1) a d  condition (B) inmdiately imply that u is increasing. 

The converse implications are straightforward to verify. 

Proof of Theorem 2. The interval C is the union of any pair  of sets in ( E l ) .  

I f  ( E l )  is sat isf ied,  then since C is connected any such pair of sets must 

have a non-empty intersection. Thus, (E2) is sat isf ied.  Conversely, (E2) 

implies that for  X o - 2 ,  (x in C :  x t  21 = [ x O t m ) n  C and {x in C :  

x 3 2 )  = ( - m, x0] n C . Thus, ( E l )  is satisfied. The equivalence of (E3) 

and (E4) can be shown in a s%l-ar manner. 

Clearly, ( E l )  implies (E3), and (E2) implies (E4) .  To show that (E4) 

implies the continuity of the u t i l i t y  function u ,  suppose that u is not 

continuous. Then, since u is increasing, it has a jump discontinuity a t  

some pint xO in C .  Thus, there exist y<xo andy1,x0 in C such tha t  

& ( y ) + k ( y 1 )  is not equal to u(x) for  any x in C ,  and sa (E4) is false. 

Finally, the continuity of u implies that the sets in ( E l )  are closed i n  C . 
Consider a function f a s  described and a continuous u t i l i t y  function u .  

Iet z = u(y) and z'  = u ( y l ) .  Then, for  any p i n t s  z ,  z '  in the interval u(C), 

- 1 -1 -1 - 1 
f ou (+z + +zl )  = + f ou (z) + + f ou ( z )  . Since fou is increasing, it 

follows that fou-'(z) = a z + b ,  z in u(C), for  sam constants a > O ,  b ,  and 



Proof of Theorem 3. Suppose that  '; is 0-risk neutral with respect to  a 

group operation 0 . For any y and y' in C , the "0-midpoint" 
- 
y = g-1(4g(y) + 4g(y1)  ) of y and y' is between y and y' and hence 

- -1 - 1 i s i n C .  ~ r e o v e r , y = y o h a n d y ' = y o h  where h = g  ( g ( ~ ) - ~ ( y ) ) .  

According to  (4) , it follows that  for any y and y ' in C , the lottery 

R has the certainty equivalent FR Thus, condition (E4) is 
Y I Y'  Y I Y "  

satisfied, and so any increasing function f is a u t i l i t y  function for  5; 

provided that  (2) is satisfied. But, for  any x,y,yl in C ,  x-R 
Y I Y '  

implies that x = y ,  and so g(x) =g(y) = + g ( y )  + 4 g ( y 1 ) .  Therefore, a 

scaling function g for  0 is a u t i l i t y  function for 2 

Conversely, suppose that a scaling function g for  a group operation 0 

is a u t i l i t y  fux t i on  for the preference relation 2 . Since 

-1 
g (x) = 4 g (xoh) + 4 (xoh-l) for any x , x ~ h , x ~ h  in C , it follaws that the 

condition (4 )  of .-risk neutrality is satisfied. 

Proof of Theorem 4. The condition (6) can be rewritten as 

where h = m + l - a  is inIa when m > O .  ThusI (6) states that  5; is  

.-risk neutral for the sh i f t  miltiplication on Ia. The function 

g (x) = log (x + a)  is a scaling function for 0 since log (x 0 x' + a )  = log (x + a )  + 

l o g ( x l + a )  f o r a n y x , x l  i n  I Thus, byTheorem3, thepreference rela- a' 

t ion & is relative r isk neutral i f  and only i f  g(x) = log (x+ a)  is a 

u t i l i t y  function for  . 



Proof of Theorem 5. W e  f i r s t  show that p.absolute r isk constancy implies 

a l i nea r -wnen t i a l  u t i l i t y  function (11) . Select tka amounts xl and x - ~  

in C w i t h  x ' x - ~ ,  and define 
1 

for a l l  real t .  This definition is consistent with the mtat ion 5 . x - ~ .  

It specifies a linear, increasing correspondence between the variables x and t . 
A s  a second functional dependence, define q = l - p  for  any probability p .  

Since preferences sat isfy the conditions of expected u t i l i t y ,  there 

exists a unique probability O < p < l  such that the indifference (8) is satisfied 

with x = x  x + h = x l ,  a r d ~ - h = x - ~  . Tkeargumatwillbedividedinto 0 ' 
three cases, depending on whether p = 4 ,  p < 4 ,  o r p > + .  

