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FOREWORD

This paper is concerned with a traditional problem in decision analysis,
that of developing simple prescriptive models of preferences between lotteries.
A general expected-utility model is assumed throughout. First, the condition
of risk neutrality is shown to belong to a family of conditions, each of which
determines the decision maker's utility function. Second, the condition of a
constant risk attitude is shown to belong to an analogous family of conditions,
each of which determines the decision maker's utility function except for a
single parameter. Assumptions of the utility function's differentiability, and
often of its continuity, are not needed in these models. Two contrasting
methods are discussed by which the models can be used in applications.

Subject classification:

851. expected utility, risk attitude
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SPECTAL CONDITIONS ON RISK ATTITUDES

Introduction

Prescriptive decision analysis models of individual and social preferences
require conditions on preferences that structure the model into a tractable
form. Such conditions should be sufficiently inclusive to allow for a
modeling of the preference issues that are judged important and yet sufficiently
restrictive to allow for an analysis of the implications of relatively simple
value judgments on the relatively camplex choices between the actual alternatives.

This paper considers an important and well-studied type of preference, that
of risk attitudes when the consequences are described by a single variable.
Preliminary material describes two versions of the expected-utility model; the
first implies that the utility function is strictly increasing and the second
implies that the utility function is also continuous.

The first part of this paper discusses a family of conditions on risk
attitude, one of which is the condition of risk neutrality, here distinguished
as "absolute risk neutrality." Each of the conditions in this family is shown
to determine a different utility function.

This family of conditions includes the condition, here called "relative
risk neutrality," that is introduced in Harvey (1981) and that is shown here
to imply, without any assumptions of differentiability or continuity of the
utility function u, that u is a generalized logarithmic function, that is,
u(x) =log(a+x). The constant a can be interpreted as an initial asset
position. If a is regarded as an unspecified parameter, so that the condition
of relative risk neutrality implies a one-parameter family of utility
functions, then this condition can be used in the same manner as the condition
of constant risk aversion. Since relative risk neutrality represents an attitude
of decreasing risk aversion, it may be the more appropriate condition for use in

simple, prescriptive models of risk attitudes.



The second part of this paper discusses another family of conditions on
risk attitude, one of which is the condition of a constant risk attitude, here
distinquished as "absolute risk constancy," that is introduced in different
forms in Arrow (1971), Pfanzagl (1959), and Pratt (1964). This family of
conditions is shown to include the condition, here called "relative risk
constancy," that is introduced in different forms in Pratt (1964, "constant
proportional risk aversion") and Harvey (1981, "linear risk attitude"). Each
of the conditions in this family is shown to imply, without any assumptions
of differentiability or continuity of the utility function u , that u belongs
to an associated parametric family of functions.

Each of the conditions in the two families mentioned above is a "special
condition" in that it either determines the utility function or implies a
parametric form for the utility function. Two different methods are described
for taking advantage of the resulting simplicity in the preference model. In
the first method, a special condition is used to evaluate a specific utility
function; in the second method, a special condition is used to evaluate the
implications of differing degrees of risk aversion for preferences among the
decision maker's actual alternatives.

For reasons of convenience, the proofs of the results in this paper are
placed in an appendix. However, the proofs are an important part of the

results being presented.
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1. Expected-Utility Models

This section describes two expected-utility models that are obtained
by specialization of the model developed in Herstein and Milnor (1953). An
expected-utility model was first developed in von Neumann and Morgenstern (1944).
Other models are developed in Debreu (1960), deGroot (1970), Fishburn (1970),
(1975), (1982) , Jensen (1967), Ledyard (1971), Luce and Raiffa (1957), Marschak
(1950), Nielsen (1984), Pfanzagl (1959), Raiffa (1968), Roberts (1979, pp.354-360),
Savage (1954), and Toulet (1986).

Suppose that consequences are described by the amounts x in an inter-

val C that contains more than one point. Let 2=<xi ’ pi> derote a lottery
having a finite number of consequences X in C with probabilities Py
i=1l,...,m, and let L denote the set of such lotteries.

In particular, let SLX denote a lottery having the consequence x with
probability 1, and let Qx %! denote a lottery having the consequences x and
x' each with probability % . Assume that any consequence x is identical to
the lottery SLX in L, and any two-stage lottery having a lottery ¢ with
probability p and a lottery 2 ' with probability 1-p is identical to the
one-stage lottery pl+ (1-p)&' in L.

Assume that a preference relation 2 , "is at least as preferred as,"

is defined on the set L of lotteries. Preference relations ~, "is indif-
ferent to," and -, "is preferred to," can be specified in terms of =

by: 8~' provided that 2x2' and 2'=2, and 2=2' provided that 2z=2'
and ot L'z 4.

Consider the following preference conditions on the lottery space

(L,C,>=):

(A) The preference relation = on L is transitive and complete.

(B) Monotonicity in consequences. For any x,x', in C,

o =9, iff x2x' .
X X



(C) Continuity in probabilities. For any 2, £',%" in L, the sets

{p:p2+(1-p)2'=2"} and {p:p2 + (L-p)2' <"} are closed.

(D) Substitution principle.For any &, 2', 2" in L, 2~4' implies

Lo+ BB+

Condition (D) is also called an independence axiom. It implies, in

the presence of (A) and (C), the corresponding condition with probabilities

P, l1l-p between 0 and 1 in place of %.
The term increasing function will mean a strictly increasing function.

Theorem 1. (Herstein and Milnor) A lottery space (L, C, ) satisfies

the above conditions (A) - (D) if and only if there exists a real-valued
function u that is defined and increasing on the interval C such that

' . m m
L= 2" iff Zi=l piu(xi) 2 Zi=l p'iu(x'i) (1)

for any lotteries 2 =<Xi’pi> and ' =<xi,p:!L> in L.

A lottery space satisfying (A) - (D) and a utility function u as des-

cribed in Theorem 1 will be called an expected-utility model and will be

denoted by (L, C, =, u). Note that this definition is more restrictive
than usual in that it includes condition (B) and the resulting property
that u is increasing.

As is well-known, the utility function u in an expected-utility
model is unique up to a positive linear transformation. When no confusion
can result, a utility function u for a preference relation & will be
referred to as the utility function corresconding to & . A condition on

preferences that determines the utility function (in this sense) or implies



that it belongs to a parametric family of functions will be called a special

preference condition. Any other condition (e.g., (A)-(D) above) will be

called a general preference condition.

