
W O R K I N G P A P E R

THEORY, SOFTWARE AND TESTING
EXAMPLES IN DECISION SUPPORT
SYSTEMS

I A ndrzej Lewandoweki
Andrzej P. Wierzbicki

July 1988
WP-88-071

I n t e r n a t t o n a l institute
for Appl~ed Systems Analysis

THEORY, SOFTWARE AND TESTING
EXAMPLES IN DECISION SUPPORT
SYSTEMS

Andrzej Lewandowski
Andrzej P . Wierzbicki

July 1988
WP-88-071

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

This volume summarizes the results of a four-year cooperative contracted study Theory,
Software and Testing Ezamples for Decision Support Systems conducted in Poland by four in-
stitutions: the Institute of Automatic Control, Warsaw University of Technology, the System
Research Institute of the Polish Academy of Sciences, the Institute of Control and Systems
Engineering, Academy of Mining and Metallurgy in Cracow, and the Institute of Informat-
ics, University of Warsaw in cooperation with the Methodology of the Decision Analysis
Project of the System and Decision Sciences Program at IIASA. This research was supported
mostly by IIASA funds in Polish national currency, but also by other sources and research
grants in Poland, such as the grant RP.1. 02 of the Ministry of Education for research in
optimization and automatic control ; totally, it represents the results of a part-time work of
about 30 researchers from these institutions. This volume concentrates on the theoretical
and methodological advances of this cooperative study, although it describes also experiences
of applications in the area of programming the development of chemical industry together
with a decision support system for such purposes as well as presents short descriptions of
eight software packages (prototype decision support systems, multiobjective mathematical
programming packages and a pilot negotiation support system) that are available together
with more detailed documentation as scientific software constituting a part of results of this
study.

The research on the Polish side was coordinated by Professor Andrzej P. Wierzbicki and
on IIASA's side by Dr. Andrzej Lewandowski, the project leader of the Methodology of De-
cision Analysis; they served also as the editors of this volume.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program

Table of Contents

Introduction

P a r t 1: Theory and Methodology

Decision Support Systems Using
Reference Point Optimization
Andrzej Lewandowski, Andrzej P. Wierzbicki

Decision Support Systems of DIDAS Family
(Dynamic Interactive Decision Analysis & Support)
Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,

Modern Techniques for Linear Dynamic
and Stochastic Programs
Andrzej Ruszczynski

A Sensitivity Method for Solving Multistage
Stochastic Linear Programming Problems
Jacek Gondzio, A ndrzej Ruszczynski

Regularized Decomposition and Augmented Lagrangian
Decomposition for Angular Linear Programming Problems
Andrzej Ruszczynski

Dynamic Aspects of Multiobjective Trajectory Optimization
in Decision Support Systems
Tadeusz Rogowski

A Mathematical Programming Package
for Multicriteria Dynamic Linear Problems HYBRID
Methodological Guide to Version 3.1
Marek Makowski, Janusz S. Sosnowski

Safety Principle in Multiobjective Decision Support
in the Decision Space Defined by Availability of Resources
Henryk Gorecki, Andrzej M . J . Skulimowski

Nonlinear Optimization Techniques
in Decision Support Systems
Tomasz Kreglewski

Nonlinear Computer Models -
Issues of Generation and Differentiation
Jerry Paczynski, Tomasz Kreglewski

Issues of Effectiveness Arising in the Design of a System
of Nondifferentiable Optimization Algorithms
Krzysztof C. Kiwiel, Andrzej Stachurski

A Methodological Guide to the Decision Support System
DISCRET for Discrete Alternatives Problems
Janusz Majchrzak

A Generalized Reference Point Approach
to Multiobjective Transshipment Problem with Facility Location
Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Solving Multiobjective Distribution-
Location Problems with the DINAS System
Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Towards Interactive Solutions in a Bargaining Problem
Piotr Bronisz, Lech Krus, Andrzej P . Wierzbicki

Part 2: Applications and Experiences

MIDA: Experience in Theory, Software and Application
of DSS in the Chemical Industry
J. Kopytowski, M. Zebrowski

Basic Model of an Industrial Structure
Grzegorz Dobrowolski, Maciej Zebrowski

Multiobjec tive Evaluation of Industrial Structures
Maciej Zebrowski

Hierarchical Multiobjec tive Approach
to a Programming Problem
Grzegorz Dobrowobki, Maciej Zebrowski

Spatial Allocation and Investment Scheduling
in the Development Programming
Maciej Skocz, Maciej Zebrowski, Wieslaw Ziembla

Architecture and Functionality of MIDA
Grzegorz Dobrowolski, Tomasz R y s

Part 3. Short Software Description

IAC-DIDAS-L - A Dynamic Interactive Decision Analysis 328
and Support System for Multicriteria Analysis of Linear and Dynamic
Linear Models on Professional Microcomputers
Tadeusz Rogowski, Jerzy Sobczyk, Andrzej P. Wierzbicki

HYBRID - A Mathematical Programming Package
for Multicriteria Dynamic Linear Problems
Short Program Description of version 3.1.
Marek Makowski, Janusz S . Sosnowski

IAC-DIDAS-N - A Dynamic Interactive Decision Analysis
and Support System for Multicriteria Analysis of Nonlinear Models
Tomasz Kreglewski, Jerzy Paczynski, Andrzej P. Wierzbicki

DISCRET - An Interactive Decision Support System
for Discrete Alternatives Multicriteria Problems
Janusz Majchrzak

DINAS - Dynamic Interactive Network Analysis System
Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

BARGAIN - A System Supporting Multicriteria Bargaining
Piotr Bronisz, Lech Krus, Bozena Lopuch

POSTAN 3 and PLP - Extension of MINOS for Postoptimal Analysis 346
Grzegorz Dobrowolski, Tomasz Rys , Adam Golebiowski,

vii

Introduction

It is not easy to summarize - even in a volume - the results of a scientific study conducted
by circa 30 researchers, in four different research institutions, though cooperating between
them and jointly with the International Institute for Applied Systems Analysis, but work-
ing part-time, sponsored not only by IIASA's national currency funds, but also by several
other research grants in Poland. The aims of this cooperative study were defined broadly
by its title "Theory, Software and Testing Examples for Decision Support Systems"; the
focusing theme was the methodology of decision analysis and support related to the princi-
ple of reference point optimization (developed by the editors of this volume and called also
variously: aspiration-led decision support, quasi-satisfying framework of rationality, DIDAS
methodology etc.). This focusing theme motivated extensive theoretical research - from basic
methodological issues of decision analysis, through various results in mathematical program-
ming (in the fields of large scale and stochastic optimization, nondifferentiable optimization,
cooperative game theory) motivated and needed because of this theme, through methodolog-
ical issues related to software development to issues resulting from testing and applications.
We could not include in this volume all papers - theoretical, methodological, applied, software
manuals and documentation - written during this cooperative study. The selection principle
applied for this volume was to concentrate on advances of theory and methodology, related to
the focusing theme, to supplement them by experiences and methodological advances gained
through wide applications and tests in one particular application area - the programming of
development of industrial structures in chemical industry, and finally to give a very short
description of various software products developed in the contracted study agreement. The
material of this volume is thus divided correspondingly into three unequal parts (it must be
noted, however, that the last and shortest part corresponds to the most extensive research
effort).

Part 1 is composed of 15 theoretical and methodological papers. It starts with two more
general papers, first explaining the focusing theme of this volume and the second describing
the methodology of decision analysis in decision support systems (DSS) of the DIDAS fam-
ily. The following five papers are devoted to various aspects of linear programming: three
represent innovative approaches to large-scale programming problems and new mathematical
and algorithmic results in this field, including a new idea of decomposition of augmented
Lagrangian functions for large-scale problem but motivated and related to the work on DSS,
next addresses basic problems of multiobjective dynamic trajectory optimization, a further
one) presents a more detailed methodological guide to a multiobjective mathematical p r e
gramming package HYBRID. We present such a mixture of results on purpose, to show the
broad scope of the study, its components of mathematical theory, components of methodolog-
ical value and an example of methodological background for a software package. A further
four papers combine two themes: the use of two reference levels for multiobjective analysis
and optimization and the issues of nonlinear optimization in decision-support (starting with
differentiable approximations and issues of symbolic differentiation of models and combining
with advances in nondifferentiable optimization . The next three papers are related to vari-

ous methodological aspects of multiobjective decision support for the case of a large number
of discrete alternatives and for the case of mixed linear-integer programming models of the
class of transshipment problems with facility location . The final paper of this part reports
on theoretical advances in interactive decision support for bargaining and negotiations.

Part 2. contains six papers related to experiences in developing and using decision support
methodology for a special but rather broad task of programming the development of a pro-
cessing industry - to be specific, a chosen branch of chemical industry. The team of authors
coming from Joint System Research Department of the Institute for Control and Systems
Engineering, Academy of Mining and Metallurgy, Cracow and of the Industrial Chemical Re-
search Institute, Warsaw, has worked on various projects for Polish governmental agencies, for
international development agencies coordinated by UNIDO and in cooperation with various
IIASA projects and programs. They developed a dedicated decision support system MIDA
for the complicated task of multiobjective programming of the development of an industrial
structure, used this system with various decision makers and for various tasks within chemical
industry development, in countries such as China, Algeria, various central African countries
- beside Poland. The papers summarize their experiences in these studies and applications.
They start with an overview paper that surveys the applications, experiences and the main
features of the DSS MIDA, then continue with a paper on the basic model of an industrial
structure used in this system, with three papers discussing the methodology of interactive
decision analysis in this application area - namely, the problems of multiobjective evaluation
of an industrial structure of hierarchical aspects of this evaluation related to various goals
and dynamic development, of spatial allocation and investment scheduling aspects. The final
paper of this part describes in more detail the architecture and functions of the DSS MIDA
and contains a kind of short manual for this system. Although we tried to exclude software
manuals from this volume, since it is devoted mostly to theoretical and methodological issues
together with lessons from applications, an exception seems to be justified in the case of
the system MIDA, because of the wide range of actual applications of this system: giving
a shortened manual illustrates best the inside working aspects of this important and widely
tested system.

Software descriptions are continued in Part 3. Following the principles of composition
of this volume, we do not include any other manuals, but only short executive summaries
and very general descriptions of eight software systems. They comprise four prototype DSS:
IAC-DIDAS-L (for multiobjective linear and linear dynamic models), IAC-DIDAS-N (for
nonlinear models, with symbolic model differentiation), DISCRET (for the case of a large
number of discrete alternatives), DINAS (for multiobjective mixed programming models of
the type of transshipment problems with facility location), three multiobjective mathematical
programming systems that can be used when building dedicated DSS: HYBRID (for dynamic
linear and linear-quadratic models, with a non-simplex solver of augmented Lagrangian type),
PLP and POSTAN (described together because both are extensions of the MINOS system
from Stanford Optimization Laboratory: one towards handling multiobjective problems via
reference point optimization, second towards various aspects of post-optimal analysis in this
widely used optimization system), and, finally, a pilot version of a DSS for supporting bar-
gaining and negotiation, BARGAIN. Neither of these software systems is as widely tested and
applied as the DSS MIDA described in Part 2, but all of them contain testing and demonstra-
tive examples as well as some methodological and software developments that might make
them interesting for other researchers working in this field. All eight systems described in
Part 3 are of the class of scientific research software and will be available together with more
detailed documentation from IIASA starting autumn 1988.

Part 1.
Theory and Methodology

Decision Support Systems Using
Reference Point Optimization

Andrzej Lewandowski, Andrzej P. Wierzbicki

Insti tute of Automatic Control, Warsaw University of Technology.

Abstract
This paper presents a review of various approaches to decision support, distinguishes

a methodological approach based on reference point optimieation and reviews advances
in this field done in Poland under the contracted study agreement 'Theory, Software
and Testing Examples for Decision Support Systemsn with the International Institute for
Applied Systems Analysis.

1 Introduction.

The concept of a decision support system - though widely used and developed both in research
and in practical applications through more than last ten years - is not yet quite precisely
defined. On the other hand, it is possible to give a broad definition of this concept by
enumerating possible classes of decision support systems, describing the concept of a decision
making process that is fundamental to all decision support systems, defining what a decision
support system should and what it should not do, discussing possible approaches to and
types of decision support. After attempting such a broad definition, we review in this paper
in more detail a specific class of decision support systems - those that use the principle
of reference point optimization for generating and evaluating decision alternatives, mostly
with help of a computerized analytical model describing the essential features of a decision
situation. Many of such systems have been developed during four years of a contracted
study agreement between the Polish Academy of Sciences (including, as subcontractors, the
Institute of Automatic Control of Warsaw University of Technology, the Institute of Systems
Research of Polish Academy of Sciences, the Institute of Automatic Control of the Mining
Academy of Cracow and the Institute of Informatics of the University of Warsaw) and the
International Institute for Applied Systems Analysis, Laxenburg near Vienna, Austria. These
developments and implementations are also reviewed in the paper.

2 Concepts and definitions of decision support systems.

There are many proposed definition of a decision support systems in the current literature
- see, e.g., Keen and Scott-Morton (1978), Sage (1981.), Parker and Al-Utabi (1986), Gray
(1986), Jarke (1986) and others. However, most of them do not take into account the fact that
three main classes of decision support systems have been practically developed in applications
and research. These are (see Lewandowski and Wierzbicki, 1987, also next paper):

A) Simple tools for managerial decision support (that might be used as building blocks
of more sophisticated decision support systems) such as modern data bases, electronic

spreadsheet systems, etc. as well as more complex but pragmatically designed systems
composed of such tools;

B) Decision support sys tems based on logical models and logical inference whose main func-
tion are to help in recognizing a logical pattern in a decision situation; these systems
typically involve the use of logical programming languages, expert systems style pro-
gramming, knowledge bases, other tools of artificial intelligence;

C) Decision support sys tems based on analytical models, multiobjective optimization and
choice, whose main functions concentrate on the process of choice among various de-
cision alternatives either specified a priori or generated with help of the system. Such
systems typically include a computerized model of a decision situation formulated in
analytical terms and elements of multiobjective optimization and evaluation of alterna-
tives.

All these three classes can be further subdivided according to various methodological
principles. For example, the systems of the class C can be subdivided in various ways: systems
that serve a strategic evaluation of novel decision situations versus systems that support
repetitive, tactical decisions; systems that handle a number of discrete alternatives versus
those that support the generation and choice among alternatives from a set of continuum
power; between the latter, systems that use static linear, dynamic linear, static nonlinear
or dynamic nonlinear analytical models that describe a given decision situation; systems in
which the methodology of multiobjective alternative evaluation follows a definite (typically,
culturally determined) framework of rationality versus systems that try to accommodate
intercultural perceptions of rationality, see next paper; etc.

However, there are certain features that are common to all decision support systems.
Observe that the systems of classes B and C contain explicitly models of the decision situation,
although of different types. The same can be said, in fact, about the systems of the class
A: when preparing a simple decision support tool, such as a date base or a spreadsheet, to
support a definite decision process, one must assume, even if implicitly, a kind of a model
of the decision situation. Thus, we can state that all decision support systems contain such
models.

All decision support systems can be subdivided into two large classes: those that are de-
signed to serve essentially one user or decision maker versus those that are explicitly designed
to serve many users or multiple decision makers. The latter class can be further subdivided
into two essentially different subclasses: those that serve cooperative group decision making
versus those that are designed to help in truly game-like situations that might involve con-
flict escalation through noncooperative decisions and thus serve bargaining and negotiations
(through they might and should try to help reaching cooperative decisions, such systems do
not take cooperative behaviour of users for granted, see Wierzbicki, 1983a,b). In the latter
case, another universal feature of decision support systems becomes apparent: all decision
support sys tems should be designed not to serve reaching a single decision, but to help in
organizing a decision process.

This essential feature of decision support systems was noted by many authors - see,
e.g., Parker and Al-Utabi (1986). An early characterization of a decisions process was given
by Simon (1958). According to this definition, a decision process consists of the following
three steps: intelligence - searching the environment for opportunities calling for a deci-
sion, design - defining the decision situation, inventing, developing and analysing possible
courses of action, finally choice - selecting a particular course of action from those available.

However, the experience in analysing decision processes and constructing decision support
systems since this time indicates that a decision process might be much more complicated
and contains more essential elements. Cooke and Slack (1984) combine the decision making
with problem solving process and define its phases as observation, a formal recognition of a
problem, interpretation and diagnosis, the definition of a decision problem, the determination
of options or alternatives, an evaluation of options, and selection, implementation and moni-
toring. When including implementation and monitoring phases in a decision process, a much
more sophisticated treatment of various types of uncertainty becomes possible - Wierzbicki
(1983a).

The results of Dreyfus (1984) indicate that an essential distinction should be made be-
tween familiar (even complex) decision situations and novel decision situations as well as
between various levels of expertize of the decision maker in a given field. A master expert
in a decision field is able to treat most of the decision situations as familiar ones, recognize
them immediately and select and implement a decision instantly with great efficiency. The
quality of his decisions might exceed considerably the quality of decisions achieved by any
computerized system; we still do not have adequate models and interpretations of the parallel
processing of information performed in human mind. However, even master expert recognises
(through certain feeling of uneasiness) situations that are novel and deliberates about them.
Again, the process of such deliberation is not understood by us fully and is certainly not as
ordered and linear as the models of decision processes described above; it ends in a sudden
recognition of a decision pattern or in a deeper understanding of the decision problem. An
expert of a lower level or a novice in a decision field treats more decision situations as novel
and thus needs more logical or analytical decision support.

When seen from this perspective, every decision process is a part of a longer process of
learning in order to become a master expert. Thus, a decision process in all novel situations is
not necessarily linearly ordered, can have many recourses to earlier stages, while as a decision
situation becomes more familiar for a given decision maker, the decision process becomes
shorter and finally looses its distinctive phases. This is similar to an adaptive treatment of
uncertainty, to the old concept of Feldbaum (1962) of the dual role of control - this of control
and that of learning. This also indicates several concepts of dynamics in a decision process.
One is related to the fact that decisions are concerned with future events and have dynamic
consequences - even if we do use sometimes static models of their consequences in more
simple cases. The second reflects the fact that even reaching a single decision is a process,
possibly with many phases and recourses and with a role of learning during this process.
The third reflects the fact that separate decision processes are embedded in a longer learning
process of the decision maker to become a master expert, with its much more complicated
dynamics. We can conclude also that the requirement of consistency of a decision maker,
essential to many classical approaches to decision analysis, has a fundamental drawback: a
learning decision maker can often gain by being inconsistent.

All this indicates that decision support systems can have multiple functions in a decision
process. Most important are two general functions: helping the decisions maker to learn
about the decision situation (to familiarise it by playing with the proxy of reality provided
by the decision support system) and filling in details to the outlines of decision suggested
by decision maker (even a master expert might need this function in more complex decision
situation and a learning decision maker needs it the more, while striving to become a master
expert). This suggests that the emphasis on the phase of decision choice, typical for more
classical approaches to decision processes and decision support, is actually misplaced: if
adequately supported, humans can make (until now, and probably for a long time to come)

much better decision than most advanced computerized systems - and the problem is not
how to replace, but how to support human decision making. There certainly are decision
problems of repetitive type that might and should be automated - because of the necessary
speed of decisions, because of their tediousness for humans, because of the reliability of
automata that do not grow tired and do not have the human right to change their minds -
but this becomes then the field of automatic control, not of decision analysis and support.

Even as a tool for learning and filling in details, however, decision support systems can
perform many functions in various phases of a decision process. In the first phase of intel-
ligence and observation, main support can come from information processing systems that,
when considered alone, need not be decision support systems because they do not necessarily
contain a model of the decision situation. When interpreting this information, however, in the
phases of formal problem recognition, interpretation and diagnosis, many tentative decision
situation models might be tried. Thus the first function of a decision support sy s t em i s t o
help in model formalization, edition, simulation, parametric analysis etc. Naturally, models
used in decision support can be of various types - very simple or more complex, of logical
or analytical nature, etc. - and contemporary decision support systems cannot work with
all possible classes of models, are necessarily specialized. Nevertheless, good decision support
system should contain a model edition and simulation interface and a directory of models
together with a data base of the results of ezperiments with these models.

The phase of problem definition typically results in an (explicit or implicit) selection of one
of possible models of the decision situation, or at least - of a class of such models. Decision
means and ends are also typically determined in this phase, while the distinction between
then is not necessarily sharp: resources allocated to a given problem can be considered both
decision outcomes (ends) and decision variables (means). Therefore, it is useful to distinguish
more precisely between decision variables in the sense of input variables to a model and
decision outcomes in the sense of the output variables, although in some simplistic models this
distinction is not sharp either and it is better to speak about decision alternatives (options)
and attributes (outcomes). Some of the output variables might be chosen as objectives (or
attributes, or criteria) of the decision. In fact, a given model of a decision situation allows
typically for various definitions of a decision problem, since various variables of the model
can be selected either as decision variables or as decision outcomes. In this sense, a good
decision support system should have a directory of problems (related to given models) and a
data base of ezperimental analysis results for given problems.

The latter feature is necessary in the phase of generating and reviewing or evaluating
options and alternatives. If the decision situation is modelled as one with a discrete, exoge-
nously given number of options or alternatives, the generation of alternatives must be done
outside of a decision support system. However, in most cases the options or alternatives
are not exogenously given - even if discrete - and only limited by certain constraint8 that
must be represented in the model. In such a case, or in a case when the number of exoge-
nously given options is very large, the issue of selecting on option for analysis is equivalent
to alternative generation. If the decision variables have continuous character (the number of
alternatives is of continuum power), there is no difference a t all between alternative gener-
ation and selecting a decision option for analysis. Such selected alternatives together with
results of their analysis or evaluation need a data base.

The phase of selection or choice of a decision can be variously represented in decision
support systems. If we insist on the sovereignty of a human decision maker and consider the
system as supporting mostly learning and filling in details, then each decision choice proposed
by the system must be only tentative and the user must have convenient means of influencing

this choice. In such a case, there is no need to make an essential distinction between the
phase of alternative generation, analysis and evaluation and the phase of choice: in both
of them, the decision support system should use some methodological device for selecting
and evaluating an alternative or option while being guided by the general wishes of the user.
Various methods of multiobjective decision analysis can be used for this purpose, if the model
has analytical form; for models of logical type, the issue of appropriate methodological device
for such a purpose is yet open.

It must be stressed here that the insistence on the user's sovereignty is a relatively new
feature of decision support systems developed in the last decade together with "high tech
- high touch" trend in modern societies (see Naisbit, 1984). Older approach to decision
support systems, while stressing that such a system should only help decision makers in
reaching decisions, was not quite consistent with this assumption in the phase of decision
choice. Typically, such systems (based either on utility maximization or another - often
logical - "inference engine") communicate the following message to the user in the phase
of choice: "if your answers to my questions have been consistent, your best decision is as
follows". This often helps the user, but not sufficiently: he does not know which of his
answers is responsible for this particular choice, nor how to change general instructions to
the system in order to influence the final decision if he does not like it for some reason. Thus,
there is a need for a further development of such systems that would take into account the
right of a human decision maker to change his mind and the need for supporting him in
learning.

Finally, it should be stressed that decision support systems could, in principle, help also
in the last phases of implementation and monitoring the results of a decision, by providing a
proxy of costly experiments in reality through post-optimal and sensitivity analysis of models
of a decision situation. This function can include even special approaches to sensitivity,
uncertainty and robustness analysis as suggested by Wierzbicki (1983a, 1984a). Not many
functions of this type have been included, however, in the decision systems developed until
now.

3 The principle of reference point optimization in decision
support systems (DSS).

While leaving a more detailed review of various frameworks of rationality to another paper
(see next paper), we stress here firstly some essential facts related to such review.

Any mathematical formalization of rationality framework is typically concerned with two
preorderings of the spaces of decision outcomes (attributes, objectives) and decision variables
(alternative decisions):

- a partial preordering in the space of outcomes that is usually implied by the decision
problem and usually has some obvious interpretation, such as maximization of profit
competing with the maximization of market share, etc.; a standard assumption is that
this preordering is transitive and can be expressed by a positive cone D.

- a complete preordering in the spaces of outcomes and decisions or, at least, in the set of
attainable outcomes and decision alternatives, which is usually not given in any precise
mathematical form, but is contained in the mind of the decision maker, such as how
actually the preferences between the maximization of profit and the maximization of
market share should be distributed in a market analysis case.

The main differences between various frameworks of rationality that lead to diverse a p
proaches to interactive decision support are concerned with the assumptions about this com-
plete preordering and the way of its utilization in the DSS. This issue is also closely related
with the way in which the DSS interacts with the decision maker; some variants of DSS
require that the user answers enough questions for an adequate estimation of this complete
preordering, some other variants need only general assumptions about the preordering, still
other variants admit a broad interpretation of this preordering and diverse frameworks of
rationality that might be followed by the user.

The most strongly established rationality framework is based on the assumption of maz-
imization of a value function or an utility function. Under rather general assumptions, the
complete preordering that represents the preferences of the decision maker can be represented
by an utility function such that by maximizing this function over admissible decisions we can
select the decision which is most preferable t o the decision maker; the publications related
to this framework are very numerous, but for a constructive review see, for example, Keeney
and Raiffa (1976).

There are many fundamental and technical difficulties related to the identification of such
utility function. Leaving aside various technical difficulties, we should stress the fundamental
ones. Firstly, a continuous utility function ezists if there is no strict hierarchy of values
between decision outcomes, if all decision outcomes can be aggregated into one value - say, of
monetary nature; this does not mean that hierarchically higher ethical considerations cannot
be incorporated in this framework, but that they must be treated as constraints, cannot be
evaluated in the decision process. Thus, the utility maximization framework - although it
represents the behaviour of many human decision makers - is by no means the universal
case of human rationality - see, for example, Rappoport (1984). Secondly, while the utility
maximization framework might be a good predictor of mass economic phenomena, i t has
many drawbacks as a predictor of individual behaviour - see, for example, Fisher (1979),
Erlandson (1981), Horsky and Rao (1984). According to the results of research presented
in these papers, the utility function approach can be used in a rather simple, laboratory
environment, but can fail in more complex situations.

Thirdly - and most importantly for applications in decision support systems - an
ezperimental identification and estimation of an utility function requires many questions and
answers in the interaction with the decision maker. Users of decision support systems are
typically not prepared to answer that many questions, for several reasons. They do not like
to waste too much time and they do not like to disclose their preferences in too much detail
because they intuitively perceive that the decision system should support them in learning
about the decision situation and thus they should preserve the right to change their minds
and preferences. Therefore, if any approximation of an utility function is used in a decision
support system, it should be nonstationary i n t ime i n order to account for the learning
and adaptive nature of the decision making process. Such an approximation cannot be very
detailed, i t must have a reasonably simple form characterized by some adaptive parameters
that can aggregate the effects of learning.

Another rationality framework, called satisficing decision making, was formulated by
Simon (1969) and further extended by many researchers, see for example Erlandson (1981)
for a formalization and review of this approach. Originally, this approach assumed that
human decision makers do not optimize, because of the difficulty of optimization operations,
because of uncertainty of typical decision environment, and because of complexity of the
decision situations in large organizations. Therefore, this approach was sometimes termed
bounded rationality, that is, somewhat less than perfect rationality; however, there are many

indications that this approach represents not bounded, but culturally different rationality.
While the first two reasons for not optimizing have lost today their validity (both in the
calculative sense, with the development of computer technology and optimization techniques,
including issues of uncertainty, and in the deliberative sense - expert decision makers can
intuitively optimize in quite complex situations), the third reason remains valid and has been
reinforced by the results of various studies.

For example, the studies of human behaviour in situation of social traps or games with
paradoxical outcomes - see Rappoport (1984) - and of evolutionary development of be-
havioural rules that resolve such social traps - see Axelrod (1985) - indicate that evolution-
ary experience forces humans to accept certain rules of ethical character that stop maximizing
behaviour. Any intelligent man after some quarrels with his wife learns that maximization is
not always the best norm of behaviour; children learn from conflicts among themselves that
cooperative behaviour is also individually advantageous for a longer perspective. All these
observations and studies might motivate in the future the development of a new framework of
evolutionary rat ional i ty , but certainly reinforce the conclusions of the satisficing framework
that there are rational reasons for stopping maximization in complex situations.

A very important contribution of the satisficing framework is the observation that decision
makers often use aspiration levels for various outcomes of decisions; in classical interpretations
of the satisficing framework, these aspiration levels indicate when to stop optimizing. While
more modern interpretations might prefer other rules for stopping optimization, the concept
of aspiration levels is extremely useful for aggregating the results of learning by the decision
maker: aspiration levels represent values of decision outcomes that can be accepted as rea-
sonable or satisfactory by the decision maker and thus are aggregated, adaptable parameters
that are s u f i c i e n t for a simple representation of his accumulated ezperience.

There might be also other frameworks of rationality, such as the framework of goal- and
program oriented planning, see Glushkov (1972), Pospelov and Irikov (1976), Wierzbicki
(1985), that corresponds to the culture of planning organizations. This framework has some
similarities, but also some differences to the utility maximization framework, the satisficing
framework and to the principle of reference point optimization developed by Wierzbicki (1980)
in multiobjective optimization and decision support.

In order first to include the principle of reference point optimization into the framework of
satisficing decisions and then to develop a broader framework that would be useful for decision
support for decision makers representing various perspectives of rationality, Wierzbicki (1982,
1984b, 1985, 1986) proposed the following principles of quasisatisficing decision making -
a quasisatisficing decision situation consists of (one or several) decision makers or users that
might represent any perspective of rationality and have the right of changing their minds
due to learning and of stopping optimization for any reason (for example, in order to avoid
social traps) as well as of a decision support system that might be either fully computerized
or include also human experts, analysts, advisors. It is assumed that:

The user evaluates possible decisions on the basis of a set (or vector) of attributes or
objective outcomes. These factors can be expressed in numerical scale (quantitatively)
or in verbal scale (qualitatively), like 'badn, "good" or *excellentn. Each factor can be
additionally constrained by specifying special requirements on it that must be satisfied.
Beside this, objective outcomes can be characterized by their type: maximized, mini-
mized, stabilized - that is, kept close to a given level (which corresponds to foregoing
optimization), or floating - that is, included for the purpose of additional information
or for specifying constraints. The user has the control over the specification of objective
outcomes together with their types and of possible aggregation of such factors.

- One of the basic means of communication of the user with the decision support system
is his specification of aspiration levels for each objective outcome; these aspiration
levels are interpreted as reasonable values of objective outcomes. In more complex
situations, the user can specify two levels for each objective outcome - an aspiration
level interpreted as above and a reservation level interpreted as the lowest acceptable
level for the given objective outcome.

- Given the information specified by the user - i.e., the specification of objective out-
comes and their types, together with aspiration and possibly reservation levels - the
decision support system following the quasisatisficing principle should use this guiding
information, together with other information contained in the system, in order to pro-
pose to the user one or several alternative decisions that are best attuned to this guiding
information. When preparing (generating or selecting) such alternative decisions, the
decision support system should not impose on the user the optimizing or the satisficing
or any other behaviour, but should follow the behaviour that is indicated by the types
of objective outcomes. This means that the decision support system should optimize
when at least one objective outcome is specified as minimized or maximized and should
satisfice (stop optimizing upon reaching aspiration levels) when all objective outcomes
are specified as stabilized. The later case corresponds actually to the technique of goal
programming, see e.g. Ignizio (1978), hence the quasisatisficing decision support can be
also considered as a generalization of this technique. By using aspiration or reservation
levels for some objective outcomes as constraints, also the goal- and program oriented
behaviour can be supported by a quasisatisficing decision support system.

In order to illustrate possible responses of a quasisatisficing decision support system to
the guiding information given by the user, let us assume that all specified objective outcomes
are supposed to be maximized and have specified aspiration levels or reference points. In this
original formulation of the principle of reference point optimization we can distinguish the
following cases:

Case 1: the user has overestimated the possibilities implied by admissible decisions (since
their constraints express available resources) and there is no admissible decision such
that the values of all objective outcomes are exactly equal to their aspiration levels. In
this case, however, it is possible to propose a decision for which the values of objective
outcomes are as close as possible (while using some uniform scaling, for example implied
by the aspiration and reservation levels) to their aspiration levels; the decision support
system should tentatively propose at least one or several of such decisions to the user.

Case 2: the user underestimated the possibilities implied by admissible decisions and there
exist a decision which results in the values of objective outcomes exactly equal to the
specified aspiration levels. In this case, it is possible to propose a decision which im-
proves all objective outcomes uniformly as much as possible. The decision support
system should inform the user about this case and tentatively propose at least one or
several of such decisions.

Case 9: the user, by a chance or as a result of a learning process, has specified aspiration
levels there are uniquely attainable by an admissible decision. The decision support
system should inform the user about this case and specify the details of the decision
that results in the attainment of aspiration levels

In the process of quasisatisficing decision support, all aspiration levels and the corre-
sponding decisions proposed by the system have tentative character. If a decision proposed
by the system is not satisfactory to the user, he can modify the aspiration levels and obtain
new proposed decisions, or even modify the specification of objective outcomes or constraints;
the process is repeated until the user learns enough to make the actual decision himself or to
accept a decision proposed by the system.

The process of quasisatisficing decision making can be formalized mathematically - see,
e.g., Wierzbicki (1986) - and the mathematical formalization can be interpreted in various
ways; let us consider an interpretation that corresponds to the framework of utility max-
imization. We assume that the user has a nonstationary utility function that changes in
time due to his learning about a given decision situation. At each time instant, however, he
can intuitively and tentatively (possibly with errors concerning various aspects of the deci-
sion situation) maximize his utility; let this tentative maximization determine his aspiration
levels.

When he communicates these aspiration levels to the decision support system, the system
should use this information, together with the specification of the decision situation, in order
to construct an approximation of his utility function that is relatively simple and easily
adaptable to the changes of aspiration levels, treated as parameters of this approximation.
By maximizing such an approximative utility function while using more precise information
about the attainability of alternative decisions and other aspects of the decision situation -
for example, expressed by a model of the decision situation incorporated by expert advice
into the decision support system - a tentative decision can be proposed to the user.

Such a tentative approximation of the user's utility function, constructed in the decision
support system only in order to propose a tentative decision to the learning decision maker, is
called here order-consistent achievement function or simply achievement function. It should
be stressed that the concept of achievement function has been also used in the context of
goal programming, but without the requirement of order consistency (achievement functions
in goal programming are equivalent to norms and thus satisfy the requirements of Cases 1
and 3 listed above but fail to satisfy the requirements of Case 2).

There are many other interpretations of an order-consistent achievement function (see
Wierzbicki, 1986): penalty function related to aspirations treated as soft constrains, a utility
function not of the decision maker, but of the decision support system interpreted as an ideal
staff trying to follow instructions given by it's boss, a device for automatically switching
from norm minimization to maximization in generalized goal programming upon crossing the
boundary of attainable outcomes, a mathematical tool for closely approximating the positive
cone D in the space of outcomes, an extension of the concept of membership function in a
fuzzy set approach to multiobjective optimization, etc.

The general idea of reference point optimization has been independently developed or
further used and extended by many researchers - Steuer and Cho (1983), Nakayama and
Savaragi (1985), Korhonen and Laakso (1986). The more specific use of order-consistent
achievement functions has been developed in many papers of IIASA - see next paper and,
specifically, in the contracted study agreement uTheory, Software and Testing Examples for
Decision Support Systemsn between IIASA and Polish Academy of Sciences.

4 Recent research on decision support systems in Poland.

Under the contracted study agreement, various theoretical issues, special tools for decision
support systems mostly based on the quasisatisficing framework and reference point optimiza-

tion, decision support system prototypes for given classes of substantive models of decision
situation (that is, outlines for decision support systems that can be further customized for
a specific decision situation with a model of a given class), as well as examples of decision
support systems and their applications have been studied and developed.

Between the theoretical issues studied, the following advances have been made:

- special types of simplex and non-simplex algorithms for large scale linear programming
problems of dynamic and stochastic type encountered when analysing multiobjective lin-
ear programming type models for decision support, by A. Ruszczynski and J. Gondzio,
this also includes a new way of decomposing augmented Lagrangian functions for such
problems;

- a study of theoretical issues related to a non-simplex algorithm based on augmented La-
grangian regularization for multiobjective optimization of dynamic linear and quadratic
programming type models in decision support, by J. Sosnowski and M. Makowski;

- a study of methodological issues related to multiobjective trajectory optimization, par-
ticularly for models of dynamic multiobjective linear programming type , by T. Ro-
gowski;

- a study of uncertainty issues in multiobjective optimization through a special interval
approach developed by H. Gorecki and A. Skulimowski;

- a study of methodological issues, achievement function forms and robust nonlinear
programming algorithms for decision support systems using models of nonlinear p r e
gramming type, by T. Kreglewski, together with issues of using symbolic differentiation
for such models, by J. Paczynski and T. Kreglewski;

- a study of nondifferentiable optimization techniques for applications in multiobjective
optimization of nonlinear models, by K. Kiwiel and A. Stachurski;

- a study of mixed-integer multiobjective transhipment and facility location problems
using the quasisatisficing framework, by W. Ogryczak, K. Studzinski and K. Zorychta;

- methodological and game-theoretical research for the development of multi-person de-
cision support systems for bargaining and negotiations with multiple objectives, by
J. Bronisz, L. Krus and A. P. Wierzbicki.

The decision support tools and decision support system prototypes developed under this
research agreement include:

- a multiobjective mathematical programming system - based on reference point o p
timization - HYBRID, using the mentioned above algorithms by J. Sosnowski and
M. Makowski; this system can be used as a core for a more customized decision support
systems;

- a decision support system prototype IAGDIDAS-L (in two variants) for problems with
linear programming type models, by T. Rogowski, J. Sobczyk and A. P. Wierzbicki;

- a nonlinear model edition, generation and symbolic differentiation package as a tool for
supporting first phases of the decision process with nonlinear models, by J. Paczynski
and T. Kreglewski (only some methodological background aspects of this package are
described in this volume);

- a decision support system prototy;le IAC-DIDAS-N for problems with nonlinear pro-
gramming type models, by T. Kreglewski, J . Paczynski and A. P. Wierzbicki;

- a decision support system prototype DINAS for multiobjective transportation and facil-
ity location problems with models of mixed-integer programming type, by W. Ogryczak,
K. Studzinski and K. Zorychta;

- a pilot version of a decision support system prototype DISCRET for multiobjective
problems with a large number of explicitly given discrete alternatives, by J. Majchrzak;

- a pilot version of a nondifferentiable nonlinear optimization package NOA-1 with pos-
sible applications in multiobjective decision support, by K. Kiwiel and A. Stachurski
(only methodological background of this package is described in this volume);

- a pilot version of a multi-person decision support system prototype for multiobjective
bargaining and negotiations, by J. Bronisz, L. Krus and B. Lopuch;

- a postoptimal analysis package POSTAN and a parametric programming package PLP
compatible with the optimization system MINOS and adapted for multiobjective opti-
mization, by G. Dobrowolski, A. Golebiowski, K. Hajduk, A. Korytowski and T. Rys.

Most of the software packages and system prototypes are developed to the level of docu-
mented and tested, scientific transferable software; packages and system prototypes include
testing and demonstrative examples for their applications. The documentation of these pack-
ages and system prototypes will be available from IIASA in autumn 1988.

A separate group concentrated on a range of applications of decision support systems
using reference point optimization - in programming the development of industrial structures
in chemical industry. A specialized decision support system MIDA has been developed for
these purposes by J. Kopytowski, M. Zebrowski, G. Dobrowolski and T. Rys, then widely
tested in many applications in Poland and abroad as well as extended to handle hierarchical,
spatial, dynamic and scheduling issues by its original authors and M. Skocz, W. Ziembla.
The experiences from this field of applications give a strong testing ground for the general
development of decision support methodology.

It is necessary to point out that this short review focuses mostly on activities within the
contracted study agreement between IIASA and Polish scientific institutions. This research
constitutes, however, only a part of research done within the System and Decision Sciences
Program regarding problems of theory, implementation and applications of Decision Support
Systems. We will not discuss all these activities - they are presented in the recent issues
of OPTIONS (1987). It is necessary to mention, however, such important contributions of
scientists cooperating with SDS and SDS staff members like multiple criteria optimization
aspects of uncertain dynamic systems (Kurzhanski, 1986), several theoretical aspects of mul-
tiple criteria optimization (Nakayama, 1986, Tanino, 1986, Sawaragi at all., 1985, Valyi, 1986,
1987) problems of voting and utility theory (Saari, 1987), stochastic programming aspects
of DSS (Michalevich, 1986) fuzzy set approach in DSS (Sakawa and Yano, 1987, Seo and
Sakawa, 1987), DSS for scheduling (Katoh, 1987) as well as new approaches in development
of DSS (Larichev, 1987). Another activity not mentioned in this volume is the development
of multi-user cooperative decision support system (SCDAS) implemented in distributed com-
puting environment (Lewandowski and Wierzbicki, 1987, Lewandowski 1988). Finally, several
scientific activities coordinated by SDS are also contributing to further advancement of the-
ory and methodology of Decision Support Systems - such as the International Comparative

Study in DSS (Anthonisse a t all., 1987). Without this stimulating scientific atmosphere and
without scientific environment created in SDS it would be definitely not possible to achieve
the results presented in this volume.

5 References.

Anthonisse, J.M., K.M. van Hee and J.K. Lenstra (1987). Resource constrained project
scheduling: an international exercise in DSS development. Centre for Mathematics
and Computer Science, Department of Operations research and System Theory, Note
0s-N9701, Amsterdam, The Netherlands.

Axelrod, R. (1985). The Evolution of Cooperation. Basic Books, New York.

Bonczek, R. H., Holsapple, C. W. and Whinston, A. B. (1981). Foundations of Decision
Support Systems. Academic Press, New York.

Cooke, S. and Slack, N. (1984). Making Management Decision. Printice-Hall, Englewood
Cliffs.

Dinkelbach, W. (1982). Entscheidungsmodelle, Walter de Gruyter, Berlin, New York.

Dreyfus, R. E. (1984). Beyond rationality. In: Grauer, M., Thompson, M., Wierzbicki, A.
P. Eds: Plural Rationality and Interactive Decision Processes. Proceedings, Sopron,
Hungary, 1984. Lecture Notes in Economics and Mathematical Systems, Vol. 248.
Springer-Verlag, Berlin.

Erlandson, F. E. (1981). The satisficing process: A new look. IEEE Trans. on Systems,
Man and Cybernetics, Vol. SMC-11, No. 11, November 1981.

Feldbaum, A. A. (1962). Foundations of the theory of optimal control systems (in Russian:
Osnovy teorii optimalnych avtomaticheskikh sistem). Nauka, Moscow.

Fisher, W. F. (1979). Utility models for multiple objective decisions: Do they accurately
represent human preferences? Decision Sciences, Vol. 10, pp. 451-477.

Ginzberg M. J . and Stohr E. A. (1982). Decision Support Systems: Issues and Perspectives.
In: Ginzberg, M. J., Reitman, W. R. and Stohr, E. A. Eds.: Decision Support Systems,
Proceedings of the NYU Symposium on Decision Support Systems, New York, 21-22
May, 1981. North-Holland Publ. Co.

Glushkov, V. M. (1972). Basic principles of automation in organizational management
systems (in Russian). Upravlayushcheye Sistemy i Mashiny, 1.

Grauer, M., Lewandowski, A., and Wierzbicki, A. P. (1984). DIDAS - theory, implemen-
tation and experiences. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive Decision
Analysis, Proceedings, Laxenburg, Austria, 1983. Lecture Notes in Economics and
Mathematical Systems, Vol. 229. Springer Verlag, Berlin.

Gray, P. (1986). Group Decision Support Systems. In: McLean E. and Sol, H. G. Eds:
Decision Support Systems: A Decade in Perspective, Proceedings of the IFIP WG 8.3
Working Conference on Decision Support Systems, Noordwijkerhout, The Netherlands.

Horsky, D. (1984). Estimation of attribute weights from preference comparisons. Manage-
ment Science, Vol. 30, NO. 7, July 1984.

Ignizio, J. P. (1978). Goal programming - a tool for multiobjective analysis. Journal for
Operational Research, 29, pp. 1109-1119.

Jacquet-Lagreze, E. and Shakun, M. F. (1984). Decision Support Systems for Semi-Structu-
red Buying Decisions. European Journal of Operational Research, Vol. 16, pp. 48-58.

Jarke, M. (1986). Group Decision Support through Office Systems: Developments in Dis-
tributed DSS Technology. In: McLean, E. and Sol, H. G. Eds: Decision Support Sys-
tems: A Decade in Perspective, Proceedings of the IFIP WG 8.3 Working Conference
on Decision Support Systems, Noordwijkerhout, The Netherlands.

Katoh, N. (1987). An efficient algorithm for bicriteria minimum-cost circulation problem.
Working Paper WP-87-98, International Institute for Applied Systems Analysis, Lax-
enburg, Austria.

Katoh, N. (1987). An efficient algorithm for a bicriteria single-machine scheduling prob-
lem. Working Paper WP-87-100, International Institute for Applied Systems Analysis,
Laxenburg, Austria.

Keen, P. G. W and Scott Morton, M. S. (1978). Decision Support Systems - An Organi-
zational Perspective. Addison-Wesley Series on Decision Support.

Keeney, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and
Value Tradeoffs, Willey, New York, 1976.

Korhonen, P., and Laakso, J . (1986). Solving a generalized goal programming problem
using a visual interactive approach. European Journal of Operational Research, 26,
pp. 355-363.

Kurzhanski, A. (1986). Inverse problems in multiobjective dynamic optimization. In: To-
ward Interactive and Intelligent Decision Support Systems, Proceedings, Kyoto, Japan,
1986, Y. Sawaragi, K. Inoue and H. Nakayama, Eds. Lecture Notes in Economics and
Mathematical Systems, Vol. 286, Springer-Verlag.

Larichev, 0. (1987). New directions in multicriteria decision making research. Working Pa-
per WP-87-67, International Institute for Applied Systems Analysis, Laxenburg, Aus-
tria.

Lewandowski, A., Rogowski, T. and Kreglewski T. (1985). A trajectory-oriented extension
of DIDAS and its application. In: Grauer, M., Thompson, M., Wierzbicki, A. P. Eds:
Plural Rationality and Interactive Decision Processes. Proceedings, Sopron, Hungary,
1984. Lecture Notes in Economics and Mathematical Systems, Vol. 248. Springer-
Verlag, Berlin.

Lewandowski, A., Johnson, S. and Wierzbicki, A. P. (1986). A prototype selection committee
decision analysis and support system, SCDAS: theoretical background and computer
implementation. Working Paper WP-86-27, International Institute for Applied Systems
Analysis, Laxenburg, Austria.

Lewandowski, A. and A.P. Wierzbicki (1987). Interactive decision support systems - the
case of discrete alternatives for committee decision making. Working Paper WP-87-38,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Lewandowski, A. (1988). SCDAS - decision support system for group decision making:
information processing issues. Working Paper WP-88-48, International Institute for
Applied Systems Analysis, Laxenburg, Austria.

Michalevich, M. V. (1986). Stochastic approaches to interactive multicriteria optimization
problems. Working Paper WP-8610, International Institute for Applied Systems Anal-
ysis, Laxenburg, Austria.

Naisbit, J. (1984). Megatrends. H. Mifflin, New York.

Nakayama, H. and Sawaragi, Y. (1983). Satisficing trade-off method for multiobjective
programming. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive Decision Analysis,
Springer-Verlag, Berlin-Heidelberg.

Nakayama, H. (1986). Geometrical approach to Iserman duality in linear vector optimiza-
tion. Collaborative Paper CP-8602, International Institute for Applied Systems Anal-
ysis, Laxenburg, Austria.

OPTIONS (1987). Decision Support Systems, No. 3-4, 1987. International Institute for
Applied Systems Analysis, Laxenburg, Austria.

Parker, B. J. and Al-Utabi, G. A. (1986). Decision support systems: The reality that seems
to be hard to accept? OMEGA Int. Journal of Management Science, Vol. 14, No. 2,
1986.

Pospelov, G. S. and Irikov, V. A. (1976). Program- and Goal Oriented Planning and Man-
agement (in Russian). Sovietskoye Radio, Moscow.

Rappoport, A. (1984). The uses of experimental games. In: Grauer, M., Thompson, M.,
Wierzbicki, A. P. Eds: Plural Rationality and Interactive Decision Processes. Proceed-
ings, Sopron, Hungary, 1984. Lecture Notes in Economics and Mathematical Systems,
Vol. 248. Springer-Verlag, Berlin.

Roy, B. (1971). Problems and methods with multiple objective functions, Math. Program-
ming, Vol. 1, pp. 233-236.

Saari, D. (1982). Inconsistencies of weighted Voting Systems. Math. of Operations Res.,
Vol. 7.

Saari, D. (1987). Symmetry and extensions of Arrow's theorem. Working Paper WP-87-109,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Saaty, T. L. (1982). Decision Making for Leaders: The Analytical Hierarchy Process for
Decisions in a Complex World, Lifetime Learning Publ., Belmont.

Sage, A. P. (1981). Behavioural and organizational considerations in the design of informa-
tion systems and processes for planning and decision support. IEEE Trans. Systems
and Cybernetics, Vol. SMC-11, No. 9, September 1981.

Sakawa, M. and H. Yano (1987). An interactive fuzzy satisficing method using augmented
minimax problems and its application to environmental systems. Research Report RR-
87-14, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Sawaragi, Y., H. Nakayama and T. Tanino (1985). Theory of Multiobjective Optimization.
Academic Press.

Seo, F. and M. Sakawa (1987). Fuzzy multiattribute utility analysis for collective choice.
Research Report RR-87-13, International Institute for Applied Systems Analysis, Lax-
enburg, Austria.

Simon, H. (1958). Administrative Behaviour, McMillan, New York.

Sprague, R. H. and Carlson, C. Eds. (1982). Building Effective Decision Support Systems.
Prentice Hall, Inc.

Stabel C. B. (1986). Decision Support Systems: Alternative Perspectives and Schools. In:
McLean, E. and Sol, H. G. Eds: Decision Support Systems: A Decade in Perspective,
Proceedings of the IFIP WG 8.3 Working Conference on Decision Support Systems,
Noordwijkerhout , The Netherlands.

Steuer, R., and Cho., E. V. (1983). An interactive weighted Chebyshev procedure for
multiple objective programming. Mathematical Programming 26, pp. 326344.

Tanino, T. (1986). Sensitivity analysis in multiobjective optimization. Working Paper WP-
8605, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Tanino, T . (1986). Stability and sensitivity analysis in convex vector optimization. Work-
ing Paper WP-8615, International Institute for Applied Systems Analysis, Laxenburg,
Austria.

Tversky, A., Kaheman, D. and Slovic, P. (1983). Judgement Under Uncertainty: Heuristic
and Biases, Cambridge University Press.

Valyi, I. (1986). On approximate vector optimization. Working Paper WP-8607, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria.

Valyi, I. (1987). Epsilon solution and duality in vector optimization. Working Paper WP-
87-43, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Vlacic, Lj., Matic, B. and Wierzbicki, A. P. (1986). Aggregation Procedures for Hierarchi-
cally Grouped Decision Attributes with Application to Control System Performance
Evaluation. International Conference on Vector Optimization, Darmstadt, 1986.

Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In:
Fandel, G. and Gal, T. Eds: Multiple Criteria Decision Making, Theory and Applica-
tions. Springer Verlag, Heidelberg.

Wierzbicki, A. P. (1982). A mathematical basis for satisfying decision making. Math.
Modelling, Vol. 3, pp. 391-405.

Wierzbicki, A. P. (1983a). Negotiation and mediation in conflicts: The role of mathematical
approaches and methods. In: Chestnut, H. et al., Eds: Supplemental Ways to Increase
International Stability. Pergamon Press, Oxford, 1983.

Wierzbicki, A. P. (1983b). Critical essay on the methodology of multiobjective analysis.
Regional Science and Urban Economics, Vol. 13, pp. 5-29.

Wierzbicki, A. P. (1984a). Models and Sensitivity of Control Systems. Elsevier, Amsterdam,
1984.

Wierzbicki, A. P. (1984b). Interactive decision analysis and interpretative computer in-
telligence. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive Decision Analysis,
Proceedings, Laxenburg, Austria, 1983. Lecture Notes in Economics and Mathematical
Systems, Vol. 229. Springer Verlag, Berlin.

Wierzbicki, A. P. (1985). Negotiation and mediation in conflicts: Plural rationality and
interactive decision processes. In: Grauer, M., Thompson M. and Wierzbicki A. P.,
Eds: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron, 1984.
Lecture Notes in Economics and Mathematical Systems, Vol. 248. Springer Verlag,
Berlin.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR-Spektrum, Vol. 8, pp. 73- 87.

Wynne, B. (1982). Decision support systems - a new plateau of opportunity or more
emperor's clothing? INTERFA CES , Vol. 12, No. 1, February 1982.

Decision Support Systems of DIDAS Family
(Dynamic Interactive Decision

Analysis k Support)

Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,

Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents a review of methodological principles, mathematical theory, vari-
ants of implementation and various applications of decision support systems of DIDAS
family, developed by the authors and many other cooperating researchers during the
years 1980-1986 in cooperation with the Systems and Decision Sciences Program of the
International Institute for Applied Systems Analysis. The purpose of such systems is to
support generation and evaluation of alternative decisions in interaction with a decision
maker that might change his preferences due to learning, while examining a substantive
model of a decision situation prepared by experts and analysts. The systems of DIDAS
family are based on the principle of reference point optimization and the quasisatisficing
framework of rational choice.

Introduction

The results reported in this paper are an outcome of a long cooperation between the System
and Decision Sciences Program of the International Institute for Applied Systems Analysis
(IIASA) and the Institute of Automatic Control, Warsaw University of Technology as well as
many other institutions in Poland and in other countries. This cooperation concentrated on
applications of mathematical optimization techniques in multiobjective decision analysis and
on the development of decision support systems. Although many articles in scientific jour-
nals and papers a t international conferences described specific results obtained during this
cooperation (in fact, four international workshops and several working meetings were orga-
nized during these cooperation), one of the main results-the family of Dynamic Interactive
Decision Analysis and Support systems-has not been until now comprehensively described.
Such a description is the purpose of this paper.

1 Concepts of decision support and frameworks for rational
decisions.

1.1 Concepts of decision support systems.

The concept of a decision support system, though quite widely used and developed in con-
temporary research, is by no means well defined. Without attempting to give a restrictive

definition (since such definition in an early stage of development might limit it too strongly),
we can review main functions and various types of decision support.

The main function of such systems is to support decisions made by humans, in contrast
to decision automation systems that replace humans in repetitive decisions because these
are either too tedious or require very fast reaction time or very high precision. In this
sense, every information processing system has some functions of decision support. However,
modern decision support systems concentrate on and stress the functions of helping human
decision makers in achieving better decisions, following the high tech-high touch trend in
the development of modern societies (Naisbitt, 1982). We can list several types of systems
that serve such purposes:

simple managerial support systems, such as modern data bases, electronic spreadsheet
systems, etc;

ezpert and knowledge base systems whose main functions relate to the help in recogniz-
ing a pattern of decision situation; more advanced systems of this type might involve
considerable use of artificial intelligence techniques;

alternative evaluation and generation systems whose main functions concentrate on
the processes of choice among various decision alternatives either specified a priori or
generated with help of the system, including issues of planning, of collective decision
processes and issues of negotiations between many decision makers; more advanced
systems of this type might involve a considerable use of mathematical programming
techniques, such as optimization, game theory, decision theory, dynamic systems theory
etc.

Some authors (Van Hee, 1986) restrict the definition of decision support systems only
to the third group while requiring that a decision support system should contain a model
of decision support. Although the systems described in this paper belong precisely to this
category, we would like to draw the attention of the reader that it is a narrow sense of
interpreting decision support systems. With this reservation, we will concentrate on decision
support systems in the narrow sense. These can be further subdivided along various attributes
into many classes:

systems that support operational planning of repetitive type versus systems that s u p
port strategic planning, confronting essentially novel decision situations;

systems that concentrate on the choice between a number of discrete alternatives versus
systems that admit a continuum of alternatives and help to generate interesting or
favorable alternatives among this continuum;

systems that are essentially designed to be used by a single decision maker ("the user')
versus systems that are designed to help many decision makers simultaneously;

specialized systems designed to help in a very specific decision situation versus adapt-
able system shells that can be adapted to specific cases in a broader class of decision
situations;

systems that use versus such that do not use explicitly mathematical programming
techniques, such as optimization, in the generation or review of alternatives;

systems that assume (explicitly or implicitly) a specific framework of rationality of
decisions followed by the user versus systems that try to accommodate a broader class
of perceptions of rationality (Wierzbicki, 1984a).

This last distinction was an important issue in the development of decision support sys-
tems described in this paper.

1.2 Frameworks for rational decisions.

When trying to support a human decision maker by a computerized decision support system,
we must try to understand first how human decisions are made and how to help in making
rational decisions. However, the rationality concept followed by the designer of the system
might not be followed by the user; good decision support systems must be thus flexible,
should not impose too stringent definitions of rationality and must allow for many possible
perceptions of rationality by the user.

The first distinction we should make is between the calculative r m or analytical rationality
and the deliberative r m or holistic rationality, the 'hard" approach and the 'soft" approach.
The most consistent argument for the "softn or holistic approach was given by Dreyfus (1984).
He argues-and supports this argument by experimental evidence-that a decision maker is a
learning individual whose way of making decisions depends on the level of expertise attained
through learning. A novice needs calculative rationality; an experienced decision maker
uses calculative rationality in the background, while concentrating his attention on novel
aspects of a decision situation. An expert does not need calculative rationality: in a known
decision situation, he arrives a t best decisions immediately, by absorbing and intuitively
processing all pertinent information (presumably in a parallel processing scheme, but in a
way that is unknown until now). A master expert, while subconsciously making best decisions,
continuously searches for 'new anglesm-for new aspects or perspectives, motivated by the
disturbing feeling that not everything is understood, the feeling that culminates and ends in
the 'ahaw or heureka eflect of perceiving a new perspective. Thus, the holistic approach can
be understood as the rationality of the culture of ezperts.

However, even a master expert needs calculative decision support, either in order to
simulate and learn about novel decision situations, or to fill in details of the decision in a
repetitive situation; novice decision makers might need calculative decision support in order
to learn and become experts. These needs must be taken into account when constructing
decision support systems that incorporate many elements of calculative rationality.

There are several frameworks for calculative or analytical rationality; most of these, after
deeper analysis, turn out to be culturally dependent (Wierzbicki, 1984a). The utility mazi-
mization framework has been long considered as expressing an universal rationality, as the
basis of decision analysis; every other framework would be termed 'not quite rationaln. The
abstractive aspects of this framework are the most developed-see, e.g., (Fishburn, 1964,
Keeney and Raiffa, 1976)-and a monograph of several volumes would be needed to sum-
marize them. Without attempting to do so, three points should be stressed here. Firstly,
utility maximization framework is not universal, is culturally dependent; it can be shown to
express the rationality of a small entrepreneur facing an infinite market (Wierzbicki, 1984a).
Secondly, its descriptive powers are rather limited; it is a good descriptive tool for repre-
senting mass economic behaviour and a very poor tool for representing individual behaviour.
Thirdly, it is difficult to account for various levels of expertise and to support learning within
this framework.

Many types of decision support systems attempt to approximate the utility function of
the user and then to suggest a decision alternative that maximizes this utility function. Most
users find such decision support systems not convenient: it takes many experiments and
questions to the decision maker to approximate his utility and, when the user finally learns
some new information from the support system, his utility might change and the entire
process must be repeated. Moreover, many users resent too detailed questions about their
utility or just refuse to think in terms of utility maximization. However, a good decision
support system should also support users that think in terms of utility maximization. For
this purpose, the following principle of interactive reference point mazimization and learning
can be applied.

Suppose the user is an expert that can intuitively, holistically maximize his unstated utility
function; assume, however, that he has not full information about the available decision
alternatives, their constraints and consequences, only some approximate mental model of
them. By maximizing holistically his utility on this mental model, he can specify desirable
consequences of the decision; we shall call these desirable consequences a reference point in
the outcome or objective space. The function of a good decision support system should be
then not to outguess the user about his utility function, but to take the reference point
as a guideline and to use more detailed information about the decision alternatives, their
constraints and consequences in order to provide the user with proposals of alternatives that
came close to or are even better than the reference point.

This more detailed information must be included in the decision support system in the
form of a substantive model of the decision situation, prepared beforehand by a group of ana-
lysts (in a sense, such a model constitutes a knowledge base for the system). Upon analysing
the proposals generated in the system, the utility function of the user might remain con-
stant or change due to learning, but he certainly will know more about available decision
alternatives and their consequences. Thus, he is able to specify a new reference point and to
continue interaction with the system. Once he has learned enough about available alterna-
tives and their consequences, the interactive process stops at the maximum of his unstated
utility function. If the user is not a master expert and might have difficulties with holistic
optimization, the system should support him first in learning about decision alternatives,
then in the optimization of his utility; but the latter is a secondary function of the system
and can be performed also without explicit models of utility function while using the concept
of reference points.

The concept of reference point optimization has been proposed by Wierzbicki (1975,1977,
1980); following this concept, the principle of interactive reference point optimization and
learning was first applied by Kallio, Lewandowski and Orchard-Hays (1980) and then lead
to the development of an entire family of decision support systems called DIDAS. However,
before describing these systems in more detail, we must discuss shortly other frameworks of
calculative rationality.

