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Foreword 

This paper is one of the series of 11 Working Papers presenting the software for interactive 
decision support and software tools for developing decision support systems. These products 
constitute the outcome of the contracted study agreement between the System and Decision 
Sciences Program at  IIASA and several Polish scientific institutions. The theoretical part of 
these results is presented in the IIASA Working Paper WP-88-071 entitled Theory, Software 
and Tenting Ezamples in Decision Support Systems. This volume contains the theoretical 
and methodological bacgrounds of the software systems developed within the project. 

This paper presents the user documentation for decision analysis and support systems of 
DIDAS family designed for supporting decision problems when the model of the system under 
study can be formulated in terms of set of nonlinear equations. The program presented in 
the paper, called IAGDIDAS-N is provided with a nonlinear model generator and editor that 
support definition, edition and symbolic differentiation of nonlinear models for multiobjective 
decision analysis. A specially introduced standard of defining nonlinear programming mod- 
els for multiobjective optimization helps to connect the model generator with other parts 
of the system. Optimization runs involved in interactive, multiobjective decision analysis 
are performed by a new version of nonlinear programming algorithm specially adapted for 
multiobjective problems. This algorithm is based on shifted penalty functions and projected 
conjugate directions techniques. 

An attachment to this paper presents user documentation for a pilot version of a nonlinear 
model generator with facilities for symbolic differentiation and other means of fundamental 
model analysis. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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1 Extended summary 

In many complex decision problems involving economic, environmental and technological 
decisions as well as in complex engineering design, decision maker needs some help of an 
analyst or a team of them to learn about possible decision options and their predicted results. 
The team of analysts frequently summarizes its knowledge in the form of a substantive model 
of the decision situation that can be formalized mathematically and computerized. While 
such a model can never be perfect and cannot encompass all aspects of the problem, it is 
often a great help to  the decision maker in the process of learning about novel aspects of the 
decision situation and gaining expertise in handling problems of a given class. Even if the 
final decisions are typically made judgementally - that is, are based on holistic, deliberative 
assessments of all available information without performing a calculative analysis of this 
information, see (Dreyfus, 1984) - the interaction of a decision maker with the team of 
analysts and substantive models prepared by them can be of great value when preparing 
such decisions. 

In organizing such interaction, many techniques of optimization, multicriteria decision 
analysis and other tools of mathematical programming can be used. To be of value for a holis- 
tically thinking decision maker, however, all such techniques must be used as supporting tools 
of interactive analysis rather than as means for proposing unique optimal decisions and thus 
replacing the decision maker. The decision analysis and support systems of DIDAS family - 
that is, Dynamic Interactive Decision Analysis and Support systems, see e.g. (Lewandowski 
et al., 1983, 1987) - are specially designed to support interactive work with a substantive 
model while using multicriteria optimization tools, but they stress the learning aspects of 
such work, such as the right of a decision maker to change his priorities and preferences when 
learning new facts. DIDAS systems can be used either by analysts who want to analyze their 
substantive models, or by teams of analysts and decision makers, or even by decision makers 
working alone with a previously defined substantive model; in any case, we shall speak further 
about the user of the system. 

There are several classes of substantive models that all require special technical means of 
support - see (Lewandowski et al., 1987). The IAC-DIDAS-N version is designed to support 
models of multiobjective nonlinear programming type. While some nonlinear DIDAS versions 
have been developed before, they did not follow any standards of defining such models, since 
such standards did not exist. In order to support the work with a user that is not necessarily a 
specialist in computer programming and nonlinear optimization programming, it has become 
necessary to introduce such standards. 

Models of multiobjective nonlinear programming type specify, firstly, the following classes 
of variables: input variables that can be subdivided into decision variables (that is, means 
of multiobjective optimization) and parametric variables (that is, model parameters that are 
kept constant during multiobjective analysis but might be changed during parametric or sen- 
sitivity analysis) - and outcome variables that can be subdivided into floating outcomes 
(either used as model constraints or only used for the easiness of definition of the nonlin- 
ear model or having only informative importance for the user) and optimized outcomes or 
objectives (the ends of multiobjective optimization that can be either maximized or mini- 
mized or stabilized, that is, kept close to a desired level). Actually, the distinction between 
various types of outcome variables is not necessarily sharp and the user might change their 
classification and select his objectives among various outcome variables when defining the 
multiobjective analysis problem. 

For all input and outcome variables, a reasonably defined nonlinear model should include 



lower and upper bounds, that is, reasonable ranges of admissible changes of these variables. 
Moreover, an essential part of a nonlinear model definition are model equations, that is, 
nonlinear functions that define the dependence of all outcome variables on input variables. To 
make the model definition easier for the user, it is assumed that outcome variables are defined 
consecutively and that they can depend not only on input variables, but also on previously 
defined outcome variables. However, all outcome variables must be defined explicitly. 

There are many examples of decision problems that can be analyzed while using a substan- 
tive model of multiobjective nonlinear programming type; for example, DIDAS-type systems 
with multiobjective nonlinear programming models have been used in analyzing various envi- 
ronmental or technological problems (see Kaden, 1985, Grauer et al., 1983). As a demonstra- 
tive or tutorial example, IAC-DIDAS-N uses a multiobjective nonlinear programming model 
of acid deposition in forest soil (see Hettelingh and Hordijk, 1987). The user can also define 
substantive models of multiobjective nonlinear programming type for his own problems and 
analyze them with the help of IAC-DIDAS-N. 

A typical procedure of working with the IAC-DIDAS-N system consists of several phases. 
In the first phase, a user - typically, an analyst -defines the substantive model and edits 

it on the computer. In earlier versions of nonlinear DIDAS-type systems (which were mostly 
implemented on bigger mainframe computers) this phase has not been explicitly supported 
in the system and the user had to separately prepare (define and edit) his nonlinear model, 
typically in the form of a FORTRAN procedure that contained also user-supplied formulae for 
the derivatives of all outcome functions with respect to decision variables. It is a known fact 
that most mistakes in applying nonlinear programming methods are made when determining 
derivatives analytically; thus, this form of preparation of a substantive model required rather 
much experience in applications of nonlinear programming. 

The new features of IAC-DIDAS-N are, firstly, the definition and edition of substantive 
models in an easy but flexible standard format of a spreadsheet, where the input variables 
correspond to spreadsheet columns and the outcome variables - to spreadsheet rows; special 
cells are reserved for types of variables, lower and upper bounds for all variables, as well as 
reference levels (reservation levels for stabilized outcomes, aspiration and reservation levels 
for maximized and minimized outcomes), for results of various optimization computations, 
etc. However, another unique new feature of IAC-DIDAS-N is an automatic support of 
calculations of all needed derivatives by a symbolic differentiation program. The user does 
not need to laboriously calculate many derivatives and to check whether he did not make any 
mistakes; he must only define model equations or outcome functions (possibly in a recursive, 
but explicit form) and make sure that these functions are differentiable and admissible for 
the symbolic differentiation program - which admits functions from a rather wide class. The 
spreadsheet format currently implemented does limit somehow the size of substantive models 
that can be defined in it, but reasonable models of nonlinear programming type that can be 
usefully analyzed on microcomputers should not be too large anyway; on the other hand, the 
spreadsheet format allows also for display of computed values of automatically determined 
formulae for derivatives in appropriate cells. The user of IAC-DIDAS-N can also have several 
substantive models recorded in special model directories, use old models to speed up the 
definition of a new model, etc., while the system supports automatically the recording of all 
new or modified models in the appropriate directory. 

In further phases of work with DIDAS-type systems, the user - here typically an ana- 
lyst working together with the decision maker - specifies a multiobjective analysis problem 
related to his substantive model and participates in an initial analysis of this problem. There 
might be many multiobjective analysis problems related to the same substantive model: the 



specification of a multiobjective problem consists in designating optimized outcomes (ob- 
jectives) between outcome variables, defining whether an objective should be minimized, or 
maximized, or stabilized - kept close to  a given level. Moreover, the user can also shift 
bounds on any outcome when specifying a multiobjective analysis problem. 

For a given definition of the multiobjective analysis problem, the decisions and outcomes 
in the model are subdivided into two categories: those that  are efficient with respect to  the 
multiobjective problem (that  is, such that  no objective can be improved without deteriorating 
some other objective) and those that  are inefficient. It is assumed tha t  the user is interested 
only in efficient decisions and outcomes (this assumption is reasonable provided he has listed 
all objectives of his concern; if he has not, or if some objectives of his concern are not 
represented in the model, he can still modify the sense of efficiency by adding new objectives, 
or by requiring some objectives to  be kept close to  given levels, or by returning to  the model 
definition phase and modifying the model). 

One of main functions of a DIDAS-type systems is to  compute efficient decisions and 
outcomes - following interactively various instructions of the user - and to  present them 
for analysis. This is done by solving a special parametric nonlinear programming prob- 
lem resulting from the specification of the multiobjective analysis problem; for this purpose, 
IAC-DIDAS-N contains a specialized nonlinear programming algorithm called solver .  Follow- 
ing the experiences with previous versions of nonlinear DIDAS systems, a robust nonlinear 
programming algorithm based on shifted penalty functions and projected conjugate directions 
techniques was further developed for IAC-DIDAS-N. 

However, a multiobjective problem definition admits usually many efficient decisions and 
outcomes; the user should first learn about ranges of changes of outcomes and bounds on 
efficient outcomes .  This is the main function of IAC-DIDAS-N in the initial analysis phase. 
The user can request the system to optimize any objective separately; however, there is also 
special command in the system related to  these functions. 

The command "utopia" results in subsequent computations of the best possible outcomes 
for all objectives treated separately (such outcomes are practically never attainable jointly, 
hence the name utopia point for the point in outcome space composed of such outcomes). 
During "utopia" calculations some approximations of worst possible efficient values are also 
obtained. The point in outcome space composed of the worst efficient values is called nadir 
point ,  however its exact calculation is a very difficult computational task - for nonlinear 
models there is even no constructive method for such calculation. The approximation of 
nadir point components obtained during utopia point calculations is rather to  optimistic. 
The decision maker or an analyst can change the nadir values obtained according to his 
knowledge. 

The utopia and nadir points give important information to  the user about reasonable 
ranges of (efficient) decision outcomes; in order to  give him also information about a reason- 
able compromise efficient solution, a neutral efficient solution can be also computed in the 
initial analysis phase following a special command. The neutral solution is an efficient solu- 
tion situated 'in the middle' of the range of efficient outcomes, while the precise meaning of 
being 'in the middle' is defined by the distances between the utopia and (the approximation 
of) the nadir point. After analyzing the utopia point, the nadir point and a neutral solution 
(which all can be represented graphically for the user), the initial analysis is completed and 
the user has already learned much about ranges of attainable efficient objectives and the 
possible tradeoffs between these objectives. Each change of the definition of the substantive 
model or of the multiobjective analysis problem, however, necessitates actually a repetition 
of the initial analysis phase. 



The third phase of work with the IAC-DIDAS-N system consists in interactive scanning 
of efficient outcomes and decisions, guided by the user through specifying two reference points 
called reservation point and aspiration point in the objective space, i.e. reservation levels and 
aspiration levels for each objective; the system admits also a more simple option of specifying 
only one reference (aspiration or reservation) level for some or even for all objectives. The 
user has already reasonable knowledge about the range of possible outcomes and thus he can 
specify his reference levels: aspiration level that  he would like to  attain and reservation level 
that  he would like to  satisfy in any case. The utopia and the nadir points could be used as 
initial values for the aspiration point and the reservation point, respectively. If the neutral 
solution was calculated, then the system suggests to  the user another, more adequate initial 
aspiration point: an unattainable outcome point closer to  the efficient solutions than the 
utopia point, and more adequate initial reservation point: an attainable outcome closer t o  
the efficient solutions than the nadir point. 

IAC-DIDAS-N utilizes the aspiration and the reservation levels as parameters in a special 
achievement function coded in the system, uses its solver to compute the solution of a nonlin- 
ear programming problem equivalent to maximizing this achievement function, and responds 
to the user with an attainable, efficient solution and outcomes that  strictly correspond t o  the 
user-specified references. 

If the aspirations are not attainable and the reservations are attainable (which is a typical 
and recommended case), then the response of the system is a solution with attainable, efficient 
outcomes that  are either between the aspiration and reservation points or uniformly as close 
as possible to  the former one. If the aspirations are 'too low' (if they correspond to attainable 
but inefficient outcomes that  can be improved), then the response of the system is a solution 
with outcomes that  are uniformly better than the aspirations. If the reservations are 'too 
high' (if they correspond to  outcomes that  are not attainable), then the response of the system 
is an efficient solution with outcomes that  are uniformly worse than the reservations. The 
precise meaning of the uniform approximation or improvement depends on scaling units for 
each objective that  are defined automatically in the system basing on the differences between 
the utopia point, the current aspiration point and the current reservation point, therefore 
implicitly defined be the user. This automatic definition of scaling units has many advantages 
to  the user who is not only relieved of specifying scaling units but also has a better control 
of the selection of efficient outcomes by changing reference levels in such a case. 

After scanning several representative efficient solutions and outcomes controlled by chang- 
ing references, the user learns typically enough either to  select subjectively an actual decision 
(which needs not t o  correspond to  the decisions proposed in the system, since even the best 
substantive model might differ from real decision situation) or t o  select an efficient decision 
and outcome proposed in the system as a basis for actual decisions. Rarely, the user might 
be still uncertain what decision to  choose; for this case, several additional options can be 
included in a system of DIDAS type. Such options include two more sophisticated scanning 
options: a multidimensional scanning, resulting from perturbing current aspiration levels 
along each coordinate of objective space, and a directional scanning, resulting from perturb- 
ing current aspiration levels along a direction specified by the user (see Korhonen, 1985). 
Another option is forced convergence, that  is, such changes of aspiration levels along subse- 
quent directions specified by the user that  the corresponding efficient decisions and outcomes 
converge t o  a final point that  might represent the best solution for the preferences of the 
user. However, these additional options are not implemented in IAC-DIDAS-N, since the 
experience of working with DIDAS-type systems shows that  these options are rarely used. 



2 Theoretical manual 

The standard form of a multiobjective nonlinear programming problem is defined as follows: 

mazimize [q = f (z)];  X = { z E Rn : gl(z) = 0, gll(z) < O ) (1) 

where z E Rn, q E RP, f : Rn -+ RP is a given function (assumed to be differentiable), 
g1 : Rn -+ R"" and g" : Rn -+ R ~ ' '  are also given functions (of the same class as f )  and 
the maximization of the vector q of p objectives is understood in the Pareto sense: i, 4 are 
solutions of (1) iff 4 = f (i), f E X and there are no such z ,  q with q = f (z) ,  z E X that 
q 1 4, q # 4. Such solutions f , 4  of (1) are called, respectively, an efficient decision 12 and 
the corresponding efficient outcome 4. If, in this definition, it were only required that there 
would be no such z ,  q with q = f ( z ) ,  z E X that q > 4, then the solutions % , I  would be 
called weakly efficient. Equivalently, if the set of all attainable outcomes is denoted by 

and so called positive cones 
N 

D = R :  = { q € R : q ; ~ O , i = l ,  . . . ,  p ) ,  f i=R:\{B), f i=intR:  (3) 

are introduced (thus, q 2 4 can be written as q - 4 E D,  q 2 4, q # 4 as q - 4 E fi and q > 4 
N 

as q - cj E fi), then the sets of efficient outcomes g and of weakly efficient outcomes gw can 
be written as: 

The set of weakly efficient outcomes is larger and contains the set of efficient outcomes; 
in many practical applications, however, the set of weakly efficient outcomes is decisively 
too large. Some efficient outcomes for multiobjective nonlinear programming problems might 
have unbounded trade-of coefficients that indicate how much an objective outcome should 
be deteriorated in order to  improve another objective outcome by a unit; therefore, it is 
important to distinguish also a subset g p  c Q^ called the set of properly efficient outcomes, 
such that the corresponding trade-off coefficients are bounded. 

The abstract problem of multiobjective nonlinear programming consists in determining the 
entire sets g p  or 4 or Qw. The practical problem of multiobjective decision support using 
nonlinear programming models is different and consists in computing and displaying for the 
decision maker (or, generally, for the user of the decision support system) some selected 
properly efficient decisions and outcomes. However, a properly efficient outcome with trade- 
off coefficients that are extremely high or extremely low does not practically differ from 
a weakly efficient outcome. Thus, some a priori bound on trade-off coefficients should be 
defined and properly efficient outcomes that do not satisfy this bound should be excluded. 
This can be done by defining a slightly broader positive cone: 

Dc = {q E RP : dist (q, D) < ~ l l ~ l l  ) (6) 

where any norm in RP is used, also to define the distance between q and D. The corresponding, 
modified definition of Dc-efficiency: 



applies to  properly efficient outcomes that  have trade-off coefficients a priori bounded by 
approximately E and I /&;  such outcomes are also called properly efficient with (a priori) 
bound (see Wierzbicki, 1986). 

The selection of properly efficient outcomes with bound and the corresponding decisions 
should be easily controlled by the user and should result in any outcome in the set 6 ~ "  might 
wish to  attain. Before turning to  some further theoretical problems resulting from these 
practical requirements, observe first that  the standard formulation of multiobjective nonlinear 
programming is not the most convenient for the user. Although many other formulations 
can be rewritten to  the standard form by shifting scales or introducing proxy variables, 
such reformulations should not bother the user and should be automatically performed in 
the decision support system. Therefore, we present here another basic formulation of the 
multiobjective nonlinear programming problem, more convenient for typical applications. 

