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DESIGN OF AN AIR-POLLUTION MONITORING NETWORK
An application of experimental design theory

W.G. Mueller

¢I> INTRODUCTION

The paper consists of two main parts. The first contains an
application of the results developed by Fedorov & Mueller (1987)
(hereafter M) . to a comparatively simple experimental
situation. The second part gives a description of the software
concerning the algorithms proposed in FM. All the examples are
related to the air- pollution monitoring network but it is clear
that many other scientific areas could be similary supported.

It is assumed that the reader is familiar with FM's results
and notations. The method described in section II of IM will be
referred to as the ODE (optimal design of experiments) approach,
while the method in section III of FM will be called the MR
(multiple regression) method.

Two FORTRAN computer programs (see Fedorov et al. (1987))
originally created for the standard regression case were adapted
for the regression model of the second kind. The first program is
called JDOPT and relies on the first order iterative algorithm as
described in FM p.5; see also Fedorov et al. (1987). The second is
called JDOPTEX and performs a version of an exchange type
algorithm. which is described in Appendix A. Appendix B contains a
user's guide for these programs.

CI11> DESCRIPTION OF THE DATA (UPPER AUSTRIA AS A TEST EXAMPLED

The data for the study have been collected at 19 monitoring
sites from the current Upper-Austrian network and consist of
half-hourly SOz concentrations at the various sites during the
whole year 1985 . The data were used with the friendly permission
of the Austrian Central Institute for Meteorology and
Geodynamics. The results are based on a data set with 59 cases



(days) out of 365, containing at least one observation for each of
19 stations. For every day, the arithmetic average was used

n
%4 - “ZZ 2 X yuL
L=1
where i is the number of a station, j is the day. v is the number
of the half-hours and nu is the number of non—missing data wvalues
yﬁt'

Figure 1 shows the region and the current network in the
official presentation (with enlarged Linz-area) and in the form
which was used in the analysis (grid-representation).

The network was probably designed following empirical and
cost considerations and it appears that all but three stations
(Perg,Wurzeralm and Schoéneben) are located near industrial
centers.

For the sake of simplicity the topography was not included in
the analysis but it should be kept in mind that the southern

quarter of Upper Austria is covered by the Alps.

(I11> EMPIRICAL COMPARISON OF THE TwO APPROACHES

To illuminate the results from FM and the software facilities
the network optimization approach initiated by Der Megreditchian
(1985) (MR-procedure) will be applied first. This approach is
based upon the heuristic idea that subsequent removal of less
informative stations will lead to an effective network with a
comparatively small number of observation stations.

A theoretical analysis of the kind of optimality criterion
minimized can be made, if one makes some assumptions on the
process that generates the data. In FM it has been assumed that
the data-field was generated by a regression of second kind model
(sometimes referred to as 'regression model with random

parameters') :

y=F'8 + ¢ ) 8= 9 + A (1)
J ] J ) o
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Figure 1: Current Upper-Austrian monitoring network
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- YT= (yr, ..... ,ym) are observed values (for instance pollution
J J
data in air monitoring networks:; 1i=1,....,n represents the number
J
of an observational station and j=1,...,k stands for the date of

the measurement),

- 80 (dimension m) is the 'true' parameter vector of the average
process (it is the mean value of the 'actual' vector 8j=z9°+Aj,
where Aj is assumed to be a random vector distributed with
E[A_Lj]=0 and a priori known E[AJ,AJ,' ]=D°,

T - . .

- 5,=(%:, ..... ,€ ) € 1s a random noise component with: El[g ]=0,
J ] nJ 1)
Ele ., 1=6_ 6. . These random values usually consists of

i S - i

observational errors and local disturbances.

The main difference between model (1) and the standard
regression case is the fact that in model (1) parameters of the
distribution do not remain constant over time but have stochastic
fluctuations (3; is the '"average' parameter, ﬁj represents the
current situation). In other words, the structure of the response
function 1is constant over the considered time interval but its

parameters fluctuate.