A concept similar or practically equivalent to the reference point is that of aspiration lev-
els proposed over twenty years ago in the satisficing rationality framework by Simon (1957,
1958) and by many others that followed the behavioural criticism of the normative decision
theory based on utility maximization. This framework started with the empirical observation
that people do form adaptive aspiration levels by learning and use these aspirations to guide
their decisions; very often, they cease to optimize upon reaching outcomes consistent with
aspirations and thus make satisficing decisions. However, when building a rationale for such
observed behaviour, this framework postulated that people cannot maximize because of three
reasons: the cost of computing optimal solutions in complex situations; the uncertainty of

decision outcomes that makes most complex optimization too difficult; and the complexity
of decision situations in large industrial and administrative organizations that induces the
decision makers to follow some well established decision rules that can be behaviourally o b
served and often coincide with satisficing decision making. This discussion whether and in
what circumstances people could optimize substantiated the term bounded rationality (which
implies misleadingly that this is somewhat less than full rationality) applied to the satisfic-
ing behaviour and drown attention away from the essential points of learning and forming
aspiration levels.

Meanwhile, two of the reasons for not optimizing quoted above have lost their rele-
vance. The development of computers and computational methods of optimization, including
stochastic optimization techniques, has considerably decreased the cost and increased the pos-
sibilities of calculative optimization; moreover, the empirical research on holistic rationality
indicates that expert decision makers can easily determine best solutions in very complex
situations even if they do not use calculative optimization. The third reason, supported by
empirical observations, remains valid: the satisficing rationality i s typical for the culture of
big industrial and administrative organizations (see also Galbraith, 1967). However, it can
today be differently interpreted: the appropriate question seems to be not whether people
could, but whether they should mazimize.

Any intelligent man, after some quarrels with his wife, learns that maximization is not
always the best norm of behaviour; children learn best from conflicts among themselves that
cooperative behaviour is socially desirable and that they must restrict natural tendencies to
maximization in certain situations. In any non-trivial game with the number of participants
less than infinity, a cooperative outcome is typically much better for all participants than an
outcome resulting from individual maximization. This situation is called a social trap and
motivated much research that recently gave results of paradigm-shifting importance (R a p
poport, 1985, Axelrod, 1985): we can speak about a perspective of evolutionary rationality,
where people develop-through social evolution-rules of cooperative behaviour that involve
foregoing short-term maximization of gains.

When trying to incorporate the lessons from the perspective of evolutionary rationality
into decision support systems, another question must be raised: in which situations should
we stop maximizing upon reaching aspiration levels? We should stop maximizing for good
additional reasons, such as avoiding social traps or conflict escalation, but if these reasons
are not incorporated into the substantive model of the decision situation, the question about
foregoing maximization should be answered by the decision maker, not by the decision s u p
port system. This constitutes a drawback of many decision support systems based on goal
programming techniques (Charnes and Cooper, 1975, Ignizio, 1978) that impose on the user
the unmodified satisficing rationality and stop optimization upon reaching given aspirations,
called goals in this case.

When trying to modify goal programming techniques and strictly satisficing rationality
to account for above considerations, the principle of ideal organization (Wierzbicki, 1982)
can be applied in construction of decision support systems. This principle states that a good
decision support system should be similar to an ideal organization consisting of a boss (the
user of the system) and the staff (the system), where the boss specifies goals (aspirations,
reference points) and the staff tries to work out detailed plans how to reach these goals. If
the goals are not attainable, the staff should inform the boss about this fact, but also should
propose a detailed plan how to approach these goals as close as it is possible. If this goals are
just attainable and cannot be improved, the staff should propose a plan how to reach them,
without trying to outguess the boss about his utility function and proposing plans that lead

to different goals than stated by the boss.
If, however, the goals could be improved, the staff should inform the boss about this fact

and propose a plan that leads to some uniform improvement of all goals specified by the boss;
if the boss wishes that some goals should not be further improved, he can always instruct
the staff accordingly by stating that, for some selected objectives, the goals correspond not
to maximized (or minimized) but stabilized variables, that is, the staff should try to keep
close to the goals for stabilized objectives without trying to exceed them. By specifying all
objectives as stabilized, the boss imposes strictly satisficing behaviour on the staff; but the
responsibility for doing so remains with him, not with the staff.

The above principle of ideal organization can be easily combined with the principle of
interactive reference point maximization and learning; jointly, they can be interpreted as
a broader framework for rationality, called quasisatisficing framework (Wierzbicki, 1984a,
1986), that incorporates lessons from the holistic and the evolutionary rationality perspec-
tives and can support decision makers adherence either to utility maximization or satisficing.
In fact, the quasisatisficing framework can also support decision makers following other per-
spectives of rationality, such as the program- and goal-oriented planning and management
framework. This framework, proposed by Glushkov (1972) and Pospelov and Irikov (1976))
represents the culture of planning, but has been independently suggested later also by repre-
sentatives of other cultures (Umpleby, 1983). In this framework, rational action or program
are obtained by specifying first primary objectives, called goals, and examining later how
to shift constraints on secondary objectives, called means, in order to attain the goals. In
distinction to the utility maximization or satisficing frameworks, the stress here is laid on the
hierarchical arrangement of objectives; but the quasisatisficing framework can also handle
hierarchical objectives.

2 Quasisatisficing and achievement functions.

The main concepts of the quasisatisficing framework, beside the principle of interactive ref-
erence point optimization and learning and the principle of ideal organization, are the use of
reference points (aspiration levels, goals) as parameters by which the user specifies his require-
ments to the decision support system (controls the generation and selection of alternatives in
the system) as well as the maximization of an order-consistent achievement function as the
main mechanism by which the decision support system responds to the user requirements.
Achievement functions have been used also in goal programming (Ignizio, 1978)) however,
without the requirement of order-consistency (Wierzbicki, 1986). When following the princi-
ple of interactive reference point optimization and learning, an order-consistent achievement
function can be interpreted as an ad hoc approximation of the utility function of the user
(Lewandowski et al., 1986); if the user can holistically maximize his utility and interactively
change reference points, there is no need for any more precise approximation of his utility
function. When following the principle of ideal organization, an order-consistent achievement
function can be interpreted as a proxy for utility or achievement function of the ideal staff
(the decision support system) guided by aspirations specified by the boss (the user); this
function is maximized in order to obtain best response to the requirements of the boss.

Based upon above principles and starting with the system described in (Kallio et al.,
1980)) many decision support systems have been developed with the participation or coop
eration of the authors of this paper (Lewandowski and Grauer, 1982, Grauer et al., 1982,
Kreglewski and Lewandowski, 1983, Lewandowski et al., 1984a, Lewandowski et al., 1984b,
Makowski and Sosnowski, 1984, Kaden and Kreglewski, 1986), either in IIASA, or in several

Polish institutions cooperating with IIASA. _"he name DIDAS (Dynamic Interactive Decision
Analysis and Support) has been first used by Grauer, Lewandowski and Wierzbicki (1983).
Other systems based upon such principles are now being developed for implementations
on professional microcomputers; all these systems we broadly call here "systems of DIDAS
familyn. However, also other researchers adopted or developed parallely some principles
of quasisatisficing framework, represented in the works of Nakayama and Sawaragi (1983))
Sakawa (1983)) Gorecki et al. (1983)) Steuer et al. (1983)) Strubegger (1985)) Messner (1985))
Korhonen et al. (1986) and others; decision support systems of such type belong to a broader
family using quasisatisficing principles of rationality or aspiration-led decision analysis and
support methods.

Since the maximization of an order-consistent achievement function is a specific feature
of systems of DIDAS family, we review here shortly the theory of such functions.

We consider first the basic case where the vector of decisions z E Rn, the vector of
objectives or outcomes of decisions q E RP, and the substantive model of decision situation
has the form of a set of admissible decisions Xo c Rn -assumed to be compact-together
with an outcome mapping, that is, a vector-valued objective function f : Xo -t RP -assumed
to be continuous, hence the set of attainable outcomes Qo = f (Xo) be also compact; further
modifications of this basic case will be considered later. If the decision maker wants to
maximize all outcomes, then the partial ordering of the outcome space is implied by the
positive cone D = R:-which means that the inequality q1 > qll e) q1 - ql' E D is understood

I I1

in the sense of simple inequalities for each component of vectors q , q .
However, the cone D = R: has nonempty interior; a more general case is when the

decision maker would like to maximize only first p1 outcomes, minimize next outcomes from
p1 + 1 until pf l , while the last outcomes from pl' + 1 until p are to be kept close to some given
aspiration levels, that is, maximized below these levels and minimized above these levels; such
objectives or outcomes are called (softly) stabilized. In this case, we redefine the positive cone
to the form

This cone D does not have an interior if p" < p. Since the cone D is closed and the set Qo is
compact, there exist D-eficient (D-optimal) elements of Qo , see (Wierzbicki, 1982). These
are such elements i E Qo that Qon(g^+fi) = 0 where fi = D\{O}; if p1 = p and D = R:, then
D-efficient elements are called also Pareto-optimal (in other words-such that no outcome
can be improved without deteriorating some other outcome). The corresponding decisions
P E Xo such that i = j (z) are called D-efficient or Pareto-optimal as well. Although the
decision maker is usually interested both in efficient decisions and outcomes, for theoretical
considerations it is sufficient to analyse only the set of all D-efficient outcomes

Several other concepts of efficiency are also important. The weakly D-eficient elements
belong to the set

~ , " = { i ~ ~ ~ : ~ o n (g ^ + i n t ~) = 0) (3)

In other words, these are such elements that cannot be improved in all outcomes jointly.
Although important for theoretical considerations, weakly D-efficient elements are not useful
in practical decision support, since there might be too many of them: if pfl < p and the
interior of D is empty, then all elements of Qo are weakly D-efficient. Another concept is
that of properly D-eficient elements; these are such D-efficient elements that have bounded

trade-off coefficients that indicate how much one of the objectives must be deteriorated in
order to improve another one by a unit (for various almost equivalent definitions of such
elements see Sawaragi et al., 1985). In applications, it is more useful to further restrict the
concept of proper efficiency and consider only such outcomes that have trade-off coefficients
bounded by some a priori number. This corresponds to the concept of properly D-eficient
elements with (a priori) bound c or D,-eficient elements that belong to the set

where E > 0 is a given number (Wierzbicki, 1982). D,-efficient elements have trade-off
coefficients bounded approximately by c and 1/c. For computational and practical purposes,
an efficient outcome with trade-off coefficients very close to zero or to infinity cannot be
distinguished from weakly efficient outcomes; hence, we shall concentrate in the sequel on
properly efficient elements with bound E.

When trying to characterize mathematically various types of efficiency with help of
achievement functions, two basic concepts are needed: this of monotonicity, essential for
sufficient conditions of efficiency, and that of separation of sets, essential for necessary con-
ditions of efficiency. The role of monotonicity in vector optimization is explained by the
following basic theorem (Wierzbicki, 1986):

Theorem 1. Let a function r : Qo + R1 be strongly monotone, that is, let q' > q''
I1 . -

(equivalent to q1 E q + D) imply r(ql) > r(qft). Then each maximal point of this func-
tion is efficient. Let this function be strictly monotone, that is, let q1 >> ql' (equivalent to
q1 E qfl + int D) imply r(ql) > r(qfl). Then each maximal point of this function is weakly effi-
cient. Let this function be c-strongly monotone, that is, let q1 E qtl + 5, imply r(ql) > r(qfl).
Then each maximal point of this function is properly efficient with bound E .

The second concept, that of separation of sets, is often used when deriving necessary
conditions of scalar or vector optimality. We say that a function r : RP + R1 strongly
separates two disjoint sets Q1 and Q2 in RP, if there is such /3 E R1 that r(q) 5 /3 for all
q E Q1 and r(q) > /3 for all q E 92. Since the definition of efficiency (2) requires that the sets
Qo and q+fi are disjoint (similarly for the definitions (3) or (4))) they could be separated by a
function. If Qo is convex, these sets can be separated by a linear function. If Qo is not convex,
the sets Qo and 4 + 5 could be still separated at an efficient point 4, but we need for this a
nonlinear function with level sets {q E RP : r(q) 1 p) which would closely approximate the
cone 4 + 5. There might be many such functions; their desirable properties are summarized
in the definitions of order-consistent achievement functions (Wierzbicki, 1986) of two types:
order-representing functions (which, however, characterize weak efficiency and will not be
considered here) and order-approzimating functions. The latter type is defined as follows:

Let A denote a subset of RP, containing go but not otherwise restricted, and let Q E A
denote reference points or aspiration levels that might be attainable or not (we assume
that the decision maker cannot a priori be certain whether Q E Qo or q Qo). Order-
approximating achievement functions are such continuous functions s : Qo x A + R1 that
e(q, Q) is strongly monotone (see Theorem 1) as a function of Q E Qo for any q E A and,
moreover, possesses the following property of order approximation:

with some small e 2 F 2 0; together with the continuity requirement, the requirement (5)
implies that s(q, ij) = 0 for all q = Q.

If p' = p and D = R: , then a simple example of an order-approximating function is:

with A = RP, some positive weighting coefficients a; (typically, we take cr; = l/s;, where s;
are some scaling units for objectives, either defined by the user or determined automatically in
the system, see further comments) and some ap+l > 0 that is sufficiently small as compared
to e and large as compared to C (typically, we take ap+l = € 1 ~) . This function is not only
strongly monotone, but also E-strongly monotone. For the more complicated form (1) of the
positive cone D, function (6) modifies to:

where the functions z; (qi, Q;) are defined by:

(9;-Q;)/s;, if ~ < i < ~ ' ,

(Q;-q;)/s,, if p ' + l < ; < p ' ' ,

(z) if p" + 1 5 i 5 p,

with

zi = (9; - B)/S:, z;' = (q, - qi)/s:

The coefficients s;, s:, s:.(are scaling units for all objectives, either defined by the user (in
which case s: = s:.(, the user does not need to define two scaling coefficients for a stabilized
objective outcome) or determined automatically in the system; again, we use here ap+l = elp.

Since the definition of an order-approximating achievement function requires that only
its zero-level set should closely approximate the positive cone, many other forms of such
functions are possible. For example, in some DIDAS systems the following function has been
used:

1 I P

min ~ (q ; , ~) , - ~ z , (q , , Q ;) + ~ ~ Z ; (q ; , Q ;)
i<i<p PP ,=I p ;=I

where the functions zi(qi, Q;) are defined as in (8)) (9) and the coefficient p > 1 indicates to
what extent the minimal overachievement is substituted by the sum of overachievements in
the level sets for positive values of this function.

At any point q ̂ that is properly efficient with bound e, an order-approximating function
with q = 4 strictly separates the sets 4 + B, and Qo. This and related properties of order-
approximating functions result in the following characterization of D,-efficiency (Wierzbicki,
1986):

Theorem 2. Let s(q, Q) be an order-approximating function with e > ? > 0. Then, for
any q E A, each point that maximizes s(q, Q) over q E Qo is efficient; if q' is properly efficient
with bound e (D,-optimal), then the maximum of s(q, Q) with Q = 4 over q E Qo is attained
at 4 and is equal zero. Let, in addition, s(q, Q) be 7-strongly monotone with respect to q;
then each point that maximizes s(q, Q) over q E Qo is properly efficient with bound e.

The essential difference between order-consistent achievement functions and other types of
achievement functions, used in goal programming and based on norms, is that the aspiration
or reference point Q needs not to be unattainable in order to achieve efficiency; this is because
order-consistent achievement functions remain monotone, even if the reference point crosses
the efficient boundary of Qo. Somewhat simplifying, we can say that an order-consistent
achievement function switches automatically from norm minimization to maximization when
the aspiration point ij crosses the efficient boundary and becomes attainable. On the other
hand, the characterization by Theorem 2 is obtained without any convexity assumptions,
because the order-approximating property of achievement functions results in a constructive
though nonlinear separation of sets Qo and i+ b even in nonconvex cases. In fact, the set Qo
needs not to be even connected and the order-consistent achievement functions can be as well
used to characterize solutions of multiobjective discrete or mixed programming. Theorem 2
is valid even if the decision outcomes are elements of infinite-dimensional complete normed
(Banach) spaces, as in many cases of multiobjective dynamic trajectory optimization---see
(Wierzbicki, 1982).

Order-approximating achievement functions have several interpretations. From the point
of view of utility maximization, achievement function can be interpreted as an ad hoc a p
proximation of the utility function of the user, based on the information that he conveyed
to the decision support system: the partial preordering of the objective space (which objec-
tives are to be maximized, which minimized and which stabilized) and the aspiration levels i j
for all objectives; if more information is already available, this ad hoc approximation can be
improved--see further comments. The coefficient c can be then interpreted as the weight that
the user attaches to correcting the underachievement in the worst outcome by average over-
achievements in other outcomes. However, such an ad hoc approximation is not a classical
utility function, since it is context-dependent: it explicitly depends on the aspiration levels i j
that summarize the experience of the user and change due to his learning during interaction,
thus changing the approximation of the utility function. On the other hand, the achievement
function (6) can have cardinal form: if a; = l/s;, then function (6) is independent on affine
transformations of outcome space; the same applies to function (7).

When following the principle of an ideal organization, an order-approximating achieve-
ment function can be interpreted as the utility function of the staff that is aware of aspirations
set by the boss; the maximum of the achievement function is then positive, if the staff can
propose a solution that exceeds the aspiration levels, it is negative, if the staff cannot propose
a solution that satisfies aspiration levels and only comes as closely as possible to them, and
it is zero (Theorem 2) if the staff finds an efficient solution that produces outcomes strictly
corresponding to the aspiration levels.

F'rom the point of view of strictly satisficing rationality, one should take function (7) and
set p) = p)l = 0, that is, let all outcomes be softly stabilized; this is actually done in goal
programming approaches. F'rom the point of view of program- and goal oriented planning,
one should either assume that the primary objectives are constrained to be equal to their
corresponding aspiration levels, thereby modifying the set of admissible decisions Xo (such
objectives or outcomes are called guided or strictly stabilized), or assign much greater weights
t o primary objectives than to secondary objectives. We see that the quasisatisficing approach
can be used by decision makers following either of these three frameworks of rationality.

Further mathematical properties of order-approximating achievement functions have been
also investigated; for example, it can be shown that order-approximating functions give the
strongest characterization of efficient solutions for cases where the set Qo is of an arbitrary,
a priori unknown shape, which is a reasonable assumption in most applied cases (Wierzbicki,

1982). Another important property of an order-approximating function of the form (6) or
(7) is that its maximal point 4 depends Lipschitz-continuously on the aspiration point q in
all cases when the maximum of this function is unique; thus, the user of the decision support
system can continuously influence his selection of efficient outcomes by suitably modifying
the aspiration or reference point.

Computationally, the maximization of an order-approximating achievement function is
either s i m p l e i f Qo is a convex polyhedral set, then the problem of maximizing (6), (7) or
(10) can be rewritten as a linear programming problem-or more complicated for nonlinear
or nonconvex problems. In such cases, we must either represent (6), (7) or (10) by additional
constraints, or apply nondifferentiable optimization techniques, since the definition of order-
approximating achievement functions imply their nondifferentiability a t q = 4. Often, it is
advisable to use smooth order-approximating functions that give weaker necessary conditions
of efficiency than in Theorem 2, but are better suited for computational applications--see
further comments.

3 Phases of decision support in systems of DIDAS family.

A typical procedure of working with a system of DIDAS family consists of several phases:

A. The definition and edition of a substantive model of analysed process and decision
situation by analyst(s);

B. The definition of the multiobjective decision problem using the substantive model, by
the final user (the decision maker) together with analyst(s);

C. The initial analysis of the multiobjective decision problem, resulting in determining
bounds on efficient outcomes and, possibly, a neutral efficient solution and outcome, by
the user helped by the system;

D. The main phase of interactive, learning review of efficient solutions and outcomes for
the multiobjective decision problem, by the user helped by the system;

E. An additional phase of sensitivity analysis (typically, helpful to the user) and/or con-
vergence to the most preferred solution (typically, helpful only to users that adhere to
utility maximization framework).

These phases have been implemented differently in various systems of DIDAS family; however,
we describe them here comprehensively.

Phase A: Model definition and edition.
There are four basic classes of substantive models that have been used in various systems

of DIDAS family: multiobjective linear programming models, multiobjective dynamic lin-
ear programming models, multiobjective nonlinear programming models and multiobjective
dynamic nonlinear programming models. First DIDAS systems have not used any specific
standards for these models; however, our accumulated experience has shown that such stan-
dards are useful and that they differ from typical theoretical formulations of such models
(although they can be reformulated back to the typical theoretical form, but such reformu-
lation should not bother the user).

A substantive model of multiobjective linear programming type consists of the specification
of vectors of n decision variables z E Rn and of m outcome variables y E Rm together with

linear model equations defining the relations between the decision variables and the outcome
variables and with model bounds defining the lower and upper bounds for all decision and
outcome variables:

y = Az; z1° < z < zUp; yl" < y < yUP (11)

where A is a m x n matrix of coefficients. Between outcome variables, some might be
chosen as guided outcomes, corresponding to equality constraints; denote these variables by

1

yC E Rm c Rm and the constraining value for them by bC to write the additional constraints
in the form:

yC=ACz=bC; yc,'"<b<yc,UP - - (12)

where AC is the corresponding submatrix of A. Some other outcome variables can be chosen
as optimized objectives or objective outcomes; actually, this is done in the phase B together
with the specification whether they should be maximized, minimized or softly stabilized, but
we present them here for the completeness of the model description. Some of the objective
variables might be originally not represented as outcomes of the model, but we can always
add them by modifying this model; in any case, the corresponding objective equations in
linear models have the form:

q = C z (13)

where C is another submatrix of A. Thus, the set of attainable objective outcomes is
Qo = CXo and the set of admissible decisions Xo is defined by:

By introducing proxy variables and constraints, the problem of maximizing functions (7)
or (10) over outcomes (13) and admissible decisions (14) can be equivalently rewritten to a
parametric linear programming problem, with the leading parameter tj; thus, in phases C,
D, E, a linear programming algorithm called solver is applied. In initial versions of DIDAS
systems for linear programming models, the typical MPS format for such models has been
used when editing them in the computer; recent versions of DIDAS systems include also a
user-friendly format of a spreadsheet.

A useful standard of defining a substantive model of multiobjective linear dynamic pro-
gramming type is as follows. The model is defined on T + 1 discrete time periods t , 0 < t < T.
The decision variable z, called in this case control trajectory, is an entire sequence of decisions:

and a special type of outcome variables, called state variables w[t] E Rm is also considered.
The entire sequence of atate variables or state trajectory:

is actually one time period longer than z ; the initial state w[0] must be specified as given
data. The fundamental equations of a substantive dynamic model have the form of state
equations:

The model outcome equations have then the form:

I

y[T] = C[T]w[T] E Rm

and define the sequence of outcome variables or outcome trajectory:

The decision, state and outcome variables can all have their corresponding lower and upper
bounds (each understood as an appropriate sequence of bounds):

The matrices A[t], B[t], C[t], D[t] of appropriate dimensions can be dependent or indepen-
dent on time t; in the latter case, the model is called time-invariant. This distinction is
important in multiobjective analysis of such models only in the sense of model edition: time-
invariant models can be defined easier by automatic, repetitive edition of model equations
and bounds for subsequent time periods.

Between the outcomes, some might be chosen to be equality constrained or guided along
a given trajectory:

:: :

ye [t] = ec [t] E Rm c Rm , t = 0, . . . , T ; eC = {eC [0] , . . . , ee[t], . . . , e e [~]) (17)

The optimized (maximized, minimized or stabilized) objective outcomes of such model
can be actually selected in phase B among both state variables and outcome variables (or
even decision variables) of this model; in any case, they form an entire objective trajectory:

If we assume that the first components q;[t] for 1 5 i 5 p1 are to be maximized, next for
p) + 1 < i 5 p)' are to be minimized, last for p)' + 1 5 i 5 p are to be stabilized (actually, the
user in the phase B does not need to follow this order-he simply defines what to do with
subsequent objectives), then the achievement function s(q, Q)-for example, originally given
by (10)-in such a case takes the form:

T P

min min z[t] ,
OltST O l i l p

t = O i=l

where the functions r[t] = z(q[t], q[t]) are defined by:

(q;[t] -f;[t])/s;[t], if 15 i i p ' ,

(q; [t] - qi [t])/~;[t] , if p' + 1 < i < p)', (20)

min(4[t],<'(t]), if p + l < i < p

where

&I = (gilt] - e[t])/~:[t] , z:'[t] = (q,lt] - qi[tl)/s:'lt], (21)

The user does not need to define time-varying scaling units s;[t] nor two different scaling
units 8: [t], sy [t] for a stabilized objective: the time-dependence of scaling units and separate
definitions of si[t], sy[t] are needed only in the case of automatic scaling in further phases.

A useful standard for a substantive model of multiobjective nonlinear programming type
consists of the specification of vectors of n decision variables z f Rn and of m outcome

variables y E Rm together with nonlinear model equations defining the relations between the
decision variables and the outcome variables and with model bounds defining the lower and
upper bounds for all decision and outcome variables:

where g : Rn + Rm is a (differentiable) function. In fact, the user or the analyst does not have
t o define the function g explicitly; he can also define it recursively, that is, determine some
further components of this vector-valued function as functions of formerly defined compo-
nents. Between outcome variables, some might be chosen as guided outcomes corresponding

I

to equality constraints; denote these variables by ye E Rm c Rm and the constraining value
for them by be t o write the additional constraints in the form:

where gc is a function composed of corresponding components of g . In phase B, some other
outcome variables can be also chosen as optimized objectives or objective outcomes. The
corresponding objective equations have the form:

where f is also composed of corresponding components of g . Thus, the set of attainable
objective outcomes is Qo = f (Xo) where the set of admissible decisions Xo is defined by:

In further phases of working with nonlinear models, an order-approximating achievement
function must be maximized; for this purpose, a specially developed nonlinear optimization
algorithm called solver is used. Since this maximization is performed repetitively, a t least
once for each interaction with the user that changes the parameter f , there are special re-
quirements for the solver that distinguish this algorithm from typical nonlinear optimization
algorithms: i t should be robust, adaptable and efficient, that is, it should compute reasonably
fast an optimal solution for optimization problems of a broad class (for various differentiable
functions g(z) and f (z)) without requiring from the user that he adjusts special parameters
of the algorithm in order t o obtain a solution. The experience in applying nonlinear opti-
mization algorithms in decision support systems (Kreglewski and Lewandowski, 1983, Kaden
and Kreglewski, 1986) has led to the choice of an algorithm based on penalty shifting tech-
nique and projected conjugate gradient method. Since a penalty shifting technique anyway
approximates nonlinear constraints by penalty terms, an appropriate form of an achievement
function that differentiably approximates function (7) has been also developed and is actually
used. This smooth order-approzimating achievement function has the form:

I ##
where w;, wi, wi are functions of Q;, qi :

and the dependence on q; results from a special definition of the scaling units that are deter-
mined by:

(%,ma2 - q i) , if 1 5 i 5 P I ,

s; =
i - i n) if p1 + 1 5 i 5 PI',

In the initial analysis phase, the values q;,,, and q;,,;, are set to the upper and lower bounds
specified by the user for the corresponding outcome variables; later, they are modified, see
further comments. The parameter a 1 2 is responsible for the approximation of the function
(7) by the function (26): if a --, cci and E -, 0, then these functions converge to each other
(while taking into account the specific definition of scaling coefficients in (26-28)). However,
the use of too large parameters results in badly conditioned problems when maximizing
function (26), hence a = 4,. . . , 8 are suggested to be used.

The function (26) must be maximized with q = f (z) over z E Xo, while Xo is determined
by simple bounds zl' 5 z 5 zUP as well as by inequality constraints ylo 5 g(z) 5 yUP and
equality constraints gC(z) = bC. In the shifted penalty technique, the following function is
minimized instead:

I I1
where t', el1, t are penalty coefficients and u , u , v are penalty shifts. This function is
minimized over z such that zlo 5 2 5 zUP while applying conjugate gradient directions,
projected on these simple bounds if one of the bounds becomes active. When a minimum
of this penalty function with given penalty coefficients and given penalty shifts (the latter
are initially equal zero) is found, the violations of all outcome constraints are computed,
the penalty shifts and coefficients are modified according to the shifted-increased penalty
technique (Wierzbicki, 1984b) and the penalty function is minimized again until the violations
of outcome constraints are admissibly small. The results are then equivalent to the outcomes
obtained by maximizing the achievement function (26) under all constraints. This technique
is according to our experience one of the most robust nonlinear optimization methods.

We omit here the description of the useful standard for defining substantive modeb of
dynamic nonlinear programming type that can be obtained by combining the previous cases.

Phase B. The definition of the multiobjective decision analysis problem.
For a given substantive model, the user can define various problems of multiobjective

analysis by suitably choosing maximized, minimized, stabilized and guided outcomes. In
this phase, he can also define which outcomes and decisions should be displayed to him
additionally during interaction with the system (such additional variables are called floating

outcomes). Since the substantive model is typically prepared by an analyst(s) in the phase
A and further phases starting with the phase B must be performed by the final user, an
essential aspect of all systems of DIDAS family is the user-friendliness of phase B and further
phases; this issue has been variously resolved in consequent variants of DIDAS systems. In
all these variants, however, the formulation of the achievement function and its optimization
is prepared automatically by the system once phase B is completed.

Before the initial analysis phase, the user should also define some reasonable lower and
upper bounds for each optimized (maximized, minimized or stabilized) variable, which re-
sults in an automatic definition of reasonable scaling units s; for these variables. In further
phases of analysis, these scaling units s; can be further adjusted; this, however, requires an
approximation of bounds on efficient solutions.

P h a s e C. Initial analysis of t h e multiobjective problem.
Once the multiobjective problem is defined, bounds on efficient solutions can be approx-

imated either automatically or on request of the user.
The 'upper' bound for efficient solutions could be theoretically obtained through maxi-

mizing each objective separately (or minimizing, in case of minimized objectives; in the case
of stabilized objectives, the user should know their entire attainable range, hence they should
be both maximized and minimized). Jointly, the results of such optimization form a point
that approximates from 'above' the set of efficient outcomes Q, but this point almost never
(except in degenerate cases) is in itself an attainable outcome; therefore, it is called the utopia
point iUtO.

However, this way of computing the 'upper' bound for efficient outcomes is not always
practical; many systems of DIDAS family use a different way of estimating the utopia point.
This way consists in subsequent maximizations of the achievement function s(q, Q) with suit-
ably selected reference points q. If an objective should be maximized and its maximal value
must be estimated, then the corresponding component of the reference point should be very
high, while the components of this point for all other maximized objectives should be very low
(for minimized objectives, they should be very high; stabilized objectives must be considered
as floating in this case, that is, should not enter the achievement function). If an objective
should be minimized and its minimal value must be estimated, the corresponding component
of the reference point should be very low, while other components of this point are treated as
in the previous case. If an objective should be stabilized and both its maximal and minimal
values must be estimated, then the achievement function should be maximized twice, first
time as if for a maximized objective and the second time as if for a minimized one (while
the obtained maximal and minimal values will be denoted by iFtO and irad, respectively, al-
though it is difficult to say which of them corresponds to the concept of utopia point). Thus,
the entire number of optimization runs in utopia point computations is p)) + 2(p - p))). This
is especially important in dynamic cases, see further comments. It can be shown that this
procedure gives a very good approximation of the utopia point iUtO in static cases, whereas
the precise meaning of very high reference component should be interpreted as the upper
bound for the objective minus, say, 0.1% of the distance between the lower and the upper
bound, while the meaning of very low is the lower bound plus 0.1% of the distance between
the upper and the lower bound.

During all these computations, the 'lower' bound for efficient outcomes can be also esti-
mated, just by recording the lowest efficient outcomes that occur in subsequent optimizations
for maximized objectives and the highest ones for minimized objectives (there is no need
to record them for stabilized objectives, where the entire attainable range is anyway esti-

mated). However, such a procedure results in the accurate, tight 'lower' bound for efficient
outcomes--called nadir point q^nad-only if pl' = 2; for larger numbers of maximized and
minimized objectives, this procedure can give misleading results, while an accurate compu-
tation of the nadir point becomes a very cumbersome computational task (see Isermann and
Steuer, 1987).

Therefore, some systems of DIDAS family accept user-supplied estimates of "lowern
bounds for objectives and, a t the same time, offer an option of improving the estimation
of the nadir point in such cases. This option consists in additional pll maximization runs
for achievement function s(q, Q) with reference points Q that are very low, if the objective in
question should be maximized, very high for other maximized objectives and very low for
other minimized objectives, while stabilized objectives should be considered as floating; if the
objective in question should be minimized, the corresponding reference component should be
very high, while other reference components should be treated as in the previous case. By
recording the lowest efficient outcomes that occur in subsequent optimizations for maximized
objectives (and are lower than the previous estimation of nadir component) and the highest
ones for minimized objectives (higher that the previous estimation of nadir component), a
better estimation inad of the nadir point is obtained.

For dynamic models, the number of objectives becomes formally very high which would
imply a very large number of optimization runs-(pll + 2 (p - pl')) (T + 1)-when estimating
the utopia point; however, the user is confronted anyway with p objective trajectories which
he can evaluate by 'Gestalt'. Therefore, it is important to obtain approximate bounds on
entire trajectories. This can be obtained by p)' + 2(p - pl') optimization runs organized as
in the static case, with correspondingly 'very high' and 'very low' reference or aspiration
trajectories.

Once the approximate bounds guto and inad are computed and known to the user, they
can be utilized in various ways. One way consists in computing a neutral efficient solution,
with outcomes situated approximately 'in the middle' of the efficient set. For this purpose,
the reference point q is situated at the utopia point Gut' (only for maximized or minimized
outcomes; for stabilized outcomes, the reference component Q; must be set in the middle of
their range estimated earlier) and the scaling units are determined by:

for all outcomes, including stabilized ones, while the components of the utopia and the nadir
points are interpreted respectively as the maximal and the minimal value of such an objective.
By maximizing the achievement function s(q, Q) with such data, the neutral efficient solution
is obtained and can be utilized by the user as a starting point for further interactive analysis
of efficient solutions.

Once the utopia and nadir point are estimated and, optionally, a neutral solution com-
puted and communicated to the user, he has enough information about the ranges of outcomes
in the problem to start the main interactive analysis phase.

Phaee D. Interact ive review of efficient eolutione a n d outcomee.
In this phase, the user controls-by changing reference or aspiration points-the efficient

solutions and outcomes computed for him in the system. It is assumed that the user is
interested only in efficient solutions and outcomes; if he wants to analyse outcomes that
are not efficient for the given definition of the problem, he must change this definition-for
example, by putting more objectives in the stabilized or guided category-which, however,
necessitates a repetition of phases B, C.

In the interactive analysis p'- ase, an important consideration is that the user should be
able to easily influence the selection of the efficient outcomes 4 by changing the reference
point q in the maximized achievement function s(q, Q). It can be shown (Wierzbicki, 1986)
that best suited for the purpose is the choice of scaling units determined by the difference
between the slightly displaced utopia point and the current reference point:

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are deter-
mined then:

It is assumed now that the user selects the reference components in the range
5 qi < IFt0 for maximized and stabilized outcomes or 5 qi < iyd for minimized qi

outcomes (if he does not, the system automatically projects the reference component on
these ranges). In some DIDAS systems, there is also an option of user-defined weighting
coefficients, but the automatic definition of scaling units is sufficient for influencing the se-
lection of efficient outcomes. The interpretation of the above way of setting scaling units is
that the user attaches implicitly more importance to reaching a reference component qi if
he places it close to the known utopia component; in such a case, the corresponding scaling
unit becomes smaller and the corresponding objective component is weighted stronger in the
achievement function s (q , Q). Thus, this way of scaling relative to utopia-reference digerence
is taking into account the implicit information given by the user in the relative position of the
reference point. This way of scaling, used also in (Nakayama and Sawaragi, 1983, Steuer and
Choo, 1983), is implemented only in recent versions of systems of DIDAS family, especially
in versions for nonlinear models.

When the relative scaling is applied, the user can easily obtain-by suitably moving ref-
erence points-fficient outcomes that are either situated close to the neutral solution, in the
middle of efficient outcome set go, or in some remote parts of the set g o , say, close to various
extreme solutions. Typically, several experiments of computing such efficient outcomes give
enough information for the user to select an actual decision-ither some efficient decision
suggested by the system, or even a different one, since even the best substantive model cannot
encompass all aspects of a decision situation. However, there might be some cases in which
the user would like to receive further support-either in analysing the sensitivity of a selected
efficient outcome, or in converging to some best preferred solution and outcome.

Phase E. Sensitivity analysis and convergence.
For analysing the sensitivity of an efficient solution to changes in the proportions of

outcomes, a mult idimen8ional 8can of efficient solutions is implemented in some systems of
DIDAS family. This operation consists in selecting an efficient outcome, accepting it as a base
qdad for reference points, and performing p)) additional optimization runs with the reference
points determined by:

-baa + ~ (4 ; t o - -nod e = qj qj 1) (32)

where is a coefficient determined by the user, -1 < /3 5 1; if the relative scaling is used
and the reference components determined by (32) are outside the range tjFd, tjyd, they are
projected automatically on this range. The reference components for stabilized outcomes are
not perturbed in this operation (if the user wishes to perturb them, he might include them,
say, in the maximized category). The efficient outcomes resulting from the maximization
of the achievement function s(q, q) with such perturbed reference points are typically also
perturbed mostly along their subsequent components, although other their components might
also change.

For analysing the sensitivity of an efficient solution when moving along a direction in the
outcome s p a c e a n d also as a help in converging to a most preferred solution-a directional
scan of efficient outcomes can be implemented in systems of DIDAS family. This operation
consists again in selecting an efficient outcome, accepting it as a base qdaa for reference points,
selecting another reference point q, and performing a user-specified number K of additional
optimizations with reference points determined by:

The efficient solutions q^(k) obtained through maximizing the achievement function
s(q, ~ (k)) with such reference points constitute a cut through the efficient set go when moving
approximately in the direction (- qdaa. If the user selects one of these efficient solutions,
accepts as a new qdaa and performs next directional scans along some new directions of im-
provement, he can converge eventually to his most preferred solution-see (Korhonen and
Laakso, 1986). Even if he does not wish the help in such convergence, directional scans can
give him valuable information.

Another possible way of helping in convergence to the most preferred solution is choosing
reference points as in (33) but using a harmonically decreasing sequence of coefficients (such
as llj, where j is the iteration number) instead of user-selected coefficients k l K . This
results in convergence even if the user makes stochastic errors in determining next directions
of improvement of reference points, or even if he is not sure about his preferences and learns
about them during this analysis, see (Michalevich, 1986). Such a convergence is rather slow
and, after initial experiments, has not been yet implemented in systems of DIDAS family.
Yet an other approach for selecting successive reference points which ensures convergence
and is relevant to decision maker's behaviour has been recently proposed by Bogetoft a t all.
(1988).

4 Review of various implementations of systems of DIDAS
family.

There exist a number of various implementations of systems of DIDAS family. An early, pro-
totype linear version was developed by Kalio, Lewandowski and Orchard-Hays (1980). This
version utilized professional LP package SESAME available only on the IBM-370 mainframe
computers, therefore it was not transferable. The user interface was rather poor and the
usage of the system was limited to its authors and their collaborators.

The second, also linear, version of DIDAS family systems was developed by Lewandowski
(1982). It was designed as pre- and postprocessor programs to a commercial LP package with
standard MPSX input and output. Due to such design, it was easily transferable and many
practical problems were solved using it on various computers. The main drawback of this
system was that the interface between pre- and postprocessor and a the LP solver was based

on reading and writing disk files, which was very time consuming for larger problems. An
interaction with the user was very simple but inconvenient because of long time responses of
the system transferring large amount of data.

The design goal of the next version of DIDAS was to eliminate, if possible, disk transfers
and changes of data structures inside the system. It was done by Kreglewski and Lewan-
dowski (1983) as a interactive multicriteria extension of MINOS linear programming system
(Murtagh and Saunders, 1977); the reference point concepts were implemented accessing
MINOS internal data structures. The user interface was redesigned and many new options
added. However, the portability problems arose again: MINOS is not easily transferable.

The reference point approach was explored also by many others collaborating authors.
A DIDAS/N system developed by Grauer and Kaden (1984) was the first published nonlin-
ear version of such a system. It was based on MINOS/Augmented (Murtagh and Saunders,
1980) nonlinear programming system, an extended version of linear MINOS. Unfortunately,
this solver is not robust and efficient enough for realistic nonlinear programming problems.
Moreover, the user interface in the DIDAS/N system was rather complicated, hence appli-
cations of this system were rather limited. Later, Kaden and Kreglewski (1986) developed
another version of nonlinear DIDAS system. Earlier versions of DIDAS were also adapted
for special purposes by Strubegger and Messner (Strubegger, 1985, Messner, 1985).

Lewandowski and Kreglewski (1985) developed another, general purpose nonlinear version
of DIDAS system. It was based on a solver from Modular System for Nonlinear Programming
(Kreglewski et al., 1984) and written completely in FORTRAN, hence easily transferable to
arbitrary computer. The user interface was reasonably simple, but preparation of data for
the system was not quite straightforward.

The experiences of these developments led in 1985 to two new linear versions: DIDAS-MM
and DIDAS-MZ. DIDAS-MM was a further development of the version with MINOS solver,
with extended interactive features, special editor for dynamic linear models and graphic
features. DIDAS-MZ is based on a linear programming solver from IMSL library which is
widely accessible; therefore, DIDAS-MZ is much easier transferable.

In 1986, a new generation of DIDAS family systems was initiated, designed for work
on IBM-PC-XT and compatible computers. These are: IAC-DIDAS-L1 and -L2 as well as
IAC-DIDAS-N, described in other papers of this volume.

5 Applications of systems of DIDAS family.

The first implementation (Kallio et al., 1980) of systems of DIDAS family was devoted to
the application in forecasting and planning of the development of Finish forestry and forest
industry sectors, based on a substantive model of linear dynamic type. Later, another version
of DIDAS systems was applied (Grauer et al., 1982) to planning of energy supply strategies,
which led to other applications in the analysis of future energy-economy relations in Austria
(Strubegger, 1985) and of future gas trade in Europe (Messner, 1985).

Parallely, applications to forecasting and planning agricultural production in Poland
(Makowski and Sosnowski, 1984), to regional investment allocation in Hungary (Majchrzak,
1982), to chemical industry planning (Gorecki et al., 1983) have been initiated. A special
version of linear dynamic DIDAS was adapted to flood control problems (Lewandowski et al.,
1984b). A nonlinear version of DIDAS was first applied to issues of macroeconomic planning
(Grauer and Zalai, 1982); later applications of other nonlinear versions include problems of
environmental protection of ground water quality (Kaden and Kreglewski, 1986).

Further applications of DIDAS family systems are reported in other papers in this volume.

6 References

Axelrod, R. (1985). The Evolution of Cooperation. Basic Books, New York, 1985.

Bogetoft, P., A. Hallefjord and M. Kok (1988). On the convergence of reference point
methods in multiobjective programming. European Journal of Operational Research,
Vol. 34, pp. 56-58.

Charnes and Cooper (1975). Goal programming and multiple objective optimization,
J. Oper. Res. Soc. 1, pp. 39-54, 1975.

Dreyfus, S.E. (1984). Beyond rationality. In M. Grauer, M. Thompson, A.P. Wierzbicki,
editors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Fishburn, P.C. (1964). Decision and Value Theory. Wiley, New York, 1964.

Galbraith, J.K. (1967). The New Industrial State, Houghton-Mifflin, Boston, 1967.

Glushkov, V.M. (1972). Basic principles of automation in organizational management sys-
tems (in Russian), Upravlayushcheye Sistemy i Mashiny, 1, 1972.

Gorecki, H., J. Kopytowski, T. Rys and M. Zebrowski (1983). A multiobjective procedure for
project formulation--design of a chemical installation. In M. Grauer and A.P. Wierz-
bicki, editors: Interactive Decision Analysis, Springer Verlag, Berlin, 1983.

Grauer, M. and S. Kaden (1984). A Nonlinear Dynamic Interactive Decision Analysis
and Support System (DIDASIN) Users Guide, WP-84-23, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1984.

Grauer, M., A. Lewandowski and L. Schrattenholzer (1982). Use of the reference level a p
proach for the generation of efficient energy supply strategies. WP-82-19, International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

Grauer, M., A. Lewandowski and A.P. Wierzbicki (1983). DIDAS-theory, implementa-
tion and experience. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Grauer, M. and E. Zalai (1982). A Reference Point Approach to Nonlinear Macroeconomic
Planning, WP-82-134, International Institute for Applied Systems Analysis, Laxenburg,
Austria, 1982.

Ignizio, J.P. (1978). Goal programming-a tool for multiobjective analysis. Journal for
Operational Research, 29, pp. 1109-1119, 1978.

Isermann, H. and R. E. Steuer (1987). Computational experience concerning payoff tables
and minimum criterion values over the efficient set. European Journal of Operational
Research, Vol. 33, pp. 91-97.

Kaden, S. and T. Kreglewski (1986). Decision support system MINE-problem solver for
nonlinear multi-criteria analysis. CP-865, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1986.

Kallio, M., A. Lewandowski and W. Orchard-Hays (1980). An implementation of the refer-
ence point approach for multiobjective optimization. WP-80-35, International Institute
for Applied Systems Analysis, Laxenburg, Austria, 1980.

Keeney, R.L. and H. Raiffa (1976). Decisions with Multiple Objectives: Preferences and
Value Trade-offs. Wiley, New York, 1976.

Korhonen, P. and J . Laakso (1986). Solving a generalized goal programming approaches
using a visual interactive approach. European Journal of Operational Research, 26, pp.
355-363, 1986.

Kreglewski, T. and A. Lewandowski (1983). MM-MINOS-an integrated interactive deci-
sion support system. CP-83-63, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1983.

Kreglewski, T., T. Rogowski, A. Ruszczynski, J . Szymanowski (1984). Optimization meth-
ods in FORTRAN, PWN, Warsaw, 1984 (in Polish).

Lewandowski, A. (1982). A Program Package for Linear Multiple Criteria Reference Point
Optimization-Short User Manual, WP-82-80, International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, 1982.

Lewandowski, A. and M. Grauer (1982). The reference point approach-methods of effi-
cient implementation. WP-82-26, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1982.

Lewandowski, A., S. Johnson and A.P. Wierzbicki (1986). A Selection Committee Decision
Support System: Implementation, Tutorial Example and Users Manual. International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1986; presented also at the
MCDM Conference in Kyoto, Japan, August 1986.

Lewandowski, A. and T. Kreglewski (1985). A nonlinear version of DIDAS system, Collab-
orative volume: Theory, Software and Test Examples for Decision Support Systems,
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1985.

Lewandowski, A., T. Rogowski and T. Kreglewski (1984a). A trajectory-oriented extension
of DIDAS and its applications. In M. Grauer, M. Thompson, A.P. Wierzbicki, edi-
tors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron 1984,
Springer Verlag, Berlin.

Lewandowski, A., T. Rogowski and T. Kreglewski (1984b). Application of DIDAS method-
ology to flood control problems-numerical experiments. In M. Grauer, M. Thompson,
A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Processes, Pro-
ceedings, Sopron 1984, Springer Verlag, Berlin.

Majchrzak, J . (1982). The implementation of the multicriteria reference point optimization
approach to the Hungarian regional investment allocation model, WP-81-154, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

Makowski, M. and J. Sosnowski (1984). A decision support system for planning and control-
ling agricultural production with a decentralized management structure. In M. Grauer,
M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision
Processes, Proceedings, Sopron 1984, Springer Verlag, Berlin.

Messner, S. (1985). Natural gas trade in Europe and interactive decision analysis, In G. Fan-
del, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds., Large-Scale Modelling and
Interactive Decision Analysis, Proceedings Eisenach, Springer Verlag, Berlin, 1985.

Michalevich, M.V. (1986). Stochastic approaches to interactive multicriteria optimization
problems, WP-86-10, International Institute for Applied Systems Analysis, Laxenburg,
Austria, 1986.

Murtagh, B.A. and M.A. Saunders (1977). MINOS User's Guide, Technical Report,
SOL-77-9, Systems Optimization Laboratory, Stanford University, 1977.

Murtagh, B.A. and M.A. Saunders (1980). MINOS/Augmented, Technical Report,
Sol-80-14, Systems Optimization Laboratory, Stanford University, 1980.

Naisbitt, J. (1982). Megatrends: Ten New Directions Transforming our Lives. Warner
Books, New York, 1982.

Nakayama, H. and Y. Sawaragi (1983). Satisficing trade-off method for multiobjective pro-
gramming. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision Analysis,
Springer Verlag, Berlin, 1983.

Pospelov, G.S. and V.A. Irikov (1976). Program- and Goal-Oriented Planning and Man-
agement (in Russian), Sovietskoye Radio, Moscow, 1976.

Rappoport, A. (1985). Uses of experimental games. In M. Grauer, M. Thompson and
A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Analysis, Springer
Verlag, Berlin, 1985.

Sakawa, M. (1983). Interactive fuzzy decision making for multiobjective nonlinear pro-
gramming problems. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Sawaragi, Y., H. Nakayama and T. Tanino (1985). Theory of Multiobjective Optimization,
Academic Press, New York, 1985.

Simon, H.A. (1957). Models of Man. Macmillan, New York, 1957.

Simon, H.A. (1958). Administrative Behaviour. MacMillan, New York, 1958.

Steuer, R. and E.V. Choo (1983). An interactive weighted Chebyshev procedure for multiple
objective programming. Mathematical Programming, 26, pp. 326-344, 1983.

Strubegger, M. (1985). An approach for integrated energy-economy decision analysis:
the case of Austria. In G. Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki,
eds., Large-Scale Modelling and Interactive Decision Analysis, Proceedings Eisenach,
Springer Verlag, Berlin, 1985.

Umpleby, S.A. (1983). A group process approach to organizational change. In H. Wedde,
ed., Adequate Modelling of Systems, Springer Verlag, Berlin, 1983.

Van Hee, K. (1986). Operations research and artificial intelligence approaches to decision
support systems. International Seminar: New Advances in Decision Support Systems,
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1986.

Wierzbicki, A.P. (1975). Penalty methods in solving optimization problems with vector
performance criteria. VI Congress of IFAC, Boston 1975.

Wierzbicki, A.P. (1977). Basic properties of scalarizing functionals for multiobjective opti-
mization. Mathematische Operationsforschung und Statistik, Ser. Optimization 8, Nr
1, 1977.

Wierzbicki, A.P. (1980). The use of reference objectives in multiobjective optimization. In
G. Fandel and T . Gal, eds., Multiple Criteria Decision Making, Theory and Applica-
tions, Springer Verlag, Heidelberg 1980.

Wierzbicki, A.P. (1982). A mathematical basis for satisficing decision making. Mathematical
Modelling, 3, pp. 391-405, 1982.

Wierzbicki, A.P. (1984a). Negotiation and mediation in conflicts, 11: Plural rationality
and interactive decision processes. In M. Grauer, M. Thompson, A.P. Wierzbicki,
editors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Wierzbicki, A.P. (1984b). Models and Sensitivity of Control Systems, Elsevier, Amsterdam,
1984.

Wierzbicki, A.P. (1986). On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR-Spektrum, 8, pp. 73-87, 1986.

Modern Techniques for Linear Dynamic
and Stochastic Programs

Andrzej Ruszczynski

Insti tute of Automatic Control, Warsaw University of Technology.

Abstract

We discuss methods for specializing general linear programming techniques to dynamic
and stochastic prdblems: data structures, basis management and pricing strategies. Next
we present two nonstandard techniques: regularized decomposition and feasible direction
methods.

1 Introduction

In the last three decades, the theory and computational methods of linear programming
developed into a powerful tool for analysing linear models of economic planning and control.
Modern linear programming packages (see, e.g., Marsten, 1981, Murtagh and Saunders, 1984)
are capable of solving problems with thousands of variables and constraints. Still, linear
programming as the area of research is far from being closed. On the one hand, the practice
poses new large and complex problems which result from the tendency to describe more and
more complex objects of decision making by mathematical models. On the other hand, the
trends in modern computer and information technology create a demand for user-friendly
decision support systems with an intimate interaction between the decision maker and the
computer. The computer is often just a personal computer and this implies very specific
requirements from the optimization software involved in such systems: it should be capable
of solving large models, fast, use computer resources in an economic way, and it should allow
for easy changes in the model.

A detailed discussion of all these issues goes far beyond the scope of this paper. We
shall focus our attention here on two main sources of large scale linear models arising in
decision making: dynamic structure and stochasticity. We shall discuss the ways in which
general linear programming techniques can be specialized for these models to meet some of the
computational goals pointed out above. Next, we shall present two nonstandard techniques
which appear to be particularly useful for the problems in question.

2 Dynamic structure and stochasticity as sources of large
linear models

It is well known that every linear optimization problem can be equivalently expressed in the
following form

minimize cTz

subject to

where z is the vector of activities (including slack/surplus variables), c is a vector of cost
coefficients associated with these activities, A is a technology matrix, and b is a vector of
resources or demands, which impose conditions on the admissible activities z. In real-life
large scale models, the dimension of z (the number of columns of A) and the dimension of b
(the number of rows of A) may go into thousands. On the other hand, i t is typical that each
resource or demand condition (a row of Az = b) involves only few activities and each activity
appears in only a relatively small number of conditions. As a result, the constraint matrix A
in (1) is usually sparse: most of its entries are zeros. In fact, all modern linear programming
codes make use of this feature and contain very sophisticated techniques for storing and
factorizing sparse matrices, solving equations with them, and updating the factorization
when the data change (see Forrest and Tomlin, 1972, Reid, 1982).

However, there exist important classes of problems in which sparsity alone is not the only
feature of the constraint matrix. One of these classes are linear dynamic-structured problems,
in other words-linear control problems. In the simplest formulation of such a problem the
variables (activities) are related to time stages t = 0,1,2, . . . , T. At each stage t, we deal
with two groups of variables: state variables st and control variables ut. The variables from
the neighboring periods are related through the state equation

where G and K are some matrices of appropriate dimensions and bt are some known vectors.
Let the initial state so be fixed and let the objective function be defined by

Assuming that the only additional constraints on the state and control variables are simple
lower and upper bounds

Smin maz
t 5 st 5 st , t = 1,2 ,..., T,

urnin < u t < u Y z , t = 1 , 2 ,..., T-1,
t -

we can easily write our problem in form (1) with

and

We see that the numbers of rows and columns of A increase proportionally to the number
of periods T, and even for relatively small dimensions of the activities related to a single
period the whole problem may have a remarkable size. On the other hand, the matrix (7)
is not only sparse, but has a very regular staircase structure with multiple occurrence of the
same (usually also sparse) matrices G, K and I. We have to take advantage of this if we
aim at solving dynamic problems of realistic dimensions.

Let us now pass on to the second class of problems which are of special interest for us.
Let us assume that some of the entries of the technology matrix A and the right-hand side b
in the linear model (1) are uncertain and that this uncertainty is crucial for the decision
making. One of possible modelling approaches to such a situation (see, e.g., Kall et al., 1979)
is to assume that A and b are random and may attain one of finite many realizations with
some known probabilities:

(Al, bl) with probability pl > 0,
(A2, b2) with probability p2 > 0,
. . . (8)

(AL, b ~) with probability p~ > 0,

where ziL=i pl = 1. Under these circumstances, however, it is in general no longer possible
that the decision z satisfies the constraints Alz = bl for all realizations 1 = 1,2, . . . , L.
Therefore, we have to extend our model by introducing some corrective activities yl associated
with the realizations 1 = 1,2, . . . , L, which compensate the discrepancy bl -Alz. If we describe
our capabilities of correction by a matrix W and assign to yl the cost vector q and the bounds
ymin and yma2, the correction problem will take the form

minimize qTy

subject to

Our aim is now to find such a decision z that makes the correction always possible and
minimizes the sum of the direct cost cTz and the expected future correction cost zkl plqTyl.
The whole problem can be again written as a large scale linear model:

minimize cTz + plqTyl + p2qTy2 + - . . + P L Q ~ Y L

subject to

Alz +Wlyl = bl

=min < < =ma= - -

ymin < y1 5 yma=, 1 = 1,2, . . . , L

The constraint matrix of (lo),

has the size proportional to the number L of realizations taken into account, which leads
to very large problems already for underlying deterministic models of medium size. Still,
similarly to the dynamic case, A is not only sparse but has a very regular (so-called dual
angular) structure, with multiple occurrence of the correction matrix W and some similarities
of the realizations A1, Az, . . . , AL. It is intuitively clear that we have to take advantage of
this feature in a method for solving such problems.

3 Specialized versions of the simplex method

When dealing with special classes of problems for which general efficient techniques already
exist, it is a natural direction of research to investigate the possibility of exploiting the
features of these special problems within the general approach. So, we shall discuss here
some most promising specializations of the acknowledged method of linear programming, the
primal simplez method, for the two classes in question: dynamic and stochastic problems.

In the primal simplex method the constraint matrix A in (1) is split into a square non-
singular basis matriz B and a matrix N containing all the remaining columns of A, not
included into B. This implies division of the activities z into basic variables zg and nonbasic
variables ZN. At each iteration of the method the nonbasic variables are fixed on their lower
or upper bounds, and the values of the basic variables are given by

We always choose basis matrices B so that

min
z F n < 28 < ZB ,

where z p n and zgaZ are subvectors of zmin and zmaz implied by the splitting of z into ZB

and ZN. Such an z is called a basic feasible solution, and at each iteration we try to find a
better basic feasible solution by performing the following steps.

Step 1. Find the price vector T by solving

where cg is the subvector of c associated with zg .

Step 2. Price out the nonbasic columns aj of A (i.e. columns of N) by calculating

until a column a, is found for which z, < 0 and z, = z p , or z, > 0 and z, = z y z .

Step 3. Find the direction of changes of basic variables dB by solving

~ d g = a,. (16)

Step 4. Determine from Z ~ " , Z ; ; ~ ~ , Z B and dB the basic variable zg, which first achieves
its bound when z, changes. If z, hits its opposite bound earlier, change z, and go to
Step 2.

Step 5. Replace the r-th column of B with a, and zg, by z, and calculate values of the new
basic variables from (12).

This general strategy can be deeply specialized to account for the features of problems
under consideration. These improvements can be divided into three groups:

a) representation of the problem data, i.e. the way in which the matrix A is stored and its
columns a, recovered for the purpose of Step 2;

b) techniques for solving equations (12)) (14) and (16)) which includes special methods for
factorizing the basis matrix B and updating this factorization;

c) pricing strategies, i.e. methods for selecting nonbasic columns aj at Step 2 to be priced
out for testing whether they could be included into B a t the current iteration.

Let us discuss these issues in more detail.

Problem data structures
The repeated occurrence of the matrices G, K and I in the constraint matrix (7) of

the dynamic model suggests a generalization of the concept of supersparsity employed in
large linear programming systems (Bisschop and Meeraus, 1980). It is sufficient to store the
matrices G and K as files of packed columns (G and K may be sparse themselves). Any
time a specific column aj of A is needed, we can easily calculate from its number j and from

the dimensions of activities related to a single period which column of -K or of [-;I and
on which position will appear in aj . Thus the problem data can be compressed in this case
to the size of one period and easily stored in the operating memory of the computer, even
for very large problems. In a nonstationary problem, where some of the entries of K and G
depend on t , we can still store in this way all the stationary data, and keep an additional
file of time-dependent entries. The recovery of a column of A would then be slightly more
complicated, with a correction to account for the nonstationary entries, but still relatively
easy to accomplish. Storage savings would be still significant, because we have grounds to
expect that only some entries of A change in time.

The same argument applies to the constraint matrix (11) of the stochastic problem. It
is sufficient to store the realizations Al, A2,. . . , AL and W to reconstruct columns of A, if
necessary. But we can go here a little deeper, noting that in practical problems it is unlikely
that all the entries of the technology matrix are random. If only some of them are stochastic,
many entries of Al, A2,. . . , AL will have identical values and our problem data structure will
still suffer from a considerable redundancy. Thus, we can further compress the structure, as
it was done in (Ruszczynski, 1985): we represent each A as

where A' contains as nonzeros only the deterministic entries of 4 , and A1 contains as only
nonzeros the I-th realization of the random entries. Therefore it is sufficient to store the
nonzeros of A' together with its sparsity pattern, the sparsity pattern of the random entries
(which is common for all Al), and the nonzeros of Al, 1 = 1,2, . . . , L. This structure will
only slightly exceed the storage requirements of the underlying deterministic model.

Representation of the basis inverse
It is clear that for constraint matrices of form (7) or (11) the basis matrices B inherit their

structure. Although general techniques for factorizing sparse matrices (see, e.g., Forrest and
Tomlin, 1972, Reid, 1982, Toczylowski, 1984) are in principle able to cope with such bases,
there is still room to exploit their structure within the factorization and updating algorithms.

Let us a t first discuss this matter on the simple control problem with the constraint
matrix (7). Assuming that all the state vectors s l , s2,. .., ST are basic, we obtain the following
form of the basis matrix

Bo is lower triangular and the equations involving Bo or B: can be simply solved by s u b
stitution. To solve Bod = a, we partition d into (dl, d2 , . .., dT) and a into (ao, a l , ..., a ~ - l)
according to the periods, and solve the state equations

dt+l = Gdt + a t , t = 0,1,. .. ,T-1 (18)

with do = 0. Noting that in (15) we have at = 0 for t < 7 we can start simulation in (18)
from 7 . To solve K ~ B ~ = c we need only to back-substitute in the adjoint equations

with AT+^ = 0. Again, noting that c~ in (14) changes only on one position from iteration to
iteration, we can start the simulation in (19) from the position at which the change occurred.