A substantive model of multiobjective nonlinear programming type consists of the specifi- 
cation of vectors of n decision variables z E Rn and of m outcome variables y E Rm together 
with nonlinear model equations defining the relations between the decision variables and the 
outcome variables and with model bounds defining the lower and upper bounds for all decision 
and outcome variables: 

where g : Rn + Rm is a (differentiable) function that  combines the functions f ,  g' and g" from 
the standard formulation. Thus, m = m' + m" + p;  but the choice, which of the components 
of the outcome variable y correspond only to constraints and which correspond to objectives, 
is flexible and can be modified by the user. There are only inequality constraints in the 
definition of substantive model (9), but equality constraints for some outcomes could be 
easily explained as 

lo y, 5 y; 5 ytuP with yiO = ytuP for some i (9) 

Denote the vector of p objective outcomes by q E RP c Rm (some of the objective variables 
might be originally not represented as outcomes of the model, but we can always add them 
by modifying this model) to write the corresponding objective equations in the form: 

where f is also composed of corresponding components of g .  Thus, the set of attainable 
objective outcomes is again Q = f ( X ) ,  but the set of admissible decisions X is defined by: 

Moreover, the objective outcomes are not necessarily maximized; some of them might 
be minimized, some maximized, some stabilized or kept close to  given stabilization levels 
( that  is, minimized if their value is above stabilization level and maximized if their value is 
below stabilization level). All these possibilities can be summarized by introducing a different 
definition of positive cone D: 

where the first p' objectives are to  be maximized, the next from p'+ 1 until p" - minimized, 
and the last from p" + 1 until p - stabilized. The definition of the cone D, does not change 



its analytical form (6)) although the cone itself changes appropriately. Actually, the user 
needs only to define what to  do with subsequent objectives; the concept of the positive cones 
D and D, is used here only in order to define comprehensively what are efficient and properly 
efficient outcomes for the multiobjective problem. 

Given some stabilization levels qf for stabilized objectives and the requirement that these 
objectives should be minimized above and maximized below stabilization levels, the set of 
efficient outcomes can be defined only relative to the stabilization levels. However, since the 
user can define stabilization levels arbitrarily, of interest here is the union of such relative 
sets of efficient outcomes. Let fi = D \ (0) and 5, = D, \ (0); then the outcomes that might 
be efficient or properly efficient with bound for arbitrary stabilization levels for stabilized 
objectives can be defined, as before, by the relations (4) or (7). The weakly efficient outcomes 
are of no practical interest in this case, since the cone D typically has empty interior which 
implies that weakly efficient outcomes coincide with all attainable outcomes. 

The stabilized outcomes in the above definition of efficiency are, in a sense, similar to the 
outcomes with equality constraints (9); however, there is an important distinction between 
these two concepts. Equality constraints must be satisfied; if not, then there are no admissible 
solutions for the model. Stabilized objective outcomes should be kept close to stabilization 
levels, but they can differ from those levels if, through this difference, other objectives can 
be improved. The user of a decision support system should keep this distinction in mind and 
can, for example, modify the definition of the multiobjective analysis problem by removing 
equality constraints for some outcomes and putting these outcomes into the stabilized objec- 
tive category. Outcomes with inequality constraints could be in the same way converted to 
either minimized or maximized outcomes. 

By adding shifting scales, adding a number of proxy variables and changing the interpre- 
tation of the function g,  the substantive model formulation (8) ,  (9)) (10)) (11) together with 
its positive cone (12) and the related concept of efficiency could be equivalently rewritten to 
the standard form of multiobjective nonlinear programming (1); this, however, does not con- 
cern the user. More important is the way of user-controlled selection of an efficient decision 
and outcome from the set (4) or (7). For stabilized objective outcomes, the user can change 
the related stabilization levels in order to influence this selection; it is  assumed here that he 
will do so for all objective outcomes, that is, use the corresponding reference levels in order 
to influence the selection of efficient decisions. 

For minimized and maximized objectives the user can specify two kinds of reference lev- 
els: aspiration levels denoted here q, or 4 as a vector called aspiration point and reservation 
levels denoted 6 or q as a vector called reservation point. The aspiration levels represent 
the levels that the user would like to attain (although the aspiration point as whole is not 
attainable in most cases), whereas the reservation levels could be interpreted as 'soft' lower 
limits for objectives (for maximized objectives; upper limits for minimized objectives). Reser- 
vation levels q, for maximized objectives should be 'below' the aspiration levels q, (6 < q,, 
i = 1,. whereas reservation levels 6 for minimized objectives should be 'above' the 
aspiration levels q; (qi > 6, i = p' + 1, .  . . , p"). If these conditions are not satisfied for some 
objectives, system automatically changes q, or 6 .  

For each stabilized objective q; the user can specify the lower reservation level denoted 2 
and the upper reservation level denoted qy.  It is assumed that the stabilization level q l  is 
given implicitly as the mean value of two reservation levels q i  = (2 + iy)/2, thus the user 
defines the reservation range around the stabilization level. Moreover the system defines 
internally the lower aspiration level a = q: - 6(& - 2112 and the upper aspiration level 
& = qf + 6(iy - 2) /2 ,  thus the aspiration range is 6 times narrower than the reservation 



range with q; being the center of both ranges. The coefficient 6 has the default value 0.1 and 
can be changed by the user during the interactive process. 

The aspiration and reservation points, called jointly reference points, are both user- 
selectable parameters (for minimized and maximized objectives; for stabilized objectives two 
reservation levels are user-selectable). A special way of parametric scalarization of the mul- 
tiobjective analysis problem is utilized for the purpose of influencing the selection of efficient 
outcomes by changing reference points. This parametric scalarization is obtained through 
maximizing an order-approzimating achievement function (see Wierzbicki 1983,1986). There 
are several forms of such functions; properly efficient outcomes with approximate bound E ,  1 / ~  
are obtained when maximizing a function of the following form: 

where the parameter E should be positive, even if very small; if this parameter would be 
equal zero, then the above function would not be order-approximating any more, but order- 
representing, and its maximal points could correspond to weakly efficient outcomes. 

The functions zi (qi, ij,, 9,) for maximized objectives (i = 1, . . . , p') are defined by: 

and the functions z,(qi, &, Gi) for minimized objectives ( a  = p' + 1, . . . , p") are defined by: 

A =u while the functions zi(q,, q,, qi ) for stabilized objectives (i = p" + 1, . . . , p) are defined by: 

A =u ~ ( e ,  q,, q, ) = min (zf ,z;) 

zf = min ((q, - $)IS:, 1 + (q, - d)/s:) (16) 

z,!' = min ((Gr - q,)/s:, 1 + (q,!' - -,)/s:) 

where 

The coefficients s: > 0, sy > 0 in (14), (15) and (16) are scaling units for all objectives and 
are determined automatically in the IAC-DIDAS-N system to  obtain the following common 
absolute achievement measure for all individual criterion achievement functions z,(qi, -, -) : 

1 + r] if qi = q;be" (q; for stabilized objectives) 

if q. , - - q; - (qi or for stabilized objectives) (I8) 

0 if q, = *, (8. or ijr for stabilized objectives) 



where qibest is the upper limit (for maximized objectives; lower limit for minimized objectives) 
of all attainable efficient values of objective q, and q > 0 is an arbitrary coefficient. 

For minimized or maximized objectives (i = 1, . . . , p"), scaling coefficients si and sy 
depend on relations between aspiration level q,, reservation level G, and upper limit qpm (for 
maximized objectives; lower limit qyin for minimized objectives) of all attainable efficient 
values of objective q, : 

s - q ,  ~ ( ~ q , ) / ,  if 1 < i < p', 

s! = q. - Q. 
t t t ( i - q n ) ,  if p ' + ~ s i < ~ ' l .  

(19) 

For stabilized objectives (i = p" + 1 , .  . . , p ) ,  scaling coefficients si and sy depend on the 

distance between 2 and Gy (i.e. reservation range) and on the user defined coefficient 6 (i.e. 
on relations between aspiration and reservation ranges): 

Parameter q in (18), (19) and (20) is selected according t o  current relations between Q,, 

G,, qFax, qFin and the value of coefficient 6 : 

q,max - Q, qi - qt!in , min 
l i p  9, - , pl+l<i<pu c, - qi ' 1 - 6 

The system checks and does necessary projections for three sets of conditions that  must 
hold for this selection of s: and sy : 

The achievement function s(q, ij, q) can be maximized with q = f (z)  over z E X; however, 
the function (13) is nondifferentiable (for example, if q = q). On the other hand, if the function 
g(z) (and thus also f ( z ) )  is differentiable, then the maximization of function (13) in the 
system can be converted automatically to  an equivalent differentiable nonlinear programming 
problem by introducing proxy variables and substituting the min operation in (13) by a 
number of additional inequalities. If the coefficient s > 0, then the achievement function has 
the following properties (see Wierzbicki, 1986): 

a )  For any arbitrary aspiration and reservation points satisfying conditions (22), not nec- 
essarily restricted to be attainable (ij E Q,  q E Q)  or not attainable (Q # Q ,  G # Q ) ,  
each maximal point q^ of the achievement function s(q, ij, G) with q = f (z) over z E X 
is a D,-efficient solution, that  is, a properly efficient solution with trade-off coefficients 
bounded approximately by s and 11s. 

b) For any properly efficient outcome q^ with trade-off coefficients bounded by e and l/s, 
there exist such aspiration and reservation q points that  the maximum of the achieve- 
ment function s(q, ij, q )  is attained a t  the properly efficient outcome 4. In particular, if 



the user (either by chance or as a result of a learning process) specifies some attainable 
but not efficient reservation point q and an aspiration point q that  in itself is such prop- 
erly efficient outcome, q = 4, and if conditions (22) are satisfied then the maximum of 
the achievement function s(q, q, G), equal one, is attained precisely a t  this point. 

c) If the aspiration point q is 'too high' (for maximized outcomes; 'too low' for minimized 
outcomes), then the maximum of the achievement function, smaller than one, is attained 
a t  an efficient outcome 4 tha t  best approximates uniformly, in the sense of scaling 
units si ,  the aspiration point. If the aspiration point q is 'too low' (for maximized 
outcomes; 'too high' for minimized outcomes), then the maximum of the achievement 
function, larger than one, is attained a t  an efficient outcome 4 that  is uniformly, in the 
sense of scaling units sy, 'higher' than the aspiration point. 

d )  By changing his aspiration tj and reservation G points, the user can continuously influ- 
ence the selection of the corresponding efficient outcomes 4 that  maximize the achieve- 
ment function, provided the maximum is unique and the set @" is connected. 

The parameter E in the achievement function determines bounds on trade-off coefficients: 
if an efficient solution has trade-off coefficients that  are too large or too small (say, lower 
than or higher than lo6) than it does not differ for the decision maker from weakly 
efficient outcomes - some of its components could be improved without practically deterio- 
rating other components. Another interpretation of this parameter is that  it indicates how 
much an average overachievement (or underachievement) of aspiration levels should correct 
the minimal overachievement (or maximal underachievement) in the function (13). 

The achievement function (13) can be transformed to  an equivalent form if taking into 
account the scaling coefficients determined by (19) and (20) and assuming that  the parameter 
E = O :  

s ( q , q , i )  = 1 + 'I - max ( max i i ( q i , g , l i ) ,  max i i (q i , z ,*y) )  
1<i<pu p"+ll*<p (23 

with 

where 



with q:, and given by (17). 
The maximization of an achievement function in IAC-DIDAS-N is performed by a spe- 

cially developed nonlinear optimization algorithm, called solver. Since this maximization 
is performed repetitively, a t  least once for each interaction with the user that  changes the 
parameters t j  or q ,  there are special requirements for the solver that  distinguish this algo- 
rithm from typical nonlinear optimization algorithms: it should be robust, adaptable and 
efficient, that  is, i t  should compute reasonably fast an optimal solution for optimization 
problems of a broad class (for various differentiable functions g(z) and f (z) )  without requir- 
ing from the user that  he adjusts special parameters of the algorithm in order to  obtain a 
solution. The experience in applying nonlinear optimization algorithms in decision support 
systems (see Kreglewski and Lewandowski, 1983, Kaden and Kreglewski, 1986) has led to  the 
choice of an algorithm based on penalty shifting technique and projected conjugate gradient 
method. Since a penalty shifting technique anyway approximates nonlinear constraints by 
penalty terms, an appropriate form of an achievement function that  differentiably approx- 
imates function (23) has been also developed and is actually used in IAC-DIDAS-N. This 
smooth order-approzimating achievement function has the form: 

I - I1 
where w:, w:, w; , wi , wi+" and wfl are given by (25), (26) and (27). 

The parameter cr 2 2 is responsible for the approximation of the function (13) or (23) by 
the function (28): if cr - w and E - 0, then these functions converge to each other (if taking 
into account the specific definition of scaling coefficients in (13)). However, the use of too 
large parameters cr results in badly conditioned problems when maximizing function (28), 
hence a = 4 + 10 are suggested to be used, the default value is cr = 10. During numerical 
computations a slightly simpler scalarizing function is used and minimized: 



The function (29) must be minimized with q = f (z)  over z E X ,  while X is determined by 
simple bounds zlo 5 z 5 zUP as well as by inequality constraints y" 5 g(z) 5 yUp (or equality 
constraints for some i such that yfo = yaup). In the shifted penalty technique, the following 
function is minimized instead: 

where (', (" are penalty coefficients and u', u" are penalty shifts. This function is minimized 
over z such that  zI0 5 z 5 zUP while applying conjugate gradient directions, projected on 
these simple bounds if one of the bounds becomes active. When a minimum of this penalty 
function with given penalty coefficients and given penalty shifts (the latter are initially equal 
zero) is found, the violations of all outcome constraints are computed, the penalty shifts 
and coefficients are modified according to  the shifted-increased penalty technique (see, e.g., 
Wierzbicki, 1984), and the penalty function is minimized again until the violations of outcome 
constraints are admissibly small. The results are then equivalent t o  the outcomes obtained 
by minimizing the scalarizing function (29) under all constraints. This technique, though it 
might seem cumbersome, is according to  our experience one of the most robust nonlinear 
optimization methods; the user of the system is not bothered with its details, since the 
adjustment of penalty shifts and coefficients is done automatically in this technique. 

Another advantage for the user is that he is not bothered with the definition of deriva- 
tives of penalty function (30), needed in the conjugate gradient method, nor even with the 
definition of the derivatives of constraints functions gi(z) and outcome functions f (z ) .  This 
is unique feature of IAC-DIDAS-N system: all needed derivatives are automatically (symbol- 
ically) determined and computed either in the nonlinear model generator that  supports the 
model definition phase or in the solver algorithm using shifted penalty technique. 

The only parameter that  might influence the interaction of the system with the user is the 
parameter a in the smooth scalarizing function (29). Thus, the user can select this parameter; 
if this parameter is very large, his control of efficient outcomes obtained by minimizing (29) 
is somewhat easier, but the solver might take long time or produce not quite robust results in 
this case. The user has also access t o  some other parameters of the optimization procedure, 
which is needed in cases of especially difficult optimization problems. 

The minimization of an scalarizing function is a convenient way of organizing the in- 
teraction between the model and the user. Before the interactive analysis phase, however, 
the user must firstly define the substantive model, then define the multiobjective analysis 
problem by specifying outcome variables that should be maximized, minimized, stabilized, or 
floating (that is, displayed for users' information only, but not included as optimized objec- 
tives; various decision variables of interest to the user can be also included into one of these 
categories). 

The scalarizing function of the form (29) uses two kinds of additional information: 

bounds of efficient outcomes: 'upper' bounds for maximized outcomes, 'lower' bounds 
for minimized outcomes. These bounds must be determined once for the given multi- 
objective analysis problem. 



user-supplied reference levels: aspiration level and reservation level for each minimized 
or maximized outcome, two reservation levels for each stabilized outcome. The user 
changes reference levels (aspiration, reservation or both) several times during the in- 
teractive analysis of the multiobjective problem, however some initial values should be 
determined in the system. 

In the initial analysis phase of the work with the IAC-DIDAS-N system the bounds for 
efficient outcomes are calculated: the 'upper' (in the meaning of the 'best' attainable) and 
the 'lower' (in the meaning of the 'worst' attainable and efficient). The former is determined 
exactly (with given numerical accuracy), whereas the latter is only approximated, because 
there is no constructive way for determining it exactly for nonlinear multicriteria problems. 

The 'upper' bound for efficient solutions is obtained through maximizing each objective 
separately (or minimizing, in case of minimized objectives; in the case of stabilized objectives, 
the user should know their entire attainable range, hence they should be both maximized 
and minimized), while all others objectives (including stabilized ones) should be considered as 
floating or free. The scalarizing function (29) is not used during these calculations, objective 
functions q; = fi(z) are used in the penalty function instead of i (directly if the objective 
under consideration should be minimized or with the minus sign if i t  should be maximized). 
If there are no stabilized outcomes, the results of such optimizations form a point that  limits 
from 'above' (for maximized outcomes; from 'below' for minimized outcomes) the set of 
efficient outcomes 0, but this point almost never (except in degenerate cases) is in itself an 
attainable outcome; therefore, it is called the utopia point. The entire number of optimization 
runs in utopia point computations is p" + 2(p - p") . 

During all these computations, the 'lower' bound for efficient outcomes can be also esti- 
mated, just by recording the lowest (for maximized objectives; highest for minimized objec- 
tives) efficient outcomes that  occur in subsequent optimizations (there is no need to  record 
them for stabilized objectives, where the entire attainable range is anyway estimated). How- 
ever, such a procedure results in the accurate, tight 'lower' bound for efficient outcomes - 
called nadir point inad - only if p" = 2; for larger numbers of maximized and minimized 
objectives, particularly for nonlinear models, this procedure can give misleading results. In 
further computations appropriate components of Gut' and inad are used as components of 
qmax and qmin in the scalarizing function (29). 

In very rare and rather degenerate cases some components ifad of the estimation of the 
nadir point and components i;Uto of the utopia point could have the same value - it may 
happen if, for example, the structure of the substantive model results in the set (2) with 
empty interior. In such a case the user can update manually these nadir point components 
according to his knowledge, otherwise the IAC-DIDAS-N system assumes such outcomes to  be 
floating (it is not included in the scalarizing function (29) regardless of its type - maximized, 
minimized or stabilized) but checks its values a t  each efficient solution whether it is equal to  
the value ifad = . 

