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FOREWORD 

A function from one normed linear space to another is said to be Bouligand differentiable 
(B-differentiable) at a point if it is directionally differentiable there in every direction, 
and if the directional derivative has a certain uniformity property. This is a weakening of 
the classical idea of Frhchet (F-) differentiability, and it is useful in dealing with optimi- 
zation problems and in other situations in which F-differentiability may be too strong. 

In this paper a concept of strong B-derivative is introduced and this idea is employed 
to prove an implicit-function theorem for B-differentiable functions. This theorem pro- 
vides the same kinds of information as does the classical implicit-function theorem, but 
with B-differentiability in place of F-differentiability. Therefore it is applicable to a con- 
siderably wider class of functions than is the classical theorem. 
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This paper develops an implicit-function theorem for certain functions which, although 
not differentiable in the conventional sense, still obey a weak kind of differentiability called 
Bouligand differentiability (B-differentiability). This theorem resembles the usual implicit- 
fuilctio~l theorem, in that when the "partial derivative" of a function with respect to a 
certain set of variables is invertible, then the requirement that the function be zero defines 
the values of those variables as functions of the other variables appearing in it. However, 
the words "partial derivative'' appear in quotation marks above because in this case the 
derivative involved is not the usual partial derivative, but rather a partial B-derivative. 

Numerous authors have recently contributed to the study of implicit-function and 
inverse-function theorems for functions that are not differentiable in the conventional sense. 
For example, Aubin [2] developed numerous results dealing with the approximation of mul- 
tifunction~ in various spaces, and the use of these approximations to provide different con- 
cepts of derivative. Further, in [I] he studied I<uratowski limits of epigraphs of functions, 
and showed how to derive properties of the limit multifunctions from these. 

Recently, Frankowska studied inverse-function theorems using hypotheses on higher- 
order variations of the function in questions, rather than the usual assumptions on the first 
derivative. These hypotheses enabled her to obtain results for various kinds of set-valued 
maps, as well as for maps defined on spaces more general than the usual normed linear 
space. These results are reported in [7,8]; see also further references therein. 

Cornet and Laroque [5] applied the Clarke inverse-function theorem [4, 57.11 to the 
problein of sensitivity in nonlinear programming, and showed that when a certain gener- 
alized Jacobian is nonsingular one has existence of a Lipschitzian trajectory of optimizers. 
Along much the same lines, Jongen e t  al. [ll] recently proved an implicit-function theorem 
for nonsmooth functions in Rn under the basic assumption that the generalized Jacobian 
was nonsingular, They then applied this result to the problem of stability in nonlinear 
programming. The basic device in the proof is again the inverse function theorem of 
Clarke. 

In [21], Pshenichny proved implicit-function theorems for multifunctions with convex 
graphs, and for other functions whose graphs could be 1oca.lly approximated in a certain 
sense. Related work was given in [28] by Ursescu and in [23] by Robinson. 

A considerable amount of work in this area has been focused on more specific classes 
of problems, particularly those involving variational inequalities (generalized equations) 
and their application to solution of optimization problems. An implicit- function type 
theorem for generalized equations was established in [24], and was employed there to obtain 
sensitivity results about nonlinear programming problems. Icojima [13] obtained similar 
sensitivity information using very different techniques. Later, Jittorntrum [lo] showed 
that optimal solutions of nonlinear programming problems were directionally differentiable 
under suitable assumptions. Then, in [25] and [26], Robinson established B-differentiability 
properties of solutions of finite-dimensional variational inequalities over polyhedral sets, 
and nonlinear programming problems, respectively. 

In a recent series of papers [15,16,17] Kyparisis has extended the above work. In [16] 
he showed how to extend the type of result proved in [lo] and [24] to variational prob- 
lems over sets defined by systems of inequalities and equations, while in [15] he developed 



differentiability properties of a specific type of variational problem (the nonlinear comple- 
mentarity problem). Finally, in [17] he dealt with the case of variational problems over 
polyhedral co~lvex sets, and showed how the results of [23] and [24] could be extended and 
sharpened, in particular giving conditions for continuous differentiability (as opposed to 
B-differentiability). 