The continuity of a utility function is implied by each of the following
general preference conditions:

(El) Continuity in consequences. For any £ in L, the sets {x in C:

x&l}and{xinC: x <14} are closed in C.

(E2) Existence of certainty equivalents. For any 2 in L, there exists

an xXx in C such that x -~ 2.

(E3) Equal-chance continuity in consequences. For any Zy g in L,

the sets {x in C: x & ¢ +} and {x in C:x-j_zyy.}a.reclosedin C.

YrY¥Y

(E4) Existence of equal-chance certainty equivalents. For any JLY v in

L, there exists an x in C such that x«-sLy g
M zr

Theorem 2. In an expected-utility model, the conditions (El)-(E4) are
equivalent to each other and are satisfied if andonly if the utility function

u is continuous. In such a model, if a function f is defined and increasing

on C such that

X - 2y y' implies f(x) = %f(y) + %£(y'), (2)

for any x,y,y' in C, then f is a utility function for > .
A model (L,C,Z ,u) as in Theorem 2 will be called a continuous

expected-utility model; then, = will be called a continuous preference

relation.

Conditions similar to (A)—-(D) and (E2) that are necessary and suffi-
cient for a continucus, increasing function u that represents ias in (1)
were established in a different context by de Finetti (1931). (See Hardy et al.

(1934, pp. 158-163) for an exposition in English.)
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2, Conditions of Risk Neutrality

This section discusses a family of conditions of risk neutrality,
each of which correspornds to a type of scale for the consequences x.
The usual condition of risk neutrality for a preference relation >

can be defined as,

for any x+h and x-h in C. This condition will be called absolute

risk neutrality to emphasize that it is defined in terms of absolute

changes in the variable x.
A preference relation > satisfies the indifference equation (3) if

and only if the utility function u satisfies Jensen's functional equation,

u(x) = 3u(x+h) + %u(x-h) (3)!

for any x+h and x-h in C. In general, (3)' does not imply that u is
linear; however, if u is increasing as in the version of the expected-
utility model described in Theorem 1, then (3)' implies that u is linear
(see, e.g., Darboux, 1875 and Hamel, 1905) .

A family of conditions of risk neutrality can be defined as follows.
Suppose that C is contained in (possibly is equal to) an open interval I
on which there is a continuous group operation X o x'. Then, there exists

a scaling function that associates . with the ordinary addition of real numbers;

that is, there exists a continuous, increasing function g as in Figure 1



with domain I and range (=-«,») such that g(xe.x') = g(x) + g(x') for

all x,x"in I (Aczel, 1966, p.254) . Moreover, a scaling function is
unique up to multiplication by a positive number, i.e., g(x) =ag(x), a>0,

for any two scaling functions g(x) and g(x) . It follows immediately that the

group (I, ) is commutative, that e=g'_l (0) is the identity, and that any

X # e has inverse x-l=g— (-g(x)) with e strictly between x and x-'l .
scaling function g
group operation //———_-\ .\\\\ordinaxy addition +
< i}
A > — >
I 0 = - 0O =]
e T R ( ’ )

Figure 1. A scaling function g for a group operation o

Definition 1. A preference relation = will be called °-risk neutral

-

with respect to a group operation o provided that

* ﬁK (4)
;5 Xo h_l

forany x in C and h in I with xohandxoh-l in C.

The condition (4) can be interpreted as stating that for risk-taking
purposes the changes from a fixed amount x to the amounts x.h and xoh-l
are equally serious.

Theorem 3. The preference relation 3_— in an expected-utility model

is o -risk neutral with respect to é group operation o if and only if the

utility function u for > 1is determined as any scaling function g for - .
Several types of eo-risk neutrality are discussed in Section 3 below and

in Section 8.
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3. Relative Risk Neutrality

Suppose that the consequences x are possible gains and losses, and
the interval C is the range of such financial changes. Iet a dencte
the decision maker's initial asset position (known or unknown) as somehow
defined, and let y= a+x, x in C, measure his or her final asset
positions. Assume that the range a+C of possible final asset positions
is contained in the interval ( 0, ). It may be appropriate to evaluate
a decision maker's risk attitude by considering relative changes in
the final asset positions y=a+x, x in C. For the preference relation

-

Z v on lotteries with final asset positions, consider the condition that

3 ky
» sy

for any y in a+C and any k>1 withky and K Yy in a+C. For example,
when k=2 this condition states that the decision maker is indifferent
between having a final asset position y for certain and having an equal-
chance lottery in which y is either doubled or halved.

Condition (5) can also be written in terms of percent changes. It then

states that

;i// Y+my

__m
c Y™ m1 Y

for any y in a+C where the quantities m=k-1>0 and rr%: l—%>0 can

be interpreted as percents. For example, when m=1 this condition states



that the decision maker is indifferent between a final asset position y and
an equal-chance lottery in which y is either increased by 100% or is
decreased by 50%.

Condition (5)' can be written in terms of net gains x as:

L a+x+m(a+x)
a+x~y
Y -
a+x e} (a+x) .

Assuming that the decision maker's preferences concerning final asset posi-
tions are "framing consistent" (Harvey, 1986b) with his preferences concerning
net gains, it follows that (5) equivalent to the following condition.

Definition 2. (Harvey, 1981) A preference relation ; will be called

relative risk neutral provided that

- X + m(a+x)

(6)
m
X-m (a+x)
for any x in C and any m>0 with x+m(a+x) and x- % (a+x) in C.

The group operation used in (6) is that of xox'= (x+a)(x'+a)-a
defined on the interval Ia= (0,») -a. Here, e=1-a and x_l= (1/ (x+a)) -a.

The operation o on Ia will be referred to as a shift multiplication.

Theorem 4. The preference relation 2 in an expected utility model is

relative risk neutral with respect to an initial asset position a if and

only if
u(x) = log (a+x), x in C, (7)

is a utility function for > .
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Theorem 4 strengthens a result in Harvey (1981, Theorem 5 and Erratum)
in that its hypotheses are weaker. Here, the utility function u is not
assured to be twice continuously differentiable with u' positive; indeed,

u is not even assumed to be continuous.
The utility functions (7) are themselves well-known (see, e.g., Grayson,

1960 and Rubenstein, 1977) , and are called generalized logarithmic functions.