Once the approximate bounds q^uto and inad are computed and known t o  the user, they 
can be utilized in various ways. First, their appropriate components are used as components 
of qm* and qmin in the scalarizing function (29). Second way consists in computing a neutral 
eficient solution, with objectives situated approximately 'in the middle' of the efficient set. 
For this purpose, the aspiration point is set very close to  the utopia point iUto (only 
for maximized or minimized outcomes; for stabilized outcomes upper and lower limits of 
efficient outcomes are used as appropriate reservation levels 3 = iyin and = i y * )  and 
the  reservation point q is set very close to  the nadir point inad (only for maximized and 
minimized objectives). By minimizing the scalarizing function s'(q, ij, q) with such data ,  the 
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the system determines internally the second value, thus the same two reference levels scalariz- 
ing function can be used. For maximized and minimized objectives missing reservation levels 
are calculated using formulae: 

whereas missing aspiration levels are calculated using formulae: 

When the relative scaling is applied, the user can easily obtain - by suitably moving 
reference points - efficient outcomes that are either situated close to  the neutral solution, in 
the middle of efficient outcome set 0, or in some remote parts of the set 0, say, close to  various 
extreme solutions. Typically, several experiments of computing such efficient outcomes give 
enough information for the user to  select an actual decision - either some efficient decision 
suggested by the system, or even a different one, since even the best substantive model 
cannot encompass all aspects of a decision situation. However, there might be some cases in 
which the user would like to receive further support - either in analyzing the sensitivity of 
a selected efficient outcome, or in converging to  some best preferred solution and outcome. 

For analyzing the sensitivity of an efficient solution to changes in the proportions of 
outcomes, a multidimensional scan of efficient outcomes can be applied in IAC-DIDAS-N. 
This operation consists in selecting an efficient outcome, accepting it as a base for 
aspiration points, and performing p (or p") additional optimization runs with the aspiration 
points determined by: 

where p is a coefficient determined by the user, -1 < P 5 1; if the aspiration components 
determined by (36) are outside the range iyad,  iy tO ,  they are projected automatically on this 

range; the reservation point is kept constant ( 9  = inad) during this procedure. The aspiration 
components for stabilized outcomes may or may not be perturbed in this operation. The 
efficient outcomes resulting from the minimization of the scalarizing function g (q ,  Q, G )  with 
such perturbed aspiration points are typically also perturbed mostly along their respective 
components, although other their components might also change. 

For analyzing the sensitivity of an efficient solution when moving along a direction in 
the outcome space - and also as a help in converging to  a most preferred solution - a 
directional scan of efficient outcomes can be implemented in IAC-DIDAS-N. This operation 
consists again in selecting an efficient outcome, accepting it as a base qbas for aspiration 
points, selecting another aspiration point q ,  and performing a user-specified number K of 
additional optimizations with aspiration points determined by: 

The efficient solutions g^(k) obtained through minimizing the scalarizing function 
i ( q ,  q(k), G )  with such aspiration points (and constant reservation point G = inad) consti- 
tute a cut through the efficient set 4 when moving approximately in the direction Q - qbas. 



If the user selects one of these efficient solutions, accepts as a new qbas and performs next 
directional scans along some new directions of improvement, he can converge eventually to 
his most preferred solution (see Korhonen, 1985). Even if he does not wish the help in such 
convergence, directional scans can give him valuable information. 

Another possible way of helping in convergence to the most preferred solution is choosing 
aspiration points as in (37) but using a harmonically decreasing sequence of coefficients (such 
as llj, where j is the iteration number) instead of user-selected coefficients k l K .  This 
results in convergence even if the user makes stochastic errors in determining next directions 
of improvement of aspiration points, or even if he is not sure about his preferences and learns 
about them during this analysis (see Michalevich, 1986). Such a convergence, called here 
forced convergence, is rather slow. Neither the forced convergence nor multidimensional nor 
directional scan are yet implemented in the current version of IAC-DIDAS-N, but they will 
be implemented in later versions. 

3 Short user manual 

3.1 Introduction 

The IAC-DIDAS-N system (Institute of Automatic Control, Dynamic Interactive Decision 
Analysis and Support, Nonlinear version) is decision support system designed to help in the 
analysis of decision situations where a mathematical model of substantive aspects of the 
situation can be formulated in the form of a multiobjective nonlinear programming problem. 

The system can be run on an IBM-PC-XT, AT or a compatible computer with Hercules 
Graphics Card, Color Graphic Adapter or Enhanced Graphics Adapter and, preferably, with 
a numeric coprocessor and a hard disk. If a numeric coprocessor is available then the copro- 
cessor version called D I D A S N  of the IAC-DIDAS-N system can be used taking advantage of 
the coprocessor computational capacity, otherwise only the emulation version called DIDASNE 
of the IAC-DIDAS-N system can only be used with less computational capabilities. The sys- 
tem is recorded on two diskettes. Each diskette contains the compiled code of one version of 
the program together with some data  files with demonstrative examples of nonlinear models. 
While the installation of the selected version of the system in the user directory on a hard 
disk (or less preferably on a working diskette) is done (using INSTALL batch file contained on 
both diskettes - see the installation guide in the Appendix A),  the program can be activated 
by the command D I D A S N  or DIDASNE at  the DOS prompt. 

System supports the following general functions: 

definition and edition of a substantive model of the decision situation in a user-friendly 
format of a spreadsheet and a screen window editor. 

specification of a multiobjective decision analysis problem related to the substantive 
model. This is performed by specific features of spreadsheet edition. 

initial multiobjective analysis of the problem, resulting in estimating bounds on efficient 
outcomes of decisions and in learning about some extreme and some neutral decisions. 
These functions are supported by some specific commands and the results are presented 
to  the user in the spreadsheet and graphical form. 

interactive analysis of the problem with the stress on learning by the user of possible 
efficient decisions and outcomes, organized through system's response to  user-specified 
aspiration and reservation levels for objective outcomes. The IAC-DIDAS-N system 



responds with efficient solutions and objective outcomes obtained through the max- 
imization of an achievement function that  is parameterized by the user-specified as- 
piration and reservation points. The maximization is performed through a nonlinear 
programming algorithm called solver. The interactive analysis is supported by entering 
user data  into specific cells in the spreadsheet, executing commands from the menu and 
using graphical representation of results. 

The menus of IAC-DIDAS-N are organized as pull-down tree-structured menus and per- 
forms various functions used in several phases of the interactive analysis process. Most of the 
functions of model edition phase as well as specification of a decision problem and it's initial 
analysis phase are specific commands in the spreadsheet edition (the decision variables are 
defined as columns of the spreadsheet, the outcome variables are defined as rows, outcome 
formulae are entered in the corresponding cells, there are special rows and columns for lower 
and upper bounds, for defining user names of objective outcomes and their types, reference 
points, utopia point, for solutions corresponding to the reference points). The functions of the 
interactive analysis phase are executed by macrocommands using menus and various function 
keys; the user can get various help displays that  suggest in an easy fashion the commands 
useful in a current phase of work with the system. 

IAC-DIDAS-N system has been developed in the Institute of Automatic Control, War- 
saw University of Technology, Warsaw, Poland which has the authorship rights, under the 
contracted study agreement "Theory, Software and Testing Examples for Decision Support 
Systems" with the Systems and Decision Sciences Program of the International Institute 
for Applied Systems Analysis, Laxenburg near Vienna, Austria, which has the copyright for 
this system in international distribution. Please contact Methodology of Decision Analysis 
Project of SDS Program a t  IIASA, A-2361 Laxenburg, Austria. 

3.2 Phases of the work 

The work with a IAC-DIDAS-N system consists of three phases: 

1. model edition phase 

2. problem definition and initial analysis phase 

3. interactive analysis and comparison of results phase 

All these phases are supported in the system and an explicit command is required to  move 
from one phase to another. Moreover system checks, whether required move is possible and 
gives appropriate error messages or asks for additional confirmation. There are two logical 
spreadsheets: the model editing spreadsheet and the interactive analysis spreadsheet. The 
former is used mostly to  perform all the system functions in the first phase of the work, 
whereas the latter performs all the system functions during two other phases. 

System invoked without arguments always starts  with phase 1 and permits of the move to  
phase 2 only if the model definition is complete. A complete model consists of three groups 
of obligatory data: 

valid formulae for all defined outcomes (rows of the spreadsheet), 

lower and upper bounds (that do not contradict) for all variables, 

values for all used parameters. 



Optionally, model can contain some other, user-supplied data: 

lower and upper bounds (that do not contradict) for outcomes, 

names of variables, parameters and outcomes (user names override standard system 
names of the form x l  , x2, . . .for variables, 21, 22, . . .for parameters and y l  , y2, . . .for 
outcomes). The names must be unique within the model. 

units for variables, parameters and outcomes. This information can be included to  
improve the understanding of the model in the spreadsheet, but it is not used by the 
system. The only exception is the use of units for outcomes for special scaling method 
in graphical representation. 

lower and upper bounds for parameters; not used in the current system implementation 
but planned to be used in parametric analysis in future system implementations. 

short (up to  30 characters) model description; it is displayed in the spreadsheet and 
printed together with the print-out of the model. It may be used as an extension to 
the model name, that  is too short (up to  8 characters) to be meaningful. 

five parameters that  are used to tune the nonlinear solver (see the next section). If 
some of them are not given, then current default system values are stored together with 
other model data. 

To store the edited model on a disk, the name of the model must be supplied by the user. 
Therefore, while using < F2 > (Save) or < Alt M F > (Model selection - Fix and save) 
commands (see section 3.6), system asks for the name (up to  8 characters, it must be a valid 
DOS file name). However, there is an important distinction between these two commands. 
The former just saves the model as it is, whereas the latter first checks for completeness of the 
model and either displays an error message if the model is not complete or changes the status 
of the model to 'fixed' and stores the complete model. Both commands check, whether the 
given name is not the same as the model file name existing already in the current directory 
on a disk. If it is, then system asks for additional confirmation. Answering 'yes' means, 
that  the system deletes the file with the same name containing the previous model definition 
together with all related problem definition files and result data files. 

Successful 'Fix and save' command for the model moves automatically to  the second phase 
of the work. Obligatory elements of the model definition and bounds for outcomes (if given) 
can not be changed now. The command < Alt M N > (Model selection - New) must be used 
to  move back t o  the first phase to allow any change in this part of the model definition, but it 
will be treated as a definition of a new model. The command < Alt M R > (Model selection 
- Reset) can also be used to  move back to the first phase, but it deletes all the model data 
and starts a new model definition from the scratch. Optional parts of the model definition 
(except the bounds for outcomes) can be changed even if the model is fixed, because they do 
not affect computational characteristics of the model. Such changes in the model definition 
can be stored on a disk using the command < F2 > (Save). It also holds for all changes in 
the rows and columns order done with the < Alt F R M > (Format - Rows - Move) and 
< Alt F C M > (Format - Columns - Move) commands. 

Model stored on a disk can be restored using the command < Alt M G > (Model selection 
- Get from disk). The model is restored together with the information, whether it was fixed 
or not. Thus, after restoring not fixed model the system is still in the phase 1, whereas after 
restoring a fixed model the system moves automatically to  the phase 2. It is also possible 



to  restore a model immediately while invoking the IAC-DIDAS-N system - the name of 
the model must be put as the first argument in the DOS command line (for example to  
restore automatically the model DEMO, invoke the system with the command DIDASN DEMO or 
DIDASNE DEMO). 

Edited model (not necessarily fixed) can be printed using the command < Alt M P > 
(Model selection - Print). Model stored on a disk, but actually not interesting to  the user 
can be deleted from a disk together with all related problem definition files and result da ta  
files using the command < Alt M E > (Model selection - Erase). 

Second phase of the work with the IAC-DIDAS-N system is for a specification of the 
decision problem t o  be analyzed using already defined and 'fixed' model. The complete 
definition of a decision problem consists of two parts: user supplied part and system supplied 
part.  The user supplied part must contain two kinds of information: the selection of outcomes 
t o  be minimized, maximized or stabilized objectives (the contents of the 'Stat' column in the 
spreadsheet) and the values of lower and upper bounds for outcomes, if not given in the 
model definition. Moreover, the user can add some other data:  

lower and upper bounds for outcomes, even if already given in the model definition; the 
new values override correspondent data  in the model definition, 

short (up to  30 characters) problem description; it is displayed in the spreadsheet and 
printed together with the print-out of the problem. It may be used as an extension to  
the problem name, that  is too short (up to  8 characters) to be meaningful. 

five parameters that  are used t o  tune the nonlinear solver (see the next section); these 
values override correspondent data either in the model definition or default system 
values. 

new bounds (updates) of the system supplied approximation of the nadir point. 

For a given set of selected objectives (and optional bounds redefinitions and some solver 
parameters) system performs initial analysis of the decision problem: calculation of ranges 
of efficient solutions (utopia and nadir points) and calculation of neutral solution being the 
starting point for further interaction during the third phase of the work (see the theoretical 
manual). Two parts of this analysis can be performed jointly using the command < F3 > 
(Calculate) or separately using first the command < Alt P U > (Problem selection - Utopia) 
and next the command < Alt P T > (Problem selection - neuTral). The system supplied 
part of a complete problem consists of results of these calculations. If the calculations are 
performed separately then after calculating the utopia point (but prior to  the neutral point 
calculation) the user can modify values of the nadir point approximation using the command 
< Alt P A Q> (Problem selection - nAdir). 

To store the edited problem on a disk, the name of the problem must be supplied by 
the user. Therefore, while using < F2 > (Save) or < Alt P F > (Problem selection - Fix 
and save) commands, system asks for the name (up to 8 characters, it must be a valid DOS 
file name). However, there is again an important distinction between these two commands. 
The former just saves the problem as it is, whereas the latter first checks for completeness of 
the problem and either displays an error message if the problem is not complete or changes 
the status of the problem to  'fixed' and stores the complete problem. The file containing 
the model definition is automat~ically updated if any changes were made in its optional part.  
Both commands check, whether the given name is not the same as the problem file name 
existing already on a disk for the currently used model. If it is, then system asks for additional 



confirmation. Answering 'yes' means, that the system deletes the file with the same name 
containing previous problem definition tonether with all related result da ta  files. 

Successful 'Fix and save' command for the problem moves automatically to the third phase 
of the work. None of the problem elements can be changed now. The command < Alt P N > 
(Problem selection - New) must be used to move back to the second phase to allow any 
change in the problem definition, but it will be treated as a definition of a new problem. The 
command < Alt P R > (Problem selection - Reset) can also be used to  move back to the 
second phase, but it deletes all the problem data  and starts new problem definition from the 
scratch. 

Problem stored on a disk can be restored using < Alt P G > (Problem selection - Get 
from disk). The problem is restored together with the information, whether i t  was fixed or 
not. Thus, after restoring not fixed problem the system is still in the phase 2,  whereas after 
restoring a fixed problem the system moves automatically t o  the phase 3. It is also possible 
to  restore a problem immediately while invoking the IAC-DIDAS-N system - the name of 
the model must be put as the first argument in the DOS command line and the name of 
the problem must be put as the second argument in the DOS command line (for example to  
restore automatically problem FIRST defined for the model DEMO, invoke the system with the 
command DIDASN DEMO FIRST or DIDASNE DEMO FIRST). 

The result of neutral solution calculation is stored in a separate file as a result file with 
a system-defined name 'Neutral'. It is stored on a disk and then restored each time a fixed 
problem related to  it is stored and restored. 

Edited problem (not necessarily fixed) can be printed using the command < Alt P P > 
(Problem selection - Print). Moreover, if the problem is fixed then the neutral result can 
also be printed using the command < Alt R P > (Result selection - Print) .  Problem stored 
on a disk, but actually not interesting to  the user can be deleted from a disk together 
all related result da ta  files using the command < Alt P E > (Problem selection - Erase). ----- 

Third phase of the work with the IAC-DIDAS-N system is for an interactive analysis of 
the decision problem already defined and 'fixed', for defined and 'fixed' model. The only 
values that  are changed by the user during this phase are aspirations and reservations for 
minimized or maximized objectives and lower and upper reservations for stabilized objectives 
(see the theoretical manual). The complete result consists of these user-supplied data  to- 
gether with the system response - an efficient solution calculated using scalarizing function 
parameterized with these data. Either < F3 > (Calculate) or < Alt R C > (Result selection 
- Calculate) can be used to  start  the calculations. 

Moreover, the user can add short (up to  30 characters) result description; it is displayed 
in the spreadsheet and printed together with the print-out of the result. It may be used as 
an extension to the result name, that  is too short (up to  8 characters) to  be meaningful. 

To store the calculated result on a disk, the name of the result must be supplied by the 
user. Therefore, whiie using < F2 > (Save) or < Alt R S > (Result selection - Save and 
new) commands, system asks for the name (up to  8 characters, it must be a valid DOS file 
name). There is no difference between these two commands. Both commands first checks for 
completeness of the result and either displays a message if the result is not calculated or stores 
the calculated result. The file containing the model definition is automatically updated if any 
changes were made in its optional part. Both commands check, whether the given name is 
not the  same as the result file name existing already on a disk for the currently used problem 
and model. If it is, then system asks for additional confirmation. Answering 'yes' means, that  
the system deletes the file with the same name containing previous result data.  Moreover, 
the name 'Neutral' is reserved and can not be used. 



Two kinds of data  are stored and restored as results, these are efficient values of objectives 
together with values of other, non-objective outcomes and values of variables related to  the 
efficient solution. Values of variables are loaded into the spreadsheet (row Values in the model 
editing spreadsheet) following each successful calculation of an efficient solution and while 
restoring result from a disk. These obtained or restored values are used as a starting point 
for calculation of next efficient solution. 

If the user finds, tha t  calculated result is not interesting, it is possible to  clear it either 
using the command < Alt R N > (Result selection - New) that  clears only the system 
response or using the command < Alt R R > (Result selection - Reset) that  clears also all 
user-supplied part of the problem definition. However, only results stored on a disk can be 
compared using graphical representation. 

Result stored on a disk can be restored using the command < Alt R G > (Result selection 
- Get from disk). It is also possible to  restore a result immediately while invoking the 
IAC-DIDAS-N system - the name of the model must be put as the first argument in the 
DOS command line, the name of the problem must be put as the second argument in the DOS 
command line and the name of the problem must be put as the third argument in the DOS 
command line (for example to restore automatically the result R 1  obtained for the problem 
FIRST defined for the model DEMO, invoke the system with the command DIDASN DEMO FIRST 
R 1  or DIDASNE DEMO FIRST ~ 1 ) .  

Calculated result can be printed using the command < Alt R P > (Result selection - 
Print). Result stored on a disk, but actually not interesting to  the user can be deleted from 
a disk using the command < Alt R E > (Result selection - Erase). 