Dafermos [6] studied variational problems in which the underlying set may vary, and 
particularly in which it may be given by a system of nonlinear equations and inequalities. 
For her results, she assumed strong monotonicity of the function involved. Another ap- 
proach to this general problem area was explored by Qiu and Magnanti [22], who considered 
the case in which the solution could be multivalued, and introduced ideas of directional 
differentiability for such functions. 

Work very close to that of this paper was reported in two very recent papers of Pang 
[1S,19]. In [IS], Pang developed a Newton iterative method for solving equations involving 
B-differentiable functions. He analyzed this method under the assumption that the key 
deriva.tive involved was a "strong B-derivative," as defined in [IS], and he applied the 
method to some problems in inathematical programming. Although we introduce a strong 
13-derivative in this paper also, our definition is not equivalent to that of [IS]. 

In [19], Pang considered variational problems over polyhedral convex sets, and he 
deteriniiled when the solutions of such problems were FrCchet differentiable. He suggested 
a continuation-type method for computing such solutions. A similar contiiluation method 
has been proposed, and is currently being investigated, by Park [20]. 

The rest of this paper is organized in three sections: in 52 we briefly review B- 
derivatives, and introduce the new concept of strong B-derivative. We show that with 
strong B-derivatives one can establish a formula for the B-derivative of a function of several 
variables as a linear expression in partial B-derivatives. Then in $3 we give the main results 
of the paper: an extension of the classical Banach lemma of functional analysis to locally 
Lipschitzian functions, the implicit-function theorem, and a theorem on B-differentiability 
of the inlplicit function. UTe also show that the hypotheses of the latter theorem cannot, in 
general, be improved. Finally, in $4 we sketch an application of this theory to parametric 
solutioils of variational inequalities (generalized equations). 



We provide here a definition and a brief summary of some properties of B-derivatives, and 
we also introduce some new material that will be used in what follows. 

Given a function f from an open subset R of a normed linear space X into another 
nornled linear space Z ,  we say that f is B-differentiable a t  a point xo E R if there is a 
positively homogeneous function D f(xo)  : X -+ Z such that 

f (xo + h) = f (xo) + Df (xo )h + o(h). 

This function D f (xo)  is necessarily unique if it exists. In the case in which f is locally 
Lipschitzian at  xo, which applies to all the results of this paper, we have easily that D f (xo) 
inherits the Lipschitz modulus of f ,  that the chain rule works for B-derivatives, and that 
B-differentiation is distributive with respect to addition and scalar multiplication. 

The B-derivative terminology was introduced in [26], and the results cited were es- 
tablished in the finite-dimensional case. Subsequently, Shapiro [27] showed that in a great 
many situa.tions this definition and several others introduced in the literature are actually 
equivalent. This equivale~lce is especially useful in the case of finite-dimensional spaces. 
For example, it can be used to show easily that if a locally Lipschitz function on a finite- 
di~lle~lsio~lal space is regular in the sense of Cla,rke [4, p. 391, then it is B-differentiable. 

In all of the above properties the B-derivative resembles the classical Frdchet (F-) 
derivative, but there are sollle differences. One of these is that, although we can define 
a partial B-derivative in the usual wa.y for a function f (x ,  y) from a product X x Y of 
nor~lled linear spa.ces to Z (by defining, for exa,n~ple, D, f (xo,  yo) to be the B-derivative a t  
xo of f (-, yo)), we do not obtain the addition formula: in general, 

D f (xo, yo)(h, k) # D,f(xo,  YO)^ + Dgf (xo, YO)I.^. 

To see that inequality holds in general, we can consider the Euclidean norm function on 
R2: its B-derivative a t  the origin is itself, yet the partial B-derivatives are the absolute 
value functions of the coordinates, and the sum of these is not the Euclidean norm. 

In order to recover the addition formula, we need to strengthen the requirements 
placed on a B-derivative. For that purpose we introduce the following definition. It uses a 
special class of Lipschitzian functions; in general, we shall denote by Lip(A) the functions 
(on whatever spaces are under discussion) that are Lipschitzian with modulus A ,  and by 
Flip(xo ) (Flat Lipschi tzian) the linear space of functions q5 having the following property: 
c$(xo) = 0 and for each e > 0 there is a neighborhood U of xo such that q5 is Lip(€) on U. 

