
W O R K I I G PAPER

INTERACTIVE PROGRAM SQG-PC FOR
SOLVING STOCHASTIC PROGRAMMING
PROBLEMS ON IBM PC/XT/AT COMPATIBLES
- User Guide -

Alezei Gaivoronski

February 1988
WP-88- 1 1

I n t e r n a t i o n a l I n s t i t u t e
for Applied Systems Analysis

INTERACTIVE PROGRAM SQG-PC FOR
SOLVING STOCHASTIC PROGRAMMING
PROBLEMS ON IBM PC/XT/AT COMPATIBLES
- User Guide -

Aleze i Gaivoronski

February 1988
W P-88- 1 1

Working Papers are interim reports on work of the International Institute
for Applied Systems Analysis and have received only limited review. Views
or opinions expressed herein do not necessarily represent those of the
Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

This paper contains a detailed description of the SQG-PC program (Stochastic
Quasi-Gradients for Personal Computers), which is one of the results of the Optimization
Project in the System and Decision Sciences Program.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

CONTENTS

1 Introduction 1

2 Theoretical background 2

3 Program setup
3.1 Description of diskettes
3.2 System requirements
3.3 Program setup
3.4 How to define the objective function

3.4.1 Definition of the function UF
3.4.2 Definition of the subroutine UG

4 How t o Run the Program
4.1 Starting
4.2 Main Menu
4.3 Providing initial general information about the problem
4.4 The stepsize selection
4.5 The selection of the step direction
4.6 The selection of the constraints type
4.7 The selection of the information processing options
4.8 Defining the values of teh algorithm parameters
4.9 Iteration loop

4.9.1 Interactive capabilities during iteration process
4.9.1.1 Changing stepsize parameters 38
4.9.1.2 Changing direction parameters 38
4.9.1.3 Changing type of information displayed on the screen 40
4.9.1.4 How to make estimation and/or continue from the new point 43
4.9.1.5 How to display process information graphically 45
4.9.1.6 Changing penalty coefficient 52
4.9.1.7 Quitting iterations loop and changing algorithm 52

4.10 Termination in the INTERACTIVE mode 52
4.11 AUTOMATIC mode 54

Appendix 56

References 6 1

INTERACTIVE PROGRAM SQG-PC FOR
SOLVING STOCHASTIC PROGRAMMING

PROBLEMS ON IBM PC/XT/AT COMPATIBLES
- User Guide -

Alezei Gaivoronski

1. INTRODUCTION

SQG-PC was developed in The Optimization Project, Systems and Decision Sciences

Program of IIASA by Alexei Gaivoronski*. It can be used for optimization of systems

which functioning depends on random parameters and/or essential systems characteristics

are measured with error. The program is intended for IBM PC/XT/AT compatibles and

runs under DOS 2.1 and higher. Some of its essential features are the following:

- Both automatic and interactive modes of problem solving. In automatic mode the

programs runs free from the user intervention using default or previously selected

values of algorithm parameters. In interactive mode user has considerable measure of

control on optimization process, including possibility t o change algorithm, tune algo-

rithm parameters, restart from an arbitrary point, etc.

- A considerable selection of algorithms based on stochastic quasi-gradient techniques,

involving different rules for choosing stepsize and step direction (averaging, smooth-

ing, random search, finite differences etc.).

- Possibility t o monitor process evolution both numerically and graphically.

- The program can solve also deterministic nonlinear programming problems,

although it would be less efficient than specifically designed methods like Quasi-

Newton.

*Currently working at the V. Glushkov Institute of Cybernetics, Kiev, USSR.

2. THEORETICAL BACKGROUND

SQG-PC solves the following problem:

minimize Ef(z, w) = F(z) (1)

subject to z EX

Here the set X belongs to Euclidean space Rn, z are decision variables and w random

parameters defined on the appropriate probability space. The main difficulty in solving

this problem is that taking mathematical expectation in (1) involves multidimensional in-

tegration which can not be afforded for any reasonable number of random parameters.

Therefore numerical methods for solving (I) are centered either on approximation of the

objective function or the utilization of the observations of the random function f(z, w).