As shown in Pratt (1964, p. 133), any generalized logarithmic function repre-—

sents an attitude of decreasing risk aversion.

4, Assessment Methods

To determine whether a decision maker's preferences are absolute risk
neutral or are relative risk neutral with respect to a known amount a, simply
ask whether the indifferences (3) or (6) are true for a representative selection
of consequences. Since a condition of risk neutrality determines the utility
function, no further steps are needed.

When the initial asset position a is undefined or is defined but unknown,
the utility functions (7) may be regarded as a one-parameter family of func-
tions, namely, the generalized logarithmic functions. Then, two possible (and
very different) assessment methods are as follows.

Method 1. To verify the condition of relative risk neutrality with respect to

an unknown amount a, assess indifference camparisons (6) for several different
ranges of consequences in C, and ask whether the values of the parameter a cal-
culated from these assessments are apvroximately equal. If so, then relative
risk neutrality is an appropriate condition for the decision maker's preferences,
and a generalized logarithmic function (7) is determined in terms of the cammon
value of a; if not, then relative risk neutrality is not an appropriate condition

for the decision maker's preferences.
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Method 2. Determine that the issue of risk is important and that preferences
can be qualitatively described by the property of decreasing risk aversion.
Then, select a single even—chance lottery ‘Qx',x" such that the consequences
x' , x" span much of the interval C and are relatively convenient to consider.
For any possible certainty equivalent x of the lottery Qx',x" i.e., any
consequence X between x' and x" , calculate first the corresponding value

of the parameter a and then, by using u(x) = log (a+x), the resulting prefer-
ences between the decision maker's altermative choices. Report this information
by showing for which intervals of certainty equivalents x each of the alterna-
tive choices is most preferred.

Method 1 with sensitivity testing follows the usual approach to preference
modeling in decision analysis; that is, a person in a decision making role is
asked to make specific lottery comparisons and a utility function is calculated
from this information. Discussions and references may be found, for example,
in Farquhar (1984) and Keeney (1982).

Method 2 follows an approach that has not been much used in decision analysis.
An application of this approach (involving a different preference issue) is pre-
sented in Harvey (1983), and a related apvroach is discussed in Hammond (1974).

As an illustration of Method 2, we will apply it to a case study presented in
Magee (1964). Here, a manufacturing firm called Stygian Chemical Industries, Ltd.
"must decide whether to build a small plant or a large one with an expected market
life of ten years. The decision hinges on what size the market for the product
will be."

If each consequence is described by its net present value using a discount

rate of 10%, and an attitude of risk aversion is assumed, then the decision tree
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for the choices faced by Stygian Chemical Industries can be reduced to a

comparison of the following two lotteries:

$3,759,000 ~$1,014,000
6.
Small ”
-$ 606,000 . $1,499,000
plant 3
-$2,324,000 $1,404,000

Suppose that we introduce, for example, the following simpler comparison:

P

J
252,500,000

X o~ PR
fo .

For each hypothetical certainty equivalent X, between -$2,500,000 and

$0, it is possible to calculate the corresponding utility function

>%f + (2,500,000)2

u(x) = log (a+x) , a =
2 (—xc)

and hence a corresponding preference for one of the two plant sizes. These

implications are shown in Figure 2.

Small plant Large plant
preferred preferred

i \ { \,

¥ 1 | 4

- $2.°0M -$.2M $OM X

Figure 2. Preferred plant size as a function of risk attitude
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Analyses similar to that shown in Figure 2 are also possible for more
than two alternmative plant sizes. If there is a finite number of plant sizes,
then a diagram like that in Figure 2 can be revorted showing a finite number of
intervals. If there is a continuum of plant sizes, then a graph can be reported
showing for each amount X, the corresponding most preferred plant size.

The above example can also be viewed as a "what-if" analysis having

the two-step structure shown in Figure 3.

If: Various modeling assumptions are satisfied (e.g., consequences can
be adequately described by their net present values); the general conditions
of expected-utility are satisfied; and the specific condition of relative risk
neutrality is satisfied.

Then:

If X, > - $200,000, then the alternative of building a
large plant is preferred.

If X, <= $200,000, then the alternative of building a
small plant is preferred.

Figure 3. A "what-if" analysis of preferred plant sizes

The distinctive feature of Method 2 is that it does not depend upon
specific assessments by an identified decision maker. Instead, it reports
the implications of preferences between relatively simple outcomes to
preferences between the relatively complex actual choices. This approach may
be useful for applications in which it is felt that an assumption of risk
neutrality is not appropriate and that the issue of risk aversion should be
modeled as simply as possible. In particular, this approach may be useful
for applications to public policy evaluation as a means of clarifying the

impact of different possible attitudes toward risk on the part of the public.
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5. Conditions of Risk Constancy

This section first discusses several specializations of the condition of a
constant risk attitude in the form specified in Harvey (198l) and Pfanzagl (1959) .
Then, a family of conditions of risk constancy is defined that corresponds to the
family of conditions of risk neutrality in Section 2. Other constant risk pro-
perties have been discussed in Arrow (1971), Pratt (1964) and, more recently,
in Bell (1984), Dybvig and Lippman (1983), Epstein (1985), Farguhar and
Nakamura (1985), Kihlstrom et al. (1981), Machina (1982), Raiffa (1986, p. 90),
Ross (198l), and Rothblum (1975).

The term "constant risk aversion" is due to Pratt (1964). In this paper,
there will be no requirement of a risk averse attitude, and the adjective
"absolute" will be used to amphasize that preferences are constant for

absolute changes in the decision maker's financial position.

A preference relation = will be called absolute risk constant provided

that, for any amounts hl'h2’h3 and any probability 0<p<l, if the

indifference

x+h2

x+h1'"v

1-
P x+h3

is satisfied for some x with x+hl,x+h2,and x+h3 in C, then it is

57 and x+h3 in C. This definition

is that in Harvey (1981, "general ¢(x) risk attitude" with 4(x) =1) and

satisfied for any x with x+h1, x+h

is a restatement of that in Pfanzagl (1959, "consistency axiom"). For reasons
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of brevity, any phase of the form "if ... for some x, then ... for any x"
as in the above definition will be stated as "... uniformly in x."
In this paper, the condition of absolute risk constancy is weakened

by reducing the class of lotteries on which it must be verified.

Definition 3. Consider a lottery space (L,C, Z ):

(a) Preferences will be called p. absolute risk constant provided that,

for any amount h >0 and any probability 0<p<1l, the indifference

P x+h

l-p x-h
is satisfied uniformly in x with x+h and x-h in C.

