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FOREWORD 

This paper deals with the QSIM algorithm introduced by Kuipers to  track 
down the changes of monotonicity properties of solutions to  a differential 
equation or other observations of the solutions. It introduces the concept 
of "qualitative cellsn where the monotonicity properties of the states of the 
system remain the same. It provides sufficient conditions for the non empti- 
ness of such cells, for their singularities, for the transition from one cell to  
another, and characterizes also the qualitative equilibria and repellors of the 
associated qualitative system. 
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Introduction 

T h e  purpose of this paper is t o  revisit the QSlM algorithm introduced 
by Kuipers in (25) for studying the  qualitative evolution of solutions t o  a 
differential equation 

(1) .'(t) = /(z(t)) 

where the  s t a t e  z ranges over a closed subset K of a finite dimensional 
vector-space X := Rn.  We posit the  assumptions of Nagumo  heo or em': 

(2) 
i) / is continuous with linear growth 

ii) K is a closed viability domain 

T h e  q u a l i t a t i v e  state of a solution t o  the differential equation (1) at a 
given time t is t he  knowledge of t he  monotonicity property of each compo- 
nent zi(t) of a solution z(.) t o  this differential equation, i .e., t he  knowledge 
of t he  sign of t he  derivatives z:(t). llence t he  q u a l i t a t i v e  behavior is 
t he  evolution of the  qualitative s ta tes  of the  solution, i.e., t he  evolution of 
t he  vector of signs of t he  components of z l ( t )  = /(z(t)), which must  be 
determined without  solving the  differential equation. 

In order t o  denote t he  qualitative s ta tes  and  track down their evolution, 
we introduce2 t he  s t r ic t  and large confluence frames (Rn, Q,) and (R", Qn) 
of Rn where Rn denotes t he  n-dimensional con f luence  s p a c e  defined by 

where Qn is t he  set-valued m a p  from Rn t o  Rn associating with every a E Rn 
t he  convex cone 

Qn(a) := R: := { t) E Rn ( sign of ( v , )  = a; ) 

We recall that the contingent c o n e  TI< ( z )  to a subset K  at z  E K  is the closed cone 
of elements v  satisfying 

lim inf d(z  + hv, K ) / h  = 0 
A-o+ 

and that K  is a viability domain if and only if 

N A ( : ~ M O  TBEoREM - Under aesumptionr ( 2 ) i ) ,  a closed rubset K  is a viability 
domain if and only if enjoys the viability property: for any initial state zn E K ,  there 
exists a ~olut~ion z ( . )  to the differential equation ( I ) ,  which is viable in the sense that z ( t )  
remains in K  for all t 2 0. 11,  Chapter 41 

'See [2,6] 



and an the set-valued map associatirig with every a E R n  their closure 

Qn(a)  :- an",:- { u E Rn I sign of (u i )  = a; or 0 ) 

We observe that the inverse of the set-valued map Qn is the single-valued 
map s, from Rn to R n  defined by: 

V i E  (1, . . . ,  n) ,  ~ , ( z ) ~  := sign of zi 

For studying the qualitative behavior of the differential equation ( I ) ,  i.e., 
the evolution of the functions t ++ sn(zl( t ) )  associated to solutions z ( - )  of 
the differential equation, we split the viability domain K  of the diflerential 
equation into 3n "qualitative cellsn K ,  and "large qualitative cellsn - 
K ,  defined by 

Indeed, the quantitative states T(-) evolving in a given qualitative cell 
K ,  share the same monotonicity properties because, as long as z(t)  remains 
in K,, 

The qualitative cell K O  is then the set of the equilibria3 of the 
systern, because KO = { z E 1 f ( z )  = 0 ). 

Studying the qualitative evolution of the differential equation amounts 
to know the laws ( i f  any) which govern the transition from one qualitative 
cell K ,  to other cells without solving the differential equation. 

But before proceeding further, we shall generalize our problem - free 
of any mathematical cost - to take care ~ b f  physical considerations. 

Instead of studying the monotonicity properties of each component z,(.) 
of the state of the system under investigation, which can be too numerous, 
we shall only study the monotonicity properties of m lunctionals V,(z(.)) on 
the state (for instance, energy or entropy functionals in physics, observations 
in control theory, various economic indexes in economics) which do matter. 