One can see that if all Do—elements equal 0, the model is
reduced to the standard regression situation. The random vector A
simulates the "intrinsic" fluctuation of the system under

consideration.

Applying model (1) of the monitored process gives the following
possibilities:

(a) to construct an observing network, which is optimal for
estimate the average pollutant distribution (with parameters 80),
or

(b) to create a network for estimation of the current (say
daily) situation (with 39.



It has already been shown in fM that the ODE-algorithm for
case (b)) and model (1) 1s theoretically equivalent to the
MR-approach; therefore the MR-method can be used to construct

optimal networks for the corresponding experimental situation.

In order to demonstrate this equivalence, MR was used to
delete the 'worst' station subsequently which yielded the ranking
related to the stations informativity: see figure 2. It is
worthwhile to note that 5 of the 6 'best' stations are clustered
in the area surrounding Linz (the capital and the main pollution

source of Upper-Austria).

The ODE-approach was applied in a similar way. Because ODE is
model oriented, some assumptions about the observed field had to
be stated explicitly at the beginning. The second order polynomial
response as a model for SOz distribution for the whole region has

been chosen:
N(X,8) =8 + 9 X+ X+ 9 x +9 %X+ 8 X x_. (2)
i 2 1 9 1 4 2 S 2 S 1 2

Of course one has to be very cautious about this model,
because it might not reflect the true situation, but due to its
simplicity it will serve as a good reference for the compared

approaches.

A regression analysis was performed for each date in order to
estimate 59 éj‘s, and subsequently the variance - covariance
matrix Do,which characterizes the fluctuation of the response
function (2) was obtained. In table 1 the simplest estimate

-

4yt k
D = (k-1 Y *

(8-8)(8-8)T
J (o] J (o]

is presented.

Table I: 3.82 0.83 -1.63 3.38 5. 66 -11.26
0.83 1.33 -0.07 0.87 -1.41 -3. 61

-1.63 -0.07 5.57 -2.08 2.10 4,38

3.38 0.87 -2.08 8.85 -8.76 -24.00

-5.67 -1.42 2.10 -8.77 17.99 28. 09

-11.26 -3.61 4.38 -23.9 28.09 77.56



The use of the ODE-algorithm with D_ substituted for by D
vields figure 3, which to some extent shows the reverse image of
figure 2. Here none of the 'best' stations appeared to be in the
Linz—area. This result of course contradicts the theoretical
conclusions from FM.

Table 2 shows means and the standard deviation for the
original and the logarithmically transformed value (transformation
before daily averaging). It can be seen that the 'best' points of
MR-procedure appeared where the standard deviation was
significantly high. More attentive consideration of MR reveals
that this approach implicitly assumes that errors or noise are
additive (i.e. y_Lj= y°j+ 5,”,, where yoj is the mean at point X,
and Eq is the noise). At the same time, it can be noted that the
second column in table 2 is roughly proportional to the first one.
This can mean that in the considered case, Y = skn(xi,ﬁo)
(multiplicative error with él)O, y;>0). Taking the logarithm is a
standard way to transform a multiplicative model to an additive
one. The result of the transformation is presented in the last
two columns of table 2.

Table 2: Means and Standard-deviations of 502 Measurements

{in E-3 mg/m3)

original logarithmic
observation station mean std mean std
1 HAUSERHL 54.6 81.1 2.3 2.5
2 URF ABHL 25.5 36.3 1.3 2.4
3 TRAUN 34.1 53.4 0.9 3.3
4 ASTEN 17. 4 33.0 0.2 3.0
5 WELS 27.1 34.2 2.0 2.0
6 VOECKLAB 19.2 23.3 1.4 2.4
7 PERG 15. 4 22.6 0.7 2.6
8 STEYR 26.2 33.5 1.8 2.3
L} BRAUNAU 12.8 20.2 0.4 2.7
10  ENNSCHEM 21.9 30.1 1.3 2.3
11 KLEINMUL 36.9 50. 4 2.3 2.0
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12  URSULINL 41.9 43. 4 2.7 1.8
13  ORFZENTL 60.5 55.9 3.1 1.7
14  URFAH24L 23.5 19.9 2.6 1.2
15  BERUFSSL 49.0 61.8 2.7 2.1
16  STEYREGG 40.6 30.0 3.0 1.3
17 LENZING 47.6 51.3 2.7 1.6
18 WURZERA 14.0 18.9 1.3 2.1
19  SCHOENEB 5.9 9.6 -0.5 2.3