(b) Preferences will be called c. absolute risk constant provided that,

for any amounts h >0 and h', the indifference
x+h
x=h'~ (9)
x=h

is satisfied uniformly in x with x+h and x-h in C.

(c) Preferences will be called g. absolute risk constant provided that,

for any amounts h >0 and h' >0, the indifference
" x+h'
X —~ (10)
& x-h

is satisfied uniformly in x with x+h' and x-h in C.
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In these definitions, the terms p., c., and g. are abbreviations for
probability equivalent, certainty equivalent, and gain equivalent. These
"equivalents" refer to the probability p, certainty amount h', or gain h'
that is to be assessed for a fixed amount h. A fourth definition could be included,

that of 2. absolute risk constant preferences in which the roles of h and h'

in (10) are reversed: for a fixed amount h' >0, the decision maker is to
assess a "loss equivalent" h so that the indifference (10) is satisfied. For
discussions of similar lottery comparisons, see, e.g., Farquhar (1984), Harvey

(1981) , and Wehrung et al. (1984).

The verification of absolute risk constancy for any one of the classes of
lotteries in (8), (9), (10) suffices to imply that the utility function u
belongs to the parametric family of linear-exponential functions, that is,

that u is one of the functions,

erx,r>0
ux) = X , r=20 (11)
-erx,r<0

up to a positive linear transformation.

Theorem 5. For an expected-utility model, the following are equivalent:
(a) The preference relation < is p. absolute risk constant.
(b) The preference relation > is c. absolute risk constant and
continuous.

(c) The preference relation = 1is g. absolute risk constant and

continuous.

(d) The utility function u for & belongs to the family of linear-

exponential functions (11).
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Theorem 5 differs from similar previous results in that the hypotheses
(@) - (c) are weaker. Unlike results in Arrow (1971), Harvey (1981), and
Pratt (1964), it is not assumed that u is twice continuously differentiable
with u' positive; unlike the result in Pfanzagl (1959, Theorem 5), smaller
classes of lotteries are considered and in (a) it is not assumed that u is
continuous. (This non-assumption of continuity is used in Harvey, 1986b.)
Moreover, the proofs in Theorem 5 are quite different - and perhaps more direct -
than the proofs of similar previocus results.

Parts (b) and (c) raise the question of whether the continuity assumption
used there is needed or can be omitted.

Proposition 1. For any interval C, there exists a function u defined on C that

is increasing but discontinuous on C, and such that the preference relation

-~

corresponding to u is c. absolute risk constant and g. absolute risk constant.

In the Appendix, such counterexample functions are constructed by means
of a Cantor-type subdivision of the interval (0, 1).
A family of conditions of risk constancy can be defined in terms of the

group operations xe x' discussed in Section 2. Preferences will be called

o-risk constant provided that for any amounts hl’h2 h3 and any probability
14

0<p<1l, the indifference

is satisfied uniformly in x. As in Definition 3, the class of lotteries to

be considered can be reduced.
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Definition 4. Consider a lottery space (L, C, =) and a group operation o

defined on C.

(a) Preferences will bé called p. e°—risk constant provided that, for

any amount h>e and any probability 0<p<1l, the indifference

_E// Xoh

X~ —O< (13)

160 7~ Xo h-l

is satisfied uniformly in x with Xohandxah—l in C.

(b) Preferences will be called c. eo-risk constant provided that, for

any amounts h>e and h', the indifference

;i X °h
X o (h')"lNO/ (14)

R

—~——X o h-l

is satisfied uniformly in x with xvha.ndxoh-lin c.

(c) Preferences will be called g. o-risk constant provided that, for any

amounts h>e and h' >e, the indifference

%/XOh'

x ~ ={_ (15)

/;f\x ° h-.l

is satisfied uniformly in x with x°h' and x -ht in C.
Any one of the above conditions implies that the utility function u belongs

to the following parametric family of functions,

e , >0
u(x) = g (x) , r=0 (16)
- F9(x) r<0

where g(x) is a scaling function for the group operation o .
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Theorem 6. For an expected-utility model, the following are equivalent:
(a) The preference relation 2 is p. o-risk constant.
(b) The preference relation = is c. o-risk constant and continucus.
(c) The preference relation = is g. o-risk constant and continuous.
(d) The utility function u for = belongs to the parametric family
of functions (16).
As in Theorem 5, the contimiity assumption in parts (b) and (c) cannot be
omitted since, for a function u as in Proposition 1 that is defined on g(C) ,
the function u(g(x)), x in C, is a discontinuous utility function for a

preference relation 2 that is ¢. o-risk constant and g. e-risk constant.

6. Relative Risk Constancy
This section discusses those conditions of .-risk constancy which are

concerned with relative changes in consequences. .The distinction discussed
in Section 3 between a decision maker's net gains x and his or her final

asset positions y = a+x is also important here.
For final asset positions y, consider the condition that, for any

multiplier changes kl

K1Y~y _O\ 17)
1-p k3Y

is satisfied uniformly in y. This condition is a version of the condition

,kz,k3 >0 and any probability 0<p<1l, the indifference

of constant proportional risk aversion defined in Pratt (1964).

For net gains x, the corresponding condition is that, for any proportions

m My, My >-land any probability 0<p<1l, the indifference

P x+mz(a+x)
X +my (a+xy™~ — a7’
1-p x+my(a+x)
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is satisfied uniformly in x. This condition is a version of the condition of

a linear risk attitude defined in Harvey (1981).

The concern here is to weaken the condition (17)' in the same manner that
the condition of absolute risk constancy was weakened in Definition 3. The
following three conditions are restatements of the o-risk constant conditions
in Definition 4 where changes are viewed as percent changes and thus the group
operation o is shift multiplication with respect to an initial asset position a.

Definition 5. Consider a lottery space (L,C,>) and an initial asset position a:

(a) Preferences will be called p. relative risk constant provided that for

any proportion m>0 and any probability 0<p<1l, the indifference

x+m (a+x)

R~ — (18)

1-p -~ (a+x)
m+1

is satisfied uniformly in x with x+m(a+x) and x -~ rr_:-lT (a+x) in C.