The previous case is the particular case when we take the n functionals 
V,  defined by V,  (z )  := z,. 

We shall assume for simplicity that these functionals Vj are continuously 
differentiable around the viability domain K .  

'such an eqi~ilibrium does exist whenever the viability domain K is convex and com- 
pact. (see (3 ,  Theorem 6.4.11, p. 3411). 



We denote by V the map from X to  Y := Rm defined by 

and we introduce the strict and large confluence frames (Rm,Qm) and 
(Rm,Gm) of Y for studying the qualitative evolution of the observation 

V(z(-)) .  
Since the derivative of the observation V(z(0)) is equal to  V1(z(.))z'(.) = 

V1(z(.)) l(z(-)) ,  i t  will be convenient to  set 

(We observe that  g is equal to j in the particular case). 
Hence, we associate with each qualitative state a the qualitative cells K, 

and the large qualitative cells ?T, defined by 

In other words, the quantitative states z ( - )  evolving in a given qualitative 
cell K, share the same monotonicity properties of their observations because, 
as long as z( l )  remains in K,, 

d 
V j = 1, . . . , m, sign of -Vj(Z(l)) = a j  

dt 

In particular, the m functions V,(z(t)) remain constant while they evolve in 
the qualitative cell KO. 

By using observation functionals chosen in such a way that  many quali- 
tative cells are empty, the study of transitions may be drastically simplified: 
this is a second reason t o  carry our study in this more general setting. 

This the case for instance when the observation functionals are "Lya- 
punov functionsn V, : K +-+ R .  We recall that  V is a Lyapunov function 
if < V1(z), j ( z )  >I 0 for all z E K ,  so that  V(z(-))  decreases along the 
solutions t o  the differential equation. 

Hence, if the observation functionals are Lyapunov functions, the quali- 
tative cells K, are empty whenever a component ai is positive. In this case, 
we have at most 2m non empty qualitative cells. (In some sense, one can say 
that  Lyapunov was the originator of qualitative simulation a century ago). 

Here again, studying the qualitative evolution of the differential equation 
amounts to  find the laws which govern the transition from one qualitative 
cell K, to  other qualitative cells. 



Naturally, we would like to know this evolution directly without solving 
the differential equation, and therefore, without knowing the state of the 
system, but only some of its properties. 

In other words, the problem arises whether we can map the differential 
equation (1) to  a discrete dynamical system iP : Rm -u Rm on the qualitative 
space Rm. 

This is not always possible, and we have thus to  define the class of 
differential equations which enjoy this property. 

But before, we shall characterize the qualitative equilibria, which are the 
qualitative states a such that  the solutions which arrive in the qualitative 
cell Xa remain in this cell, as well as the qualitative repellors b, such that  
any solution which arrive in Kb must leave this cell in finite time. 

We shall finally provide conditions insuring that  the qualitative cells are 
not empty or singular around 5 E KO in the sense that there is no other 
z E Fa in the neighborhood of 5. 

1 Transit ions between qualit at ive cells 

We shall assume from now on that  j is continuously differentiable and that 
the m functions V, are twice continuously differentiable around the viability 
domain K .  

Let us denote by S : K I-+ C1(O,oo; X )  the "solution mapn associating 
with each initial state zo E K the solution Szo(.) to the differential equation 
( I )  starting a t  zo (which is unique since j is locally lipschitzean). 

Definition 1.1 Let us consider a map j jrom K to X and m observation 
junctionals Vj : K I-+ R. W e  denote by D ( j , V ) ,  the "qualitative domain 
o j  ( j , V ) " ,  the subset o j  qualitative states a E Rn such that the associated 
qualitative cell K, is not empty. 

W e  shall say that a qualitative state c E D ( j , V )  is a "successor" o j  a 
qualitative state b E D ( j , V )  i j j o r  all initial state zo E K b n K ,  there ezists 
r €10, +w] such that Szo(s) E Kc jor all s E ] o , ~ [ .  

A qualitative state a E D ( j , V )  is said to be a 'qualitative equilibrium" 
i f  it is its own successor. It is said to be a 'qualitative repellor" i f  for any 
initial state zo E K,, there en'sts t > 0 such that Szo(t)  4 ra. 