In general, the basis matrix is not so simple as (17) and some controls are basic, while
some state variables are nonbasic. The basis matrix is still staircase, but the blocks on the
diagonal (which in (17) are all I) are not necessarily square and invertible:

where J1, J 2 , . .., JT are some submatrices of I ; K1, K2, . . . , K T are submatrices of K and
GI , G2, . .., GT-i are submatrices of G. A factorization of B is necessary to represent it in a
form suitable for solving equations with B and B~ and for corrections when a column of B
is exchanged.

We can of course specialize the elimination procedures of (Forrest and Tornlin, 1972) or
(Reid, 1982), because we exactly know where to look for nonzeros in particular rows and
columns of B. This idea of blockwise elimination has been analysed in (Kallio and Porteus,
1977, Propoi and Krivonozhko, 1978, Wets, 1986). There is, however, a more promising global
approach which aims at exploiting features similar to those that led from (17) to equations
(18) and (19). Namely, we would like to transform somehow B to a staircase matrix

having the diagonal blocks itt square and nonsingular. Solving equations with 5 would be -
almost as simple as with Bo and would require only inversion of Btt, t = 1,2, . . . , T.

In (Perold and Dantzig, 1979) the pass from B to 5 is achieved by representing

with F chosen in such a way that i inherits as many columns of B as possible. In particular,
all the state columns of B will appear in i, so that the diagonal blocks i t t will have large
parts common with the identity and will be easy to invert. Moreover, F has also a very
special structure

with D square, invertible, and of relatively low size. Solving the equations with B or
resolves now itself to the factorization of itt (which is easy) and factorization of D (see Perold
and Dantzig, 1979). Updating the factors is rather involved, unfortunately.

Another approach has been suggested in (Bisschop and Meeraus, 1980). Since Bo is
particularly easy to invert, we aim at using Bo as i. We do not construct factors as in (22)
but rather add new rows and columns to Bo and work with a larger matrix

Here U contains columns which are in B but not in Bo, and V contains units in columns
which are in Bo but not in B, to explicitly nullify the variables corresponding to these
columns. The solution to

B [:I = a (25)

can be now computed by
uB = (v B { ~ u) - ~ v B { ~ ~ ,

s = ~ { ' (a - UuB).

Thus we need only to solve equations with Bo, which is particularly simple, and to factorize
the matrix v B ~ ' U , which is of much smaller size than B. Similar formulae can be derived for
the backward transformation (14). Application of this approach to dynamic and stochastic
programs is discussed in detail in (Gondzio and Ruszczynski, 1988).

Let us now pass to the stochastic problem (10). Supposing that the basis contains only
the correction activities, its form is particularly simple

where Wl, 1 = 1,2, . . . , L are square nonsingular submatrices of W. The inversion of Bo
resolves now itself to the inversion of Wl, W2,. . . , Wl, which can be done independently. We
can also exploit here some similarities between the W's (common columns) to further simplify
their inversion (see the bunching procedure discussed for other purposes in Wets, 1986).

In general, however, the basis matrix will be of the form

with the blocks P1, 1 = 1,2, . . . , L, not necessarily square and nonsingular. Again, we would
like to transform B into a form more suitable for inversion. At the first sight, since B is
lower block triangular, both approaches discussed for the dynamic problem are applicable
here. We can aim a t obtaining factors as in (22) with a w of dual angular structure having
invertible diagonal blocks. We can also apply a method based on the formulae (26)-(27) and
work with a matrix of form (24).

The relation with the dynamic model, however, follows from rather superficial algebraic
similarity of the problem matrices (lower block triangular structure). In fact, in the dynamic
model we deal with a phenomenon that evolves in time, whereas the stochastic model de-
scribes a phenomenon spread in space. Thus, while we had grounds to assume that many
state variables will be basic in the dynamic model (which implied the choice of Bo), we cannot
claim the same with respect to the correction activities in the stochastic model and specify
in advance some of them to be included into W. Therefore, the approach of (Bisschop and
Meeraus, 1980) must be slightly modified here. Instead of working with B, we would prefer
to operate on a larger matrix

in which some of the rows of the matrix V, which are used to nullify the nonbasic correction
activities, are added to W to make the diagonal blocks [:] square and invertible. Under

these circumstances, however, the block diagonal part of B is no longer constant, contrary
to the matrix Bo in the form (24) for dynamic problems. The representation (30) and the
resulting updating schemes were analysed in the dual (transposed) form in (Kall, 1979), and
(Strazicky, 1980). The resulting formulae, however, are so involved and far from the essence
of the underlying problem, that it is not clear whether this particular direction can bring a
significant progress.

The approach (22) might be more prospective here, but we should be aware of the fact
that it is natural to expect that many first stage activities z will be basic, because corrections
are usually more expensive. Hence, the blocks 61 in (29) will be far from square and adding
to them columns to achieve the block diagonal B will inevitably increase D in (23).

Summing up this part of our discussion, we can conclude that implementations of the
simplex method for large dynamic and stochastic problems lead to very detailed linear al-
gebraic techniques that try to exploit the structure of basis matrices to develop improved

inversion methods. Although there is still a lot to be done in this direction, one can hardly
expect a qualitative progress here.

Pricing strategies
Let us now pass to the problem of selecting nonbasic columns to be priced out a t a given

iteration for testing whether they could be brought into the basis. Since the selection of a
variable to enter the basis largely determines the variable to leave, pricing strategies have
a considerable influence on iteration paths of the simplex method and this influence grows
with the size of the problem. There are two acknowledged techniques for general large scale
linear programs (cf., e.g., Murtagh, 1981):

a) partial pricing, where at each iteration a certain subset of nonbasic columns are priced
out to select the one to enter;

b) multiple pricing, where a list of prospective candidates is stored, and they are priced
out again at the next iteration.

These general ideas can be further specialized for the two classes of problems in question.
The lower block triangular structure of A in (7) and (11) suggests a natural division of the
set of columns into subsets treated together by partial pricing strategies. These subsets
correspond to periods in (7) and to the first stage decision z and the realizations in (11).
This idea was thoroughly investigated experimentally in (Fourer, 1983) and the conclusions
can be summarized as follows:

- rank the blocks (periods, realizations) equally and use them in a cyclic fashion;

- within each block (if it is still large enough) rank the columns equally and also use them
in a cyclic fashion.

Again, pure linear algebraic concepts seem to be insufficient to fully specialize the pricing
strategies. We should somehow exploit our knowledge of the essence of the underlying model
to gain further improvements.

Noting that the dynamic model describes a phenomenon that evolves in time, we have
grounds to expect that similar sets of activities will appear in the basis in the neighboring
periods. This suggests a simple modification of the partial pricing strategy described above:
if a prospective column has been found in period k, price out the corresponding columns from
the next periods and bring them to the basis, as long as possible. The initial experiments
reported in (Gondzio and Ruszczynski, 1986) indicate that this simple modification may
improve the performance significantly (by 20-30% on problems of size 1000 by 2000 on IBM
PC/XT).

In the stochastic case the situation is only slightly more complicated. If a correction
variable is basic for the realization (Al, bl), we have grounds to expect that the corresponding
variables will be basic for some neighboring realizations (A,, b,). However, contrary to the
dynamic model, the notion of 'neighboring realizations' is not so clear and is difficult to
implement. Nevertheless, this possibility should at least be investigated experimentally.

4 Feasible direction methods

The main disadvantage of the simplex method when applied to dynamic or stochastic models
is that it changes only one nonbasic activity a t a time. We have already observed that periods

in the dynamic model and realizations in the stochastic model exhibit close similaritie.;.
This results in very long iteration paths of the simplex method with some subsequences of
iterations used to realize similar changes for many periods or realizations. It would be much
more convenient to perform these changes simultaneously.

The feasible direction methods (see Gabasov and Kirillova, 1977, Murty and Fathi, 1984)
may help us to implement this idea (the simplex method is a feasible direction method, too,
but with particularly simple directions). The main difference between these methods and the
simplex method is that we change many nonbasic variables a t a time and allow z~ to have
values between their bounds at intermediate steps. We still preserve the division of z into z~
and z~ and still keep the conditions (12) and (13). However, steps 2, 3 and 4 of the simplex
method are modified as follows.

Step !?a. Price out nonbasic columns a, of A by calculating

and select a subset S of columns a, such that y < 0 for z, = z y n , zj > 0 for
z j = zjmaz, z, # 0 for z Y n < z, < zjmaz, (a subset of prospective candidates).

Step 3a. Determine a direction dN of change of the nonbasic variables z~ such that

d,z, < o for j E S, (32)

d, = 0 for j $! S,

(in the simplex method dN has only one nonzero component). Determine the direction
of change of the basic variables by solving

where A, is a submatrix of N formed from the columns selected in Step 2a, and d, is
the nonzero subvector of dN.

Step 4a . Determine from z F n , zZfOZ, zg , dB and z v n , zFaz, z, and d, the variable which
as first achieves its bound, when z, moves in the direction d,.

At first we note that when one of the variables which change their values (a basic from z~
or a nonbasic from 2,) will hit its bound, some nonbasic variables will be out of their bounds.
So, we should either accept the fact that nonbasics can have arbitrary values in the course
of calculation, or construct a basic solution from the current one without increasing the
objective value. The second idea has been analysed in (Murty and Fathi, 1984), where
a detailed auxiliary algorithm has been described to pass to such a basic solution. This,
however, involves many additional steps which may considerably diminish the advantages of
changing many nonbasics in a major step. The radical solution of (Gabasov and Kirillova,
1977) seems to be more promising: we allow nonbasics to have values between their bounds.
Under this assumption the division of z into basics and nonbasics is no longer determined
uniquely by the algorithm. If the previous basics are still between their bounds, we can
maintain the division to save on updating. When one of the basics hits its bound we can
choose among z, the variable to replace it. In general, as discussed in (Gabasov and Kirillova,
1977), we should aim a t constructing such a basis that allows for an efficient next iteration.
This may e.g. be accomplished by selecting a nonbasic which is possibly far away from its

bounds. However, there is a need for a more theoretically grounded approach, which could
perhaps be based on the analysis of the dual problem.

Since the algebra of the feasible direction method is close to that of the simplex method,
we can of course use here all the tricks developed for compact inversion of basis matrices
discussed in the previous section.

Leaving aside these technical points, let us now focus our attention on the specialization of
the strategy of the feasible direction method to problems having dynamic or stochastic struc-
ture. The crucial question here is the choice of the direction of change of nonbasic variables.
Although in theory the only limitations are the conditions (32), (33), in practice we have to
use more restrictive conditions to limit the number of columns of N to be priced out. Again,
as it was in the case of the primal simplex method, we can take advantage of the structure of
the constraint matrix and of the similarities of the blocks. Thus, we can try to select to z,
at a given iteration similar activities from different periods/realizations and then make one
major step of the method. The only difference is that previously we performed sequences of
similar steps bringing to the basis corresponding activities from different blocks, while here
we a t first select a group of related candidates and then change them simultaneously.

An important feature of the feasible direction approach is the freedom for specifying the
starting point. Indeed, once we abandoned the requirement that all nonbasic variables are
on their bounds, we are free to start the calculation from a solution which need not be
basic. This may help solving practical problems, where reasonable nonbasic solutions can be
specified by the user.

Summing up, the feasible direction approach appears to be a promising idea for large
scale problems having a dynamic or stochastic structure. It retains the algebraic advantages
of the simplex method and provides more freedom for exploiting the structure to shorten
iteration paths. The potential of this approach is far from being exploited.

5 The regularized decomposition method

The idea of applying decomposition methods to linear programs of dynamic or stochastic
structure has been known since 25 years (Dantzig, 1963), but it is still attractive and provides
a framework for new ideas. We shall focus our attention here on the stochastic problem (lo),
whose structure directly suggests the application of decomposition, and we shall discuss the
application of the new regularized decomposition method suggested in (Ruszczynski, 1986). As
for dynamic problems, the approaches suggested in the literature so far are entirely different
and still of rather theoretical importance (see, e.g., Forrest and Tomlin, 1972, Fourer, 1982,
Ho and Loute, 1981, Ho and Manne, 1974).

By formulating the dual to (10) we obtain a problem of primal angular structure, to
which the Dantzig-Wolfe decomposition method can be applied (Dantzig and Madansky,
1961). Since applying the Dantzig-Wolfe method to the dual is equivalent to applying the
Benders decomposition to the primal (Lasdon, 1970), we shall discuss our basic ideas in primal
terms. See (Ruszczynski, 1988) for the analysis of the regularized decomposition method in
dual form.

It can be readily seen that if z is fixed in (10) the minimization with respect to
y1, y2,. . . , y~ can be carried out separately by solving for 1 = 1,2,. . . , L the second-stage
subproblems

m i n i m i z e qTy

subject to

Wy = bl - Alz, ymin 5 y 5 ymaz

Let us denote the optimal value of (35) by fl (z), and take the convention that fl(z) = +m,
if (35) is unsolvable. Then our problem (10) can be equivalently formulated as follows:

minimize F (z) = cTz + zLI pl fl (z)

subject to

where
X 1 = { z : fl(2) < +m).

We introduce condition (38) to the problem formulation, because we are going to use
separate approximations for fl and for their domains Xi.

Much is known about the functions fl and the sets XI (see, e.g., Wets, 1983). In particular,
each Xl is a convex closed polyhedron and each fl is convex and piecewise linear on XI.
Although the pieces of fl and the facets of fl are not given explicitly, for each z we can
determine a piece of fl active a t 5, or a linear constraint defining Xl, which is violated at 5.

Indeed, let (35) be solvable a t z = 5 and let x denote the vector of simplex multipliers
associated with the solution. Then it follows from the duality relations in linear programming
that for every z

fl(2) L zT(b1 - AlZ), (40)

and the equality holds for z = 5. If (35) is not solvable for z = 5, then phase I of the
simplex method or the dual simplex method will stop at a certain iteration, a t which it will
not be possible to move a basic variable y ~ , towards its feasibility interval yE:z]. If x
is the r-th row of the basis inverse (if the dual method is used and y ~ , > then

Similar formulae hold for the case of y ~ , < y E n and for the phase I of the primal simplex
method.

We shall call the linear inequalities following from (40) objective cuts, and the inequalities
following from (41) feasibility cuts. Each objective cut can be written as

with gl = -ATx, a1 = xTbl. Each feasibility cut can be expressed in a similar fashion:

with gi = -AT% and an appropriately defined 61. Functions fi and sets Xl are polyhedral
and there can be only finite many (although usually quite a few) such cuts.

Next, if we have objective cuts (42) for all 1 = 1,2,. . . , L we can construct an aggregate cut

where (a, g) is computed from (a l , gl) by means of averaging

We can now describe the version of the Benders decomposition method for stochastic
programs, known as L-shaped algorithm (Van Slyke and Wets, 1969).

Let (a j , gj) , j E J , be the set of aggregate cuts (43) known so far, and let (&J , g ~) , j E 1,
be the set of feasibility cuts generated previously. At each iteration of the method we perform
the following operations.

Step 1. Solve the master problem:

minimize j (z) cTz + v

subject to

a' + (gi)Tz 5 v, j E J ,

&' + (gj)Tz 5 0, j E J ,
zmin - < z 5 zmaz.

Let 3 be the solution to (47)-(50).

Step 2. Solve for 1 = 1,2, . . . , L the subproblems (35) a t z = 3. If any of them is infeasible,
generate the corresponding feasibility cut (43), append it to (49) and go to Step 1. If all
subproblems are feasible, check whether ~ i ~ = ~ pl fl (5) = v. If this condition is satisfied,
then stop; otherwise generate objective cuts (42), the aggregate cut (43), append it
to (48) and go to Step 1.

It is not difficult to observe that this method exactly corresponds t o the Dantzig-Wolfe
method applied to the dual of (10): the cuts passed to the master (47)-(49) are the proposals
passed to the master in the Dantzig-Wolfe method.

The attractiveness of this approach follows from the fact that the solution procedure
closely reflects the structure of the original problem. It also allows for some parallelism
in subproblem solution. It has, however, inherent drawbacks common for all purely linear
cutting plane methods (cf., e.g., Topkis, 1982), and for the Dantzig-Wolfe method (which is
in fact their dual counterpart):

- the number of cuts (48), (49) increases in the course of calculation;

- the master problem is unstable: new cuts may imply rapid changes of 3;

- convergence is slow.

These drawbacks led to the idea of the regularized decomposition method (Ruszczynski,
1986), which combines the Benders decomposition with modern stable techniques of nons-
mooth optimization (Kiwiel, 1985). The main idea of the method is to change the master
program, which generates successive points zk a t which the subproblems are solved. We aim

at constructing such a master which would be able to use the information gained in the past
not only in the form of cuts, but also in the form of the best point z found so far.

The method uses objective and feasibility cuts (42) and (43) as before. It does not,
however, average them to form aggregate cuts (43), but rather maintains separate sets of
cuts for each component jl:

a { + (g) T z (z) j € J1, 1 = l , 2 ,..., L.

Next, the master problem, although quite similar to (47)-(SO), is augmented with a
quadratic penalty term for the distance of I to the best point zk found so far:

minimize Fk(z) = 411z -zk l l+~Tz+~IL , Ip lv l (51)

subject to

The existence of this quadratic term stabilizes the master problem, i.e. makes it less
sensitive to the changes in the set of cuts (52)-(53). It also allows for skipping outdated cuts
and keeping the total size of the master limited.

The logic of the regularized decomposition method can be summarized as follows.

Step 1 . Solve the regularized master (51)-(54), getting a trial point I and objective estimates
Vl, 1 = 1,2 ,...) L.

S t e p 2. Solve for 1 = 1,2 , . . . , L the subproblems (35) a t z = I .

a) If (35) is infeasible, then append the feasibility cut (43) t o (53).

b) If (35) is feasible, but jl(z) > vl, then append the objective cut (42) to the set of
cuts J1 in (52).

Step 3. Change the regularizing point zk according to the following rules.

a) If there were infeasible subproblems (35), set zk+' = zk .

b) If F (I) = cTI + xLl plvl, then set zk+' = I.

C) If F (I) 5 7 ~ (z k) + (1 - 7) (cTI + ~ f = ~ plvl) and exactly n + L constraints were
active in (51)-(54), then also set zk+l = I; otherwise set zk+' = zk .

Step 4. Delete from the cuts (52)-(53) some of those which were not active a t the last solu-
tion I to the master, and go to Step 1.

It is easy to observe that the number of active cuts (i.e. linearly independent constraints
with positive Lagrange multipliers) never exceeds n + L, where n is the dimension of z and L
is the number of blocks (realizations). Since at Step 2 at most L new cuts may enter (either
a feasibility cut or an objective cut for each I) , the total number of cuts need not exceed
n + 2L. In fact, i t is usually much smaller, if many bounds (54) are active.

It has been proved in (Ruszczynski, 1986) (for the general case of minimization of a sum of
polyhedral functions) that the rules for changing the regularizing point zk a t Step 3 guarantee

that the sequence zk is convergent in finite many iterations to the solution of our problem.
This result obviously applies also to the particular problem we are interested in.

It is easy to observe that the use of the quadratic term in (51) implies that the regularizing
point zk has a great influence on the solution of the master problem. In particular, the starting
point zO influences considerably the whole iteration path, which is obviously not true for the
linear decomposition method. This may significantly reduce the effort required for solving
practical problems, where a good starting point is available.

These important theoretical features have been obtained a t the expense of replacing a
purely linear master problem (47)-(50) by the quadratic problem (51)-(54). To make the
regularized decomposition method really competitive, we need an efficient computational
technique for solving the regularized master.

Such a technique can be based on the act ive set strategy. It consists in selecting a subset
of the constraints (52)-(54) to be satisfied as equalities, solving the resulting equality con-
strained subproblem, changing the active set, solving the new subproblem, etc. The active
set is increased, when a cut not included in it is violated, and it is decreased, when a cut in
the active set has a negative Lagrange multiplier in the subproblem.

The equality constraints defined by an active set can be compactly written in the form

where a is composed of the constant terms a j , & j corresponding to the active cuts, G has
columns gj,gj, and E is a zero-one matrix whose j-th column is the unit vector el if the j-th
cut is an objective cut for f i , and is a zero column otherwise. Active bounds (54) can also
be put into (55) with particularly simple columns of G (unit vectors). Thus each equality
constrained subproblem has the form: minimize (51) subject to (55). Denoting by X the
vector of Lagrange multipliers corresponding to the active cuts (55), we can formulate the
following necessary and sufficient conditions of optimality:

where p = (pl,pz,. . . ,pL) is the vector of probabilities. The primal solution is defined by

The number of active cuts does not exceed n + L and so does the size of the system
(56)-(57). However, the specific structure of E (unit or zero columns and full row rank)
makes it possible to further reduce the dimension by representing

E = (I , N),

a = (a ~ , a ~) ,

= (XB, AN).

After eliminating analytically u and XB from (56)-(57) we obtain the equivalent system

where

The system (59) has dimension not exceeding the dimension of z, independently of the
number of blocks L, and can be solved by stable numerical techniques for least-squares
problems (see Daniel et al., 1976, Ruszczynski, 1986). In the implementation (Ruszczynski,
1985) additional advantages have been drawn from the activity of simple bounds, which
further reduces the dimension of (59).

Summing up, not only the regularized master (51)-(54) has a smaller number of cuts than
(47)-(50), but the effort for solving it is comparable with the effort for solving linear problems
of the same size. These observations have been confirmed by the initial experiments with the
regularized decomposition method for large scale stochastic programs, which we report in an
extended form elsewhere (Ruszczynski, 1987). They indicate that the method solves medium-
size problems (200 by 500) much faster than purely linear techniques, is capable of solving
very large problems and the growth of costs is sublinear when the number of realizations L
increases.

Conclusions

We discussed some modern computational approaches to large scale linear programs arising
from dynamic and stochastic models. In our opinion, two directions deserve more attention
as promising tools for decision support systems:

- feasible direction methods with special compact inverse techniques borrowed from im-
plementations of the simplex method and with specialized direction-finding procedures;

- the regularized decomposition method with decentralized or parallel subproblem solu-
tion.

The common feature of these methods is the freedom in specifying the starting point and
its strong influence on the cost of calculations, which is crucial for decision support systems,
where we usually solve repeatedly similar models. The methods are also more flexible than
simplex-based approaches and provide a potential for an interactive control of calculations
and for some parallelism. On the other hand, they both can use computer resources a t least
so economically as the simplex methods and are capable of solving large models.

References

Bisschop, J. and A. Meeraus (1980). Matrix augmentation and structure preservation in
linearly constrained control problems. Mathematical Programming, 18(1980), pp. 7-15.

Daniel, J.W. et al. (1976). Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization. Mathematics of Computation, 30(1976), pp. 772-795.

Dantzig, G. (1963). Linear Programming and Extensions, Princeton.

Dantzig, G. and A. Madansky (1961). On the solution of two-stage linear programs under
uncertainty. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics
and Probability, Vol. 1, University of California Press, Berkeley 1961, pp. 165-176.

Forrest, J.J.H. and J.A. Tomlin (1972). Updated triangular factors of the basis to maintain
sparsity in the product form simplex method. Mathematical Programming, 2(1972),
pp. 263-278.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: inversion.
Mathematical Programming, 23(1982), pp. 274-313.

Fourer, R. (1983). Solving staircase linear programs by the simplex method, 2: pricing.
Mathematical Programming, 25(1983), pp. 251-292.

Gabasov, R. and F.M. Kirillova (1977). Linear Programming Methods, Isdatelstvo BGU,
Minsk. (in Russian)

Gondzio, J. and A. Ruszczynski (1986). A package for solving dynamic linear programs,
Institute of Automatic Control, Warsaw University of Technology.

Gondzio, J . and A. Ruszczynski (1988). A sensitivity method for solving linear stochastic
control problems, this volume.

Ho, J . and E. Loute (1981). A set of staircase linear programming test problems. Mathe-
matical Programming, 20(1981), pp. 245-250.

Ho, J . and A. Manne (1974). Nested decomposition for dynamic models. Mathematical
Programming, 6(1974), pp. 121-140.

Kall, P. (1979). Computational methods for solving two-stage stochastic linear programming
problems. ZAMT, 30(1979), pp. 261-271.

Kall, P., K. F'rauendorfer and A. Ruszczynski (1986). Approximation techniques in stochas-
tic programming. In Y. Ermoliev and R. Wets (eds): Numerical Methods in Stochastic
Programming, Springer Verlag, Berlin (to appear).

Kallio, M. and E. Porteus (1977). Triangular factorization and generalized upper bounding
techniques. Operations Research, 25(1977), pp. 89-99.

Kiwiel, K.C. (1985). Methods of Descent for Nondifferentiable Optimization, Springer Ver-
lag.

Lasdon, L.S. (1970). Optimization Theory for Large Systems, Macmillan, New York.

Marsten, R. (1981). The design of the XMP linear programming library. ACM Transactions
of Mathematical Software, 7(1981), pp. 481-497.

Murtagh, B. (1981). Advanced Linear Programming, McGraw-Hill.

Murtagh, B. and M. Saunders (1984). MINOS 5.0. User's guide. System Optimization
Laboratory, Stanford University.

Murty, K.G. and Y. Fathi (1984). A feasible direction method for linear programming.
Operations Research Letters, 3(1984), pp. 121-127.

Perold, A. and G. Dantzig (1979). A basis factorization method for block triangular lin-
ear programs. In I. Duff and G. Stewart (eds): Sparse Matrix Proceedings, SIAM,
Philadelphia, pp. 283-313.

Propoi, A. and V. Krivonozhko (1978). The simplex method for dynamic linear programs,
RR-78-14, IIASA.

Reid, J . (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases. Mathematical Programming, 24(1982), pp. 55-69.

Ruszczynski, A. (1985). QDECOM: The regularized decomposition method. User's manual.
Institute of Operations Research, University Zurich.

Ruszczynski, A. (1986). A regularized decomposition method for minimizing a sum of
polyhedral functions. Mathematical Programming, 35(1986), pp. 309-333.

Ruszczynski, A. (1987). Regularized decomposition of stochastic programs: algorithmic
techniques and numerical results, technical report, Institute of Automatic Control,
Warsaw University of Technology.

Ruszczynski, A. (1988). Regularized decomposition and augmented Lagrangian decomposi-
tion for angular linear programming problems, this volume.

Strazicky, B. (1980). Some results concerning an algorithm for the discrete recourse problem.
In M. Dempster (ed.): Stochastic Programming, Academic Press, London, pp. 263-274.

Toczylowski, E. (1984). A hierarchical representation of the inverse of sparse matrices.
SIAM J. Alg. Disc. Math. 5(1984), pp. 43-56.

Topkis, J.M. (1982). A cutting plane algorithm with linear and geometric rates of conver-
gence. JOTA, 36(1982), pp. 1-22.

Van Slyke, R. and R.J.-B. Wets (1969). Gshaped linear programs with applications t o opti-
mal control and stochastic programming. SIAM J. on Applied Mathematics, 17(1969),
pp. 638463.

Wets, R.J.-B. (1983). Stochastic programming: solution techniques and approximation
schemes. In A. Bachem et al. (eds): Mathematical Programming: The State of the
Art, Springer Verlag, Berlin, pp. 507-603.

Wets, R.J.-B. (1986). Large scale linear programming techniques in stochastic programming.
In Y. Ermoliev and R. Wets (eds): Numerical Methods in Stochastic Programming,
Springer Verlag, Berlin, (to appear).

A Sensitivity Method for Solving Multistage
Stochastic Linear Programming Problems

Jacek Gondzio

Systems Research Institute, Polish Academy of Sciences,

Andrzej Ruszczynski

Insti tute of Automatic Control, Warsaw University of Technology.

Abstract

A version of the simplex method for solving stochastic linear control problems is
presented. The method takes advantage of the structure of the problem to achieve utmost
memory economy in both data representation and basis inverse management.

1 Introduction

The main purpose of this paper is to present a highly specialized version of the simplex
method for solving linear stochastic control problems defined as follows.

Let R be a finite probability space, and let

be the state equation describing the evolution of a linear dynamic system with state variables
z,(t), control variables u, (t) and disturbances z, (t). The problem is to find such a policy
u,(t) , t = 1,2, . . . , T, w E R, that the following conditions are satisfied:

a) for each t the random variable u(t) is measurable with respect to { z(1) , z(2) , . . . , z(t))
(nonanticipati~it~),

d) the linear functional
,"

is minimized.

Although in principle (1)-(4) is a linear programming problem, its size may be too large for
standard LP approaches (see, e.g., Murtagh, 1981; Murtagh and Saunders, 1984; Reid, 1982).
For this reason a variety of specialized methods have been suggested for some important

special cases of (1)-(4) (cf. Fourer, 1982; Fourer, 1983; Perold and Dantzig, 1979; Wets, 1986
and the references therein).

Our aim is to go a step further in this direction to exploit all special features of (1)-(4)
within the classical simplex method to achieve utmost memory economy allowing for solution
of very large problems on microcomputers.

When considering the simplex method for (1)-(4) three groups of problems arise:

a) representation of the problem constraint matrix;

b) representation of the inverse of the basis matrix and its updating;

c) pricing strategies.

Clearly, crucial for the memory requirements are issues a) and b), so we shall focus on
them our attention. We can mention here that pricing strategies were discussed in detail in
Fourer (1983), Gondzio and Ruszczynski (1986), Gondzio (1988b) and in the previous paper.

2 The tree formulation

It is convenient to reformulate multistage stochastic programs in a tree-like form (Rockafellar
and Wets, 1987). With the set of disturbance realizations (scenarios) z,(t) , t = 1,2, . . . , T
we can associate a tree 7 with node set J defined as follows. There is one root node io at
level 0. At level 1 there are as many nodes i E J1 , as many different realizations of z,(l)
may occur. They all have io as their father (predecessor). Generally, each node i E Jt a t
level t corresponds to a different realization of { z(1) , 4 2) , . . . , z(t)). Nodes j E Jt+1 are
joined with i E Jt if the realization corresponding to j is a continuation of the realization
associated with i.

Each node at level t corresponds to the information available a t time t. The requirement
of nonanticipativity of controls (which implies nonanticipativity of state trajectories) makes
it possible to associate decisions with nodes and reformulate our problem as follows:

f ind u(i) and z(i) , i E J , so as to minimize

subject to the constraints

Here f (i) denotes the father of node i, z(io) = 0, and ~ (i) , ~ (i) , !(i) , ~ (i) , q,(i) , qu(i)
follow directly from (2)-(4).

Thus the problem is fully defined by the structure of 7, vectors z(i), ~ (i) , ~ (i) , !(i),
ii(i), q,(i), qu(i) associated with nodes of 7, and two matrices: G and K. The storage
requirements necessary to represent the problem in this form are very modest.

Fkom the theoretical point of view, we can consider (5)-(8) as a linear programming
problem in standard form

minimize czz + cuu , (9)

subject to Boz+ Nou = b , (10)

where z = z (J) , u = u(J) , Boz = z (J) - Gz(f (J)) , Nou = Ku(J) , b = z(J) , !! = x(J) ,
z = z (J) , ! = !(J), c = ii(J).

The constraint matrix of (lo),

A = [B o N o]

may be of enormous size, but has a very special structure, with multiple occurrence of matrices
G, K and I. It is clear that any column of A can be easily reconstructed from (5)-(8) and
a very efficient technique of double addressing to columns of G and K can be used to avoid
excessive storage requirements.

3 The fundamental basis

Inverting the basis matrix is the crucial computational problem in any implementation of
the simplex method. The matrix (13) is very sparse, so each basis is very sparse, too, and a
good factorization technique (cf., e.g., Murtagh and Saunders, 1984; Reid, 1982) can handle
stochastic dynamic problems of remarkable size. However, there is one important feature
which is not used by general basis management packages: the block tree structure and the
multiple occurrence of columns of G, K and I in the basis. We have to take advantage of
that if we want to go beyond the size admitted by standard factorization methods.

There exists a special basis in (9)-(12) for which inversion is trivial: the matrix Bo .
Indeed, suppose that all state variables z(i), i E J , are basic variables and the controls u(i),
i E J are nonbasic variables. Then it is trivial to observe that the equation

can be solved by direct simulation of the state equations (6) starting at the root and ending
at leaves:

d(i) = Gd(f (i)) + a(i) , i E J , (15)

where d(io) = 0.
Similarly, the transpose system

7rB0=cz ,

can be solved by simulating in the opposite direction (from the leaves to the root) the adjoint
equations

~ (i) = ~ (j) G + cz(i) , ~ E J ,
j E N (i)

where N(i) is the set of sons of node i ,

To see the latter formula, let us consider the scalar product n B o d for any d. Setting a = Bo d ,
from (15) and (17) we get

= 1 n(i) [d (i) - G d (f (i))] =
i€ J

= 1 x (i) d (i) - 1 n (i) G d (f (i)) =

Since d was arbitrary one must have n B o = c, , which proves (17) .

4 Modified bases

In the previous section we saw that for a basis Bo containing only state variables, equations
with Bo and B: can be solved by substitution. In general, however, we shall have to deal
with bases having columns corresponding to both types of variables, states and controls.
Each such basis matrix can be expressed in the form

where Bol is a certain submatrix of Bo, and U is a submatrix of No. The equation

can be rewritten as

Bo1 dZ1+ UdUB = a ,
with d = (dZl , duB). Setting d, = (dZl , dZ2) we can reformulate (21) as follows:

f i nd duB such tha t the solution d , t o

has dZ2 = 0 .

Defining a 0-1 matrix V such that dZ2 = Vd, , we see that

with
S = V B ~ ' U .

This gives us the following sequence of equations producing the solution to (21):

Thus, we have to solve two equations with Bo , which can be carried out by simulation,
and one equation with the sensitivity matriz S, whose dimension is equal to the number of
new columns in B .

Let us now pass on to the dual equation

Let c = (czl , C,B). Then
~ B 0 l = C z l ,

Define

Then the system (28)-(29) can be reformulated as follows:

find v such that the solution a to

sa t i s f ies (29) .

Simple calculations lead to the following sequence of equations producing the solution to
(21):

jTBO = cz , (31)

Consequently, (27) has been replaced by two equations with B: and an equation with
the sensitivity matrix (23). In fact (31.) does not depend on B at all and need be solved only
once.

Summing up, equations with modified bases and their transposes can be solved by solving
equations with the fundamental basis and with the sensitivity matrix S. Equations with the
fundamental basis resolve themselves to simple substitution, so the main difficulty constitute
the equations (25) and (32).

Redefinition of the fundamental basis is needed to preserve S from growing to a large
dimension. Problem's structure implies that every basis can be transformed by row and
column permutations to a nearly triangular form with a small number of spikes (see: Gondzio,
1988a for more detail). After replacing the spikes by the appropriate unit columns we obtain
new fundamental basis.

5 The sensitivity matrix

Let us look closer a t the matrix S defined by (23) and used in (25) and (32). It's elements
are of form

s.. = vi B-lU
'3 0 1 , (34)

where vi = (0 , . . . $ 0 , 1 , 0 , . . . 0) is the i-th row of the matrix V and u j is the j-th column
of U, i.e. a certain column of No appearing in the basis. The vector vi has a one a t the p t h
position if the p t h column of Bo does not appear in B. Consequently, s i k is the sensitivity of
the state variable corresponding to the p t h column of Bo with respect to the control variable
corresponding to the j-th column of U. Thus, S is a square nonsingular submatrix of the
full sensitivity matrix

Q = B ~ I N ~ , (35)

but we assume that the size of S is much smaller than the size of Q (which is enormous)
and we shall rather compute elements of S only when necessary, instead of calculating Q in
advance. That S is nonsingular follows directly from the nonsingularity of the corresponding
basis B. Indeed, each solution to (24)-(26) satisfies (20). With a singular S we would have
a non-unique dUB from (25)) so (20) would have many solutions, a contradiction.

We can easily find the general form of entries of S using the tree model (6) and their
interpretation as sensitivities. Let the i-th row of S correspond to zk(n) and the j-th column
of S correspond to ul(m), where n and m are some nodes of 7. If m is on the path from n
to the root, then

Sij = (GZK)kl , (36)

where T is the number of stages between n and m. If the path from n to the root does not
include m, we have s;, = 0.

Another important feature of our approach are specific transformations of S in successive
iterations of the simplex method. The following cases may occur.

Case 1: a column a, from No replaces in B the column a; from Bo.
We have

with

The vector Bcla j has already been computed to determine the leaving column (see (24))
so the main cost of this update is the pricing s U with s = ~TB;' to find r.

Case 2: a column a j from No replaces in B the column ai from No.
Assume that a, was on the p t h position in U. We then have

T u r = U + (a j - a i) e p ,

v r = v ,

S' = S + det ,
where d = ~ ~ { ' (a j - ai), i.e. the p t h column of S is changed to

1 s = V B i a j .

Case 3: a column a j of Bo replaces in B the column a; from Bo.
Similarly to Case 2 we have

u 1 = u ,

where p is the index of the row corresponding to a;, and

i.e. a row of S is exchanged.

Case 4 : a column a j of Bo replaces in B a column a; from No.
Let p be the row number in V corresponding to a j and let q be the column index in

U corresponding to a;. It is easy to observe that V' is then equal to V with the p t h row
deleted, U' equals U without the q-th column, and S' can be obtained by deleting the p t h
row and the q-th column of S .

6 LU factorization of the sensitivity matrix

The necessity to solve equations (25) and (32) a t each iteration of the simplex method creates
a need for a factorization of the sensitivity matrix S. There are two issues that should be
taken into account in this respect: numerical stability and the possibility of updating the
factors when S is modified.

We suggest to use a dense LU factorization

S = PLRQ , (40)

where P and Q are row and column permutations, L is lower triangular with ones on the
diagonal and R is upper triangular. That L and R should be treated as dense matrices is
obvious: S is a computed matrix with upper block triangular structure. However, the fact
that S is a computed matrix with potential ill-conditioning suggests rather the use of the
highly stable QR factorization approach (see, e.g., Daniel et al., 1976). This particular choice
is suggested in Bisschop and Meeraus (1977). LU factorization is clearly more economical,
but we need here carefully designed updating procedures to avoid excessive propagation of
round-off errors. Two efficient methods of LU factorization of Bartels and Golub (1969) and
of Fletcher and Matthews (1984) are proved to be stable enough for practical applications,

although counter examples for their good behaviour are given in Powell (1987). Their highly
specialized implementations (see: Reid, 1982 and Fletcher and Matthews, 1984, respectively)
do not offer the possibility of updating the factorization in all four cases analysed in sec-
tion 5. Such possibility exists in a method described in Gill et al. (1987), where sparse
LU decomposition is analysed. However, for the reason stated before we need dense LU
factorization.

Let us discuss in more detail the method of updating the factors of (40) for the second
modification considered in section 5.

Exchange of a column in U implies exchange of a column in S, as in (38). From (40) we
see that

S = P L ~ Q , (41)

where k differs from R by one column

By changing Q in such a way that c is moved in k to the position equal to its length q,
we can make k upper Hessenberg with subdiagonal appearing in columns p) p + 1 , . . . , q:
Our aim is to annulate them. Generally, this can be done by certain permutations p and Q
and a nonsingular operator M such that

is lower triangular with 1's on the diagonal, and

is upper triangular. Indeed, from (41), (43) and (44) we then get

with @ = ppT and Q = g T Q .
There are many operators satisfying (43) and (44). To save on calculations and make

the modifications easier to implement we suggest to compose p, 0 and M from sequences
of elementary transformations pi, gi and M~ annulating successive subdiagonals of k . It is
then sufficient to consider for each i 2 x 2 submatrices of L and k formed from elements
having row and column indices equal i and i + 1:

Our aim is now to choose P , Q and M such that

Let us a t first consider the case with i + 1 < q. Then there is a subdiagonal element in
the (i + 1) s t column of k (below d), so we must have @; = I. Two possibilities remain
now, depending on the use of row permutation. In the simplest case = I we obtain from

(45)-(46) r 1

The second possibility arises for
r 1

which implies an additional exchange of rows of L. From (45)-(46) we then obtain

with p = a t + b.
So, we have two possibilities to choose among: the simple elimination operators (47)-(48)

and the more sophisticated (49)-(51). We choose the one for which the condition index of
Mi, defined as the ratio of the eigenvalues of MTM;, is minimum: a simple test can be
developed to determine the smaller index without calculating it. We can mention here that
this particular update of dense LU factors was analysed for different purposes by Fletcher
and Matthews (1984) with a simple rule of choosing the operator having smaller entries.

When i = q we have four possibilities, because the exchange of the columns of R becomes
admissible. Again, it is a matter of simple transformations to determine the form of M, in
each case and to choose the one that has the minimum condition index.

The remaining cases discussed in section 5 can be analysed similarly (see: Gondzio,
1988a). Case 1 is trivial: a new row is added to L and a new column is added to R. Case 3
is almost symmetric to Case 2 analysed above and Case 4 is a combination of Cases 2 and 3.

7 Conclusions

We have presented here main ideas of a new linear programming method that is a specializa-
tion of the simplex method for multistage stochastic problems. The method requires storage
only for the LU factorization of the sensitivity matrix because the fundamental basis which
is a submatrix of the constraint matrix need no additional memory (only pointers to the

appropriate columns have to be stored). This gives substantial savings in comparison with
any classical or specialized versions of the simplex method (see: Reid, 1982; Gill et al., 1987;
Fourer, 1982; Bisschop and Meeraus, 1980). The method is then especially attractive for
implementing it on a small memory computer.

A numerically stable procedure of updating LU decomposition of the sensitivity matrix
assures good accuracy of the whole method.

8 References

Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming using
LU decomposition. Communication on ACM 12, pp. 266-268.

Bisschop, J. and Meeraus, A. (1977). Matrix augmentation and the partitioning in the
updating of the basis inverse. Mathematical Programming 13, pp. 241-254.

Bisschop, J. and Meeraus, A. (1980). Matrix augmentation and structure preservation in
linearly constrained control problems. Mathematical Programming 18, pp. 7-15.

Daniel, J. W., Gragg, W. B., Kaufman, L. and Stewart, G. W. (1976). Reorthogonalization
and stable algorithms for updating the Gram-Schmidt QR factorization. Mathematics
of Computation 30, pp. 772-795.

Fletcher, R. and Matthews, F. P. J. (1984). Stable modification of explicit LU factors for
simplex updates. Mathematical Programming 30, pp. 267-284.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: inversion.
Mathematical Programming 23, pp. 274-313.

Fourer, R. (1983). Solving staircase linear programs by the simplex method, 2: pricing.
Mathematical Programming 25, pp. 251-292.

Gill, P. E., Murray, W ., Saunders, M. A. and Wright, M. H. (1987). Maintaining LU factors
of a general sparse matrix. Linear Algebra and its Applications 88/89, pp. 239-270.

Gondzio, J. (1988a). Stable variant of the simplex method for solving supersparse linear
programs. 3rd International Symposium on Systems Analysis and Simulation, Berlin
1988.

Gondzio, J. (1988b). Simplex modifications exploiting special features of dynamic and
stochastic dynamic linear programming problems. Control and Cybernetics, 1988 (to
appear).

Gondzio, J. and Ruszczynski, A. (1986). A package for solving dynamic linear programs.
Institute of Automatic Control, Warsaw University of Technology, 1986 (in Polish).

Murtagh, B. (1981). Advanced Linear Programming. McGraw-Hill, 1981.

Murtagh, B. and Saunders, M. (1983). MINOS 5.0. User's guide. System Optimization
Laboratory, Stanford University, 1983.

Powell, M. J. D. (1987). An error growth in the Bartels-Golub and Fletcher-Matthews
algorithms for updating matrix factorizations. Linear Algebra and its Applications
88/89, pp. 597-621.

Perold, A. F. and Dantzig, G. B. (1979). A basis factorization method for block triangular
linear programs. in: Duff, I. S. and Stewart G. W. eds., Sparse Matrix Proceedings
1978, SIAM, Philadelphia, pp. 283-312.

Reid, J . (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases. Mathematical Programming 24, pp. 55-69.

Rockafellar, R. T. and Wets, R. J.-B. (1987). Scenarios and policy aggregation in optimiza-
tion under uncertainty. WP-87-119, IIASA, Laxenburg 1987.

Wets, R. J.-B. (1986). Large scale linear programming techniques in stochastic program-
ming. in: Ermoliev, Y. and Wets R. J.-B. (eds), Numerical Methods in Stochastic
Programming, Springer-Verlag, Berlin 1986.

Regularized Decomposition and Augmented Lagrangian
Decomposition

for Angular Linear Programming Problems

Andrzej Ruszczynski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

We present two new decomposition methods for large linear programming problems
of angular structure. The first one is a special version of the regularized decomposition
method and the second one is a decomposable version of the augmented Lagrangian
method. For both methods we prove finite termination theorems and establish their
duality.

1 Introduction

The main purpose of this paper is to present and compare two decomposition methods for
the problem

minimire T T T
c1z1 + c 2 2 2 + . . .+ cnzn

subject to

First of them is a special version of the regularized decomposition method of Ruszczynski
(1986) applied to the dual of (1). Its main feature, as compared with the decomposition prin-
ciple of (Dantzig and Wolfe, 1960) is that it uses quadratic regularizing terms in the master
problem. This stabilizes the master and eliminates difficulties with starting the method while
retaining the finite convergence property of the purely linear approach.

In section 3 we present a new decomposable version of the augmented Lagrange function
method. While it is well known that the augmented Lagrangian method is finitely conver-
gent for linear problems (cf. Bertsekas, 1982; Poljak and Trietiakov, 1972), its application
to decomposable problems of form (1) encountered difficulties due to the existence of non-
separable quadratic terms in the augmented Lagrange function (cf. Stoilow, 1977; Tatjewski,
1986; Watanabe et al. 1978). We overcome these difficulties for (I) , develop a fully decom-
posable method based on augmented Lagrangians and prove its finite convergence.

In section 4 we compare both methods and establish their duality. This result is closely
related to the connections between augmented Lagrange function methods and proximal
point methods discovered by Rockafellar (1976). The duality suggests new modifications and
improvements in both methods.

2 Regularized decomposition of the dual problem

Let us formulate the dual of (1):

mazimize bTu + d T ~ 1 + d i f q + . . . + dz rn

subject to

ATU + D T K ~ 5 cl ,
A ~ U + D ~ K ~ I c2 ,

A ~ U

Defining the functions

f;(u) = max{dT~; I DTK; 5 C; - ATU) =

= min { (c - A T u) ~ ~ , I D,z; = d, , z; 2 0 }
(3)

we can rewrite (2) as

n

mazimize F(u) bTu + x f ; (u) .
i= 1

Since f;(u) are concave and piecewise linear, (4) is a problem of maximizing a sum of
polyhedral functions, the form to which the regularized decomposition method of Ruszczynski
(1986) can be applied directly. To simplify our considerations we shall assume throughout
this paper that the sets

Xi = {z; : D;Z, = d;, z; > 0) , i = I , 2, ..., n . (5)

are nonempty and bounded, which implies that f;(u) are finite for all u.
The main idea of the regularized decomposition method is to solve a t each iteration the

regularized master problem

1 n

mazimize - - 1 1 u - ok (I 2 + bTu + x u ;
2

i= 1

subject to

T u; <a ; , -g i j u , j€ J ; , i = 1,2 ,..., n . (7)

Here iik is a certain regularizing point, and (a;, , g;,) describe so-called objective cuts
for f;(u) :

T f; (u) 5 a;, - giju for all u .

These cuts are collected at some previous trial points u j , j < k , so that

It is not difficult to see that for fi defined by (3) relations (8) are satisfied by

where zi, is the solution of the linear programming problem in (3) a t uJ' .
The logic of the regularized decomposition method for (2) can be now summarized as

follows.

Algorithm 1.

1. Solve the master (6)-(7) a t tik getting a trial point uk and objective estimates o f ,
i = 1,2, . . . , n , and calculate %k = bTuk + Gin,' v: . If %k = ~ (i i ~) then stop (optimal
solution found) ; otherwise continue.

2. Delete from (7) some cuts inactive a t (u k , v k) so that no more than n + m members
remain.

3. For i = 1,2 , . . . , n calculate fi(uk) finding a vertex zik of Xi which solves the problem
in (3). If f i(uk) < v: then append the cut defined by (9)-(10) to (7).

4. If F(uk) = kk or F(uk) 2 7fik + (1 - 7)F(t ik) and exactly m + n cuts were active a t
(uk , vk) then set tik+' = u (serious step); otherwise set tik+' = iik (null step).

5. Increase k by one and go to 1.

By active cuts we mean here linearly independent cuts having positive Lagrange multi-
pliers a t the solution to (6)-(7).

The method can be started from any ti0 with the cuts (7) defined by (9)-(10) a t the
solutions zio to (3) with u = iiO. This is a significant difference from the Dantzig-Wolfe
method, where finding the first multiplier vector may be difficult, and is due to the fact that
the regularized decomposition method goes through nonbasic points, in general. Nevertheless,
the method is still finitely convergent.

Theorem 1. Assume that the sets Xi , i = 1,2, . . . , n , are nonempty and bounded and
that (1) has a feasible solution. Then Algorithm 1 after finitely many iterations stops at a
point uk = tik which solves (2). The corresponding optimal solution zk to (1) is then defined

by
z r = C A&zij , i = I, 2, . . . , n ,

jE J ;
(11)

where A$, j E Ji, are the values of Lagrange multipliers at the solution to (6)-(7)) and zi j ,
j E Ji, are the vertices of Xi defining the final active cuts. The optimal objective value
satisfies the relation

n

Proof. Since all the sets Xi given by (5) are nonempty and bounded and the constraints
of (1) are consistent, both problems (1) and (2) have optimal solutions. Then (4) is bounded
from above and finite convergence of the regularized decomposition method follows directly
from the theory of Ruszczynski (1986). It remains to prove (11). Let Ji+ = { j E Ji :

A!, > 0) . Since uk = iik , from the optimality conditions for (6)-(7) we get

and
fi(uk) = v! = aij - gTuk , j E J: .

' I

Using (9), (10) and (11.) we can rewrite (13) as

By (14)-(15), zf E Xi. This combined with (17) implies that zk = (zf , z i , . . . , zk)
satisfies all constraints of (1).

Next, from (9), (10) and (16) we get

Using (11) and (17) we obtain the following expression for the optimal value of the dual
problem

n

J'(uk) = bTuk + x f i (u k)
i= 1

Consequently, the objective value in (1) at zk is equal to the optimal value of the dual
problem, which combined with the feasibility of zk implies its optimality. The proof is
complete.

3 The augmented Lagrangian decomposition

Let us now return to (1) and consider for it the augmented Lagrange function

The augmented Lagrangian method (cf. e.g. Bertsekas, 1982) applied to (1) can be now
stated as follows.

Algorithm 2.

1. For fixed multipliers iik solve the problem

minimize L u (z , i ik)

subject to

Let zk = (z t , z t , . . . , zk) be the solution to (19)-(20).

then stop (optimal solution found); otherwise set

increase k by one and goto 1.

It is well known that the above method is finitely convergent in our case, because (1) is a
linear program (see Bertsekas, 1982; Poljak and Trietiakov, 1972). On the other hand, it is
sometimes asserted that the augmented Lagrangian method is not suitable for decomposable
problems of form (I) , because (18) is not separable and thus (19)-(20) cannot be split into
independent problems. Various attempts have been made to approximate (18) by a sepa-
rable function and update the approximation in the course of calculation, but the resulting
algorithms are rather involved and no longer finitely convergent for linear problems (cf. e.g.
Stoilow, 1977; Tatjewski, 1986; Watanabe et al. 1978; Rockafellar and Wets, 1987). We shall
show that these difficulties can be overcome in the linear case and a finitely convergent de-
composition method can be developed on the basis of Algorithm 2. The key to this result is
that we are going to decompose the method, not the function.

Since Xi is a bounded convex polyhedron, proceeding as in the development of the
Dantzig-Wolfe method (Dantzig and Wolfe, 1960) we can express each zi E Xi as

with

X i j _ > O , ~ E J , ? , i = 1 , 2 ,..., n, (25)

where zi, , j E J,? , are all vertices of Xi . With this notation one can rewrite (18) as

. - . -

Lu(X, U) = C C aijXij + u T (b - C Xijgij) +
i=l j E J f i=l j€Jf

where

g,, = * *) .

Problem (19)-(20) can be now equivalently stated as follows

m i n i m i z e La (A, ck)
subject t o (24) - (25).

One could also obtain (29) by applying the augmented Lagrange function method to the
full master problem in the Dantzig-Wolfe method, resulting from substituting (23) in (1).

The crucial observation concerning (29) is the following.

Lemma 1. Problem (29) has a solution X k with at most n + m positive components.

Proof. Problem (29) has always a solution i , since (24)-(25) define a compact set. Let

Consider the linear program
n

m i n i m i z e C C a i j X i j

subject t o

Since (31) implies that the second and the third term in (26) are constant, each solution
to (30)-(32) solves (29). Problem (30)-(32) is linear and thus has an optimal basic solution
X k , which may have no more than n + m positive components. The proof is complete.

Corollary. W i t h n o loss of generality we can assume that the columns (t:) corresponding

to Xi:. > 0, where ei is the i - t h uni t vector i n Rn, are l inearly independent.

Lemma 1 suggests replacing (29) by a restricted master

subject t o

for some subsets J; Jt , i = 1 ,2 , . . . , n .
The relation between (29) and (33)-(35) is as follows.

Lemma 2. A solution X k of the restricted master is a solution of (29) if for

and
T k T

f;(uk) = min{(c - A, u) q I D,Z; = d, , z, 2 O) (37)

one has
k fi(uk) 2 v, , i = 1 ,2 , . . . , n ,

where v: , i = 1,2 , . . . , n , are Lagrange multipliers corresponding to (34).

Proof. The necessary and sufficient conditions of optimality for (29) are of the form:
there ezist Lagrange multipliers v, , i = 1 ,2 , . . . , n , such that

aij - (fik + 6 - C C X ~ Q ; ,)Tg,j > ui for all j E J,? ,

and (24)-(25) hold.
We shall prove that X k and vk satisfy these conditions. Since X& = 0 for j J; by

(34)-(35)) condition (40) follows from optimality conditions for (33)-(35). Next, with a view
to (36)) (39) is equivalent t o

and the left side of the above inequality, owing to (27)-(28)) can be expressed in form (37).
The proof is complete.

The next question that should be clarified is the way of updating the sets J; , if we fail
t o satisfy (38). With a view to Lemmas 1 and 2, we can suggest the following rules:

(i) delete from J; all indices j for which X$ = 0;

(ii) add t o the restricted master the columns

Qik = A,~ik ,
for these i , for which (38) is violated, i.e. for which

T k T k (C, - A, u) Z,k < v, .

Lemma 3. If the sets Ji in (33)-(35) are updated according to the rules (i) and (ii), then
after finitely many iterations we shall find an optimal solution to (29).

Proof. The minimum value of (33)-(35) does not change, when columns corresponding to
X k = 0 are deleted. If the algorithm does not stop, then for a t least one i , a new column is
'1

added by rule (ii). We shall show that the minimum value of (33)-(35) must decrease in this
case. Indeed, denoting by Ji+ = { j E J, : A:, > 0) we have

a k -k -L,(x , U) = w , - g T u k = v ; , j~ J? ,
ax,, '1

Let us consider the direction d, with components dij = - ~ k , j E Ji+ , dik = 1. It is a
' 2

feasible direction by (34) and the definition of Ji+ . The directional derivative of L, in 4
is negative, which proves the possibility of decreasing the value of (33) below the previous
minimum. Since the number of possible sets J; E J,? is finite and the optimal value of the
restricted master decreases, only finitely many exchanges in Ji are possible, which proves the
result.

Using these ideas a t Step 1 of Algorithm 2 we finally obtain the following decomposition
method based on augmented Lagrangians.

Algorithm 9.

1. Solve the restricted master (33)-(35) a t t ik , getting a solution X k with a t most n + m
positive components and Lagrange multipliers vk corresponding t o (34). Calculate uk

by (36).

2. Delete from J; indices corresponding to A& = 0 .

3. For i = 1 , 2 , . . . , n solve (37) finding a vertex z;k of Xi . If fi(uk) < v: , then append
the column defined by (41)-(42) t o (33)-(35).

4. If f;(uk) 2 vf for i = 1,2 , . . . , n (minimum of (29) found) and uk = iik then stop; else if
fi(uk) 2 v: for i = 1 , 2 , . . . , n but uk # iik then set iik+' = uk (serious step); otherwise
set iik+' = iik (null step).

5. Increase k by one and go to 1.

Our earlier observations can be summarized as follows.

Theorem 2. After finitely many iterations Algorithm 2 stops at Step 4 at xk , vk and
uk such that the convez combinations

form an optimal solution to (I), uk is a vector of Lagrange multipliers corresponding to the
linking constraint in (I), and

Proof. Every sequence of null steps is finite by Lemma 3. Any time a serious step is
executed, A h solves (29), i.e. z,k solve (19)-(20). Since each serious step is identical with
(22), the sequence of serious steps is identical with the sequence generated by Algorithm 2
and finite, owing to the finite convergence property of the augmented Lagrangian method for
linear problems (cf. Bertsekas, 1982; Poljak and Trietiakov, 1972). The proof is complete.

4 Relation of the two methods

Let us now compare Algorithms 1 and 3. The crucial question here is the relation of the
master problems (6)-(7) and (33)-(34).

Lemma 4. Problems (6)-(7) and (83)-(35) are dual to each other.

Proof. Let us derive the dual to (6)-(7). Denoting by A;, multipliers corresponding to (7)
we obtain the following form of the dual problem

m i n i m i z e A>,-, - L* (A, irk) ,

where

By noting that L* (A, iik) < CXI if and only if CjE4 Aij = 1 , after elementary transfor-
mations we arrive to (33)-(35).

With the two master problems equivalent there is no difficulty in coming to the following
conclusion.

Theorem 3. Algorithm 1 with 7 = 0 and Algorithm 8 are equivalent i n the sense that
if they are started from the same point iiO and the same sets J, , i = 1,2, . . . , n , and use
the same subalgorithm for solving master problems (6)-(7) and (33)-(35), then they generate
identical sequences { ak) , { uk) , { vk) and { A k) .

This result provides a new insight into both methods and suggests some obvious modifi-
cations and improvements.

First, the regularized decomposition with 0 < 7 < 1 provides new rules for changing
multipliers iik in the augmented Lagrangian method. Namely, we could change iik a t Step 4
of Algorithm 3 also when

where

In fact, a more simple test F(uk) > F(iik) would do as well (see Ruszczynski, 1986).
Next, we can also observe that for each k

and equality occurs if and only if iik is optimal (cf. Step 1 of Algorithm 1). Including these
rules into Algorithm 3 shows that Step 1 of the prototype Algorithm 2 can be replaced
by a rather special approximate minimization. As a result, we obtain a finitely convergent

- -

version of the augmented Lagrangian method with approximate minimization of the Lagrange
function. We believe that this observation may be interesting in its own right, apart from
the decomposability properties.

Finally, the relation that we discovered here may provide a new insight into nonsmooth
optimization methods (see Kiwiel, 1985) which motivated the development of the regularized
decomposition method. Namely, we can regard them as dual to the augmented Lagrange
function method applied to problems with infinitely many constraints.

5 References

Bertsekas, D. P. (1982). Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, New York, 1982.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Opera-
tions Research, no. 8, 1960, pp. 101-111.

Kiwiel, K. C. (1985). Methods of Descent for Nondifferentiable Optimization. Springer-
Verlag, 1985.

Poljak, B. T. and Tretiakov, N. V. (1972). An iterative method for linear programming
and its economic interpretation. Matecon, no. 10, 1974, pp. 81-100, (Ekonomika i
Matematicheskije Metody, no. VII, 1972, pp. 740-751).

Rockafellar, R. T. (1976). Augmented Lagrangians and applications of the proximal al-
gorithm in convex programming. Mathematics of Operations Research, no l , 1976,
pp. 97-116.

Rockafellar, R. T. and Wets, R. J. B. (1987). Scenarios and policy aggregation in optimiza-
tion under uncertainty. WP-87-119, IIASA, Laxenburg, 1987.

Ruszczynski, A. (1986). A regularized decomposition method for minimizing a sum of
polyhedral functions. Mathematical Programming, no. 35, 1986, pp. 309-333.

Stoilow, E. (1977). The augmented Lagrangian method in two-level static optimization.
Archiwum Automatyki i Telemechaniki, no. 22, 1977, pp. 219-237.

Tatjewski, P. (1986). New dual decomposition algorithms for nonconvex separable optimiza-
tion problems. Preprints of the 4th IFAC Symposium "Large Scale Systems - Theory
and Applicationsn, Zurich 1986, pp. 296-303.

Watanabe, N., Nishimura Y. and Matsubara, M. (1978). Decomposition in large system
optimization using the method of multipliers. Journal of Optimization Theory and
Applications, no. 22, 1978, pp. 135-194.

Dynamic Aspects of Multiobjective
Trajectory Optimization

in Decision Support Systems

Tadeusz Rogowski

Ins t i tu te of Automat ic Control, Warsaw University of Technology.