Optimization models of the type (I) can be used to formalize many real life situa-

tions in industrial and economical modeling and were first put forward in [I] in the form

of stochastic programs with recourse. Good overview of the state of the a r t including al-

gorithms, implementations and applications is given in [2], various approaches to the

problem are described in [3]-[6].

The approach utilized in the SQG-PC involves iterative process which starts from

the initial point zO. On each particular iteration no attempt is made to compute exact

values of the objective function F(z) or its derivatives, instead only a limited number of

observations of the random parameters w is made, the values of the function f(z, w) or its

gradient are computed and the step direction IS is obtained. The algorithm looks as fol-

lows:

where p, is the stepsize, IS is the step direction and n x stands for projection on the set X.

The vector IS should possess the following property:

where a, is a small vanishing term. The vector IS is called stochastic quasi-gradient and

the method (2) is called the method of projection of stochastic quasi-gradients [7]. For un-

constrained differentiable problems the techniques is known as stochastic approximation

[8]. Some of the relevant publications on the method (2) are [9j-[17]. Different a p

proaches for solving the problem (I) , and stochastic problem with recourse can be found

in 1181-[21].

Here is the simplest result concerning the convergence of technique (2) :

THEOREM Suppose that

1 X is compact convez subset of Rn

2 F (z) is finite convez function i n some vicinity of X

Then zS + X* with probability 1 where X* = { z* : z* E X , F (z *) = min F (z))
z E X

As can be seen from condition 3 stepsize rules can be quite varied and what is more

important the theorem only assures asymptotic convergence and no indication is given as

to how fast this would occur.

The important thing in implementation is not asymptotic convergence, but rather

convergence to some vicinity of optimum in reasonable number of iterations. T o achieve

this a lot of work is needed t o define practical stepsize rules and step direction rules.

This is the main emphasis in SQG-PC implementation of the stochastic quasi-

gradient methods together with elaborate interactive mode.

3. PROGRAM SETUP

3.1. Description of diskettes

SQG-PC comes on a Distribution diskette, which contains SQG-PC library and aux-

illary files. The Example diskette contains water resource problem discussed in detail in

[17]. This problem is used in this paper to explain main features of SQG-PC, for the short

description see Appendix.

Contents of the Distribution diskette:

- SQG.LIB optimization library with compiled SQG-PC subroutines

- MAIN.OBJ main object file, which should be linked with SQG.LIB and

user defined function and random number generator to obtain

the executable program

- PARAM file with default values of the algorithm parameters, should al-

ways be present in the same directory as the executable pro-

gram, which reads and modifies it.

file, which contains the information about screens, which a p

pear in the interactive option. Should be present in the same

directory as executable program.

example of the file with linking information, the user should

create similar file with information on object files and libraries.

example of the batch link file, it refers to the file SQG.LNK.

The executable program on the Example diskette was created

by executing this file.

The Example diskette contains the executable program, which solves water resources

example. All files on this diskette except JD.FOR and JD.OBJ are necessary for successful

solution. To execute the example create subdirectory on the hard disk and copy all files

from the Example diskette to this directory, then make this directory default and execute

command JD. It is possible also to execute the example by simply inserting the copy of

the Example diskette without write protection in the floppy disk drive and execute JD

from this drive, although in this case there would not be enough space to keep record of

the solution process.

Contents of the Example diskette:

- JD.EXE executable program, which was created by the batch file

LSQG.BAT from the Distribution diskette

compiled object file with the minimized function and the ran-
dom number generator

- JD.FOR Fortran text of the example function, subgradient and random

number generator

- JD.CON information about the problem constraints

- JD.DAT information about the objective function

- NOR.DAT parameters of random parameters distribution

- PARAM auxillary file, necessary for the execution of the program. Its

composition is similar to the file PARAM from the distribution

diskette, but version, present on the Example diskette contains

algorithm parameters specifically tuned for the water resources

example.