3.3 Editing with the spreadsheet 

Two spreadsheets used in the IAC-DIDAS-N system are rather specialized. They differ from 
the standard ones (like Lotus 1-2-3) in two aspects. First, in the implemented spread- 
sheets there are predefined types of contents of all cells: there are dedicated cells for stor- 
ing text, other cells for storing numbers and other cells for storing formulae. Secondly, 
the IAC-DIDAS-N has an integrated compiler with a symbolic differentiation facility, that  
compiles the formulae and produces binary codes for calculations of formula value and for 
calculations of all derivatives. Therefore two kinds of operation are defined for spreadsheet 
cells with formulae: compilation and calculation. 

The top line in both spreadsheet contains pull-down menu entries and the bottom line 
contains the function keys meanings. 

Both spreadsheets are built from two partially independent parts. First three columns 
from the left are common for both spreadsheets and have as many rows as there are outcomes 
in the model. If the model has more than 13 outcomes then only 13 are displayed and the 
spreadsheet is scrolled up and down according t o  moves of the spreadsheet marker. These 
three columns are used t o  define and display outcome definition: name, unit and status, from 
left to right, respectively. However, the status is the element of problem definition, therefore 
it can be accessed only from the interactive analysis spreadsheet. The fourth column of the 
model editing spreadsheet contains outcome formulae, but only their values are displayed, to  
display and edit the formula one cell from this column must be selected with the spreadsheet 
marker and then the < Enter > key causes the display of formula in a window. 

In the upper left corner of the spreadsheet the status of the model, problem and result 
are displayed together with the amount a i  free memory in relation to  the amount of free 
memory available while the system was loaded. For example FreeMem 22 % means that  only 



22% of the available memory were used for current model, problem and result definition. It 
is not recommended to  use the system if the value displayed is below 20%, because of large 
amount of memory required temporarily during compilation of formula, optimization and 
graphical representation. The behavior of the system is not completely predicable in some 
out of memory situations. The last status value is the flag Auto ON/OFF toggled with the 
function key < F8 > or with the command < Alt S A > (Switches - Auto ON/OFF). This 
flag reflects the state of the automatic spreadsheet recalculation feature. If it is ON then the 
spreadsheet is recalculated after each change of any cell, otherwise the recalculation is only 
on explicit request command < F3 > (Calculate). 

The second part  of the model editing spreadsheet has as many columns as there are 
variables, parameters and outcomes; a t  the top of each column a type designator is displayed: 
'var', 'par' or 'out', respectively. Each column contains: name, unit, upper bound, value, 
lower bound and values of derivatives, from top to  bottom, respectively. First five items 
are elements of model definition, except values for variables that  are accessible and can be 
changed in any phase of the work. Cells with values of outcomes are only for display and their 
contents can not be edited. Only up to  four columns are displayed a t  a time. If there are 
more than four columns the spreadsheet is scrolled left and right according to  moves of the 
spreadsheet marker. Just  above the area with derivative values the texts 'Partial derivative 
values' or 'Total derivative values' are alternatively displayed. They are toggled with the 
function key < F7 > or with the command < Alt S T > (Switches - Totals ON/OFF) and 
reflect the type of derivatives that  are calculated and displayed. 

The second part of the interactive analysis spreadsheet has seven columns, but only five of 
them are displayed a t  a time, thus it is scrolled one column left or one column right according 
to  the moves of the spreadsheet marker. Contents of these seven columns depends of the type 
of outcome and can be different for different rows of the spreadsheet. Descriptions of the 
columns change accordingly to  the type of outcome where the spreadsheet marker currently is. 
For outcomes not selected as objectives the spreadsheet columns contain (from left to  right): 
upper bound, next two columns are blank, last calculated or loaded value of solution, next two 
columns are blank, lower bound. For maximized objectives there are there: upper bound, 
utopia value, aspiration level, last solution value, reservation level, nadir value and lower 
bound. For minimized objectives there are there: lower bound, utopia value, aspiration level, 
last solution value, reservation level, nadir value and upper bound. At last, for stabilized 
objectives there are there: upper bound, upper utopia value, upper reservation level, last 
solution value, lower reservation level, lower utopia value and lower bound. At a first look 
this arrangement seems to  be very complicated, but one can easily find that  all values that  
should be compared each other are placed side to  side and that  in most cases all values a t  each 
row either decrease or increase while moving from left to  right. If the problem is not fixed then 
the columns with aspirations and reservations (for minimized and maximized objectives; lower 
and upper reservations for stabilized objectives) are not displayed, thus the remaining five 
columns are displayed all the time and there is no need to  scroll the spreadsheet horizontally. 
At the top of this part of the interactive analysis spreadsheet names and descriptions of 
current model, problem and result are displayed. 

To move the spreadsheet marker eight cursor keys can be used to perform four regular 
and four oblique directions of move (for example < Home > cursor key moves the rnarker in 
the upper-left direction). Moreover, it is also possible to  perform fast jumps from one part 
of the spreadsheet to  another (only in the model editing spreadsheet). Fast jumps from the 
right part to  the left part (namely to the formulae column) and back without change of the 
row and without scrolling the right part are performed with the keys combinations < Ctrl 



Left > and < Ctrl Right >, whereas fast jumps from the bottom part to the top part (namely 
to the value row) and back without change of the column and without scrolling the bottom 
part are performed with the keys combinations < Ctrl PgUp > and < Ctrl PgDn >. 

The way data  are entered into a particular cell depends on a type of data  the cell is 
destined to store. To edit the contents of particular cell one must move the spreadsheet 
marker to  this cell. The edition of contents of a spreadsheet cell is performed with the use 
of two editors: formula editor for edition of formula (only the formulae column in the model 
edition spreadsheet) and the cell editor for all the other cells. In the latter case there are two 
possibilities: the modification of the previous contents or the input of a new contents. The 
< Enter > key causes the entry into the cell editor with the previous contents of the cell, 
any other key is treated as the first character input of the new contents, with the previous 
contents deleted. The cell editor allows the use of standard editing keys (< Backspace >, 
< Del >, < Left >, < Right >, < Home >, < End >) in two modes: insert and replace that  
are toggled with the < Ins > key. Current mode is indicated with the shape of the cursor - 
block cursor means insert mode, underline cursor means replace mode. There are two keys 
that ends the cell edition: < Enter > key means storing of a new data,  < Esc > key means 
restoring of the previous contents. 

The < Enter > key must always be pressed to start the edition of a formula, thus it is 
always the edition of the previous contents of the cell. The formula editor is a full featured 
window editor. Standard editing keys (< Backspace >, < Del >, < Left >, < Right >, 
< Up >, < Down >, < Home >, < End >, < PgUp >, < PgDn >) can be used in two 
modes exactly like in the cell editor. The function of two terminating keys is also the same. 
Moreover, to facilitate the edition of several formulae that are very similar or even with some 
identical parts, the concept of a buffer was implemented. 

Any part of currently displayed formula can be marked (displayed in a reverse video 
mode): the beginning is marked with < F7 > function key, the end is marked with < F8 > 
function key. Marked area can be copied (duplicated) into the current cursor position with 
the use of < F10 > function key. Marked area can be deleted with the use of < F6 > function 
key, however to  avoid unintentional deletes the cursor must be a t  the position just following 
the end of the marked block, otherwise an appropriate message is displayed and the block is 
not deleted. Marked area can be copied (duplicated) into the buffer using the function key 
< F5 > and then restored in the current cursor position using the function key < F10 >. The 
contents of the buffer is displayed in a window at  the bottom of the screen. This window is 
closed (without deleting the contents of the buffer) using the function key < F9 > and while 
the formula editor is left, and opened again using the function key < F9 >. If the buffer 
contents is too long to fit the size of the window then < Up > and < Down > cursor keys 
are used to  scroll it up and down, one line a t  a time. 

3.4 Usage of the nonlinear solver 

The nonlinear solver used in the IAC-DIDAS-N system is rather fast and robust. It's o p  
eration, however, depends on some parameters, that should be sometimes adjusted to  the 
properties of particular model and problem. For small models (not more than ten variables 
and outcomes) the default system values can be successfully used. There are four ways of 
changing values of these parameters: permanent, for a model, for a problem and for a result. 
Parameters are changed using menu entry Options in either spreadsheet. If any of the pa- 
rameters was changed then while leaving the menu system asks 'Do you want to make these 
changes permanent (Y/N) ?'. If the answer is yes, then the program updates itself on a disk 



in such a way, that  the new values will be default values, otherwise the changes will be only 
temporary, valid till the end of a current run of the system. Values of the parameters are 
stored on a disk in the model definition file and in the problem definition file, these values 
are restored while the model or problem file are loaded. 

The first three parameters are used in stop tests of the solver: 

Accuracy - the norm of gradient of the penalty function a t  the solution 
point must be not greater than the Accuracy value. The de- 
fault value is lo-', for large, highly nonlinear models this value 
should be changed to  or even more. 

Violation - the nonlinear constraints (bounds on outcomes) a t  the solution 
point must not be violated more than Violation value. The 
default value is lo-', but this value should also be increased 
for large models with many nonlinear constraints. 

Iterations - the limit of iterations (recalculations of the spreadsheet). The 
default value is 1000. 

The last two parameters define the shape of the scalarizing function: 

Scaling exp. - It is the parameter a in the scalarizing function (see theoretical 
manual). The default value is 10, it should be decreased to  4 
or 6 for large models (it must be an even number). 

Ratio Asp/Res - It is the parameter 6 in the scalarizing function (see theoretical 
manual). The default value is 0.1 and may be changed in a 
range 0.01-0.9. The selection of this value is rather a matter 
of taste and does not depend on the size of the problem. 

Although there are two independent stop tests (Accuracy check together with Violation 
check and Iterations limit check) the user can interrupt the running optimization process by 
pressing < Ctrl Break > key combination. The best point obtained till this moment is then 
displayed as a solution, but the system does not treat this point as a solution. 

Optimization runs are sometimes very time consuming, therefore to  give the user an 
information that  the system did not crashed, a sequence of letters is displayed. Each time 
the solver stops the move in a current direction a next letter is displayed. The letters are 
displayed in the right half of the second to  the last line on the screen starting with the letter 
'A' in center of this line. If all 40 positions are filled with 'A', they are cleared and letters 
'B' ('C1,'D' etc.) are displayed. 

There are five possible messages displayed a t  the end of optimization run. These are: 

Optimal solution found - it is the most desirable message. 

Required accuracy not attainable - it means, that  the solution was found with 
the full numerical accuracy, but due t o  round- 
off errors the required accuracy was not ob- 
tained. The accuracy and violation parame- 
ters should be increased. 

Iterations limit - solution not found - the iterations parameter should be increased. 



Interrupted with < Ctrl-Break > - the user pressed the < Ctrl Break > key com- 
bination. 

Solver error NNN - this message should never appear. ' 
3.5 Graphical representation of results 

Several objectives and several results can be displayed simultaneously in a graphical bar form. 
The system has some internal rules of selecting results and objectives to  be displayed. These 
rules can be summarized in the form: display of all objectives and of as many results as 
possible. The < F9 > (Graphics) command is used to display bar representation using these 
rules. However, the command < Alt G 0 > (Graphics - Objectives selection) can be used 
to  select manually objectives to  be displayed - up to ten objectives can be marked and next 
displayed. The command < Alt G R > (Graphics - Results selection) can be used to  select 
manually results to  be selected - up to  ten results can be marked and next displayed. The 
user selection overrides the system rules, thus subsequent executions of < F9 > (Graphics) 
command cause the display of user selected objectives and results. 

Two scaling methods are implemented in the graphical representation. In the first scaling 
method (Normal scale ON) each objective is scaled independently: the maximal level (top of 
the bar picture) is equal to  the upper bound for displayed objective and the minimal level 
(bottom of the bar picture) is equal to  the lower bound for displayed objective. This scaling 
method is very simple, but has two important drawbacks. First, very often the bounds range 
is much wider than the range of efficient solutions, therefore all solutions together with utopia 
and nadir points can be represented as a one point of he bar. Secondly, the objectives that  
form trajectories (in dynamic cases) are scaled independently and can not be compared. 

In the second scaling method (Normal scale OFF) the range of efficient changes is deter- 
mined for each objective independently: 

for minimized objectives the maximal level is equal to  the value of the reservation level 
or the value of the solution, whichever is greater; the minimal level is equal to  the value 
of the utopia level. 

for maximized objectives the maximal level is equal to  the value of the utopia level; the 
minimal level is equal t o  the value of the reservation level or the value of the solution 
whichever is less. 

for stabilized objectives the maximal level is equal to  the value of upper reservation 
level or the value of the solution, whichever is greater; the minimal value is equal to  
the value of lower reservation level or the value of the solution, whichever is less. 

Next, for all groups of objectives with the same units the common scale is determined that  
is the distance from the lowest minimal level to the highest maximal level of all objectives 
within the group. 

3.6 Menu and function keys description 

Most commands are executed by entering a pull-down menu, moreover some most frequently 
used commands are also accessible through function keys. There are two sets of pull-down 
menu entries and two sets of function keys commands for two existing spreadsheets - model 

'Please let us know if it does. 



edition spreadsheet and multiobjective analysis spreadsheet; in particular, function keys are 
used to select one of the spreadsheet. 

Pull-down menu commands could be invoked in two ways - through < Alt > key or 
through < Esc > key. In the former way the user must press the key related to  the first 
(highlighted) letter of the pull-down menu entry (eg. s key for Switches menu entry) while 
holding down the < Alt > key - such action will be denoted as < Alt X > where X means 
the letter (eg. < Alt S >). In the latter way the user can press < Esc > key and the last 
used pull-down menu is entered - thus this way is useful for repeated commands. 

In both ways, < Right > and < Left > cursor keys could be used to move from one menu 
entry to another. Commands within current menu entry could be selected either by moving 
the menu marker with < Up > and < Down > cursor keys and pressing the < Enter > key 
or by pressing the key related to  the first (highlighted) upper case letter of the command 
name (in most cases i t  is the first letter of the command). Selection means the execution of 
the selected command or entry to the next level menu. Pressing the < Esc > key while in 
a menu causes exit from the current level of the menu either to the previous level menu or 
to the spreadsheet. If the menu window is too small to display all items then up and down 
arrows appear in the bottom line of the menu window and the menu is scrolled vertically 
according to the moves of the marking bar. 

In the following description menu entries are terminated with a colon whereas commands 
are terminated with a dot. In the former case related menu items are listed below the 
description of the menu entry. 

3.6.1 M e n u  for  m o d e l  edi t ion 

< Alt M > Model selection: - commands for operations on models as whole enti- 
ties 

Ge t  from disk: - displays menu of currently defined models, se- 
lected model is loaded from disk into spread- 
sheet 

Fix and save. - checks for completeness of the model, fixes it 
and saves on disk (asks for model name if not 
named previously) 

Description. - asks for 30 characters brief description of the 
model 

New. - un-fixes the model, resets the name and com- 
ment, the model in the spreadsheet remains un- 
changed 

Reset. - un-fixes the model, resets the name and com- 
ment, deletes all data in the spreadsheet, resizes 
the spreadsheet to  one-row and one-column 

Erase: - displays menu of currently defined models, se- 
lected model is deleted together with all related 
problems and results 

Pr int .  - prints current model 

< Alt R > Format: - operations on rows or columns of the spreadsheet 



Rows: 

Insert. 

Delete. 

Move. 

Columns: 

Insert. 

Delete. 

- changes the number or the order of rows in the 
spreadsheet 

- inserts blank, highlighted row in the 
spreadsheet, this row can be moved up and 
down within a spreadsheet using < Up > 
and < Down > cursor keys, < Alt I > 
makes insertion permanent, < Esc > key 
cancels it 

- highlights a row, it can be moved up and 
down within a spreadsheet using < Up > 
and < Down > cursor keys, < Alt D > 
deletes highlighted row (if not referenced in 
other rows) and related column, < Esc > 
key cancels the command 

- highlights a row, the highlighting bar can 
be moved up and down within a spread- 
sheet using < Up > and < Down > cursor 
keys, < Alt S > selects highlighted row. 
The selected row can then be moved within 
a spreadsheet, < Alt P > places the high- 
lighted row in a current place, < Esc > key 
cancels the command 

- changes the number, order or type of columns 
in the spreadsheet 

- inserts blank, highlighted column in the 
spreadsheet, this column can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt V > makes insertion permanent as 
a column with a variable, < Alt P > makes 
insertion permanent as a column with a pa- 
rameter (system asks for its initial value), 
< Esc > key cancels it 

- highlights a column, it can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt D > deletes selected column (if 
not referenced in the spreadsheet, columns 
related to  outcomes cannot be deleted), 
< Esc > key cancels the command 



Move. 

to Var .  

to P a r .  

- highlights a column, it can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt S > selects highlighted column. The 
selected column can then be moved within 
a spreadsheet, < Alt P > places the high- 
lighted column in a current place, < Esc > 
key cancels the command 

- highlights a column, it can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt C > changes the type of column from 
a previous type to a variable type (if it was 
an outcome then related row is deleted), 
< Esc > key cancels the command 

- highlights a column, it can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt C > changes the type of column 
from a previous type to a parameter type 
(if it was an  outcome then related row is 
deleted), < Esc > key cancels the com- 
mand 

to  Out .  - highlights a column, it can be moved 
left and right within a spreadsheet using 
< Left > and < Right > cursor keys, 
< Alt C > changes the type of column from 
a previous type to a outcome type (related 
row is created), < Esc > key cancels the 
command 

< Alt S > Switches: - influence numerical calculations in the spreadsheet 

Totals on/off. - toggles calculations and display of values of ei- 
ther partial or total derivatives 

Auto  on/off. - switches on and off the automatic recalculation 
of the spreadsheet following each change of its 
contents 

< Alt C > Calculate. 

< Alt L > List: 

- recalculates the whole spreadsheet 

- displays the menu of models stored on the disk, for 
the selected model displays the menu of problems 
stored on the disk, for the selected problem displays 
the list of results stored on the disk, < Enter > key 
selects, < Esc > key moves back 



< Alt 0 > Options: 

Colors. 