Abstract

This paper presents some remarks about dynamic aspects of multiobjective trajectory
optimization in decision support systems. It starts with a short theoretical reminder of
general principles of decision support systems based on reference point optimization and
the quasisatisficing framework of rational choice, for the case of linear models as it is
implemented in decision support systems IAC-DIDAS-L1 and -L2. It proceeds then to
the basic discrete-time dynamic extension of this case and to various continuous-time
extensions of multiobjective dynamic optimization. The importance of the concept of
multiobjective trajectory optimization is stressed in the paper.

1 Linear multiobjective decision analysis problem - a stan-
dard case.

The standard form of a multiobjective linear programming problem is defined as follows:

maximize (q = C z) ; X = { z € R n : A z = b , z 2 0) (1.1

where z E Rn, b E RP, A is a m x n matrix, C is a p x n matrix and the maximization of the
vector q of p objectives is understood in the Pareto sense: 2, rj are solutions of (1) if tj = CP,
P E X and there are no such z, q, with q = C z , z E X that q 2 rj, q # rj. Such solutions,
P and rj, of (1) are called an efficient decision P and the corresponding efficient outcome rj,
respectively. If, in the above definition, i t were only required that there would be no z and q,
with q = C z , z E X, such that q > tj , then the solutions z , q would be called weakly efficient.
Equivalently, if the set of all attainable outcomes is denoted by

"

and so called poeitive cones D = Rf;, fi = R! \ (0) and fi = in t Rf; are introduced (thus, -
q > t j c a n b e w r i t t e n a s q - t j ~ ~ , q > q ^ , q # r j a s q - q ^ ~ b , a n d q > r j a s q - ~ ~ d) , t h e n
the sets of efficient outcomes Q and of weakly efficient outcomes QW can be written as:

The set of weakly efficient outcomes is larger and contains the set of efficient outcomes;
in many practical applications, however, the set of weakly efficient outcomes is decisively too

large. For multiobjective linear programming problems, the efficient outcomes are always
properly eficient, that is, they have bounded tradeof coefficients that indicate how much an
objective outcome should be deteriorated in order to improve another objective outcome by
a unit.

The abstract problem of multiobjective linear programming consists in determining the
entire sets Q or Q W , or at least all vertices or basic solutions of the linear programming
problem that corresponds to efficient decisions and outcomes.

The practical problem of multiobjective decision support, using linear programming mod-
els, is different and consists in computing and displaying for the decision maker (or, generally,
for the user of the decision support system) some selected efficient decisions and outcomes.
This selection of efficient decisions and outcomes should be easily controlled by the user and
should result in any efficient outcome in the set Q he might wish to attain, in particular,
also in efficient outcomes that are not necessarily basic solutions of the original linear pro-
gramming problem; moreover, weakly efficient outcomes are not of practical interest for the
user.

Before turning to some theoretical problems resulting from these practical requirements,
observe first that the standard formulation of multiobjective linear programming is not the
most convenient for the user. Although many other formulations can be rewritten to the
standard form by introducing proxy variables, such reformulations should not bother the
user and should be automatically performed in the decision support system. Therefore, we
present here another basic formulation of the multiobjective linear programming problem,
more convenient for typical applications.

A substantive model of multiobjective linear programming type consists of the specification
of vectors of n decision variables z E Rn and of m outcome variables y E Rm, together with
linear model equations defining the relations between the decision variables and the outcome
variables and with model bounds defining the lower and upper bounds for all decision and
outcome variables:

lo < y < yUP y = A z ; ~ ' ~ < z < z " ~ ; y - - (5)

where A is a m x n matrix of coefficients. Among the outcome variables, some might be chosen
as corresponding to equality constraints; let us denote these variables by yC E R ~ ' c Rm and
the constraining value for them - by be and let us write the additional constraints in the
form:

yC = Acz = be ; Y - c , lo < bc 5 yc,up (6)

where Ac is the corresponding submatrix of A. The outcome variables corresponding to
equality constraints will be called guided outcomes here. Some other outcome variables can
be also chosen as optimized objectives or objective outcomes. Denote the vector ofp objective
outcomes by q E RP c Rm (some of the objective variables might be originally not represented
as outcomes of the model, but we can always add them by modifying this model) to write
the corresponding objective equations in the form:

where C is another submatrix of A. Thus, the set of attainable objective outcomes is again
Q = C X , but the set of admissible decisions X is defined by:

Moreover, the objective outcomes are not necessarily minimized; some of them might be
minimized, some maximized, some stabilized or kept close to given aspiration levels (that is,

minimized if their value is above aspiration level and maximized if their value is below aspi-
ration level). All these possibilities can be summarized by introducing a different definition
of the positive cone D:

where the first p' objectives are to be maximized, the next, from p' + 1 to p", are to be
minimized, and the last, from p"+ 1 to p, are to be stabilized. Actually, the user needs only to
define what to do with subsequent objectives; the concept of the positive cone D is used here
only in order to define comprehensively what are efficient outcomes for the multiobjective
problem. Given some aspiration levels for stabilized objectives and the requirement that
these objectives should be minimized above and maximized below aspiration levels, the set
of efficient outcomes can be defined only relative to the aspiration levels.

However, since the user can define aspiration levels arbitrarily, of interest here is the union
of such relative sets of efficient outcomes. Let b = D \ (0); then the outcomes that might
be efficient for arbitrary aspiration levels for stabilized objectives can be defined, as before,
by the relation (3). The weakly efficient outcomes are of no practical interest in this case,
since the cone D, typically, has empty interior which implies that weakly efficient outcomes
coincide with all attainable outcomes.

The stabilized outcomes in the above definition of efficiency are, in a sense, similar to
the guided outcomes; however, there is an important distinction between these two concepts.
Equality constraints must be satisfied; if not, then there are no admissible solutions for the
model. Stabilized objective outcomes should be kept close to aspiration levels, but they can
differ from those levels if, through this difference, other objectives can be improved. The
user of a decision support system should keep this distinction in mind and can modify the
definition of the multiobjective analysis problem by taking, for example, some outcomes out
of the guided outcome category and putting them into the stabilized objective category.

By adding a number of proxy variables and changing the interpretation of matrix A, the
substantive model formulation (5) , (6), (7), (8) together with its positive cone (9) and the
related concept of efficiency could be equivalently rewritten to the standard form of multi-
objective linear programming (1); this, however, does not concern the user. More important
is the way of user-controlled selection of an efficient decision and outcome from the set (3).
For stabilized objective outcomes, the user can change the related aspiration levels in order
to influence this selection; i t is assumed here that he will use, for all objective outcomes, the
corresponding aspiration levels i n order to influence the selection of e f i c ien t decisions. The
aspiration levels are denoted here qi or, as a vector, Q and called also, equivalently, reference
points.

A special way of parametric scalarization of the multiobjective analysis problem is uti-
lized for the purpose of influencing the selection of efficient outcomes by changing reference
points. This parametric scalarization is obtained through maximizing the following order-
approzimating achievement function (see Lewandowski et al. 1983; Wierzbicki, 1986):

where the parameter .E should be positive, even if very small; if this parameter would be
equal to zero, then the above function would not be order-approximating any more, but

order-representing, and its maximal points could correspond to weakly efficient outcomes.
The parameter p should be p 2 1; the interpretation of both these parameters is given later.

The functions zi(qi , 6) are defined as follows:

where
(i i) / ~ : = (q , - q ~) / ~ :

The coefficients si, s: and sl are scaling units for all objectives, either defined by the user (in
which case s: = s:, the user does not need to define two scaling coefficients for a stabilized
objective outcome) or determined automatically in the system (see further comments).

The achievement function s (q , Q) is maximized with q = Cz over z E X; its maximiza-
tion in the system is converted automatically to an equivalent linear programming problem,
different than the original one, and having more basic solutions that depend on the parameter
q. If the coefficient e > 0, then the achievement function has the following properties (see
Wierzbicki, 1986) :

a) For an arbitrary aspiration level or reference point Q, not necessarily restricted to be
attainable or not attainable, each maximal point q^ of the achievement function s (q , Q)
with q = Cz over z E X is a D,-efficient solution, that is, a properly efficient solution
with tradeoff coefficients bounded approximately by E and 1/e.

b) For any properly efficient outcome q^ with trade-off coefficients bounded by e and l /e ,
there exist such reference points tj that the maximum of the achievement function
s (q , Q) is attained at the properly efficient outcome 4. In particular, if the user (either
by chance or as a result of a learning process) specifies a reference point t j that in itself is
such properly efficient outcome, Q = 4, then the maximum of the achievement function
s (q , Q), equal zero, is attained precisely at this point.

c) If the reference point q is 'too high' (for maximized outcomes; 'too low ' for minimized
outcomes), then the maximum of the achievement function, smaller than zero, is at-
tained a t an efficient outcome that approximates the reference point uniformly best,
in the sense of scaling units si. If the reference point Q is 'too low ' (for maximized
outcomes; 'too high' for minimized outcomes and it can happen only if there are no
stabilized outcomes), then the maximum of the achievement function, larger than zero,
is attained a t an efficient outcome that is uniformly 'higher' than the reference point,
in the sense of scaling units si.

d) By changing his reference point tj, the user can continuously influence the selection of
the corresponding efficient outcomes 4 that maximize the achievement function.

The parameter e in the achievement function sets bounds on trade-off coefficients: if an
efficient solution has trade-off coefficients that are too large or too small (say, lower than

or higher than lo6) then it does not differ, for the decision maker, from weakly efficient
outcomes - some of its components could be improved without practically deteriorating
other components. Another interpretation of this parameter is that it indicates how much

an average overachievement (or underachievement) of aspiration levels should correct the
minimal overachievement (or maximal underachievement) in the function (10).

The parameter p > 1 can influence the shape of this achievement function only if p > 1.
If p = 1, then the middle term of this function can be omitted since it is never active
in this case. If p > 1, then this term becomes active only if the achievement function is
positive (that is, if the reference point r i is 'too low ' for maximized outcomes, 'too high' for
minimized outcomes and there are nostabilized outcomes). In such a case, the piece-wise
linear achievement function (10) has a piece on its positive level-sets that corresponds to the
sum of overachievements (qi - ri;)Isi and not to the minimal overachievement (for maximized
outcomes, with corresponding changes for minimized outcomes). This modification becomes
stronger for larger p, but always occurs only for positive values of the achievement function;
it is useful when the user wants to select efficient outcomes that maximize the sum of positive
overachievements.

The maximization of the achievement function is a convenient way of organizing inter-
action between the model and the user. Before the interactive-analysis phase, however, the
user must firstly define the substantive model, then define the multiobjective analysis prob-
lem by specifying outcome variables that should be maximized, minimized, stabilized, guided
or floating (that is, displayed for the users' information only, but not included as optimized
or guided objectives; various decision variables of interest to the user can be also included
into one of these categories). Before the initial analysis phase, the user should also define
some reasonable lower and upper bounds for each optimized (maximized, minimized or sta-
bilized) variable, and some reasonable scaling units s, for these variables. In further phases
of analysis, a special automatic way of setting scaling units s, can be also applied; this, how-
ever, requires an approximation of bounds on efficient solutions. Such an approximation is
performed in the initial analysis phase.

The 'upper' bound for efficient solutions could be theoretically obtained through maxi-
mizing each objective separately (or minimizing, in case of minimized objectives; in the case
of stabilized objectives, the user should know their entire attainable range, hence they should
be both maximized and minimized). Jointly, the results of such optimization form a point
that approximates from 'above' the set of efficient outcomes Q, but this point almost never
(except in degenerate cases) is in itself an attainable outcome; therefore, it is called the utopia
point.

However, this way of computing the 'upper' bound for efficient outcomes is not always
practical, particularly for problems of dynamic structure (see further comments); thus, IAC-
DIDAS-L1 and -L2 use a different way of estimating the utopia point (see Rogowski et al.,
1987). This way consists in subsequent maximizations of the achievement function s (q , q)
with suitably selected reference points. If an objective should be maximized and its maximal
value must be estimated, then the corresponding component of the reference point should be
very high, while the components of this point for all other maximized objectives should be
very low (for minimized objectives - very high; stabilized objectives must be considered as
floating in this case that is, should not enter the achievement function). If an objective should
be minimized and its minimal value must be estimated, then the corresponding component
of the reference point should be very low, while other components of this point are treated as
in the previous case. If an objective should be stabilized and both its maximal and minimal
values must be estimated, then the achievement function should be maximized twice, first
time as if for a maximized objective and the second time as if for minimized one. Thus the
entire number of optimization runs in utopia point computations is pl1 + 2(p - p"). It can
be shown that, for problems with static structure (no trajectory objectives), this procedure

gives a very good approximation of the utopia point tUto, whereas the precise meaning of
'very high' reference should be interpreted as the upper bound for the objective plus, say,
twice the distance between the lower and the upper bound, while the meaning of 'very low'
is the lower bound minus twice the distance between the upper and the lower bound.

During all these computations, the lower bound for efficient outcomes can be also esti-
mated, just by recording the lowest efficient outcomes that occur in subsequent optimizations
for maximized objectives and the highest efficient outcomes for minimized objectives (there
is no need to record them for stabilized objectives, where the entire attainable range is es-
timated anyway). However, such a procedure results in the accurate, tight 'lower' bound
for efficient outcomes - called nadir point inad - only if p" = 2; for larger numbers of
maximized and minimized objectives, this procedure can give misleading results, while an
accurate computation of the nadir point becomes a very cumbersome computational task.

2 Discrete-time dynamic extension of multiobjective linear
problems

There are many examples of decision problems that can be analysed by means of substantive
model of multiobjective linear programming type; however, many of them have actually a
dynamic structure. DIDAS - type systems with multiobjective, dynamic linear programming
models have been used in planning energy policies (see Strubegger, 1985; Messner, 1985),
agricultural policies (see Makowski and Sosnowski, 1984) as well as in analysing various
environmental or technological problems (see Kaden, 1985; Gorecki et al., 1983), another
example might be a dynamic multiobjective linear programming model for flood control,
where the decision are time sequences trajectories - of outflows of reservoirs and the outcomes
are trajectories of flows in various points on the river (Lewandowski et al., 1984a, 1984b).

Discrete multiobjective dynamic programming problem given by state equations (linear
model) :

z(t + 1) = A(t)z(t) + B(t)u(t) , t = 0 1 . . , T - 1 , z(0) - given, (13)

outcome equations:

and corresponding bounds, where:

t - is the discrete time variable,

u(t) E Rn - control trajectory or decision trajectory,

z(t) E Rm - state trajectory,

q(t) = y(t) E RP - outcome trajectory, objective trajectory.

In this case, it is possible to use the following order-approzimating achievement junction:

DIDAS methodology can be successfully applied for this purpose.

A computation of an utopia trajectory and an approximation of a nadir trajectory as in
static problem would require in this case p * (T + 1) scalar optimization. However, precise
upper bound and lower bound trajectories are not needed in most cases of decision support
- their approximate values often suffice.

A convenient way: optimize p times with p different reference trajectories:

where the components $)(t) are chosen to be very high if i = j and very low if i # j (see
e.g.. Lewandowski et al., 1984; Lewandowski and Wierzbicki, 1988).

Approximate upper bound trajectories:

(i) &,rnax(t)=q; (t) , t = 0 , 1 , ..., T, i = 1,2 ,..., p ;

and lower bound for trajectories:

are obtained this way; later on, we assume that such bounds are determinated and used for
determining scaling coefficients.

In similar way, other order-approximating achievement functions or even smooth order-
approximating functions, can be rewritten for the case of multiobjective trajectory optimiza-
tion.

From theoretical and numerical point of view, the solution of a problem of dynamic
structure is difficult even in its classical formulation (with single objective function). These
problems are discussed in literature elsewhere and there exist many computational methods
for solving dynamic optimization problems. However, if we add the problem of analysing
trajectories as decision outcomes, beside theoretical and numerical problems, arising from
this complication, we face the difficulty that the decision-maker (user) might be baffled
in the interpretation of objectives when their number grows. It is a known psychological
fact that the human decision-maker cannot compare or evaluate in this mind more than
five to ten objects, depending on their complexity; however, this does not mean that these
objects should be characterized by only scalar attributes. If the outcomes of decision are
represented by a solution of dynamical model, there is a natural way of aggregating them
into trajectories: we combine the values of the same outcome for consecutive instants of time,
and the number of these instants can grow rather large, but we still deal with same kind
trajectory. Once the meaning of a trajectory of outcomes is well understood the specification
and/or interpretation of a related reference, aspiration or reservation trajectory becomes easy.
Thus, the conclusion that no more than five to ten scalar attributes should be compared is
over-simplified: in decision support systems based on substantive models, we can as well
compare five t o ten trajectories containing a large amount of information (see Lewandowski
and Wierzbicki, 1988).

3 General forms of multiobjective dynamic problems

Now, a special question in multiobjective decision analysis and support arises: how general is
the class of substantive models of discrete-time dynamic linear nature? Linearity is here an
obvious restriction. However, in decision problems of dynamic structure we can distinguish
a t least the following types of models:

A. continuous-time models given by differential equation (linear or nonlinear, partial or
ordinary) and their trajectories interpreted as decision outcomes, that is, with infinite
- dimensional outcome spaces;

B. continuous-time models given as above, but with a finite - dimensional outcome space,
while outcomes or objectives are defined by a given number of objective functionals;

C. discrete-time models (given a'priori) or discrete-time approximations of continuous-
time models which reduces the outcome space to finite dimensions, as discussed in the
previous paragraph; however, in the case analogous to A these dimensions will be very
large, hence it is useful to distinguish, as above, the case of trajectory optimization,
versus traditional multiobjective optimization.

Dynamic models with continuous time can have rather diverse mathematical character, we
shall consider here only a relatively simple but widely applied class of such models, described
by ordinary differential or difference equations. We shall consider first examples of the case
B or its analog within the case C.

EXAMPLE 1. Let us now consider a multiobjective continuous control problem, with
finite-dimensional outcomes space, as described by Szidarovszky et al., 1987a)b.
The model consist of a state equations:

and of a multiobjective functional:

t 1

qi =lo g i (t , z (t) , u (t)) dt (;= l , 2 9 - . - , n) 9

that should be maximized in each component. Introduce the following notation:

6 = 1 ; l a; (t) dt ,

Observe that:

D i (t ~) = @ y (t) - g i (t , z (t) , u (t)) , Di(to)=O, (21)

and Di(tl) 5 g - q., - where % 5 J:: g i (t , z(t) , u(t)) dt , i = 1,2,. . . , n .
A scalarizing function for these objectives can be chosen in various way, for example in

way similar to this described in the preceding paragraphs, or more generally see Lewandowski
et al., 1988. However, Szidarovszky et al., 1987a, use the weighted l p norm and show that
this problem is equivalent to optimizing the function:

where v; - is a differentiable monotonous function, e.g. v;(t) = t4.
Introducing the function:

n

G (t 7 , DI (t) 7 - - - 7 Dn(t) , ~ (t)) = c a ;~ : (D; (t)) @:(t) - 9; (t , ~ (t) , ~ (t))]
i=l

we have a continuous control problem described by the state equations:

with final constraints:

D;(tl) 5 ij, - gi , a' = 1,2,. . . ,n

and a goal function to be minimized:

where:

UP) - control trajectory functions (decision functions),

~ (t) , Dl(t), . . . , Dn(t) - state trajectory functions,

Q - reference point (vector).

Thus - by increasing the dimensionality of the state space - the multiobjective continuous
control problem (18)-(19) of the class B is reformulated as a classical dynamic problem with
single objective function (23)-(25) (Szidarovszky et al., 1987a).

EXAMPLE 2. Consider a discrete multiobjective dynamic programming problem having
the general form:

As above, define the discrete functions Dji, G,, then new state transitions functions and
constraints are:

zj = f j (z j -1 , u j) 7 zo - given , j = 1 7 2 , . . . , m , (28)

and a goal function to be minimized:

More detailed examples were discussed by Szidarovszky et al., 1987a,b, in applications first
to regional natural resources management. Second example is a multiobjective optimization
model for wine production. In both examples, the model is given by differential or difference
equations (continuous-time in the first, discrete-time in the second example) and objective
functions are defined by functionals, as is multiobjective optimization of static type. In wine
production - two objective functions are defined: the net profit (which is maximized) and
maximal manpower demand during growing season (which is minimized). In the scalarizing
function, weighting coefficient are utilized for the purpose of influencing the selection of
efficient outcomes. Possible, this way of influencing that the selection is not good as by
changing aspiration levels in an order-consistent achievement function, but this is not the
main point of these examples. The main point is that the dynamic aspects of the models
in these examples are of secondary importance: they contribute to the complexity of the
model, but do not much influence the complexity of decision problem. If the model in the
second example was linear, we could as will rewrite the corresponding decision problem in the
standard static way presented in the first paragraph. Truly dynamic aspects of multiobjective
choice arise in case A or its analog in case C, when the objectives form dynamic trajectories.

EXAMT'LE 3. Consider the question of approximating a continuous-time dynamic linear
model, described by ordinary differential equations and with selected trajectories as decision
outcomes, by a discrete-time model of the standard form described in the second paragraph
of this paper.

Continuous-time dynamic linear problem is given by the following linear state equations:

z(t) = Az(t) + Bu(t) , t E [to, t l] , z(to) - given, (31)

some outcome equations, which are assumed here in a very simplified form just for illustration
purposes as:

9(t) = 40, (32)

and by some constraints, which shall not be considered in this simplified example.
Here we use the following notation:

u(t) - control trajectory or decision trajectory, a vector function of time;

z(t) - state trajectory, a vector function of time;

g(t) - outcome trajectory, also a vector function of time;

A, B - matrices of suitable dimensions, in this example for simplicity assumed to be
constant.

Introduce the following approximation function:

where P,(t) are basis function from a spline space (the spaces S1, S' and S' of piecewise
linear, 2-nd or 3-rd order polynomial functions with appropriate smoothness conditions are
useful for approximating the state trajectories; the control trajectories could be approximated
in the space So of piecewise constant functions, but we omit here the discussion of know
aspects of approximating control system equations by a spline function system). The f j are
approximating coefficients and n is the state dimension.

If we consider now outcome trajectories as infinitely dimensional objectives, we have to
define consequently reference trajectories as functions of approximating coefficient <:

e (t) = x $a, (t).
]=I

An achievement scalarizing function z;(q,, q;) given by form (l l) , depends on term qi - q;
or (q; - q;). A natural way of generalizing this function to this specific case is based the
following observation:

where: /3, = Ji: /3j(t)dt it is known value.
In this case is a possible to use the achievement function (10) while interpreting s(q, i j) as

s(<, f) . However, there might be many other approaches to interpreting a reference trajectory
in a spline approximation. Generally, the following problem arises: the user of decision
system might be not accustomed to spline approximations, and might therefore interpret
the coefficients <j not quite easily. In such a case, a special reference trajectory interface is
required: the user might define the reference trajectory by numerical or graphical means,
say, using a mouse, and the interface should convert it into a spline approximation. Once
the meaning of the function s (< , f) is defined, we can minimize this function, obtain an
approximating coefficient $, j = 1 , . . . , rn; i = I , . . . , n, and next define the control from
the state equation, say, by the simple transformation (assuming that B is convertible in this
simplified example) :

m

u(t) = ~- l (&(B , (t) - AP,(~))
j=1

(36)

or by more advanced approximation methods in the more general case. This very simplified
example suggests a number of further questions: how to choose the space depending on
particular properties of the model, how to deal with nonlinear models, etc.

4 Technical and implementation issues in multiobject ive tra-
jectory optimization

We have seen that various technical problems arise in the manipulation of the reference trajec-
tories. The same applies to other trajectory-type data, such as bounds etc. Other problems
arise in the necessary elements of a decision support system that are an user friendly-interface
and a data base for results.

The user-friendly interface in the case of trajectory optimization should perform the
following functions:

create trajectories,

select trajectories,

modify trajectories (e.g. references) and other data (e.g. scaling factors),

delete trajectories,

display trajectories using graphics terminals.

Another special feature of user-computer interface of a trajectory-oriented extension of DI-
DAS are special trajectory definition and trajectory interpretation modules (see Lewandowski
et al., 1984a)b). The da ta base for results, in the case of trajectory optimization has functions
similar t o the static case, with the obvious difference that i t should record trajectories.

5 References

Gorecki, H., Kopytowski, J., Rys, T. and Zebrowski M. (1983). A multiobjective proce-
dure for project formulation - design of chemical installation. In Grauer, M. and
Wierzbicki, A. P. eds.: Interactive Decision Analysis. Springer Verlag, Berlin.

Kaden, S. (1985). Decision support system for long-term water management in open-pit
lignite mining areas. In Fandel, G., Grauer, M., Kurzanski A. and Wierzbicki, A. P.
eds.: Large-Scale Modelling and Interactive Decision Analysis. Proceedings Eisenach,
Springer Verlag, Berlin.

Lewandowski, A., Grauer, M., Wierzbicki A. P. (1983). DIDAS - theory, implementation
and experiences. In Grauer, M., Wierzbicki, A. P. eds.: Interactive Decision Analysis.
Proceedings Laxenburg. Springer Verlag, Berlin.

Lewandowski, A., Rogowski, T. and Kreglewski, T . (1984a). A trajectory-oriented extension
of DIDAS and its application. In Grauer, M., Thompson, M., Wierzbicki, A. P. eds.:
Plural Rationality and Interactive Decision Processes. Proceedings, Sopron. Springer
Verlag, Berlin.

Lewandowski, A., Rogowski, T. and Kreglewski, T. (1984b). Application of DIDAS method-
ology t o flood control problems - numerical experiments. In Grauer, M., Thompson,
M., Wierzbicki, A. P. eds.: Plural Rationality and Interactive Decision Processes. Pro-
ceedings, Sopron. Springer Verlag, Berlin.

Lewandowski, A., Wierzbicki, A. P. (1988a). Aspiration Based Decision Analysis and S u p
port. Par t I: Theoretical and Methodological Backgrounds. WP-88-03, IIASA, Lax-
enburg.

Lewandowski, A., Kreglewski, T., Rogowski, T., Wierzbicki, A. P. (1988b). Decision Support
Systems of DIDAS Family. Second paper of this volume.

Makowski, M., Sosnowski, J. (1984). A decision support system for planning and controlling
agricultural production with a decentralized management structure. In Grauer, M.,
Thompson, M., Wierzbicki, A. P. eds.: Plural Rationality and Interactive Decision
Processes. Proceedings, Sopron. Springer Verlag, Berlin.

Messner, S. (1985). Natural gas trade in Europe and interactive decision analysis. In
Fandel, G., Grauer, M., Kurzanski, A. and Wierzbicki, A.P. eds.: Large-Scale Modelling
and Interactive Decision Analysis. Proceedings, Eisenach. Springer Verlag, Berlin.

Rogowski, T., Sobczyk, J., Wierzbicki A. P. (1987). IAC-DIDAS-L, A Dynamic Interactive
Decision Analysis and Support System for Multicriteria Analysis of Linear and Dynamic
Linear Models on Professional Microcomputers. In Lewandowski, A., Wierzbicki, A. P.
eds.: Theory, Software and Testing Examples for Decision Support Systems. WP-87-
26, IIASA, Laxenburg.

Steuer, R. (1986). Multiple Criteria Optimization: Theory, Computation and Application.
John Wiley & Sons, New York.

Strubegger, M. (1985). An approach for integrated energy-economy decision analysis: the
case of Austria. In Fandel, G., Grauer, M., Kurzanski, A. and Wierzbicki, A. P. eds.:
Large-Scale Modelling and Interactive Decision Analysis. Proceedings, Eisenach. Spri-
nger Verlag, Berlin.

Szidarovszky, F., Gershon, M. Bardossy, A. (1987a). Application of Multiobjective Dynamic
Programming to Regional Natural Resource Management. Applied Mathematics and
Computation, 24:281-301.

Szidarovszky, F., Szenteleki, K. (1987b). A Multiobjective Optimization Model for Wine
Production. Applied Mathematics and Computation, 22:255-275.

Wierzbicki, A. P. (1980). Multiobjective trajectory optimization and model semiregulariza-
tion. WP-80-181, IIASA, Laxenburg.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR Spectrum 8, 73-87.

A Mat hematical Programming Package
for Mult icrit eria Dynamic Linear Problems

HYBRID.
Methodological Guide to Version 3.1

Marek Makowski

International Institute for Applied Systems Analysis, Laxenburg, Austria.'

Janusz S. Sosnowski

Systems Research Institute of the Polish Academy of Sciences, Warsaw.

Abstract

HYBRID is a mathematical programming package which includes all the functions
necessary for the solution of two types of mathematical programming problems: multi-
criteria LP problems and single-criteria linear-quadratic problems. HYBRlD is specially
useful for dynamic problems since the applied algorithm exploits the structure of a dy-
namic problem and the user has the advantage of handling a problem as a dynamic one
which results in an easy way of formulation of criteria and of interpretation of results.
HYBRID has been designed more for real-world problems than for academic (e.g., ran-
domly generated) problems. Thus HYBRID is oriented towards an interactive mode of
operation in which a sequence of problems is to be solved under varying conditions (e.g.,
different objective functions, reference points, values of constraints or bounds). Crite-
ria for multiobjective problems may be easily defined and updated with the help of the
package. Besides that HYBRID offers many options useful for diagnostic and verification
of a problem being solved. HYBRID is available in two versions: one for VAX 111780
(running under Berkeley UNIX 4.2) and one for a P C compatible with P C IBM/AT/XT.

1 Introduction

The purpose of this report is to provide a sufficient understanding of mathematical, method-
ological and theoretical foundations of the HYBRID package. Section 1 contains executive
summary, short program description and general remarks on solution techniques and package
implementation. Section 2 contains mathematical formulation of various types of problems
that can be solved by HYBRID. Section 3 presents methodological problems related to solu-
tion techniques. Section 4 presents foundations of the chosen solution technique and docu-
ments the computational algorithm. Section 5 contains short discussion of testing examples.
Last two sections contain conclusions and references.

This paper does not include information necessary for using the package. A reader who is
interested in usage of the package should consult a User Guide to HYBRID (Makowski and
Sosnowski, 1988). In the User Guide the following topics are disscussed:

*on leave from the Systems Research Institute of the Polish Academy of Sciences, Warsaw.

r the way of choosing various options provided by the package.

r guidelines for formulation and modification of a problem which is t o be solved or a t
least processed by HYBRID.

r the way in which HYBRID provides diagnostics and results.

r a short tutorial example.

the specification of the MPS standard for input data and an example of the MPS format
input file.

1.1 Executive summary

HYBRID is a mathematical programming package which includes all the functions necessary
for the solution of linear programming problems. The current version of HYBRID, called
HYBRID 3.1, may be used for solving both static and dynamic LP problems (in fact also
for problems with a more general structure then the classical formulation of dynamic linear
problems). HYBRID 3.1 may be used for both single- and multi-criteria LP problems as
well as for single-criteria linear-quadratic problems. Since HYBRID is designed for real-life
problems, it offers many options useful for diagnostic and verification of a problem being
solved.

HYBRID is a member of the DIDAS family decision analysis and support systems since
i t is designed t o support usage of multicriteria reference point optimization. HYBRID can
be used by an analyst or by a team composed of a decision maker and an analyst or-on last
stage of application-by a decision maker alone. In any case, we will speak further on about
a user of HYBRID package.

HYBRID can serve as a tool which helps t o choose a decision in a complex situation in
which many options may and should be examined. Such problems occur in many situations,
such as problems of economic planning and analysis, many technological or engineering design
problems, problems of environmental control. To illustrate possible range of applications, let
us list problems for which the proposed approach either has been or may be applied: planning
of agriculture production policy in a decentralized economy (both for governmental agency
and for production units, Makowski and Sosnowski, 1985a), flood control in a watershed
(Kreglewski et al., 1985), planning formation and utilization of water resources in an agricul-
tural region, scheduling irrigation, planning and design of purification plant system for water
or air pollution.

To avoid a possible misleading conclusion that the usage of HYBRID may replace a real
decision maker, we should stress that HYBRID is designed to help the decision maker t o
concentrate on his actual decision tasks while HYBRID takes care on cumbersome compu-
tations and provides information that serves for analysis of consequences of different options
or alternatives. A user is expected t o define various alternatives or scenarios, changing his
preferences and priorities when learning about consequences of possible decisions.

HYBRID could be used for that purpose as a "stand alone" package, however-after a
possible modification of a problem in an interactive way-one can also output the MPS-
format file from HYBRID to be used in other packages. The later approach can be used also
for a transformation of a multicriteria problem t o an equivalent single-criteria LP. HYBRID
includes also some diagnostic functions that are not performed by many other linear pro-
gramming packages, e.g., by MINOS (it is interesting t o note that the authors of MINOS

actually advise the user to debug and verify the problem with another package before using
MINOS).

HYBRID can be used for solving any linear programming problem but it is specially
useful for dynamic problems; this covers a wide area of applications of operation researches.
Many optimization problems in economic planning over time, production scheduling, inven-
tory, transportation, control dynamic systems can be formulated as linear dynamic problems
(Propoi, 1976). Such problems are also called multistage or staircase linear programming
problems (Fourer, 1982, Ho and Hanne, 1974). A dynamic problem can be formulated as
an equivalent large static LP and any commercial LP code may be used for solving i t , if
the problem corresponds to single objective optimization. For multicriteria problems, a pre-
processor may be used for transformation of that problem t o an equivalent LP one. One
of the first versions of the system DIDAS was a package composed of a preprocessor and
a postprocessor for handling transformation of multicriteria problem and processing results
respectively (Lewandowski and Grauer, 1982). Those pre- and postprocesors were linked
with an L P package. HYBRID 3.1 has generally a similar structure. The main difference is
that-instead of an LP package-another non-simplex algorithm is applied, which exploits
the dynamics of a problem. Similarly as some other systems of DIDAS family, HYBRID
has the advantage of handling a problem as a dynamic one which results in an easy way of
formulation of criteria and of interpretation of results, since one may refer t o one variable
trajectory contrary to a "static" formulation of dynamic problems which involves separate
variables for each time period.

HYBRID has been designed more for real-world problems that require scenario analysis
than for academic (e.g., randomly generated) problems. Thus HYBRID is oriented towards
an interactive mode of operation in which a sequence of problems is to be solved under
varying conditions (e.g., different objective functions, reference points, values of constraints
or bounds). Criteria for multiobjective problems may be easily defined and updated with the
help of the package.

The binary files with HYBRID 3.1 are available from IIASA in two versions: one for VAX
11/780 (running under Berkeley UNIX 4.2) and one for a P C compatible with IBM/AT/XT.

1.2 Short program description

1.2.1 P r e p a r a t i o n o f a p r o b l e m fo rmula t ion

A problem t o be solved should be defined as a mathematical programming model. Formula-
tion of a mathematical programming model is a complex task and this paper is not devoted
to discuss this question in detail. Therefore this section is aimed a t providing only a short
summary of a recommended approach.

Firstly, a set of variables that sufficiently describe the problem-for the sake of the desired
analysis--should be selected. It is desired-however not necessary-to define the model in
such a way as t o possibly exploit the problem structure (further on referred t o as a dynamic
problem). Secondly, a set of constraints which defines a set of admissible (i.e. acceptable
or recognized as feasible by a decision maker) solutions should be defined. Finally a set of
criteria which could serve for a selection of a solution should be defined.

The formal definition of criteria can be performed in HYBRID in an easy way. However,
i t should be stressed that any definition of a complex model usually requires cooperation of
a specialist-who knowns the nature and background of the problem t o be solved-with a
system analyst who can advise on a suitable way of formal definition. It should be clearly
pointed out that a proper definition can substantially improve the use of any computational

technique. For small problems used for illustration of the method, it is fairly easy to define a
model. But for real life problems, this stage requires a close cooperation between a decision
maker and a team of analysts as well as a substantial amount of time and resources.

For real life problems, the following steps are recommended:

1. Mathematical formulation of the problem being solved should be defined.

2. A data base for the problem should be created. This may be done on P C with a help
of a suitable commercial product (such as Framework, dBase, Symphony, Lotus 1-2-3).
Original data should be placed in this data base. A user need not worry about possible
range of quantities (which usually has an impact on computational problems) because
HYBRID provides automatic scaling of the model.

3. Verification of the da ta base and of the model formal definition should be performed.

4. The corresponding MPS standard file should be created. This may be done by a spe-
cialized model generator (easily written by a system analyst), or an universal generator
such as GEMINI (developed a t IIASA), or GAMMA (part of FMPS package on UNI-
VAC), or LPL (cf Hurlimann, 1988), or by any appropriate utility program of data base
software. We strongly discourage the user from creating the MPS file with help of a
standard text editor.

1.2.2 Model verification

This stage serves for the verification of model definition which is crucial for real application
of any mathematical programming approach.

First stage consists of preprocessing the MPS file by HYBRID, which offers many options
helpful for that task. HYBRID points t o possible sources of inconsistency in model definition.
Since this information is self-explaining, details are not discussed here. I t is also advisable t o
examine the model printout by rows and by columns, which helps t o verify model specification
and may help in tracing possible errors in MPS file generation.

Second stage consist of solving optimization problems for selected criteria which helps in
the analysis of consistency of solutions. For larger problems, the design and application of
a problem oriented report writer is recommended. HYBRID generates a "userfile" for that
purpose which contains all information necessary for the analysis of a solution.

After an analysis of a solution, a user may change any of the following parameters: values
of coefficients, values of constraints and also any parameters discussed in next section. This
may be done with help of the interactive procedure which instead of MPS file uses "commu-
nication region" that contains problem formulation processed by HYBRID. Therefore, a user
needs no longer t o care about original MPS file which has the backup function only.

1.2.3 Multiobjective problem analysis

For a given model, the user can define various multiobjective problems t o be analysed. Prob-
lem analysis consist of consecutive stages:

analysis of obtained solution

modification of the problem

solution of modified problem.

Analysis of a solution consists of following steps (some of which are optional):

1. The user should examine of values of selected criteria. Since the solution obtained in
HYBRID is Pareto optimal, the user should not expect improvement in any criteria
without worsening some other criteria. But values of each criterion can be mutually
compared. I t is also possible to compute the best solutions for each criterion separately.
A point (in criteria space) composed of best solutions is called the "utopian point (since
usually it is not attainable). HYBRID provides also a point composed of worst values
for each criterion. This point is called "nadirn point. Such information help t o define
a reference point (desired values of criteria) because i t is reasonable t o expect values of
each criterion to lie between utopia and nadir point.

2. The user may also make a t this stage modifications to the original problem without
involving the MPS file.

3. For dynamic problems, HYBRID allows also for easy examination of trajectories (re-
ferred t o by so called generic name of a variable).

Modification of the problem may be done in two ways:

1. At this stage, the user can modify the formulation of the original model. But main
activity in this stage is expected after the model is well defined and verified and no
longer requires changes in parameters that define the set of admissible (acceptable)
solutions. It should be stressed, that each change of this set usually results in change
of the set of Pareto-optimal solutions and both utopia and nadir points should be
computed again.

2. If the values of all constraints and coefficients that define the admissible set of solutions
are accepted, the user should start with computations of utopia point. This can be
easily done in an interactive way. After utopia and corresponding nadir points are
obtained (which requires n solutions of the problem, where n is the number of criteria
defined) the user can also interactively change any number of the following parameters
that define the selection of an efficient solution to the multicriteria problem:

- Reference point (i.e. desired values for each criterion) might be changed. This
point may be attainable or non-attainable (cf sec. 2.4).

- Weights attached to each criterion can be modified.

- Reference trajectories in dynamic case can be changed as reference points.

- Regularization parameters in selection function can be adjusted.

3. Additionally, the user can temporarily remove a criterion (or a number of criteria) from
analysis. This option results in the computation of a Pareto optimal point in respect to
remaining "activen criteria, but values of criteria that are not active are also available
for review.

Solution of a problem. The multiobjective analysis problem defined by a user (after
possible modification) is transformed by HYBRID to an equivalent LP problem which is
solved without interaction of a user (an experienced user may however have an access t o the
information that characterizes the optimization run).

1.2.4 Remarks relevant to dynamic problems

HYBRID allows for solving both static and dynamic LP models. Static models can be
interpreted as models for which a specific structure is not recognized nor exploited. But
many real life problems have specific structure which-if exploited-can result not only in
much faster execution of optimization runs but also remarkably help in problem definition
and interpretation of results.

Numerous problems have dynamic nature and i t is natural to take advantage of its proper
definition. HYBRID offers many options for dynamic models, such as:

1. In many situations, the user may deal with generic names of variables. A generic name
consists of 6 first characters of a name while 2 last characters corresponds t o the period
of time. Therefore, the user may for example refer to the entire trajectory (by generic
name) or t o value of a variable for a specific time period (by full name). Such approach
corresponds t o a widely used practice of generating trajectories for dynamic models.

2. The user may select any of 4 types of criteria that correspond to practical applications.
Those can be defined for. each time period (together with additional "global" condi-
tions), but this requires rather large effort. Therefore, for dynamic problems, criteria
are specified just by the type of criterion and the generic name of the corresponding
variable. Types of criteria are discussed in detail later.

3. A model can be declared as a dynamic one by the definition of periods of time. For a
dynamic model, additional rules must be observed. These rules correspond to the way
in which the MPS file has to be sorted and to the way in which names for rows and
columns are selected. These rules follow a widely accepted standard of generation of
dynamic models. The formulation of a dynamic model, which is accepted by HYBRID,
is actually an extension of the classical formulation of a dynamic model (cf Section
2.2.). In our formulation, a model may contain also a group of constraints that do not
follow the standard of state equations.

1.2.5 General description of the software package and data structure

The package is constructed in modules t o provide a reasonably high level of flexibility and
efficiency. This is crucial for a rational use of computer resources and for planned extensions
of the package and possible modification of the algorithm.

The package consists of four subpackages:

Two preprocessors that serve to process data, enable a modification of the model,
perform diagnostics and may supply information useful for the verification of a model.
The first preprocessor is used for processing of initial formulation and diagnostics of
the model. It also transforms a multicriteria problem t o a parametric single criteria
optimization problem. The second preprocessor allows for analysis of a solution and
for the interactive change of various parameters that may correspond t o choice of some
option, change of parameters in definition of multicriteria problem, change of matrix
coefficients, right hand sides of constraints etc.

Optimization package called solver of a relevant optimization problem (either static or
dynamic).

r Postprocessor that provides results in the standard MPS format and generates the "user
file" which contains d information needed for the analysis of a solution; the later option
makes i t easier t o link HYBRID t o a specialized report-writer or a graphic package.

The P C version of HYBRID 3.1 contains additionally a driver which eases the usage of
all subpackages. The driver provides a context sensitive help which helps a n unexperienced
user in efficient usage of the package.

All four subpackages use a binary file that contains all da ta defining the problem being
solved. A second binary file contains a solution obtained by last run of the solver. From
the user point of view, HYBRID 3.1 is still one package that may be easily used for different
purposes chosen via specification file.

The chosen method of allocating storage in the memory takes maximal advantage of the
available computer memory and of the features of typical real-world problems. In general, the
matrix of constraints is large and sparse, while the number of all non-zero coefficients that
take different numerical values is much smaller than the number of all non-zero coefficients. A
super-sparse-matrix technique is therefore applied t o store the da ta that define the problem t o
be solved. This involves the construction of a table of these essential coefficients. The memory
management is handled by a flexible way. As opposed to the way adopted in HYBRID 3.03
(cf Makowski and Sosnowski, 1988) a group of functions in C language has been implemented
which results in a faster (much faster for PC version running under DOS) execution and in
a decrease of memory requirements.

Special commands of HYBRID support model verification and problem modification. This
is necessary t o facilitate scenario analysis and to reduce the problems caused by inappropriate
scaling (cf sec. 4.7).

The da ta format for the input of MPS file and the output of LP results follows standards
adopted by most commercial mathematical programming systems (cf e.g. Murtagh, 1981,
Makowski and Sosnowski, 1988).

1.2.6 Outline of the solution technique

HYBRID uses a non-simplex algorithm - a particular implementation of the augmented
Lagrangian (or Lagrange multiplier) method - for solving linear programming problems.
General linear constraints are included within an augmented Lagrangian function. The LP
problem is solved by minimizing a sequence of quadratic functions subject t o simple con-
straints (lower and upper bounds). This minimization is achieved by the use of a method
which combines the conjugate gradient method and an active constraints strategy.

In recent years many methods oriented for solving dynamic linear problems (DLP) have
been developed. Most of those methods consists of adaptation of the simplex method for
problems with a special structure of constraints. In HYBRID, a different approach is applied.
A DLP, which should be defined together with a state equation, is solved through the use
of adjoint equations and by reduction of gradients t o control subspaces (more exactly, t o
a subspace of independent variables). The method exploits the sparseness of the matrix
structure. The simple constraints (lower and upper bounds for non-slack variables) for control
variables are not violated during optimization and the resulting sequence of multipliers is
feasible for the dual problem. The global constraints (i.e. constraints other then those defined
as simple constraints) may be violated, however, and therefore the algorithm can be started
from any point that satisfies the simple constraints.

The solution technique can be also used t o solve single-criteria quadratic problems with
virtually no changes in the algorithm. However, a routine t o input and handle the relevant

data and a corresponding standard for data input have yet t o be designed and implemented.
So far only single criteria linear-quadratic problems in the form discussed in Section 2.5 may
be solved. The solution method for multi-criteria quadratic problems requires modification
of the algorithm. However the necessary modifications will be based on HYBRID 3.1.

In order t o provide general information about capabilities of HYBRID, the main options
are listed below. HYBRID offers the following features:

Input of da ta and the formulation of an LP problem follow the MPS standard. Ad-
ditional rules (that concern only sequencing of some rows and columns) should be
observed in order to take advantage of the structure of a dynamic problem. An expe-
rienced user may speed up computations by setting certain options and/or parameters
(cf the HYBRID User Manual).

The problem can be modified at any stage of its solution (i.e., by changing the matrix
of coefficients, introducing or altering right-hand sides, ranges or bounds).

The multicriteria problem is formulated and solved as a sequence of parametric opti-
mization problems modified in interactive way upon analysis of previous results.

The solution technique can be chosen. First choice is done by definition of a static or
a dynamic problem. Some specialized techniques may be used for badly conditioned
problems that usually cause numerical problems. This includes one of two regulariza-
tion techniques (see Section 4.5) and/or possibility of using preconditioned conjugate
gradient method (cf Section 4.6). For a badly scaled problem, an implementation of
scaling algorithm is available (as described by Makowski and Sosnowski (1981) and
briefly discussed in Section 4.7).

Comprehensive diagnostics is implemented, including the checking of parallel rows, the
detection of columns and rows which are empty or contain only one entry, the splitting
of columns, the recognition of inconsistencies in right-hand sides, ranges and bounds,
and various other features that are useful in debugging the problem formulation. The
package supports a display of a matrix by rows (printing the nonzero elements and
names of the corresponding columns, right-hand sides and ranges), as well as a display
of a matrix by columns (analogous to displaying by rows). A check of the feasibility of
a problem prior t o its optimization is optionally performed. More detailed information
for an infeasible or unbounded problem is optionally provided by the package.

All data that correspond t o the formulation of the problem being solved are stored
in a binary file. An other binary file contains all other information corresponding to a
current run. The latter file is stored on disk in certain situations to allow continuation of
computations from failed (or interrupted) runs or to run a modified problem while using
previously obtained information. Therefore the MPS input file is read and processed
only by first preprocessor, which serves for initial formulation of the problem. Such
approach allows also for efficient storing of many solutions that may be later used for
more detailed analysis, comparisons and modifications.

Any solution is also available in the standard MPS format and optionally in a binary
file which contains all da ta that might be useful for postoptimal analysis and reports.

1.3 Remarks on implementation

HYBRID 3.1 is an extended version of HYBRID 3.03 documented in (Makowski and Sos-
nowski, 1988). Therefore there are only small changes in the methodological guide in compar-
ison t o the methodology presented in (Makowski and Sosnowski, 1988), because the solution
techniques are basically the same. However, there are some important methodological inno-
vations. The main differences are the following:

r The code has been modified as t o allow for solution of single criteria linear-quadratic
problems.

r The preconditioned conjugate gradient technique for minimizing augmented Lagrangian
has been implemented.

r The second regularization option which allows for finding the optimal solution with
minimum distance from a given reference point has been made operational.

r The optimization algorithm has been improved by an automatic evaluation of some
parameters, a different technical implementation of scaling, some changes in control
flow, which results in its faster execution.

r The user interface (for P C version of the code) has been improved. A new approach to
usage of the package and t o data handling provides for easier use of the package.

r Diagnostics have been improved and several observed bugs have been removed.

r Part of the code has been rewritten in C language. This allows for more efficient
memory management and usage. Change in the way of internal data handling resulted
in remarkable improvement of execution speed.

2 Statement of optimization problems

2.1 Formulation of an LP problem

We will consider a linear programming problem (P) in the following standard form (see, e.g.,
Murtagh and Sanders, 1977):

min cz (1)

where z , c, I, u E Rn, b, T E Rm and A is an m x n matrix.
The constraints are divided into two groups: general constraints (2) and simple constraints

(3). In the input data file (MPS file) the vectors b is called RHS and the vector T -RANGES.
The vector 1 and u are called LOWER and UPPER BOUNDS, respectively. Obviously, some
of bounds and/or ranges may have an infinite value. Therefore HYBRID may be used for
solving any LP problem formulated in the way accepted by most of commercial packages.

2.2 Classical formulation of a Dynamic LP problem (CDLP)

Before discussing a formulation of a dynamic problem that can be solved by HYBRID 3.1, let
us first consider a classical formulation of a dynamic linear programming problem (CDLP)
(cf Propoi, 1976) in the following form:

Find a control trajectory
11 = (ul , . . . ,uT)

and a state trajectory
2 = (21, ..., zT)

satisfying the state equations with initial condition zo

and constraints

which minimize the performance index

where:

- t = I , . . . , T denote periods of time

- state variables z t , control variables ut , both for each period, are elements of Euclidian
spaces of appropriate dimensions;

- matrices At, Bt, Dt , Ft are assumed to be given,

- RHS vectors ct and dt, as well as range vector tt and bounds for control variables et
and ft are given,

- initial condition zo is given.

The above given formulation has been chosen for the purpose of simplification of presen-
tation only. Actually, the following modifications are accepted:

1. Instead of inequality (5), equality constraints can be used;

2. Since no constraints of bounds type (6) are allowed for state variables z , such constraints
may be specified in columns section of MPS file, thus formally are handled as inequality
constraints of type (5);

3. Performance index (goal function) can either be specified as single objective or will be
replaced by a dummy goal function that is defined by the transformation of a multicri-
teria problem to a parametric LP problem;

The structure of an CDLP problem (formulated above as in Propoi, 1976) may be illus-
trated by the following diagram (example for T = 3, u1, u2, u3, 20, 21,22,z3 are vectors, slack
variables are not shown):

where I is identity matrix and 0 is a matrix composed of zero elements.

u1 u2 u3 x0 x1 2 2 23 rh.9
B1 0 0 A o - I 0 0 cl
0 B2 0 0 A1 -I 0 cg
0 0 B3 0 0 A2 -I cg
D I O 0 F o O 0 0 do
0 D 2 0 0 F I O 0 dl
0 0 D 3 0 0 F 2 0 d2
0 0 0 0 0 0 F3 d3
bl b2 63 0 a1 a2 a3 -

2.3 Formulation o f a Dynamic Problem (DLP)

var .
state eq.
state eq.
state eq.

constr.
constr.
constr.

final state

goal

The formulation of CDLP has been chosen for the purpose of simplification of presentation
only. Actually HYBRID 3.1 is capable t o solve problems of more general class, which will
be referred t o as Dynamic Linear Programming problems (DLP). Namely, the matrices B =
diag(B;), D = diag(D;), F = diag(F;) need no longer be block diagonal matrices. Also
matrices below identity matrices need no longer have any specific structure. Therefore the
CDLP is a specific example of DLP. One of main generalizations-from a practical point of
view-is that a problem with delays for control variables (which is not CDLP-class problem)
may be solved by HYBRID. In fact, HYBRID accepts also problems with delays for both
state and control variables, provided that state variables for periods "before" initial state
do not enter state equations. A choice of criteria for CDLP-class problem is also limited in
comparison with that for DLP (cf sec. 4.3).

All variables are divided into two groups: decision variables u and state variables x t , the
latter are specified for each period of time.

A single criteria DLP problem may be formulated as follows:
Find a trajectory xt and decision variables u such that both:

state equations:
t-1

- H ~ x ~ + C A ~ - ~ , ~ x ~ + B ~ U = ct, t = 1,. . . ,T
i=O

with given initial condition xo
and constraints:

are satisfied and the following function is minimized:

Components of vector u are called decision variables for historical reasons. Actually a
vector u may be composed of any variables, some of them may be specified for each time
period and enter criteria defined for a dynamic case. But some components of vector u
may not be specified for any time period (cf sec. 7.3.1). An example of such variable is

"..dummy.", a variable generated by HYBRID for a multicriteria problem. A user may also
specify variables independent of time. For the sake of keeping the formulation of the problem
as simple as possible we have not introduced a separate name for such variables.

The following two symbols can be used in the specification file for definition of DLP:

NT - number of periods (stands for T in the above formulation)

NSTV - number of state variables in each period (the dimension of vectors z t)

The user can define state inequalities instead of state equations (9). The slack variables
for such inequalities are generated by HYBRID. Therefore, for the sake of the presentation
simplicity, only the state equation will be considered further on.

The structure of an DLP problem may be illustrated by the following diagram: (corre-
sponding to an example analogous to the above example for CDLP)

where Ht is diagonal matrix and 0 is a matrix composed of zero elements.

u zo 21 2 2 23 rhs

B1 Aoo -HI 0 0 cl
B2 Alo All -Hz 0 c2
B3 A20 A21 -H3 c3
D Fo Fl F2 F3 d
b 0 a1 a2 a3 -

2.4 Multicriteria optimization

var .
state eq.
state eq.
state eq.

constr.

goal

2.4.1 General remarks

The specification of a single-objective function, which adequately reflects preferences of a
model user is perhaps the major unresolved difficulty in solving many practical problems as
a relevant optimization problem. This issue is even more difficult in the case of collective
decision making. Multiobjective optimization approaches make this problem less difficult,
particularly if they allow for an interactive redefinition of the problem.

The method adopted in HYBRID 3.1 is the reference point approach introduced by Wierz-
bicki (1980). Since the method has been described in a series of papers and reports and has
been applied t o DIDAS (cf Kallio et al., 1980, Lewandowski and Grauer, 1982), we give
only general outline of the approach applied. This approach may be summarized in form of
following stages:

1. The user of the model (referred t o further as the decision maker-DM) specifies a
number of criteria (objectives). For static LP problem a criterion is a linear combination
of variables. For DLP problems one may also use other types of criteria (cf sec. 2.4.2).
The definition of criteria in HYBRID can be performed in an easy way described in the
User Manual.

2. The DM specifies an aspiration level ij = {ijl,. . . , i jNC) , where ij, are desired values for
each criterion and NC is a number of criteria. Aspiration level is called also a reference
point.

3. The problem is transformed into an auxiliary parametric LP (or DLP) problem. Its
solution gives a Pareto-optimal point. If specified aspiration level q is not attainable,
then the Pareto-optimal point is the nearest (in the sense of a Chebyshev weighted
norm) t o the aspiration level. If the aspiration level is attainable, then the Pareto-
optimal point is uniformly better then Q. Properties of the Pareto-optimal point depend
on the localization of the reference point (aspiration level) and on weights associated
with criteria.

4. The DM explores various Pareto-optimal points by changing either the aspiration level Q
orland weights attached t o criteria orland other parameters related t o the definition
of the multicri teria problem.

5. The procedure described in points 3 and 4 is repeated until satisfactory solution is
found.

To give more formal presentation, let us introduce following notation:

N C is the number of criteria

q; is the i-th criterion

qi is the aspiration level for i-th criterion

w; is a weight associated with 2-th criterion (whereas the user specifies its absolute
value which is internally changed to negative depending on the type of criteria-cf
sec. 2.4.3).

E, is a given non-negative parameter.

A Pareto-optimal solution can be found by the minimization of the achievement scalarizing
function in the form

NC

max (w;(qi - G)) + E, wig, + min
i=1, ..., NC

i=l

This form of achievement function is a slight modification of a form suggested by A. Le-
wandowski (1982) and by A. Wierzbicki (1978). Note that for E, = 0 only weakly Pareto-
optimal points can be guaranteed as minimal points of this function. Therefore, the use
of a very small E, results (except of situations in which reference point has some specific
properties) in properly Pareto-optimal solution with trade-off coefficients bounded approxi-
mately by E,NC and l/&,NC. If E , is very small, these properly efficient solutions might
practically not differ from weakly efficient (Pareto optimal). On the other hand, too big val-
ues of E, could drastically change properties associated with the first part of the scalarizing
function.

2.4.2 Types of criteria

A user may define any number of criteria. To facilitate the definition 6 types of criteria
are available and a user is requested t o declare chosen types of criteria before their actual
definition. Two types of criteria are simple linear combination of variables and those criteria
may be used for both static and dynamic problems. Four other types of criteria correspond
t o various possible performance indices often used for dynamic problems. Since the latter
criteria implicitly relate t o the dynamic nature of the problem, they may be used only for
variables that are defined for each time period. The only exception is the type DER of
criteria, which may be defined by state variables only.

For the sake of simplicity, only the variables of the type z; (which otherwise is used in
this paper to distinguish a state variable in DLP) are used in the following formulae. Note
that z; = {zit), t = 1,. . . , T .

An k-th criterion qk is defined in one of following ways, for static and dynamic LP:

Type MIN

qk = C C ajtzit - min

where n is number of (state and control) variables, T is number of periods; T = 1 is assumed
for static LP.

Type MAX

The following four criteria types are exclusively for dynamic LP:
Type SUP

qk = rnax (zit - z ; ~) -' min
t=1, ..., T

where z; is a selected state or control variable, 3; -its reference trajectory

Type INF
qk = min (zjt - Zi t) -' rnax

t=1, ..., T

Type FOL
qk = max (abs(zit - f i t)) -' min

t=1, ..., T

Type DER (which applies only to state variables)

qk = rnax (abs(zit - z ; ~ - ~)) 4 min
t = l ,..., T

2.4.3 Transformation of multicriteria problem to an auxiliary LP

The transformation is done by HYBRID 3.1, therefore its description here has only informa-
tive purpose. This description may be useful in case of using the MPS file (optionally created
after modifications and transformation of a problem) as input for another LP package.

Following notation is used throughout this subsection:

v - name of the auxiliary variable v

w; - optional weight coefficient for i-th criterion (default value equal t o I.),

cn; - name of i-th criterion,

cht - string (Zcharacters) which identifies t-th period of time,

q; - reference point (aspiration level) for i-th criterion,

q; - linear combination of variables that defines a criterion of the type MAX or MIN,

' ' - delimiters of a string,

T - number of time periods,

z j = {zjt), t = 1,. . . , T is a variable that enters a criterion of a type SUP, INF, FOL
or DER.

Transformation will be discussed for each type of criteria:

Type : MIN
additional row (with name which is concatenation of following three strings:
' < ', cn;,' . . .') is generated in form:

Type : MAX
is transformed in the way similar to type MIN, with additional (internal, for computa-
tions only) change of the signs of w; to negative.

Type : SUP
additional T rows (with names which are concatenations of strings ' < ', cn;, '.'cht, where
t = 1,. . . , T) are generated in forms:

Type : INF
is transformed in the way similar to type SUP, with additional (internal, for computa-
tions only) change of the signs of w; to negative.

Type : FOL

r additional T columns (with names which are concatenations of strings ' + ' , c n ; ,
'.', cht, where t = 1 , . . . , T) are generated; in the following formulae this name is
replaced by c:
additional T columns (with names which are concatenations of strings ' - ', cn;,
'.', cht, where t = 1, . . . , T) are generated; in the following formulae this name is
replaced by ci,

r additional T rows (with names which are concatenation of strings ' = ', cn;, '.', cht,
where t = 1,. . . , T) are generated in form :

r additional T rows (with names which are concatenations of strings ' < ', cn,, '.', cht,
where t = 1,. . . , T) are generated in the form:

Type : DER

r additional 2 x T columns are generated in the same way as described for a criterion
of the type FOL;

additional T rows (with names with are concatenations of strings ' = ', cn;, '.', cht,
where t = 1,. . . , T) are generated in form :

additional T rows (with names which are concatenations of strings ' < ', cn;, '.', cht)
are generated in form :

-v + w;(c; + c;,) 5 w;q;

Auxiliary goal function, which is t o be minimized, is generated in the following form:

where summation is done over corresponding sets of respective criteria, i.e. indices i, j, k
correspond t o criteria of type: MIN or MAX, SUP or INF and FOL or DER, respectively;
a, is given parameter.

The name of auxiliary variable v is '..dummy.', whereas the name of auxiliary goal function
is '.dummy..'.

Value of a, may be changed by the command MEPS in a routine for modification of
multicri teria parameters.

2.5 Formulation of single criteria linear-quadratic problems.

HYBRID 3.1 allows for solution of a single-criterion linear-quadratic problem with a simple
quadratic term. For a problem which does not have recognized structure (as discussed in sec.
2.3) the formulation takes the following form:

min cz + (y /2)IJz - ? 1 1 2

subject (2) and (3), where ? is a given point in the solution space and y > 0 is a given
parameter.

Similarly, for a dynamic problem one may formulate the problem in the following way:

T
min C atxt + bu + (y/2)11u - ul12

t=1

subject (9) and (l l) , where ti is a given point in t he space of independent variables.