- JDBA.IN1 initial point

- RUNPAR.MNU auxillary file identical to one on the Distribution diskette

- RUNTABLE.MNU - * -
- STEP.MNU - * -

3.2. System requirements

SQG-PC runs on IBM PC/XT/AT and compatibles under DOS operating system,

version 2.1 and higher. The computer should be equipped with hard disk, have 300 KB

memory free for the program and CGA or EGA card, however in the latter case screen

appearance would be the same as with CGA card. The source of SQG-PC is written in

FORTRAN-77, however library file SQG.LIB is compiled by IBM Professional FOR-

TRAN compiler, version 1.22 and therefore needs 8087 or 80287 mathematical coproces-

sor. The user function should be compiled by the same compiler. The SQG-PC uses

NOLIMITS library from MIEJF Environmental for screen and keyboard control, and in

order to solve new problems user should have this library too. Excluding the compiler and

graphical library memory the SQG-PC needs approximately 240 KB hard disk memory

for optimization library and auxiliary files and 360 KB additional hard disk memory for

each problem.

3.3. Program setup

In what follows there are some suggestions of how to organize the hard disk direc-

tories for SQG-PC. An experienced user can organize them differently.

- create directories COMPILER, SQG and PROBLEM in the root directory;

- copy contents of the Distribution diskette to the SQG directory;

- copy IBM Professional Fortran compiler, related libraries, NOLIMITS library and

linker to the COMPILER directory;

the directory PROBLEM will be reserved for the solution of particular optimization

problem. Create in this directory the file UF.FOR with Fortran text defining the ob-

jective function, possibly its gradient and random number generator. Conventions

concerning this file will be described in the section 3.4. Instead of UF it is possible to

use any other name (JD in case of water resource problem on the Example diskette).

compile the file UF.FOR, the simplest way to do this is to execute command

..\PROFORT UF.FOR from default directory PROBLEM, for more details see the

manual for the IBM Professional FORTRAN Compiler. This will create the file

UF.OBJ in the PROBLEM directory

- create executable file UF.EXE in the PROBLEM directory. This can be done by exe-

cuting batch file LSQG.BAT which is supplied on the Distribution diskette. This file

contains one line:

..\compiler\link Qsqg.lnk

It refers to the file SQG.LNK, also supplied on the Distribution diskette, which con-

tains the following lines:

- create the file with information about constraints in the directory PROBLEM. The

name of this file is defined by user and supplied to the program as described in the

section 4.6, where conventions for defining this file are described also. In the water

resources problem this file has the name JD.CON

- create the file which defines the initial point z0 for the iteration process in the direc-

tory PROBLEM. The name of this file is defined by the user and supplied to the pro-

gram as described in the section 4.3, where conventions for defining this file are

described also. In the water resources problem this file has the name JDBA.IN1

- create files which contain information about objective function and random parame-

ters. These files are optional and their organization is defined by user (if he/she

needs them for defining objective function). In the water resources problem these

files have names JD.DAT and NOR.DAT

- copy to the directory PROBLEM file PARAM from the directory SQG and all files

with extension MNU from the same directory;

- now you have everything necessary to run the problem. Just make directory PROB-

LEM default and execute UF (or whatever name you have chosen for the executable

file). GOOD LUCK.

3.4. How to define the objective function

The listing of the file JD.FOR with water resources objective function is contained in

the Appendix. It is a good idea to have a look a t it now. It consists of the following FOR-

TRAN subprograms:

- function uf defines the objective function f (z , w)

- subroutine ug defines the subgradient of the objective function, this sub-

routine is optional

- subroutine ranv the header part of the random number generator, it reads

parameters of the normal distribution from the file

NOR.DAT and computes the value of the normal random

variable by summing the specified number of uniformly dis-

tri buted variables;

- function uran simple multiplicative-additive random number generator,

which generates successive uniformly distributed pseud*

random numbers

Random number generator is part of this file and is totally defined by the user. It is

called only from within function UF or subroutine UG. The only requirement is that it

supplies successively the independent values of random variables with the distribution of

the random parameters of the problem. For the function UF and subroutine UG there are

some guidelines which will be described below. In what follows names of identifiers, which

can be changed by the user are given in small letters, obligatory parts are given in capital

letters and comments within program are given in italics.