- changes colors and some problem-dependent pa- 
rameters in the nonlinear programming solver 

- enables changes of foreground and background 
colors or attributes of all items displayed on the 
screen during the work of the program in an 
easy, interactive way, all changes are immedi- 
ately visible on the screen, see Appendix B for 
details 

Accuracy. - accuracy of optimization, if this value is too high 
then results could be misleading, if this value is 
too low then optimization time may be too large 

Violation. - acceptable violation of bounds for outcomes, if 
this value is too high then results could be mis- 
leading, if this value is too low then optimization 
time may be too large 

Iterations. - limit of iterations (recalculations of the model) 
during each optimization run 

Scaling exponent. - coefficient o in the scalarizing function 

Rat io  Asp./Res. - ratio of the with of aspiration and reservation 
ranges for stabilized objectives 

3.6.2 Func t ion  keys  fo r  m o d e l  edi t ion 

< F1 > - context sensitive help. 

< F2 > - save. - saves model (if changed), problem (if changed) and 
result (if changed), asks for names if not named pre- 
viously) 

< F3 > - calculate. - same as < Alt C > 

< F4 > - list. - same as < Alt L > 

< F6 > - go to multiobjective analysis spreadsheet. 

< F7 > - totals on/off. - same as < Alt S T > 

< F8 > - auto on/off. - s a m e a s <  A l t S A >  

< F10 > - exit t o  DOS. 

3.6.3 M e n u  fo r  in te rac t ive  analys is  

< Alt M > Model selection: - same as in the model edition spreadsheet 

< Alt P > Problem selection: - commands for operation on problems as whole en- 
tities 



Get  from disk. - displays menu of currently defined problems (for 
current model), selected problem is loaded from 
disk into spreadsheet 

Fix and save. 

Description. 

New. 

Reset . 

Utopia. 

- check for completeness of the problem, fixes it 
and saves on the disk (asks for problem name if 
not named previously) 

- asks for 30 characters brief description of the 
problem 

- un-fixes the problem, resets the name and com- 
ment, the problem in the spreadsheet remains 
unchanged 

- un-fixes the problem, resets the name and com- 
ment, deletes all problem da ta  in the spread- 
sheet 

- checks for completeness of the problem and cal- 
culates the utopia point, approximates the nadir 
point (see theoretical manual) 

- enters special spreadsheet editing mode that  en- 
ables user updates of the nadir point values, 
< Esc > key exits this mode 

- checks for completeness of the problem and 
calculates the neutral solution (see theoretical 
manual) 

Erase. - displays menu of currently defined problems (for 
current model), selected problem is deleted to- 
gether with all related results 

Pr in t .  - prints current problem 

< Alt R > Result selection: - commands for operations on results as whole enti- 
ties 

Ge t  from disk. - displays menu of currently defined results (for 
current model and current problem), selected re- 
sult is loaded from disk into spreadsheet 

Save and new. - checks for completeness of the result, saves it on 
disk (asks for result name if not named previ- 
ously) and resets the name and comment 

Description. - asks for 30 characters brief description of the 
result 

New. - resets the name and comment, the result da ta  
in the spreadsheet remains unchanged 

Reset. - resets the name and comment, clears all result 
da ta  in the spreadsheet 



Calculate. - checks for completeness of the result data and 
calculates the efficient solution (see theoretical 
manual) 

Variables. -displays a window with values of variables re- 
lated to  current efficient solution 

Erase. - displays menu of currently defined results (for 
current model and for current problem), selected 
result is deleted 

Pr in t .  - prints current result 

< Alt G > Graphics: - selects the results and objectives which will be dis- 
played,switches the scaling method and starts  the 
display 

Display. - displays the graphical representation of result 

Result selection - displays menu of currently defined results (for 
current model and current problem), selected re- 
sults are displayed on the screen, < Enter > key 
selects, up to  10 results can be selects, < Esc > 
key moves back to  the Graphics menu 

Objectives selection - displays menu of objectives, selected objectives 
are displayed on the screen, < Enter > key se- 
lects, < Esc > key moves back to the Graphics 
menu 

Normal scale - toggles the scaling method 

< Alt 0 > Options: - same as in model edition spreadsheet 

3.6.4 Function keys for interactive analysis 

< F 1 > - context sensitive help. 

< F2 > - save. - same as in model edition spreadsheet 

< F3 > - calculate. - calculates utopia point (if not calculated), neutral so- 
lution (if not calculated) and efficient solution (if not 
calculated), performs all necessary checks for com- 
pleteness of model, problem and result da ta  

< F4 > - list. -same as < F4 > and < Alt L > in model edition 
spreadsheet 

< F5 > - go to model editing spreadsheet. 

< F9 > - graphics: - displays menu of currently defined results (for current 
model and current problem), up to  10 results can be 
selected and displayed in the bar form 

< F10 > - exit to  DOS. 



3.7 Syntax of formulae 

Outcome formulae entered into the spreadsheet are standard arithmetic expressions with 
some possible extensions. Five binary arithmetical operators can be used: addition I + ' ,  

subtraction I - ' ,  multiplication '*', division '1' and power ' ^ '  , moreover an unary minus can 
be used, having higher precedence than binary operators. Standard arithmetical rules are 
used for operator precedence and calculation order, parenthesis can be used to  imply specific 
order of calculations. There is only one restriction of the use of these operators: a sequence 
of two power operators xuz is not allowed, either operator together with its arguments must 
by enclosed in parenthesis (xu)' or z(uz) to  explicitly define the order of calculations. 

There are several built-in functions that  can be used in outcome formulae, ten func- 
tions with one argument abs, arctan, cos, ezp, In, log, signum, sin,  sqr, sqrt and two functions 
with two arguments min ,maz .  Moreover there is a predefined constant P i .  Functions 
abs, signum, min,  m a z  should be used with caution because they are nondifferentiable. Log- 
ical structures of the form if logical ezpression then arithmetic ezpression else arithmetic 
ezpression or if logical ezpression then arithmetic ezpression elsif logical ezpression then 
arithmetic ezpression else arithmetic ezpression should be used also with caution for the 
same reason. Up to  ten levels of elsif are allowed. Two arguments relation operators '<' 
L <=, 1 - <>' '>=' '>' and three arguments membership operator 'in I . , . ] '  and logical 
operators 'and' 'or' 'xor' 'not' can be used in logical expressions. 

4 Illustrative examples 

4.1 Testing Example 

This example was chosen because its multiobjective analysis is simple and can be performed 
analytically. It serves t o  test the correctness of the installation of the program and t o  check 
whether the hardware and software IBM PC compatibility of your computer is sufficient to 
use the DIDASN (or DIDAsNE) program. 

The model has four variables ( xa xb xc xd ), two parameters ( z a  zb  ) and three 
outcomes ( obj  1 obj2  wrk ) .  

The model is defined as follows: 

Outcome equations: 

o b j l  = ( x a - 1 ) ^ 2 + z a * ( x b - 1 ) ^ 2 + ( x c - 1 ) ^ 2 +  

(xd - 1)*2  + wrk 
obj2  = x a A 2  + za  * xbA2 + x c A 2  + xdA2 + wrk 
wrk = z b *  (xa - x b ) ^ 2 +  (zb - za)  * (xc - x d ) ^ 2  

Bounds on variables and outcomes: 



-1 5 obj1 5 12 

-1 5 obj2 5 12 

0 5 wrk 5 100 

Values of parameters: 

Initial values of variables: 

The multiobjective nonlinear programming problem is to  minimize objectives obj 1 and 
ob j 2, while the outcome wrk is floating (free). 

The Pareto frontier in the objective space for this example can be determined analytically 
and has the form: 

J-+ J s = i  

with the utopia point ( 0.0, 0.0 ), nadir point ( 10.0, 10.0 ), and the neutral solution 
point ( 2.5, 2.5 1. 

Numerical results obtained during computation will be slightly different because of nu- 
merical errors and finite accuracy of calculations. Calculations in two versions of the system 
are performed using different hardware and software, therefore small differences between re- 
sults obtained using these two versions could be observed. In the following example session 
expected results will be given for coprocessor version. If results for emulation version are 
different they will be given in braces C 1. Attached figures are for coprocessor version only. 

To go through the testing example, we will perform the following actions: 

1. We execute the program DIDASN (or DIDAsNE) a t  the DOS prompt. 

2. We get initial banner with program name, version number and information about the 
authors (Fig. 1).  

3. We press any key and get initial, smallest possible model editing spreadsheet (Fig. 2). 

4. We load the model pressing keys: 

< Alt M > [model selection menu appears in the upper left corner of the 
screen] 

< G >  [list of accessible models appears in the small window with the 
DEMO model name being the first, if it is not the first then se- 
lect the DEMO name moving the marking bar with < Up > and 
< Down > cursor keys] 



Figure 1: Initial screen 

Figure 2: Initial spreadsheet 
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< Enter > [DEMO model is loaded and displayed] 

< F5 > [DEMO model is stored on a disk with the status 'fixed', thus 
interactive analysis spreadsheet is automatically selected, we 
switch to  model editing spreadsheet (Fig. 3)] 

5. Using the cursor movement keys we move to the row Values and to  the column xa. 
The marked cell contains the current value of the variable xa  - this value is 1.0. We 
enter a new value, just typing 2 and pressing the < Enter > key. The spreadsheet is 
immediately recalculated (Fig. 4). 

6. Now we switch to the multiobjective analysis spreadsheet pressing the < F6 > key and 
load example problem definition DEMO1 for the model DEMO pressing < Alt P > < G > 
< Enter >. The problem definition together with utopia and nadir points, neutral 
solution and some proposed aspiration and reservation levels are displayed (Fig. 5). 

7. Now we will try to  recalculate the problem and obtain the same results. First, we start  
the definition of a new problem pressing < Alt P N >. Now, we press < Alt P U > 
and the system determines the utopia point (analytical solution is ( ob j 1 , ob j 2 ) = 

( 0.0, 0.0 ), obtained values are ( 2.714E-21, 1.351E-21 I 5.863E-18, 
1 .557E-17 1 ) and the nadir point (analytical solution is ( ob j 1 , ob j 2 ) = ( 10.0, 
10.0 ) , obtained results are the same). 

8.  Let the system determine the neutral solution - we press < Alt P T > (It is also pos- 
sible to  press single function key < F3 > instead of < Alt P N > and < Alt P T > to  
calculate in sequence utopia point, nadir point and neutral solution). Analytical solu- 
t ionisx  = ( 0.5, 0.5, 0.5, 0.5 ) , (  wrk, objl, obj2 ) = ( 0.0, 2.5, 2.5 ) ,  

obtained results for obj 1 and obj2 are exactly the same, only value for outcome wrk 

is slightly different 1.564E-10. We check results for variables using the command 
< Alt R V > they are ( 0.499999, 0.5, 0.500004, 0.500005 ). Now we fix the 
problem (with the command < Alt P F > and giving i t  any valid name - e.g. demo2). 
Before doing i t  we can submit some problem description (with < Alt P D >). 

9. Let the system determine an efficient solution corresponding to  aspiration level of objec- 
tive obj 1 changed from 1 .6667 to  1 .O and reservation level of objective ob j 2 changed 
from 3.3333 to 4.0; obtained results are 2.124 and 2.906 for objectives obj 1 and 
obj 2, respectively, and 6.982E-20 I 4.530E-13 } for outcome wrk. We check results 
for variables - they are 0.539114, 0.539114, 0.539114, 0.539114. We save ob- 
tained result (with < Alt R S > and giving it any valid name - e.g. myfirst). Before 
doing i t  we can submit some result description (< Alt R D >). 

10. Now we can compare two results already obtained using graphical representation - 
for this purpose i t  is enough to  press < F9 > function key. We obtain a screen with 
bars representing our results, i t  is better to  change the scaling method pressing the key 
< F2 > (Fig. 6). 



Figure 3: DEMO model loaded 
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Figure 5: DEMO1 problem loaded 



4.2 Tutorial example 

Typical procedure of working with the DIDASN program and various accepts of use of several 
program commands are discussed in this section. This discussion is done using a real-life 
example specially designed for this purpose. The model used in this example is a very rough 
approximation of the much more complicated model of acid deposition in forest soil described 
by Hettelingh and Hordijk (1987). 

4.2.1 Description of the model 

We consider two regions (denoted by the index k = 1,2)  burning one type of fuel (say, 
coal) and emitting sulphur dioxide. The problem is, in fact, a dynamic one and should be 
considered in many time periods of one year duration; here we simplify it by considering only 
three periods each of five years duration (denoted by t = 1,2 ,3) .  

The sulphur dioxide emission in each region and time period is determined by: 

where S& is the potential emission, specified exogenously. It may be described in the form: 

where Ek,t is the total energy production in region k and in time period t ,  hkVt is the 
heat content of the fuel, zk,t is the sulphur content of the fuel, rk,t is the reduction coefficient 
through sulphur remaining in ashes. However, for the purpose of this simplified model, Sit are 
assumed to  be given as  model parameters (for k = 1 , 2  and t = 1,2 ,3) .  In the computerized 
model Skqt are denoted as parameter names Sktp and Sk,t are denoted as outcome names Skt  
where k are digits 1 , 2  representing two regions and t are digits 1 , 2 , 3  representing three time 
periods. 

The reduction coefficients pk,t in (38) describe the effects of the pollution control measures. 
These coefficients serve as the main decision variables, therefore, there are actually six decision 
variables pk,t (k = 1 ,2 ,  t = 1 ,2 ,3 ) .  In the computerized model they are denoted as variable 
names pk t  . 

It is assumed that  the decision maker in k-th region is interested in: 

the costs of pollution control measures Ck,t  for each period; 

the level of pH (denoted here as pHkat and denoted as outcome names pHkt in the 
model) in forest soil; 

or together in two objective outcome trajectories each of three periods length. In the DIDAS 
methodology, however, we investigate cooperative actions of both decision makers jointly, 
therefore, the joint "decision maker" is interested in four outcome trajectories - two cost 
trajectories and two pH trajectories each of three periods length, a total of twelve objective 
outcomes. 

The cost Ck,t  (denoted in the model as outcome names Ckt) is function of both potential 
emission Sk,t and of the reduction coefficient pk,t. Actually, the situation is more complicated, 
since the costs have also dynamic character: there is a high investment cost of pollution 
control devices, but they are not so expensive in maintenance; on the other hand, once 
installed, the devices give a defined coefficient pk,t. However, when considering only five- 
year periods we can apply a much simpler model of the pollution control costs, understood as 



joint cost of investments and maintenance in five-year period and depending on the reduction 
coefficient achieved in average in this period: 

where ck is the cost of reducing the potential emission by half per one unit of potential 
emission. This is a very simple approximation of actual cost curves and can be replaced by 
any other more exact approximation. The form of this approximation express, however, the 
fact that  i t  becomes increasingly costly to obtain reduction coefficients close to  1 . Because of 
numerical reasons, the reduction coefficient must be bounded away from 1 and constrained in 
a range, say, 0 < pk,t 5 0.99 (in the computerized model reduction coefficients are measured 
in percents and bounded from 0% to 99%). 

The level of pH in forest soil is assumed to have more long-time dynamic aspects and 
thus it is modeled by dynamic equations. When approximating more complicated relations 
described in (Hettelingh and Hordijk, 1987), we must take into account that  acid absorption 
and reduction capacities of forest soil are nonlinear, that  they are strongest in the carbonate 
range (pH=8.0-6.2, but we will take pH=7 as an upper bound), quite different and not so 
strong in the silicate range (pH=6.2-5.0) and again stronger in the cation exchange range 
(pH=5.0-4.2) while any pH level below 4.0 might be considered as catastrophic. Therefore, 
instead of including more realistic and complicated models that  might be considered in further 
variants of this application, in the tutorial example we consider only a nonlinear dynamic 
model for the pH range 7-4 of the approximate form: 

where Dk,t (denoted as outcome names DktR in the model) are sulphur deposits in given 
region and period, C A P k  are the five-year carrying absorption capacity (if Dk,t 2 C A P k  
then it is assumed that  pHk,t drops to  4 or below), and the function @ express the essential 
nonlinearity of absorption and reduction of acids by forest soil. A convenient form of this 
function is: 

if z < O  

- zz3, if o 5 z < 1 (42) 

if z 2 1  

This is a twice-differentiable (except a t  z = 0 and z = 1, where it is only once-differentiable) 
spline function. 

If z = D k V t / C A P k  = 0, then the dynamic part of (41) illustrates the self-regeneration 
of forest soil with a regeneration coefficient ak (during a five-year period); this coefficient 
characterizes, what part of the distance between pH=7 and the actual pH level will be 
restored in five years. 

The initial value pHkso (for t = 0) is given as a parameter for both regions k = 1,2 .  
It should be stressed again that  the nonlinear dynamic model (41) is only a very rough 
approximation of actual forest soil chemistry and must be updated by specialists for more 
realistic policy analysis for other than only tutorial example purposes. 

The sulphur deposits Dk,t are the results of sulphur-emissions Sk,t as determined by a 
deposition model, which in this simplified case is again assumed in the simplest possible 
form: 

Dk,t = ak,lSl,t + ak,2S2,t, k = 1, 2 (43) 



where ak,, are transfer coefficients from region j to region k (whereas 0 5 ak,, I 1, and, for 
simplicity, we assume ak,l + a k , ~  = 1, k = 1,2).  

On such a simplified model, we can illustrate the issues of multiobjective dynamic and 
nonlinear analysis of the effects of pollution control. The analysts or the decision makers can 
jointly analyze in this model: 

what would be the maximal pollution reduction rates, if they have limited founds for 
pollution control in each of time periods, and what would be the corresponding effects 
on forest soil acidity; 

what are the possibilities of multiobjective dynamic compromises between the trajecto- 
ries of costs in all periods and trajectories of forest soil acidity. 

For both purposes, the D I D A S  methodology can be applied. The multiobjective analysis 
can be performed by specifying reference (aspiration, or aspiration and reservation) trajecto- 
ries for costs and for the pH levels, while the D I D A S N  system will compute multiobjectively 
optimal (effective) trajectories for these variables that  are consistent with the model (feasible) 
and in a sense best attuned to  the reference trajectories. 

4.2.2 Sample session 

The model described in the previous section is already prepared as a disk file R A I N  and can be 
loaded into the IAC-DIDAS-N spreadsheet using the command < Alt M G > (Model selection 
- Get from disk). It is stored as a 'fixed' model, thus to  make some experiments with the 
model we must use the command < Alt M N > (Model selection - New). Now we can 
change all upper and lower bounds, values of parameters and outcome formula. Following 
each change of variable or parameter value the spreadsheet is automatically recalculated. 
After some play with the model we load again the original one and start the second phase of 
the work. 