3 Theoretical foundations and methodological problems

3.1 General remarks

T h e most popular methods for solving linear programming problems are based on the simplex
algorithm. However, a number of other iterative non-simplex approaches have recently been
developed (Mangasarian, 1981, Polyak and Tretiyakov, 1972, Sosnowski, 1981). HYBRID
belongs t o this group of non-simplex methods. The solution technique is based on the mini-
mization of an augmented Lagrangian penalty function using a modification of the conjugate
gradient method. T h e Lagrange multipliers are updated using a modified version of the
multiplier method (Bertsekas, 1976) (see Sections 4.2 and 4.4).

This method is useful not only for linear programming problems but also for other pur-
poses, as described in Section 1.2. In addition, the method may be used to solve problems
with non-unique solutions (as a result of regularization-see Section 4.5).

The following notation will be used:

a, - denotes the i-th row of matrix A

z, - denotes the j - th component of vector z

llzll - denotes the Euclidian norm of vector z

(u)+ - denotes the vector composed of the non-negative elements of vector u (where negative
elements are replaced by zeros)

- denotes the transposition of matrix A.

3.2 The multiplier method

We shall first explain how the multiplier method may be applied directly t o LP problems.
Consider the problem (PO), which is equivalent to the problem (P) defined in Section 2.1:

min cz

where d E RP, B is a p x n matrix, and m 5 p 5 2(m + n). To apply the multiplier method
to this problem we proceed as follows:

Select initial multipliers yo (e.g., = 0) and p E R, p > 0. Then for k = 0,1, . . .
determine successive values of zk+', yk+l where

zk+' = argmin L(z, yk)
Z

and
yk+' = (yk + p(Bzk+l - dl)+

where

until a stopping criterion is satisfied.
The method has the following basic properties:

1. A piecewise quadratic differentiable convex function is minimized a t each iteration.

2. The algorithm terminates in a finite number of iterations for any positive p.

3. There exists a constant p such that for any p > p the algorithm terminates in the second
iteration.

Note that it is assumed above that the function L(., yk) is minimized exactly and that the
value of the penalty parameter p is fixed. Less accurate minimization may be performed
provided that certain conditions are fulfilled (see, e.g., Sosnowski, 1981, Bertsekas, 1976).
For numerical reasons, a non-decreasing sequence of penalty parameters ipk} is generally
used instead of a fixed p.

3.3 The conjugate gradient method for the minimization of an augmented
Lagrangian penalty function

The augmented Lagrangian function for a given vector of multipliers y will be called the
augmented Lagrangian penalty function (Flecher, 1981). For minimization of that function
the conjugate gradient method has been modified t o take advantage of the formulation of the
problem. The method may be understood as an modification of the techniques developed by
Polyak (1969), O'Leary (1980) and Hestenes (1980) for minimization of a quadratic function
on an interval using the conjugate gradient method.

The problem (P) may be reformulated as follows:

min cx

l < x < u

O < z < r

where z E Rm are slack variables.
Formulation (PS) has a number of advantages over the initial formulation (PO):

1. The dimension of matrix A in (PS) is usually much smaller than that of matrix B
in (PO).

2. The augmented Lagrangian problem is one of minimization of a quadratic function
in (PS), and of minimization of a piecewise quadratic in (PO).

3. Some computations only have to be performed for subsets of variables. Note that slack
variables are introduced only for ease of interpretation and do not have to be computed.

In (PS) the augmented Lagrangian is defined by

We shall first discuss the problem of minimizing L(z ,z , y) for given y ,p > 0, subject t o
lower and upper bounds for x and z. Let us consider the following augmented Lagrangian
penalty function

The gradient of F is defined by

where

From the Kuhn-Tucker optimality condition, the following relations hold for the minimum
point (z*, z*):

and

For any given point such that 1 5 z < u it is possible t o determine slack variables 0 5 z 5 T

in such a way that the optimality conditions with respect t o z are obeyed. Variables z are
defined by

o if g; 5 o (w / a z , > 0)

ri if g; 2 T; (aF/az; < 0) (17)

gi if T i > g; > O (aF/az; = 0).

We shall use the following notation and definitions. The vector of variables z with indices
that belong t o a set J will be denoted by z J , and analogous notation will be used for
variables g. Let q denote minus the gradient of the Lagrangian penalty function reduced
t o z-space (q = - (aF/az)) . The following sets of indices are defined for a given point z :
The set of indices I of violated constraints, i.e.,

I = { i : g ; ~ ~ ; } ~ (i : g , < O } .

I is the complement of I, i.e.,
I = { l , 2 ,..., m } \ I .

The set of indices I can be also interpreted as a set of active simple constraints for z. The
set of indices J of variables that should be equal to either the upper or the lower bound, i.e.,

J = { j : z j = l j and qj < 0 } u { j : z j = u j and q j > O } .

1 is the complement of J , i.e.,
I= {1,2 ,..., n } \ J.

For the sake of illustration the matrix A may be schematically split up in the following
three ways (see the Figure below): first according t o active rows, second according t o basic
columns and third with illustrate the part of the matrix A for which augmented Lagrangian
penalty function is computed. The contents of the matrix A; (for which the augmented
Lagrangian penalty function is computed) changes along with computations.

In essence, the augmented Lagrangian penalty function is minimized using the conjugate
gradient method with the following modifications:

1. During the minimization process z and z satisfy simple constraints and z enters the
augmented Lagrangian in the form defined by (1 7) .

2. The conjugate gradient routine is run until no new constraint becomes active, i.e.,
neither set I nor set J increases in size. If this occurs, the computed step length is
shortened to reach the next constraint, the corresponding set (I or J) is enlarged and
the conjugate gradient routine is re-entered with the direction set equal to minus the
gradient.

3. Sets J and I are defined before entering the procedure discussed in point 2 and may be
only enlarged before the minimum is found. When the minimum with respect to the
variables with indices in sets J and I has been found, sets J and I are redefined.

4. Minimization is performed subject only to those components of variables z whose indices
belong to set 1, i.e., variables that are not currently equal to a bound value.

5. Minimization is performed subject only to those components of variables z whose in-
dices do not belong to set I, i.e., slack variables that correspond to non-active simple
constraints for z. Note that, formally, this requires only the use of different formulae
for z. In actual fact i t is sufficient to know only the set I, which defines the minimized
quadratic function.

4 Solution technique

4.1 Algorithm for minimization of augmented Lagrangian

We may now present the algorithm for minimization of the augmented Lagrangian penalty
function in a more formal way. The algorithm consists of the following steps:

1. For given y and p > 0 choose a point z such that 1 5 z 5 u

2. Compute g = - y / p - Az + b

3. Determine sets I and I

4. Define g as follows: ,

ij; = g; - if g; - r; > o
otherwise

5. Compute the minus gradient:

I T - I
9 = - c l p + (A) g

6. Determine sets J and J

J = { j : z j = I j a n d q j ~ O) ~ { j : z j = u j a n d q j 2 0)

J = {I,...,.}\ J

7. If qj = 0 for all j E J then z is a minimum point of the augmented Lagrangian penalty
function

J J 8. Set p = q

9. Compute
S = A j p J

h = llqJl12

d = ((s'1I2

a(1) = h l d

Note that a(1) is the conjugate gradient step length in direction pJ

10. Find the step length that would violate the nearest non-active constraint, i.e., for i E 1,

a(2) = ?in {g;/s;), K = { i : i E 1 , s; > 0 }
:€A-

ll. Find the step length that would enable a variable to reach a bound, i.e.,

a (4) = min(lj - z j) /p j , K = { j : j E J y p j < 0)
JEK

12. Determine step length CY = mini=l,...,,(a(i)). If CY = min(a(2),a(3)) add the row
index for which this condition holds to set I and remove that index from set 1. If
CY = min(a(4),a(5)) add the column index for which this condition holds t o set J and
remove that index from set J .

13. Compute the new point z J := z J + CYpJ and the minus gradient a t tha t point:

9; := 9; - a s ;

I T-I
qJ = (A,) 9 - cJ lp

14. If qJ = 0. go t o step 2

15. If CY = a(1) continue with the conjugate gradient step, i.e.

P = 11qJ112/h

pJ := qJ + ppJ
and go t o step 9

16. Go to step 8

Note that the condition qJ = 0 is in practice replaced by l l q J l l 5 E , where E is a gradient
tolerance.

4.2 Steps of the multiplier method

Let the violation of i-th constraint in a point zk be defined in the following way:

k
V: = max { aizk - b;, -a;z + b; - r;, 0)

and Ilvkll, denotes the I , norm of violated constraints. The multiplier method will be
presented in algorithmic form.

1. Compute an initial vector of multipliers on the basis of the particular option chosen
(i.e., either yo = 0 or yo corresponding t o the constraints violated a t starting point z)

2. Find zk+' which minimizes the augmented Lagrangian penalty function (see Section
3.3) with accuracy E ~ . It is assumed that

Ek := min (Ek, IIVkll,Ek)

where the sequence E~ -+ 0. In addition, E,; 2 E~ 2 E,,, where E,;, E,, is the assumed
minimum and maximum accuracy, respectively.

3. Compute new multipliers

y;k + pk(a;zk+l - b;) if yk + pk(a;zk+' - b;) 2 O

+ pk(a;zk+' - b; + r;) if yk + pk(a;zk+' - b; + T ;) 5 0

otherwise

4. If IIyk+' - ykll > then set pk+' = min (pkp,,pm,), p, > I., p,, is a given maximal
value of the penalty parameter.

Set E ~ + ' = E ~ E , , where E, < 1. is an assumed parameter,

Set k := k + 1 and go t o step 2

5. Set k := k + 1 and find zk+' which minimizes the augmented Lagrangian. If zk+' is
feasible (llvkll 5 F E A S) then assume it as a solution and stop.

Otherwise set pk+' = min (pkp,, p,,), and E ~ + ' = E ~ E , and go to step 2.

4.3 Solution technique for DLP

We will not repeat reasoning given in the first part of sec. 2.3. Instead, let us point out basic
differences between the algorithms for static LP and DLP:

1. Minimization is reduced to a subspace of decision variables. Gradient of Lagrangian
penalty function is computed for variables that belong to a subspace of decision vari-
ables. This (together with arguments already presented in sec. 3.3) shows advantages
due to the use of dynamic structure of DLP problem in comparison with presentation
of such a problem as a large LP.

2. The structure of matrices B1,. . . , BT and Fo, . . . , FT has no impact for the algorithm
nor affects the technique of storage of data, because super-sparse technique is applied (cf
sec. 1.4). It should be also pointed out that the method of transforming a multicriteria
problem t o a parametric LP one introduces constraints (cf sec. 2.4.3) that-for the

proposed (cf sec. 2.4.2) types of criteria-do not fit t o the staircase structure of CDLP
(cf Propoi, 1976). Therefore, any technique that would exploit the staircase structure
of DLP would also imply a reduction of a number of criteria types. The alternative is
then t o treat a problem as a large LP static one or to apply a technique that does not
exploit the classical DLP structure.

3. State equations are solved (for given decision variables u) by forward substitution.
Therefore any single constraints for state variables have to be treated as general con-
straints and included into the matrix. Gradient need not to be computed for those
variables, but state equation is solved twice (for state variables and variations).

4. A conjugate trajectory is computed from conjugate equation by backward substitu-
tion and has an interpretation of dual variables for state equations. No other variables
associated with those rows (defined in sec. 3.3, i.e. Lagrange multipliers, shifted con-
straints g) are computed for state equations rows.

5. The general structure of the algorithm for DLP is similar to that presented in sec. 3.4.
To sum up basic differences one may observe that:

- we consider a problem that is equivalent to a static LP but reduced t o the subspace
of decision variables and is solved in the way similar to that described in sec. 3.3
and 3.4,

- state equations are solved for control variables and for variations,

- a conjugate trajectory iJ is computed.

4.4 Algorithm for minimization of augmented Lagrangian for DLP

Now we may present the algorithm for minimization of the augmented Lagrangian func-
tion for DLP in a more formal way. In each iteration of multiplier method, the following
optimization problem is solved: minimize the augmented Lagrangian penalty function

subject t o
t-1

- H C ~ C + C A ~ - ~ , ~ x ~ + B ~ U = ct t = 1,. . . ,T
i=O

with a given initial condition zo and
e l u _ < f

where a is a vector of slack variables, which-as discussed in sec. 3.3-are not used in the
algorithm. The algorithm consists of the following steps:

1. For given y and p choose a point u such that e 5 u _< f

2. Solve the state equation

with given initial condition zo

3. Compute shifted constraints for constraints (10)

T

and determine sets I, 1

while 1 is the complement of I.

4. Define g as follows :

g, = 9 i - T i if g ; > T ;
otherwise

5. Find the conjugate trajectory by solving backwards the conjugate equations

T-1
I T - I

~ T * t = C ~ : t * t + l + (F t) 9 - a t / p , l = T - 1 , ..., 1

with boundary condition
I T - I

QT = (FT) 9 - ~ T / P

6. Compute the minus gradient reduced to subspace of decision variables

7. Determine sets J and

while 1 is the complement of J

8. If qj = 0 for all j E 1 then u is a minimum point of the augmented Lagrangian penalty
function

9. Set pJ = qJ

10. Solve state equation in variations

with boundary condition a0 = 0

11. Compute

h = llqJl12
v = 11s1112

a(1) = h/v

Note that a (1) is the conjugate gradient step length in direction pJ

12. Find the step length that would violate the nearest non-violated constraint, i.e.,

a (2) = min {g;/s;), K = { a : i E I and s; > 0)
a E K

13. Find the step length that would enable a variable to reach a bound, i.e.,

a (4)=min{(e j -u j) /p j) , K = { j : j ~ I a n d p j < O)
1Eh'

14. Determine step length
a = min (a(;))

i=1, ..., 5

If a = min(a(2), 4 3)) add the row index for which this condition holds t o set I and
remove that index from set I . If a = min(a(4), 4 5)) add the column index for which
this condition holds t o set J and remove that index from set J.

15. Compute :
J uJ : = u + a p J

21 := 21 + a u t

g, := g, - a s ;

16. For the new g1 solve the conjugate equation (as in step 5)

17. Compute the minus gradient :

18. If qJ = 0, then go t o 2

19. If a = a(1) continue with the conjugate gradient step, i.e.

P = 11qJ112/h

pJ = qJ + P P J

and go t o step 10

20. Go t o step 9

Note that the condition qJ = 0 is in practice replaced by l l q J l l 5 E . The vdue of E may be
quite large in the first few iterations; i t then decreases as the number of iterations increases.

4.5 Regularization

It is possible that a linear programming problem may have nonunique optimal solutions.
Although this is theoretically rare, in practice many problems actually have a large set of
widely varying basic solutions for which the objective values differ very little (Sosnowski,
1981). In some cases, the simplex algorithm will stop when a basic solution is recognized
as optimal for a given set of tolerances. For problems with a nonunique optimum, the first
optimal solution found is accepted, so that one may not even be aware of the non-uniqueness
of the solution reported as optimal.

Thus we are faced with the problem of choosing an optimal (or, in most cases, to be
more accurate, a suboptimal) solution that possesses certain additional properties required
by the user. This problem may be overcome by applying an approach called regularization.
Regularization (Tikhonov's type) is a way of finding the optimal solution with either minimum
Euclidian norm or minimum distance from a given reference point. The first of these options
may be activated by a REGZERO statement in the specification file. The second may be
chosen by REGREF statement. For the latter case the non-zero values of 3 (see the following
formulae) are defined in additional section (called reference) in the MPS input file.

The minimum norm solution is obtained by carrying out a sequence of minimizations of
regularized augmented Lagrangians rather than one minimization of an "ordinary" augmented
Lagrangian (Sosnowski, 1978). Thus minimization of L(-, yk) in problem (PO) is replaced by

zk+' = argmin L(z, yk) + 1 1 % - 3112/(2qk)
x

where 3 is given and
CX)

In the computer implementation of the algorithm the following rule is assumed for qk+':

qO, q, and q, are given parameters.

4.6 Preconditioned conjugate gradient for minimization of augmented La-
grangian

The algorithm for minimization of the augmented Lagrangian (cf sec. 4.4) theoretically guar-
antees that the exact solution of a problem will be found after finite number of iterations.
However, during the actual computations the rounding errors often cause numerical problems.
For accelerating the convergence, the augmented Lagrangian can be minimized by using the
preconditioned conjugate gradient method. This method is discussed in details for linear
problems in (Golub and Van Loan, 1983) and for least squares problems in (Heath, 1984).
Therefore we present only brief summary of the applied approach.

The preconditioning matrix M is a matrix which approximates the matrix (A :) ~ (A ~)
and for which the problem of minimization of the augmented Lagrangian is easy to solve. In
HYBRID 3.1 the diagonal of the matrix (A ~) ~ (A :) is used as the preconditioning matrix,
thus M = diag(d;), where d; are squares of norms of columns of the matrix A:.

Since many problems may be solved without usage of preconditioned conjugate gradient
method (which requires additional memory assignement and results in an increase of com-
putation time) the default option in HYBRID 3.1 is suppressing application of this method.
A user may activate this option for a problem for which the convergence is too slow by
specification of the keyword PREC in a -specs file.

4.7 Scaling

It is generally agreed that the choice of an appropriate scaling of a problem being solved can
be a critical issue for numerical stability. There are obviously two approaches to deal with
that problem. First, suggested by Tomlin (1972), assume that an experienced model builder,
who uses sensible units may avoid unnecessarily large or small matrix elements. This is true,
but requires a lot of time consuming preparations, which are reliable source of frustrating
bugs. Therefore, we have followed the second approach, suggested by Curtis and Reid (1972)
for solving the scaling problem. This approach is nowadays widely accepted (e.g. the new
version of MINOS has also scaling option, which has removed many problems typical for older
versions of MINOS).

Our approach is discussed in details in (Makowski and Sosnowski, 1981), therefore only
short description follows. For the sake of simplicity we consider a problem of scaling on an
example of a problem in a form:

Az = b (*

d S z S q

where A E Rmxn.
According t o Curtis and Reid (1972) matrix A is considered as well-scaled if

for some acceptable v . J, are sets of indices of columns with non-zero elements in i-th row.
Therefore, instead of solving a badly conditioned problem a of type (*), one can solve an

equivalent problem in form
(RAC)y = Rb

Here R = diag(rl, . . . , r m) and C = diag(cl, . . . , c,) are two diagonal matrices with positive
components. In other words, an equivalent problem is formed by multiplying i-th row by r;
and j - th column by cj.

The problem of scaling boils down to finding coefficients r j and c j such that

m
2 x x (log(ricjabs(ajj))) 3 min

i=l jc J;

It is easy t o observe that the above stated problem has no unique solution (although the
optimally scaled matrix may be unique). Therefore we minimize the following performance
index:

2
7 x (log(abs(cjbndi))) 3 min

ic L

where r h s and bnd are non-zero elements of RHS and bounds, respectively, sets of indices K
and L contain indices of rows with non-zero rhs and columns with non-zero bounds, respec-
t ively.

For numerical reasons the base of logarithms is 2 and obtained coefficients are rounded
to nearest integer number.

For this formulation of the scaling problem, it was possible to design a specialized al-
gorithm based on conjugate gradient method. Since an excessive accuracy is not required,
the scaling algorithm is very efficient (usually i t takes less then 10 iterations regardless of
dimension of a problem). Therefore, the scaling option (which is the default) should not
be suppressed except if special requirements apply. The values of performance indices (3.7)
and (3.8) are displayed both before and (if active) after scaling.

Usually there is no need t o change default parameters. Should a change of parameters
be desired, i t may be done by entering respective values in specification file (SBETA stands
for p and SETA stands for 7). Two stopping criteria are used, which may be controlled by
parameters SEPS and SEP1. Let uk be a value of the performance index (3.8). The scaling
routine is ended, if uk/uk-' 2 SEPS or if the norm of gradient is less then SEP1. In addition
the number of scaling iterations in constrained by ITSCAL (cf the User Manual).

Scaling coefficients are displayed as additional column in MPS-type output of results.
This has only informative purpose, since all results are rescaled internally.

5 Testing examples

HYBRID has been tested on number of examples. For the sake of illustration of the package
capabilities, three known examples have been selected: two dynamic and one static.

5.1 Economic growth model (Manne)

This model is a linear multicriteria version of Manne's model described in (Murtagh and
Sanders, 1982).

The variables have the following meaning:

t - time period, t = 1,2, . . . , T

ct - consumption

i t - investment,

kt - capital in time period t.

The following criteria have been selected for illustration of multicriteria optimization:

T

m a x h c t (of the type MAX)
t=l

max kT (of the type MAX)

min max (ct - Z~ I
t = 1 , 2 , ..., T (of the type FOL)

The state equations have the following form:

with ko given.

Linear constraints are defined for t = 1,2, . . . , T

Bounds are given for both control variables (for each variable a constraint is specified for
each time period t = 1,2, . . . , T):

ct L co

it 5 (1.04)'io

The following parameters (where a = (co + io)/ko) have been assumed:

In the following table the test examples which refers t o the modified Manne problem are
denoted by ManneT, where T corresponds t o a number of periods.

5.2 Flood control problem

The problem is a model (cf Kreglewski et al., 1985) of the water system which consists of
three general purpose reservoirs supplying water to the main river reach. The goal of the
system dispatcher is t o operate the reservoirs in such a way that the flood peak on the main
river do not coincide. I t is assumed that inflow forecast for each reservoir is known.

The model consists of water balance equations for selected points and for each time period.
The capacities of reservoirs are also constraint. Various types of criteria are examined:

FOL - corresponds t o following given trajectories of water flow in selected points,

DER - corresponds t o minimization water flow changes (in consecutive time periods) in
selected points,

MAX - corresponds t o minimization of maximal (over time) flow in selected points.

In the following table the test examples which refers t o the multicriteria flood control
problems are denoted by FloodT, where T corresponds to a number of periods.

5.3 Full dense LP problem

This problem is a modification of the Mangasarian example (Mangasarian, 1981) and has
been generated for verification of the package for fully dense LP problems. Computations
are performed for one criterion and elements of matrix are equal t o 1.0 with exception of
diagonal elements for which values of a,, = i are selected.

In the following table the test examples which refers t o the modified Mangasarian example
are denoted by MangT, where T corresponds to a dimension of LP matrix.

5.4 Discussion of test results

Testing problems have been solved on a P C compatible with IBM/AT (running a t 8 MHz)
with 80287 coprocessor (running effectively a t 5.3 MHz). The algorithm was implemented
with double precision arithmetic (the machine precision about 2.22e-16). The default values
of all parameters (this includes initial multipliers equal to zero) were assumed in all runs.

The results of some tests are summarized in the following table. Numbers of rows and
columns correspond t o a single criterion LP problem, which were obtained by transforma-
tion of relevant multicriteria problems. The numbers of outer iterations and of total steps
correspond t o execution of step 2 and step 3 of the algorithm (cf sec. 4.1).

Problem Number Rows Cols Dens. Time Mult. Outer Total

Manne05
MannelO
Manne2O
Manne30
Flood03
Flood05
Mang2O
Mang30

of crit.
3
3
2
2
3
3
1
1

(min.)
0.08
0.18
0.25
0.52
0.37
1.50
0.33
0.98

iter.
2
2
2
2
2
3
2
2

iter.
21
45
51

159
13
6 3

8
8

steps
29
53
67

212
107
218
53
87

Due t o super sparse matrix technique applied for storing data, rather long computation
time is required for fully dense matrix problems. For dynamic sparse problems better perfor-
mance of the algorithm was observed. HYBRID is usually slower in comparison t o packages
which are based on the simplex method but requires less computer memory. On the other
hand HYBRID performs detailed diagnostic of a problem being solved and offers a possibility
of definition and modification of a multicriteria problem, its conversion t o an equivalent single
criterion problem, as well as the possibility of effectively solving badly conditioned problems
that might be difficult for other systems.

As an illustration of HYBRID performance on a mainframe computer, a modification of
the Manne problem (for the sake of creating a larger problem we have introduced 10 sectors
instead of one given in formulation in sec. 5.1) for 20 time periods has been solved by both
MINOS ver. 5.0 (Murtagh and Saunders, 1983) and HYBRID ver. 3.1. The test has been
performed on VAX 780/11 under Berkeley UNIX 4.2. A multicriteria problem with criteria
presented in sec. 5.1 has been generated and has been converted by HYBRID t o a correspond-
ing single criteria problem and the MPS format input file for MINOS has been generated.
The resulting problem has 464 rows, 471 columns and 1463 elements (density 0.7%). MINOS
has used 2.9 min. (the sum of user and system time) t o solve the above mentioned problem.
HYBRID has used 2.28 min. for processing and diagnostic of the problem (which includes
interactive definition of initial reference trajectory, conversion of multicriteria problem t o the
equivalent single criterion problem and generation of MPS format file for the latter problem)
and 2.35 min. for solving the problem. On the other hand HYBRID has used less then half
of computer memory required by MINOS to solve the problem.

6 Conclusions

First version of HYBRID was made operational on VAX 780/11 in 1982. This version is
documented in (Makowski and Sosnowski, 1984). Then we had improved and extended the
package for dynamic linear programming models (DLP) and for multicriteria problems (both
static and dynamic). The later version in documented in (Makowski and Sosnowski, 1985b).
The next version, HYBRID 3.03 (described in Makowski and Sosnowski, 1988) allowed for
more general formulation of problems with recognized structure. The code of HYBRID 3.03
has been improved with taking into account robustness of its usage. Last major revision of
the algorithm and code which resulted in HYBRID version 3.1 is summarized in Section 1.3.

HYBRID 3.1 is still a prototype software that requires more testing. It is true that
for some problems HYBRID 3.1 performs worse than the commercial packages FMPS and
MINOS. If HYBRID is used not only for one run but for scenario analysis (solving the problem
with change of multicriteria parameters, matrix elements, RHS etc.) its performance is much
better. This is not only due to the fact that MPS file is processed only once in a first run
but mainly because in consecutive runs only updates of affected coefficients are made (the
problem is generated only for the first run) and because a solution is usually obtained much
faster then for the first run. On the other hand HYBRID offers the possibility of formulation,
solution and analysis of a linear programming multicriteria problems and of single criteria
linear-quadratic problems.

HYBRID provides very useful diagnostics for any LP model and therefore is also useful for
a model verification. It could be used for that purpose as Ustand alone" package, and-also
after possible modification of a problem in interactive w a y - o n e may output MPS-format
file t o be used by other packages. The same approach may be used for transformation of
multicriteria problem t o equivalent single-criteria LP.

The further development of HYBRID will proceed in following directions:

1. Further modification of the way in which the user communicates with the package. The
modification will exploit capabilities of P C and will ease the use of the package.

2. Extensions of capabilities of HYBRID by introduction of new options for definition and
handling of multicriteria problem (new types and more flexible definition of criteria,
introduction of both aspiration and reservation levels, da ta base for previous runs etc).

3. Further improvement of the algorithm and its computer code (automatic evaluation of
some parameters, experiments with possible modification of the algorithm) that will
result in a faster execution.

We hope that , despite the reservations outlined above, HYBRID 3.1 will eventually be
a useful tool with many practical applications. We would be grateful for any criticisms and
comments that would help us to improve the package.

7 References

Bertsekas, D.P. (1976). Multiplier methods: a survey. Automatica, 12: 133-145.

Curtis, A.R. and J.K. Reid (1972). On the automatic scaling of matrices for Gaussian
elimination. Journal of Mathematics and its applications, No. 10, pp. 118-124.

Flecher, R. (1981). Practical methods of optimization, vol 11, Constrained optimization,
Wiley, New York.

Fourer, R. (1982). Solving staircase linear programs by the simplex method. Mathematical
Programming, 23(1982) 274-313,25(1983) 251-292.

Golub, G.H. and C.F. Van Loan (1983). Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland.

Heath, M.T. (1984). Numerical Methods for Large Sparse Linear Least Squares Problems.
SIAM J. Sci. Stat. Comput., Vol. 5, No. 3, 1984.

Hestenes, M.R. (1980). Conjugate Gradient Methods in Optimization. Springer Verlag,
Berlin.

Hurlimann, T. (1988). Reference manual for the LPL Modeling Language. Research Report,
University of Fribourg, Fribourg, Switzerland.

Ho, J.K. and A.S. Hanne (1974). Nested decomposition for dynamic models. Mathematical
Programming , 6(1974) 121-140

Kallio, M., A. Lewandowski and W. Orchard-Hays (1980). An implementation of the refer-
ence point approach for multiobjective optimization. WP-80-35, International Institute
for Applied Systems Analysis, Laxenburg, Austria.

Kreglewski, T., Lewandowski, A. and T. Rogowski (1985). Dynamic Extension of the DIDAS
system and its Application in Flood Control. In M. Grauer, M. Thompson, A.P. Wierz-
bicki, editors: Plural Rationality and Interactive Decision Processes, Springer Verlag.

Lewandowski, A. and M. Grauer (1982). The reference point optimization approach-
methods of efficient implementation. CP-8-S 12, IIASA Collaborative Proceedings Se-
ries: Multiobjective and Stochastic Optimization Proceedings of an IIASA Task Force
Meeting.

Makowski, M. and J. Sosnowski (1981). Implementation of an algorithm for scaling matrices
and other programs useful in linear programming, CP-81-37, International Institute for
Applied Systems Analysis, Laxenburg, Austria.

Makowski, M. and J. Sosnowski (1984). Hybrid: A mathematical programming package,
IIASA, CP-84-9.

Makowski, M. and J . Sosnowski (1985a). A decision support system for planning and control-
ling agricultural production with a decentralized management structure. In M. Grauer,
M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision
Processes, Springer Verlag.

Makowski, M. and J. Sosnowski (1985b). HYBRID 2.1: A mathematical programming
package for multicriteria dynamic problems. In A. Lewandowski, A. Wierzbicki, ed-
itors: Theory Software and Testing Examples for Decision Support Systems, IIASA,
Laxenburg, September 1985.

Makowski, M. and J. Sosnowski (1987). Methodological Guide t o HYBRID 3.01: a mathe-
matical programming package for multicriteria dynamic problems. In A. Lewandowski,
A. Wierzbicki, editors: Theory Software and Testing Examples for Decision Support
Systems, WP-87-26, IIASA, Laxenburg, April 1987.

Makowski, M. and J . Sosnowski (1988). A Mathematical Programming Package for Multi-
criteria Dynamic Linear Problems HYBRID. Methodological and User Guide t o Ver-
sion 3.03, WP-88-002, IIASA, Laxenburg, January 1988.

Mangasarian, O.L. (1981). Iterative solution of linear programs. SIAM Journal for Numer-
ical Analysis, 18(4): 606-614.

Murtagh, B.A. (1981). Advanced Linear Programming: Computation and Practice,
Mc Graw-Hill, New York.

Murtagh, B.A. and M.A. Sanders (1977). MINOS - A large-scale nonlinear programming
system (for problems with linear constraints). User guide. Technical Report, Systems
Optimization Laboratory, Stanford University.

Murtagh, B.A. and M.A. Sanders (1982). A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints. Mathematical Programming Study,
16(1982), 84-117.

Murtagh, B.A. and M.A. Saunders (1983). MINOS 5.0 User's Guide, Technical Report
SOL 83-20, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, Stanford, December 1983.

O'Leary, D.P. (1980). A generalized conjugate gradient algorithm for solving a class of
quadratic problems. Linear Algebra and its Applications, 34: 371-399.

Polyak, B.T. (1969). The conjugate gradient method in extremal problems. Computational
Mathematics and Mathematical Physics, 9: 94-112.

Polyak, B.T. and N.V. Tretiyakov (1972). An iterative method for linear programming
and its economic interpretation. Economic and Mathematical Methods, 8: 740-751, (in
Russian).

Propoi, A. (1976). Problems of Dynamic Linear Programming, IIASA, RM-76-78.

Sosnowski, J.S. (1978). Dynamic optimization of multisectorial linear production model.
Systems Research Institute, Warsaw, Ph.D. Thesis, (in Polish).

Sosnowski, J.S. (1981). Linear programming via augmented Lagrangian and conjugate gra-
dient methods. In S. Walukiewicz and A.P. Wierzbicki, editors: Methods of itlathe-
matical Progmmming, Proceedings of a 1977 Conference in Zakopane. Polish Scientific
Publishers, Warsaw.

Tomlin, J.A. (1972). On scaling linear programming problems. Mathematical Progmmming
Study 4 , North Holland Publishing Company, Amsterdam.

Wierzbicki, A. (1978). On the use of penalty functions in multiobjective optimization,
Institute of Automatics, Technical University of Warsaw.

Wierzbicki, A.P. (1979). A methodological guide to multiobjective decision making,
WP-79-122, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Wierzbicki, A. (1980). A mathematical basis for satisficing decision making. WP-80-90,
IIASA.

Safety Principle in Multiobjective
Decision Support in the Decision Space

Defined by Availability of Resources

Henryk Gorecki, A.M. J . Skulimowski
Institute of Automatic Control,

Academy of Mining and Metallurgy, Krakow.

Abstract

We consider the situation where a decision-maker in a multicriteria optimization prob-
lem must follow additional constraints in the criteria space defined by availability of re-
sources. The set defined by such constraints - called demanded set - is assumed to be
uncertain as a result of a priori experts estimations. The analysis of numerous real-life
situations showed that a method of looking for a non-dominated solution on the so-called
skeleton allows to find a solution maximally safe with respect to the random perturbations
of the demanded set. We formulate a maximal safety principle as a requirement that the
expected value of distance from the solution chosen to the boundary of the demanded set
were maximal. Then we prove that the search executed on the skeleton curve satisfies
this principle for a class of demanded sets defined by aspiration levels.

1 Introduction

The choice of a compromise solution fulfilling additional conditions with regard to its location
in the criteria space is essential in numerous real-life multiple criteria optimization problems.
For instance, the choice of a technological process from many variants proposed by experts,
taking into account the total cost of investment and the minimal necessary time to start the
production, is often based on the analysis of upper and lower bounds for values of the above
criteria, (Gorecki, 1981). Such bounds are usually not strict; they are called aspiration levels
and are assumed to be imposed independently by experts or the decision-maker after the
formulation of the problem, therefore serving as an additional information for selecting the
compromise solution.

The nature of aspiration levels is often uncertain and the arising set of demanded values of
criteria may be represented as random or fuzzy set. When selecting a compromise solution,
the decision-maker is obliged to take into account the possibility of unexpected change of
aspiration levels using an uncertainty handling technique. For the case where the demanded
set is defined by two aspiration levels such a method has been proposed by Gorecki (1981). In
his approach the search for a non-dominated solution has been executed on a line which joins
the aspiration levels, and lies inside of so-called skeleton of the demanded set. An outline
of the skeleton method may be found in Gorecki (1981) and Wiecek (1984). The numerical
implementation of this method has then been developed by Gorecki et al. (1982,1985). Here,
we will present some of its theoretical foundations.

Throughout this paper we will assume that the set defined by the lower and upper aspira-
tion levels, called demanded set, and the attainable set of the criteria values have a non-empty

intersection. Then we will analyse the problem of selecting a non-dominated compromise so-
lution from this intersection which is - in some sense - most reliable to the changes of the
demanded set. Namely, we look for a problem solution on a specific class of lines called the
ordinal skeleton curves of the demanded set. The solution thus obtained will possess the
property that the expected value of the distance from the boundary of the demanded set is
maximal, or equivalently, that the probability of remaining within the demanded set - whose
boundary changes according to some random rules - is maximal.

In this paper we will concentrate our attention on the particular case of the criteria space
constraints, namely on the sets defined by aspiration levels of the form

where: ql and 92 are the aspiration levels for criteria, denoting the minimal admissible, and
the most desired values of the criteria, respectively, and 8 is the positive cone of the partial
order in the criteria space. Usually 8 = R:, and

where qi = (911, ..., Q ~ N) and q2 = (921, ..., qm), ql; 2 92; for 1 5 i 5 N and the product of
intervals is understood in the Cartesian sense.

2 Problem formulation

Let us consider multicriteria minimization problem /MMP/

where F = (Fl, F2, ..., FN) is the vector objective continuous function, U is a closed subset
of the decision space, and 8 is a closed, convex and pointed cone defining the partial order
59 in the criteria space E = RN. We assume that the set U and the function F are convex,
therefore the attainable set F (U) is also convex.

The solution u t o the problem will be called non-dominated if

The set of non-dominated decision will be called the Pareto set and denoted by P(U, F, 8)
while the corresponding set of non-dominated valuations

will be called the compromise set . We will also use the notation P(V, 8) := P(V, IE, 8)
whenever V c E, IE denoting the identity map of this space.

Moreover, we assume that in the criteria space two points are distinguished, ql :=
(911, ..., q 1 ~) and 92 := (q21,q22, ..., q 2 ~) such that 92 59 ql. The points ql and q2 will
be called the upper, and the lower aspiration levels for the problem (3), respectively.

The aspiration levels are set up by experts independently from the base problem formu-
lation and define so-called demanded set Q for the values of the criteria (cf. formula (1)).
We will assume that ql is attainable and that

On the contrary, 92 is assumed to be unattainable strictly dominating point for the attainable
set F(U), i.e.

FP(U, 8) n (92 + 8) # 0 (7)

and

P(qi - 9) n F (U) , 8) = (ql - 8) n F P (U , e) (8)

(cf. Skulimowski (1986a)).
Another additional assumption which will be used at this stage of problem solution is that

there exist reasonable estimates of the scaling coefficients for each scalar criteria Fl, ..., FN.
This will enable us to measure the distance of the criteria inside the demanded set basing
on locally comparable units of the coordinates of the criterion function. A method of deriv-
ing locally comparable units has been proposed by Gorecki (1981) who used the differences
between the coordinates of the barycenter of Q and ql as the relative units of criteria.

Since this kind of information imposes certain knowledge of the trade-offs between criteria
which in our model are uncertain, in the real-life applications we will repeat the execution
of the algorithm described in the following section interactively, with some slightly varying
values of the scaling coefficients.

The demanded set Q plays the role of additional constraints imposed on the solution
to the MMP. At this stage we will assume that every non-dominated solution found inside
Q is admissible for the decision maker. However, the estimates of ql and 92 are usually
uncertain and the satisfactory solution to the problem is the one which lies inside of the
actual demanded set Qq perturbed by a random factor q . To maximize the probability of
uOpt E Qq we will define a special class of algorithms of the line-search for a non-dominated
solution to MMP inside of Q.

3 The search for a non-dominated solution on a curve

The idea of the algorithm of finding a compromise non-dominated solution presented below
consists in replacing the original MMP (3) by a search for a non-dominated solution belonging
to a curve g which lies inside the demanded set Q. If Q is defined by (I) , g begins a t an
attainable reference point ql and ends at an unattainable dominating one, 92 i.e. g(0) = ql and
g (l) = 92. The solution thus found belongs to the intersection of FP(U, 8) and g* := g([O; I]) ,
and is non-dominated provided that the set FP(U,Q) divides the demanded set into two
parts. The latter condition is fulfilled e.g. when F(U) is convex and (6) is satisfied.

The algorithm of the search

The choice of the curve g is based on the analysis of the specific properties of elements of
g*. Consequently we will consider the curves which satisfy the maximal safety principle, i.e.
those for which the probability that the compromise solution chosen will remain within the
randomly perturbed demanded set is maximal.

This may be achieved by selecting the curve maximizing the mean value of distance from
the boundary of the demanded set. Considering moreover the fact that some criteria may
turn out t o be redundant leads us to choosing the so-called ordinal skeleton curve (Gorecki
(1981), Wiecek (1984)) as the curve the search should be expected on.

The general algorithm of the search on a curve g may be sketched as follows:

Step 0 : selection of g, the choice of the algorithm A of detection of a non-dominated point

P on g*,
fo := 92, i := 1, ro := 1

Step 1 :
fi = A(fi-1, ri-1),

Step 2 : check whether f; is attainable; set r, := 1 iff, is attainable,
otherwise r, := 0,
Step 9 :

ei := (1 fi - fi-1 1 1
if r; 5 r;-1 and ei < eo
then

stop

else i := i + 1, go to 1.

The result of an execution of the algorithm is a non-dominated solution p. The Pareto-
optimality of p is an immediate consequence of the assumption that ql and 92 are separated
by the non-dominated surface FP(U, 8) while F(U) is convex (for nonconvex cases, it might
be simpler to maximize an order-approximating achievement functions, see next paper, than
to search for non-dominated points on a curve). The uniqueness is assured if g is a linearly
ordered subset of Q which will be assumed further on. The maximal safety of p will be
discussed in the following section.

In selecting a curve g so that safety principle is satisfied, a crucial role is played by the
norm in the criteria space since it determines the value of the distance of the solution chosen
from the exterior (or, equivalently, boundary) of Q. On the other hand, choice of distance
influences the properties of the probability distribution of finding a non-dominated point
along a curve. The justification of the choice of the norms ll or I, in the criteria space is
contained in the following subsection.

The algorithm is assumed to possess the following properties

a) A(f , r) E g* whenever f E g*

1 I f - f 1 < I f ; - 1 11 for i > 1

c) the assumed number of iterations of A depends only on the value of I lql - 92 I I , not on
the shape of g*.

To check whether a point F; belonging to g* is attainable one should examine the existence
of solutions to the equation

f; = F(u)

In convex cases this may be done as proposed by Wiecek (1984).
The value of eo must be sufficiently small to assure the accuracy of the method. The

recommended value which proved to be adequate in numerical experiments is

where pi(Q) is the diameter of the projection of Q on the i-th axis in the criteria space.

The choice of a distance in the criteria space

We will start this section from the following definition:
Definition 1 : A curve g : [O, 11 + E is linearly ordered iff

for each t l , tp E [O , 1] : tl I tp =+ g(tl) Ie g(tp) (9)

where Ie is the partial order in E. The set of all linearly ordered curves linking the points
z and y will be denoted by L(z, y).

Further on we will require that the following property of the line-search for a non-
dominated solution, imposed by the choice of the class searching algorithms, is satisfied.
Assumption 1 . Let z and y be two elements of the demanded set Q such that z I e y. Then
the probability of finding a non-dominated point on a linearly ordered curve connecting z
and y is constant and does not depend on the choice of this curve.

On the other hand we may require that the search on a curve gives better results when
the curve is longer which can be formalized as
Assumption 2. The probability of detecting a non-dominated point on a curve linking two
points is proportional t o the length of this curve.

Consequently, the Assumptions 1 and 2 imply that all linearly ordered curves linking two
fixed points in the criteria space should have the same length. The above requirements imply
the limitations in the choice of the distance and the derived differential form (element of
distance) which defines the length of the curve.

It is easy to see that the following statement is true.
Proposition 1 : The Assumptions 1 and 2 are fulfilled by the length of the curve generated
by the ll or I, norm, i.e. by

where g = (gl, ...,gN) is the curve considered, and z(ll) is the element of length associated
to the Ll norm. The length of g for I, norm is defined similarly to (10).

Proof of the Proposition 1 is given in Gorecki and Skulimowski (1986b), i.e. we prove
that

for each z , y E Q, a , b E L(z, y) : XI (a) = X l (b) (11)

Observe that only certain distances in R~ satisfy the above requirement (ll), e.g. it is
not fulfilled by the Euclidean distance.

The Assumptions 1 and 2, and the subsequent distance in the criteria space are in com-
pliance with the assumption about the class of algorithms applied for looking for a non-
dominated point on a curve, namely we will assume that these algorithms satisfy:
Assumption 3 . The a priori imposed maximal number of steps of an algorithm of detecting
a non-dominated point on a curve g connecting the elements z and y of the criteria space
does not depend on the choice of g but on the differences between coordinates of z and y. In
particular, it may be defined as

where Ent(r) , r E R, is the smallest integer exceeding r , and s,, 1 I i 5 N , are desired steps
of quantification of criteria.

4 The safety principle

We will start this section with some basic definitions and properties. Let us recall that the
demanded set Q is a closed and connected subset of the criteria space such that

Remark 1 : When (12) is not satisfied but Q contains some dominating points for the attain-
able set then Q may be regarded as a target set and a distance scalarization technique may
be applied (Skulimowski, 1985a).

Further on we will restrict our consideration to the case where the demanded set appears
as a result of upper and lower estimates for the values of the criteria.
Definition 2 . The interval demanded set for the problem (3) is given by the formula

Interval demanded set in the case 8 := R: may be represented as

where qj, q; are lower and upper estimates of the i-th criterion demanded values respectively.
Definition 9 . The subset SI of the interval demanded set QI defined by the formula

SI := {z E QI : 3G,, G,, i # j - facets of QI, such that (13)

where aQI - the boundary of QI - will be called the skeleton of QI.
Now, let C(Q) be the subset of Q consisting of points maximally distant from the bound-

ary of Q, i.e.
c (Q) := E Q : V Y E Q , ~ (Y , aQ) 5 4 2 , aQ)) (14)

and let ql and 92 be two distinct elements of a Q such that 92 5 s q1. If Q is convex then for
each element q of the boundary of Q there exist a unique half-line v(q) starting in q and such
that the function d(e , aQ) grows fastest on v(q) in a neighborhood of each point belonging
to v(q). It is easy to see that v(q) links q and C(Q) and it is linearly ordered. Thus we may
formulate the following
Definition 4 . The ordinal skeleton of Q is the set

It is evident that if Q = QI then So c SI.
Observe that the narrower are the experts' estimations concerning a criterion Fi the

smaller scope of decision is left to the decision-maker. Consequently, in some extreme cases
certain criteria can be regarded rather as the constraint functions. Moreover, when the
estimates are relatively narrow, one may expect that they are also more accurate than those
which allow the decision maker for the broad range of decision.

Thus in some cases the decision-maker can neglect the uncertainty in the estimations
concerning one or more coordinates of the objective functions. In such a situation the con-
sideration of the original demanded set Q should be replaced by taking into account the set

Q '
Q1 := pr(il, ..., ik)Q

where pr(il, ..., ik) denotes the projection from RN to R ~ - ~ parallel to the axes i l , ..., ik of
the criteria space.

However, taking an arbitrary linearly ordered curve g contained in So c RN its projection
pr(il, ..., ik)(g) may not necessarily be contained in a lower-dimensional SA c R ~ - ~ . To
ensure that the skeleton curve in RN is also a skeleton curve in each lower dimensional space
we will define the skeleton curve in the following manner.
Definition 5 . The linearly ordered broken line joining ql and 92 defined by the construction
below and contained in So will be called the skeleton curve of Qr and denoted by S.

Construction of the skeleton curve S is as follows:

1. Define

2. Reorder the set d; so that a new index j increases along with increasing values of
d , : l < j < k ;

3. Compute new pairs of opposite breaking points of SD according to the formulae:

We now can to the issue of safety principle.
Proposition 2 (a maximal safety principle). Let L(ql, q2) be the set of all curves joining ql
and 92 inside QI and being linearly ordered. Then for every g E L(ql, 92) and every c such
that c* c So

P P

where P is a uniform probability distribution on g or c, and d is the ll or I, distance in the
criteria space. In particular, (15) holds for the skeleton curve S. Proof of the Proposition 2
has been presented in Gorecki and Skulimowski (1986b).
Corollary 1. In the situation where there is no information about the location of the Pareto
set, the search along the skeleton curve S results in finding a non-dominated solution maxi-
mally distant to the boundaries of QI.
Remark 2: The property (15) of the curve S can serve as a definition of the ordinal skeleton
curve in the case when the demanded set is different from QI. The proved property (15) of the
skeleton curve is closely related to another definition of the safety of the solution admitted.
Definition 6. A non-dominated y solution to the problem (3) will be called mazimally safe
with respect to the change of bounds of Q if for each z E F P (U , 8)

where is a probability distribution in the space of closed and convex subsets of the criteria
space.

Now let us observe that Proposition 3 implies the following result concerning the safety
of the solution to MMP chosen on the skeleton curve S.
Theorem 1. Let X be an arbitrary subset of QI. The probability distribution rj defining the
changes of aQ is assumed uniform. Then the maximally safe element of X with respect to
the changes of Q belongs to S whenever S n X # 0.
Corollary 2 : A maximal safe non-dominated point belongs to S or is closest to S in F(U) nQ.

5 An application to a design problem

Let us consider the problem of designing a construction lift taking into account the set of
parameters which decide about the commercial success of the product. These criteria include
the time of evaluation of the project Fl, the lifting capacity F2, the maximal range of the
arm F3. We assume that may exist other criteria such as reliability coefficient F4 or the
production price per unit Fs which should be simply optimized, without paying attention to
the constraints in the criteria space and are not included in the model of preferences here
presented. The total cost of design and investment may be regarded as a constraint, together
with the employment, materials and technology limitations. We assume that all constraints
form a set U of admissible design strategies. The annual net income anticipated I may serve
as an aggregated utility function which, however, depends on the above listed criteria in an
unknown way. We can only assume that I is monotonically depending on the measure of
fulfillment of the market's expectations which are expressed by the set Q.

According t o the preference model presented in the preceding subsections U is defined
by upper and lower limitations for the values of criteria. These parameters can have the
following practical interpretation:

FII the minimal time necessary to distribute an announcement about the new prod-
uct t o the potential customers, also - if all or a prevailing part of lifts is to be
sold to one company - the minimal supply time required by this company;

F l u estimated upper limit of period warranting a sufficient market's demand, or the
maximal supply time required by the commissioning company, or the estimated
time a similar lift will be designed and offered by other producers;

F21 minimal lifting capacity admissible for lifts of this type;

FZU maximal reasonable lifting capacity estimated basing on the knowledge of p e
tential scope of applications of lifts;

Fsl , Fsu similarly as above - the minimal admissible, and maximal reasonable values of
the range of arm.

Each criterion should be optimized inside of the bounds Fil, flu, 1 5 i 5 3, whereas Fl
should be minimized, the other criteria - maximized.

The demanded set Q can be expressed in the form

The bounds of Q are uncertain as the values of Fil and F,,, 1 < i 5 3 are only estimates
of the real user's needs. By Theorem 1 the strategy chosen on the skeleton set S ensures
that the probability of remaining within a perturbed set Q, maximal, r) being a random
perturbation coefficient of Q. Roughly speaking, the better the solution chosen fits into the
set Q,, the higher is the income I , on the other hand I should be monotonic with respect to
the criteria Fl, F2, ..., FN. Thus we can conclude that I should be monotonically proportional
to the utility function defined by the formula

where d(.,8Q) is the distance t o the boundary of Q, i = (Fl, F2, Fs), fi = (F4, F5) and
Il and I2 are certain order representing functions defined so that the maximum of G were
non-dominated and situated within Q x R2 (cf. also formula in the final subsection). Let us
note that the values of Il and 4 are entirely independent if the values of F and fi are not
depending on each other.

Hence it follows that the maximal safety with respect to of a compromise solution
chosen is not conflicting with the goal of optimizing F in Q x R2. According to the results
of the preceding subsection such a compromise value of F should be found on the skeleton
curve S.

Since we do not impose any decision choice rule for the remaining criteria F4 and F5 we
might consider two subcases:

1. i and fi are independent - then we get a family of solutions of form

where Fc is the compromise value of found on the skeleton curve S.

2. the values of fi are uniquely determined by - then we get a unique solution

A simple numerical example is presented below.

A numerical example

In the above described decision model suppose that :

Fli = 2 months,
F l u = 12 months,
F21 = 5000 kilograms,
F2,, = 25000 kilograms,
Fsi = 10 meters,
FSU = 50 meters.

Then we get

The decision space is defined as the intersection of Q and

where U is the set of available design strategies connected with the employment, investment
of financial strategies which are not considered here.

The distance in R3 which serves to define the safety coefficients inside Q is given by

Since Fl is the only minimized objective function, the criteria F2 and F3 can be equiva-
lently taken into account in the minimization problem

(F: , F;, F;) H min (2 6)

after the following transformation:

Simultaneously,

and
q; := (2 ; -25000; - 5 0)) q; := (1 2 ; -5000; - 1 0) .

Having found the skeleton curve S and the compromise solution f, for the transformed
problem (2 6) - (2 7) , one should perform the transformation reverse to (2 7) to obtain the nu-
merical values interpretable for the decision-maker.

There exist 4 breaking points in the skeleton curve S which can be found according to
the construction algorithm given in Def.5 and amount to :

The core C (Q) is the rectangle

-
The compromise solution f, can be found on the interval [q3,q4] and amounts to (7 ; 15.58;
40 .58) . One can observe that in the above case f, E C (Q) .

6 Final remarks

The algorithm of solving the MMP basing on the search on the skeleton curve has been
implemented in FORTRAN and applied to solve real-life problems. The reader is referred
to Gorecki et al. (1982, 1985) for a detailed study of decision making in the development
analysis in the chemical industry.

The applications presented there show the adequacy of the decisions made via the skeleton
method. Some properties of the MMP solution choice algorithm based on applying the
skeleton curve have also been discussed by Wiecek (1984) . The main idea of this algorithm is

the same as in the general algorithm with the curve g replaced by the skeleton curve S. This
algorithm can be repeated interactively, with the modified scale coefficients and the lower,
and upper experts' estimations, qz and ql, respectively.

The method turned out to be useful as well in case where the existence of the intersection
of S and the set of non-dominated points could not been taken for granted basing on the
assumptions concerning the objective F and the feasible set U. In particular, a heuristic ver-
sion of the method could be applied to select a compromise solution in the case of non-convex
attainable set F(U) provided the decision-maker is modifying the upper and lower estimates
ql and qz in accordance with the initial information about the location of F P (U , 8) he is
assumed to posses. The theoretical analysis of such a class of methods, applying the search
on the skeleton curve as a single step of the procedure, with the demanded set systematically
modified during and interactive decision-making process challenges the perspectives of the
further development of the method.

Another possibility of investigating the theoretical fundamentals of the method consists
in interpreting the search for a non-dominated solution on S as maximizing certain approx-
imative utility function or achievement function cp which admits its local maxima on S. In
this approach cp can be taken as the membership function of certain fuzzy set which describes
the uncertainty of the demanded set Q. This function can have the form

It follows immediately from the above formula that c p ~ has the desired property mentioned
above, i.e.

0 I cpQ (z) I 1

and, moreover, c p ~ is order-representing (Wierzbicki, 1980). While maximizing such a func-
tion, the assumpions of convexity of F(U) can be relaxed.

These properties could provide for a combination of quasi-satisficing rationality approach,
fuzzy set theory and the skeleton method.

References

Gorecki, H., (1981). Problem of choice of an optimal solution in a multicriteria space.
Proceedings of the 8th IFAC World Congress. Kyoto 1981; Pergamon Press, London,
Vol. 10, pp 106-110.

Gorecki, H., A.M. Skulimowski (1986a). A joint consideration of multiple reference points
in multicriteria decision-making. Found. Contr. Engrg. 11; No. 2.

Gorecki, H., A.M. Skulimowski (1986b). Group decision-making maximally safe with re-
spectto the change of aspiration levels. (to appear).

Gorecki, H., G. Dobrowolski, J. Kopytowski, M. Zebrowski (1982). The quest for a con-
cordance between technologies and resources as a multiobjective decision process. M.
Grauer, A. Lewandowski, and A.P. Wierzbicki Eds. Multiobjective and Stochastic Op-
timization, IIASA Collaborative Paper CP-82-S12, Laxenburg, Austria, pp 463-476.

Gorecki, H., G. Dobrowolski, T. Rys, M. Wiecek, M. Zebrowski (1985). Decision support
system based on the skeleton method - the HG package. Interactive Decision Making,
Proc. Sopron 1984 , pp 269-280.

Skulimowski, A.M. (1985a). Solving vector optimization problems via multilevel analysis of
foreseen consequences. Found. of Control Engrg., 10; No . 1 .

Skulimowski, A.M. (1985b). Generalized distance scalarization in Banach spaces, Rev. Belge
de Stat . , Inf. Rech. Operationelle, 25, No.1 , pp 3-14.

Skulimowski, A.M. (1986). A sufficient condition for 8-optimality of distance scalarizing
procedures. Proc. of the Int. Conference on Vector Optimization J.Jahn, W.Krabs
(Eds.), Darmstadt, 5-8 August 1986.

Wierzbicki, A.P. (1980). On the use of reference objectives in multicriteria optimization.
W.Fande1, T.Gal (Eds.) Multiple Criteria Deciaion Making - Theory and Application.

Wiecek, M. (1984). The skeleton method in multicriteria problems. Found. Contr . Engrg.,
9, No.4, pp 193-200.

Nonlinear Optimization Techniques
in

Decision Support Systems

T o m a s z Kreglewski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

Various aspects of the use of nonlinear models and nonlinear optimization algorithms
in model-based decision support systems are discussed. Differences between linear and
nonlinear cases are examined. A standard formulation for some class of nonlinear models
is proposed. Special forms for the scalar-valued achievement functions especially devel-
oped for nonlinear optimization are proposed for scalarizing multiple criteria nonlinear
optimization problems in the case of two reference (reservation and aspiration) levels spec-
ified by the user. A method of an automatic creation of derivatives for model equations
together with a way of speeding-up their calculations is presented. Most of the concepts
presented in this paper are implemented in the IAC-DIDAS-N system (see Kreglewski et
al., 1988) developed by the author and his collaborators during their cooperative research
with the System and Decision Sciences Program of the International Institute for Applied
Systems Analysis.

1 Introduction

The decision analysis and support systems of DIDAS family (Dynamic Interactive Decision
Analysis and Support - see second paper of this volume) are designed to support interactive
work with a model of the decision problem, formalized mathematically and computerized.
The work with such models is supported by multicriteria optimization tools used for a se-
lection of data presented to the user. The learning aspects of the work with the model are
also taken into account. Often there are two kinds of users of such decision support systems:
analysts and decision makers. The former prepare the model and formalize the multicrite-
ria decision problem, whereas the latter use the system either as a tool for on-line decision
making or as a training and case-study tool.

A model-based decision support system, regardless of the type of models and problems
considered, consists of some standard parts: the model itself, the solver (optimization code
for selecting optimal decisions in the sense of current problem formulation) and the interfaces
between the model, the solver and the user of the system. The degree of complexity of these
interfaces depends on the type of model (linear or nonlinear, static or dynamic etc), on the
type of decision situation (single or multiple criteria, deterministic or with some uncertainty
etc) and on the requirements for the level of user-friendliness of the system. The interface
between the user (mostly the analyst) and the model is a model generator, that is, a tool for
preparing the model, for its edition and simulation as well as verification of the model when
learning about the model behaviour.

2 The model definition

We propose here a specific format for the definition of a nonlinear model, this format has been
proved to be useful for multicriteria analysis of such models. The definition of a nonlinear
model includes the specification of vectors representing input variables z E Rn , parameters
z E RI and outcome variables y E Rm , nonlinear model equations defining the relations
between inputs, parameters and outputs of the model and model bounds defining lower and
upper bounds for inputs and outputs:

where function f : Rn x R' x Rm - Rm , f = [f,] , i = 1,. . . , m , should define the
outcomes y in an explicit way, even if some outcomes y; depend on some other outcomes yj
which influences the necessary order of calculations of functions f;, f j for given inputs z and
parameters z . However, this dependence should be explicitly recursive, without loops and
thus without need for internal iterative calculations.

The edition of the model described by (1) is the edition of numbers - elements of vectors
do, zUP, ylo, yup, z and initial values of z and the edition of formulae f,(z , z , y). The
edition of numbers is a standard function of all number-crunching software and can be easily
performed using e.g. standard or specialized spreadsheet. The formulae edition should be
performed in a way as close as possible to the standard mathematical notation. A full-
screen or window editor with some special functions for formula validation can be used for
this purpose. The necessity of formulae edition makes the preparation of nonlinear models
different from a preparation of linear ones.

Another difference appears when the edition of model is finished. A linear model is
then ready, whereas a nonlinear model requires validation by many simulation runs often
resulting in updates of its formulation. In many cases standard mathematical notation is not
sufficient and some additional logical structures like if.. then.. else.. must be used to avoid
illegal mathematical computations like square root of negative argument etc. Moreover,
formulae editor should be equipped with some debugging tools to help the user looking for
the formula and the exact place in the formula where such illegal operations occur. Sometimes
other tools like stepby-step calculations are necessary.

During interactive analysis of optimal model characteristics nonlinear programming al-
gorithms are used. Experience shows that gradient-type algorithms are more robust and
efficient than non-gradient ones (see e.g. Kreglewski a t al., 1984); therefore, all gradients
of model equations must be calculated. Numerical estimation of gradients is not accurate
enough and is very time consuming, therefore it should not be used in decision support
systems. Although analytical formulae for derivatives could be supplied by the user, this
approach is not recommended for a t least two reasons. Firstly, the creation of such formulae
is a very cumbersome and time consuming task. Secondly, mistakes in user-supplied formu-
lae for derivatives are found to be the main reason of unsuccessful applications of nonlinear
optimization tools.

Thus, formulae for derivatives of model equations should be processed symbolically inside
the model preparation part of a decision support system. This function of the system could
be even invisible to the user except in cases when some numerical errors occur in calculation
of derivatives during simulations of the model which implies some additional functions of
formulae editor.

The class of models described by (1) for decision support systems with efficient optimiza-
tion included is therefore restricted to models with differentiable model equations. Moreover,

logical structures used in formulae should be used with great care to not include nondiffer-
entiabilities or even discontinuities. Implementation of automatic verification algorithms to
check differentiability is very difficult and may restrict otherwise admissible types of functions.

3 Formalization of a decision problem

The functions of the model outcomes y,, i = 1, . . . , m, may be various. Some of them may
be only intermediate results, internal in their essence, results inside the model. Others may
form various kinds of model constraints. Finally, some of outcomes are quality measures
of the model behaviour or objective outcomes. In particular decision situations objective
outcomes have to be minimized, maximized or stabilized (i.e. kept close to a given level). In
a multicriteria decision problem separate outcomes can be of each of a different type.