(b) Preferences will be called c. relative risk constant provided

that, for any proportions m>0 and m' > -1, the indifference

E// x+m(a+x)

x -m'(a+x)~— - (19)
% x-— (@a+x)
is satisfied uniformly in x with x+m(a+x) and x - a% (a+x) in C.

(c) Preferences will be called g. relative risk constant provided that,

for any proportions 0<m<1 and m' > 0 , the indifference
X x+m'(a+x)
X~ — (20)

X x-m(a+x)

is satisfied uniformly in x with x+m'(a+x) and x-m(a+x) in C.
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As observed in Theorem 4, the function g(x) = log (a+x) is a scaling
function for the group operation of shift multiplication with respect to an

initial asset position a. Thus, the parametric family of functions (16)

is here,
(a+x)r , r>0
u(x) = log (a+x) , r=20 (21)
- (a+x)r , r<0.

Theorem 6 implies as the following corollary that the verification of
relative risk constancy for any one of the classes of lotteries in (18),(19),(20)
suffices to imply that the utility function u belongs to the parametric family
of functions (21).

Theorem 7. For an expected-utility model, the following are equivalent:

(a) The preference relation - is p. relative risk constant.

(b) The preference relation =~ 1is c. relative risk constant and continuous.

(c) The preference relation » 1is g. relative risk constant and continuous.

(d) The utility function u for 2z belongs to the parametric family of
functions (21).

Theorem 7 differs from similar previous results in that the hypotheses
(a)-(c) are weaker. Unlike results in Harvey (198l) and Pratt (1964), it is
not assumed that u 1is twice continuously differentiable with u' positive.

That the continuity assumption in parts (b), (c) cannot be omitted follows
from the remark on parts (b), (c) in Theorem 6.

Proposition 2. Suppose that preferences are risk averse and relative risk

constant. Then:
(@) Preferences are represented by a utility function (21) with r<1.
(b) (Pratt (1964)) There is decreasing risk aversion for all x in C.
(c) The risk attitude tends to risk neutrality as x tends to +«;

that is, for any fixed h the difference between x and the certainty equiva-

lent of an even-chance lottery Qx +h. x-h tends to 0 as x tends to += .
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7. Assessment Methods

In order to verify one of the above conditions of risk constancy, it suffices
to consider only one of the types of indifference comparisons (8)-(10) or (18)-(20).
For the certainty equivalence and gain equivalence cases, (9)-(10) and (19)-(20), one
of the continuity conditions (El)-(E4) must also be verified. For this step,
attention should be focused on amounts x such as x=0, the "status quo," that
may have a special significance for the decision maker. To evaluate continuity
at x=0, for example, choose a fixed loss or gain h#0 and determine the certainty
equivalents of various lotteries pRh-P(l-p)zo as the probability p tends to zero.
Harvey (1986b) discusses a model in which the continuity conditions are not satis-
fied at x=0.

If a decision maker's preferences are absolute risk constant or are relative
risk constant with respect to a known amount a, then a utility function (11) or
(21) is determined up to a single parameter r. Thus, the Methods 1 and 2 in
Section 4 can use either of these conditions in the same manner as the condition
of relative risk neutrality with respect to an unknown amount a.

If a decision maker's preferences are relative risk constant with respect to
an unknown amount a , then the utility function belongs to the two-parameter family
of functions (21) with parameters r and a. The following assessment methods that
are analogous to Methods 1 and 2 use these utility functions.

Method 1'. To verify the condition of relative risk constancy with respect to an
unknown amount a, assess indifference comparisons (18), (19), or (20) for two
different ranges of consequences and calculate the resulting values of r and a
(thereby obtaining the utility function). Then, assess indifference comparisons
for other ranges of consequences, and ask whether these assessments are in accord
with the calculated utility function.

A utility function (21) represents an attitude of decreasing risk aversion
when the parameter r has a value r< 1. The following method is based on the idea
that these utility functions form a sufficiently rich family of functions to

model the preference issue of decreasing risk aversion.
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Method 2'. Determine that the issue of risk is important and that it will be
helpful to consider the degree of risk aversion for two different, e.g., oppo-
site, ranges of consequences. For each of these ranges, select an even-chance
lottery in that range that is relatively convenient to consider. For any possible
certainty equivalents of these lotteries, calculate first the corresponding values
of the parameters r and a, and then the resulting preferences between the deci-
sion maker's alternative actions. Report this information by showing for which
cambinations of the two certainty equivalents each of the alternative actions is
most preferred.
8, Other Types of Special Conditions
This section discusses three directions in which the results in the
preceding sections can be extended.
9.1. There are conditions of o-risk constancy other than those of
absolute risk constancy and relative risk constancy. Two such conditions
are as follows.

Double—exponential utility functions. Consider an exponential scaling function,

g(x) = c-l e , where the constant ¢ is positive or negative. The correspond-

o1 X + &%), which is a semi-group operation on

ing operation is Xeoy = log (e

(=0, ®») . It is related to addition much as addition is related to multipli-
cation; for example, addition is distributive over o, i.e., (x+2) e (y+2)=
(xeoy) + 2.

The condition (12) of o-risk constancy for this operation requires that,

for any amounts kl’kz’k3 > 0 and any probability O<p<1l, the indifference
X
loga @ +k,)
X
loga (@a” + k

1-p log, @* + k)

is satisfied uniformly in x. Here, the base a equals e .
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The family (15) of utility functions implied by (22) is:

exp <§e ) , r>0
a(x) = %ec" L r=0 (23)
~exp (2 ) , <0

For r#0, these are the double-exponential utility functions introduced
in Bell (1986).

As shown in that paper, a double-exponential utility function represents
an attitude of decreasing risk aversion for any parameter values c<0 and r<0.
For such values of ¢ ard r, preferences also have the property that the risk
attitude tends to risk constancy with parameter ¢ as x tends to +o.,

Double-logarithmic utility functions. In symmetry to the above move fram

absolute risk constancy in an exponential direction, it is possible to move

from relative risk constancy in a logarithmic direction. Consider a scaling
function of the form g(x) = log (al + log(a2 + x)), and assume for simplicity
that a sa, = 0Oand C = (1 ,») . The corresponding operation is xoy =

Xlogy — ylogx

The condition (12) of e-risk constancy for this operation requires that,

for any amounts kl’kz’k >0 and any probability O<p<1l, the indifference

3
k
i x 2
&K1~ (24)
k
1-p x 3

is satisfied uniformly in x.
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The family (15) of utility functions impled by (24) is:

((log'x)r , r>0
ux) = { log logx , r=0 (25)
k— (logx)® , r<o0

These functions will be called double-logarithmic utility functions.