3.4.1. Definition of the function UF

FUNCTION UF (n, x)

DIMENSION x(n)

COMMON/OMEG/ lomeg,momeg

- reading initial data, i n case of water resource problem from file J D . D A T . This

reading should occur only during the very first call of the function

IF(lomeg.eq.0) GO T O 301

IF(momeg.ne.1) GO T O 302

momeg=O

301 CONTINUE

- call t o random number generator which supplied new random number

302 CONTINUE

- computation of the value of the function f(z, w), say userval.

UF=userval

RETURN

END

With each call to UF it should return the value of the function f(zS, wS). The value

of the current point zS is transferred to UF through array z(n), which has dimension n of

the decision variables of the problem. Common block OMEG is needed to arrest some-

times generation of the new random number. This feature is used in one of the finite

difference options, where finite differences are calculated for the fixed value of random

parameters. If user does not intend to use this feature the function UF can be simplified:

FUNCTION UF (n, x)

DIMENSION x(n)

- reading initial data, i n case of water resource problem from file JD.DA T . Th is

reading should occur only during the very first call of the function

- call t o random number generator which supplies new random number

- computation of the value of the function f(z,', wS), say userval.

UF=userval

RETURN

END

In this version each successive value returned by UF would be computed for the new

random number.

3.4.2. Definition of the subroutine UG

SUBROUTINE UG(n, x, g)

DIMENSION x(n), g(n)

- reading initial data, i n case of water resource problem from file JD.DA T . Th is

reading should occur only during the very first call of the subroutine UG

- call to random number generator which supplies new random number

- computation of the value of the gradient or subgradient of the function f(z, w) and

storing i t i n the array g (n)

RETURN

END

This subroutine is optional and if not present then finite differences or random

search should be used for the computation of the step direction (see section 4.5). It has

as its input array z(n) with the value of the current point and should return the value of

gradient fz(zS, w8) in the array g (n) . With each call new random number should be gen-

erated.

4. HOW TO RUN THE PROGRAM

In this section the performance of the program SQG-PC will be described on the ex-

ample of the water resources problem defined in the Appendix. It will be assumed either a

special directory on the hard disk was created and everything from this Example diskette

was copied to this directory, which was made default directory, or the copy of the Exam-

ple diskette without write protection tab was inserted in the floppy disk drive and this

drive was made default.

4.1. Starting

Start by executing command JD. The executable program JD.EXE will be loaded in

the RAM memory and after a while the screen depicted on the Figure 1 will appear. Press

any key and on the next screen will be the short description of the problem (Figure 2).

Press once more any key and MAIN MENU screen will appear (Figure 3).

4.2. Main Menu

At this point you define general information about the problem, select between in-

teractive and automatic mode of execution, select the type of algorithm, defined by the

type of stepsize and step direction and in the interactive mode decide whether it is time to

stop. The screen composition is typical of the other program menus. On the upper part of

the screen there is a header with general information about the menu, separated from the

rest of the screen by horizontal line. On the lower part of the screen there are tips what to

by Alexei Caivoronski System and Decision Sciences / IIASil Austria
1987 U #Glu5hk~v Ins ti tute of Cybernetics, Kiev USSR

press any key to continue

FIGURE 1

This prograr solves s t o c l ~ a s t i r programming problen of exyeot~:!on type
rin E f (x , w)

Y W
by Stochastic QuasiGradient methods, where x helonyj to the convex set X
defined by linear constraints, User must provide description of the f ~ r n c t l c o

f (x w) writ ten in FORTRAN !see manaal) For theoretical hackgrovnd arr these
techniques see Yu,Errol:ru, jtorhastics, 9 i1983) ,

press an3 ~P!J t t c b r l t - n w

FIGURE 2

do next, also separated by horizontal line. The menu itself is situated in the central and

left part of the screen and is surrounded by double lines. It consists of several entries and

cursor, which you can move between items. The cursor would move one item up or down

if you press upper or lower arrow key on the keyboard. You can move cursor directly t o

this item by pressing the key with the first letter of the desired item. At the same time in-

formation relevant t o the current item is displayed on the central and right part of the

screen. The purpose of all this moving is to select items for further execution because each

item means some action. In order t o select some item move cursor to it and press ENTER

key, the selected item will be highlighted. You can select more than one item, in fact an

arbitrary number of them. You can deselect item exactly in the same way: move cursor t o

already selected and therefore highlighted item and press the ENTER key, the highlighted

S t,ochas tic QuasiGradien is liui&lu
--- - - -- - -

I - I ; Start the solution process

STEPSIZE 1 1
DIRECTION 1 '
CONSTR~INT (i
INFORMTION i !