In optimization-based decision support systems it is assumed that the user is interested
only in efficient solutions (that is, such that no objective may be improved without deteriorat-
ing some other objective). If the user finds at some stage of the work that this assumption is
no longer valid, he can redefine the decision problem formalization be adding new objectives.

An important part of a definition of a decision problem based on nonlinear model is a
classification of constraints into three classes. The first class contains linear constraints; these
are all bounds on variables z and bounds on outcomes that depend linearly on variables z.
Linear constraints are always satisfied during any optimization process. The two other classes
contain nonlinear constraints formed by bounds on outcomes that depend on variables z in
a nonlinear way. In the second class there are so called 'hard' constraints (e.g. technological
balances). These constraints should be satisfied exactly (within given accuracy), a t least at
each calculated optimal point, because other model outcomes can have meaningless values if
this constraints are not satisfied. The existence of such constraints is the main difficulty for
optimization algorithms and may lead to its inefficiency. The last class of constraints is a class
of so called 'soft' constraints, mostly of some economical nature. The reason of distinguishing
this class is that there are some measurable costs of violation of these constraints. Thus in
many cases these constraint outcomes could be treated as additional objective outcomes with
some trade-offs between other objective values and violations of these 'soft' constraints.

4 Initial analysis of a decision situation

Before an interactive analysis of the decision problem, the user should first learn about
ranges of changes of efficient objective outcomes. The most important information is about
the best attainable values of particular objectives calculated independently. These values are
practically never attainable jointly, hence the name utopia point for the point in objective
space composed of them. The point in objective space composed of the worst efficient values
is called nadir point, however its exact calculation is a very difficult computational task -
for nonlinear models there is even no constructive method for such calculation. A rough
estimation of the nadir point can be obtained just by recording the worst values resulting
from calculations of utopia point components.

The ranges of efficient values of objectives are used as scaling factors for objectives while
constructing the scalar-valued achievement function that is next used for calculating efficient
solutions (other than utopia point components). This function will be discussed in detail in
the next section.

Additionally, another efficient point may be calculated. So called neutral solution is an

efficient solution situated 'in the middle' of the range of efficient outcomes. It is obtained
by minimization of the distance to the utopia point using differences between utopia and
nadir components as scaling factors. The important feature of such scaling method is that
relative achievement of each objective (the ratio of the distance from the solution to the
utopia point and the distance from the nadir point to the utopia point) is exactly the same
(except some non-convex and rather degenerate problems with discontinuous set of efficient
solutions). This relative achievement factor can have a value in the range from zero (if
the neutral solution is a t the utopia point) to one (if the neutral solution is a t the nadir
point). Both extreme values represent degenerate, ill-defined multiple criteria problems.
The interpretation of the values inside the range depends on dimensionality of the decision
problem (the number of objectives), however, using a simple transformation one can calculate
so called conflict coeficient:

where n is the number of objectives and r is relative achievement factor. The conflict coeffi-
cient is equal to zero if the neutral solution is just a t the utopia point. It means that there
are no conflicts among objectives. On the other hand, the conflict coefficient is equal to two if
the neutral solution is just a t the nadir point. It means that objectives are totally in conflict,
however, such a situation can not exactly occur in case of continuous models.

The essential feature of the conflict coefficient defined by (2) is that it is equal to one if
there is exact linear substitution between objectives. Moreover, all values above one represent
non-convex problems.

The conflict coefficient is a very useful way of an initial classification of the decision
problem. If it is rather close to zero then the selection process of efficient solutions can be
expected to be fast, but if it is greater than one then the selection process may be difficult
and time-consuming .

5 Parametric scalarization of a multiobjective problem

This scalarization is achieved by a scalar-valued achievement function. However, before
introducing this function, a formal mathematical notation of the decision problem must be
introduced. It is assumed in further analysis that parameters z have known, fixed values zo.
To simplify the notation, an explicit input-output relation is introduced:

Y = F(z) = f (z , r o , Y) (3)

According to the model definition (I) , the set of admissible decisions X is defined by:

There are p objectives, that form the objective space RP being the subspace of the outcome
space Rm. Some of objective outcomes might be minimized, some maximized and some
stabilized (that is, minimized if their value is above stabilization level and maximized if their
value is below stabilization level). All these possibilities can be summarized by defining the
order in the objective space by introducing a positive cone D:

where the first p' objectives are to be maximized, the next from p' + 1 until p" - minimized,
and the last from p" + 1 until p - stabilized. Let q = Fq (z) be the vector of all objectives
selected among all outcomes defined by (3) and Q = Fq(X) be the set of attainable objective
outcomes. Fq is composed of corresponding components of F. The multiobjective nonlinear
programming problem is to maximize q;, i = 1,. . . ,pl, minimize q,, i = p' + 1, . . . ,p", and
stabilize q;, i = p"+ 1,. . . , p over the set of admissible decisions (4). Thus q̂ E Q is an efficient
solution (Pareto optimal) iff there is no such q E Q that q - q^ E 5, where fi = D \ (0). The
set of all efficient outcomes (the Pareto set) can be written as:

-
If in the above definitions the set 5 is replaced by the set b = i n t D, then such solutions
will be only weakly e f ic ient . However as there are stabilized objectives (i.e. p" < p), then -
the set fi is empty and thus all attainable objectives are weakly efficient. Therefore, weakly
efficient solutions are of no practical interest to the user. Moreover, some efficient solutions for
multiobjective nonlinear programming problems may have unbounded trade-off coefficients
that indicate how much an objective should be deteriorated in order to improve another
objective by a unit; therefore it is important to distinguish also a subset QP c Q called
the set of properly ef icient solutions, such that the corresponding trade-off coefficients are
bounded. A properly efficient solution with trade-off coefficients that are very high or very
low does not practically differ from a weakly efficient solution. Thus, some a priori bound
on trade-off coefficients should be defined and properly efficient solutions that do not satisfy
this bound should be excluded. This can be done by defining a slightly broader cone:

where any norm in R P is used, also to define the distance between q and D. The corresponding
modified definition of the set of all Dc-efficient solutions has the form:

Solutions belonging to the set QP' are properly efficient with trade-off coefficients a priori
bounded by approximately E and 1 / ~ ; such solutions are also called properly ef icient uith (a
priori) bound.

The selection of properly efficient solutions with bound and the corresponding decisions
(values of variables z) should be easily controlled by the user and should result in any objective
values in the set QP' he may wish to attain. The way of user-controlled selection of a properly
efficient solution is based on the reference point concept (see Wierzbicki, 1982; Lewandowski
and Wierzbicki, 1988). The selection method proposed here uses two user-selectable reference
levels. This method can be used also in decision support systems with linear models, however,
in case of nonlinear models with possible nonconvexities the use of this two reference levels
approach is especially recommended.

For minimized and maximized objectives the user can specify two kinds of reference levels:
aspiration levels denoted here qi or as a vector called aspiration point and reservation levels
denoted i, or i as a vector called reservation point . The aspiration levels represent the levels
that the user would like to attain (although the aspiration point as whole is not attainable in
most cases), whereas the reservation levels could be interpreted as 'soft' lower limits for objec-
tives (for maximized objectives; upper limits for minimized objectives). Reservation levels ti

for maximized objectives should be 'below' the aspiration levels 6 (9, < q, , i = 1,. . . ,p l) ,
whereas reservation levels zi for minimized objectives should be 'above' the aspiration levels
q; (z; > q, , i = p l + l ,..., p").

For each stabilized objective q; the user can specify the lower reservation level denoted
2 and the upper reeervation level denoted 9;. It is assumed that the stabilization level q: is
given implicitly as a mean value of two reservation levels q: = (8 + yy)/2 , thus the user
defines the reservation range around the stabilization level. Moreover the lower aspiration
level = q: - 6(cr - 2)/2 and the upper aspiration level = q: + 6($' - 8)/2 are
additionally defined, thus the aspiration range is 6 times narrow than the reservation range
with q: being the center of both ranges. The coefficient 6 can have some default value, but
can be changed by the user.

The aspiration and reservation points, called jointly reference points, are both user-
selectable parameters (for minimized and maximized objectives; for stabilized objectives two
reservation levels are user-selectable). A special way of parametric scalarization of the mul-
tiobjective analysis problem is utilized for the purpose of influencing the selection of efficient
solutions by changing reference points. This parametric scalarization is obtained through
maximizing an order-approzimating achievement junction (see Wierzbicki 1983,1986). There
are several forms of such functions; properly efficient outcomes with approximate bound a,
1/a are obtained when maximizing a function of the following form:

s q , = m i (l<l<pll ?in z ; (q ; , g , &) , min ~ ~ (q ~ , f . i ~ , c , ~)) +
p"+lli<p

where the parameter a should be positive, even if very small; if this parameter would be
equal zero, then the above function would not be order-approximating any more, but order-
representing, and its maximal points could correspond to weakly efficient outcomes.

The functions zi(qi , tj, , f.i) for maximized objectives (i = 1 , . . . , p') are defined by:

and the functions zi (q; , 6 , q'i) for minimized objectives (i = p' + 1, . . . , p") are defined by:

z i (q i , q i , 6) = min ((6 -q,)/s: , I + (& - qi)/sy) (11)

while the functions zi(qi , g'il , f.iu) for stabilized objectives (i = p" + 1 , . . . , p) are defined
by :

= 1 = u 1
ti(q;;., qi , qi) =min(z ; , 2;)

zf = min ((q , - f.il)/s:, 1 + (p i - &')/s:)

where

The coefficients s: > 0 , sy > 0 in (lo), (1 1) and (12) are scaling units for all objectives and
are determined automatically to obtain the following common absolute achievement measure
for all individual criterion achievement functions zi(q,, . , .) :

1 + rl if qi = qfto (qf for stabilized objectives)

if qi = q-i (q-il or q-iU for stabilized objectives) (14)

0 if qi = fi (6' or 6" for stabilized objectives)

where qiUto is the utopia point component for objective qi , i = 1, . . . ,p", and q > 0 is an
arbitrary coefficient.

For minimized or maximized objectives (i = 1, . . . ,), scaling coefficients s: and sy
depend on relations between aspiration level 6, reservation level fi and limit qiUto of all
attainable efficient values of objective q, :

For stabilized objectives (i = p" + 1, . . . , p), scaling coefficients si and sy depend on the
distance between c1 and 6" (i.e. reservation range) and on the user defined coefficient 6 (i.e.
on relations between aspiration and reservation ranges):

Parameter q in (15) and (16) is selected according to current relations between 6, c,
qyto, and the value of coefficient 6 :

q y " - @ q-i - qyto 6
q = min min , min

(l s i < p l 6 - c p l + l < i < p " 6 - Q;: ' -) 1 - 6

Three sets of conditions must hold for this selection of s: and sy :

The achievement function s (q , Q , q) can be maximized with q = Fq(z) over z E X ;
however, the function (9) is nondifferentiable (for example, if q = Q). On the other hand, if
the function F(z) (and thus also Fq(z)) is differentiable, then the maximization of function
(9) can be converted automatically to an equivalent differentiable nonlinear programming
problem by introducing proxy variables and substituting the min operation in (9) by a number
of additional inequalities. If the coefficient e > 0, then the achievement function has the
following properties (see Wierzbicki, 1986) :

a) For any arbitrary aspiration and reservation points satisfying conditions (18), but not
necessarily restricted t o be attainable (Q E Q , E Q) or not attainable (4 e Q ,

e Q) , each maximal point q̂ of the achievement function s (q , Q, t) with q = f (z)
over z E X is a D,-efficient solution, that is, a properly efficient solution with trade-off
coefficients bounded approximately by e and lie.

b) For any properly efficient outcome q^ with trade-off coefficients bounded by E and I/&,
there exist such aspiration ij and reservation q points that the maximum of the achieve-
ment function s(q , ij, ;) is attained at the properly efficient outcome $. In particular,
if the user (either by chance or as a result of a learning process) specifies some at-
tainable but not efficient reservation point ; and an aspiration point Q that in itself is
such properly efficient outcome, ij = 4, and if conditions (18) are satisfied, then the
maximum of the achievement function s (q , Q , ;), equal one, is attained precisely at
this point.

c) If the aspiration point Q is 'too high' (for maximized outcomes; 'too low' for minimized
outcomes), then the maximum of the achievement function, smaller than one, is attained
at an efficient outcome 4 that best approximates uniformly, in the sense of scaling units
s:, the aspiration point. If the aspiration point ij is 'too low' (for maximized outcomes;
'too high' for minimized outcomes), then the maximum of the achievement function,
larger than one, is attained at an efficient outcome 4 that is uniformly, in the sense of
scaling units sy, 'higher' than the aspiration point.

d) By changing his aspiration ij and reservation q points, the user can continuously influ-
ence the selection of the corresponding efficient outcomes q* that maximize the achieve-
ment function.

The parameter E in the achievement function determines bounds on trade-off coefficients:
if an efficient solution has trade-off coefficients that are too large or too small (say, lower than

or higher than lo6) than it does not differ for the decision maker from weakly efficient
solutions - some of its components could be improved without practically deteriorating
other components. Another interpretation of this parameter is that it indicates how much
an average overachievement (or underachievement) of aspiration levels should correct the
minimal overachievement (or maximal underachievement) in the function (9).

The achievement function (9) can be transformed to an equivalent form if taking into
account the scaling coefficients determined by (15) and (16) and assuming that the parameter
& = O :

s(q,Q,;)=l+q- ma^(lsisp" max i . (q i , g , c) , max i (i u)) (19)
pU+l<i<p

with

where

with q: , 6' and 6" given by (13).
The maximization of an achievement function is performed by a nonlinear optimization

algorithm. Since this maximization is performed repetitively, a t least once for each interaction
with the user that changes the parameters P or a , this optimization algorithm must be very
robust and efficient, therefore, according to our experience, only gradient type algorithms
should be used to perform this task. However, the functions (9) or (19) are nondifferentiable
and can not be used as scalarizing functions if gradient optimization algorithms are used.
Therefore an appropriate form of an achievement function that differentiably approximates
function (9) has been developed. This smooth order-approzimating achievement function has
the form:

where w: , wy , w,:' , w,:" , wi+" and wi+' are given by (21), (22) and (23).
The parameter cr > 2 is responsible for the approximation of the function (9) or (19)

by the function (24): if cr --t oo and E -t 0, then these functions converge to each other (if
taking into account the specific definition of scaling coefficients in (9)). However, the use
of too large parameters cr results in badly conditioned problems when maximizing function
(24), hence cr = 4 i 10 are suggested to be used. During numerical computations a slightly
simpler scalarizing function may be used and minimized:

The function (25) must be minimized with q = Fq(z) over z E X , while X is determined
by simple bounds zlo 5 z I zUP as well as by constraints y'o < F(z) < yUp.

6 Creation and calculation of derivatives

Model equations are functions of general, even very complicated, form with addition, s u b
straction, multiplication, division and power operators, subexpressions in parentheses and
standard mathematical functions (like sin or arctan). Moreover if. .then.. else.. logical struc-
tures can be used as case selectors for alternate parts of expressions. Values of these functions
and values of their derivatives are required during simulation and optimization processes.

Values of partial or total derivatives are useful as sensitivity indices during simulation of
a model at user-supplied points. If the simulation point is the end-point of an optimization
process then values of derivatives can be used for post-optimal analysis. Values of derivatives
are necessary during the optimization process, since practically only gradient-type nonlinear
programming algorithms are enough efficient and robust to be applied in interactive decision
support systems.

For accuracy and efficiency reasons, derivatives should be calculated analytically rather
then numerically using more or less advanced concepts of finite difference intervals. A user-
friendly decision support system designed to work with nonlinear models must be therefore
equipped with a symbolic differentiation tool for an automatic creation of derivatives.

Symbolic transformations are much more time-consuming then numerical calculations.
Although the generation of derivatives must be done only once after each change of the
formula, a full symbolic transformation from a source formula of functions to source formulae
of its derivatives is a time-consuming task even for mainframe computers. On the other hand
calculations of functions and derivative values are repeated many times during optimization
process, thus code used for their calculation should be compact and efficient.

Any method calculating automatically all derivatives (like table method proposed and
exploited by Kalaba, 1983) is not acceptable. The Jacobian matrix of model equations is
often sparse, therefore adequate structural analysis should be performed for a selection of
derivatives to be created and calculated. Integrated formulae compiler should then be used
to generate a code for calculating values of functions and values of all necessary non-constant
derivatives.

Such a compiler may consist of the one-pass but recursive top-down parser which converts
the source formula into a sequence of commands of a stack machine (Wirth, 1976). These
commands can be then either interpreted by a hypothetical stack machine or executed as a
binary code using hardware stack. The latter method can be applied for example on IBM
PC type microcomputer with a numerical coprocessor using a hardware register stack of the
coprocessor.

The topdown parsing must be performed several times for each formula; once in order
to create code (or commands) for calculating a function value and next some number of
times (according to results of the structural analysis) in order to create code for calculating
derivatives values. However, parsing and extracting subsequent syntactical items from a
source formula is found to be much more time-consuming task then the generation of a code.
Hence, it is reasonable to implement a two-pass compiler for this purpose.

In the first pass, performed only once jointly for function and derivatives, an intermediate
code is created as a result of parsing of source formula with encoding subsequent syntactical
elements. All semantical and syntactical errors in formula are detected in this pass. Moreover,
structural analysis can be done and graph of logical dependences can be created. This graph is
used later for organising calculations of the whole model. Functions must be calculated in the
proper order because some outcomes may depend on others. Furthermore, total derivatives
are calculated numerically combining partial derivatives in the appropriate order.

The second compilation pass is performed independently for a function and all derivatives
required according to the results of structural analysis. The intermediate code is processed
now and either binary codes or sequences of commands are created. This action can be
done very fast because it is based on binary data and doesn't need error checking (It is only
done following successful termination of the first pass, therefore, intermediate code is always
correct).

The comparison of formulae for a function and its derivatives leads in the observation that

very often they have many similar subexpressions. Thus, substantial speed-up of calculations
is possible due to appropriate arrangement of computations avoiding multiple calculations of
these common subexpressions. Basic theoretical results on the problem of structural analysis
of model equations and its derivatives can be found in Wierzbicki (1977, 1985). In the
computer implementation, some partial results obtained during calculations of the function
value are stored in a buffer and then used during calculations of derivatives values. Although
it is conceptually simple, the computer implementation was slightly difficult.

These general ideas will be explained here using a very simple example. If outcome yl
depends on variable z l as a product of two nonlinear functions:

then its derivative is:

Values of a(zl) and b(zl) are obtained and stored in the buffer during calculations of yl(zl).
Thus, for the calculation of the derivative only partial derivatives and ?*

are calculated but values of a(zl) and b(zl) are taken from the buffer.
Similar procedures can be used for division and power operations as well as for calculations

of standard function derivatives. If additionally, logical structures if..then..else.. are used
in a formula, then values of logical expressions following if are calculated only once during
calculation of the function value. The boolean values (transferred through adequate buffer)
are then consistently used during calculations of derivatives values.

Another important way of speeding-up computations of derivatives consists in an appro-
priate simplification of derivatives. This can be done again as a result of structural analysis.
Very often, not all parts of a complicated function depend on all variables. If in the above
example outcome yl depends on two variables z l and z2 again as a product of two nonlinear
functions but with different arguments:

then its derivative is:
a ~ l (~ 1 , '2) - - a a(zl) * b(z2) ,

a 21 a z1
a 0 2 therefore, only must be calculated.

During implementation of both methods of speeding-up the calculations of derivatives
some trade-off must be taken into account. Detailed structural analysis and perfect simplifi-
cation may be much more time consuming then many calculations of only partially simplified
derivatives. However, the transfer of some partial results and even a rough simplification
of derivatives give substantial decrease of calculation time, especially in the case of a large
number of variables.

The proposed method of creation of a code for derivatives calculations is not exactly
method of symbolic calculations. Only binary codes are generated instead of a source text
of derivatives formulae. It may be an important disadvantage while the model is developed
and tested, especially if numerical difficulties occur during derivative calculations. However,
the generation of a source derivative formulae from the binary code for visualisation and
debugging purposes is a very cumbersome task. Moreover, partial results and boolean value
transfers make rather difficult the presentation of these formulae in a reasonable way.

Some other possibilities of an automatic generation of derivatives in decision support
systems with nonlinear models are discussed by Lewandowski (1986).

7 References

Kalaba, R., Rasakhoo, N. and Tishler, R. (1983). Nonlinear Least Squares via Automatic
Derivative Evaluation. Applied Mathematics and Computation, 12, pp. 119-137.

Kreglewski, T., Rogowski, T., Ruszczynski, A. and Szymanowski, J. (1984). Optimization
Methods in FORTRAN (in Polish), PWN, Warsaw.

Kreglewski, T., Paczynski, J. and Wierzbicki, A. P. (1988). IAC-DIDAS-N A Dynamic In-
teractive Decision Analysis and Support System for Multicriteria Analysis of Nonlinear
Models on Professional Microcomputers. Working Paper, IIASA, Laxenburg, Austria
(to appear).

Lewandowski, A. (1986). Problem Interface for Nonlinear DIDAS. WP-86-50, International
Institute for Applied Systems Analysis, Laxenburg, Austria.

Lewandowski, A., Wierzbicki A. P. (1988). Aspiration Based Decision Analysis and Support,
Part I: Theoretical and Methodological Backgrounds. WP-88-3, International Institute
for Applied Systems Analysis, Laxenburg, Austria.

Wierzbicki, A. P. (1977). Models and Sensitivity of Control Systems (in Polish), WNT,
Warsaw (English edition - Elsevier, Amsterdam 1985).

Wierzbicki, A. P. (1982). A Mathematical Basis for Satisficing Decision Making. Mathe-
matical Modelling 3, pp. 391-405.

Wierzbicki, A. P. (1986). On the Completeness and Constructiveness of Parametric Char-
acterizations to Vector Optimization Problems. OR Spektrum 8, pp. 73-87.

Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice Hall, Englewood
Clifs.

Nonlinear Computer Models -
Issues of Generation and Differentiation

Jerzy Paczynski, Tomasz Kregle wski

Insti tute of Automatic Control, Warsaw University of Technology.

Abetract
This paper presents remarks on the methodology of generation of computer models

for nonlinear problems. The automatic differentiation of the model is discussed and
implementation hints are given. The presentation is based on the experience gained
during implementations of the nonlinear model generator, the IAC-DIDAS-N system
and observations of other software produced under the contracted study agreement with
IIASA.

1 From abstract model formulation to the generation of a
computerized model

A fairly abstract formulation of the equation of a model (or process bounds) has the form

where z E B, denotes internal variables, u E B, denotes control variables, r E B, denotes
disturbances and a E B, denotes parameters. P : B, x B, x B, x B, + B, is a nonlinear
mapping of bounds. B, is the space of bounds, usually isomorphic to B,. The above equation
is accompanied by the output equation in an explicit form

where V : B, x B, x B, x B, -+ By is the output mapping. A wide spectrum of models -
including dynamic, distributed, etc. formulations - can be described in this general form by
suitable choice of spaces and operators.

It is difficult to draw more detailed conclusions from the general form of the equation
of bounds. Therefore the concept of a resolving mapping R is introduced; it is an operator
which determines z while given u, z, a. In most cases the resolving operator is realized in a
feedback system, so the notation

z = R(P(z, u, z, a))

will be used. The existence and properties of this operator usually are investigated by using
the contraction mapping theorem. Details depend very strongly on the spaces assumed, often
i t can be a numerical iterative process. In special but very important for applications cases
the bounds equation has an explicit form

z = Q(u, z, a) .

Structural properties of the model can be visualized in the form of a generalized directed
graph (Wierzbicki, 1984). The nodes of this graph can be of three sorts:

i) a node denoted by a circle corresponds to a variable,

ii) a node denoted by a double circle corresponds to the ordered n-tuple of variables and
is labelled with it,

iii) a node denoted by a square corresponds to a value which is stabilized.

The arcs of the graph are labelled with operators; to improve readability the identity operators
I can be omitted.

Typical examples are presented in Fig. 1 for the equations: a) P (z , u) = 0 b) z = R(z, u).

Figure 1.

The arc labelled with a non-identity operator must start from a node of the "double
circle" sort. Thus in case of a composite operator an additional node must be inserted. E.g.
the equation

= Q(S(u))

corresponds to the graph presented in Fig. lc.
From the implementation point of view a computer model can have one of the following

forms:

- a program in a simulation language,

- a procedure (or a collection of them) in an universal programming language,

- a program in a declarative language,

- a set of entries in a spreadsheet.

This list is by no means exhaustive, it is rather the indication of the wide spectrum of pos-
sible solutions. However, to build a computer model on the base of a "bare" language or

programming system requires specialized knowledge of the relevant aspects of the computer
science and techniques, in addition to the specific science determined by the modelled prob-
lem. Proficiency in this specific science is not necessarily accompanied by the proficiency in
using software tools. Therefore the whole process can be time-consuming and frustrating the
user.

Therefore, a modern software must be equipped with a user-friendly interface, which will
hide most technical details from the user. In the described context it should posses three
main properties:

i) Edition. It should be done in terms of the corresponding problem science only,

ii) Verification. A safe environment for model verification (performing partial or complete
calculations, simulations etc.) should be provided,

iii) Modification. Easy transfer between two previous phases is necessary for efficient con-
struction of a model.

Many examples of the need and development of such interfaces can be found in this book (see
e.g. DIDAS, DINAS, HYBRID, DISCRET). More detailed references to papers on interfaces
for nonlinear models are given in (Paczynski and Kreglewski, 1987).

2 Automatic differentiation of the model - general concepts
and implement at ional hints

Differentiation of a model arises in several contexts, e.g.

- series expansion,

- solution of implicit equations based on the implicit function theorem,

- sensitivity analysis,

- optimization.

In any specific formulation of the abstract model class described above, it is necessary to
check the existence and properties of the derivatives (Gateaux or Frechet) of the model. In
the implementation practice the classical differential calculus is often used, but nevertheless
a manual differentiation presents considerable problems in the case of large and complicated
models. This process is very prone to analytical errors which can make the model incon-
sistent. The existence of such errors is, as a rule, very hard to detect. Awareness of this
situation leads often to the practical abandonment of theoretically promising methods, e.g.
using sensitivity models in simulation languages or calculating Hessians matrices in optimiza-
tion. Implementation of the automatic differentiation plays therefore an important role in
various problems of system analysis.

It will be assumed in the following that all necessary conditions of differentiability and of
the applicability of the implicit function theorem etc. are fulfilled. The rules of differentiation
of a model can be easily formulated in terms of its graph representation (Wierzbicki, 1984):

i) the graph of the total derivative retains the structure of the model,

ii) all non-identity arc labels are advanced one arc backwards and are replaced by the
operators of appropriate derivatives,

iii) vacant labels are filled with the identity operators.

Total derivatives of the graphs presented in Fig. 1 are presented in Fig. 2.

Figure 2.

In every finite graph, it is possible to distinguish a finite number of closed feedback
loops corresponding to implicit operations and a finite number of feedforward connections
corresponding to composite operations. Thus the subsequent applications of the above rules
gives the desired result.

It should be stressed that in some cases the graph may be rather a conceptual device than
an element of implementation. In the creation of a sensitivity model it may be used explicitly,
while in other cases it may be used implicitly by the application of recursive procedures.

Many problems of automatic differentiation (in more narrow context) have been discussed
by Rall (1981.) but computer implementations presented there are rather obsolete. From the
computational point of view the differentiation of the model resembles much the compilation
process. General information about compilers can be found e.g. in (Aho and Ullman, 1977).
The model equations must be described in a form suitable for computer analysis. Thus the
first step is the creation of the input language (the problem language). This language must
assure an easy interface with the user and an easy interface with the differentiating program.
In practice some iterations are often needed until a mature form of the language is obtained.

The process of the automatic differentiation usually can be divided into some phases.
The first one is the lexical analysis, i.e. the division of characters of the input language into
groups that logically belong together-into symbols as e.g. identifiers of variables, symbols
of operators. The output of the lexical analyser is a stream of symbols, which is passed to
the next phase, to the syntax analyser (parser). The parser checks whether the symbols
appearing a t its input form a legal sequence of the input language (defined by its syntax
rules) and produces an intermediate code. This code can be of very diverse nature, according
both to the details of the problems and to the details of the particular implementation. A
graph, a tree or a stack structure are typical examples. This intermediate form of the model

is actually differentiated and thus another structure in the intermediate form, representing
the derivative, is produced.

Usually the derivative must be simplified to an acceptable form. This phase is one of
the hardest to implement due to its internal complication and nonexistence of the "simplestn
canonical forms. The goal of simplification depends heavily on details of the particular
problem. In the case of a simulation program it can be the number and the interconnection
pattern of the modelling blocks, in the case of the evaluation of values-the computation
efficiency measured as time, when the output has the form of symbolic formulae-similiarity
to the analogous result obtained by a mathematician.

In the final step this code is transferred into the form of the output language. Occasionally
it can coincide with the input language, however many different forms are possible e.g. files
with a simulation program or with a numerical procedure, a code for the calculations on a
virtual computer or just formulae.

Under the contract with IIASA two differentiation packages were implemented for appli-
cations in differentiable optimization packages and decision analysis and support system. The
first package, used in the IAC-DIDAS-N system, is oriented towards efficient calculation of
values of derivatives; the second, used in a nonlinear rnodel generator, is oriented on symbolic
presentation of formulae of derivatives.

References

Aho A.V. and D. Ullman (1977). Principles of Compiler Design. Addison Wesley.

Paczynski J. and T. Kreglewski (1987). Nonlinear Model Generator. In: Theory, Software
and Testing Examples for Decision Support Systems. WP-87-26, IIASA, Laxenburg,
Austria.

Rall L.B. (1981). Automatic Differentiation: Techniques and Applications. Springer.

Wierzbicki A. (1984). Models and Sensitivity of Control Systems. Elsevier.

Issues of Effectiveness Arising
in the Design of a System of

Nondifferentiable Optimization Algorithms

Krzysztof C. Kiwiel, Andrzej Stachurski

Systems Research Institute, Polish Academy of Sciences, Warsaw.

Abstract

This paper describes NOA, a package of Fortran subroutines for minimizing a lo-
cally Lipschitz continuous function subject to locally Lipschitzian inequality and equality
constraints, general linear constraints and simple upper and lower bounds. The pack-
age implements several descent methods that accumulate subgradients of the problem
functions and use quadratic programming for search direction finding. We discuss some
choices made in the implementation and indicate their potential merits and drawbacks.

1 Introduction

NOA is a collection of Fortran subroutines designed to solve nondifferentiable optimization
(NDO) problems of the following form

minimize

subject to

F;(z) < o for i = 1, . . . , rnz , (lb)

F;(z)=O for i = m z + l , ..., m z + m ~ , (1 4
L U Az 5 b and z; 5 z; 5 z, for i = 1, . . . , n , (1 4

where the vector z = (21 , . . . , zn)T has n components (superscript T denotes transposition),
f; and F; are locally Lipschitz continuous functions, and where the mA x n matrix A , the
m~-vector b and the n-vectors zL and zU are constant; vector inequalities apply to all
components.

The user has to provide a Fortran subroutine for evaluating the problem functions and
their single subgradients (called generalized gradients by Clarke (1983)) a t each z in
SL = { z E Rn : Az < b , zL 5 z < zU) . For instance, if F; is smooth then its subgradient
gFi(z) equals the gradient VF;(z) , whereas for the max function

with p smooth and Z compact, gFi (z) may be computed as the gradient V,p(z , z(z)) (with
respect to z) , where z(z) is an arbitrary minimizer in (2). (Surveys of subgradient calculus
may be found in Clarke (1985) and Kiwiel (1985d).)

The nonlinear functions f, and Fi should be upper semidifferentiable (see (18)). This
property is likely to hold in most applications (see Bihain, 1984; Mifflin, 1977). Thus the
potential application area of general purpose NDO methods is vast. We note, however, that
particular classes of NDO problems (e.g. minimax problems) can be solved more efficiently
by specialized methods (see, e.g. Fletcher, 1981; Kiwiel, 1988~) .

For unconstrained problems NOA implements the descent methods of Kiwiel (1985a,
1985d, 1986c), which stem from the works of Lemarechal (1978) and Mifflin (1982). Linearly
constrained problems are solved by the methods of Kiwiel (1985b, 1986b, 1987b). Problems
with nonlinear constraints are solved by the feasible point methods of Kiwiel (1985d, 1988b)
(which follow the approach of Mifflin (1982)), the constraint linearization method of Kiwiel
(1987a), or the exact penalty function methods of Kiwiel (1985c, 1988a) (see also Polak,
Mayne and Wardi, 1983).

NOA seems to be the first implementation of descent methods for nonlinearly constrained
NDO problems. (The system of Lemarechal, which implements an E - steepest descent
method of Lemarechal, Strodiot and Bihain (1981), is restricted to problems with simple
bounds.) Thus in developing NOA we have been faced with a number of implementation
issues, and some of our choices may not be the best ones. It seems worthwhile, therefore, to
discuss their possible merits and drawbacks. This may help both the potential users and the
developers of NDO algorithms.

Our exposition will be rather informal, but we shall try to address some questions that
are usually ignored in papers that analyse particular methods. Our judgements may seem
subjective, and we refrain from supporting them by numerical examples, which would take
up too much space and could always be deemed inconclusive.

We refer the reader to Lemarechal (1986) for a recent review of other NDO methods.
NOA may be used for solving multiobjective (vector) minimization problems with m > 1

objective functions { c p ,) ~ , and a feasible set S (defined, e.g., by the constraints of (1)). To
this end, one may choose a "good" point qm'" E Rm in the objective space and a "bad" point
qmax E Rm (qimin < qyax for all i) that define the scalarizing function

m

S (Z ; qmin , qmax) = ,max pi (z) - qTin p i (~) - qyin
t<i<m qmax - 9; min + i=l C qima~ - qimin '

where E > 0 is a parameter. Then the problem

minimize s (z ; qmin , qmax) over all z E S

is a scalarized version of the vector one, and its (local) solutions are (locally) efficient (taking
E > 0 prevents them from being only weakly efficient; see, e.g. Wierzbicki, 1986). By choosing

(qmin , qm") interactively and minimizing s (. ; qmin , qmax), the user may scan the Pareto
set in the search for a satisfying solution. Since the scalarizing function s has the structure
of (la) , it can be minimized by NOA whenever all the objectives pi are locally Lipschitzian
and one can evaluate their subgradients. On the other hand, when all pi are twice continu-
ously differentiable, then it may be more efficient to use specialized minimax methods with
superlinear or quadratic local convergence rates (see, e.g. Fletcher, 1981). However, even
in this case it is not clear whether such specialized methods can provide approximate solu-
tions quickly, and their robust implementations are still unavailable. Anyway, NOA seems
quite efficient and robust a t reasonable accuracy requirements (see Bronisz and Krus, 1985).
Additional motivation for using max-type scalarizing functions can be found in (Wierzbicki,
1986) and other papers in this volume.

The paper is organized as follows. Section 2 reviews some basic concepts, which are dis-
cussed in more detail in Section 3 devoted to linearly constrained convex minimization. In
sections 4, 5 and 6 we describe, respectively, exact penalty methods, the constraint lineariza-
tion method and the feasible point method for convex problems. Extensions to nonconvex
problems are treated in Section 7. Finally, we have a conclusion section.

We use the following notation. Rn denotes the n-dimensional Euclidean space with the
usual inner product (. , .) and the associated norm I I . Superscripts are used to denote
different vectors, e.g. z1 and z2 .

Our general reference on nondifferentiable optimization is Clarke (1983). We say that
f : Rn -+ R is locally Lipschitzian if for any bounded set B in Rn there exists a finite
constant L such that I f (z) - f(y)l 5 Llz - yl for all z , y E B . The subdifferential o f f a t z is

l i m o f (y i) : yi -+ z and f is differentiable a t each y' } , where conv denotes
and V f denotes the gradient of f .

2 General concepts

In this section we review some useful general concepts.
Define the objective, inequality and equality constraint functions

Let SI = { z : F) 0 SF = { z : F(z) 5 0) a n d S = S L n S F , w h e r e

is the total constraint function. Then we may reformulate (1) as

minimize f (z) ,

subject t o F(z) 5 0 and z E St .
Define the exact penalty function with a penalty coefficient c > 0

Given a fixed c > 0, each solution z, to the problem

minimize e (z ; c) over all z E St (4)

solves (3) if i t is feasible (F(z,) 5 0) . This holds if c is sufficiently large, (3) has a solution
and its constraints are sufficiently regular (see, e.g. Clarke, 1983).

The solution algorithms of NOA are feasible with respect t o the linear constraints, i.e.
they generate successive approximations t o a solution of (3) in SL . The user must specify
an initial estimate zO of the solution, and the orthogonal projection of zO on SL is taken as
the algorithm's starting point z1 .

Two basic techniques are used for nonlinear constraints. In the first one, which solves (4)
with a suitably chosen c , the initial z1 need not lie in SF and the successive points converge
to a solution from outside of SF . The second one uses a feasible point method which keeps
the successive iterates in SI if z1 E SI .

The algorithms of NOA are based on the following concept of descent methods for NDO.
Starting from a given point an iterative method of descent generates a sequence of points,
which should converge to a solution. The property of descent means that successive points
have lower objective (or exact penalty) function values. To find a descent direction from
the current iterate, the method replaces the problem functions with their accumulated piece
wise linear (polyhedral) approximations. Each linear piece of such an approximation is a
linearization of the given function, obtained by evaluating the function and its subgradient
a t the trial point of an earlier iteration. The polyhedral approximations and quadratic reg-
ularization yield a local approximation to the original optimization problem, whose solution
(found by quadratic provides the search direction. Next, a line search along
this direction produces the next approximation to a solution and the next trial point, d e
tecting the possible gradient discontinuities. The successive polyhedral approximations are
formed to ensure convergence to a solution without storing too many linearizations. To this
end, subgradient selection (or aggregation) techniques are employed.

3 Linearly constrained convex minimization

The problem of minimizing a convex function f : Rn -+ R over SL may be solved in NOA
by the method of Kiwiel (1987b). To avoid repetitions in subsequent sections, most of the
basic ideas will be discussed in detail for this method only.

Let gj(y) denote the subgradient of f at y calculated by the user's subroutine. Thus at
each y we can construct the linearization of f

which is a lower approximation to f (f 2 I (. ; y) by convexity) .
Given a starting point z1 E SL , the algorithm generates a sequence of points zk E SL,

k = 2,3,. . . , that converges to a minimizer of f on SL . At the k-th iteration the method
uses the following approximation to f

derived from the linearizations of f at certain trial points yf of earlier iterations j , where
the index set Jf c { 1, . . . , k} typically has n + 2 elements. Note that f k may be a tight

approximation to f around yj, j E Jf , since f (yj) = fk(d) .
The best feasible direction of descent for f a t zk is, of course, the solution Jk to the

problem min { f (zk + d) : zk + d E sL } , since zk + Jk minimizes f on SL . The algorithm
finds an approximate descent direction dk to

-k k minimize f (z + d) + ldI2/2 , subject to zk + d E SL , (7)

where the regularizing penalty term ldI2/2 is intended to keep zk + dk in the region where f k

should be close to f ; without this term (7) need not have a bounded solution.
In practice we need a stopping criterion for detecting that the method may terminate

because further significant progress is unlikely. The algorithms of NOA typically exhibit

only linear rate of convergence, and we have to content ourselves with solutions with relative
accuracy of up to seven digits in the objective value; otherwise the final progress may be
painfully slow. The nonpositive quantity

is an optimality measure of zk , since

f (zk) I f (z) + lukl'J21z - zkI - vk for all z E SL . (8)

The algorithm terminates if

Ivkl 5 &.(I + l f (zk) l) ,
where s, > 0 is a final accuracy tolerance provided by the user. (The term If (zk) I is included
to make this test less sensitive t o the scaling of f (multiplication of f by a positive constant),
but only large scaling factors are accounted for.) Usually in practice for s, = lo-('+')
and 1 = 3,4 or 5 termination occurs when 1 f (zk) - f (z*)I is about 10-'(1 + 1 f (z*)l), and
1z - z*(is about 10- ' /~(1 + Iz*(), where z* is a minimizer of f on SL . Of course such
estimates may be false for ill-conditioned problems and thus it is rather surprising that
the criterion (9) is quite reliable in practice. Some explanation may be deduced from the
fact that when the quadratic term is inactive in (7), i.e. zk + dk minimizes f k on SL then
f(z*) 2 fk(=*) 2 j"(~& + dk) = f (zk) + vk .

On the other hand, when f is polyhedral termination should occur at some iteration with
vk = 0 (and optimal zk). In practice computer rounding errors prevent the vanishing of vk ,

213 but still we may use a rather small E , in (9), e.g. E , = cM , where EM is the relative machine
accuracy.

If the algorithm does not terminate, then the negative value of vk = fk(yk+') - f (zk)
predicts the descent f (yk+') - f (zk) for the move from zk to the trial point yk+' = z +dk .
Usually vk over-estimates the descent because f 2 f k and f k need not agree with f a t yk+'
if its linearizations do not reflect discontinuities in V f around z . The algorithm makes a
serious step to zk+' = yk+' if

where mL E (0 , 1) is a parameter; otherwise a null step zk+' = zk provides the new
linearization f(- ; yk+') for improving the next model fk+' of f .

We typically use mL = 0.1 in (10); in practice m ~ > 0.5 may result in many null steps,
whereas mL < 0.1 may produce damped oscillations of { z k) around the solution (little
descent is made at each serious step). We note that in theory finite termination for polyhedral
problems can be ensured with mL = 1 (see Kiwiel, 1987a), but our experiments indicate that
mL = 0.1 is more efficient.

The user may trade off storage and work per iteration for speed of convergence by choosing
the maximum number Mg of past linearizations involved in the approximations f k . To
ensure convergence, the method selects for keeping the linearizations active at the solution to
subproblem (7) (their indices enter J?' together with k+ I) , whereas inactive linearizations
may be dropped. More linearizations enhance faster convergence by providing more accurate
f k , but the costs of solving subproblem (7) may become prohibitive. Using Mg greater than its
minimal possible value n + 3, Mg = 2n say, frequently increases the overall efficiency. To save
storage, the algorithm may be run with Mg > 3 by employing subgradient aggregation instead
of selection, but this will usually decrease the rate of convergence (sometimes drastically!).

The algorithm described so far is rather sensitive to the objective scaling, mainly due to
the presence of the arbitrary quadratic term in subproblem (7). For greater flexibility, the
user may choose a positive weight u in the following version of (7)

min { f k (z k + d) + u ldI2/2 : zk + d E SL} .

If f varies rapidly, increasing u from 1 will decrease Idkl , thus localizing the search for a
better point to the neighborhood of zk. On the other hand, too "largen u will produce many
serious, but short steps with very small I zk+' - zkI , and convergence will be slow. We intend
to implement in NOA the technique of Kiwiel (1988d) for choosing the weight u adaptively.
At present we note that suitable line searches (see Section 7) may offset an improper choice
of u.

Subproblem (7) is solved in NOA by a special subroutine for quadratic programming
(see Kiwiel, 1986a). This subroutine is quite efficient. Still when there are many general
linear constraints some work could be saved a t direction finding by considering only almost
active constraints, i.e. only rows A, of A such that ~~z~ 2 bi - E: for some activity tolerance
E; > 0. A reasonable choice of .s: which does not impair convergence is E; = -vk-l (or E: =
max { -vk-' ,)). However, the gain in effort at direction finding could be outweighted
by an increase in the number of iterations required to reach an acceptable solution (cf.
Nguyen and Strodiot, 1984). Hence this option is not included in NOA, which is intended
for small-scale problems. For the same reason we have refrained from implementing reduced
(sub)gradient strategies (cf. Bihain, Nguyen and Strodiot, 1987; Panier, 1987).

4 Exact penalty methods for convex problems

Suppose that problem (3) is convex (i.e. f and F are convex) and satisfies the generalized
Slater qualification (F (z) < 0 for some z E SL). Then problems (3) and (4) are equivalent
if c is large enough. Moreover, we may easily compute linearizations of e(. ; c) from those of
f and F.

The methods of NOA with a fixed penalty coefficient require the user to specify c. The
first one solves (4) by the algorithm of Section 3 (i.e. e(. ; c) replaces f). The second one
exploits the additive structure of e(. ; c) in its approximation

2 (2 ; C) = P (z) + cmax { Pk(z) , O}

formed from f k (see (5)) and

(z) = m a x (z ;) : j E J : } ,

The second method is usually faster, since its approximations tk(. ; c) are more accurate
(have more linear pieces) (cf. Kiwiel, 1988a). For both methods termination occurs if (cf.

(9)
v k (+ e k)) and F (z k) S ~ ~ , (12)

where E. and .SF are positive accuracy and feasibility tolerances (provided by the user),
whereas

k v k = P (z k + d k ; c) - e (z ; c) (13)

yields the optimality estimates (cf. (8))

Both methods may be allowed to choose the penalty coefficient automatically. Then a t
the k-th iteration we use c = ck > 0 (e.g. in (11)). The initial c' > 0 may be specified by
the user. The penalty coefficient is increased only if zk is an approximate solution to (4) (i.e.
it minimizes e (. ; ck) to within some positive tolerance 6:), but it is significantly infeasible
(i.e. F(zk) is "large"). The specific updating rule of Kiwiel (1985~) based on (14) reads

if - vk > 6: or F(zk) 5 -vk set ck+' = ck and 6:" = bk c 1

otherwise set ck+' = tccck and 6:+' = ,cab: ,
where tc, > 1 and tca E (0 , 1) are parameters (e.g. tc, = 2 , tca = 0.1 for c' = 10 and
6,' = -vl) . We are currently preferring the alternative "parameter-freen rule of Kiwiel
(1988a)

if F(zk) 5 -ckvk set ck+' = ck , otherwise ck+' = 2ck .

In theory both rules ensure automatic limitation of penalty growth, and they are quite efficient
in practice (i.e. they seldom produce a too large c k , which hinders the minimization of
e (. ; ck)). However, none of them is entirely satisfactory because they are too sensitive to
the constraint scaling.

5 The constraint linearization method

The convex problem of Section 4 may be solved in NOA by the constraint linearization
method of Kiwiel (1987a), which is frequently more efficient than the algorithms of Section 4.

At the k-th iteration the algorithm finds dk to

minimize fk(zk + dk) + (dI2/2 ,
- k k subject to F (z + d) 5 0 and zk + d E SL .

(16)

The solution dk is an approximate descent direction for e (. ; ck) at zk, provided that ck is
greater than the Lagrange multiplier Ek of the first constraint of (16). Hence the algorithm
sets ck+' = ck if ck 2 Ek ; otherwise ck+' = max { tk , tccck) , where tc, > 1 is a parameter (e.g.
K, = 2) , and c' = 0 . Again vk given by (13) and (11) satisfies the optimality estimate (15),
which justifies the termination test (12). Naturally, e (. ; ck+') replaces f in the improvement
test (10).

The additional constraint activity in (16) reduces the number of degrees of freedom, and
may lead to faster convergence in comparison with the methods of Section 4. However, when
z' is very far from a solution, the present method may generate a much larger value of ck
than the former ones, and then it becomes less efficient.

6 Feasible point methods

The convex problem of Section 4 may also be solved in NOA by the feasible point method of
Kiwiel (1985d, 1988b). This method uses the approximations ik and Pk of f and F in the
search direction finding subproblem

- k k minimize H (z + d) + JdI2/2 , subject to zk + d E S ,

where
I;lk(z) = max { fk(z) - f (zk) , Fk(z) }

approximates the improvement function

Thus, if F(zk) 5 0 , we wish to find a feasible (pk (zk + dk) < 0) direction of descent
(f (zk + dk) < f (zk)) , whereas for F (zk) > 0 , dk should be a descent direction for F
(pk(zk + d k) < F (z ~)), since then we would like to decrease the constraint violation.
Naturally, H (. ; zk) replaces f in the improvement test (10) with ok = B k (z k + d k) -
H (zk , zk), and (9) is used as a stopping criterion. In other words, this is just one iteration
of the method of Section 3 applied to the minimization of H (; zk) over SL !

In effect the algorithm runs in two phases. Phase 1 reduces the constraint violation, while
phase 2 (if any) keeps zk feasible and decreases f (zk).

The algorithm is, in general, more reliable than the exact penalty methods of Sections
4 and 5, because it does not need to choose the penalty coefficient. Also it is more widely
applicable, since it need not in fact require the evaluation of f and gf at infeasible points. Un-
fortunately, its convergence is usually much slower, because it cannot approach the boundary
of the feasible set a t a fast rate.

7 Methods for nonconvex problems

Nonconvex minimization problems are solved in NOA by natural extensions of the methods
described in Sections 3, 4 and 6, see Kiwiel (1985a, 1985d, 1986b, 1986c, 1988a).

For simplicity, let us consider the problem of minimizing a locally Lipschitzian function f
on SL . In the nonconvex case the subgradient gf (y) may be used for modelling f around z
only when y is close to z (we no longer have f _> f (. ; y)). The subgradient locality measure

with a parameter 7, > 0 indicates how much gf (y) differs from being a subgradient of f at
z. At the k-th iteration the algorithm uses the following modification of (6) for finding dk
via (7)

fk(z) = f (z k) + m a x { - u f (z k ; $)+ (gf(#), 2 - z k) : j~ ~ f } .
In the convex case with 7, = 0 this approximation is equivalent to (6)

(since f (zk) 2 f (zk ; y ~)) . For 7, > 0 the local subgradients with small weights af (z k ; y ~)
tend to influence dk more strongly than the nonlocal ones.

The above definition of a/ is rather arbitrary (cf. Mifflin, 1982), and it is not clear how
the value of 7, should reflect the degree of nonconvexity of f (in theory any 7, > 0 will do).
Of course, for convex f 7, = 0 is best. Larger values of 7, are essential for concluding that zk

is optimal because jk indicates that f has no feasible descent directions at zk. On the other
hand, a large 7, may cause that after a serious step all the past subgradients will become
inactive at the search direction finding. Then the algorithm will be forced to accumulate
local subgradients by performing many null steps.

It is, therefore, reassuring to observe that 7, = 1 seems to work quite well in practice (cf.
Kiwiel, 1988a). However, it may be necessary to scale the variables so that they are of order
1 a t the solution (to justify the Euclidean norm in (17)). Since automatic scaling could be
dangerous, it is not implemented in NOA, but we intend to pursue this subject in the future.

Another feature of the nonconvex case is the need for line searches. Two cases are possible
when a line search explores how well jk agrees with f between zk and zk + dk. Either it is
possible to make a serious step by finding a stepsize t i E (0 , 1] such that the next iterate
zk+' = zk + t i d k has a significantly lower objective value than zk , or a null step zk+' = zk
(t i = 0) which evaluates f and gf at the new trial point yk+' = zk+tkdk , with tk E (0 , 11,
should improve the next model fk+' that will yield a better dk+'.

More specifically, a serious step t i = tk > 0 is taken if

whereas a null step occurs with 0 = t i < tk 5 f and

where mL , mR , mu and i are positive parameters. A simple procedure for finding t i and tk
is given in Kiwiel (1986~) for the case of mL + mu < mR < 1 and f 5 1. Since the aim of a
null step is to detect discontinuities of gf on the segment [zk , zk+'] , this procedure requires
that f and gf be consistent in the sense that

l i m s ~ ~ (~ ~ (z + t 'd), d) > l i m i n f [f (z + t id) - f (z)] / t i
i-+m s + m

for all z , d E Rn , { ti) c R+ , ti 1 0 .

In practice we use mL = 0.1, mR = 0.5, mu = 0.1, f = 0.1 and simple quadratic
interpolation for diminishing trial stepsizes (see Remark 3.3.5 in Kiwiel, 1985d). Yet our
crude procedure seems to be quite efficient; it requires on average less than two function
evaluations (cf. Kiwiel, 1988a). On the other hand, our experience with more sophisticated
procedures that insist on directional minimizations (cf. Mifflin, 1984) is quite negative. The
resulting increase in the number of f-evaluations is not usually offset by a reduction in the
number of iterations. This is not efficient in applications where the cost of one f-evaluation
may dominate the effort in auxiliary operations (mainly at quadratic programming) per
iteration.

We should add that in practice we employ the locality measures

a:,j = max { l/(zk) - i (z k ; Y')I , 78(~;)' }
that over-estimate as (zk ; yj) by using the upper estimate 8; = - ZJ 1 + x!i/ (zit' - zi)
of Izk - yjl, which can be updated without storing y ~ .

The extensions to the nonconvex case of the methods of Sections 4 and 6 follow the lines
sketched above. We only add that all the problem functions should satisfy the semidiffer-
entiability condition (18). In fact the convergence analysis of Kiwiel (1988a) requires the

equality constraints to be continuously differentiable, but we have managed to solve many
problems with nondifferentiable equality constraints.

We may add that each method of NOA has another version that uses subgradient deletion
rules instead of subgradient locality measures for localizing the past subgradient information
(see, for instance, Kiwiel, 1985a and Kiwiel, 1986~) . It is not clear which version is preferable,
since their merits are problem-dependent. We intend to clarify this situation in the near
future.

8 Conclusions

We have presented an overview of several NDO algorithms that are implemented in the
system NOA. The emphasis has been laid on practical difficulties, but they can only be
resolved by further theoretical work. We hope, therefore, that this paper will contribute to
the development of NDO methods.

9 References

Bihain, A. (1984). Optimization of upper-semidifferentiable functions. Journal of Opti-
mization Theory and Applications, 44, pp. 545-568.

Bihain, A., Nguyen, V. H. and Strodiot, J.-J. (1987). A reduced subgradient algorithm.
Mathematical Programming Study, 30, pp. 127-149.

Bronisz, P. and Krus, L. (1985). Experiments in calculation of game equilibria using nons-
mooth optimization. In: Lewandowski, A. and Wierzbicki, A. P. eds., Software, theory
and testing examples in decision support systems, pp. 275-286. International Institute
for Applied Systems Analysis, Laxenburg, Austria.

Clarke, F. H. (1983). Optimization and nonsmooth analysis. Wiley Interscience, New York.

Kiwiel, K. C. (1985a). A linearization algorithm for nonsmooth minimization. Mathematics
of Operations Research, 10, pp. 185-194.

Kiwiel, K. C. (1985b). An algorithm for linearly constrained convex nondifferentiable mini-
mization problems. Journal of Mathematical Analysis and Applications, 105, pp. 452-
465.

Kiwiel, K. C. (1985~). An exact penalty function method for nonsmooth constrained convex
minimization problems. IMA Journal of Numerical Analysis, 5, pp. 11 1-1 19.

Kiwiel, K. C. (1985d). Methods of descent for nondifferentiable optimization. Lecture Notes
in Mathematics, 1133. Springer, Berlin.

Kiwiel, K. C. (1986a). A method for solving certain quadratic programming problems arising
in nonsmooth optimization. IMA Journal of Numerical Analysis, 6, pp. 137-152.

Kiwiel, K. C. (1986b). A method of linearizations for linearly constrained nonconvex nons-
mooth optimization. Mathematical Programming, 34, pp. 175-187.

Kiwiel, K. C. (1986~) . An aggregate subgradient method for nonsmooth and nonconvex
minimization. Journal of Computational and Applied Mathematics, 14, pp. 391-400.

Kiwiel, K. C. (1987a). A constraint linearization method for nondifferentiable convex min-
imization. Numerische Mathematik, 51, pp. 395-414.

Kiwiel, K. C. (1987b). A subgradient selection method for minimizing convex functions
subject t o linear constraints. Computing, 39, pp. 293-305.

Kiwiel, K. C. (1988a). An exact penalty function method for nondifferentiable constrained
minimization. Prace IBS PAN, 155, Warszawa.

Kiwiel, K. C. (1988b). Computational Methods for Nondifferentiable Optimization. Osso-
lineum, Wroclaw (in Polish).

Kiwiel, K. C. (1988~). Descent methods for quasidifferentiable minimization. Applied Math-
ematics and Optimization (in press).

Kiwiel, K. C. (1988d). Proximity control in bundle methods for convex nondifferentiable
minimization. Mathematical Programming, (to appear).

Lemarechal, C. (1978). Nonsmooth optimization and descent methods. Report RR-78-4,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Lemarechal, C. (1986). Constructing bundle methods for convex optimization. In: J. B. Hir-
iart-Urruty, ed., Fermat Days: Mathematics for Optimization, pp. 201-240. North-
Holland, Amsterdam.

Lemarechal, C., Strodiot, J.-J., and Bihain, A. (1981). On a boundle algorithm for nons-
mooth optimization. In: Nonlinear Programming, 3 (0 . L. Mangasarian, R. R. Meyer
and S. M. Robinson, eds.), pp. 245-281. Academic Press, New York.

Mifflin, R. (1977). Semismooth and semiconvex functions in constrained optimization.
SIAM Journal on Control and Optimization, 15, pp. 959-972.

Mifflin, R. (1982). A modification and an extension of Lemarechal's algorithm for nonsmooth
minimization. Mathematical Programming Study, 17, pp. 77-90.

Mifflin, R. (1984). Stationarity and superlinear convergence of an algorithm for univariate
locally Lipschitz constrained minimization. Mathematical Programming, 28, pp. 50-71.

Nguyen, V. H., and Strodiot, J.-J. (1984). A linearly constrained algorithm not requiring
derivative continuity. Engineering Structures, 6, pp. 7-11.

Panier, E. (1987). An active set method for solving linearly constrained nonsmooth opti-
mization problems. Mathematical Programming, 37, pp. 269-292.

Polak, E., Mayne, D. Q., and Wardi, Y. (1983). On the extension of constrained optimization
algorithms from differentiable t o nondifferentiable problems. SIAM Journal on Control
and Optimization, 21, pp. 179-203.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric charac-
terizations t o vector optimization problems. OR Spectrum, 8, pp. 73-87.

A Methodological Guide to the Decision Support System
DISCRET for Discrete Alternatives Problems

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences, Warsaw.

1 Introduction

1.1 Scope of the report

This report aims to:

provide the information necessary to use the DISCRET package and to understand its
structure as well as the capabilities of the implemented approach,

discuss such methodological issues associated with the implemented approach, which
might be interesting for the user and which justify the chosen approach,

attract and encourage the reader to take the advantage of the package utilization,

It is assumed that the reader and the package user possess just the very basic information
about multicriteria optimization and discrete choice problems.

1.2 Purpose of the DISCRET package

DISCRET is a package created to solve basic multicriteria choice problems in which a finite
set of feasible alternatives (and decisions) is explicitly given and, for each alternative, the
values of all criteria describing its attributes interesting to the decision maker (DM) were
evaluated and listed. The DM is assumed to be rational in the sense that he is looking for
an efficient (Pareto-optimal) solution as his final solution of the problem.

Such a discrete multicriteria optimization problem is rather a problem of choice than
optimization, since all the information necessary to make a decision is readily available. Such
a problem is rather trivial for any human being as long as the number of alternatives is
small (say, less than ten or twenty). However, if the number of alternatives and/or criteria
grows, the limits of human information processing capabilities are reached and some decision
support facilities have to be utilized to guarantee a proper and efficient decision making.

The purpose of the DISCRET package is to support the DM in his search for final de-
cision in an interactive and user-friendly manner. It is assumed that the DM has only a
limited knowledge of the problem he wants to solve at the beginning of the session with
DISCRET. Therefore, during the session no difficult questions are asked (for example, about
criteria trade-offs, DM' utility function or pairwise comparisons of alternatives). The package-
provided information enables the DM to gather the experience related to his problem's specific
features as well as his own preferences.

The implemented approach seems to be easy to understand and approve even for a user
who is not very familiar with multicriteria optimization techniques.

The DISCRET package has been designed to solve medium-size discrete multicriteria
problems with the number of alternatives ranging from few hundreds to few thousands. The
number of criteria is in the current version restricted to 20 (mainly due to the limitations of
display facilities).

During the session the user controls the decision-making process by choosing suitable
options from the displayed "menun. Therefore, he does not have to learn and remember
any command pseudo-language. This feature, together with special procedures for handling
user's mistakes and with self-explanatory package messages, makes the package user-friendly
and allows for an unexperienced user.

1.3 Fields of the package applications

In many real-life problems, decision variables take their values from a discrete set rather
than from a continuous interval. Usually, there is a finite number of available facility location
sites, the facility size or production capability may be chosen from a discrete set of values,
during a design process the components are chosen from a set of typical elements available
on the market, etc. Such problems form the "naturaln field of applications for the DISCRET
package.

Another field of possible applications of the DISCRET package consists of cases in which
the original problem is actually continuous (rather than discrete) but the analysis restricted
just to a finite number of alternatives appearing in this problem may be interesting and
useful for the DM, since it may result in an enlightening and a more precise definition of his
preferences, region of interest or aspiration levels.

Situations falling under the latter category may occur for at least two following reasons.
Firstly, if a sample of alternatives together with the corresponding criteria values is readily
available, the utilization of the DISCRET package may enable the DM to gain an insight into
the original multicriteria problem. The analysis of an assembly of runs of a simulation model
is an example of this case. Secondly, for the purpose of an initial analysis of a problem in
which the decision variables actually take their values from continuous intervals, the DM may
take into consideration just a few values for each decision variable or to generate a random
sample of alternatives.

An encouraging factor that may attract the DM is the fact that the DISCRET package
makes no restrictions on the forms of the criteria. Therefore, attributes as complicated as
required may be considered.