A double~logarithmic utility function represents an attitude of
decreasing risk aversion for all x>1 when r<1 and for x sufficiently
large when r>1. For any r, the risk attitude tends to risk neutrality
as x tends to +w,

9.2 There are a variety of conditions on risk attitude that are closely
related to that of absolute risk constancy. Farquhar and Nakamura (1985),
for example, introduce a number of such conditions; e.g., their augmented

constant exchange property implies that u(x) belongs to a parametric

family that contains the linear and exponential functions and also contains

four other types of functions, one of which is the sumex fucntions. Thus,

this condition is a weakening of absolute risk constancy. By means of the

scaling function g(x) =log (a+x) , it would be possible to define a

"relative exchange property" and to show that this condition implies a utility

function of the form u(g(x)) where u belongs to the above family of functions.
Harvey (1986b) introduces two conditions that restrict preferences among

lotteries when a pair of lotteries stochastically dominates another pair

of lotteries. One condition is equivalent to that of absolute risk

consistency and the other condition is equivalent to relative risk constancy.
Epstein (1985) and Machina (1982) are concerned with strengthening the

condition of decreasing absolute risk aversion (DARA) in an expected-utility
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model and, more generally, in a model having a Frechet differentiable prefer-
ence function. Several of their conditions are a strengthening of absolute
risk constancy in the sense that they imply risk neutrality in an expected-
utility nodel. See, for example, the conditions C.l and C.2 in Machina (1982)
and the conditions R-DARA together with R.1l, R.2, and R.3 in Epstein (1985).
It might be of interest to examine the implications of conditions in the
present paper, e.g., relative risk constancy, in a variety of non-expected-
utility models.

9.3 For thepreference conditions that are discussed in this paper, the
single variable x 1is regarded as a measure of monetary changes. However,
these preference conditions may also be appropriate in decision problems in
which the consequences are described by a single non-monetary variable x. In
a medical decision problem, for example, x might denote extra days of life in
normal health.

For decision problems in which each consequence ¢ is described by a
number of variables, that is, c¢= (xl P xn) ;, conditions of preferential
independence and expected utility imply that preferences are represented by

a utility function of the form,

u{c) =f£f (Vl(Xl) + ... +vn(xn) ), (26)

where v=vy (xl) +...+ vn(xn) is an additive value function. If x denctes

one of the variables Xy g oo s Xy then preference conditions regarding x

n
are conditions on conditional risk attitude, while if x denotes the additive
value function v, then preference conditions regarding x are conditions on

multivariable risk attitude. All these remarks are well known.

When x measures the amounts of an additive value function v, it is
often useful to restate a preference condition in terms of the consequences

(xl PR xn) rather than in terms of the amounts v . The following list provides
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terminology and references for the restatements of several vreference
conditions:

(a) Absolute risk neutrality: additive utility independence (Fishburn,
1965, 1970) and multivariate risk neutrality (Richard, 1975).

(b) Relative risk neutrality: proportional multiperiod risk neutrality
(Harvey, 1986a).

(c) Absolute risk constancy: mutual utility independence (Keeney, 1968,
1974, Meyer, 1970, 1972, and Meyer and Pratt (in Keeney and Raiffa, 1976,

p. 330)), and weak additivity (Pollak, 1967).

(d) Relative risk constancy: proportional utility dependence (Harvey, 1984),
coinciding standard and equal utility (Harvey, 1985), and timing independence
(Haxrvey, 1986a) .

The results in this paper imply that assumptions of differentiability of
the function f in (26) are not needed as part of the conditions on multi-
variable risk attitude cited above. Thus, the same removal of inessential
assumptions is possible for the modeling of multivariable preferences as for

the modeling of single-variable preferences.
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Appendix: Proofs of Results

Proof of Theorem 1. Herstein and Milnor (1953) have shown the hard vart of

this result, namely that conditions (&), (C), (D) imply the existence of a
function u defined on C that represents the preference relation ; as

in (1). Then, (1) ard condition (B) immediately imply thatu is increasing.
The converse implications are straightforward to verify.

Proof of Theorem 2. The interval C is the union of any pair of sets in (El).

If (El) is satisfied, then since C is connected any such pair of sets must
have a non-empty intersection. Thus, (E2) is satisfied. Conversely, (E2)

implies that for X5-%2, {xin C: x= 2} =[x,,*)n C and {xin C:

0
X=X} = (-, xo]n C. Thus, (El) is satisfied. The equivalence of (E3)

and (E4) can be shown in a similar manner.

Clearly, (El) implies (E3), and (E2) implies (E4). To show that (E4)
implies the continuity of the utility function u, suppose that u 1is not
continuous. Then, since u is increasing, it has a jump discontinuity at
some point X in C. Thus, there exist Y <X, andy'zx0 in C such that
bu(y) +%u(y') is not equal to u(x) for any x in C, and so (E4) is false.
Finally, the continuity of u implies that the sets in (El) are closed in C.

Consider a function f as described and a continuous utility function u.
Let z = uly) and z' = u(y'). Then, for any points z, z' in the interval u(C),
fou LT(yz+kz') =% fou T(2) + % feu © (2'). Since feu T is increasing, it
follows that fou Y(z) = az+b, z in u(C), for some constants a>0, b, and

so f(y) =au(y)+b, yinCcC.
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Proof of Theorem 3. Suppose that 2 is e-risk neutral with respect to a

group operation ¢ . For any y and y' in C, the "e-midpoint"
y = g-l(lig(y) +%g(y')) of yand y' is between y and y' and hence
is in C. Moreover, y =yo.h and y' = §7oh—l where h = g-l (gy) -9 ) .
According to (4), it follows that for any y and y' in C, the lottery
SLY - has the certainty equivalent §~5Ly e Thus, condition (E4) is
satisfied, and so any increasing function f is a utility function for <
provided that (2) is satisfied. But, for any x,y,y' in C, xA.SLyly,
implies that x=y, and so g(x) =g(y) =%g(y) +%g(y'). Therefore, a
scaling function g for o is a utility function for & .
Conversely, suppose that a scaling function g for a group operation -
is a utility function for the preference relation > . Since
g(x) =% g(xeh) +%g(xch™l) for any x,xch,xeh © in C, it follows that the
condition (4) of e-risk neutrality is satisfied.