The stability of the standard deviation for the transformed
data confirms the expediency of the chosen transformation from the
statistical point of view.

Through this transformation, the model used in ODE-approach
implicitely changed:

NX,.8) =exp { + I X+ I X+ x+8xXZ+8xx) . (3
1 2 1 3 1 4 2 S 2 S 1 2

i1s now assumed to be the proper model for the S0z distribution.

The new matrix ﬁo for model (3) is presented in table 3.
Table 3:

1.000 -0.146 -1.485 0.511 -0. 691 -1.369
-0.146 0.267 -0. 141 0.260 -0. 096 -0.874
-1.485 -0.141 3.916 -1.586 1.710 4.085
0.511 0.260 -1.586 1.353 -1.055 -3.150
-0. 691 -0.096 1.710 -1.055 1.281 2.591
~-1.369 -0.874 4.085 -3. 150 2.591 9.556

Algorithms MR and ODE were both recalculated for transformed
data and now the results are almost identical (Figures 4 and 5) in
accordance with theory (FM) . This fact confirms that the new

model is apropriate.

It is clear that none of the present designs presents the
final or complete solution of a real world problem. Too many
restrictions were introduced, and too many simplifications have
been applied . But this was done to avoid technical detailes which

could cloud the main ideas.
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CIV> COMMENTS

For practitioners the following questions are usually of
interest:

(1) How does the existing network perform against other
possible ones in terms of optimality ?

(2) How can the existing network be improved : via
adding., removing or relocating stations ?

(3) How are the existing stations ranked in terms
informativity ?

(4) What is the optimal number of stations ?

At first glance the methods described above do not seem to be
able to answer any of these practical questions. One could also
claim that the simplicity of the methods would hide reality's
complexity itself and therefore lead to inadequate solutions.This
is partly true, but application of these methods in order to gain
a rough view of the real world is in fact evident.

Considering practitioners needs, the detection of some 'hot'
areas where observation stations should be located seems to be of
most interest rather than exact locations of positions of
observation stations: there are a lot of nonquantified factors
that enter into station siting.

A possible objection to ODE-methods could also be, that if
there exists no exact model of the observed process, the
ODE-method will serve for none of the questions at all. But in
fact this is not so. See figures 6-8.

Here it was assumed that a practitioner had no concrete idea
about the process but only that it can be represented by
polynomial of unknown order. Then ODE was performed three times,
always assuming a different response function:

Figure 6 Linear response:

f(x) =8 +3 x +3Ix + g
L 1 2 1 9 2 1
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Figure 7 Polynomial of second order:

2
f(X) =8 +9 x +8 X +8x +8x2 +98x X + ¢
[ 1 2 i1 9 11 4 L2 3 12 S 11 12 1
Figure 8 Polynomial of third order:
f(x ) =8 +98.x +8xX +9x> +98x +9x2%2+8x

i 1 2 i1 3L12 4 L1 5L§ S 12 7 L2

+3x x +8&x7 x + 8 x xU + g

8 11 12 P 11 2 10 11 v2 8

The results show a somehow stable pattern, in most of the
observation points being at or near the boundary of the region.

It is clear that the number of stations has to be increased
with increasing complexity of the response function.

Another approach to more general rules is to give a
practitioner more freedom in choosing a location even when the
monitored process is known.