Suppose that p = 4  . Nornalize the u t i l i t y  function u for the lot tery 

space ( L , C , k )  so that u (5) =l  ard u ( x - ~ )  '-1 . Then, by the indifference 

(8) ,  u(xo) =4u(xl) + 4 u  ( x - ~ )  = O .  Therefore, u(xt) = t  for t= l .  0 , - 1 .  

Since is p.absolute r isk constant, there exists a single probability 

p such that 

u ( q )  = bu(x l )+ ;u (x  o 

u(x -4 = 6 u  (x0) +Gu ( x - ~ )  (A2 

U ( X ~ )  = ;U (XQ + e u cx-+) 
h 

Therefore, u ( q )  = 6 ,  u(x-+) = - q ,  and 0 = $u  (x ) +Gu (x . It follows 4 -4 
. Arguing by mthetratical induction 



it follows that u(xt) = t for  any dyadic number t in the i n t d  C - 1  , 11 . 
Since u is increasing, it follows tha t  u(xt) = t  for  any real number t in C - 1  , 11 . 
According to (Al), bwever, t=  ( x t - % ) / ( y - % )  for  any real n* xt 

-1 
Therefore, u ( x ) = ( x - x g ) / ( x l - x o ) = a x + b  where a=(x l -xg l  > O  and 

b=-xO/(x1-xO). Here, x is any real nu&er in the interval [ x - ~ , x ~ ] .  

It ranaiw to consider any xt in C such tha t  xt > xl o r  xt < xe1 . 
Suppse t h a t  x > xl. Then, there exists a single probability 6 such t 

wt 

A 

Thus, 1 = 6 u (xt) and 0 = p u ( x ~ - ~ )  - 6 . It follows that u(xt) = u (xte1) + 1 . 
Arguing by i terat ion,  it then f o l l m s  that u (xt) = t. For any x < x i n  C , t -1 

it can te shown by a similar argumnt tha t  u(xt) = t. Thus, in conclusion, 

U(X) = ( x - x ~ ) / ( ~ - x ~ ~  = a x + b  w i t h a > O  f o r a l l  x i n  C. 

Next, suppose that p < 4 . Normalize the u t i l i t y  function u so that 

u (xl) = q/p and u ( x - ~ )  = . Then, by the indifference (8) , u (xo) = 

p u ( ~ ~ ) + q u ( x - ~ ) = l .  I f  s > O  i s d e f i n e d s o t h a t  e s=q /p>l ,  then 

U ( X  ) = est for  t=1,0 ,-I .  t 

Since is p. absolute r i sk  constant, there exists a single probability 6 
such that (A2) is satisfied. Therefore, u (x4) = 6 (q/p) + 6 , U (x+) = 6 + 6 ( ~ / / 9 )  I 

4 4 
and 1 = 6 u ( x 4 ) + 6 u ( x  1 .  It £011- tha t  G(q/p) + 6(p/q) =1, and -4 

f s ($1 , u (X ) = (p/q) ' = eS . ~ r g u i n g  by mathemtical hence u(x4) = (alp) = e  -4 
induction, it follows that u (xt) = eSt for  any dyadic number t i n  [ -1 , 1 1  . 



Since u is increasing, it follows that u (xt) = eSt for any real nmber t 

in - 1 1 ]  Havever, ~ = ( X ~ - X ~ ) / ( ~ - X ~ ) ,  andthus u ( x ) = e  r (x -x0 )  - - 

aeM where r = s / ( q - x )  > 0anda=e- lxo>O.  Here, x is any real 
0 

lxJmber in [ x - ~  I ql 

It remiins to mnsider any xt in C such that x t > q  or x <xel.  t 

Suppose that xt > 5 . Then, there exists a single pmbability 6 such 

S 
that (A3) is satisfied. Thus, e = 6u(xt) + 6 and l = a ~ ( x ~ - ~ )  +Ge-'. 

S 
It follow that u (xt) = e u . Arguing by iteration, it then follows 

st  
that u (x t )=e  . Forany x t < X  -1 in  C ,  i t c a n b e s h m n b y a s i m i l a r  

st 
arglnrent that u (x t )=e  . Thus, inconclusion, u ( x ) = a e M  w i t h  a > O ,  

r > O  f o r a l l  x i n  C .  