Definition 2.1. Let f : X x Y -+ Z,  and suppose f has a pa.rtia1 B-derivative D, f (xo,  yo) 
with respect to x a t  (xo , yo). We say D, f (xo , yo) is strong if for each e > 0 there are 
neighborhoods U of the origin in X and V of yo such that for each y E V the function (of 
h) f(xo + h , ~ )  - f (xo,y)  - Dzf(xo,yo)h is Lip(€) on U. 

Roughly speaking, this definition says that the partial B-derivative is strong if the 
"remainder" function belongs to  Flip(xo), uniformly for values of y near yo. Of course, 
the definition applies also in the case in which the space Y is vacuous, in which case we 
refer to a "strong B-derivative," without using the word "partial." 



In [IS], Pang also introduced a definition of strong B-derivative, but his definition 
differs from the above in the case in which D, f ( so ,  yo) is not a linear operator. He showed 
that a strong B-derivative under his definition must in fact be a strong F-derivative, so his 
requirements are considera.bly stronger than those of Definition 2.1, since that definition 
does not imply that the function in question is F-differentiable. For a simple example of 
such a case, consider the function f defined on R by 

if x 2 0, 
- x -x2 ,  i f x  < 0. 

The following result shows that if one of the B-derivatives involved in the sum formula 
is strong, then equality holds in (2.2). Further, if both are strong, then the B-derivative 
obtained from the sum formula is strong too. We use as norm on X x Y the sum of the 
norms on X and Y. 

Proposi t ion 2.2. Let f : X x Y + 2,  and let (xo,yo) E X x Y. Assume that f has 
partial B-derivati~.es with respect to x and to y a t  (xo, yo). 

a. If D, f (so, yo) is strong, tlien f is B-differentiable at (so, yo), and 

b. If both D, f (so, yo) and Dy f ( X O ,  yo) are strong, then Df (xo, yo) is strong. 

Proof: For simplicity we suppress ( so ,  yo) and write D ,  D,, and Dy .  Assume first 
that the latter two exist and that D, is strong. Then 

f(x0 + h,yo + I.") - f(x0,yo) - DZh - DyI." 

= [f(xo + h , ~ o  + I.") - f(so,yo + I.") - D,lz] 

+ [f (50, YO + I.") - f ( 2 0 ,  YO) - Dy k] 

= o(h) + o(k) = o(ll1zll + 11k11). 
This is enough to prove (a). Now if both partial derivatives are strong, the11 we have 

[f (xo + hl ,  YO + kl) - f (xo, YO) - DZ121 - D y  kl] 

- [f(xo + h 2 , ~ o  + I."2) - f(xo,yo) - Dzh2 - DyI."2] 

= [f ( s o  + hi ,  YO + I."i) - f (xo, yo + ki) - Dzlzl] 

- [f(xo + h z , ~ o  + h )  - f(xo,yo + kl) - Dzh2] 

+ [f ( s o  + h2, YO + kl) - f (xo + hz, YO) - Dy I."l] 

- [f(xo + h 2 , ~ o  + k2) - f(xo + h2,yo) - Dyk2]. 

For any small positive E and for h l ,  h2, bl, and k2 close to zero, the difference of the 
first two terms is bounded in norm by ellhl - h211, and that of the second by €Ilkl - k2JI. 
Therefore the entire expression is bounded by e()llzl - h211 + Ilkl - I.":!\\), and so the total 
B-derivative D f (xo , yo) is strong. 1 



3. T h e  Impl ic i t -Funct io i  Theorem.  

This section contains the main results of the paper. We begin with a lemma that contains 
the essential perturbation illformation necessary to establish the implicit-function theorem, 
and we follow that with the theorem itself. 