As an example, the algorithm described in Appendix A of this
paper was applied to optimize the Upper—Austrian network. With the
help of this procedure, it is possible to identify 'hot areas'
(not points as previously), where observing stations (Figure 9)
should be located.

Finally it seems that the ODE-technique could | help
practitioners at different stages of the monitoring network design
not least because of its relation to other so called model-free
methods (which has been shown in FM and in the earlier sections of
this paper). For instance it can provide:

- optimal design for comparison of different models

- optimal design for parameter estimation

- optimal design oriented for better prognoses

- optimal design for estimation of various average
characteristics (in space and time)

In addition, the ODE technique permits explicit introduction

of various optimality criteria (see for instance FM) and therefore

could be used in a more efficient way than usual design-methods.

11



! b4
' o
' x
¢ X
! X % x X X X X A
! X X . %z X X x
! % x x G
]
! ' x
! X <
! X
! X X X .
! X X . . X
M X x . x . x X
! X X X X X
0.

.80 !'x
! X X x
! X X . X X
! X
! x X
! . X X X
! x
! X X X X .
!
! X x . X
! X X X X . . x
! X x e e x O
! X X X X . X
H . x
! . x
H X . X
! 0 x x

~-1.99 !
—————————————————————————————————— I e e e,

Xmin = -1.2@Q0 Xmax = 1.900

Figure 6: Optimal design for polynomial of first order (standard

regression case)

1.92 ! (o]
' Lo
! X
' - X
! x
H X X x X X X X X X
! X % . X x X ®
! X . x x O
! .
! x
! x X
! X .
4 X X X .
! X X . . X
i X X . X . X X
! x x X X ¥
'o . . e}
.00 'x . .
H X X X
! x X . X X .
H X ..
! X - x
t . X X X
! . . .
! X X X X .
! -
! X X e e (o]
! X X X X . . x
! X X P 2 4
! X X X X . X
H x
! X
! X - x
! 0 x x
~-1.0@ !
—————————————————————————————————— e it D7
Xmin = -1.029 Xm2v = 1.000

Figure 7: Optimal design for polynomial of second order (standard

regression case)



4 x
! . X
! X
! o]
! Q x b3 X X X X X X
! <X X . X X X X
' X o . x x O
' o . .
! . X
H x . . X
H x .
! Cx x . .
! ¥ X . 0 . x
! X X x . X o]
! x x X X X
t0 . .
.00 'x . . Q
! x X X .
! x X . X X
4 X
H * X
! X X X
H . N 4
* 0O x x x . o}
.
H X x . - (0]
! . X X ¥ X . x
! x x e e X X
! X X X X . x
! . o]
! . . X
¢ b4 . x
4 O x x
-1.00 !
—————————————————————————————————— [~ e e
Xmin = -1.000 Xmax = 1.000

Figure 8: Optimal design for polynomial of third order (standard

regression case)

1.00 ! 1
' 22
' 335
' 67 89
' NN 6
! 14 X . . . XXXX .94
! S 8 xx A B .. 5
4 . x . .72 1
' . .. 4
! . . 9 3
' x .. . .72
' x P . . 83
! X X x . - . . 4
! 8 x . 4 . . x 5
1 27 . . 9 . 8. x . . x 6
t 148 . 1524 x X KX X
1125 . . 668
.00 t1 3 6 . . 737
t 369 «x . . . 89,
H 5 X . X X 3. ..
H x
! x x
! . XX X
! P . . .. . 8
! X X X X . . .. 9
! . . . 9 4
! x x . . .92
H . . X X XX . .73
! x . x P < |
! 7 . . X X X x 96
! 58 . 5
! 26789 x
H 124609
! 114
-1.00 !
—————————————————————————————————— ) itk b b e L D]
Xmin = -1.0Q9 Xmax = 1.000

Figure 9: 'HOT' AREAS identified by EXCHANGE TYPE ALGORITHM

13



ACKNOWLEDGEMENT :
I am most grateful to H.Kolb and U.Pechinger, who provided
the data, T.Munn for his constructive review and V.Fedorov,

because of two years of instructive guidance and cooperation.