We define now the decision problem. We select outcomes to  be minimized or maximized. 
First we get take into account only one region performances: we mark costs C11 C12 C13 
as minimized and pH levels pH11 pH12 pH13 as maximized. Bounds for all outcomes are 
defined in the model and we don't redefine them. We ask the system to calculate Utopia and 
Nadir points using the command < Alt P U > (Problem selection - Utopia) and after a while 
we get the results. Next we ask the system to calculate a compromise solution, so called 
neutral solution, being the starting point for further interaction. We enter the command 
< Alt P T > (Problem selection - neuTral) and again wait a while. When the neutral 
solution is calculated and displayed the problem definition is finished and we can 'fix' the 
problem using the command < Alt P F > (Problem selection - Fix and save). We are 
asked to  give a name of the problem, it may be ONEREG. Basing on values of Utopia, Nadir 
and Neutral points the system proposes us initial values of aspiration and reservation levels. 
Further interaction consists in a sequence of three or four actions: 

modification of aspiration and or reservation levels (it  is enough to  change only one 
value); i t  is obtained through the edition of appropriate spreadsheet cells. 

calculation of the efficient solution corresponding to  current levels of aspirations and 
reservations. Optimization process is initiated with the < F3 > (Calculate) command. 

if the result (efficient solution) is not satisfactory, we can discard it with the command 
< Alt R N > (Result selection - New) and go back to  the first action. Otherwise we 
save the result with the command < Alt R S > (Result selection - Save and new). 



optionally, we can compare several results obtained for current problem using graphical 
representation, directly with the command < F9 > or with some selections of objectives 
and results to  be displayed within < Alt G > (Graphics) menu. 

Because all interesting results are stored on a disk, interaction session can be stopped a t  
any time and next resumed. 

Now we continue the interaction, but for the problem previously defined. We load a 
problem RAIN1 using the command < Alt P G > (Problem selection - Get from disk). The 
problem definition with calculated utopia and nadir values together with the neutral solution 
are loaded. There are twelve objectives now: costs C11 C12 C13 and pH levels pH11 pH12 
pH13 for the first region and costs C21 C22 C23 and pH levels pH21 pH22 pH23 for the second 
region. Please observe, that  neutral solution values for the first region are worse than in the 
previous problem. It is because now the neutral solution is a compromise between interests 
of both regions. 

We find, that  costs in the second region are decisively to  large, but pH in both regions 
can be accepted. Thus we try t o  decrease costs in the second region decreasing reservation 
levels for costs C21 C22 C23 from 2180 to  1500. We press < F3 > ,wait for result and save 
the result with th  command < F2 >. To compare new result with the neutral solution we use 
graphical representation. First we select objectives to  be displayed - only ten can be displayed 
simultaneously. We enter the command < Alt G 0 > (Graphics - Objectives selection). 
System display the list of all twelve objectives with first ten marked. More important for us 
are changes of pH in the last period than in the first. Therefore we 'unmark' objectives pH1 1 
pH21 and 'mark' objectives pH22 pH23 - both operations are performed moving the marking 
bar with the < Up > and < Up > cursor keys and pressing the < Enter > key. We don't need 
to enter the Graphics - Results selection menu because currently there are only two results, 
thus both are automatically selected. We execute now the display command in the graphics 
menu and obtain bar representation of results. We can press the < F1 > (Help) function key 
to  get help on the meaning of several elements of the picture, but we find the picture rather 
not legible. The standard scaling method (Normal scale ON) is based on the distances from 
lower to  upper bounds. In our case the changes of efficient values are much smaller than 
these distances. It seems that  the second (Normal scale OFF)  scaling method will be useful 
- i t  is based on distances between utopia and reservation values (or solution values if they 
are worse than reservations). The < F2 > key during the graphical representation toggles 
both scaling methods, we press this key once. 

Now the picture is legible and we can see that  in fact costs in the second region are de- 
creased, but simultaneously in the first region costs are increased and pH levels are decreased. 
Now we can either increase back the reservations for costs in the second region or increase 
aspirations and/or reservations for pH levels in both regions. We try to  explore the second 
possibility. We increase reservations for pH12 pH13 from 5.983 to 5.990 and from 6.265 to 
6.270, respectively, and again calculate efficient solution, save it and look on graphical repre- 
sentation - we press in sequence three function keys: < F3 > (Calculate) < F2 > (Save) and 
< F 9  > (Graphics). The previous selection of objectives is still active and now three results 
are displayed. 

pH levels are now acceptable, but the costs in the first region are very high. To balance 
the costs in both regions we slightly increase reservations in the second (from 1500 to 1700) 
region and decrease reservations in the first region (from 1090 to 900). The fourth obtained 
result seems to  be close to  the acceptable solution of multiobjective decision problem. 
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A Inst allat ion guide 

The distribution diskette 1 contains the following files: 

DIDASN.EXE - compiled code of the coprocessor version of the program 

DEMO. MOD - simple nonlinear model (testing example) 

RAIN. MOD - nonlinear model used in Tutorial Example 

READ. ME - last time notes and corrections 

1NSTALL.BAT - batch command file to  install coprocessor version of the pro- 
gram and both models on a hard disk or on a working diskette 

Moreover, there are examples of multiobjective problem definitions for both model 
examples in two diskette subdirectories (DEMO and RAIN) .  

The distribution diskette 2 contains the following files: 

DIDASNE.EXE - complied code of the emulation version of the program 

DEMO. MOD - simple nonlinear model (testing example) 

RAIN. MOD - nonlinear model used in Tutorial Example 

READ . ME - last time notes and corrections 

1NSTALL.BAT - batch command file to  install emulation version of the program 
and both models on a hard disk or on a working diskette 

Moreover, there are examples of multiobjective problem definitions for both model 
examples in two diskette subdirectories (DEMO and RAIN). 

To install the selected version of the program and models: 

insert the distribution diskette 1 or 2 in floppy disk drive, 

change current drive and current directory to the drive and directory where you want 
to  install the program, 

enter the command 
a : i n s t a l l  a :  

where a is a drive letter of the drive where the distribution diskette is inserted (typically 
it is just a drive A) 

Installation procedure makes the sub directory DIDASN, writes there the program code 
(DIDASN . EXE or DIDASNE . ExE), next makes subdirectory DIDASN\MODELS, creates there some 
more subdirectories and writes into them two demonstrative nonlinear models together with 
examples of problems and results. 



B Selection of colors 

Both versions of the program can work on IBM PC/XT/AT or compatible computers with 
Hercules Graphics Card (HGC), Color Graphics Adapter (CGA) and Enhanced Graphics 
Adapter (EGA or VGA). The user can select (independently for each particular graphics 
card) his own set of colors/attributes for display several items on the screen using model 
editing spreadsheet menu entry Options - command Colors. 

There are 9 items with some restrictions of selections of their colors: 

Spreadsheet cells 
Spreadsheet lines 
Spreadsheet labels 
Spreadsheet marker 
Editing windows 
Message windows 
Warning messages 
Error messages 
Screen background 

First three items form spreadsheets and therefore have the same background color, the 
spreadsheet marker should have colors that  make it visible in all spreadsheet cells (empty 
and not empty). 

Highlighted double-triangles marker selects one of 9 items marker and can be moved 
using < Up > and < Down > cursor keys. For selected item < Home > and < End > cursor 
keys change the foreground color, whereas < PgUp > and < PgDn > cursor keys change 
background color. Selected item is displayed in the colors/attributes currently selected for 
it. Simultaneously names of the colors are displayed on the right. 

< Esc > key cancels all colors changes and causes return to  the spreadsheet. < Enter > 
key makes the changes effective and, additionally, program asks for making these changes 
permanent. In case of answer Y (or y )  the changes are recorded on disk and will also be 
effective during subsequent runs of the program. Selections of colors for two versions of the 
program (DIDASN . EXE and DIDASNE . EXE) are independent. 



Attachment 

Nonlinear Model Generator IAC-DIDAS-G 

1 Extended summary 

In many situations a decision maker needs help of an analyst or a team of analysts to learn 
about possible decision options and their predicted results. Such situations include both 
purely engineering complex design and mixed social economical and environmental prob- 
lems. A team of analysts frequently summarizes its knowledge in the form of a substantive 
model of the decision problem that can be formalized mathematically and computerized. A 
mathematical model can never be perfect but, nevertheless, it can often be of great help t o  
a decision maker in the process of learning about novel aspects of a decision situation. 

The learning process needs interaction of a decision maker with a team of analysts and 
substantive models prepared by them. In organizing such interaction, many techniques of 
optimization, multicriteria decision analysis and other tools of mathematical programming 
can be used. However, all such techniques must be used as supporting tools of interactive 
analysis rather than as means for proposing unique optimal decisions and thus replacing the 
decision maker. 

Such considerations led to the construction of the decision analysis and support systems 
of DIDAS family - that  is, Dynamic Interactive Decision Analysis and Support systems, 
see e.g. (Lewandowski a t  al., 1985). DIDAS systems are addressed to  analysts or teams of 
analysts who want to  analyze their substantive models and, if the system is user-friendly, 
even to decision makers working alone. 

The most general classification of models is into linear and nonlinear ones. Problems 
described by mathematical models of linear structure were investigated by many authors and 
several approaches to  defining such problems interactively were proposed. The situation is 
much more complicated in the case of nonlinear models. A short review (see: Lewandowski, 
1985) of problem interfaces in existing implementations of nonlinear DIDAS systems will 
underline the main points. Before the fulfillment of the present contract there existed three 
versions of nonlinear DIDAS: DIDAS-N developed by Grauer and Kaden (1983), a specialized 
system developed by Kaden and Kreglewski (1985) and general purpose DIDAS implemented 
by Kreglewski and others (Kreglewski a t  al., 1985). In the Grauer and Kaden's version, the 
equations describing objective and constrains functions must be programmed in FORTRAN. 
The authors supply a "skeleton" FORTRAN subroutine with empty "holes" where the user 
must locate his FORTRAN code. This is rather a complicated task - separate parts of the 
problem definition must be located in various places of the code, and the code itself must be 
written taking into account the variable names and structures used in this skeleton subroutine. 
Next, the user must calculate analytically the derivatives of the objective and the constraints 
functions. This is needed in each version of DIDAS, since practically only differentiable 
optimization methods are sufficiently efficient and robust to be applied in interactive decision 
support systems. This task is time consuming and can be a source of errors. A warning 
for persons who believe in their error-free analytic calculations can be found in (Pavelle at  
al., 1981), in a slightly different context. They state that a computer verification (by means 
of symbolic computation) of eight widely employed tables of indefinite integrals discovered 
that about 10 percent of the formulae were erroneous; one of the tables was found to  have 
an error rate of 25 percent. Errors in gradients are typically difficult to detect they can 
only be detected when the behavior of an optimization process is observed by a user qualified 



in optimization techniques. After completing this analytical task, the user must properly 
augment his FORTRAN formulae with the penalty function terms and their derivatives. This 
is conceptually rather difficult for a user who is not familiar with mathematical programming 
algorithms, and can lead to numerous errors. The conflict of variable names is also probable. 

The specialized system of Kaden and Kreglewski is of no interest in the present context, 
since its model was programmed once for ever and the user interacts only on the level of input 
data and reference point selection. The general purpose version developed by Kreglewski 
and others (1985) also needs a FORTRAN subroutine containing the problem description, 
but there are less programming constrains put on the user. He must preserve only the 
general structure of the subroutine header (formal parameter declaration) and the COMMON 
block. No variable conflict can occur, and the standards according to  which the body of the 
subroutine must be composed are straightforward. The task of analytical computation of 
derivatives remains but the errors can most probably be detected aposteriori by the method 
of Wolfe (1982). 

Concluding, the following basic disadvantages of problem generation are found in the past 
implementations of nonlinear DIDAS: 

the user must compute analytically all derivatives of objective and constraint functions, 

all objective and constraint functions as well as their derivatives must be programmed 
in FORTRAN according to the specifications supplied by the manual of the system; 
those specifications can be difficult to understand for a non-experienced user, 

the user must be familiar with the details of the computing environment of the computer 
on which he is working, such as editor, compiler, linker, operating system command 
language etc. 

any changes of the model - which might often occur during the process of interactive 
work with the system - cannot be performed within the system, but must go through 
the chain: program editor - FORTRAN compiler - linker - operating system. This 
slows down the interaction process, makes it difficult and inefficient. 

The new model generator is aimed a t  a user who is neither an experienced computer specialist 
nor an expert in optimization techniques. The work done can be divided into the following 
parts: 

a proposal of a standard for nonlinear model formulation (thus extracting a concrete 
subclass from the wide universe of nonlinear problems that  is characterized rather too 
widely by: "a nonlinear problem is a problem, which is not linear"), 

imbedding this model in an easy and user-friendly format of a spreadsheet, 

automatic computing of the necessary derivatives by symbolic differentiation proce- 
dures, 

providing safe environment for numerical calculations, 

providing means for convenient model simulation. 

The proposed standard for model formulation helps to classify thinking about model in 
the user's mind. All variables of the model are divided into input and output variables 
or outcomes. The input variables can be further subdivided into decision variables and 



parametric variables. The model equations are of explicit type: outcome variables are defined 
consecutively, depending on input variables and previously defined outcome variables (which 
serve then as intermediate outcomes). Those dependencies are checked automatically by the 
program. 

In contrast with the previous versions of the model generator, this program has two 
packages for automatic differentiation. The first one produces code for calculation of the 
derivative's value while the second presents derivatives in symbolic form. This solution results 
from our experience from earlier versions. Efficient computations of values should repeatedly 
use values of common subexpressions. Such code, even after transformation to  some symbolic 
form would not be very human-readable and would bear no resemblance to  a formula produced 
"by hand". But the goal in symbolic differentiation is to produce a formula similar to  that  
obtained by manual differentiation. The coding of such a formula would not necessary produce 
efficient numerical code since there may be many repetitions of similar blocks of the code. 

The domain of differentiation is extended in comparison with general purpose symbolic 
computation packages. In optimization there is a long tradition of using nondifferentiable 
functions e.g. MAX, MIN. In such cases program calculates arbitrarily selected element of their 
subdifferentials. Their correct interpretation remains the responsibility of the user. 

Properties of all but "academic" nonlinear models can contain many "mysteries". One 
cannot hope that the first optimization run will yield a solution of the problem. Most likely, 
the procedures of an optimization solver will encounter numerical problems. The user can 
investigate analytical and numerical properties of the model by inspecting formulae and their 
derivatives and performing numerical simulations. After gaining some insight he should be 
able to improve the formulation of the model. 

In particular, the algorithm of shifted penalty functions used by the optimization solver in 
nonlinear DIDAS systems can drive the model formulae outside of their domains of definition. 
Such situations can be easily dealt with thanks to properties of the program: the syntax of 
formulae allows for an easy extension of the model's definition domain. Corrections can be 
introduced interactively because of general user-friendliness of the model generator. 

The model generator was designed as a part of a new nonlinear version of the DIDAS 
system, it is available however as a separate program too. In the latter case it forms an 
extension to IAC-DIDAS-N, called IAC-DIDAS-G. Model files of both programs are identical. 

2 Theoretical manual 

2.1 General layout 

Spreadsheet structure of the model generator suggests the general layout of the user's screen. 
One row of cells, say in horizontal direction, corresponds to input variables. Then a natural 
choice is to define output variables in a column of cells. The rectangular area of cells thus 
defined can then be interpreted as (partial or total) derivatives of outcomes with respect to 
inputs. An outcome can depend on previously defined outcomes too. Therefore the "input" 
row is augmented to include outputs. In the additional rectangular area only cells in the lower 
triangle are interpreted as derivatives, the cells on the diagonal and in in the upper triangle 
remain void. An important problem remains however open - how to  define an outcome 
variable? 

In one solution an output cell can correspond to a program in some universal language 
e.g. FORTRAN. Such solution would inherit the majority of drawbacks of past DIDAS im- 
plementations, the whole expressive power of a programming language would however be at  



disposal. 
The other solution, accepted in the presented program, is to constrain the allowable 

language constructs to expressions. The class of expressions is augmented in comparison with 
typical statement-oriented programming languages. Such approach removes all drawbacks of 
"classical" implementations. The users need very little training with such expression-oriented 
"language" to use it correctly and efficiently. However the price of simplicity is the limited 
expressive power of the language. 

Another solution is to  introduce some functional language as means for definition of the 
outcome variables. Such definition can be concise and the expressive power is not restricted. 
The only problem is the ability and willingness of the user t o  master another programming 
language, which is conceptually completely different from languages used in the field of nu- 
merical calculations. 

2.2 Syntax of formulae 

The syntax of formulae used in the spreadsheet should be as "naturaln as possible, i.e. near 
to one's notational habits. These habits are created by mathematical education and by 
experience in programming languages. However, a closer look reveals that  those sources are 
completely inconsistent. 

Formulae are composed usually of numerical constants, cell names, parenthesis, some set 
of standard functions and operators denoted by the characters +, -, *, /, -. Two of them, 
+ and -, have nonunique meaning - they denote both the binary operators of addition 
and subtraction and the unary operators of plus and minus (change of sign). The operator 
properties are usually described by their precedence and associativity. It seems however 
that school mathematics establishes accepted conventions only for binary operators. Further 
patterns can be sought in popular programming languages and tools. Such review depicts 
only the total lack of commital conventions. 

The most exotic rules are used in APL. All operators have the same precedence level 
and are right-associative. This contradicts even the "school" rules. Leaving this case out of 
considerations, most problems arise from the treatment of unary minus. Aho and Ullman 
(1977) give a dramatic warning: "Beware the treatment of unary minus!". Three different 
syntaxes can be considered as eligible candidates for the spreadsheet. They will be presented 
below using the notation of Modified Backus-Naur Form. The meaning of meta-symbols is 
as follows: 

- - - denotes the definition, 

I - separates alternative options within the clause, 
11 II - . . .  terminal symbols are quoted, 

( . . . 1 - exactly one of the enclosed alternatives must be selected, 

[ . . . I  - denotes zero or one occurrence of the enclosed subclause, 

i . . . I  - denotes zero or any number of occurrence of the enclosed subclause. 

The syntax definitions below are left uncompleted. Lacking definition of factor will be 
presented later in two variants, any of them can be composed with previous syntaxes giving 
the total number of six variants. 