The following lemma can be regarded as an extension of the well kilown Banach 
perturbation lemma [12, Th. 4(2.V)] from linear operators to locally Lipschitzian functions. 
The classical lemma says that if an invertible linear operator A is perturded by adding 
another linear operator of norm less than I(A-l then the sum is still invertible and the 
norm of its inverse is bounded by a simple formula. The present lemma gives a similar 
statement but with linear operators replaced by locally Lipschitzian functions, and with 
the norms replaced by the Lipschitz moduli of the functions. 

In the lemma, we use the notation B(x,e)  for the closed ball about x of radius t, 
either in a normed space or in a more general metric space. We also use some shorthand 
notation pertaining to functions and multifunctions: f IS denotes the restriction o f f  to S, 
while f n T denotes the function or multifunction whose value a t  x is f (x) n T. 

Leillina 3.1. Let (X,  p) be a, complete metric space and Y be a normed linear space. Let 
F be a lnultifunction from X to Y with yo E F(xo) ,  and let h be a function from X into 
1'. Assume that: 

a. F-I IB(y0, a) E Lip(&). 
b. h E Lip(7) on B(xo,  a&) .  
C. 8 := a(1 - 67) - I l h ( ~ ~ ) l l  > 0. 

Then [ ( F  + h)-l IB(yo, 8)] n B(xo,  a&) is a Lipschitzian function with modulus &/ ( l  - 
67). 

Proof: For y E B(yo, 8) and x E B(xo,  a&) define Qy(x)  = F-' [y - h(x)]. Note that 
for such x and y, 

so that Qy is single-valued on B(xo, a&). Also, 

so that Qy is a strong contraction with modulus 67 < 1. Further, we have 

so that Qy carries B(xo,  a & )  into itself. 
By the contraction ma.pping theorem [12, Th. l(l.XVI)], Qy has a fixed point x(y) 

that is unique in the ball B(xo , a&). Because of the way in which Q was defined, this 
x(y) must satisfy ( F  + h)x(y) = y. NOW let yl and y2 be two points in B(yo, 8), and let 
xi = x(yi) for i = 1,2.  Then 



It follo~vs that 
P[XI, 2 2 1  I 6 0  - 611)-111~1 - ~211, 

and therefore x(y) is single-valued and Lipschitzian with modulus 6/(1 - 671). 1 
The next result is our main implicit-function theorem. It uses the perturbation lemma 

together with the notion of strong B-differentiability discussed in 52. For simplicity we let 
the space Y be a normed linear space, although a result could be derived also for the case 
in which J7 is just a topological space. However, in that case we cannot discuss the notions 
of Lipschitz modulus or of B-differentiability for the implicit function, and the theorem 
loses some strength. As before, we use the sum of the norms on X and Y as the norm on 

x Y .  
The theorem may look somewhat strange because it involves the composition of the 

function f (., y) with another Lipschitzian function g, whereas no such composition is in- 
volved in the classical implicit-function theorem. Further, there are no statements about 
B-differentiability of the implicit function, whereas one would expect to be able to make 
such statements. There are good reasons for these differences: we shall illustrate in 54 a 
substantial application area in which the composition formulation is essential. Further, if 
we set the inner function in the composition equal to the identity, then we recover a result 
much like the conventional implicit-function theorem, and we give later in this section a 
theorem on B-differentiability of the implicit function in that case. 

Finally, although we do not give results about B-differentiability in the present case, 
the theorem does contain an approximation result showing that a simpler function (denoted 
by xL) approximates the implicit function to within the small order of y - yo. We show in 
54 ho~v this approximatio~l may be useful even when statements about B-differentiability 
cannot be made. 

Theorelll 3.2. Let be a Banach space and let W ,  1' and Z be normecl linear spaces. 
Let g be a Lipschitzian function with modulus y from a neighborhood I? o f  xo E X to  TY, 
with g(zo)  = wo , and let f be a Lipschitzian function with modulus 4 from a neighborhood 
0 o f  (wO, yo) E T/V x Y to  Z, satisfying: 

a,. f (y (xo ), yo) = 0.  
b. f has a partial B-derivative Dw f(wo, yo)(.) with respect t o  w that is strong at 

("0, yo). 
c. The  function L(x) = Dw(wo, yo)[g(x) - g(xo)] has a.n inverse tha.t is locally 

Lipschitzian at the origin in  Z with modulus 6. 
Then for ea.ch ( > 46 there exist neighborhoods V o f  xo and U o f  yo, a i ~ d  a Lipschitzian 

function x : U + V, such that: 
a. x(y0) = xo; 
b. For each y E U, x(y) is the unique solution in V o f  f(g(x), y) = 0; 
c. x E Lip((); 
d.  For each y E U, the equation 

has a solution xL(y) that is unique in  V, and x(y) = xL(y) + o(y - yo). 