2 Background

2.1 The discrete multicriteria optimization problem

Package DISCRET has been created to support-in an interactive manner-multicriteria
optimization and decision making for problems with a finite number of discrete alternatives.
Such problems are frequently referred to as implicit constraints or explicit alternatives prob-
lems.

Let us consider the following discrete multicriteria optimization problem (DMOP). It is
assumed that a set X0 of feasible discrete alternatives is explicitly given and for each of
its elements all criteria under consideration have been evaluated. The criteria values for all

feasible discrete alternatives form the set Q of feasible outcomes or evaluation.

Furthermore, it is assumed that a domination cone A is defined in the objective space F.
As in most applications the positive orthant is considered, A = R+m and 13 = \ (0). The
domination cone introduces the partial pre-order relation "4" into the objective space:

The element fl dominates f2 in the sense of the partial pre-order induced by the domi-
nation cone A.

Element f E Q is nondominated in the set of feasible elements Q, if it is not dominated by
any other feasible element. Let N = N(Q) c Q denote the set of all nondominated outcomes
in the objective space and let Nx = N(XO) c XO denote the set of the corresponding
nondominated alternatives (decisions) in the decision space. To solve the DMOP it means
to find the set N of nondominated outcomes and the corresponding set Nx of nondominated
decisions.

Notice that DMOP is described by the two sets Q and XO defined above (together with
m, n and s). Therefore the package input files supplied by the user must contain these two
sets.

Observe also that no assumptions were made about the nature of the criteria functions fi.
In fact, the only requirement for them is that they should assign numerical values to the
alternatives, indicating their attractiveness with respect to the attribute under consideration.
In particular, the criteria functions may be of the qualitative type. The single restriction is
that values assigned to alternatives by criteria should be expressed by numbers and that the
user is able to indicate whether he wishes to increase or decrease these numbers. In doing
so, he defines or changes the domination cone A.

Observe also that the above abstract definition of a solution to DMOP is not very prac-
tical: the set N of all nondominated outcomes might be very large and difficult to compute,
and its full computation might be useless if the user decides to change the domination cone
A. Therefore, an important issue is to find some representation of the set N , not the entire
set.

2.2 Overview of existing approaches

The discrete multicriteria optimization problem (DMOP) is a combinatorial problem involv-
ing sorting and one could expect a large number of papers in the bibliography devoted to this
subject. However, the problem did not focus much attention of the researchers-except in its
utility theoretical variant that actually transforms the problem to a single-criteria o n e a n d
the bibliography we are able to point at consists only of (Kung et al., 1975, Polak and Payne,
1976, Stahn and Petersohn, 1978), plus some reports of the earlier research summarized there.

The insignificant interest in methods for solving DMOP could be explained by the fact that
the solution of the DMOP, the whole set of nondominated alternatives is not the solution
of the multicriteria decision making problem (MCDMP), a selected preferred alternative.
However, since the efficiency of methods dealing with MCDMP usually depend on the number
of alternatives, it is wise to reject the dominated alternatives.

A rather large number of approaches have been suggested for the solution of the MCDMP
involving discrete alternatives. They differ both in the problem formulation and the assump
tions about the decision maker (DM). Let us mention here just some most interesting ones.
The method suggested in (Keeney and Raiffa, 1976) is based on utility functions constructed
first for each criterion and then combined into a global utility function. In (Zionts, 1981) a
linear, while in (Koksalan et al., 1984) a quasiconvex underlying utility function of the DM
is assumed and the best alternative according to an approximation of this utility function is
found by asking for answers to a number of comparisons between pairs of alternatives. Other
methods, e.g. (Roy, 1971) or (Siskos, 1982), are based on outranking relations. In (Rivett,
1977), multidimensional scaling techniques are used to obtain a graph pointing from least to
most preferred alternatives.

Other group of approaches (some of them were proposed originally for some different
problems) is based on an observation that if the number of the alternatives is small, then
the DM is able to make a decision intuitively, without any formalism of expressing his pref-
erences. If the number of alternatives is larger, then one has to reduce it for the DM by
selecting a small but representative sample. Several methods for obtaining such a representa-
tion were proposed. They utilize cluster analysis (Tijrn, 1980, Morse, 1980), filtering (Steuer
and Harris, 1980) or random sampling (Baum et al., 1981).

Approaches from the first of the two above-mentioned groups place the burden on the DM.
He is asked to supply the information about his preferences by the evaluation of the alterna-
tives -by pairwise comparisons or rankings for example. These evaluations are substantial
for the methods. Each of these methods is based on certain implicit or explicit assumptions
about the DM, such that, for example, he has an utility function expressing his preferences.
The size of the problems that can be solved is limited by the DM'S ability to provide the
required amount of information by ranking or comparing pairwise the alternatives.

In the approaches from the second group, the burden is placed rather on the computer.
The crucial point here is whether the obtained representation of the nondominated set will be
illustrative for the DM. No special assumptions about the DM are made. He is only expected
to prefer the nondominated alternatives rather than the dominated ones.

Our approach presented in this report may be classified as one of the second group. It is
based on a new efficient method for DMOP, which also can efficiently produce a representation
of the nondominated set.

2.3 The method of dominated approximations

The implemented method is of the explicit enumeration type. It is called the method of
dominated approximations and is based on the following concept.

Def. 1 Let Q be the set of all feasible alternative outcomes, N the set of corresponding
nondominated alternative outcomes and A the domination cone. Set A is called a
dominated approximation of N iff

In other words, A is a dominated approximation of N iff for each f; E N there exists f, E A
such, that f; 4 f, in the sense of the partial pre-order induced by A.

We will say that the approximation A2 dominates the approximation Al of the nondom-
inated set N iff

A1 C A2 + A

Hence, as the worst approximation of N we can consider the entire set Q , while the best
approximation is the set N itself. The method of dominated approximations generates a
sequence of approximations Ak, k = 0,1,2, . . . ,1 such that

Thus, given Q and A we are supposed to determine N = N (Q) . Assume that all criteria
are to be minimized.

Step-0 Let & = Q, No = 0, k = 0.

Step-1 If Ak \ Nk = 0 then STOP with Nk = N , else choose any index i E I = {1,2,. . . , m)
and find f E Q such that the i-th component of it is minimal in Ak \ Nk:

-.
f' = min f'

Ak \Nk

(See Remark 2).
Set Nk+1 = Nk u {f).

Step-2 Create the new approximation Ak+l by rejecting from Ak \ Nk+l all elements domi-
nated by f (see Remark 1)

Set k = k + 1 and go to Step-1.

Remark 1 . While rejecting the elements dominated by f it is sufficient to compare elements
of the set Ak \ Nk+1 with f according to all but i-th criterion, since fi is minimal among all
f' in Ak\ N .

Remark 2. The minimum may happen to be non-unique. Let B be the set of those elements
fj E Ak \ Nk for which fj appear to be minimal in Ak \ Nk. Actually not all elements of B
are nondominated. One has to solve the following problem. Given B and A select N (B) .
The above presented method may be used for this task with & = B and I = I \ {i). This
recurrence is applied until an unique minimum is found in the Step-1 of the algorithm. Then,
after the execution of S t ep2 one has to return to the lower level of recurrence. On each level
Remark 1 holds.

Note that if the recursion described in Remark 2 would not be applied, then the set of
weakly nondominated alternatives would be determined by the above algorithm.

In order to measure the efficiency of the method, let us consider the number of scalar
comparisons S(m, n, p) required by the method to solve the DMOP with m criteria, n feasible
alternatives and p nondominated alternatives. F'rom the analysis of the method one can easily
obtain

As one can see, the method solves easily problems with small p. In practical problems
p is usually a small fraction of n; the worst case is for p = n, i.e. when all alternatives are
nondominated. Note that the performance of the method does not depend on the permutation
of the alternatives.

2.4 Selection of a representation of the nondominated set

The biggest advantage of the method of dominated approximations is its ability to select a
representation of the nondominated set N instead of the entire set N. Unlike other known
approaches which find the entire nondominated set first and then select a representation
(differently defined for each of those methods), the presented method selects a representation
a t once. This fact provides much gain in algorithmic efficiency.

Let ti, i = 1,. . . , m be some given tolerance coefficient for the m criteria under consid-
eration, t; 1 0, and Ti = (tl, t2 , . . . , ti-1, 0, t;+l,. . . , t,) be a vector in the objective space.
For the sake of simplicity let us assume that all criteria are t o be minimized. The following
modification of the method of dominated approximations suffices to obtain a representation
instead of the whole nondominated set. In the S tep2 of the method not only the elements
dominated by the nondominated element f (found in the Step_:[by minimization over the i-th
criterion values) have to be rejected, but also elements dominated by f = f - Ti. Hence, in
S tep2 is modified to:

Observe that because the representation contains less elements than the nondominated
set, i t will be obtained with a smaller computational effort. Figure 1 illustrates the role of
the tolerance coefficients in the process of selecting a representation.

The author is not aware of the existence of any other methods that could be effectively
applied for a problem with few hundreds or few thousands of alternatives.

2.5 Outline of the approach and introduction to DISCRET

To start the session with DISCRET the user has to supply the file containing set Q of the
criteria values for all feasible alternatives, the file containing some problem and data specifica-
tions and (optionally) the file containing the set X O of feasible decisions (the load command).
These files, called the data, the specification and the additional data file respectively, describe
the problem under consideration.

After the problem generation and implementation phase the user may obtain the infor-
mation about the criteria values ranges and he may put the lower and/or upper bounds on
the values of some/all criteria (the bounds command).

The bounds setting may be utilized by the user for several purposes. This is the list of
some most relevant:

to eliminate irrelevant alternatives from further considerations,

to specify his current region of interest in the objective space,

to redefine his problem as a problem with a fewer criteria as the original one (as in
the method of equality/inequality constraints-see Lin, 1976), for example, a bicriteria
problem.

Figure 1: Selection of the representation R = R (N) = R (Q) of the nondominated set
N = N (Q) . Only nondominated elements are marked for the sake of simplicity of illustration.

a) the nondominated set N .
b) the representation R of the set N .
c) illustration of the tolerance mechanism.

In the next step the user may run the DMOP solver (by executing the command solve) to
eliminate the dominated alternatives by an explicit enumeration technique. The tolerances
for criteria values play an important role here. If they are all equal zero or have small positive
values that correspond to indifference limits of the DM'S for criteria values, the whole set of
the nondominated solutions will be obtained. If the values of tolerances are equal t o some
significant fractions of the corresponding criteria ranges, then a representation of the set
of nondominated solutions will be obtained. The representation is a subset of the set of
nondominated solutions preserving its shape and containing the smaller number of elements,
the larger were chosen tolerance coefficients.

After the nondominated set or its representation has been obtained, the user may proceed
in one of the following paths:

choose a new region of his interest by a proper bounds setting (by using the command
bounds),

obtain a more or less dense representation by decreasing or increasing the tolerances
(by using the commands solve),

use graphic display to learn more about the problem and utilize the reference point
approach (by using the command analyse).

It is worth to mention here that-unlike in other known techniques of obtaining a repre-
sentation of the nondominated set-our approach not only does not require any additional
computational effort but even decreases the time of computation with the ratio of #R to # N ,
where # N and #R are the number of elements in the nondominated set N and its represen-
tation R, respectively.

Once any subset of the set N of nondominated solutions has been obtained, one can select
the corresponding decisions from the additional data file (the command pick).

The DISCRET package provides also some more detailed information about the problem
under consideration. A nondominated and a dominated linear approximations of the set
of nondominated solutions are calculated (the command analyse). These approximations
are obtained in the following way. A linear function is defined by the combination of the
criteria with coefficients determined by the criteria ranges. This function is then minimized
and maximized over the set of nondominated elements to obtain the nondominated and
dominated approximation, respectively.

The information contained in the lower and upper bounds for criteria, in criteria ranges
and in nondominated and dominated approximations gives a good overview of the shape of
nondominated set. To learn more about the variety of available alternatives, the user may use
another facility provided by the DISCRET package (in the command analyse), namely the
graphical display of two-dimensional subproblems on the terminal screen. The user chooses
two criteria for the vertical and horizontal axes, while the other criteria are:

left unbounded-the whole problem is projected on the two-dimensional subspace of
the space of objectives, just as if all but the two selected criteria were ignored,

restrictively bounded-a two-dimensional 'slice" is cut out of the original m-dimen-
sional problem.

Enlargements of the chosen display fragments may be obtained simply by specifying new
bounds for the criteria on the axes. Another display feature indicates how many elements

does each of the 800 display points represent. This feature may be useful to detect and
investigate the cluster structure of the problem.

The powerful tool of the reference point approach (Wierzbicki, 1979) is also available
for the user (in the command analyse). By determining a reference point, he exhibits his
aspiration levels for criteria values, confronts them with the obtained solution and modifies
them and the reference point. The graphical displays mentioned above could also be useful
on this stage of the decision making process.

During a session with DISCRET the user does not have to necessarily follow the entire
procedure presented above. Once the problem generation and specification phase has been
completed, he may utilize the package facilities in any order, repeat some steps (commands)
or their sequences.

The ability of ignoring some of the criteria temporarily (by specifying that they are to
be neither minimized nor maximized) opens to the DM a possibility of using a lexicographic
or grouplexicographic approach. He may also, besides the actual criteria, introduce in an
identical way some additional criterion expressing his utility, goal or preference function
or any global criterion and use them on any arbitrary chosen stage of the decision making
process. Such additional criteria have to be evaluated for each alternative during the problem
generation phase (just as in the case of the original criteria).

The package offers also the possibility of an immediate return to any of the previous
stages of the session, provided that the user have saved them into files (the save and load
commands).

3 Structure and features of the package

3.1 General description

The current pilot version of the DISCRET package consists of eight FORTRAN77 programs.
In order to run any of them the user has to type an appropriate program name (command)
on his terminal. A list of DISCRET programs is presented below.

test1 - first test problem generator (the Dyer's Engine Selection Problem), a separate
program.

test2 - second test problem generator (the location-allocation problem), a separate
program.

load - loads the problem from the data and specification ASCII files.

bounds - informs about the criteria values ranges (utopia and nadir points), nondom-
inated and dominated approximations of the set of alternatives and supports setting of
new bounds on criteria values.

.solve - solves the discrete multicriteria optimization problem with explicit alterna-
tives (implicit constraints), i.e. finds the set of nondominated or weakly nondominated
elements or its representation, keeping or rejecting duplicate elements.

analyse - supports the reference point approach and simple graphic displays of the
nondominated set.

save - saves the problem into the data and specifications ASCII files.

sort - sorts the alternatives in increasing/decreasing order with respect to the values
of a specified criterion, a save subcommand.

pick - finds decisions corresponding to the chosen outcomes in criteria space, a save
subcommand.

During the command execution, the user controls the process by choosing suitable items
from the displayed menu (a list of options available a t the moment). The menu system has
been chosen instead of a pseudelanguage of control commands because it does not require
from the user to learn and remember a set of commands.

Each menu contains an amount of information sufficient to make the decision which of
the displayed options is the most suitable one. If the user is asked to enter some information,
everything he types is checked. If he makes a mistake, a message is displayed on the screen.
Usually the message not only indicates the error but also shows the correct form of the
required input.

In the next chapters the package commands will be briefly presented. We will not go into
details of each menu since they are self-explanatory. The user will gather all the necessary
experience during an introductory session with DISCRET. The test problems may be created
by the commands test1 and t e s t 2 . The description of the test problems can be found in the
user's training manual.

3.2 Problem loading phase

The command load loads the problem by reading the data file and the specification file.
The user may also utilize it as an "unsaven facility which would allow him to return to any
problem previously created and saved during the DISCRET session.

3.3 The bounds setting phase

The command bounds reads the input data, evaluates the criteria values ranges and displays
them together with the nondominated and dominated approximation of the set of alterna-
tives. If the user is not satisfied with the ranges of criteria values or with the values of
approximations he can change them.

Knowing the ranges of criteria values, the DM may decide that some of the values of
criteria does not interest him at all or a t least temporarily. The command bounds makes
it possible to change the DM'S region of interest. By setting the appropriate lower and/or
upper bounds for criteria values, the DM restricts further considerations to a smaller region
of the objective space-his current region of interest. Only these alternatives that satisfy the
bounds will be contained in the output data file produced by the command bounds.

Notice that the command bounds can select only a subset of alternatives from the input
data. If the DM wants to consider a completely different region of interest, he has t o supply
the input data file containing that set of alternatives.

To illustrate this point assume, just for the sake of simplicity, that all criteria are to
be minimized. Observe that if the decreasing of an upper bound for one criterion results
in increase of the lower value for some other criterion, then it indicates that a part of the
nondominated set did not satisfy the bounds and was rejected. If this was not the purpose
of the user, he should return t o less restrictive bounds. This remark may be useful on the
initial stage of the problem analysis, when the user should become acquainted with the entire
variety of the available alternatives.

3.4 The DMOP solving phase

The command eolve results in solving the DMOP i.e. it selects the nondominated outcomes
out of the set of feasible solutions. If the tolerances for all criteria values are equal to zero
or have some small positive values corresponding to the computer arithmetic accuracy (for
example, I.&-10) or criteria values measurement accuracy, then all nondominated outcomes
are found. If the tolerances have larger positive values equal to some significant fractions of
the criteria values ranges, then just a subset of the nondominated set, called its representation,
is selected.

The command eolve asks the user also about the type of the solution he is looking for.
It has the ability to find either the set of nondominated outcomes or weakly nondominated
outcomes. If there are duplicate outcomes (that is, if the same outcome vector corresponds
to two different decisions), then they can be treated as distinguished ones (and all preserved)
or as identical ones (and all but one rejected). Options more sophisticated than the default
option (nondominated outcomes, duplicates rejected) do make sense in the cases when at
least for some criteria rough values where initially given and they are supposed to be refined
in some next stage of the decision making process, or when some of the criteria are more
important then the other.

3.5 The problem saving phase

Once the nondominated set (or its representation or a part of it corresponding to the current
region of interest of the user selected by setting of bounds) has been obtained, the user may
wish to save it in order to continue the job later or to list its elements and analyse them.

The subcommand eort sorts the elements of the input data file according to increasing
or decreasing values of criteria chosen by the user. Another option is to sort the alternatives
in increasing or decreasing order according to their identifiers. When sorted before being
printed, any set of alternatives appears to be more readable and hence more useful for analysis.

The subcommand pick selects from the additional input data file any additional infor-
mation corresponding to the elements contained in the data file. Typically, this additional
information describes the decisions leading to the obtained nondominated solutions.

The mechanism provided by the subcommands sort and pick may be especially useful
in the case when the package user is an analyst. Properly sorted data (a nondominated set
representation adequate to the current stage of the decision making process) will be more
readable for the DM.

3.6 The phase of selecting final solution

The command analyee was designed to help the user to define his region of interest in a more
precise way or to find his final solution.

At the beginning, the user will be informed about the criteria best and worse values-
the utopia and nadir points. In order to provide some more detailed but still aggregated
information about the shape of the nondominated set (or its representation or just a part of
it) the nondominated and dominated linear approximations are evaluated.

A linear combination of criteria with coefficients proportional to the criteria ranges is
minimized and maximized over the nondominated set to obtain its nondominated and dom-
inated approximation respectively. Each of these approximations may be characterized by
a single parameter standing for the percentage of the range it cuts off out of each criterion
values range, see Figure 2 for illustration. Solutions obtained from the linear approximations

90% Nadir

Figure 2: Two types of the aggregated information about the nondominated set N.

a) Information about the nondominated set N offered by the utopia point and the nadir
point.

b) Information carried by the nondominated (70%) and dominated (90% of criteria range)
approximations of the set N.

are also displayed. This aggregated information seems to provide good aggregate data on the
shape of the nondominated set, no matter how many criteria are under considerations.

In order to learn more about the criteria trade-offs, the user may display on the screen of
his terminal a simple graphic figure for a two-dimensional subproblem. By setting bounds on
all but two criteria he is able to cut a "slice" out of the m-dimensional problem. The entire
subset selected in this way will be represented by 800 fields on the screen.

Finally, the user may enter the reference point approach, interactively introduce reference
point exhibiting his aspiration levels for criteria values and analyse the obtained solutions.
The reference points need not to be attainable and the obtained solution is the nondominated
point nearest to the reference point in the sense of the scalarizing function. A scalarizing
function based on the Euclidean-norm is used. Let g be the reference point introduced by the
user. Then, assuming that all criteria are to be minimized, the following scalarizing function
is minimized:

s(f - 9) = -1lf - 9112 + plI(f - 9)+112

where (f - q)+ denotes the vector with components max(0, f - q), 11 (1 denotes the Eu-
clidean norm and p > 1 is a penalty scalarizing coefficient. See (Wierzbicki, 1979), for exam-
ple, for more information about the reference point approach.

4 Test examples

4.1 The Dyer's "Engine Selection Problemn

For the purpose of testing the package and to be used during introductory sessions with
DISCRET, a generator of the Dyer's "Engine Selection Problem" (see Dyer, 1973, or Torn,
1980) has been implemented. This is a very simple example of a DMOP. However, it is rather
well known in the literature devoted to this field of research and therefore it seems that it
will suit well as a small illustrative test problem.

Let us consider a DM who designs a new automobile and he has to choose an engine
for that car. Suppose that the variety of available engines is described by three parameters
(decision variables) :

21 - compression ratio

2 2 - carburation ratio (in square inches)

23 - piston displacement (in cubic inches)

Suppose that the DM'S preferences are described by the following three criteria:

fl - cost of the engine

f2 - horsepower

f3 - mileage per gallon

The following DMOP was proposed by Dyer (1973)-see also (Torn, 1980).

Prob lem definition:

minimize : f l (z) = 133(z1 - 8) + 10x2 + 23 + 2000
mazimize : f2(z) = 20(z1 - 8) + 2 2 + 0.523
mazimize : f3(z) = -1.67(z1 - 8) - 0.222 - 0 . 0 5 ~ ~ + 35

subject to:

bounds:

constraints:

P rob lem generation:

Dyer and Torn proposed the following scheme to generate uniformly a set of decisions :

for X I = l1 step sl until ul
for z2 = l2 step s 2 until u2
for 23 = l3 step ss until u3

where l;, u; are the lower and upper bounds for z;, i = 1 ,2 ,3 while s; are the corresponding
step size. If-following Dyer and Torn-the initial data are:

then 84 generated points satisfy the problem constraints. Another way to generate a test
problem is a random generation of decision vectors z within bounds 1 and u. This test
problem is generated by the DISCRET's command test1 .

4.2 The location-allocation problem

The second test problem is a facility location-allocation problem. It is based on the problem
presented by Lee, Green and Kim (1981).

A firm is evaluating six potential sites of plant location (in four different states) that would
serve four customer centers. The problem is where should the plants be opened and what
should be the production volume of each of the new opened plants. Let i = 1,2, . . . , i,, = 6
be the locations index and let j = 1,2, . . . , j,, = 4 be the customer center index.

Decision variables:

y; = 011 if a plant is not opened / opened at location i ,

z; - production volume (size) of a plant opened at location i.

Model variables a n d parameters :

p, - total demand of customer center j,

c;j - unit transportation cost from facility i to the customer center j ,

gi - fixed cost of opening a facility at location i (in $1000))

li - life quality score for location i ,

t: - production upper limit for facility a t location i (due to the state environment
quality standards),

Z: - production lower limit,

Z/ - production increment step size,

ki - location i production limits due to state environment quality standards,

dij - demand placed on facility i by the customer center j,

xi, - quantity of units transported from location i to the customer center j ,

d i ~ min { y , C d ; j } , = - C, d;, i

n - number of opened facilities.

Constraints:

1. Fixed cost limitation (in $1000):

2. Production limitations due to state environment quality standard:

3. Favored customer center service level :

4. Number of opened facilities :

nmin = 1 < n < 3 = n,,

Criteria:

1. Unsatisfied demand level :

min f l = x (d i j - zij)

2. Favored customer center (no. 1) service level :

max fi = Ci yizil

P1

3. Total cost :
min f3 = f5 + f6 + f7

4. Average life quality score :
Ci ~ i l i max f4 = -
Ci Yi

5. Fixed cost :

6. Transportation cost :
min f6 = C x s ; j ~ , j

7. Production cost :
min f7 = C E ~ ~ - ~ ~ ~

i

8. Unsold production :
min js = C m a x (0, (r, - C zij) }

Alternatives generation scheme:

The set of feasible alternatives is generated by the following three nested loops.
1. Consider opening n = n,i,, . . . , n,,, facilities.
2. Generate all n locations subsets of the set of locations (n-elements combinations of a,,
elements set).
3. For each facility opened at location i consider its all available sizes zi ranging from z,! to z:
with the increment step size r/ .

4.3 Haw to get started

At the very beginning of the session a problem to be solved has to be supplied. For the first
session execute the DISCRET command t e s t l . When the test problem is already generated,
look at three files that were produced: the specification file, the data file and the additional
data file.

Whenever you do not remember the names of the files you have created during the session,
display the history.fi1 from your current directory. This file contains the history of your
session.

In order to learn how to describe the details of your problem for DISCRET, print the
specification file produced by the command t e s t l . Then execute the specify command and
try to create a specification file identical to that obtained from t e s t l .

If you already know how to specify your problem, try some other DISCRET commands.
For the first time, execute them in the following order: bounds, solve, analyse, sort, pick,
just to learn what they can actually do for you.

Later on try to select your most preferable solution(s). Notice that DISCRET commands
can be executed in any order (if only it does make any sense for you). Refer to the history.fi1
to recall the history of your session.

5 Conclusions

The DISCRET package for multicriteria optimization and decision making problems with
finite number of discrete alternatives has been briefly presented. It is the author's hope that
this report will attract the reader and encourage him to use the package.

DISCRET is an interactive package. The user may execute its commands in any order
once the problem generation and specification phase has been completed. The variety of
paths the user may follow guarantees flexibility in meeting his demands.

The author will be grateful for any critical remarks and comments concerning both the
approach and the package itself. All such suggestions would be very helpful and may result
in further package improvements.

6 References

Baum, S., W. Terry and U. Parekh (1981.). Random sampling approach to MCDM. In
J.N. Morse (ed): Organizations: Multiple Agents with Multiple Criteria, Lecture Notes
in Economics and Math. Systems, 190.

Dyer, J.S. (1973). An empirical investigation of a man-machine interactive approach to the
solution of a multiple criteria problem. In T.L. Cochrane and M. Zeleny (eds): Multiple
Criteria Decision Making, University of South California Press.

Keeney, R.L. and H. Reiffa (1976). Decisions with Multiple Objectives: Preferences and
Value Tradeoffs, New York, Wiley.

Koksalan, M., M.H. Karwan and S. Zionts (1984). An improved method for solving multiple
criteria problems involving discrete alternatives. IEEE Transactions on Systems, Man
and Cybernetics, Vol. SMC-14, No. 1, pp. 24-34.

Kung, H.T., F. Luccio and F.P. Preparata (1975). On finding the maxima of a set of vectors.
Journal of the Association for Computing Machinery, Vol. 22, No. 4, pp. 469-476.

Lee, S.M., G.I. Green and C.S. Kim (1981). A multiple criteria model for the location-
allocation problem. Comput. and Ops Res., Vol. 8, pp. 1-8.

Lin, J.G. (1976). Three methods for determining Pareto-optimal solutions of multiple-
objective problems. In Ho and Mitter (eds.): Directions in Large-Scale Systems. Many-
Person Optimization and Decentralized Control, Plenum Press, New York and London.

Majchrzak, J . (1984). Package DISCRET for multicriteria optimization and decision mak-
ing problems with discrete alternatives. IIASA Conference on Plural Rationality and
Interactive Decision Processes, Sopron, Hungary, 16-26 August, 1984.

Morse, J.N. (1980). Reducing the size of the nondominated set: pruning by clustering.
Comput. and Ops Res., Vol. 7, No. 1-2, pp. 55-66.

Payne, A.N. and E. Polak (1980). An interactive rectangle elimination method for biob-
jective decision making. ZEEE Transactions on Automatic Control, Vol. AC-25, No. 3,
pp. 421-432.

Polak, E. and A.N. Payne (1976). On multicriteria optimization. In Ho and Mitter (eds.):
Directions in Large-Scale Systems. Many-Person Optimization and Decentralized Con-
trol, Plenum Press, New York and London.

Rivett, P. (1977). Multidimension scaling for multiobjective policies. Omega, Vol. 5,
pp. 367-379.

Roy, B. (1971). Problems and methods with multiple objective functions. Math. Program-
ming, Vol. 1, pp. 239-266.

Siskos, J. (1982). A way t o deal with fuzzy preferences in multi-criteria decision problems.
Eur. J. Op. Res., Vol. 10, pp. 314-324.

Stahn, H. and U. Petersohn (1978). Discrete polyoptimization. Systems Science, Vol. 4,
No. 2, pp. 101-109.

Steuer, R.E. and F.W. Harris (1980). Intra-set point generation and filtering in decision
and criterion space. Comput. and Ops Res., Vol. 7, No. 1-2, pp. 41-53.

Torn, A.A. (1980). A sampling-search-clustering approach for exploring the feasiblelefficient
solutions of MCDM problems. Comput. and Ops Res., Vol. 7, No. 1-2, pp. 67-79.

Wierzbicki, A.P. (1979). A methodological guide to multiobjective decision making,
WP-79-122, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Zionts, S. (1981). A multiple criteria method for choosing among discrete alternatives. Eur.
J. Op. Res., Vol. 7, pp. 143-147.

A Generalized Reference Point Approach
to Multiobject ive Transshipment Problem

with Facility Location

Wlodzimierz Ogryczak, Krzysztof Studzinski,

Krystian Zorychta

Institute of Informatics, Warsaw University.

Abstract

This paper describes the methodological background of the Dynamic Interactive Net-
work Analysis System (DINAS) which enables the solution of various multiobjective trans-
shipment problems with facility location using IBM-PC XT/AT microcomputers. DINAS
utilizes an extension of the classical reference point approach to handling multiple objec-
tives. In this approach the decision-maker forms his requirements in terms of aspiration
and reservation levels, i.e., he specifies acceptable and required values for given objec-
tives. A special TRANSLOC solver was developed to provide DINAS with solutions to
single-objective problems. It is based on the branch and bound scheme with a pioneering
implementation of the simplex special ordered network (SON) algorithm with implicit
representation of the simple and variable upper bounds (VUB & SUB). DINAS is pre-
pared as a menu-driven and easy in usage system armed with a special network editor
which reduces to minimum effort associated with input a real-life problem.

1 The DINAS System

DINAS is a decision support system designed for solving multiobjective transshipment prob-
lems with facility location on IBM-PC XT/AT or compatibles. It requires 640K RAM and a
hard disk or a t least one floppy disk. DINAS can process problems consisting of:

- up to seven objective functions,

- a transportation network with up to one hundred of nodes and a few hundreds of arcs,

- up to fifteen potential locations.

A mathematical model of the problem is described in Section 2.
DINAS consists of three programs prepared in the C programming language:

1. an interactive procedure for efficient solutions generation,

2. a solver for single-objective problems,

3. a network editor for input data and results examination.

The basic concept of the interactive scheme for efficient solutions generation is as follows:

- the DM works with the system in an interactive way so that he can change his aspiration
and reservation levels in any direction;

- after editing the aspiration and reservation levels, the system computes a new efficient
solution by solving a corresponding single-objective problem;

- each computed efficient solution is put into a special solution base and presented to the
DM as the current solution in the form of tables and bars which allow him to analyze
performances of the current solution in comparison with the previous solutions.

Operations available in the DINAS interactive procedure are partitioned into three groups
and corresponding three branches of the main menu: PROCESS, SOLUTION and ANALY-
SIS. The PROCESS branch contains basic operations connected with processing the multi-
objective problem and generation of several efficient solutions. There are included operations
such as editing and converting the problem, computation of the pay-off matrix, and finally,
generation a sequence of efficient solutions depending on the edited aspiration and reservation
levels.

The SOLUTION branch contains additional operations connected with the current so-
lution. The DM can examine in details the current solution using the network editor or
analyse only short characteristics such as objective values and selected locations. Values of
the objective functions are presented in three ways: as a standard table, as bars in the as-
piration/reservation scale and as bars in the utopialnadir scale. The bars show percentage
level of each objective value with respect to the corresponding scale. The DM may also print
the current solution or save it for using in next runs of the system with the same problem.
There is also available a special command to delete the current solution from the solution
base if the DM finds it as quite useless.

The ANALYSIS branch collects commands connected with operations on the solution
base. The main command COMPARE allows the DM to perform comparison of all the
efficient solutions from the solution base or of some subset of them. In the comparison only
the short characteristics of the solutions are used, i.e., objective values in the form of tables
and bars as well as tables of selected locations. Moreover, some commands which allow
the DM to select various efficient solutions from solution base as the current solution are
included in this branch. There exists also an opportunity to restore some (saved earlier)
efficient solution to the solution base.

A special TRANSLOC solver has been prepared to provide the multiobjective analysis
procedure with solutions to single-objective problems. The solver is hidden from the user but
it is the most important part of the DINAS system. It is a numerical kernel of the system
which generates efficient solutions. Even for a small transshipment problem with facility
location the corresponding linear program has a rather large size. For this reason it cannot
be solved directly with the standard simplex algorithm. In order to solve the program on
IBM-PC XT/AT microcomputers i t is necessary to take advantage of its special structure.
A general concept of the TRANSLOC solver is presented in Section 4 whereas theoretical
backgrounds of some special computational techniques are discussed in Sections 5 and 6.

DINAS is armed with the built-in network editor EDINET. EDINET is a full-screen
editor specifically designed for input and edit data of the generalized network model defined
in Section 2. The essence of the EDINET concept is a dynamic movement from some current
node to its neighbouring nodes, and vice versa, according to the network structure. The
input data are inserted by a special mechanism of windows while visiting several nodes.
Independently, a list of the nodes in the alphabetic order and a graphic scheme of the network
is available a t any time. A special window is also used for defining objective functions.

2 The generalized network model

A network model of the problem consists of nodes that are connected by a set of direct flow
arcs. The set of nodes is partitioned into two subsets: the set of fixed nodes and the set
of potential nodes. The fixed nodes represent "fixed pointsn of the transportation network,
i.e., points which cannot be changed. Each fixed node is characterized by two quantities:
supply and demand. The potential nodes are introduced to represent possible locations of
new points in the network. Some groups of the potential nodes represent different versions of
the same facility to be located (e.g., different sizes of a warehouse). For this reason, potential
nodes are organized in the secalled selections, i.e., sets of nodes with the multiple choice
requirement. Each selection is defined by the list of included potential nodes as well as by
lower and upper numbers of nodes which have to be selected (located). Each potential node
is characterized by a capacity which bounds maximal flow through the node. The capacities
are also given for all arcs but not for the fixed nodes.

A several linear objective functions are considered in the problem. The objective functions
are introduced into the model by given coefficients associated with several arcs and potential
nodes. They will be called cost coefficients independently of their real character in the
objective functions. The cost coefficients for potential nodes are, however, understood in a
different way than for arcs. The cost coefficient connected t o an arc is treated as the unit
cost of the flow along the arc whereas the cost coefficient connected to a potential node is
considered as the fixed cost associated with the use (location) of the node rather than as the
unit cost.

In the DINAS system we place two restrictions on the network structure:

- there is no arc which directly connects two potential nodes;

- each potential node belongs to at most two selections.

Both the restrictions are not very strong. The first one does not imply any loss of
generality since every two of potential nodes can be separated by introduction of an artificial
fixed node if necessary. The second requirement, in general, restricts the class of problems.
However, in practical models usually each potential node belongs to exactly one selection or
sometimes to two selections in more complex problems.

For simplicity of the model and the solution procedure, we transform the potential nodes
into artificial arcs. The transformation is performed by duplication of all potential nodes.
After the duplication is done all the nodes can be considered as fixed and each potential node is
replaced by an artificial arc which leads from the node to its copy. Due to the transformation
we get a network with the fixed structure since all the nodes are fixed. Potentiality of
artificial arcs does not imply any complication because each arc in the network represents a
potential flow. Moreover, all the bounds on flows (i.e., capacities) are connected t o arcs after
this transformation. Additional nonstandard discrete constraints on the flow are generated
only by the multiple choice requirements associated with the selections. Cost coefficients are
connected only to arcs, but the coefficients connected to artificial arcs represent fixed costs.

A mathematical statement of this transformed problem takes the form of the following
generalized network model:

minimize

subject to

Y i j = O or 1, (i , j) € A a

where the following notations are used:

no - number of objective functions,

N - set of nodes (including copies of potential nodes),

n, - number of selections,

A - set of arcs (including artificial arcs),

A, - set of artificial arcs,

f; - cost coefficient of the p t h objective associated with the arc (i, j),

bi - supply-demand balance at the node i ,

c i j - capacity of the arc (i , j),

gk, hk - lower and upper number of (artificial) arcs to be selected in the k-th selection,

Sk - set of (artificial) arcs that belong to the k-th selection,

Zi j - decision variable that represents flow along the arc (i, j) ,

y i j - decision variable equal 1 for selected arc and 0 otherwise.

The generalized network model of this form includes typical network constraints (2) with
simple upper bounds (3) as well as a special discrete structure (5) - (6) connected to the
network structure by variable upper bounds (4). While solving the model we have to take
advantages of all these features.

3 Interactive procedure for handling multiple objectives

There are many different concepts for handling multiple objectives in mathematical pro-
gramming. We decided to use the so-called reference point approach which was introduced
by Wierzbicki (1982). This concept was further developed in many papers and was used as a
basis for construction of the software package DIDAS (Dynamic Interactive Decision Analy-
sis and Support system). The DIDAS package proved to be useful in analysing conflicts and
assisting in decision making situations (Grauer et al., 1984).

The basic concept of the reference point approach is as follows:

1. the decision-maker (DM) forms his requirements in terms of aspiration levels, i.e., he
specifies acceptable values for given objectives;

2. the DM works with the computer in an interactive way so that he can change his
aspiration levels during sessions of the analysis.

In our system, we extend the DIDAS approach. The extension relies on additional use
of reservation levels which allow the DM to specify necessary values for given objectives
(Wierzbicki, 1986).

Consider the multi-objective program associated with the generalized network model:

minimize q

subject to

where

q represents the vector,

F is the linear objective vector-function defined by (I) ,

Q denotes the feasible set of the generalized network model, i.e., the set defined by con-
ditions (2) - (6).

The reference point technique works in two stages. In the first stage the DM is provided
with some initial information which gives him an overview of the problem. The initial in-
formation is generated by minimization of all the objectives separately. More precisely, the
following single objective programs are solved:

where F P denotes the p t h objective function and t o is an arbitrarily small number
The so-called pay-off matrix

which yields information on the range of numerical values of each objective is then con-
structed. The p t h row of the matrix R corresponds to the vector (zP,yP) which solves the
p t h program (7). Each quantity qp, represents a value of the j-th objective at this solution
(i.e., qpj = F ~ (Z ~ , Y ~)) . The vector with elements qpp, i.e., the diagonal of R, defines the

utopia (ideal) point. This point, denoted further by qU, is usually not attainable but it is
presented to the DM as a lower limit to the numerical values of the objectives.

Taking into consideration the j-th column of the matrix R we notice that the minimal
value in that column is qpp = q,U.

Let qy be the maximal value, i.e.,

The point qn is called the nadir point and may be presented to the DM as an upper
guideline to the values of the objectives. Thus, for each objective f P a reasonable but not
necessarily tight upper bound qn and a lower bound qU are known after the first stage of the
analysis.

In the second stage, an interactive selection of efficient solutions is performed. The DM
controls the selection by two vector - parameters: his aspiration level qa and his reservation
level qr, where

The support system searches for the satisfying solution while using an achievement scalar-
izing function as a criterion in single-objective optimization. Namely, the support system
computes the optimal solution to the following problem:

minimize

subject to

where ro is an arbitrarily small number and up is a function which measures the deviation of
results from the DM'S expectations with respect to the p t h objective, depending on a given
aspiration level qa and reservation level qr.

The computed solution is an efficient (Pareto-optimal) solution to the original multiob-
jective model. It is presented to the DM as a current solution. The DM is asked whether
he finds this solution satisfactory or not. If the DM does not accept the current solution he
has to enter new aspiration and/or reservation levels for some objectives. Depending on this
new information supplied by the DM, a new efficient solution is computed and presented as
a current solution. The process is repeated as long as the DM needs.

The function up(q, qa,qr) is a strictly monotone function of the objective vector q with
value up = 0 if q = qa and up = 1 if q = qr. In our system, we use (similarly as in Wierzbicki
1986) a piece-wise linear function up defined as follows:

where a, and b, (p = 1 , 2 , . . . , no) are given positive parameters. In the DINAS system, the
parameters a, and b, are defined according to the formulae

bp = b(9; - 9;)

where a and b are positive parameters computed as follows

a = 0 . 1 min
(9; - 9;)

15 j <no (9; - 9?)2 I

b = 10 max
1

15 j <no (gI: - g?)
1 1

The parameters a, and b, satisfy inequalities: a, < 1 and b, > 1, and thereby the
achievement functions up are convex. Minimization of the function up is then equivalent to
minimization of a variable up defined as follows:

4 General concept of the TRANSLOC solver

The TRANSLOC solver has been prepared to provide the multiobjective analysis procedure
with solutions to single-objective problems. According to the interactive procedure described
in Section 3 the TRANSLOC solver has to be able t o solve two kinds of single-objective prob-
lems: the first one associated with calculation of the decision support matrix (problems (7))
and the second one associated with minimization of the scalarizing achievement function
(problems (8)). Both kinds of the problems have, however, the same main constraints which
represent the feasible set of the generalized network model. Moreover, the other constraints
of both the kinds of problems can be expressed in very similar ways. So, we can formulate a
general singlmbjective problem for the TRANSLOC solver as follows:

maximize s (13)

subject t o

C zij - C ~ j i = bi, ; E N (14)
(i,j)€A (j, i)€A

and depending on the kind of optimization:

for the utopia point calculation or

for the achievement scalarizing function optimization, respectively, where: up = 1 and Sp = 0
during utopia point calculation, up = l/(qj; - 9;) and Sp = -q;/(qJ, - 9;) during the min-
imization of the achievement scalarizing function, whereas all the other quantities are the
same as in Sections 2 and 3.

The above single-objective problem is a typical mixed integer linear program, i.e., it is
a typical linear program with integrality conditions for some variables (namely yij). Mixed
integer linear programs are usually solved by branch and bound approach with utilization of
the simplex method. The TRANSLOC solver also uses this approach. Fortunately, only a
very small group of decision variables is required to be integer in our model. Therefore we
can use a simple branch and bound scheme in the solver.

Even for a small transshipment problem with facility location, the corresponding linear
program (13) - (23) has rather large size. For this reason it cannot be solved directly with the
standard simplex algorithm. In order to solve the program on IBM PC/XT microcomputers,
it is necessary to take advantages of its special structure.

Note that the inequalities (20) - (21) and (25) or (26) are standard simple upper bounds
(SUB) which are usually processed outside of the linear programming matrix (Orchard-
Hays, 1968). Similarly, inequalities (22) and (23) can be considered as the so-called variable
upper bounds (VUB) and processed outside of the matrix due to a special technique. Basic
rules of the technique for SUB k VUB processing are developed in Section 5.

The main group of equality constraints (14) represents typical network relations. Sim-
ilarly, the equalities (15) and (16) include only variables with unit coefficients. All the
rows (14) - (16) can be handled in the simplex method as the so-called special ordered net-
work (SON) structure. Basic rules of the SON technique used in the TRANSLOC solver are
developed in Section 6.

Thus only a small number of inequalities (17) - (19) has to be considered as typical rows
of linear program. While taking advantage of this fact, the TRANSLOC solver can process
transhipment problems of quite large dimensions.

5 Implicit representation of VUB & SUB constraints

The single - objective program (13) - (26) includes many inequalities of special simple forms.
They can be partitioned into two groups. The first one consists of the so-called simple upper
bounds (SUB), i.e., inequalities of the form 0 5 z, 5 c, for some variables z, and constants
c,, such as conditions (20) - (21), (26) with respect to variables up, and continuous form
of (24). The second one includes the so-called variable upper bounds (VUB), i.e., inequalities
of the form z j 5 cjzk for some variables z,, zk and constants c,, such as conditions (22).

SUB constraints are usually implicitly represented in commercial simplex codes (see e.g.
Orchard-Hays, 1968). Schrage (1975) proposed some technique for implicit representation of
VUB constraints. The technique was further developed and led to effective implementations
(see e.g. Todd, 1982).

The techniques presented in the literature deals, however, only with a simple form of
VUB constraints. Namely, it is assumed that c, = 1 in all VUBs and there are no upper
bounds on zk variables. The restriction of consideration to only unit variable upper bounds
usually does not imply any loss of generality since it can be attained by a proper scaling of
the problem. Unfortunately, in our model such scaling techniques cannot be used without
destroying of the special SON structure (see Section 6). Therefore we were forced to extend
the VUB techniques in such a way that nonunit variable upper bounds as well as some simple
upper bounds on zk variables were acceptable.

With respect to the VUB & SUB structure the linear program under consideration can
be formulated as follows. The numerical data consist of an m x n matrix A of rank m,
a column m-vector b, a row n-vector f and a column n-vector c. In addition, the index
set N = {1,2,. . . , n) is partitioned into J u K , where J represents the so-called sons, i.e.,
variables which appear on the left-hand-side of variable upper bounds, and K represents the
so-called fathers, i-e., variables which appear on the right-hand-side of variable upper bounds.
Any variable that is not involved in any variable upper bound is regarded as a childless father.
The set J is further partitioned into the sets J(k) , k E K , where J (k) is the set (possible
empty) of sons of the father k E K. It is assumed that the son has only one father and
that no father has a father. The father connected to a son z, will be denoted by k(j) . The
problem is then

max f z

subject to

Az = b

z j 5 Cjzk for all k E K and j E J (k)

zk 5 ck for all k E K

2 > 0

Let sj be a slack variable for the variable upper bound z, 5 cjzk, so that

Consider a basic solution to the problem. The basis consists of the m + v columns
corresponding to some sons z,, some fathers zk and some slacks s, (where v denotes the
number of VUBs). From each VUB either one slack s, or one son z, belongs to the basis.
Calculation of the basic slacks is out of our interest and they can be simply dropped from

the basis, i.e., the corresponding rows and columns can be dropped. Further, the basic sons
which arrive in the other VUBs can be eliminated by submission z, = cjzk. So, the whole
basic solution can be computed from an m x m basis consisting of some linear combinations
of columns from matrix A.

A basic solution to the problem is characterized as follows. The set of sons is partitioned
into the three sets J = J L U J U U J B , where J L denotes the set of nonbasic sons fixed at
their lower limits (i.e., z, = 0), J U denotes the set of nonbasic sons fixed at their upper
limits (i.e., z j = cjzk) and J B denotes the set of basic sons. Similarly, the set of fathers is
partitioned into three sets K = KLU KU U KB, where K L denotes the set of nonbasic fathers
fixed at their lower limits (i.e., z k = 0), KU denotes the set of nonbasic fathers fixed at their
upper limits (i.e., z k = ck), and K B denotes the set of basic fathers. The basis B consists of
the columns corresponding to basic sons Bj = Aj and of the columns corresponding to basic
fathers given by the formula

Bk = Ak + C cjAj
j € J (k) n J U

Consider a basic solution given by a basis B and sets J L , J U , J B, K L, KU, K B. For
the determination of a nonbasic variable to be enter the basis in the simplex algorithm it is
necessary to compute the so-called reduced costs. Let zi denote an ordinary reduced cost
connected to the column Ai, i.e.,

where fB denotes the basic part of the cost vector f. Due to implicit representation of VUBs
the reduced costs associated with several nonbasic variables take then form

d j = z j for ~ E J

dk = zk + C cjzj, for k E K
j € J (k) n J U

Thus, in comparison with pricing in the standard simplex algorithm, the pricing with
implicit representation of VUBs needs a calculation of linear combinations of ordinary reduced
costs as the only one additional operation.

Due to handling of the SUB structure together with the VUB constraints, a nonbasic
variable z, or zk is considered as potential incoming variable if one of the following conditions
fulfils:

dj < 0 and j E J L ,

d j > O and j E J U ,

d k < O and ~ E K L ,

d k > O and ~ E K U .

Implicit representation of VUBs makes some degenerated simplex iterations so simple
that they can be performed on line during pricing. Namely, if z, is an incoming variable and
k(j) E KL, then the corresponding simplex iteration depends only on change sets J L and
J U , i.e., z, is moved from the set J L to the set J U or vice versa. Such an operation can be
performed while pricing before the computation of reduced costs for fathers.

Let z, (8 E J or s E K) be a variable chosen for enter the basis. Considering changes
in the basic solution while the value of z, is either increased for s E J L u K L or decreased

for s E JU u KU by a nonnegative parameter 8 we get six formulae for upper bounds on
the parameter 8 and six corresponding formulae for determination of the outgoing variable
(for details see Ogryczak et al., 1987). Crossing these formulae with four types of incoming
variables we get 19 types (5 criss-crossings are not allowed) of the simplex transformations
performed in the algorithm with implicit representation of the VUB k SUB structure. The
simplest transformation depends only on moving some variable from one set to another with-
out any change of the basis. Most of the transformations depend on performing one of the
following operations:

(a) some basic column multiplied by a scalar is added to another basic column;

(b) some basic column is replaced by a nonbasic column or a linear combination of nonbasic
columns.

More complex transformations use both the above operations and the most complex one
needs two operations of type (a) and one operation of type (b).

6 The simplex SON algorithm

The simplex special ordered network (SON) procedure was developed by Glover & Kling-
man (1981, 1985). It is a partitioning method for solving LP problems with embedded
network structure. Every problem of this type is characterized by a full row rank matrix A
partitioned as follows:

ANN ANL

where ANN(m x n) denotes the matrix corresponding to a pure network problem and the
other submatrices ANL(m x p), ALN(q x n), ALL(q x p) consist of any real elements.

The matrix A of the auxiliary LP problem discussed in Section 3 has obviously this form.
The matrix ANN is an incidence matrix corresponding to the transportation network studied
in Section 2. Therefore each constraint represented by a row of ANN corresponds to a node
of the network and will be referred to as node constraint. Moreover, each variable represented
by a column of ANN corresponds to an arc of the network and will be referred to as arc
variable. There are two classes of the ANN columns: columns containing exactly two non-
zero entries in ANN (one +1 and one -1) called ordinary arcs and columns containing exactly
one non-zero entry in A N N (+1 or -1) called slack arcs. The -1 entry in a column indicates
the node where the arc begins and the +1 entry in a column indicates the node where the
arc ends. If a column has exactly one nonzero element pointing one of the arc endpoints then
an artificial node outside the network can be meant as the second arc endpoint.

The SUB and VUB simplex algorithms use a basis B which is composed of m + q linearly
independent columns selected from the matrix A. Any basis B may be partitioned as follows:

where Bll is a nonsingular submatrix of ANN. It appears to be better for the effectiveness
of the algorithm if rank of Bll is as large as possible.

Let XB = (xB,, xB,) denote the basic part of the decision variable vector x, where XB,, XB,

correspond t o the Bll and B12 submatrices, respectively. Thus the basic variables xe, are
exclusively arc variables. The basic variables XB, may also contain arc variables. Similarly,
the rows of Bll are exclusively node rows but the matrix (Bzl, Bz2) may also contain node
rows.

The basis inverse B-' may be written as follows

where V = Bz2 - B21Br:B12 .
Define the so called master basis tree (MBT) associated with a given basis. The set

of nodes of the tree contains all the nodes of our LPIembedded network problem plus an
external node called the master root. Thus MBT always contains m + 1 nodes

where 0 is the master root, and m arcs. The nodes of MBT that correspond to rows of Bzl are
called externalized roots (ER's). Each ER is connected to the master root by an externalized
arc (EA).

All of the ordinary arcs in Bll belong to MBT. There may be two types of slack arcs
associated with Bll. If a slack arc in Bll is a slack arc of A N N then the arc is replaced by
an arc between the master root and its unique node. If a slack arc in Bll is an ordinary arc
in A N N , i t is replaced by an arc between its nodes in A N N (one of these endpoints is an
ER node).

The arcs in the master basis tree have a natural orientation defined as follows: if an edge
(u,u) belongs t o MBT and node u is nearer the master root than u, then u is called the
predecessor of u, and u is called the immediate successor of u. Thus we will refer to a basis
arc as conformable if its A N N direction agrees with its MBT orientation, and refer to the
arc as nonconformable otherwise.

The master basis tree is represented by the following node functions.

1. PRED
The values of the function are defined as follows:

P R E D [i] = the predecessor of node i in MBT .
For convenience P R E D [0] = - 1.

2. THREAD
The function defines a connecting link (thread) which passes through each node exactly
once. If i is a node on the thread, then THREAD[;] is the next one. The alternation
of the nodes on the thread is defined by using the preorder method of tree passage.

3. RETHREAD
It is a pointer which points in the reverse order of the thread, i.e., if THREAD[;] = j
then R E T H R E A D [j] = 1.

4. DEPTH
The value DEPTH[;] specifies the number of arcs in the predecessor path of node i t o
the master root.

5. LAST
The value LAST[;] specifies the node in the subtree T(i) that is the last node of this
subtree in THREAD order.

6. CONF
Each node i in MBT represents the predecessor arc of the node. If the arc is conformable
then CONF[i] = +1, otherwise CONF[i] = -1.

Let P = [] denote the column vector selected to enter the basis matrix (P1

specifies the p&t of k associated with Bll and P2 the part associated with B z l) Similarly
/ \

a = (OB') denotes the representation of P in terms of B.

\ /
We have a = B-'P and hence using the partitioning formula for B-' we obtain the

following system of equations

Suppose that the matrix D = V-' (i.e., the right down corner part of the matrix B-') is
attained in the explicit form. Thus, the multiplication by the matrix in the former formula
may be simply performed. Both the formulas include a multiplication z = Bi:G with some
vector G. This multiplication is equivalent to solving an upper triangular system = e,
where the matrix ill consists of the rows and columns of Bll ordered according to the
corresponding nodes and arcs on the THREAD line of MBT.

Each column of fill has a t most two nonzero elements. One of them is located at the
diagonal and corresponds t o a node v while the second one (if exist) is located above the
diagonal and corresponds to the predecessor of v. Hence, if the THREAD line is passed
backward and the node v is came across then the value of the variable represented by v is
computed and simultaneously the value of the variable represented by the predecessor of v
is modified. Thus a single pass through the master basis tree along the RETHREAD line is
sufficient for computing the z solution. The cost of such a procedure is proportional to the
number of nodes in MBT.

Let CB = (cBl,cB2) denote the vector of basis cost coefficients. The dual vector w =
(wl, w2) = cB B-' is needed at the pricing step of the simplex method and may be computed
as follows:

W2 = (cB2 - cB1~;: B12)v-'

The multiplication by the matrix V-' may be directly computed since the matrix is assumed
to be kept in the explicit form. Further, both the last formulas include multiplications of the
form w = HB~: which can be effectively executed using the master basis tree structure for
Bll, similarly as while computing the primal solution z.

Consider a single step of the simplex method. When the incoming and outgoing variables
are chosen then the whole basis representation has to be changed and adjusted to the new
situation. Thus, the problem arises how to change in a single simplex iteration the matrix D
and the functions describing the master basis tree.

Let z, and z, denote the incoming and outgoing variables, respectively, and let zt be the
so-called transfer variable that belongs to z ~ 2 and replaces z, in z ~ l , if it is possible.

At each iteration, the variables can alter by the transitions:

- Incoming variable 2, : z~ -+ z ~ l or ZB2

- Outgoing variable z, : z ~ l or ZB2 -, ZN

- Transfer variable zt : ZB2 -+ z ~ l , or no change

- Transfer ER nodes : z ~ 1 - t ZB2 (one ER more),

or ZBZ -' z ~ 1 (one ER less), or no change.

If an arc is added to the master basis tree then a loop is closed. In order to have a tree in the
next iteration also, the loop must be cut and exactly one arc from the loop must be deleted.
It is the fundamental exchange rule for the master basis tree.

At each iteration the matrix D is transformed by elimination using a given pivot row.
The following cases appear when the elimination is performed:

- the pivot row is within the rows of D;

- the pivot row is outside of D;

- a row and a column of D are dropped;

- a new row and a new column are added to D;

- a column (row) of D is replaced by another column (row) from outside of D.

Combining the elimination cases with the transition rules for the incoming, outgoing and
transfer variables we get seven types of basis exchange steps. When z ~ l is maximal relative
to zg2, exactly one of the seven types of basis exchange steps will occur and their updating
prescriptions will maintain z ~ l maximal.

The main features of the discussed approach are cheap multiplication algorithms with ba-
sis inverse, accelerated labelling algorithms for modifying the master basis tree in an efficient
manner and a compact form of the basis inverse occupying a small memory space only.

7 Concluding Remarks

Initial experiences with the DINAS system on small testing examples confirm appropriate-
ness of the used methodology for solving multiobjective transshipment problems with facility
location. The interactive scheme is very easy to understand and it provides the DM with
compressed the most important characteristics of generated efficient solutions. Moreover, the
DM controls the system with unsophisticated parameters: aspiration and reservation levels.
In effect, one easily reaches a satisfactory solution in a few interactive steps.

On the other hand, we have noticed that introducing of multiple objectives into the
transshipment problem with facility location transformed this easy discrete problem into
a complex one. Namely, it has been proved that the single-objective problem connected
with minimization of the achievement function is far more complex than the original single-
objective problems connected with minimization of several objective functions. The original
single-objective problem is solved with the branch and bound method after examination only

a few number of subproblems while minimization of the achievement function requires to
analyse many branches of the tree. Thus for solving large real-life problems, rather a more
advanced hardware than the standard IBM-PC XT should be used.

8 References

Glover, F., Klingman, D. (1981). The simplex SON method for LP/embedded network
problems. Mathematical Programming Study 15, pp. 148-176.

Glover, F., Klingman, D. (1985). Basis exchange characterization for the simplex SON
algorithm for LP/embedded networks.Mathematica1 Programming Study 24, pp. 141-
157.

Grauer, M., Lewandowski, A., Wierzbicki, A. (1984). DIDAS - theory, implementation
and experiences. In M. Grauer, A.P. Wierzbicki (eds), Interactive Decision Analysis.
Springer, Berlin 1984.

Ogryczak, W., Studzinski, K., Zorychta, K. (1987). A solver for the transshipment problem
with facility location. In A. Lewandowski and A. Wierzbicki (Eds.), Theory, Software
and Testing Examples for Decision Support Systems. IIASA, Laxenburg.

Orchard-Hays, W. (1968). Advanced Linear-Programming Techniques. McGraw-Hill, New
York.

Schrage, L. (1975). Implicit representation of variable upper bounds in linear programming.
Mathematical Programming Study 4, pp. 118-132.

Todd, M.J. (1982). An implementation of the simplex method for linear programming
problems with variable upper bounds. Mathematical Programming 23, pp. 34-49.

Wierzbicki, A.P. (1982). A mathematical basis for satisficing decision making. Math. Mod-
elling 3, pp. 391-405.

Wierzbicki, A.P. (1986). On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR Spektrum 8, pp. 73-87.

Solving Multiobjective Distribution-Location Problems
with the DINAS System

Wlodzimierz Ogryczak, Krzysztof Studtr'nski,

Krystian Zorychta

Insti tute of Informatics, Warsaw University.

Abstract

DINAS is a decision support system which enables the solution of various multiobjec-
tive transshipment problems with facility location using IBM-PC XT/AT or compatibles.
DINAS is prepared as a menu-driven and easy in usage system equipped with a special
network editor which reduces to minimum effort associated with input a real-life prob-
lem. To illustrate the interactive procedure and the system capabilities we present in
this paper using of DINAS to analyse a small testing example. As the test problem we
use an artificial part of the real-life model connected with the health service districts
reorganbation.

1 Introduction

The distribution-location type problems belong to the class of most significant real-life de-
cision problems based on mathematical programming. They are usually formalized as the
so-called transshipment problems with facility location. In this paper we show how such mul-
tiobjective problems can be solved using our decision support system DINAS (see previous

paper).
A network model of the transshipment problem with facility location consists of nodes

connected by a set of direct flow arcs. The set of nodes is partitioned into two subsets: the
set of fixed nodes and the set of potential nodes. The fixed nodes represent %xed pointsn
of the transportation network, i.e., points which cannot be changed whereas the potential
nodes are introduced to represent possible locations of new points in the network. Some
groups of the potential nodes represent different versions of the same facility to be located
(e.g., different sizes of warehouse etc.). For this reason, potential nodes are organized in the
so-called selections, i.e., sets of nodes with the multiple choice requirement. Each selection
is defined by the list of included potential nodes as well as by a lower and upper number of
nodes which have to be selected (located).

A homogeneous good is distributed along the arcs among the nodes. Each fixed node
is characterized by two quantities: supply and demand on the good, but for mathematical
statement of the problem only the difference supply-demand (the so-called balance) is used.
Each potential node is characterized by a capacity which bounds maximal flow of the good
through the node. The capacities are also given for all the arcs but not for the fixed nodes.

A few linear objective functions are considered in the problem. The objective functions
are introduced into the model by given coefficients associated with several arcs and potential
nodes. They will be called cost coefficients independently of their real character. The cost

coefficients for potential nodes are, however, understood in a different way than for arcs. The
cost coefficient connected to an arc is treated as the unit cost of the flow along the arc whereas
the cost coefficient connected to a potential node is considered as the fixed cost associated
with activity (locating) of the node rather than as the unit cost.