Syntax S1 

express ion  = ["+"I simple-expression { ("+"  I " - " )  simple-expression 1 
simple-expression = term i ( " * "  I "/"I term 1 
term = s igned- fac to r  ( "'I1 s igned-factor  1 
signed-f a c t o r  = ["-"I f a c t o r  

Syntax S2 

express ion  = ["+"I simple-expression ( ("+" I It-") simple-expression 1 
simple-expression = signed-term ( ("*" I "/") signed-term 1 
signed-term = [11-"] term 
term = f a c t o r  ( "'" f a c t o r  1 

Syntax S3 

express ion  = ["+" 1 "-"I simple-expression 
I (I1+" I " - " I  s imple-expression 1 

simple-expression = term ( ( " * "  I "/"I term 1 
term = f a c t o r  I "'I1 f a c t o r  1 

The S1 syntax is used e.g. in ALGOL 68, SNOBOL, MICROCALC (a  demonstration 
spreadsheet program supplied by Borland together with TURBO-PASCAL). From the defi- 
nition, the following operator precedences can be read: 

- (unary) > ^ > * , /  > + , - ( b i n a r y ) .  

The S2 syntax is used e.g. in FORTRAN, BASIC, PL/I, Lotus 1-2-3 by Lotus (1983), 
MUSIMP (the implementation language for MUMATH symbolic computation system by 
Microsoft (1983)). It has the following precedences: 

> - (unary) > * , / > + , - (binary). 

The S3 syntax is that  of PASCAL extended with the power operator. Its precedences are: 

- > * , / > + , - (unary and binary) 

Each syntax has its peculiarities, e.g. 

The syntax rules must be supplemented by associativity rules. In our context they are 
essential only for the power operator. The problem is whether it is right-associative, i.e. 
a'b'c evaluates as a ' ( b a c ) ,  or left-associative: (aab) 'c ,  as typically tacitly assumed in 
elementary schools. Both cases lead to completely different values, e.g. 2'(2'3)=256 while 
(2'2)'3=64. Thus the semantics of a formula depends on the chosen rule. Associativity 
affects not only the process of formula evaluation, but even the process of computation of 
derivatives. For the right-associative power : , , I :  li,or 



(e denotes here the base of natural logarithms), while for the left-associative one 

It seems that courses in differential calculus do not explicitly declare associativity but 
tacitly use the first variant, see e.g. examples in the classical russian textbook (Fichtenholz, 
1966), vol. I, par. 99. MUMATH assumes right associativity (under normal setting, properties 
of all operators can be freely modified by the user). Similarly does MACSYMA, perhaps the 
world's largest computer algebra system, see a differentiation example in (Pavelle, 1985). 

Associativity rules used in programming languages are nonunique. Aho and Ullman 
(1977) state on p. 47: "ALGOL evaluates all binary operators left-associatively. FORTRAN 
lets the compiler designer choose the associativity, and PL/I  evaluates all binary operators 
left-associatively, except for exponentiation, which is right-associativen . In implementations 
of BASIC used by the author the power operator was left-associative, and that  of FORTRAN 
- right-associative. In hand calculators it is left associative, perhaps due to  hardware and 
software limitations. 

In the presented implementation the power operator in the input language is nonasso- 
ciative, e.g. the formula a'b'c is not grammatically correct and must be supplemented with 
parenthesis - as in previous examples. However the software for symbolic differentiation is 
more general, it assumes the right - associativity of the power operator and has no limit as 
to the number of consecutive powers. All other operators are left - associative. 

The lacking part of syntax definition can have two forms: 

Syntax S4 

f a c t o r  = cons tan t  I v a r i a b l e  I " ( "  express ion "1" I 
s t andard- func t ion  f a c t o r .  

Syntax S5 

f a c t o r  = cons tan t  I v a r i a b l e  I " ( "  express ion " ) "  I 
s tandard- func t ion  " ( "  express ion  "1 I t .  

The difference between S4 and S5 is in the allowed forms of arguments of standard func- 
tions. Syntax S5 is conservative; each argument must be put into parenthesis, e.g. 

Syntax S4 is more flexible, it allows for simplified forms for "simple" arguments but 
includes also the forms from S5. Thus in S4 the following formulas are equivalent: 

SIN x ,  SIN(x), 
COS 55 ,  COS(55), 
EXP SIN LOG y ,  E X P ( S I N ( L O G ( ~ ) ) ) .  

Arguments which are not factors must of course be put into parenthesis e.g. 

A search for inspiration gives as usual no results. Handbooks of mathematics do not use 
parenthesis, majority of computer languages do use but some of them do not. Some BASIC 
dialects even differ between themselves in this point. 



Of course any syntax convention will do, as long as formula evaluation and differentiation 
are consistent and the user is aware of its properties. The present implementation uses the 
syntax Sl+S5 although the software for symbolic differentiation can use the S4 syntax. 

To increase the expressing power of the spreadsheet, the syntax of formulae is extended 
and the new notion of a conditional-ezptession is introduced: 

Syntax S6 

cond i t iona l -express ion  = express ion  I " I F "  log ica l -express ion  
"THEN" express ion { "ELSIFtl  log ica l -express ion  
"THENtt express ion ) "ELSEtt express ion  

log ica l -express ion  = logical - term { [ItORtt I ttXOR"] log ica l - t e rm 
log ica l - t e rm = l o g i c a l - f a c t o r  { "AND" l o g i c a l - f a c t o r  3 
l o g i c a l - f a c t o r  = r e l a t i o n  I " ( t t  log ica l -express ion  "1" I 

"NOT" l o g i c a l - f a c t o r  
r e l a t i o n  = express ion  [It=" I ft<>tl I ll<ll I #I>" I f t (=ff  I It>="] express ion  I 

express ion  " I N "  [ [ I t  1 t t ( l t  ] express ion  " , "  
express ion  [ " 1 "  I "1" I 

This syntax allows for a formula such as 

I F  x < O  AND S I N ( x - y )  IN [ 0 . 7 , y / 2 )  THEN x-2 ELSE 44 

The next change, although formally minor, has great practical consequences. 

Syntax S7 

f a c t o r  = c o n s t a n t  I v a r i a b l e  I " ( "  condi t ional -express ion I t )"  I 
s tandard- func t ion  "(It  condi t ional -express ion "1" 

This modification allows e.g. for a formula 

x A ( I F  x < > y  THEN x ELSE 2 * y )  

The present implementation uses the syntax Sl+S6+S7. "Classical" standard functions are 
augmented by the MAX, MIN functions. In the input language they can have two arguments, 
while the software for symbolic differentiation can handle any number of arguments (in prac- 
tice it is limited by a suitably large constant - say 9 - which can be of any value). 

2.3 Symbolic differentiation of formulae 

2.3.1 General remarks 

Programmers recognized very early that  computers can work not only with numbers them- 
selves but also with more abstract symbols. Computer programs for symbolic manipulation 
have been appearing since late fifties. However the popularity of symbolic computing is or- 
ders of magnitude less then that  of numeric computing. Many people are even not aware of 
their existence. There are numerous reasons of this situation. Restricted availability - a t  
first a t  some university centers and only some types of computers and/or operating systems, 
high cost - large computers, high demand of operating memory and usually long (and un- 
predictable) computation time. The situation has changed a t  first with the introduction of 



computer networks and then with the era of microcomputers. However, a professional system 
for symbolic computation needs a powerful workstation with the operating memory of some 
Megabytes. In the IBM-PC class there is a MUMATH system by Microsoft. (It was the only 
available system when the contract have been started. The situation has changed by now 
but conclusions remain valid). The use of it in this work was excluded for two reasons: 

license problem, 

interface with the rest of program would be possible only a t  the operating system level 
via exchange of files. 

The automatic differentiation can be understood in two ways. The "classicaln symbolic 
systems produce a formula of a derivative. Another, somewhat simpler systems produce a 
value of a derivative. Examples of latter systems can be found e.g. in series of papers by Rall; 
the book by Rall (1981) is the good and most detailed representative. 

The classical scope of differentiation is not sufficiently wide in the presented application. 
In optimization it is customary to  use some potentially nondifferentiable functions as e.g. MAX 
and MIN. The problem of their differentiation is resolved by calculating an element of their 
subdifferentials. This element is chosen in the following way: 

i )  the program calculates derivatives of each argument, 

ii)  the function MAX is replaced by SMX (SelectMaXimum) and M I N  is replaced by SMN 
(SelectMiNimum). Derivatives of the arguments of MAX,  M I N  are the arguments of the 
SMX and SMN functions, 

i i i )  semantics of the SMX and SMN functions is defined as follows. Evaluation of a formula and 
its derivatives starts  from the MAX,  M I N  function and selects some argument. Arguments 
with the same ordering number are selected in the SMX and SMN functions. 

The process of symbolic differentiation can be outlined as follows. An input formula is con- 
verted to  its internal representation - a binary tree. This structure is actually differentiated, 
i.e. another binary tree is created which represents the derivative. This tree is simplified and 
finally converted into the form of a formula. 

A program for any symbolic computations resembles strongly the compiler of a program- 
ming language. Therefore some knowledge of elements of compiler-writing problems would 
be of great help in understanding the following. An excellent source of information is (Wirth, 
1976), Chap. 5. 

2.3.2 Parsing 

It is customary to partition the compilation process into a series of subprocesses called phases. 
At first the input language must be specified. In our case it is very simple, it consists only 
of formulae and is defined by means of syntax MBNF clauses or syntax diagrams. The first 
phase of compilation, called the lezical analysis, separates characters of the source language 
(the formula) into groups that  logically belong together. They are called symbols or tokens, 
they are e.g. identifiers of variables, identifiers of standard functions, symbols of operators 
and punctuation symbols. The output of the lexical analyzer is a stream of symbols, which 
is passed to  the next phase, to  the syntaz analyzer or parser. 

The parser checks whether the symbols appearing at  its input form a legal sequence of 
the input language (defined by its syntax rules). Besides, i t  does some other functions. In 



the model generator there are four parsers differing by these functions. During edition of a 
formula parser detects errors (if any) and interacts with the user on their correction. During 
"compilation" of a formula it produces code for a stack machine. During "numerical" differ- 
entiation it produces a code for calculation of derivatives. During "symbolic" differentiation 
it produces a binary tree - an internal representation of a formula. Of course only the 
"front-end" parser does the checking. The later ones assume the correctness of their input 
and "concentrate" on their particular job, their structure remains however the same. 

Many parsing methods have been implemented in compilers and/or published. In this 
work a recursive-descent parsing was implemented (top-down parsing without backtracking). 
It is easy to  implement by hand and enables to  express the generation of output directly 
in terms of the syntactic structure of the source language. Presentation of syntax in the 
form of a diagram gives immediately the block scheme of the parser. Each occurrence of a 
terminal symbol corresponds to  the instruction, which recognizes this symbol and reads the 
next symbol from the input. Each occurrence of a nonterminal symbol corresponds t o  the 
call of a procedure, whose structure is given by its own diagram. 

This phase is present in both differentiation packages, but the later are different. In 
the "numerical" version no special internal representation of a formula is needed and a stack 
structure is sufficient. The parser recognizes parts of expressions, suspected of being common 
subexpressions, and after code for their evaluation is created, pushes their values on the stack 
for subsequent use. The following description is concerned with the "symbolic" variant which 
is more exotic to an average computer user. 

2.3.3 I n t e r n a l  r e p r e s e n t a t i o n  of fo rmulae  

The majority of languages, in which systems for symbolic computation are implemented, 
are of list-processing type, i.e. a list is their primal informational structure. An external 
representation of a list can be e.g. ( A ,  B ,  C ,D , E) , while the internal representation consists 
of chained nodes. Each node contains some information (in the above example - a letter 
character) or the pointer (an address) to "own" information, and the pointer to  the next 
element of the list. There is a pointer constant, usually called NIL,  which means "pointer 
to  nowhere" and is used to denote the end of a list. The simplest "units" of information 
stored in a node (or pointed to from a node) are called atoms. Usually they are numbers, 
identifiers and pointers. The simplest and most commonly used list representation of formulae 
corresponds to their prefix form, e.g. x+y becomes (+ . x ,  y ) .  Each element of a list can be a 
list themself, e.g. the expression x+2*y+3 can correspond to  the list (+  . x ,  (* , 2 ,  y)  .3 ) .  

Thus a tree of large complexity can be created. In PASCAL (which is the implementation 
language of the program) nodes will be represented by records and connections between them 
by pointers. There are no recognized rules for choosing a particular representation of a node; 
it depends on habits, experience and preferences of the implementer. Many decisions must 
be taken in connection with the usual trade-off between the range of used memory and the 
speed of execution. E.g. some redundant information can be stored in nodes thus being 
immediately available (but more memory is used for data) .  In another variant, it can be 
extracted from the tree structures when needed - thus more memory is used for program 
code for additional procedures, and the execution is slower. 

In the presented implementation, there are two pointers in each node. It means that  the 
structure formed with the use of them is a binary tree. The usual form of visualization of such 
structure is with the root being most upper and leaves dangling down. In the present context 
it is, however, more convenient to  imagine, that  the binary tree is turned counter-clockwise 



so that the right branches are horizontal and the left - vertical. To limit the number of 
procedures needed for operations on structures, the internal representation of structures does 
not use the binary minus and the division. Instead the addition and multiplication is used 
with the right arguments multiplied by -1 or taken to power -1, respectively. 

The above-mentioned list representation is used in MUMATH symbolic programming 
system. Its code is known and some comparative remarks can be deduced, although it is 
written in a specialized MUSIMP programming language and therefore any comparison with 
a PASCAL implementation must be rather rough. The main advantage of the MUSIMP 
representation is the memory economy. The price is the relative complexity of arithmetic 
operations, since a list contains only very condensed syntactic information. E.g. the process 
of adding two formulae presented by lists (+ , x , y )  and (* ,  2 ,y )  must a t  first reconstruct 
their syntactic relations. Arithmetic and algebraic packages contain about 100 functions (not 
to  mention "primitive" MUSIMP functions) and from the programming point of view are the 
most complicated part of the whole system. Functions are highly recursive and the number 
of their calls is rather large too. An experiment with tracing (of main algebraic functions 
only) was performed for two simple expressions e l=x+y and e2=2*x-y. In the process of 
their addition there was 18 function calls, in the subtraction - 62 calls. The solution is 
computed (and simplified) recursively e.g. by adding successive simple expressions. It means 
that  simplification is repeated many times, but when the final result is obtained it is already 
in a simplified form. 

In the presented implementation quite reverse principles were chosen, basing on the fol- 
lowing considerations. At a time there exist only two structures, that of a differentiated 
formula and that of a derivative. After the derivative is compressed into the formula form, 
the memory used for representation of structures is released. Thus the data  storage presents 
no special limitation. PASCAL is rather talkative for such type of problems, program grows 
large - so it was thought desirable to  limit the number of procedures. The chosen structure 
expresses the syntactic properties of a formula in an explicit form, a t  the cost of larger num- 
ber of nodes. In MUMATH a n-argument sum, product or power expression is represented 
by a (n  + 1)-element list. In the presented implementation the number of nodes is equal 
t o  3n,  2n + 1 and n + 2 respectively (the more complicated is the formula - the better 
is the comparison). As the result, there are only about 20 "algebraic" procedures. Once 
the formulae are converted into internal form, their addition is achieved in 1 procedure call. 
Compression of structures into formulae is divorced from the arithmetic and differentiating 
operations, i.e. analytical operations are performed on structures and only the final result is 
transformed into a formula form (and simplified). To improve speed further, the iterative 
methods are used whenever possible. 

Internal representation of formulae is illustrated on figures 1-5. Fundamental structures 
are presented on Fig. 1.  Characters +, *, ' denote consecutive levels of the graph. Simple- 
expressions are linked together via nodes a t  the + level - Fig. l .b,  terms - at  the * level 
- Fig. l.c, signed-factors - a t  the - level - Fig. 1.d. Structures corresponding to formulae 
without parentheses are three nodes "deep". The highest level, denoted by + sign, corresponds 
t o  simple-expressions. Addition of two formulae corresponds to linking of two structures a t  
this level - e.g. Fig. 1.b. In the expression presented on this figure there are two simple- 
expressions, each consisting of a simple term, each of them being a single signed-factor, 
each being a factor (without sign). The middle level, denoted by * sign, corresponds to 
terms. Linking of structures a t  that level corresponds to multiplication - e.g. in Fig. 1.c. 

The low level, denoted by sign, corresponds to signed-factors. Constants and names of 
variables are contained only in nodes of the - level, nodes from levels + and * are used only 
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Figure 2: More complicated examples 



IF w1<0 THEN xl+y ELSIF x IN [-2.34, 0.15) THEN -3 ELSE 2*2 

Figure 3: The structure of a conditional expression 

z*(IF x<O THEN xb ELSE 2*xb)*y MIN(xa+xb, 3 .xa'2) 

Figure 4: A conditional expression used Figure 5: The structure of a n-argument 
as factor function 



for structuring. The expression in Fig. 1.c consists of one simple-expression, which has two 
terms. The expression in Fig. 1.d has one term consisting of two signed-factors, each of them 
being a factor. 

In the example presented in Fig. 2.a there are two simple-expressions. The first one 
consists of two terms. Each of these terms is a single factor. The second simple-expression 
has two terms. The first one consists of two factors, the second has one factor, which is an 
expression in parentheses. Each pair of nested parentheses increases the depth of a structure 
by three nodes. Standard functions are just another form of factors. Their names appear in 
nodes of the - level. Arguments in parentheses are expressed by a lower "layer" of structure, 
three nodes deep - see Fig. 2.b. 

Conditional expressions are presented on Fig. 3. The roots of the consecutive "forks" are 
denoted by the $ character. Logical-expressions are not subject of differentiation; therefore 
they are not represented in structures of conditional-expressions. An example of a factor 
in form of a conditional-expression is presented in Fig. 4. Its appearance is marked by the 
? character. 

The structure of a function, presented in Fig. 2.b, is valid for one-argument functions 
only. The MAX and MIN functions, which can have arbitrary number of arguments, use the 
special structure presented in Fig. 5. The structures of consecutive arguments are marked 
with the M character. 