Proof of Theorem 4. The condition (6) can be rewritten as

(h+a)(x+a)-a

5

K —

h+a (x+a) -a

where h=m+1l-a is in Ia when m>0. Thus, (6) states that ; is

o-risk neutral for the shift multiplication - on I The function

g(x) = log (x+a) is a scaling function for - since log (x°x'+a)=1og (x+a) +
log (x'+a) for any x, x' in Ia. Thus, by Theorem 3, the preference rela-

tion gz is relative risk neutral if and only if g(x) = log (x+a) is a

utility function for > .
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Proof of Theorem 5. We first show that p. absolute risk constancy implies

a linear-exponential utility function (11). Select two amounts x; and x_;
in C with xl>x_1, and define
xt=35(l+t) xl+35(l-t)x_l (Al)

for all real t. This definition is consistent with the notation X) 1 X qe
It specifies a linear, increasing correspondence between the variables x and t.
As a second functional dependence, define g=1-p for any probability p.

Since preferences satisfy the conditions of expected utility, there
exists a unique probability 0<p<1 such that the indifference (8) is satisfied
The argument will be divided into

with x=x x+h=x,, and x~-h=x_

0’ 1°
three cases, depending on whether p=X,p<%,orp>X%.

Suppose that p=% . Normalize the utility function u for the lottery
space (L,C,>) so that u (Xl) =]l and u (x_l) =-1. Then, by the indifference
(8), ulxy) =%u(x)) + %u(x_;) =0. Therefore, u(xt)v=t for t=1,0,~1.

Since > is p. absolute risk constant, there exists a single probability

-

f) such that
u(x%) =pu (x;) +qu (xo)
u(x_) =pulx) +qu (x_y) (A2)
u(xo) = pu (x;i) +qu (x_;i)

Therefore, u(x;i) =p, u(x_!s) =-g,and 0 =pu (x;i) +qu (x_;i) . It follows

that p=%. Thus, u(x;i) =% and u(x_;i) =-% . Arguing by mathematical induction
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it follows that u(xt) =t for any dyadic number t in the interval [-1,1].
Since u 1is increasing, it follows that u(xt) =t for any real number t in [-1,1]1.

According to (Al), however, t= (xt-xo)/(xl-xo) for any real mumber Xy

Therefore, u(x)=(x-x0)/(xl—x0)=ax+b where a=(xl—x0\_l>0 and
b=-x0/(xl-x0). Here, x is any real number in the interval [X—l'xl]'

It remains to consider any x_ in C such that x >x; or x <x_, .

Suppose that x, >x Then, there exists a single probability p such

S S
that

u(x,) =pu (x.) +qu (x,)
1 t 0 (a3)

u(xo) pu (xt_l) + qu (x_l) .

Thus, 1 = pu (xt) and 0 = pu (Xt-l) -g. It follows that u(xt) = u(xt_l) +1.
Arquing by iteration, it then follows that u(xt) =t. For any X

t 1
it can be shown by a similar argument that ulx,) = t. Thus, in conclusion,

<X in C,

u{x) = (x-xo)/(xl—xo\ = ax+b witha>0 for all x in C.

Next, suppose that p<%. Normalize the utility function u so that
u(xl) =g/p and u(x_l) = p/q. Then, by the indifference (8), u(xo) =

pu(xl)+q ux_;)=1. If s>0 is defined so that es=q/p>l, then

st

u(xt) = e for t=1,0,~-1.

Since = is p. absolute risk constant, there exists a single probability p

-

such that (A2) is satisfied. Therefore, u(x;i) =p(a/p) +q, u(X_;E) =p+q(p/q) ,

and l=f>u(x;5)+€1u(x_;§) . It follows that ﬁ(q/p);5+ a(p/q);i=]_, and

s () , u(x_;i) = (p/q);i=eS (=) . Arguing by mathematical

induction, it follows that u(xt) =eSt

hence u(x;i) = (a/p)%=e
for any dyadic number t in [-1,1].
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st for any real number t

-xo)/(xl-xo), and thus u(x) =er(X—Xo) =

Since u is increasing, it follows that u(xt) =e

in [-1,1]. However, t=(xt

ae™ where r=s/(xl-xo) >0and a=e =X

8>0. Here, x 1is any real
number in [x_; , %]

. . . N
It remains to consider any X in C such that X, >¥% Orx <x_,.

Suppose that X >X) . Then, there exists a single probability p such

that (A3) is satisfied. Thus, e° = ﬁu(xt) +q and l=f>u(xt_l) +Ge °.

It follows that u(xt) =e° u(xt_l) . Arquing by iteration, it then follows
that u(xt)=eSt. For any x <x_; in C, it can be shown by a similar
argument that u(xt) =eSt . Thus, in conclusion, u(x) =ae™ with a>0,

r>0 for all x in C.
Now, suppose that p>X%. In this case, normalize the utility function u
so that u(xl) =—q/p ard u(x_l) =-p/q. Then, by an argument similar to that

X with a>0, r<o0

in the case p<%, it can be shown that u(x)=-ae
for all x in C.

We next show that each of c. absolute risk constancy and g. absolute risk
constancy implies a linear-exponential utility function. Observe that by means
of relabeling the consequences in (9) and (10) each of these conditions of uni-

form indifference implies that for any amounts hl’hz’hB the indifference

(A4)

is satisfied uniformly in x with x+h2 and x+h3 in C.

The condition (A4) is therefore satisfied uniformly in x when p=%,1,
or 0. Assume that (A4) is satisfied uniformly in x for two probabilities
p and o'. Then, (A4) is also satisfied uniformly in x for the probability

p=%p+%p' . A crucial part of the following proof is the assumption in
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parts (b) and (c) of Theorem 5 that any lottery & has a certainty equivalent
c(l)~2.
Suppose that for same x+h2 and x+h

3inC,

/-*-112
X+h,~=0 (Aa5)

1 gy

&\.x+h

x+h1~.—

C(Q,p.) /—-'52,p. .