Our first objective is t o  express the fact that  c is a successor of b through 
a set-valued map iP that  we shall define. 



For that  purpose, we shall set 

because g l ( z ) v  = V m ( z ) ( f ( z ) ,  v )  + V ' ( z ) f l ( z ) v .  
We introduce the notation 

i 
(Naturally, K, = K ,  whenever ai = 0.) 

We shall denote by I' the set-valued map from Rm to  itself defined by 

(6Y a E Rm, (I ' (a));  is the set of signs of h ( z )  = gt (z ) f ( z ) ,  when z E 

We also set Io ( z )  := { i = 1,. . . m  ( g(z ) ;  = 0 ) and 

We introduce the operations A on Rm defined by 

b, if b; = c, 
( b  A c ) ,  := 

0 if b, # c, 

and the set-valued operation v where b v  c is the subset of qualitative states 
a such that  

a, := b, or c, 

We set 
a#b e V l = l ,  . . . ,  m, a, # b, 

P r o p o s i t i o n  1.1 The set-valued map I' satisfies the consistency property 

and thus, 
I'(b A c )  c r ( b )  n r ( c )  

P r o o f  - To say that  Kb is contained in x, amounts t o  saying that  
b belongs t o  a v 0. When this is the case, we deduce that  for all i = 
I , .  . . , m, c ci, so that  the signs taken by h(z) ,  when r ranges over 
i K b  belong t o  the set of I '(a),  of signs taken by the same function over 3,. 
Therefore, I'(b) is contained in I'(a). 

Since b A c belongs to  both b A 0 and c v 0, we deduce that  I'(b A c )  is 
contained in both r ( b )  and I'(c). 



Definition 1.2 We shall associate with the system ( j , V )  the discrete dy- 
namical system on the confluence set R m  defined by the set-valued map 
9 : R m  - R m  associating with any qualitative state b the subset 

We begin with  necessary conditions for a qualitative state c t o  b e  a 
successor of b: 

Proposition 1.2 Let us assume that j is continuously diflerentiable and 
that the m junctions V, are twice continuously diflerentiable around the vi- 
ability domain K .  

I j  c E D( j ,  V )  is a successor of b, then c belongs to 9 ( b ) .  

Before proving this  proposition, we need t h e  following 

Lemma 1.1 Let us assume that j is continuously diflerentiable and that 
the m junctions V, are twice continuously difirentiable around the viability 
domain K .  

If v belongs to the contingent cone to the large qualitative cell K,, then 
the condition 

(9) v E TK ( z )  & V i E lo (z ) ,  sign of (g'(z)v)i = a, or  0 

is satisfied. 
The converse is true i f  we posit the transversality assumption 

Proof - Since t h e  large qualitative cell K, is t h e  intersection of K 
with t h e  inverse image by g of t h e  convex cone aR7, we know4 t h e  contingent 
cone t o  17, at some z E Fa is contained in to  

a n d  is equal t o  th i s  intersection provided t h a t  t h e  "transversality a s s u m p  
tion" 

g ' ( z ) C ~  (2)  - CaRT (g(z ) )  = Rm 

is satisfied. O n  t h e  o ther  hand ,  we  know t h a t  t h e  aR7 cone being convex, 

'See 13, Theorem 7.3. p.] 

6 



and t h a t  v E TR; ( z )  if and only if 

whenever z, = 0, then v, 1 0 

Consequently, v E TaRm(g(2))  if and only if + 
whenever g (z ) ,  = 0, then sign of v, = a, o r  0 

I ( 1. i.e., TaR=(g(2) )  = aR;' + 
Hence v belongs t o  the  contingent cone to Ka at z if and only if v belongs 

to T K ( z )  and g l (z )v  belongs to Taam(g(z)),  i.e., the sign of (g l (z )v ) ,  is equal 
to a, or 0 whenever j belongs to &(z ) .  

Proof of Proposition 1.2 - Let c be a successor of b. Take any 
initial s t a t e  zo in Kb n and set z ( t )  := S z o ( t ) .  We observe t h a t  the 
intersection of two qualitative cells ?Tb and K, is equal t o  

Since the  solution z ( t )  t o  the  differential equation crosses the  intersection - 
K towards z, j ( z o )  belongs t o  the contingent cone TK, ( z o )  because 

By Lemma 1.1, this implies tha t  

V zo E KbAc, V i E Io(zo), sign of g'(zo) j ( z0 ) ;  = c; or  0 

or, equivalently, t ha t  
I ' ( b ~ c )  c c v O  

Hence c belongs t o  @(b), as i t  was announced. 