I '

INITI6LIZE j i

HIDE I I
I

QUIT I I
1 I

--- ------

Select iten by arrow kc!!~ or bj t h ~ ke rl:th the fir t letter of the derired
cut ion, confira yol\lT c ~ l f i : - REI!l!lN Eeq, c d i w s ~ r by pressing Esr Lpq

FIGURE 3

item would become normal, which means that it is deselected. After you finish selection

process hit Escape key, which would start the process of execution of the highlighted

items. If at any time the wrong key is pressed the computer would beep.

Now let us have a look at the MAIN MENU. It appears with the item RUN

highlighted. If you will not select anything else the program will start executing in IN-

TERACTIVE mode after you press the Esc key. Selection of different items enables you

to do the following:

- Choose between AUTOMATIC and INTERACTIVE mode of execution. In AU-

TOMATIC mode the program would display STOP menu in which you would select s t o p

ping criterion options and parameters, clear the screen and proceed silently with optimi-

zation process until stopping criterion will be satisfied and terminate. No information on

the process evolution will be displayed. The AUTOMATIC mode is described in more de-

tail in the section 4.11. The purpose of AUTOMATIC mode is to relieve user from the

process control when the function computation is slow and the whole process can take

many minutes. Another reason to use it arises when the number of similar problems is

solved and the best solution algorithm has already been identified during the solution of

the typical problem from this set in the INTERACTIVE mode and the algorithm parame-

ters have been tuned already. It is possible to switch from INTERACTIVE to AU-

TOMATIC mode during solution of the same problem, this is reasonable when the initial

behavior of the process promises eventual solution, but the total performance time would

be too long.

In the INTERACTIVE mode the program provides user with possibilities to choose

algorithm, tune algorithm parameters and monitor the process behavior extensively both

numerically and graphically. It is advisable to use the INTERACTIVE mode when solv-

ing for the first time the new problem, which differs significantly from the problems solved

previously. All the rest of the section 4 except section 4.11 deals with INTERACTIVE

mode.

To choose AUTOMATIC mode select option HIDE, if this option is not selected the

program would proceed in INTERACTIVE mode.

- Provide initial general information about the problem. This should be done each

time the new problem is solved, which differs from the previous in the dimension of deci-

sion variables and the structure of constraints.

For providing general information about the problem choose INITIALIZE option, it

is described in detail in the section 4.3.

For setting the type of constraints choose CONSTRAINT option, it is described in

detail in the section 4.6.

- Choose solution algorithm, that is choose the way of defining stepsize and step

direction from (1).

T o define the way of stepsize selection choose STEPSIZE option, it is described in

detail in the section 4.4.

T o define the way of direction selection choose DIRECTION option, it is described

in detail in the section 4.5

- Choose the way how certain information about process is processed, more

specifically how estimates of the current function value and the gradient norm are defined.

In INTERACTIVE mode these estimates could be displayed on the screen and used by

user to make decision on the process control, they are also used in some stepsize selection

options. In AUTOMATIC mode these estimates are used for choosing stepsize adaptively

and for the stopping criteria.

T o define the way of estimates selection choose INFORMATION option, it is

described in more detail in the section 4.7.

- Terminate the program execution in INTERACTIVE mode. T o do this use QUIT

option, described in more detail in the section 4.10.

Some general remarks on the MAIN MENU:

- It is possible to select arbitrary subset of options except empty subset.

- RUN option has the lowest priority, it is executed after all other options

- QUIT option has the highest priority.

The example of options selection is shown in Figure 4.

Stochastic PuasiCradients liluuul

1 1 Define the general information I about the problem mmw I
' I

I

B:
I I !