Consider any other amount Xx'=b+x with Xx' +h2 and x'+h3 in C. By
as ion, c(f)—~—9% implies b+c(l )~Db+2 , and c(&_,)~—2 implies
sumpti. ( p) . ( p) 5 ( o ) ot 1P

b+c(2,o,)~b+2p, . Thus, (AS5) implies that

% b+c(%
(p)
b+x+h1 —~
¥ bt 5 b+x+h,
~-C_ -
¥ b+g, q b+x+h,

Thus, (A4) is satisfied uniformly in x for the probability p.
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Arguing by mathematical induction, it follows that (A4) is satisfied
uniformly in x for any dyadic probability p. For any real probability p,
consider a sequence of dyadic probabilities p(n) ,n=1,2, ..., such that

l%mp(n) =p. For given amounts x+h, and x+h, in C, let x+h, and

2 3 1

x+hl(n) , n=1,2,..., denote the certainty equivalents of 2D and Qo(n)’

n=1,2,.... Then, x+hl=u-l(pu(x+h2) +qu(x+h3)) and x+h,(n) =

1
u-l(P n) u(X+h2) +g(n)u (X+h3) ), n=1,2, ..., and thus h1=limhl(n)
n

as a result of the continuity of ul. Consider any amount x'=b+x with

x! +h2 and x' +h3

b(n) for n=1,2,.... Therefore, b+x+h1 is the certainty
1

equivalent of b+ QD as a result again of the continuity of u —.

in C. Then, b+x+hl(n) is the certainty equivalent

of b+ %

The above argument establishes that, for a continuous expected-utility
model, each of c¢. absolute risk constancy and g. absolute risk constancy
implies p. absolute risk constancy. Thus, by the first part of this proof,
each of these conditions implies a linear-exponential utility function.

It remains to show that if there is a linear-exponential utility function,
then the three conditions of risk constancy are satisfied. The verification is

straightforward, and hence can be omitted.

Proof of Proposition 1. We will construct a function u(x) that is defined

and increasing on the interval [0, 1) such that, for the corresponding preference
relation > , any lottery Zx, %! with x,x' in [0, 1) does not have a cer-
tainty equivalent. Thus, the preference relation > is discontinuous and
vacuously satisfies the conditions of c. absolute risk constancy and g. absolute
risk constancy. A similar result can be obtained for any interval C by choosing
a ocontinuous, increasing function f with domain C and range a subinterval of

[0,1), and considering u(f(x)) as a utility function defined on C.
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Any real nutber x in [0,1l) can be represented as a sum

3y a %
X = T + 5 + oe. + o + ... (n6)
2 2 2

where an=0 orl forany n=1,2,... and for any N there exists an
n>N such that a = 0. The representation (A6) defines a one-to-one
correspondence between [0, 1) and the set of sequences {an} as described.
For any x in [0,1), define

2a 2a 2a
n

u(X) = g: + T + ... + R + ...
3

where {an} is the unique sequence corresponding to x.
Then, u(x) is an increasing function. For if x>x' are two amounts
in £0,1) and {an} , {a'n} are the corresponding sequences, then there

exists an N such that a.N>a'N but an=a'n for all n<N. Hence,

2a 2
1 N-1, 2 :
u(x) i ——:3T+ cee T W+?\]->U(X) .

Moreover, there is not a mumber % between x and x' such that u(X) =

Mu(x) + %u(x') . For if u=% u(x) + %u(x'), then
2a 2a 2a
1_1=—i+ TZ+ s +—n—'+ eae
3 3 3
where 5n=!~5(an+a'n), n=1,2,... ILet N denote the least n such that

. - _ B 1 N-1
a, # a' . Hence, aN—ls, and thus for S = 2al/3 +ooo + ZaN_l/3 it

n
follows that S+3 N <T<s+3 N 4+ 3N

. lLet {an} denote the sequence
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corresponding to a number x in [0,1). If QM#aM for a least integer
M<N, then u(x)<u if a,<a, andu(x)>u if a,>a, . If an=an for
all n<N, then u(x) <S+0+37 if 4 =0 andu® >S+2:37 +0 if
5N=l. Thus in every case, u(X) # 4.

Proof of Theorem 6. ILet Cg denote the range of the scaling function

t=g(x) restricted to the domain C. Let Lg denote the set of lotteries
having consequences in Cg . Then, the given expected-utility model

(L,C,>,u) corresponds to an expected-utility model (Lg ,C ., = )

s u
g 9 g

induced by the scaling function g. Here, <ti ’ pi> ?’-‘g <t'i , p'i> in Lg

if ard only if <g-l(ti) ' Pi><:<g_l(t'i), p'i> in L, and ug(t) =u (g-l(

1)) .
The preference relation & satisfies one of the conditions (a)-(c) in
Theorem 6 if and only if the preference relation ':g satisfies the correspond-
ing condition (a)-(c) in Theorem 5. Moreover, the utility function u belongs
to the parametric family (16) if and only if the utility function ug belongs
to the linear-exponential family (11). Thus, Theorem 5 implies Theorem 6 by
means of the correspondence between ( L,C,Z%,u) and (L_,C_,Z_ , and ug) .

g g g
Proof of Theorem 7. As shown in Section 4, x.h= (th+a)(a+x) -—a for the

group operation of shift multiplication. Thus, for any k=a+h>0, the o-risk
constant conditions (13)-(15) become the relative risk constant conditions
(18)-(20) when - is shift multiplication. Moreover, the family of functions
(16) becomes the family of functions (21). Thus, Theorem 7 is a corollary of
Theorem 6.

Proof of Proposition 2. Part (a) is adirect corollary of Theorem 7 since a

utility function (21) is strictly concave if and only if r<1l. Part (b) is
due to Pratt (1964) in that such a utility function is shown there to represent

decreasing risk aversion.
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To show part (c), consider a utility function u(x) of the form (21)
with r<l. For a fixed amount x, let x-f(h) denote the certainty

equivalent of a lottery & Risk aversion implies that £(h) >0.

xth, x-h * ~
In general, £(h)=x-u = (u(x+h) + jux-h)) = \P £ (t)dt where
0
£ __u' (x+t) -du' (x-t) u' (x-t) - du'(x+t)
(t) == -1 <
u' (u T(ulx+t) +xulx-t)) ) N u' (x)
Hence,
2
2u(x) =u(x+h) —u(x-h) __h u" (x+6h)
0<£h) < 2u’ (%) T2 u' (%)

for some -1<0<1. However, for a utility function (21) the ratio
~u" (x+6h) /u'(x) is equal to (L-r) ( (x+6h)/x) T L/ (x+06h) . This
expression tends to 0 as x tends to +«, and hence f(h) tends to 0 as x

tends to +«.
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