2 Qualitative Equilibrium and Repellor 

We can characterize the qualitative equilibria of the  differential equation. 

Theorem 2.1 Let us assume that j is continuously diflerentiable and that 
the m junct ions V, are twice continuously diflerentiable around the viabil i ty 
domain K .  We posit the transversality assumption 

Then a is a qualitative equil ibrium if and only i j  a belongs to @(a) .  



Proof  - We already know that if a is a qualitative equilibrium, then 
a belongs to @(a). We shall prove the converse statement, and, for that 
purpose, observe that saying that a is a qualitative equilibrium amounts to 
saying that the large qualitative cell KO enjoys the viability property (or is 
invariant by f ) .  By the Nagumo Theorem, this is equivalent to say that KO 
is a viability domain, i.e., that 

By the Lemma 1 . l ,  knowing that f (z)  belongs to the contingent cone TK(z) 
by assumption, this amounts to say that 

V z E K O ,  V i E Io(z), sign of ( g ' ( ~ ) f ( ~ ) ) i  = a, or O 

i.e., that I'(a r\ a)  = I'(a) c a v 0. Hence, a is a fixed point of cP. 
What happens if a large qualitative cell KO is not a viability domain 

of f? We know5 that there exists a closed largest viability domain of f 
contained in K , ,  called the viability kernel viab(K,). 

We infer from the definition of the viability kernel that 

Proposi t ion 2.1 Let us assume that f is continuously differentiable and 
that the m functions V, are twice continuously differentiable around the vi- 
ability domain K .  W e  posit the transversality assumption 

(11) v z E K., gl(z)cK (z) - a ~ ? ( ' )  = R m  

- The qualitative state a i s  a qualitative repellor if and only if the 
viability kernel of KO i s  empty .  

- I f f o r  some b E a v 0, the qualitative cell Kb i s  contained in the 
viability kernel ~ i a b ( % ) ,  then a is the only successor of b .  

Proof  
1 - To say that some zo E KO does not belong to the viability 

kernel of KO means that for some t > 0, Szo(t) 4 IT,. If this happens for 
all zo E K O ,  then obviously, a is a qualitative repellor. 

2 - If Kb c Viab(K,), then, for all zo E K b ,  Szo(t) E KO for all 
t 2 0. Hence a is the only successor of b. 

'The viability kernel Viab(M) of a closed subset M C K of a viability domain K of 
a j is the largest closed viability domain of the restriction j l ~ t  of j .  It is the subset of 
elements z E M such that Sz( t )  E M for all t 2 0. It may naturally be empty. 



3 The QSIM Algorithm 

We shall now distinguish the 2" "full qualitative states" a#O from the other 
qualitative s tates ,  the  *transition states". 

When I is a non empty subset of N := { I ,  . . . , m ), we associate with a 
full s ta te  a#O the  transition s ta te  a' defined by 

Lemma 3.1 Let a#O be qualitative state which is not a qualitative equilib- 
rium. There ezist a solution starting at some z E K ,  and some t l  > 0 such 
that z ( t )  E K ,  for t E [O,tl[  and z ( t l )  E K,I for some non empty subset 
I c N :  

V ~ E  I ,  z ( t l )  E K: 

Proof - Let us choose z E K ,  and set z ( t )  := S z ( t ) ,  z ( 0 )  = z for 
simplicity. Either x(t)  remains in KO for all t ,  or there exists T > 0 such 
tha t  z ( r )  4 K,. Since a is not a qualitative equilibrium, the latter happens 
for a t  least one initial s ta te  z .  

Let J ,  := { t > 0 I z ( t )  4 KO ), an open subset of R+ and t 1  := infJ,. 
Since a#O is a full cell and since the initial point z belongs t o  the  cell 

R r ,  which is open, then z ( t )  remains in R r  for t €]O,qI for some q > 0 ,  and 
thus, t l  > 0 .  Since z ( t )  E KO for all t < t l ,  we deduce tha t  z ( t l )  belongs t o  
a transition cell g,. 