REFERENCES:

- Der Megreditchian, G. (19835) Methodes statistigue d'analyse
et d’interpolation des champs meteorologiqgues. Geneve,
Organization Meteorologique Mondiale, p.300.

- Fedorov, V.V. (1986) The Experimental Design of an
Observational NetworkR : Optimization Algorithm of the Exchange
type. Laxenburg, International Institute for Applied System
Analysis (IIASA), WP-86-62.

- Fedorov, V.V., S. Leonov, M. Antonovsky., S. Pitovranov (1987)
The Experimental Design of an Observational NetworkR : Software

and Examples. Laxenburg, IIASA, WP-87-05.

- Fedorov, V.V. & W.G. Mueller (1987) Design of an Observing

Network : Comparison of two approaches. Laxenburg, IIASA,

WP-87-55.

- Silvey, S.D. (1980) Optimal Design. London, Chapman & Hall.

14



(A) GRID ORIENTED EXCHANGE TYPE ALGORITHM

If the operability region X can be approximated by some grid
with elements A- at s-th step, then we can construct the following
algorithm (compare with (19) and (20) from FM):

(1] There is Em= (x“....,xm). where the X~ are some points

{say the vertices) of the grid elements A.. Point

1-- s -
X = arg maxxexz.cp(x,fm) , )(Aﬂ er\ sSupp EM
has to be found and the new design

-
14 = (X ,...,X ,xX)
(n+ids is ns s

has to be taken into consideration.

[2] Point

X = arg min,__ oo £ p(x,E(mm)

(n+1)s

has to be deleted from design E(nﬂ)s.
The procedure can be started with either forward [1] or
backward [2] steps. In the second case, the length of excursion
has to be smaller than s-m. where m is the number of parameters to
be estimated. ‘

It has to be mentioned that for convergence of this
algorithm, it 1is of importance., that A.-r 0, but for practical
needs it will be sufficient to use sufficiently small A-= A with a
very small grid (this has been done in program WDOPTEX) .

For more detailed information about this procedure, see
Fedorov (1986).
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(B) USER’S GUIDE

Both programs perform optimization over a region, which is
described in the file ‘'reg.dat' (constructed by the special
program MAP). Initial design 51 and matrix ﬁo are stored 1in
‘des.dat’'.

Program MAP is intended for mapping a controllable region X.
The current version of the program handles one-— and
two—dimensional regions but generalization to higher dimensions
should not be difficult.

The region X 1is defined on a uniform grid with given
densities for each variable. Such a presentation of X is explained
by the fact that usually a user deals with irregular regions,
which cannot be described analytically (non—convex, with
subregions where the location of observing stations is impossible,
for example lakes, densely porpulated areas, etc.). Two output
files are created by the program:

‘'reg.dat' contains the data in its original scale
‘scale.dat' contains the normalized data (-1 = >{“°”s +1)

The main program utilizes three files:
‘out.dat' is for output information (see example)
‘reg.dat' contains the designs grid (see above)
'des.dat' contains the initial information

The last of the three is constructed as follows:
x1 (x2) P
1 1 1

(.)
xln (x2“) pn

>
>

o11 = = = Toim

-~

O’

omi = Tomm

where n stands for the initial number of points, x1,t and x2i for

16



the coordinates of points 1, pi for its initial weight and Do

ij
stands for the corresponding element to prior known matrix Do

All auxiliary subroutines (matrix inversion, calculation of
the initial determinant. minimization of a function p(x.fs) etc.)
for programs JDOPT and JDOPTEX are saved in the files 'subd.for'
and 'subdex.for' respectively.