Proof: For simplicity, throughout the proof we write Dw in place of DW(wo, yo). 



Let t > 46, and let E satisfy 0 < E < 47-'((46)-l - [-I]. Note that u7e then have 

we shall need this estimate later. 
Now choose neigl~borhoods Q of wo and U of yo, and a positive scalar a ,  so that the 

following three requirements are satisfied: 
a. Whenever y E U and w1 and w2 belong to Q, one has 

(This can be done because Dw is a strong B-derivative.) 
b. For each y E U, B(0, a) - f (wo , y ) c P, where P is the neighborhood of the 

origin in Z on which L-' is Lipschitzian. 
c. If x E V, then x E l? and g(x) E Q, where we define V to be B(xo,  a h ) .  

For any given y E U, define Fy(x)  for x E V by 

Note that F'yl(z) = L-l[z - f (wO,  y)], and this functioil is Lipschitzian for r E B(O,a), 
wit11 modulus 6. Next, for n: E V and y E U let 

then for y E U and xl and 5 2  in V we have by using (3.2), 

Therefore 11, is Lipschitzian on V with modulus €7. 
Keeping y arbitrary but fixed in U, apply Lemma 3.1 to F, and h,, with q = €7. 

Since the sun1 of these two functions is f(g(x), y), we find that there is an inverse function 
j, defined on the ball about the origin in Z of radius ~ ( 1 -  bey), that is Lipschitzian with 
nlodulus [/$ (from (3.1)), such that for any z in that ball we have f(g(j,(z)),  y) = z, and 
x = jy(z)  is the only point in V that satisfies f (g(x), y) = 2. Note that the domain of 
definition and the Lipschitz modulus of the inverse function j, are independent of y. 

Now for each y E U, let x(y) = jy(0). This x(y) belongs to V, and it is the only point 
in V that satisfies f (g(x), y ) = 0. It is clear that x(yo) = xo , so we have proved (a) and 
(b). For (c), select two points of U, say yl and y2, and let x; = x(y;) for i = 1,2. Then by 
definition 

21 = jyl (0). 

Also, 

5 2  = jyl [f(g(x2), YI ) I  = jyl [ f ( g ( x ~ ) ,  yl) - f (g(x2), Y 2 ) ] ,  

since we know f (g(x2), y2) = 0. Therefore 



and so x( . )  is Lipschitzian with modulus t. Therefore (c) is proved, and we only have to 
show that the estimate in (d)  holds. 

First, note that x L ( y )  = Fy-'(O), while x ( y )  = Fy-'(-h, [ ~ ( y ) ] ) .  Therefore by the 
Lipschitzian property of F;' we have IIx(y) - xL(y)I(  I Gl(h , (x(y) ) (  = Gl(h,(x(y)) - 
12, ( xO:~JI ,  where we used the fact that h y  ( x O )  = 0. NOW recall that (by (3.2)) the function 
h ,  is Fl ip (xo) ,  and x ( y )  is Lipschitzian in y.  If we choose any ,8 > 0 ,  by taking y close 
enough to yo we shall have 

But then 

Ilx(y) - X L ( Y : ~ I I  5 sPt l lY  - YoII, 

which shows that x ( y )  - x L ( y )  = o(y - y o ) ,  as required. I 

Theorem 3.2 shows how to approximate the implicit fuilctio~l x ( y ) ,  but it does not 
discuss differentiability of that function, because no assunlptio~ls are made about differen- 
tiability of y, or o f f  with respect to y. The nest result shows that when g is the identity 
and the partial B-derivative of f with respect to y  exists at  ( x o ,  y o ) ,  then we obtain the 
sallle kind of differentiation formula as is found in the classical implicit-function theorem. 