By definition of t l ,  there exists a sequence t p  > t l  converging to  t 1  such 
tha t  z ( t n )  4 Fa, i.e., such tha t  z ( t n )  E K and g ( z ( t n ) )  # aR;. This means 
tha t  there exists a non empty subset I c N such t h a t  g ( ~ ( l 1 ) ) ~  = 0 for all 
i E I .  

We face now two types of problems: 
1 - What  are the transition states  a' E a v 0 such tha t  the  cell K,, 

is reached in finite time by at least a solution starting in K ,  ? 
This problem is closely related t o  the "target problem" and other con- 

trollability issues in control theory, which received only partial solutions. 
We shall not  a t tempt  t o  answer this question in this paper. 

2 - What  are the successors, if any, of a given transition s ta te  a'? 
T h e  second question does not always receive an answer, since, starting 

from some initial s ta te  z E K:, there may exist two sequences tn > 0 and 
en > 0 converging t o  O+ such tha t  z ( t n )  E K, and z ( s n )  4 KO 

We can exclude this pathological phenomenon in two instances. 



One obviously happens when either a or the  transition s ta te  a' is an  
equilibrium, i.e., when 

= 0 when i E I 
r (a) i  c { & , O )  when i t 1  

This also happens in the  following situation: 

L e m m a  3.2 Let a#O be a full transition state. If I'(a)#O (and thus, is 
reduced to a point) then, for all transition state ax ,  there ezists a unique 
successor b := @(aX)#0  : for all initial state z in  the transition cell K,r, 
there ezists t 2  > 0 such that, for all t € ] 0 , t 2 [ ,  the solution z ( t )  remains in  
the full qualitative cell Ke .  

Proof - We consider an initial s ta te  z E K,r. 
I f  i 4 1, then the  sign of g ( z ) ,  is equal t o  a, # 0 ,  and thus, there exists 

q, > 0 such tha t  the  sign of g ( z ( t ) i )  remains equal t o  a: = a, when t E [0 ,  q, [. 
I f  1 E I ,  then g ( z ) ,  = 0 ,  and we know tha t  the  sign of the derivative 

d zg i ( z ( t ) ) J i=o  = h i ( z )  is equal t o  6, := r ( a ) i  and is different from 0 .  Hence 
there exists q, > 0 such tha t  the sign of h ( z ( t ) , )  remains equal t o  bi when 
t €10, qi [, so t h a t  t he  sign of 

remains equal t o  r ( a ) i  on the  interval 10, q,[. 
IJence we have proved t h a t  there exists some q > 0 such t h a t  z ( t )  E K b  

for t €1, t 2 (  where 

b, := { !,(a), when i E I 
when i 4 1 

and where t2 := miniEN q, > 0 .  0 

Definition 3.1 We shall say that the system (1, V j )  i s  "strictly filterablew 
i f  and only i f  for all full state a E D ( f , V ) # O ,  either r(a)#O or a is a 
qualitative equilibrium or all the transition states ax  ( I  # 0 )  are qualitatiGe 
equilibria. 

We deduce from Definition 3.1 and the  above observations the  following 
consequence: 



Theorem 3.1 Let us assume that / is  continuously digerentiable, that the 
m /unctions V j  are twice continuously difirentiable around the viability do- 
main K and that the system ( / , V j )  is  'strictly filterable". Let a E Rm be 
an  initial lull  qualitative state. 

Then,  /or any initial state z E K ,  i n  the qualitative cell K,, the sign 
vector a,(t)  := s , (S z ( t ) )  is  a solution to  the QSIM algorithm defined i n  
the /allowing way: 

There ezist a sequence of qualitative states a t  satisfying 

and a sequence to := 0 < t 1  < . . . < t ,  < . . . such that 

In other words, we know tha t  the vector signs of the variations of the 
observations of the  solutions t o  the differential equation ( I )  evolve according 
the set-valued dynarnical system (12)  and stop when a t  is either a qualitative 
equilibrium or all i ts transition states a: are qualitative equilibria. 

Remark - The  solutions t o  the QSIM algorithm (12 )  do not necessar- 
ily represent the evolution of the variations of the vector signs of a solution 
t o  the differential equation. 