I - , I HIDE

QUIT

Select item by arrow keys or by the k? with the first letter of the desired
option, conf irn y o \ l ~ :Jill CP b i ~ lE IURN %PY, ?xi I *nu by pressing Esc key

FIGURE 4

4.3. Providing initial general information about the problem

This is done each time the new problem is solved, to do this choose INITIALIZE op-

tion from the MAIN MENU. After exiting from the MAIN MENU with theEscape key

SETUP MENU will appear (Figure 5).

Specify general infornation about the problen and systen files

I niunber of variables

jdba, ini initial point file

no keep record

id, rec record file

I jl,fin final point file I I

Specify the nunber of
decision variables

Press Escape key when finished with changes

FIGURE 5

This menu gives the first example of the second type of menu, used in SQG-PC. En-

tries of this menu define not actions, but the problem and algorithm parameters. There

are two columns within region, the column to the right shows the names of parameters

and the column to the left shows corresponding values. Parameters can have integer, real

and string values. Real values can consist of sign, decimal point and digits, integer values

consist of sign and digits. There is cursor in the values column, which can be moved with

upper, lower, left and right arrow keys. If after pressing left or right arrow key the com-

puter would beep it means that position to the left or right from the current is illegal

under present value of parameter.

Purpose of the cursor movement in this menu is to define and change the values of

parameters. T o facilitate this the simple editor is built in the program. You can change

or delete the character on the current cursor position, or put the new character if the

current cursor position is blank. In the example the cursor in the SETUP MENU is posi-

tioned on the first line in front of the digit 5. Currently this position is blank and reserved

for sign. You can leave it blank, put plus or minus sign in i t , but if you try t o fill digit or

letter in it the computer would beep. For the different problem you would probably need

to change the problem dimension and to do this you have to move to the right by pressing

right arrow key and type desired number. After you type the first digit the cursor would

move automatically to the next position to the right. You can delete wrong characters by

placing the cursor on it and pressing the Del key. The editor distinguishes between in-

teger, real and string parameters. For instance if you try to put decimal point in the in-

teger, letter in numerical parameter or two decimal points in real parameter the computer

would beep. Many things in this version of SQG-PC are protected, but still try not to

abuse the system like putting negative dimension.

Parameters t o be set in SETUP MENU:

- number of variables this should be nonnegative integer which equals the number of

decision variables of the problem, not exceeding 1000.

- initial point file the name of the DOS file which contains the starting point for

the iteration procedure. Can be anything permitted in DOS.

The file should contain the sequence of real numbers separated

by blanks. In the example this file has the name JDBA.INI and

has the following contents:

- keep record

- record file

two values are permitted: yes and no. In case of yes everything

shown on the screen would also be recorded in the specified file,

in case of no nothing is kept.

This is the DOS name of the file where to keep record. In case

of no value of keep record some dummy name should be provid-

ed

- final point file The DOS name of the file where the final point reached by the

program will be stored. In case you want to continue execution

from the last final point choose this file for the file with initial

point the next time you run the program.

4.4. T h e s t eps ize se lec t ion

This should be done in order to change the algorithm and to do this choose STEP-

SIZE option from the MAIN MENU. Then STEPSIZE menu would appear on the screen

in due course. This menu is of the first type and selection from it is made by means of

highlighting as described a t the beginning of the section 4.2.

When it appears on the screen some of the options are highlighted already (see Fig-

ure 6). These options are either ones selected by user in this or previous run or default

options s~~ppl ied with the system. Some of the options are incompatible. I f user still

selects them the menu will disappear for a while and then reappear again.

Stochastic QuasiGradients l!i&iwa

INTERACTIVE

ADAPTIUE 2

ADAPTIUE 3

PROGRA HIED

VECTOR

Each H iterations the inequality
(F(s-1)-F(s))/L(s,s-1) (t is checked uhtn
F(s) is the function value estimate at the
point x(s) L(s,s-1) is the path of the
algorithm ketween i terations s and s-1, If it
is satisfied we take r(s+l):aw(s) otherwise
r(s+l):r(s) and the value of the ste size r(s)
is kept constant during next H itera 1 ions,

Select i ten by arrow ke s or b pressing the option number
con fir^ your choice by # ETURN 1 ey, exit menu by Esc key

FIGURE 6

M E N U O P T I O N S :

- INTERACTIVE This is the only "true" interactive option, which can not be used

in AUTOMATIC mode. It keeps stepsize constant until user de-

cides to change i t , and to assist user decision various characteris-

tics of the process are available which will be discussed later.