Theorenl 3.3. A s s u m e  t h e  notation and hypotheses o f  T l ~ e o r e m  3.2, wi th  -ZLr = CV and 
g = I .  I f  D y  f ( x o  , y o )  exists, t h e n  x  is  B-differentiable at  yo wi th  

Further, i f  D y  ( x o  , y o )  is  strong and D ,  ( x o  , y o )  is  linear ( that  is ,  a strong Fre'chet derivati~re), 
then  D z ( y o )  is  a strong B-derivative. 

Proof: R7e have for y near yo, 

Define functions r ( y )  and s ( y )  by 

and 
f ( x ( y ) , y )  - f ( x o , y )  = Dzf(xo ,Yo)[x(Y)  - xol + T(Y) .  

Then 
x ( y )  - xo = D ~ f ( x o , ~ o ) - ' [ f ( x ( ~ ) 7 ~ )  - f ( x o , y )  - d Y ) l  

= D z f  ( xo ,  YO)-'  [ -Dyf  ( 3 0 ,  Y O ) ( Y  - Y O )  - T ( Y )  - ~ ( Y ) I !  (3.4) 

and we obtain 



The strong derivative property and the Lipschitz continuity of x imply that r(y) E 

Flip(yo). In particular, r(y) = o(y - yo). But s(y) = o(y - yo) by definition of the 
B-derivative, and this together with (3.5) shows that the formula in (3.3) holds. 

Now if Dy  f (so, yo) is strong, then s(y) E Flip(yo). If D,(xo, yo)  is linear, then (3.4) 
yields 

X ( Y )  - xo - Dzf(x0, ~o)-~[-Dyf(xO,  Y O ) ( Y  - Y0) l  

= -Dzf ( s o ,  yo)-I [r(y) + s(y)l. 
(3.6) 

Since the right-hand side of (3.6) is evidently Flip(yo), we see that in this case Dx(yo) is 
strong. I 

One might ask whether the assumption in Theorem 3.3 that D, f (so, yo) is linear 
could be replaced by the assumption that it is a strong B-derivative, while still retaining 
the conclusioil that Dx(yo) is strong. The following counterexample shows that this cannot 
be done. 

Define a piecewise linear homeoinorphism of R2 onto itself by 

and let f : R2 x R2 + R2 be defined by 

f (x ,  Y )  = y-l(x) - (Yl, Y2 + ~ 1 2 ) -  
We have D, f(0, 0) = y-l, and this is a strong B-derivative. Further, f has a continuous 
partial F-derivative in y. If we solve for the implicit function x(y), we find that 

so that x(0) = 0 and (by the chain rule) Dx(0) = y. 
Now let 

A(Y) = X(Y) - 4 0 )  - DZ(O)(Y - 0) 

= Y(Y + r(y)) - ~ ( ~ 1 7  
where r(y) = (0, y;). To say Dx(0) is strong is to say that A E Flip(0). M?e shall show 
that this is not so. 

For large n, define 

Clearly both y1 (n) and y2(n) approach the origin as n + w. However, 

and 
A(y2(n)) = y((n-', -n-2)) - y((n-', - 2 7 ~ - ~ ) )  

= (n-l, -5n-2) - (n-', -10n-~)  

= (0, tin-'). 

Hence 

IIA(Y"~)> - -(Y1(n))Il = Il(0, ~ R - ~ ) I I  = 211y2(n) - yl(n)ll, 
and therefore A $ Flip(0). 



4. Application to Variatiollal Problems. 

I11 this section we sketch an application of the theory developed in $3 to parametric varia- 
tional inequalities. Such problems involve a closed convex set C in a Hilbert space X, and 
a fuilctioil F from the product of X and a normed linear space Y to X. For fixed y E Y, 
one wishes to find a point co E C such that for each c E C ,  

where ( 0 ,  .) denotes the inner product of X. If we introduce the normal cone 

then we can rewrite (4.1) as 
0 E F(co, y) + Nc(co), 

and because of the form of (4.2) these problems are also called generalized equations. 
Since a solution of (4.1) or (4.2) will in general be a function of y, one might ask how 
that fuilctioil would behave under various assumptions on f and C. Indeed, an implicit- 
function theorem for such problems was established in [24] as a foreruililer of the more 
general forinulation in $3 of this paper. Here we show how to reformulate (4.1) so that 
the theory of $3 can be applied to  it, and in the process we illustrate why the composition 
formulation adopted in that section can be important. 