INSTRUCTIONS FOR PROGRAM MAP — MAPPING OF A CONTROLLABLE REGION

1. SPACE DIMENSION - ? (L) L is a number of controllable variables

2. Xl<min>, Xl<max> - ? Ximin, Xlmax are the minimal and maxima
(X1min, Xlmax) values of the first coordinate
3. GRID FOR X1 ? (NX1) Interval ( X1<min>, Xl<max> )

is divided into NX1 parts,
rx defines an initial grid for X1l:
rx = ( Xl<max> - X1<min> ) /NX1

Messages 4 — 7 appear if L = 2

4. X2<min>, X2<max> - ? X2min, X2max — minimal and maximal
(X2min, XZ2max) values of the second coordinate
5. GRID FOR X2 ? (NX2) Interval ( X2<min>, X2<max> )

is divided into NX2 parts,
ry defines an initial grid for X2:
ry = ( X2<{max> — X2<min> ) /NY
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Message 6 appears for all X1 = x , belonging to the grid.

6. X1 = x, BOUNDS FOR X2 ? Yl and Y2 are bounds of the 2-nd
(Yl, Y2) coordinate for current value x
of the l-st coordinate

7. NEW BOUNDS FOR X2 : INEW = 1 — go to <6> with the same
vyes — 1, no — 0 (INEW) value x [ if for a given x
the set R(x) is not convex,
R(x) = { ¥y : a pair (x.y) belongs
to the controllable region } ]
INEW = 0 - go to <6> with new value
X , X = x(new) = x(old) + rx

INSTRUCTIONS FOR PROGRAM JDOPTEX -

OPTIMIZATION ALGORITHM OF THE EXCHANGE TYPE FOR D - CRITERION
IN THE REGRESSION OF SECOND KIND CASE

—— s e e e et s e e s e s e e e e

! SCREEN ! ! COMMENTS !

1. SPACE DIMENSION - ? (L) L. is a number of controllable
variables

2. CONSTANT FOR CONVERGENCE EPS — a constant for testing con-
CRITERION - ? (EPS) vergence of the algorithm
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3. NUMBER OF ESTIMATED PARA—- M - number of parameters ( M must
METERS - 7?7 (M) correspond to subroutine RESP ,

where a response function is cal-

culated )
4. NUMBER OF POINTS IN NO - number of supporting points in
INITIAL DESIGN - (NO) an initial design, input from

file des.dat

Message 5 appears if L=2

5. GRAPHICAL PRESENTATION OF IDO = 1 - subroutine GRAPH is

INITIAL DESIGN: yes — 1, executed for initial design
no — 0 (IDO)

Message 6 appears if initial covariance matrix is singular.

6. SINGULAR COVARIANCE MATRIX

7. NUMBER OF FIXED POINTS IN The first MFIX points in initial
INITIAL DESIGN (MFIX) design are fixed

8. CONSTANT FOR GAIN SEQUENCE - ALFA is evaluated by the program
(ALFR)

9. NUMBER OF ITERATIONS - ?2 MITER - maximal number of iterations
(MITER)

10. LENGTH OF EXCURSION - ? NFOR — number of steps for forward
{forward and backward> and backward procedures
(NFOR) ( Attention
MITER = 2*NFOR*K, K - integer !!!

11. INITIAL PROCEDURE: The algorithm starts with:
forward — 1, backward -~ 2 - forward procedure if IPRO = 1,
(IPRO) — backward procedure if IPRO = 2.
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12. STEPWIZE INFORMATION : IINF = 1 - intermediate information
vyes — 1, no - 0 is saved in the file 'OUT.DAT'
(I1INF) and shown on the monitor (current

design, value of the determinant
etc)

Message 13 appears if L = 2

13. GRAPHICAL PRESENTATION OF IGR = 1 - subroutine GRAPH is

DESIGN: yes - 1, no - O executed for final design
(IGR)

14. SCALING OF DESIGN: yes — 1, ISC = 1 - scaling of final design
no — 0 (IsC) is carried out

Messages 15 - 17 appear if 1S8C = 1.