Now, supse that p > + .  In this case, normalize the u t i l i t y  function u 

so that u(xl) = q / p  and U ( X - ~ )  = -p/q . Then, by an argunent similar to that 

in the case p < + ,  it can be shcwn that u(x) =-aeM w i t h  a > O ,  r < O  

for all x in C . 
W e  next sbw that each of c. absolute risk constancy and g. absolute r isk 

constancy implies a linear-expnential u t i l i ty  function. Observe that by means 

of relabeling the consequences i n  (9) and (10) each of these mnditions of uni- 

form indifference implies that for any amunts \, h2, h3 the indifference 

is satisfieduniformly in x with x+h2 and x+h3 in C .  

The condition (A4) is therefore satisfied uniformly in x when p = +  , 1,  

or 0 . Assume that (A4) is satisfied uniformly in x for two pmbabilities 

p and p' . Then, (A4) is also satisfied uniformly in x for the pmbability 

p=4p++p1 . A crucial part of the following proof is the assumption in 



parts (b) and (c) of Theorem 5 that any lot tery R has a certainty equivalent 

c(R)-R . 
Suppose that  for s m  x + 3 and x + h3 in C , 

Cons ideranyo thermunt  x l = b + x  with x ' + h 2 a n d x 1 + h 3  in C .  By 

a s ~ o n ,  ~ ( $ 1 - R  implies b+c(R )--b+R , and c(Rp,)-R implies 
P P P P' 

b+c(R ,I-b+R . Thus, (AS) -liesthat 
P P' 

Thus, (A4) is sat isf ied uniformly in x for the probability p . 



Arguing by fiathematical induction, it follows that (A4) is satisfied 

uniformly in x for any dyadic probability p . For any real probability p , 

consider a sequence of dyadic probabilities p(n) , n = l ,  2 ,  ..., such that 

l imp(n) = p .  For givenamnmts x+h2 andx+h3 in C ,  l e t  x+hl and 
n 

x + hl (n) , n = 1, 2, . . . , demte the certainty equivalents of R and Rp , 
P 

n = l ,  2, ... . m, ~ + h ~ = u - ' ( ~ u  (x+h2) + q u  (x+h3) ) and x+hl(n) = 

) u ( x + h  ) +q(n)  u (x+hj)  ) , n=1 ,  2, ... , and thus %=limhl(n) u ( P ( n  2 n 
as a result of the continuity of u-I. Consider any m u n t  x' = b +  x with 

x' +h2 and x' + h j  in C .  Then, b+x+hl(n) is the certainty equivalent 

Of + Rp(n) for n = l , 2  ,.... Therefore, b + x + %  is the certainty 

-1 equivalent of b +  R as  a result again of the continuity of u . 
I? 

The above ar-t ektablishes that, for a continuous expected-utility 

model, each of c. absolute risk constancy and g. absolute risk constancy 

implies p. absolute risk constancy. Thus, by the f i r s t  part of this proof, 

each of these conditions implies a linear-exponential u t i l i t y  function. 

It remains to show that i f  there is a linear-exponential u t i l i t y  function, 

then the three corditions of risk constancy are satisfied. The verification is 

straightforward, and hence can be conitted. 

Proof of Proposition 1. W e  will  construct a function u (x) that is defined 

and increasing on the interval [ O  , 1) such that, for the corresponding preference 

relation 5 , any lottery Ex , with x ,  x' in [ O ,  1) does not have a cer- 

tainty equivalent. Thus, the preference relation 5 is discontinuous and 

vacuously sat isf ies the corditions of c. absolute risk constancy a d  g. absolute 

risk constancy. A similar result can be obtained for any interval C by c b s i n g  

a continuous, increasing function f w i t h  domain C and range a subinterval of 

[ 0 , 1) , and considering u ( f (x) ) as a u t i l i t y  function defined on C . 



Any real number x in [ 0 , 1) can be represented as  a sum 

where a = 0 or  1 for any n =  1 , 2 , . . . and for any N there exists an n 

n - > N such that an = 0 . The representation (A6) defines a one-to-one 

correspondence between [ O f  1) and the se t  of sequences {an] as described. 