Although the development in [24] proceeded in terms of multifunctions, it seems de- 
sirable if possible to analyze (4.1) using ordinary functioilal methods, since single-valued 
fuilctioils are more familiar and easier to handle than are multifunctions. There is a well 
ki~o\vn way to do this; to illustrate it we introduce the projector on C ,  namely the function 
nc that talies any point x E X to  the point nc(x)  that is closest to x in C .  It is easy to 
sho\v that such a closest point exists and is unique, and that nc is a contraction: that is, 
it belongs to Lip(1). For this and numerous other results about projectors, see [29]. 

Now let W = X x x, and let g : X + W be defined by 

This g is sometimes called the "Minty map"; it is a Lipschitzian homeomorphism of X 
onto the graph of Nc (see [3]). Define f : W x Y + X by 

Then it is simple to show that solving (4.1) is equivalent to finding a solutioil x of 

since for any such x the point nc(x)  solves (4.1), whereas any point satisfying (4.1) also 
satisfies (4.3). In this way we have reduced the variational problem to the problem of 
finding a zero of the single-valued, continuous function given in (4.3). 



The theory of $3, particularly Theorem 3.2, now provides a tool to establish the 
existence and investigate the behavior of parametric solutions of (4.1) in the case in which 
F is B-differentiable. If we wish to apply that theory, we need to verify the principal 
assumption of Theorem 3.2. If we suppose that xo is a solution of (4.3) for y = yo and 
that we wish to  investigate parametric solutions x ( ~ )  for y near yo, then we see that the 
critical fact to verify is that D, f(g(xo), yo) o g has a single-valued, Lipschitzian inverse 
defined from a neighborhood M of the origin in X to a neighborhood N of $0. If we write 
D for DWF(g(xo), yo), then the definitions of f and g mean that we need to show that 
the function D(Ilc(x)) + (x - IIc(x)) has an inverse of the kind just described. However, 
by our earlier remarks this is completely equivalent to verifying that for each z in some 
neighborhood A4 of the origin in X ,  there is some x(z) E C that is the only solution in a 
neighborhood N of xo of the variational inequality 

(c - x, D(x) - z) 5 0 for each c E C. (4-4) 

In general, (4.4) may be simpler than (4.1); in particular, when D is actually linear (i.e., 
a Frkchet derivative), then (4.4) is a linear variational inequality over C ,  as contrasted to 
the nonlinear variational problelll (4.1). In that case, we recover the type of result proved 
in [24, Th. 2.11 under the more restrictive assumption that the derivative with respect to 
z was a colltinuous Frkchet derivative. (Note: In [24, Th. 2.11 it is not explicitly stated 
that the space X must be complete; however, this assumptioil is necessary (as it was in 
Th. 3.2 here) since the contraction theorem is used.) 

In fact, this situation also provides the example, proinised in $3, of a case in which 
the Lipschitzian coillpositioll formulation is needed. The reasoil for this is that, even in 
finite-dimensional spaces x, the projector Ilc may not be B-differentiable. For a clever 
example constructed in R3, see [14]. Therefore, for general closed convex sets C ,  we cannot 
expect to use the B-derivative of the function g appearing in (4.3), and thus the use of the 
composition is necessary. 

There are, however, important special cases in which a B-derivative derivative of Ilc 
exists. For example, Haraux [9] studied special convex sets in Hilbert space, which he 
called "polyhedric" sets, and showed how to compute the directional derivative in that 
case. TVhen attention is further restricted to polyhedral convex sets in Rn, then the 
directional derivative has a particularly simple form, and the results of $3 can then be 
applied with g = I. We intend to deal with that case in a separate paper. 
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