2.3.4 A r i t h m e t i c  o p e r a t i o n s  a n d  differentiat ion of s t r u c t u r e s  

All mathematical operations are performed on structures - in fact on copies of their ar- 
guments. The addition is the simplest, the corresponding structures are linked together a t  
the + level (see the structure on Fig. 1.b).  This structure can be treated as the result of 
"addition" of the two structures corresponding to expressions x and y.  In the multiplication 
procedure a skeleton structure is produced as in Fig. l.c, but without the variables a ,  z in the 
- nodes. The copies of arguments are linked under those nodes, instead. The power proce- 
dure acts similarly using the structure presented in Fig. 1.d. Subtraction and division appear 
only in the "external" formula representation and never - in the "internal" structural form, 
so they need not be implemented. Operations of standard functions are performed according 
to  patterns presented in Fig. 2.b and Fig. 5. 

Differentiating procedures take structures as their input and produce structures repre- 
senting derivatives, basing on rules of differentiation and using the library of mathematical 
operations. The derivative of an expression is formed as the sum of derivatives of simple- 
expressions. A simple-expression has the form of 

where t, denote a term. Its derivative if formed as the sum of all products of the form 

Differentiation of these both syntactic constructs can (and is) be implemented iteratively. A 
term has the general form 

f l A f 2 - .  . . ^ f n ,  

where f ,  denote signed-factors. The derivative of a term is computed according to the formula 



where f denote the first factor and R - the rest of a term. It is a recursive definition 
and must be implemented recursively. The derivative is produced by creating all necessary 
factors and linking them into two simple-expressions and finally into one expression. The 
derivative of a signed-factor (or a factor) is computing according to its form. A derivative 
of a constant or a variable is the structure corresponding to the constant 0 or 1. When a 
factor has the form of an expression enclosed in parentheses, its derivative is computed by 
the recursive call of the expression differentiating procedure. When a factor is a standard 
function, its derivative is computed by creating a structure corresponding to the derivative 
of this function and multiplying it by the derivative of its argument. 

2.3.5 Simplif ication and compress ion of s t r u c t u r e s  

Differentiating procedures give the result in the form of a structure, which is highly redundant, 
e.g. the derivative of 2*x is computed as 0*x+2*1, so the compression must be accompanied 
by the simplification. 

In this implementation the general rules of differentiation, presented in the preceding 
section, are somewhat modified. This spoils slightly their conciseness and mathematical ele- 
gance but reduces much the redundancy of produced derivatives. Nevertheless, simplification 
of structures remains the most complicated part of the whole package. 

The process of simplification presents real problems in any system for symbolic computa- 
tions. This is due to the large number of interconnected simplifying rules, used by humans, 
and to the nonexistence of the "simplest" canonical form of a formula. In large systems some 
forms are used parallel and then one of the results is selected. Such approach was naturally 
out of question in the described program. E.g. several strategies can be adopted for extracting 
common terms from simple expressions. The expression: 

can be simplified to: 

iv) a*(b*(c*d + 1 )  + 1 ) .  

In the first case only the terms which are common to all simple expressions are extracted. 
In the second case the extraction of a common term affects only those simple expressions, 
which yield the most strongly modified result. The third case is a recursive version of the 
first one. Which strategy is the best? One can easily find examples in favor of each of them 
and counterexamples against each of them. 

Similar problems arise when dealing with exponents. The following transformation: 

seems reasonable, but neither of the following two: 

vii) x6 + x - ~  - x - ~  * (x7 + I )  

seems not. Similarly the following transformation 



viii) xy + x2 - xy * (1 + x2-J) 

seems unreasonable too. But counterexamples against those considerations can be easily 
constructed too. 

In general purpose systems there are control parameters, which can modify the default 
strategy of simplification. An experienced user can tune the system in order to obtain the 
most satisfactory result for any particular expression. Such approach was out of question in 
this program and some permanent strategy had to  be chosen, e.g. transformations illustrated 
by ii) and v) were chosen. The authors would welcome any comments about this approach 
and suggestions about eventual changes. 

Technically, the simplification is done as follows. There is a library of procedures in the 
system, which recognize trees with specific structural properties and transform them into 
another trees representing "simpler" structures. E.g. exponential expressions are served by 
the following transformations: 

power of powers 
( z ~ ) ~  - zab, 

distribution of the exponent on the base 

distribution of the base on the exponent 

factorization of the exponent from the base 

factorization of the base from the exponent 

The simplifying procedures interact with each other in iterative and recursive way. The 
pattern of interaction is an experimentally tuned compromise between the resulting form of 
a formula and the simplification time. This point is illustrated by the following example, 
comparing the result obtained with model generator with the results obtained with the use 
of two professional symbolic systems. 

The calculation of 
d 

-zz= 
d z 

yields the following results (rewritten in mathematical notation): 

in this program 
(zZ  In z + zZ)zZx  In z + z ( - ' + ~ + ~ ' ) ,  

in the MUMATH system 



in the MACSYMA system 

Every simplification rule, necessary to transform our result to the MACSYMA's form is 
inherent in the system. However, to obtain this form one more simplification run would be 
necessary - it would improve the form of this particular formula but in other cases it could 
be only a waste of computing time. Finally, the choice of the "nicest" result is somehow a 
matter of taste. 

The scope of simplification is not as wide as in general purpose symbolic systems, since 
the symbolic part forms here only a fragment of the whole program. Most care was devoted 
to treating expressions with power operators while e.g. fractional and trigonometric simpli- 
fications are not implemented a t  all. Besides, any numerical calculations which sometimes 
appear (e.g. when calculating numeric coefficients in symbolic expressions) are calculated in 
the floating - point domain. In general packages numbers are represented in the rational 
domain and numerical calculations are performed "symbolic" too with the absolute accuracy. 

The preceding discussion get ahead of the last step in the calculation of a derivative - 
the compression of a binary tree into a formula. It is implemented as a recursive procedure. 
The structure is searched in p o s t - o r d e r .  For a given node there is a formula or a value 
corresponding to the (part of original) structure pointed to  by the "low" pointer of this node 
and a formula or a value corresponding to the structure pointed to by the "right" pointer. 
These two arguments are combined together into a formula or a value, according to the 
"contents" of the node, i.e. they are added, multiplied, exponentiated, the sign is changed 
or a standard function is applied. The process of conversion is accompanied by additional 
simplification, in fact quite powerful but "local" in scope, i.e. only interactions between the 
contents of a given node, its "lower" subexpression and its "right" subexpression play their 
role here. 

2.4 Evaluation of formulae 

Cells of the spreadsheet are evaluated from the right to the left and from the top to  the 
bottom. A stack machine is defined and formulae are compiled into the code for that  virtual 
computer. This code is stored in the spreadsheet and is used for the evaluation of formu- 
lae. All run-time errors are handled by the program itself. In the spreadsheet there is no 
mechanism for deciding whether any of the formulae was changed. Such device would be 
very costly since it had to  remember the old and the new versions, perform syntactic and 
semantic analysis of both and compare results. To keep the spreadsheet consistent it is simply 
recalculated in situations, when the user had chance to modify any of the formulae. 

2.5 Symbolic differentiation in the spreadsheet 

The above considerations apply to  symbolic differentiation too. In the spreadsheet only 
partial derivatives are calculated, and they are calculated each time anew. There are no 
limits (except available memory) on the length of input formulae and resulting derivatives. 
If there is no sufficient amount of memory, the symbolic calculations are stopped and the 
previous state of the spreadsheet is reconstructed. 



3 Short user manual 

The described variant of the nonlinear model generators - IAC-DIDAS-G is an extension of 
the IAC-DIDAS-N, equipped additionally with a symbolic differentiation package. The user 
manual for the DIDAS-N remains valid, the differences are minor. The installation procedure 
for both systems is identical. 

The symbolic differentiation is an additional option in the model editing phase. To make 
room on the screen the LIST command (i.e. invoked by pressing < Alt L >) was deleted 
from the upper menu line. It is however not a drawback since previously the List could be 
invoked both by pressing < Alt L > and pressing the function key < F4 > - and this later 
option remains. In the gained place another menu item was put: sYmbolic (i.e. invoked by 
the < Alt Y > key). The formulae of derivatives can be viewed on the screen or printed. In 
the latter case the user can chose between derivatives of one outcome or of all outcomes in 
the model. 

The following description lists the additional menu entries, presented according to the 
style of the DIDAS-N user manual. 

< Alt Y > symbolic: - switches the symbolic mode on, 

Differentiate. - asks for the selection of an outcome to be 
differentiated. The results can only be viewed 
on the screen. 

diff & Print:  - results will be printed. This command in- 
vokes the Goal submenu. 

Goal: - selects the goal for printing: 

One outcome. - asks for the selection of an outcome to  be 
differentiated and printed, 

All outcomes. - derivatives of all outcomes are printed. 

Context sensitive help information can be obtained by pressing the < F1 > key. Exit to  the 
operating system - by pressing the < F10 > key. 

The model generator has the form of a specialized spreadsheet. Rows represent outcomes 
(dependent variables), whereas columns represent inputs, parameters (independent variables) 
and outcomes. A model is defined as mathematical formulae for outcomes in the "Solution" 
column. 

Formulae of partial derivatives are calculated in cells to the right of a "Solution" cell, with 
respect t o  the variables which label the corresponding columns of the spreadsheet. They can 
be viewed the same way as outcome formulae. 

User names can be defined in suitable spreadsheet cells. Derivatives can be referred to in 
the form e.g. (Ya/Xb). Such names can appear only in logic expressions (see later explanation 
of syntax). Letters in upper and lower cases are not distinguished. Formulae must be explicit, 
i.e. only names of previously defined outcomes can be used in an outcome formula (this is 
checked by the formula editor). 

After placing the cell cursor in a cell, it can be "entered" by pressing the < Enter > key. 
The blinking one-character cursor appears and the cell can be edited. To end the edition 
press the < Enter > key again. 



3.1 Syntax of formulae 

The most general form of a formula is called a condi t ional  e zpre s s ion .  For the ease of 
presentation it will be temporarily simplified to a 'Lconventional" expression. The smallest 
syntax unit of an expression is a fac tor .  It can be: 

a variable name, e.g. Xb, 

a numerical constant, e.g. 3, 1.234, 

P I  (a predeclared constant), 

a derivative name, e.g. {Yc/Xa). 

Further, it can be an expression enclosed in parenthesis or a standard function of an expression 
enclosed in parenthesis: 

Expressions (of "conventional" form) are formed from factors with the use of operators +, - 
(unary and binary), *, /, -. The unary minus operator has higher precedence than power 
operator. The power operator is non-associative while all other binary operators are left- 
associative. 

Standard functions include: one parameter functions ABS, ARCTAN, COS, EXP, LN, LOG, 
SIGNUM, SIN, SqR (square), SqRT (square root); and two parameters functions MAX,  MIN. 

More complicated syntactic construct is a condit ional  e zpre s s ion .  It can be: 

a "usual" expression, 

IF < l o g i c a l  express ion>  THEN <express ion> ELSE < e x p r e s s i o n > ,  

IF < l o g i c a l  express ion>  THEN <express ion> 
ELSIF < l o g i c a l  express ion>  THEN <express ion> 
ELSIF . . .  ELSE < e x p r e s s i o n > .  

There may be up to  nine ELSIF . . . THEN . . . clauses. The smallest syntax unit of a logical 
e zpre s s ion  is a re la t ion .  It can have the following forms: 

where the relat ional  operators are =, 0,  <, >, <=, >=, 

In this relation of belonging to a given interval, the interval can have open and closed ends 
in any combination (denoted by (, 1, and [, I correspondingly). 
Examples of relations: 

xa-xb >= SIN(ya) , 
EXP(xa) I N  ( 1 ,  SQRT(2+xb)] . 

The next higher structure is a logical f ac to r ,  which can be: 



NOT < l o g i c a l  f a c t o r >  . 

Logical expressions are formed from logical factors using AND, OR, XOR operators, e.g 

xa>O OR SIN(xb) I N  [O. 3 ,  xa/2]  , 
NOT ( xa<O AND xb I N  (1 .3)  ) . 

Now, we can present other extensions of syntax beyond its initial, simplified form: 
A factor can be: 

( < c o n d i t i o n a l  e x p r e s s i o n >  ) , 
< s t a n d a r d  f u n c t i o n >  ( < c o n d i t i o n a l  exp res s ion )  ) . 

The other forms of a factor remain the same. Thus e.g. the following expression is legal: 

( I F  xa-xb/4 I N  (EXP(zb),-l+SQRT(xa/2)) THEN 5 ELSE xa -2 )  + 
xa*( IF  xb<O THEN SIN(xb) ELSE MAX(xa/2,xa-2-xb,5))-3.  

3.2 Differentiation 

The spreadsheet calculates and displays analytical formulae of partial derivatives. To give 
more flexibility in model formulation some nondifferentiable functions are included. Their 
derivatives calculated and displayed in the spreadsheet are arbitrarily selected elements of 
their subdifferentials and thus the user is responsible for their correct interpretation. Note: 

the derivative of ABS is taken as SIGNUM, 

the derivative of SIGNUM is taken as 0 ,  

the derivatives of MAX, M I N  are calculated in the following sense: 

i )  derivatives of each argument are calculated, 

ii) a shorthand notation is used: SMX(. . . , derivative ,. . . ) - SelectMaXimum or SMN 
- SelectMiNimum. 

iii) during calculation some argument is selected in the original expression. Arguments 
with the same order number are selected in derivatives. 

The  derivatives of conditional expressions are calculated in the following sense: 

only "truen expressions, i.e. not embedded in any IF  (ELSIF) . . . THEN brackets are 
differentiated, 

conditions are copied from the input formula, 

a derivative expression for evaluating is selected according to  actual values of conditional 
expressions. 



4 Illustrative examples 

The Model Generator is an extension of the DIDAS-N. To avoid repetitions examples pre- 
sented here illustrate only the problems not highlighted in the documentation of the latter,  
i.e. they are connected with symbolic differentiation. In the following the names xl, x2 denote 
variables and the names yl, y2 denote outcomes. 

Example 1. 
The simplification is performed only when considered necessary. E.g. it is not applied to  

input formulae (i.e. before differentiating). When calculating the derivative of 

with respect to xl, the dependence of yl on xl is assumed and the following result is calcu- 
lated: 

<yl/xl3 = 0. 

When the equivalent formula 
yl = x2 

is given a s  input, the program knows the answer (trivial 0) without diflerentiating. 
Similarly with the input formula 

the program will laboriously calculate the derivative of a compound function instead of dif- 
ferentiating the equivalent formula 

yl = xl. 

Simplification of the input formulae was thought of as  a waste of time, the user of a baroque 
style will take consequences by himself. 

Example 2. 
The rational arithmetic is not implemented, thus the derivative of 

is calculated as  
<yl/xl3 = 0.6666667*~2. 

Example 3. 
A function of a numerical argument is not calculated in order t o  preserve symbolic infor- 

mation. Thus the derivative of 
yl = 5^x2 

is presented in the form 
<yl/x23 = 5-x2*LN(5) 

and not as  
<yl/x2) = 1.60944*5-x2. 

There are obvious exceptions to  this rule - when the value of a function equals 0 or 1. This 
remark does not apply to trigonometric functions - rules for their simplifications are not 
implemented a t  all. 



Example 4. 
A common factor is extracted only when it appears in each simple-expression of an ex- 

pression. Thus the derivative of 

i.e. common factors xl and x2 are not extracted since they do not appear in the first simple- 
expression of the expression in parenthesis. Another situation arises while differentiating the 
formula 

y2 = xl*x2*(SIN(xl*x2) + SIN(xl*x2)) . 

Its derivative is presented as 

In this case common factors are extracted and the result is equal to that  of differentiating of 
simplified input formula: 

y2 = 2*xl*x2*SIN(xl*x2) . 

Example 5. 
The speed of symbolic computations was one of the main goals in the described imple- 

mentation. Therefore only a number of simplification actions, in a prescribed order and with 
limited recurrence is applied to an internal representation of a derivative. In the consequence 
the derivatives of different but algebraically equivalent formulae can sometimes appear in 
different (algebraically equivalent too) forms. E.g. the derivative of 

is equal to  
Iyl/xl) = 2-(1 + xlA2)*x1*LN(2) , 

while the derivative of an equivalent formula 

is presented in the form 

Another possible strategy is to continue simplifying of a formula until it cannot be simplified 
any further. E.g. the Iy2/x1) would be transformed to the form of Iyl/xl) in one more 
recursive call of the simplification procedure. 

This example illustrates another point of interest. For technical reasons it is necessary 
to introduce some canonical form of a formula. E.g. in a product the numerical coefficients 
should come on the first place, next there should be variables, next . . .and functions a t  
the end. Transformations of internal structures into canonical forms is necessary before 
any comparison of structures and only then. However it could be applied "on exit" of the 
simplification process for aesthetical reasons. In the system it is not applied there - just 
for the speed of calculations. Effects of such approach are visible on results presented in 



Examples 4 and 5. The  design principles illustrated by this example are perhaps the most 
controversial. The author would appreciate any comments and suggestions concerning them. 

Now comes the problem of using this additional option. No explicit examples are given as 
they would be naive t o  every user but a student just learning fundamentals of mathematical 
analysis. The  view of formulae of derivatives can be an auxiliary tool in the  process of model 
formulation, can increase the analytical insight into properties of the model and improve the 
understanding of nonlinear phenomena. The  symbolic differentiation package can d o  nothing 
more than a skilled person can do, but it will save the user time and protect him from 
analytical errors. 

5 Hardware requirements 

The hardware requirements for the Nonlinear Model Generator are identical t o  those for 
the IAC-DIDAS-N program. It runs on a microcomputer compatible with IBM-XT or AT 
(with Hercules Graphic Card,  Color Graphics Adapter or Enhanced Graphics Adapter and,  
preferably, with a numerical coprocessor and a hard disk) and requires 512 kilobytes of 
memory. However, an extra amount of memory is needed for symbolic computations. This 
memory is allocated on entry to the symbolic processing phase and deallocated on exit. The  
size of this extra memory depends on the level of complication of a formula, the value of 
about 30 kilobytes seems t o  be rather safe upper bound. Besides, the program is compiled 
with an enlarged stack since the procedures, which transform a structure into a formula, are 
highly recursive. When there is not enough memory, symbolic computations are abandoned 
or even not started a t  all and the corresponding message is issued. 

The  installation procedure of IAC-DIDAS-G is identical as for the IAC-DIDAS-N. 
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