For any x in [ 0 , 1) , define 

where {an] is the unique sequence corresponding to x . 
Then, u(x) is an increasing function. For i f  x > x l  are t w  munts 

in L0 .1 )  and {an) , {a:) are the corresponding sequences, then there 

exis tsan N suchthat  % > a 1  but a n = a l  f o r a l l  n < N .  Hence, N n 

mreover, there is m t  a number between x and x' such that u(2) = 

h ( x )  + h ( x l )  . For i f  u = f u(x) + & ( x 1 ) ,  then 

where an = f (an+a;l),  n = 1 ,  2 ,  ... let N denote the least  n such that 

1 N-1 it 
a n #  a h .  Hence, $=$,  and thus for S = 2a1/3 +...+ 2%-1/3 

foll- that S +  3-N - < ; < S+ 3-N + 3-N . let 1 denote the sequence 



corresponding to  a number in [O, 1). I f  < # % for  a leas t  integer 
A A 

M < N ,  then u ( x ) < ;  i f  %<% a n d u ( x ) > ;  i f  < 4 > a M .  I f  i n = a  for n 

all n < N ,  thw u(;) < ~ + 0 + 3 - ~  i f  % = 0 and u(f;) - > S  + 2*3-N + 0 i f  
A 

aN = 1. ~ h u s  in every case, u(2) # U .  

Proof of Theorem 6. Let C d m t e  the range of the scaling function 
g 

t = g(x) restricted to the damain C . Let L denote the set of lo t ter ies  
g 

having consequences in C . Then, the given expected-utility &el 
g 

( L , C , c , u )  corresponds to an expected-utility &el (L I *  , u  
g r C g  T g 

inducedbythe scalhgfunct ion g .  Here.<ti ,pi>kg <t:.p\> i n  L 
g 

-1 -1 
i f  d o n l y  i f  < g  (ti) , ~ ~ > k < ~ - l ( t : ) , p ; >  in L ,  and u (t) = u ( g  ( t ) )  . 

g 
The preference relation ? sa t i s f ies  one of the conditions (a) - (c) i n  

Theorem 6 i f  and only i f  the preference relation 5 sa t i s f i e s  the correspond- 
g 

ing condition (a) - (c) in Theorem 5. IWrewer, the u t i l i t y  function u belongs 

to the p a r m t r i c  family (16) i f  and only i f  the u t i l i t y  function u belongs 
g 

to the linear-exponential family (11) . Thus, Theorem 5 implies Theorem 6 by 

mans of the correspondence between ( L . C , ? . u) and (Lg I Cg I and ug) 

Proof of Theorem 7.  A s  shown in Section 4, x o h =  ( h + a ) ( a + x )  - a  for  the 

group operation of sh i f t  d t i p l i c a t i o n .  Thus, for any k = a + h >  0 , the 0-risk 

constant conditions (13)-(15) became the relat ive r i sk  constant conditions 

(18)-(20) when 0 is sh i f t  d t i p l i c a t i o n .  IWreover, the family of functions 

(16) becomes the family of functions (21). Thus, Theorem 7 is a corollary of 

Theorem 6. 

Proof of Proposition 2. par t  (a) is adi rec t  corollary of Theorem 7 since a 

u t i l i t y  k t i o n  (21) is s t r i c t l y  concave i f  and only i f  r < 1 . Part (b) is 

due to Pra t t  (1964) in that such a u t i l i t y  function is shcwn there to represent 

decreasing r i sk  aversion. 



To show part (c) , consider a u t i l i t y  function u (x) of the fonn (21) 

with r < l .  For a f i x e d a m u n t  x ,  let x - f ( h )  denote thecer ta in ty  

equivalent of a lot* ax+h, x-h . Risk aversion implies that f (h) > 0 . - 

f '  (t) =- +Ilt ( x + t )  -+Ill ( x - t )  
< +Ilt (x-t) - +I l t (x+ t )  

u' (u - l (+I l (x+ t )  ++Il(x-t)) ) 
- 

u' (x) 

Hence, 

fo r  sorne -1< 0 < 1 .  Haever, f o r  a u t i l i t y  function (21) the ra t io  

-uU(x+oh) /ut(x)  ism to (1-r) ( ( x + ~ h ) / x ) ~ - ~ / ( x + ~ h ) .   his 

expression tends to 0 as x tends to + m ,  and hence f (h )  tends to 0 a s  x 

tendsto +m. 
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