Further studies must bring answers allowing t o  delete impossible transi- 
tions from one full qualitative cell ra t o  some of its transition cells K ~ ' .  

This is the case of a qualitative equilibrium, for instance, since a is the 
only successor of itself. 

Therefore, the QSlM algorithm requires the definition of the set-valued 
m a p  I' : Rm - Rm by computing the signs of the m functions h j ( - )  on the 
qualitative cells K: for all i E N and a E D(/, V ) # O .  

If by doing so, we observe tha t  the system is strictly filterable, then we 
know tha t  the set-valued dynamical system (12 )  contains the evolutions of 
the vector signs of the m observations of solutions t o  the differential equation 

(1 1. 

4 Nonemptiness and Singularity of Qualitative 
Cells 

T h e  question we answer now is whether these qualitative cells a re  non empty. 



T h e o r e m  4.1 Let us assume that f is continuously diflerentiable and that 

the m functions V, are twice continuously diflerentiable around the viability 
domain K .  Let 5 belong to the qualitative cell KO. We posit the transver- 

sality condition: 

(14) g l ( ~ ) C K ( ~ )  - aR'; = Rm 

Then the qualitative cell KO is nonempty and Z belongs to its closure. I n  

particular, if 
g 1 ( ~ ) ~ K ( 5 )  = Rm 

then the 3m qualitative cells KO are nonempty. (We have a chao t i c  s i t -  

u a t i o n ,  since every qualitative behavior can be implemented as a in i t ia l  
qualitative state.) 

Proof - We apply the Constrained Inverse Function   he or em^ of 
13,4] to the map (z,  y) I-+ g(z) - y from X x Y to Y restricted to the closed 
subset K x aR';. at the point (5,O). Its Clarke tangent cone is equal to the 
product CK(%) x aR';. of the Clarke tangent cones CK(5) and 

Therefore, we know that there exists 6 > 0 such that, for all z E 61-1, + ] I r n ,  
there exist an element z E K and an element y E aR';. satisfying g(z) - y = z 
and llz - 511 + llyll < 111~11. Taking in particular z, = a,c, we see that g(z), = 
a,€ + y, and thus, that the sign of g(z), is equal to aj for all i = 1, .  . . , m. 
Hence z belongs to K ,  and llz - 511 5 16. 0 

Let 5 belong to KO. We shall say that the qualitative cell fi, is "singularn 
at 5 if there exists a neighborhood N(5) of 5 such that 5 is locally the only 
point of the qualitative cell Fa: 

T h e o r e m  4.2 Let us assume that f is continuously diflerentiable and that 

the m functions V, are twice continuously difirentiable around the viability 

domain K .  Let 5 belong to the qualitative cell KO. 

6 ~ ~ ~ ~ ~ R ~ l ~ ~ ~  INVERSE PIIN(:TION THEOREM - Let X is a Banach space, Y a 
finite dimensional vector-space and j a continuous map from a neighborhood of K to Y .  
h n m e  that it is continuously differentiable around some point zn E K and that 

Then there exists a constant I > 0 such that, for all y E Y close enough to j(zn), there 
exists a solution z  E K to the equation j(z)  = y satisfying llz - znll 5 Illy - j(~n)ll .  



We posit the following assumption: 

Then the qualitative cell K, is singular at 2 .  

Proof - We follow the same arguments than in [4]. Assume the 
contrary: for all n > 0, there exists z, E K ,  z, # 3 such tha t  g(zn) 
doea belong t o  a R y .  Let us set h, := 112, - 511 > 0 converge t o  0 and 

v, := IIv/(. Since vn belongs t o  the unit ball, which is compact, a 
subsequence (again denoted) v, converges to some element v of the  unit 
ball. This limit v belongs also t o  the contingent cone TK(2) because, for all 
n > 0, Z + hnvn = z, belongs t o  K .  

Finally, since g ( ~  + hnvn) = g(zn)  E a R y  for all n > 0 and g(3) = 0 ,  we 
infer that the limit g1(3)v of the difference quotients g l Z t  hnVn) -g (Z l  

h" 
E aR'; 

belongs t o  a R 7 .  Hence we have proved the existence of a non zero element 

a contradiction of the assumption. 
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