Summarizing, the following groups of input data define the transshipment problem under
consideration:

- objectives,

- fixed nodes with their balances,

- potential nodes with their capacities and (fixed) cost coefficients,

- selections with their lower and upper limits on number of active potential nodes,

- arcs with their capacities and cost coefficients.

In the DINAS system we placed two restrictions on the network structure:

- there is no arc which directly connects two potential nodes;

- each potential node belongs to at most two selections.

The first restriction does not imply any loss of generality since each of two potential nodes
can be separated by an artificial fixed node, if necessary. The second requirement is not very
strong since in practical models usually there are no potential nodes belonging to more than
two selections.

The problem is to determine the number and locations of active potential nodes and to
find the good flows (along arcs) so as to satisfy the balance and capacity restrictions and,
simultaneously, optimize the given objective functions. A mathematical model of the problem
is described in details in the previous paper of this volume.

DINAS enables a solution to the above problems using an IBM-PC XT/AT or compati-
bles. It requires 640K RAM and a hard disk or at least one floppy disk. DINAS can process
problems consisted of:

- up to seven objective functions,

- a transportation network with up to one hundred of nodes and a few hundreds of arcs,

- up to fifteen potential locations.

DINAS consists of three programs prepared in the C programming language:

- an interactive procedure for efficient solutions generation,

- a solver for singlmbjective problems,

- a network editor for input data and results examination.

For handling multiple objectives Dinas utilizes an extension of the reference point a p
proach proposed by Wierzbicki (1982). The basic concept of the interactive scheme is as
follows:

- the DM works with the system in an interactive way so that he can change his aspiration
and reservation levels in any direction;

- after editing the aspiration and reservation levels, the system computes a new efficient
solution by solving a corresponding single-objective problem;

- each computed efficient solution is put into a special solution base and presented to the
DM as the current solution in the form of tables and bars which allow him to analyse
performances of the current solution in comparison with the previous solutions.

A special TRANSLOC solver has been prepared to provide the multiobjective analysis
procedure with solutions to singlmbjective problems. The solver is hidden from the user but
it is the most important part of the DINAS system. It is a numerical kernel of the system
which generates efficient solutions. The concept of TRANSLOC is based on the branch
and bound scheme with a pioneering implementation of the simplex special ordered network
(SON) algorithm proposed by Glover and Klingman (1981) with implicit representation of
the simple and variable upper bounds (VUB & SUB) suggested by Schrage (1975). The
mathematical background of the TRANSLOC solver was given in details by Ogryczak et al.
(1987).

DINAS is equipped with the built-in network editor EDINET. It is a full-screen editor
specifically designed for input and edit data of the network model of the transshipment
problems with facility location . The essence of the EDINET concept is a dynamic movement
from some current node to its neighbouring nodes, and vice versa, according to the network
structure. The input data are inserted by a special mechanism of windows while visiting
several nodes. The principles of using the editor are presented in Section 4.

In this paper an example of problem of health service districts reorganization is considered.
Such problems connected with reorganization of the primary health service in a district of
Warsaw were successfully solved with the MPSX/370 package by Ogryczak and Malczewski
(1988). Now such an analysis connected with location of new hospitals in Warsaw macroregion
using the DINAS system on an IBM-PC AT microcomputer is prepared. To illustrate the
interactive procedure and the system capabilities we present in details using of DINAS to
analyse a test problem constructed as a small artificial part of this real-life model.

2 The problem

The problem of health service districts reorganization connected with location of new health-
care centers can be formulated as follows. The region under consideration is assumed to
consist of some number of geographically defined subareas or census blocks with known
distribution of the population. A number of health-care centers is available in the region but
their capabilities to offering health services is not sufficient. Therefore some new facilities are
located. The problem depends on determination of the locations and capacities of some new
centers as well as on assignment of individuals to the centers (new and old). The proposed
solution should be optimal with respect to a few objective functions and simultaneously it
must be accepted by the competent decision maker.

To set the stage, we consider as a region a part of city as it is shown in Fig. 1. The five
major highways divide the region into 12 subareas. For each of these areas the demand on
health-are services is identified in thousands of visits per year. These quantities are included
in Table 1.

Within the region there are two health-are centers offering services: Pond and Hill.
They can offer 100 and 90 thousands of visits per year, respectively. Thus the total supply
of services amounts 190 while the total demand on services in the region is 240. Therefore
some new health-are centers should be located within the region.

I I

Figure 1: The region under consideration

Ribee Robur Rumex Acer Picee Betula
Larix Arnika Pinue Bobrek Li tror Erica

Figure 2: A scheme of the network

Larix
Robur
Arnika
Rumex
Pinus
Acer
Bobrek
Picea
Litwor
Betula
Erica

Table 1: Demands on health services

There are considered four potential locations for the new centers: Ice, Fiord, Bush and
Oasis. The locations are divided into two subsets associated with the corresponding two
subregions:

North = {Ice, Fiord),

South = {Bush, Oasis).

The distance between two potential locations in the same subregion are relatively small
whereas each of them can meet the demands on health services. Therefore the locations
belonging to the same subregion are considered as exclusive alternatives, i.e., no more than
one location from the subregion can be used. Moreover, different designed capacities of health
centers are associated with several locations. Table 2 lists capacities of the designed potential
health-care centers.

Fiord North
Bush South
Oasis 60 South

Table 2: Potential health-care centers

One must decide which potential health-care centers have to be built so as to meet the
total demand on health services. The decision should be optimal with respect to the following
criteria:

- minimization of the average distance per visit;

- maximization of the overall proximity to centers;

- minimization of the investment cost;

- maximization of the population satisfaction.

The first two criteria are connected with distances between health-care centers and areas
assigned to them. Taking into account the urban morphology and the transportation net-
work, it was accepted that the city-block metric was the best approximation to real distances.

Therefore we define the distance between an individual and the health center as the rectangu-
lar distance between the centre of the corresponding area and the location of the health-care
center. Certain connections between the areas and the health centers are eliminated as unac-
ceptable due to too long distances or other troubles with transport. The distances between
several areas and all the health centers are given in Table 3 . The unacceptable connections
are denoted by putting asterisks (*) as a distance.

Table 3: Distance coefficients

Ribes
Larix
Robur
Arnika
Rumex
Pinus
Acer
Bobrek
Picea
Litwor
Betula
Erica

The overall proximity to the health care services is defined as a sum of all the individual
proximity coefficients. The individual proximity is assumed to be inversely proportional to
square of the distance to the health-care center. More precisely, the individual proximity
coefficients are defined according to the following formula (compare Abernathy and Hershey,
1972) :

Pac = l / (d a c + 6)'

Pond
4 .14
2.61
2.19
1.74
4 .53
2.28
4 .02
3.84
* *
* *
* * *
* * *

where d,, denotes the distance between the corresponding area a and the health-care center
c, and c is an arbitrarily small positive number. The proximity coefficients for the whole
region under consideration are given in Table 4 .

H111
* * *
* * *
*
* * *
4.32
4.14
1.95
4.17
2 .01
2.22
1.95
3.72

Table 4 : Proximity coefficients

Picea
Litwor
Betula
Erica

The investment cost and the population satisfaction level are assumed t o be a sum of
fixed costs and a sum of fixed satisfaction levels connected with several possible locations,

Ice
2.34
1.35
3.96
4 .08
2 .85
1.80
* * *
* * *
* * *
* * *
* * *
* * *

* *
*
* *
* *

F ~ o r d
3.03
3 .63
* *
* *
1.35
0 .81
3.27
* *
3.30
*
* * *
* * *

24.75
20.29
26.30

7 . 2 3

B u s h
* * *
* * *
4 .38
2 .70
* * *
2.94
1.77
1.35
4 .71
*
4 .02
3 .42

Oas~s
* * *
* * *
* * *
3.51
* * *
4.14
1.56
1.65
* * *
4 .65
3 .06
2 .46

* * *
* * *
* * *
* * *

9 .18
* * *
* * *
* * *

4.51
*
6 . 1 9
8 .55

* * *
4.62

10.68
16.52

respectively. In our example the fixed coefficients take values given in Table 5.

Table 5: Investment and satisfaction coefficients

In the next section we show how the above problem can be formulated as a multiobjective
transshipment problem with facility location, i.e., in the form which can be processed by the
DINAS system.

Oas~s
201
192

Investment
Satisfaction

3 The network model

The problem of health service districts reorganization connected with location of new health-
care centers stated in the previous section can be easy formulated as a multiobjective trans-
shipment problem with facility location. The areas and existing health-care centers are, cer-
tainly, fixed nodes of the network under consideration. Similarly, all the potential locations of
new health centers are treated as potential nodes. Arcs represent all the possible assignments
of patients to the health-care centers, i.e., arcs are associated with all the nonempty cells in
Table 3 or 4. A flow along the arc from a center c to an area a expresses a number of visits in
the area a serviced by the center c. In order to balance the problem in terms of supply and
demand an artificial node Tie with supply equal to the overall demand is introduced. There
are also defined additional arcs from the artificial node to each health-care center (existing or
potential). Capacity of the existing health-care centers (Pond and Hill) are then represented
as capacities of the arcs from Tie to the corresponding fixed nodes. A scheme of the network
is presented in Fig. 2.

Now we can define several groups of data of the multiobjective transshipment problem
with facility location. As we have mentioned in Section 1 the fixed node is characterized only
by the balance, i.e., difference between the corresponding supply and demand. Table 6 lists
supplies, demands and balances for all the fixed nodes in our model. Note that the sum of
supplies is equal to the sum of demands and thereby the sum of balances is equal to zero.

Ice
200
176

In the transshipment problem with facility location objective functions are considered
as sums of linear functions of flows along several arcs and fixed costs connected with the
used locations. In our model objective functions can be divided into two groups. Functions
Investment (cost) and Satisfaction (level) are independent of the assignment decisions and
thereby they have not coefficients connected with flows along arcs (i.e., these coefficients
are equal to 0) . On the other hand, functions (average) Distance and (overall) Proximity
depend only on assignment decisions and they have not contain fixed terms connected with
locational decisions. Fixed coefficients of the functions Investment and Satisfaction can be
directly taken from Table 5. Similarly, the linear coefficients of the function Proximity are
given in Table 4. The linear coefficients of the function Distance are defined as quotients of
the corresponding distances by the sum of demands, i.e., as d,,/240.

There are four potential nodes which represent the potential locations of the health-care
centers, i.e., Ice, Fiord, Bush, Oasis. The data connected with the potential nodes are listed
in Table 7. Here and thereafter the objective functions are denoted by abbreviations of the
corresponding names.

F~ord
212
87

Bush
186
100

Table 6: Fixed nodes

Node
Ribes
Larix
Robur
Arnika
Rumex
Pinus
Acer
Bobrek
Picea
Litwor
Betula
Erica
Pond
Hill
Tie

Table 7: Potential nodes

Supply
0
0
0
0
0
0
0
0
0
0
0
0
0
0
240

Node
Ice
Fiord
Bush
Oasis

As we have already mentioned the locations belonging to the same subregion are con-
sidered as exclusive alternatives, i.e., no more than one location from the subregion can be
used. Therefore we introduce into the network model selections which represent such a type
of requirements. In our model there are two selections associated with to subregions: North
and South. Both the selections have the lower numbers equal to 0 and the upper numbers
equal to 1. It guarantees that a t most one potential node in each selection is active. The
complete data connected with selections are given in Table 8.

Demand
24.5
25.0
21.0
20.5
19.0
20.0
16.0
22.0
15.0
20.5
13.0
23.5
0
0
0

Capacity
50
60
50
60

I South I ~ u s h . Oasis I 0 I 1 I

Balance
-24.5
-25.0
-21.0
-20.5
-19.0
-20.0
-16.0
-22.0
-15.0
-20.5
-13.0
-23.5
0
0
240

Selection I Alternative nodes I Lower number I Upper number

Table 8: Selections

Fixed costs

North I Ice, Fiord

The last group of data is connected with the arcs. The arcs are characterized by their
capacities and objective functions coefficients. The cost coefficients have been already dis-
cussed while consideration of the objective functions. Capacities of the arcs from the artificial
node Tie to the nodes representing health-care centers (Pond, Hill, Ice, Fiord, Bush, Oasis)
express capacities of the corresponding centers. The arcs connecting the nodes representing
health-care centers with the nodes representing the areas have essentially unlimited capaci-
ties. However, in practice, flows along these arcs are also bounded by capacities of the cor-

prox ,
0
0
0
0

' ~nvest
200
212
186
201

0 1

satisf
176
87
100
192

d ~ s t
0
0
0
0

Table 9: Arcs

prox
0.
0.
0.
0.
0.
0.

5.83
14.68
20.85
33.03
4.87
19.24
6.19
6.78
5.36
5.83
26.30
5.75
24.75
20.29
26.30
7.23
18.26
54.87
6.38
6.01
12.31
30.86
10.89
7.59
54.87
152.42
9.35
9.18
5.21
13.72
11.57
31.92
54.87
4.51
6.19
8.55
8.12
5.83
41.09
36.73
4.62
10.68
16.52

sa tisf
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

From
Tie
Tie
Tie
Tie
Tie
Tie
Pond
Pond
Pond
Pond
Pond
Pond
Pond
Pond
Hill
Hill
Hill
Hill
Hill
Hill
Hill
Hill
Ice
Ice
Ice
Ice
Ice
Ice
Fiord
Fiord
Fiord
Fiord
Fiord
Fiord
Bush
Bush
Bush
Bush
Bush
Bush
Bush
Bush
Oasis
Oasis
Oasis
Oasis
Oasis
Oasis
Oasis

dis t
0
0
0
0
0
0
.01725
.010875
.009125
.00725
.018875
.0095
.01675
.016
.018
.01725
.008125
.017375
.008375
.00925
.008125
.0155
.00975
.005625
.0165
.017
.011875
.0075
.012625
.015125
.005625
.003375
.013625
.013750
.01825
.01125
.01225
.007375
.005625
.019625
.01675
.01425
.014625
.01725
.0065
,006875
.019375
.01275
.01025

Capacity
100
90
50
60
50
60
100
100
100
100
100
100
100
100
90
90
90
90
90
90
90
90
50
50
50
50
50
50
60
60
60
60
60
60
50
50
50
50
50
50
50
50
60
60
60
60
60
60
60

To
Pond
Hill
Ice
Fiord
Bush
Oasis
Ribes
Larix
Robur
Arnika
Rumex
Pinus
Acer
Bobrek
Rumex
Pinus
Acer
Bobrek
Picea
Litwor
Betula
Erica
Ribes
Larix
Robur
Arnika
Rumex
Pinus
Ribes
Larix
Rumex
Pinus
Acer
Picea
Robur
Arnika
Pinus
Acer
Bobrek
Picea
Betula
Erica
Arnika
Pinus
Acer
Bobrek
Litwor
Betula
Erica

invest
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

responding health-care centers and we use them as arcs capacities. All the data connected
with arcs are listed in Table 9.

4 Input of the problem

As we have already mentioned DINAS is armed with the built-in network editor EDINET.
EDINET is a full-screen editor specifically designed for input and edit the data of the problem
t o be analysed. The DINAS interactive procedure works with a special file containing whole
information defining the problem and the EDINET editor enables t o prepare this file. The
main data of the problem can be divided into two groups:

- logical data defining the structure of a transportation network (e.g., nodes, arcs, selec-
tions);

- numerical da ta describing the nodes and arcs of the network (e.g., balances, capacities,
coefficients of the objective functions).

The general concept of EDINET is to edit the data while defining the logical structure
of the network. More precisely, the essence of the EDINET concept is a dynamic movement
from some current node to its neighbouring nodes, and vice versa, according to the network
structure. The input data are inserted by a special mechanism of windows, while visiting
several nodes. At any time only one of the windows representing different kinds of the data
is active. The corresponding part of the data can be then inserted. While working with the
editor the DM activates several windows.

The editor is menu-driven and its main menu branches into the three available groups of
operations: FILE, PRINT NETWORK, EDIT NETWORK. EDIT NETWORK is the main
branch of the menu. It contains such operations as LIST NODES, NETWORK, SELEC-
TIONS and OBJECTIVES.

The problem editing usually starts by using the LIST NODES command. The corre-
sponding window consists of all the nodes in the alphabetic order, that have been inserted so
far. While starting with a new problem the list is, obviously, empty. The DM can move the
pointer along the list to select a node, or simply type a name of a new node. Then the main
screen of the editing process appears. The screen contains the following windows: CURRENT
NODE, NODE FROM and NODE TO. The node selected from the list (or typed) is presented
as the current node and the corresponding CURRENT NODE window is active. The screen
connected t o our health service problem is shown in Fig. 3. The potential node Bush is there
used as the current node. The CURRENT NODE window contains the da ta describing the
node such as the capacity, the corresponding selection and the objective coefficients.

The DM can edit, correct or examine the data connected with the current node, or activate
the NODE FROM or NODE T O window. The NODE FROM window contains names of the
nodes that precede the current node in the network and names of the corresponding arcs.
Similarly, the NODE T O window contains names of the nodes and arcs which directly succeed
the current node in the network. If the NODE FROM or NODE T O window is activated
then the DM can select one of the nodes contained in the window or type a new node name.

Now, similarly as in the case of the current node, the window corresponding to the selected
(or typed) node appears and the DM can edit, correct or examine the data connected to the
node.

After the node definition or examination the DM can activate the ARC window associated
with this node. Then the da ta of the arc which connects the selected node t o the current

Figure 3: C U R R E N T NODE, N O D E FROM and N O D E T O windows

Selections

R!!!I!es- kst R;ff ic ient

s f pi
prox 0

Obb:ctiue~p e f f ic ient

lnves t
sat i s f O
dis t 8.01225
prom 11.57

Figure 4: ARC window

node, can be also edited, corrected or examined. The arc definition is illustrated in Fig. 4.
The Pinus node is there selected in the NODE T O window. Hence, the ARC window contains
the information connected t o the arc called BUPI which starts a t Bush and ends a t Pinus.

Each of the nodes contained in the NODE FROM or NODE T O window can be changed
into the current node. After such an operation the selected node is put into the CURRENT
NODE window. The NODE FROM and NODE T O windows are then modified according to
the network structure.

Independently of the list of nodes, a graphic scheme of the network is available a t any
time. For instance, a part of the scheme for our health service problem is presented in Fig. 5.
One can examine the network while moving along the scheme. Each visited node can be
selected as the current node to restart the editing process.

Some special windows are associated with selections and objectives. The SELECTION
window lists the nodes belonging to several selection. The SELECTION window in Fig. 6
contains two selections: North and South, defined in our test problem. The additional
BOUNDS window enables editing of the lower and upper bounds on a number of potential
nodes which can be used in the selection.

Similarly, the OBJECTIVES window allows us to define objective functions by putting
their names and types of optimization (min or max). If an objective is defined then the
information connected with this objective is automatically inserted into all the potential
node and arc windows.

The other branches of the menu contain some technical operations on the network file.
There are available commands which enable t o save the edited network (SAVE), t o restore
a previously edited network for further modifications (LOAD), or t o print a compressed
description of the network (PRINT NETWORK).

5 Introductory multiobjective analysis

The interactive analysis of the multiobjective problem can be performed with DINAS by
the DM who is not familiar with neither computer techniques nor mathematical program-
ming. DINAS is a menu-driven system with very simple commands. Operations available in
the DINAS interactive procedure are partitioned into three groups and corresponding three
branches of the main menu (see Table 10): PROCESS, SOLUTION and ANALYSIS.

rocess o u tlon na ysls
ro em ummary ompare

Convert Browse Previous
Pay-Off Save
Efficient Delete
Quit Restore

Table 10: The DINAS main menu

The PROCESS branch contains basic operations connected with processing the multi-
objective problem and generation of several efficient solutions. There are included problem
definition operations such as calling the EDINET editor for input or modification of the prob-
lem (PROBLEM) and converting of the edited problem with error checking (CONVERT).
Further, in this branch the basic optimization operations are available: computation of the

L

Fond

l i t -Ihlr Robur

Pinus
Bobrr k
Picta
Be tula
Krioa

Oasis

roue inside the ne t W se lec t node

Figure 5: NETWORK window

OD6 FRO
n ~ :

Plnus

1 .
Acer

North Fiord Icr

3 MOU o no g ROWI u %Nn? *tit Rs! bfuorh u e c t i v t s ,Itctions
e x i t

Figure 6: SELECTION window

pay-off matrix with the utopia and nadir vectors (PAY-OFF) and generation of efficient so-
lutions depending on the edited aspiration and reservation levels (EFFICIENT). As the last
command in this branch is placed the QUIT operation which allows the DM to finish work
with the system.

The SOLUTION branch contains additional operations connected with the current so-
lution. The DM can examine in details the current solution using the network editor
(BROWSE) or analyse only short characteristics such as objective values and selected lo-
cations (SUMMARY). Values of the objective functions are presented in three ways: as a
standard table, as bars in the aspiration/reservation scale and as bars in the utopialnadir
scale. The bars show percentage level of each objective value with respect to the correspond-
ing scale. The DM may also print the current solution (BROWSE) or save it for using in
next runs of the system with the same problem (SAVE). There is also available a special
command to delete the current solution from the solution base if the DM finds it as quite
useless (DELETE).

The ANALYSIS branch collects commands connected with operations on the solution
base. The main command COMPARE allows the DM to perform comparison of all the
efficient solutions from the solution base or of some subset of them. In the comparison only
the short characteristics of the solutions are used, i.e., objective values in the form of tables
and bars as well as tables of selected locations. Moreover, some commands which allow the
DM to select various efficient solutions from solution base as the current solution are included
in this branch (PREVIOUS, NEXT and LAST). There exist also an opportunity to restore
some (saved earlier) efficient solution to the solution base (RESTORE).

In this and next sections we present an outline of the basic multiobjective analysis per-
formed on our test problem. We do not discuss all the capabilities of the system which can
be used in such an analysis. More details of this analysis were described by Ogryczak et al.
(1988a).

Having defined and converted the problem as the first step of the multiobjective analysis
one must perform the PAY-OFF command. It executes optimization of each objective func-
tion separately. In effect, we get the so-called pap-off matrix presented in Table 11. The
pay-off matrix is a well-known device in multiobjective programming. It gives values of all
the objective functions (columns) obtained while solving several single-objective problems
(rows) and thereby it helps to understand the conflicts between different objectives.

Table 11: Pay-off matrix

Optimized
function
invest
satisf
dist
prox

Execution of the PAY-OFF command provides also us with two reference vectors: the
utopia vector and the nadir vector (see Table 12). The utopia vector represents the best
values of each objective considered separately, and the nadir vector express the worst values
of each objective noticed during optimization of another objective function. The utopia vector
is, obviously, not attainable, i.e., there are no feasible solutions with such objective values.

While analysing Tables 11 and 12 we find out that the objective values vary significantly

Objec tl ve values
~nves t

186
401
413
398

prox
4976
6385
8782
8854

sat isf
100
368
279
187

d ~ s t
2.61
2.17
2.03
2.12

Table 12: Utopia and nadir vectors

utopia
nadir

depending on selected optimization. Only for the average distance we notice the relative
variation less than 30% whereas for the other objectives it even overstep 100%. Moreover, we
recognize a strong conflict between the investment cost and all the other objectives. While
minimizing the investment cost we get the worst values for all the other objectives. On the
other hand, while optimizing another objective function we get doubled investment cost in
comparison with its minimal value.

Coefficients of the nadir vector cannot be considered as the worst values of the objectives
over the whole efficient (Pareto-optimal) set. They usually estimate these values but they
express only the worst values of each objective noticed during optimization of another ob-
jective function. In further analysis we will show that these estimations can be sometimes
overstep.

Due to the special regularization technique used while computation of the pay-off matrix
(see Ogryczak et al., 1988) each generated single-objective optimal solution is also an efficient
solution to the multiobjective problem. So, we have already available in the solution base four
efficient solutions connected with several rows of the pay-off matrix. Using different com-
mands of DINAS we can examine in details these solutions. In particular, we can recognize
locations structure for several solutions. The first solution which minimizes the investment
cost is based on only one new health-are center located a t Bush. Each other solution use
two new centers what explains their significantly higher investment costs. They are based on
the following locations: Ice and Oasis, Fiord and Oasis, Bush and Fiord.

6 Interactive analysis

Objective values

Having computed the utopia vector we can start the interactive search for a satisfying efficient
solution. As we have already mentioned DINAS utilizes aspiration and reservation levels
to control the interactive analysis. More precisely, the DM specifies acceptable values for
several objectives as the aspiration levels and necessary values as the reservation levels. All
the operations connected with editing the aspiration and reservation levels as well as with
computation of a new efficient solution are included in the EFFICIENT command.

At the beginning of the interactive analysis we compute the so-called neutral solution.
For this purpose we accept the utopia vector as the aspiration levels and the nadir vector
as the reservation levels. In effect, we get the fifth efficient solution based on location two
new health-care centers at Bush and at Ice. The investment cost of this solution is rather
high (invest=386) whereas the other objectives get middling values (satisf=276, dist=2.26,
prox=6457).

Apart from the solution connected with minimization of the investment cost all the other
solution are based on location of two new health-care centers what implies a high investment
cost. Therefore we try to find an efficient solution with small investment cost (one new center)
and relatively good values of the other objectives. For this purpose we define the aspiration
and reservation levels as it is given in Table 13.

invest
186
413

sat isf
368
100

dis t
2.03
2.61

prox
8854
4976

Table 13: Aspiration/reservation levels for Solution No. 6

aspiration
reservation

In effect, we get the sixth efficient solution based on location of one new health-care center
a t Oasis. The investment cost is small (invest=201), the satisfaction level has middling value
(satisf=192) while the average distance is very large (dist=2.58) and the overall proximity
is even less than the corresponding coefficient of the nadir vector (prox=4933). The system
automatically correct the nadir vector by putting the new worst value as the proper coefficient.

To avoid too small values of the overall proximity in the next solution we modify the
reservation level for this objective putting 8000 as the new value. After repeating the compu-
tation we get the seventh efficient solution based on the sole new health-care center located
at Ice. Due to the very convenient form of solution presentation in DINAS we can easy
examine performances (in terms of objective values) of the new solution in comparison with
the previous one. The overall proximity, the average distance and the investment cost are
slightly better (prox=5287, dist=2.53 and invest=200) while the overall satisfaction level is
a few percent worse (satisf=l76).

After analysis of two last efficient solutions we make a supposition that it is necessary
to relax requirements on the satisfaction level for making possibility to find an efficient
solution with good values of the average distance and the overall proximity under small
the investment cost. So, we change the reservation level associated with the function satisf
on 100. The system confirms our supposition. We get the eighth efficient solution based
on the sole new health-care center located at Fiord. The solution guarantees quite large
overall proximity (prox=7691) and relatively small average distance (dist=2.38) under small
investment cost (invest=212). On the other hand, the satisfaction level has a value even less
than the corresponding coefficient of the nadir vector (satisf=87). Despite of the latter the
solutions seems to be very interesting among the other efficient solutions based on location
of a sole health-care center.

Further search for a satisfying efficient solution based on only one new health-care center
have finished without success. Namely, for different values of the aspiration and reservation
levels the same efficient solutions have been generated. So, to complete the analysis we try to
examine another efficient solutions. For this purpose we relax requirements on the investment
cost. Among others, while using the aspiration and reservation levels given in Table 14 we
get the nineth efficient solution. It is based on the same location of new centers as the third
solution (Fiord and Oasis) and thereby it gives the same investment cost (invest=413) and
satisfaction level (satisf=279). However, the average distance and the overall proximity differs
slightly (dist=2.04 and prox=8791).

invest
186
250

Table 14: Aspiration/reservation levels for Solution No. 9

aspiration
reservation

sa tisf
300
200

invest
200
400

dis t
2.08
2.50

prox
8500
7000

sa tisf
300
200

dis t
2.10
2.50

prox
8800
8400

Finally, we examine all the generated efficient solutions using special comparison tools
available in DINAS. The solutions are listed in Tables 15 and 16. A careful analysis of these
solutions leads us to the following conclusion. The investment cost cannot be regarded as a
typical objective function since its values depend rather on the number of new health-care
centers than on their locations. It only partitions all the efficient solutions into two groups:
solutions based on a sole new health-care center and solutions based on location of two new
centers. Therefore it is necessary to look for a good solution based on a sole new center
which can be expanded to a better solution by adding the second new center. In our opinion,
the first new health-care center should be located at Fiord (Solution 8). It is the only one
efficient solution (based on a sole new center) which gives acceptable values of the average
distance and the overall proximity (see Fig. 7). This solution gives also the worst value of the
satisfaction level. However, further development of this solution by adding the new health-
care center at Oasis (Solution 9) leads to a quite high value of the satisfaction level and
makes further significant improvements with respect to the average distance and the overall
proximity (see Fig. 8). Both the proposed solutions have the highest investment costs in the
corresponding groups of solutions but variation of this objective among solutions of the same
group is so small that it cannot be considered as a serious weakness.

Table 15: Efficient solutions - objective values

Table 16: Efficient solutions - locations

Solution 1
Solution 2
Solution 3
Solution 4
Solution 5
Solution 6
Solution 7
Solution 8
Solution 9

Due to offering by DINAS easy way for modification the problem we can perform an
additional analysis while changing some objective functions. While repeating the multiobjec-
tive analysis with omitted objective function invest we get the nineth solution as the neutral
solution what confirms optimality of this solution with respect to good values of all the three
objectives.

Bush
Yes
no
no

yes
yes
no
no
no
no

Oasis
no

yes
yes
no
no

yes
no
no

yes

Flord
no
no

yes
yes
no
no
no

yes
yes

Ice
no

yes
no
no

yes
no

yes
no
no

S o l . 6

. j ~ $ j j j f ! j ~ j j j j j $ j j ~ ~ j ~ j $ j j $ j j ~ j j ;

$ 0 1 . 7 u

$01. 8 u

W fllfl A/R B u s , Uf i B u s , locat ions , Ualues U U Scrol l a Menu

Figure 7: Utopialnadir bars for selected solutions

a I/R B u s , U f l Bars, locat ions , Ualucs @$I Henu

Figure 8: Utopia/nadir bars for the current solution

Using the BROWSE command we can examine in details the selected solutions with the
EDINET editor. It turns out that in the eighth efficient solution the health-are center Hill
is assigned t o areas: Acer, Picea, Litwor, Betula and Erica. The health-care center Pond
services areas: Bobrek, Arnika, Robur, Larix and a small part of Ribes. The new health-
care center Fiord services only areas Pinus, Rumex and the main part of Ribes. Capacity
of the new center Fiord is completely used whereas in the old centers we have noticed some
small free capacities. I t suggests that the old health-are centers have nonoptimal location
with respect t o the considered objective functions. The nineth efficient solution confirms this
observation. The additional new health-are center a t Oasis takes the area Acer and the
main part of Erica from the region of Hill and the area Bobrek from the region of Pond. So,
in this solution both the new health-are centers use the whole their capacities whereas the
old centers use only 50-70% of their capacities. In effect, all the health-are centers have
well balanced charges.

7 Concluding remarks

Initial experiences with the DINAS system on small and medium testing examples confirm
appropriateness of the used methodology for solving multiobjective transshipment problems
with facility location. The interactive scheme is very easy and supported by many analysis
tools. So, a satisfactory solution can be usually reached in a few interactive steps.

As it has been showed in this paper application of DINAS is not limited t o typical trans-
shipment problems. DINAS can be successfully used to solve different distribution-location
problems. The problem of health service reorganization connected with location of new
health-are centers presented in the paper is only an example among many others real-life
decision problems which can be solved with DINAS.

While solving with DINAS real-life problems on IBM-PC XT/AT microcomputers, the
single-objective computations take, obviously, much more time than while using some stan-
dard optimization tools (like the MPSX/370 package) on a mainframe. However, our experi-
ences with both these approaches allow us to suppose that DINAS, in general, will take much
less time for performing of the whole multiobjective analysis.

8 References

Abernathy, W. J., Hershey, J . C. (1972). A spatial-allocation model for regional health-
services planning. Oper. Res. 20, pp. 629-642.

Glover, F., Klingman, D. (1981). The simplex SON method for LP/embedded network
problems.MathematicoI Programming Study 15, pp. 148-176.

Ogryczak, W., Malczewski J . (1988). Health care districts planning by multiobjective anal-
ysis with the MPSX/370 package. Archiwum Automatyki i Telemechaniki, t o appear.

Ogryczak, W., Studzinski, K., Zorychta, K. (1987). A solver for the transshipment problem
with facility location. In A. Lewandowski and A. Wierzbicki (Eds.), Theory, Software
and Testing Examples for Decision Support Systems. IIASA, Laxenburg.

Ogryczak, W., Studzinski, K., Zorychta, K. (1988a). Dynamic Interactive Network Analysis
System DINAS: User Training Manual. Technical Report.

Schrage, L. (1975). Implicit representation of variable upper bounds in linear program-
ming.Mathematica1 Programming Study 4, pp. 118-132.

Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Math.
Modelling 3, pp. 391-405.

Towards Interactive Solutions in a Bargaining Problem

Piotr Bronisz, Lech Krus

Systems Research Institute, Polish Academy of Sciences, Warsaw,

Andrzej P. Wierzbic ki

Insti tute of Automatic Control, Warsaw University of Technology.

Abstract
The paper deals with interactive arbitration processes in a bargaining problem. Prin-

ciples of constructing such processes are discussed, and several solution concepts are
considered, first in unicriterial and then in multicriterial case. The analysis is preceded
by a review of the axiomatic basis of Nash and Raiffa solution concepts.

1 Introduction: The need of interactive bargaining proce-
dures

The bargaining problem has a long and distinguished history of research. Most of attention,
however, was given to normative axiomatic characterizations of cooperative solutions for the
bargaining problem, under the assumption that players, even if they have multiple objectives,
can be characterized by corresponding utility functions. There are several reasons for trying
to relax these assumptions and for designing interactive bargaining procedures. These reasons
include:

The development of interactive decision support systems on modern computers that
might be also used for bargaining and negotiation support;

The wide use of gaming-as opposed to game theory-in support of learning about
conflict situations that indicates the need of combining properly extended and relaxed
game theoretical principles with practical gaming processes;

Known reservations to the practical applicability of utility theory and, in particular,
recently raised reservations to the universal validity of this theory as a basis for decision
making in cross-cultural situations (see, for example, Grauer, Thompson and Wierzbi-
cki, 1985) that imply the importance of interactive processes in decision support;

Recent research results in deliberative, holistic decision making (see, for example, Drey-
fus, 1985) that indicate the need of considering calculative, analytic means of decision
analysis mainly as a support in learning to make decisions and thus again imply the
importance of interactive processes of learning;

Recent research results in evolutionary rationality (see, for example, Axelrod, 1985)
that indicate the importance of an evolutionary development of cooperative strategies
in most repetitive non-zero sum games and thus again imply the need for broadening
normative approaches.

Thus, there is a need of developing interactive processes of bargaining, in particular for
the case of multiple criteria of interest to each player. With all these reservations about and
aims to broaden the scope of the normative, single-criteria bargaining theory, we start this
paper precisely from the normative, axiomatic foundations and try to broaden them while
attempting to preserve the abstract power of an axiomatic approach, by introducing other
postulates or axioms that might be more adequate when constructing interactive processes
of bargaining.

While there has been many attempts to construct interactive bargaining processes, we
would like to express our debt to Howard Raiffa, whose concepts dominate in this paper,
and to Gunther Fandel whose ideas (see Fandel, 1979) and direct cooperation (Fandel and
Wierzbicki, 1985) motivated much of this paper.

2 The bargaining problem in terms of utility theory: prob-
lem formulation

We consider a finite set of players, N = {1,2,. . . , n), where each player has preferences
over the feasible outcomes which are represented by a cardinal (von Neumann and Morgen-
stern) utility function. A particular outcome of the game can be represented as a vector in
n-dimensional Euclidean space, 8" , where the i-th component is the utility of the i-th player.
A bargaining game is described by a pair (S, d), where S c 8" is a set of all feasible outcomes
(the outcome set, sometimes called the agreement set), and d E S is an outcome of the game
already experienced by all players, called a status quo point or a disagreement point. Any
outcome from S can be the result of the bargaining game, if it is specified by unanimous
agreement of all the players. In the event that no unanimous agreement is reached, it is
assumed that the disagreement point d is the result of the game. Following Nash (1950,
1953), Roth (1979b), we confine ourselves in Part I to bargaining games (S, d) satisfying the
following conditions: S is a compact, convex subset of 8", and there is a t least one point z
in S such that z > d (i.e. zi > d; for all i E N). Let B denote the class of all such bargaining
games.

A solution for the bargaining problem is a function f : B + 8" which assigns to each
bargaining game (S, d) in B a point of S , denoted f (S, d). When no confusion will result, the
outcome f (S, d) will sometimes be referred to as the solution of the bargaining game (S, d).

Some models presented in the literature assume that the utilities of all players are dispos-
able, and enlarge the set of feasible outcomes S to the set S* = { z E 8" : y < z < z for some
y ,z E S) (see Nash, 1953, p.131 for justification of such an approach). Let B* denote the
class of all bargaining games (S, d) E B with disposable utility, i.e. satisfying S = S*. If
a solution for the bargaining problem is defined on B* and is strongly Pareto optimal (see
Property 4 in further text) then it may be extended to the class B because strongly Pareto
optimal points are unaffected by the transition from S to S*.

3 Nash and Raiffa axiomatic models of bargaining

In this section, we present two most important axiomatic models of bargaining known in
the literature. These axiomatic models do not describe real bargaining situations which
can occur during a particular game, they describe only some normative properties of the
set of possible agreements for the class B of bargaining games. The axiomatic solutions
for the bargaining problem are derived axiomatically, by specifying first desirable axiomatic

properties and then the corresponding solution. For a more detailed description of axiomatic
models of bargaining, see (Roth, 1979b) and (Roth and Malouf, 1979).

J.F. Nash (1950, 1953) proposed that a solution should possess the following four ax-
iomatic properties, and has then shown that the properties define a unique solution to the
bargaining problem.

Property 1. Invariance Under Positive Afine Transformation of Utility. For any
bargaining game (S,d) E B, if T is an arbitrary affine transformation such that
TZ = (alzl + bl, . . . , anzn + b,), ai > 0 for i E N , then Tf (S, d) = f (TS,Td).

Property 2. Symmetry. Suppose that (S,d) E B is a symmetric game, that is
dl = dz = ... = d, and if z is contained in S , then for every permutation ~r on N , ~r*z is
also contained in S. Then fl(S, d) = fi(S, d) = = fn(S7 d).

Property 3. Independence of Irrelevant Alternatives other then Disagreement Point. For
bargaining games (S, d) and (T, d) in B, if S c T and f (T, d) E S then f (S, d) = f (T, d).

Property 4. Strong Pareto Optimality. For any bargaining game (S, d) E B, there is no
z ~ S s u c h that z ? f (S ,d) , z # f(S,d) .

Property 1 is imposed because a cardinal utility function is unique up to an order pre-
serving affine transformation, i.e. the origin and scale chosen for a cardinal utility function
are arbitrary. Property 2 reflects a "fairnessn principle, all the players have "equal ability of
bargainingn, and the solution depends only on information in (S, d). In the case when we
have some additional information about bargaining abilities of the players, Harsanyi and Sel-
ten (1972) show that there is a unique solution possessing Properties l , 3, and 4. Property 3
is the most difficult to substantiate (see Luce and Raiffa, 1957), it requires that the solution
selects an outcome using a rule which depend only on the disagreement point and on the
selected outcome itself, and not on any other outcomes in the feasible set. Property 4 says
that the players are "collectively rationaln.

Theorem 1. (Nash, 1950) There exists a unique solution of the bargaining problem on B
that possesses Properties 1-4. This unique solution (called here Nash solution) is defined by

f (S, d) = F(S, d) = argza.; (z; - d;)
iEN

where Sd = { z E S : z 1 d) .

H. Raiffa (1953) proposed another solution for a two person bargaining problem, which
was axiomatically characterized by Kalai and Smorodinsky (1975), and generalized to the
n-person case by Thornson (1980). Let I (S,d) denote the ideal point of the game (S, d), i.e.

I i (S , d) = m a x { z i : z E S , z ~ d) for i € N.

Property 5. Weak Pareto Optimality. For any bargaining game (S, d) E B, there is no
such z E S that z > f(S,d) .

Property 6. Individual Monotonicity. If (S, d) and (T, d) are bargaining games such
that S c T and that for some i E N and all j E N, j # i , Ij(S7d) = I,(T,d) hold then
fi(S, d) 5 fi(T, d).

Property 5 is a weaker version of collective rationality, Property 6 states that if the set S
is enlarged to a set T in such a way, that the expansion occurs only in the direction of the

i-th player, then the i-th player payoff in the enlarged game (T, d) should be at least as large
as his payoff in the original game (S, d).

Theorem 2.

a. (Thomson, 1980) There exists a unique solution of the bargaining problem on B* that
possesses Properties 1 ,2 ,5 , and 6. This unique solution (called Raiffa one-shot solution)
is defined by

f (S , d) = G(S, d) = d + h(S, d) [I(S, d) - d]

where h(S, d) = max { h E ?I? : d + h[I(S, d) - dl E S). This means that G(S, d) is
the unique intersection point of the segment connecting I (S , d) to d with the boundary
of S.

b. (Kalai and Smorodinsky, 1975) In the two person case there exists a unique solution
on B possessing Properties 1, 2, 4, and 6; this solution is the function f = G defined
as above.

c. (Roth, 1979b) In the n-person case, n 2 3, no solution exists on B possessing Properties
1, 2, 5, and 6.

d. (Roth, 1979a) In the n-person case, n 2 3, no solution exists on B* possessing Properties
1, 2, 4, and 6 .

It is easy to show that the Raiffa one-shot solution (as well as the Nash solution) satisfies
the following property:

Property 7. Independence of Irrelevant Alternatives other than Disagreement Point and
Ideal Point. For bargaining games (S, d) and (T, d) in B, if I(S, d) = I (T, d), S c T , and
f (T, d) E S then f(S, d) = f (T , d).

4 A model of negotiations

We are interested here in a model of negotiations for the bargaining problem, which describes
not only the set of possible final agreements for the class B of bargaining games (i.e. a solution
f : B + ?I?"), but which also gives a constructive procedure describing the process of reaching
f (S, d) for any game (S, d) E B.

In our model, a bargaining game (S, d) E B is played in several rounds 1,2, . . . , T (it may
be finite or infinite process, hence T 5 oo). In each round t , each player i E N announce a
'demandn 4; if these demands jointly are admissible, i.e. d E S* = { z E S : y 5 z 5 z for
some y, z E S), and acceptable to all players, then they are taken as the result of this round
of negotiations (otherwise, this round is unsuccessful and the process begins again from d- I) .
The final admissible and acceptable demands 8 of all players are supposed to constitute a
solution for the game (S, d). We assume that the model satisfies the following postulates:

PI. @ = d , ~ E S * for t = 1 , 2 ,..., T ,
P2. &>d'- ' for t = 1 , 2 ,..., T ,
P3. 8 (= limt,, d if T = oo) is a strongly Pareto optimal point in S.

The above postulates have the following intuitive interpretations. We assume that the
process starts a t the disagreement point (no player will agree to get less than his disagree-
ment payoff). Moreover, the process is monotonically progressive (no player will accept an
improvement of demands of another player a t the cost of his concession, a diminishing of his
demands). Finally, the process leads to a strongly Pareto optimal outcome in S.

Following Fandel and Wierzbicki (1985), at each round of the process we assume addi-
tionally that the demands of all players are limited by a principle of a-limited confidence.
Let I(&-') E 9" be such that Ii(d-') = max{ zi : z E S, z 1 d-'), i.e. I(d- ') is the ideal
point of the set S restricted to the outcomes not worse than d-'.

P4. Principle of a-limited confidence. Let 0 < af 5 1 be a given confidence coefficient
of the i-th player a t round t. Then acceptable demands are limited by:

for t = 1 , . T where akin is a joint confidence coefficient a t round t ,
akn = min {a:, . . . ,a;).

Intuitively, the postulate P4 states that a single-round gain in the process should not
exceed akn part of the maximal cooperative gain for each player a t round t. We assume here
that when the players agree on an outcome d-', then the outcomes S \ { z E S : z > d-')
play no further role in the future part of the process. The principle of a-limited confidence
follows from the fact that, in many practical applications the players have limited confidence
in their ability to describe and predict precisely all consequences and possible outcomes, hence
each player attempts to prevent any other player from receiving disproportionally large gains.

There are interesting relations between a confidence coefficient and the conflict coefficient
concept proposed by Wierzbicki (1987). For each z E S and each t define the following
coefficient, called cooperative conflict coefficient relative to status quo point d-' :

It has many interesting properties (see Wierzbicki, 1987). The minimal conflict coefficient
defined by Dmin(d-') = minZEs D(d-', z) is equal to zero if and only if the ideal point of the
set S restricted to the outcomes not worse than d-' belongs to S , i.e. if there is no conflict
in the bargaining problem. It is equal to (1 - (l /n)) if the set S is the smallest convex set
containing d-' such that I(d- ') is its ideal point. In each round t a value of confidence
coefficient a: of the i-th player can be limited on the base of a minimal conflict coefficient. It
should be such that 0 < af 5 (1 - Dmin(d-I)) , if af = (1 - Dmin(d-')) for all i E N than the
players might get maximal improvement of payoffs. Moreover, the ratio af / (1 - Dmin(d-'))
characterizes percentage of maximal improvement assumed by the i-th player.

Remark. The drawback of the conflict coefficient D(d- ' , z) is that it depends on the di-
mension n. To correct for this dependence, it is reasonable, following suggestion of Kreglewski
(1984), to use the following transformation:

where the transformed conflict coefficient TD(d- ' ,z) has the property that
TD(d- ' , I(&-')) = 0, TD(dF ' , d-') = 2, and TD(d- ' , (d-' + I(&-')) / n) = 1, which
corresponds to a good intuitive interpretation of measuring the conflict by 1 if the players
accept the simplest compromise between objectives.

In order to further characterize the behaviour of players during the negotiation process,
we introduce the following principle of recursive rationality.

P5. Principle of recursive rationality. Given d, at each round t , there is no such outcome
z E S*, z 2 d, z # d that z satisfies P4.

This can be interpreted that, at each round t , every player is a rational individual: he
tries to maximize his demand according to the principle of a-limited confidence, knowing
that larger demands will be not accepted by other players.

We can prove the following theorem (see Appendix).

Theorem 3. For any n-person bargaining game (S, d) E B and any confidence coefficients
akin, t = 1, . . . , T such that 0 < 6 5 akin < l / n there is a unique process d', t = O,1,. . . , T
satisfying the postulates PI-P5. The process is described in the iterative way:

where T is the smallest t with d' = d'+l or T = oo.

Because S was assumed to be convex, we can observe that the process is infinite for
akin < l /n . We can also notice that for 0 < akin 5 l / n the postulates PI-P5 involve the
following postulate:

P6. Principle of proportional gains. For each round t, t = 1 , . . . , T , there is a number
@ > 0 such that

dt - dt-' = ~[l (d ' - ') - &-'I.
On the basis of the postulate P6, we can generalize the result for any confidence coefficients

akin such that 0 < akin < 1.

Theorem 4. For any bargaining game (S,d) E B and any confidence coefficients akin
such that 0 < 6 5 akin 5 1, t = 1,2 , . . . , T there is a unique process 8, t = O,1,. . . , T
satisfying the postulates PI-P6. The process is described in the iterative way:

d o = d
= 8-' +PLin[I(d'-') -&-'I for t = I , . . . , T

where @kin = akin if d' belongs to S*, elsewhere @kin is the maximal number such that
@kin < akin and d' belongs to S*; T is the smallest t with d' = d'+' or T = w.

The proof of Theorem 4 is a simple modification of the proof of Theorem 3. From convexity
and disposability of payoffs in S it follows that if improvement in directions along coordinates
of some players is possible, an improvement in any direction being their combination is also
possible.

Figure 1 shows an example of the process for the confidence coefficient akin = 112 in a
two person bargaining game (S, d) .

Now, we show that the assumption in the postulate P1 that d' belongs to S* rather to S is
important. Let us consider an example of three-person game (S, d) E B such that d = (0,0,0)
and S is the convex hull of d and the points (O,1,1) and (1,0,1). It is easy to verify that if
we set d' E S in P1 then the process satisfying the postulates PI-P5 is not unique, hence
Theorem 3 does not hold. Moreover, the postulate P6 does not follow from PI-P5, and there
is no process satisfying P I , P3, and P6, hence Theorem 4 is not true.

Let a = (a l , a*, . . .) denote infinite sequence of real numbers such that 0 < 6 5 at 5 1
for t = 1,2,. . .. Let Ga : B -+ %" be a solution defined by: for each bargaining game
(S, d) E B, Ga(S, d) is equal to the final demands dr of the players in the process with the
joint confidence coefficients akin = at for t = 1,2,. . .

We can shown the following properties of the solution Ga (Bronisz, Krus, Wierzbicki,
1987):

- Feasibility. Ga(S, d) belongs to S .
- Strong individual rationality. Ga(S, d) > d.
- Strong Pareto optimality. (see Property 4)
- Symmetry. (see Property 2)
- Invariance under positive affine transformations of utility. (see Property 1)
- Continuity. Let (S,, d) E B be a sequence of bargaining games defined for a sequence

of sets Sj such that limj-.oo(Sj, d) = (S, d) (in the Hausdorff topology) and (S, d) E B.
Then limj-., GQ (S, , d) = GQ (S, d) .

Let Go : B + 3" be the solution (called here Raiffa continuous solution) defined by:

GO(s , d) = lim GQ(S, d).
Q-.(O,O, ...)

It can be shown (Bronisz and Krus, 1986a) that the limit exists and GO(S,d) is the final
demands of the players in the continuous process of negotiation described by the following
initial-value problem

d ~ i l d t = fi (x) - xi for i = 1, . . . , n
z(0) = d,

where fi (z) = max { yi : y E S, y 2 x). It has been also shown (Bronisz and Krus, 1986b)
that the solution GO(s , d) has all the properties presented above.

Figure 1.

5 Comparison of the Nash and the Raiffa solutions to the
proposed solutions

It is easy to verify that in the tw-person case we obtain G('*'#...) = G, that is the solution
following from the negotiation process with the confidence coefficients a = (1,1,. . .) is equiva-
lent to the Raiffa one-shot solution. Moreover, for n 2 3 and any game (S, d) E B if the Raiffa
one-shot solution gives strongly Pareto optimal outcome G(S, d) then G('*'I...)(s, d) = G(S, d).

However, G('B'*-.) does not coincide with the generalization of the Raiffa solution proposed
by Imai (1983).

For any bargaining game (S,d) E B let I ' / ~ (s , ~) E !Rn be such that
112 I, (S, d) = max { xi : z E S, z 2 (I(S, d) + d) / 2). Intuitively i f l 2 (~ , d) is the maxi-

mal payoff of the i-th player if the other player get at least a half of their maximal payoffs
improvements.

In two-person case, let us consider the solution H : B + !R2 following from the two-rounds
process with the confidence coefficients a = (1/2,1,1,. . .). This solution has the following
property.

Property 8. Independence of Irrelevant Alternatives other than Disagreement Point
(d), Ideal Point (I(S, d)), and the point I ' /~(s, d). For any bargaining games (S, d)
and (T,d) in B if I (S,d) = I(T,d), I ' / ~ (s , ~) = 1 ' f 2 (~ , d) , S c T , and f (T ,d) E S then

f (s, d) = f (T, dl.

Figure 2 Figure 3 Figure 4

Property 8 is a weaker version of Property 7, which in turn is a weaker version of Prop-
erty 3. It is easy to verify that the solutions F, G, as well as H satisfy Property 8, the
solutions G and H satisfy Property 7, the solution H satisfies Property 8. We will show
now an example that a weakening of the property of independence of irrelevant alternatives
properties (P3 to P7 and P7 to P8) can improve monotonicity of the solutions (in the sense
of a better utilization of information about a bargaining game). Consider a two-person game
(S, d) E B* defined by d = (0, 0), S = { (zl, zz) E !Jt2 : z > 0, z: + zi 5 1) Because (S, d)
is a symmetric game, hence the Nash, the Raiffa one-shot, and the H solutions coincide,
F(S,d) = G(S, d) = H(S,d). The game (S, d) is presented in Figures 2, 3, and 4 while
the set S is limited by a continuous line. For simplicity, confine our consideration to games
(T, d) E B* such that T c S. From Property 3, it follows that each game (T, d) E B*
such that the upper boundary of T lies in the shaded area in Figure 2 has the same Nash
solution F(T,d) = F(S, d). Property 7 implies that each game (T,d) E B* such that the
upper boundary of T lies in the shaded area in Figure 3 has the same Raiffa one-shot solu-
tion G(T, d) = G(S, d). Property 8 implies that each game (T, d) E B* such that the upper
boundary of T lies in the shaded area in Figure 4 has the same H solution H(T, d) = H(S, d).

Moreover it is easy to notice that only symmetric games (T, d) have the same Raiffa continu-
ous solution as the game (S, d). This shows that a relaxation of the property of independence
of irrelevant alternatives decreases the set of bargaining games having the same solution,
what makes possible an improvement of monotonicity.

6 A mult icrit eria bargaining problem: problem formulation
and definitions

Let N = {1,2,. . . , n) be a finite set of players, each player having m objectives. A multi-
criteria bargaining game is defined as a pair (S,d), where an agreement set S is a subset
of n * m-dimensional Euclidean space !Rn*m, and a disagreement point d belongs to S. If
we assumed that the objectives of each player can be aggregated to an utility function, then
the multicriteria game would be converted in a single-criteria one. However, we assume here
that for some reasons-such as practical limitations of the utility theory-the aggregation of
player's objectives is impossible.

For every point z = (z;, . . . , z,) E Rn*m, zi E !Rm, z; = (z ;~ , . . . , z;,), let z;, denote
the amount of the j-th objective for the i-th player. We assume that each player tries to
maximize all his objectives.

A point 2' E S is defined as i-nondorninated, i E N , if there is no y E S such that y, 2 zi,
y; # zi. A point u E Rn*m is defined as a utopia point relative to aspirations (RA utopia
point) if for each player i E N , there is an i-nondominated point z' E S such that u; = zi.

The i-nondominated point is an outcome which could be achieved by a rational player i
if he would have full control of the moves of other players. Let us observe that in the
unicriterial case there is only one i-nondominated point, in the multicriterial case considered
here there is a set of such points. That requires each player i , i E N , to investigate
the set of i-nondominated points in S as m-dimensional multicriteria decision problem and
then to select one i-nondominated point as his most preferable outcome. The preferable
i-nondominated point can be selected by the i-th player using, for example, the achievement
function approach proposed by Wierzbicki (1982); in this case, the i-th player specifies his
aspirations in his outcome space and a decision support system proposes the i-nondominated
point by maximizing an achievement function.

The RA utopia point generated by the selected in this way i-nondominated points, i E N,
carries information about the most preferable outcomes for all the players. The RA utopia
point significantly differs from the ideal point defined by the maximal values of all objectives
in set S.

7 The concept of a solution

In this section, we confine our consideration to the class Bm of all multicriteria bargaining
games (S, d) satisfying the following conditions:

(i) S is compact and there is z E S such that z > d,
(ii) S is comprehensive, i.e. for z E S if d 5 y 5 z then y E S.

Assumption (ii) states that objectives are disposable, i.e. that if the players can reach the
outcome z then they can reach any outcome worse than z. Observe that we do not assume
convexity of the agreement set.

For technical reasons, it is necessary to confine attention to utopia points u > d. Let
U(S, d) denote the set of all th.e RA utopia points u for a bargaining game (S, d) such
that u > d.

A solution for the multicriteria bargaining problem is a function f : Bm x W"'m -+ W"'m
which associates t o each (S, d) E Bm and each RA utopia point u E U(S, d) a point of S,
denoted fm(S, d, u).

The following Gm function is proposed as the solution of multicriteria bargaining problem:

where (S , ~) E Bm, u E U(S,d),and h (S , d , u) = m a x { h ~ ! R : d + h (u - d) € S) .
Intuitively, the outcome Gm(S, d, u) is a unique point of intersection of the line connecting

u to d with the boundary of S.
It can be shown (Bronisz and Krus, 1987) that this solution can be characterized by the

following axioms.

Al. Weak Pareto optimality. There is no such z E S that z > f m(S, d, u)

A2. Invariance under Positive Afine Transformations of Objectives.
Let T z = (T l z l , . , T n z n) be an arbitrary affine transformation such that
Tizi = (aiizij + bij),=l ,..., m, where ai, > 0, i E N. Then f m(TS, Td, Tu) = T f m (~ , d, u).

For any point z E Xn*m and for any permutation s on N , let s*z = (z,(~), . . . , z,(,)).
We say that (S, d) is a symmetric game if dl = d2 = -. = dn and if z E S then for every
permutation s on N, s*z E S.

A3. Symmetry. For symmetric bargaining game (S, d), if ul = u2 = . = un then
fy (S ,d ,u) = f y (S , d , u) = -.. = f?(S,d,u) .

A4. Restricted Monotonicity. If (S, d) and (T, d) are such that a RA utopia point
u E U(S,d) n U(T,d) and if S c T then fm(S,d ,u) 5 fm(T,d,u) .

Theorem 5. (Bronisz and Krus, 1987) There exists a unique solution satisfying the
axioms A1-A4. It is the solution Gm : Bm x P"'m --+ !Rn*m.

It is easy t o notice that in the unicriterial case, i.e. when m = 1, each bargaining problem
(S, d) has a unique RA utopia point which coincide with the ideal point and the solution coin-
cides with the Raiffa solution. The following theorem describes another connection between
our concept and the Raiffa solution (Bronisz and Krus, 1987).

For (S,d) E Bm, let zi E S be an i-nondominated point defined by the i-th player and
u E U(S, d) be the RA utopia point generated by zl , z2, . . . , zn . The points d, z l , z 2 , . . . , zn
generate a convex hull Hn, each point z in Hn can be uniquely presented in the form
z=d+(a l (u l -d l) , ..., an(un-dn)) ,where05 ai 5 1 f o r i E N. L e t s H = S n H n a n d P b e
the mapping from H n to !Jtn defined by P (d + (al(ul - dl), . . . , an(un - d,))) = (a l , . . . ,an).

Theorem 6. (Bronisz, Krus, 1987) If G denotes the n-person Raiffa one-shot solution
then P(Gm(S, d, u)) = G(P(S) , P(d)) .

Theorem 6 shows that the n-person Raiffa solution concept can be applied directly t o the
multicriteria game (S, d) if we confine consideration to the outcomes in sH, i.e. to intersection
of the agreement set S with the convex hull Hn.

8 The concept of an interactive solution

The proposed concept is a generalization of the process in Section 3. We confine our consid-
eration to multicriteria bargaining games (S, d) satisfying the condition (i) and, for technical
reasons, the following condition.

(iii) For any z E S, let Q(z) = { i : y 2 z, y; > z; for some y E S). Then for any z E S,
there exists y E S such that y > z, y, > z; for each i E Q(z).

Intuitively, Q(z) is the set of all coordinates in !Rntm, payoffs of whose members can
be increased from z in S. Condition (iii) states that the set of Pareto optimal points in S
contains no Uholesn. We do not assume convexity of S, however, any convex set satisfies
Condition (iii).

In our model, a bargaining game (S, d) is played in several rounds 1 ,2 , . . . , T , in which
the successive outcomes, denoted d, are determined.

We generalize the postulates PI-P6 in the following way.

MP1. @ = d , d € S t for t = 1 , 2 ,..., T ,
MP2. d>d- ' for t = 1 , 2 ,..., T ,
MP3. dr (= limt,, dt if T = oo) is a strongly Pareto optimal point in S .

In any round t , let u(d-') be the RA utopia point of the set { z E S : z 2 d-') reflecting
the preferences of the players.

MP4. Principle of &-limited confidence. Let 0 < crf 5 1 be a given confidence coefficient
of the i-th player a t round t. Then acceptable demands are limited by:

for t = 1 , . . T where a n is a joint confidence coefficient a t round t ,
akn = min {a!, . . .,a:).

The similar relation of the confidence coefficient and conflict coefficient can be observed
as in the unicriterial case. For each round t define the conflict coefficient by:

~ (d - ' , u , z) = max {(uij(dt-') - zij) / (uij(dt-') - d,tT1)).
;EN
iE{ I , ..., rn)

The minimal conflict coefficient defined by Dmin(d-', u) = minZEs D(d- ' , u, z) limits in the
same way a maximal value of confidence coefficients of the players in each round t.

MP5. Principle of recursive rationality. Given d, at each round t , there is no such
outcome z E St, z 2 d, z # d that z satisfies MP4.

MP6. Principle of proportional gains. For each round t , t = 1,. . . ,T, there is a number
/3 > 0 such that

dt - dt-' = p[u(dt-') - d-'1.

We can prove the following theorem (Bronisz, Krus and Lopuch, 1987).

Theorem 7. For any multicriteria bargaining game (S,d) satisfying conditions (i)
and (iii) and for any confidence coefficients akin such that 0 < c 5 akin 5 1, t = 1,2 , . . . , T
there is a unique process d, t = 0, 1, . . . , T satisfying the postulates MPl-MP6. The process
is described in the interactive way:

@ = d
d = d-' + Pfnin[u(d-') - d-'1 for t = 1, . . . ,T ,