15. X1<min>, Xl<max> - ? Xlmin, Ximax - minimal and maximal
(Ximin, Xlmax) values of the 1-st coordinate

Message 16 appears if L = 2

16. X2<min>, X2<max> - ? X2min, X2max - minimal and maximal
(X2min, X2max) values of the 2-nd coordinate
17. GRAPH IN REAL SCALE: IGRS = 1 - subroutine GRAPH is
yes — 1, no - 0 (IGRS) executed for final design

in real scale.



INSTRUCTIONS FOR SUBROUTINE GRAPH -

GRAPHICAL PRESENTATION OF THE DESIGN

1. Number of divisions for X1 ? The graph has MX positions

(MX) for the first coordinate
and
2. Number of divisions for X2 ? MY positions for the second

(MY) coordinate

INSTRUCTIONS FOR PROGRAM JDOPT -

FIRST ORDER OPTIMIZATION ALGORITHM FOR D - CRITERION
IN THE REGRESSION OF SECOND KIND CASE




1. SPACE DIMENSION - ? (L) L is a number of controllable
variables

2. CONSTANT FOR CONVERGENCE EPS - a constant for testing con-
CRITERION - ? (EPS) vergence of the algorithm

3. NUMBER OF ESTIMATED PARA— M - number of parameters ( M must

METERS - 7?2 (M) correspond to subroutine RESP ,
where a response function is cal-
culated )

4. NUMBER OF POINTS IN NO - number of supporting points in
INITIAL DESIGN - (NO) an initial design.input from

file des.dat

Message 5 appears if L=2

5. GRAPHICAL PRESENTATION OF IDO = 1 - subroutine GRAPH is

INITIAL DESIGN: yes - 1, executed for initial design
no - 0 (IDO)

Message 6 appears if initial covariance matrix is singular.

6. SINGULAR COVARIANCE MATRIX

7. SELECTION OF GAIN SEQUENCE: IALF = 1 - gain sequence is constant
1 - alfa(s) = const IALF = 2 - gain sequence 1is 1/s
2 - alfa(s) = 1/s

[CV)
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Message 8 appears if IALF = 1

8. CONSTANT FOR GAIN SEQUENCE - ALFA is the chosen constant

(ALFA)

9. NUMBER OF ITERATIONS - ? MITER - maximal number of iterations
(MITER)

10. CONSTANT FOR MERGING OF CMER is an internal constant

SUPPORTING POINTS (CMER)

11. FORWARD LENGTH OF EXCURSION NFOR - number of steps for forward
(NFOR) procedure

12. BACKWARD LENGTH OF EXCURSION NBAC - number of steps for backward

(NBAC) procedure
13. INITIAL PROCEDURE: The algorithm starts with:
forward - 1, backward - 2 — forward procedure if IPRO = 1,
(IPRO) - backward procedure if IPRO = 2.
14. STEPWIZE INFORMATION : IINF = 1 - intermediate information
ves — 1, no - 0 is saved in the file 'OUT.DAT'
(IINF) and shown on the monitor (current

design, value of the determinant
etc)

Message 15 appears if L = 2

15. GRAPHICAL PRESENTATION OF IGR = 1 - subroutine GRAPH is
DESIGN: yes — 1, no - 0 executed for final design
(IGR)

16. SCALING OF DESIGN: vyes - 1, ISC = 1 — scaling of final design
no - 0 (ISC) is carried out
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Messages 17 - 19 appear if 1ISC = 1.

17. X1<min>, Xl<max> - ? X1imin, Xlmax — minimal and maximal
(X1min, Xlmax) values of the 1l-st coordinate

Message 19 appears i1f L = 2

18. X2<min>, X2<max> - ? X2min, X2max - minimal and maximal
(X2min, XZ2max) values of the 2-nd coordinate
19. GRAPH IN REAL SCALE: IGRS = 1 — subroutine GRAPH is
vyes -~ 1, no - 0 (IGRS) executed for final design

in real scale.
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