All other options are intended for AUTOMATIC mode use, but

can be used also in INTERACTIVE mode, and in this case IN-

TERACTIVE mode is used for the tuning of stepsize selection

parameters.

- ADAPTIVE 1 This and subsequent two options are adaptive options. Adaptive

means that the program gathers certain information about process

behavior, processes it and changes the stepsize p, accordingly.

Crucial role in this type of stepsize rules play estimates F(s) of

the current value of the objective function F(z3) or the norm of its

gradient. The simplest estimate of the objective function value

could be the following:

This is very crude estimate, which can not be otherwise due to the

fact that i t uses only one function observation per iteration. How-

ever under fairly general assumptions it converges asymptotically

to the true value. What is more important this estimate proved

to be quite sufficient for the use in the adaptive stepsize rule. User

can choose between this and other kinds of estimates in the

INFORMATION MENU (see section 4.7).

Generally adaptive options work as follows. The stepsize p3 is

kept constant and each iteration the so-called algorithm perfor-

mance functional W(s). is computed. This functional utilizes esti-

mates mentioned above and is constructed in such a way, roughly

speaking, that in the case of regular progress of the process to-

wards minimum it has higher values compared with the case when

"chaoticn behavior occurs. For the process with constant stepsize

p the following pattern characteristic. If we start far from the o p

timum then in spite of random effects the behavior of the process

would be comparatively regular, algorithm progressing more or

less systematically towards minimum. Finally the process arrives

in the vicinity of the minima and starts to oscillate chaotically,

the size of this vicinity depends on the value of the constant s t e p

size. Adaptive options try to detect this moment with the help of

the algorithm performance functional W(s) and then divide s t e p

size, or make the value of the stepsize proportional to the value of

the performance functional. In the ADAPTIVE 1 option the algo-

rithm performance functional is the difference of the estimate of

the objective function in the current iteration and fixed number of

iterations before divided by the length of the path traveled by the

process during these iterations:

Each M iterations the inequality W(s) > a is checked and if

fulfilled then the value of the stepsize p, does not change. Other-

wise p, + = Pp, is taken, where 1 > /3 > 0 and the process contin-

ues with the new value p,+ of the stepsize. This rule requires

values of the following parameters:

- memory size the number K from the definition of W(s),

should not exceed 50, the reasonable

choice is 20.

- change frequency number M of iterations t o pass before at-

tempting t o change the stepsize. Good

choice is 20.

- initial stepsize

- bound level threshold a which triggers stepsize dimin-

ishing, advisable to have it zero or small

positive

initial value of stepsize po, should be of the

order of one tenth of the admissible region

size

- change multiplier Value P by which the current stepsize is

multiplied when necessity t o change s t e p

size is detected. Reasonable values are

between 0.5 and 0.9

- ADAPTIVE 2 In this case algorithm performance functional W(s) equals to the

average of the previous stepsize directions. The way to specify

the average is defined in the INFORMATION MENU. Each M

iterations the new value of the stepsize p, is set: p, = PW(s). If

this latest value exceeds p,,, then p, = p,,, is taken and this

value is kept constant during M subsequent iterations.

Required parameters:

- initial stepsire the same as in ADAPTIVE 1

- gradient multiplier multiplier #I for obtaining the stepsize

from the value W (s)

- mazimal stepsire upper bound p,,, on allowed stepsize

- change frequency number M of iterations to pass before at-

tempting to change stepsize. Good choice

is 20. In current implementation you can

change this parameter only from

ADPTIVE 1 option, this is inconvenient

and will be changed.

- ADAPTIVE 3 This is the combination of the ADAPTIVE 1 and ADAPTIVE 2

Each M iterations the new value of the stepsize pa is computed ac-

cording to ADAPTIVE 1 and simultaneously the value W (s) from

ADAPTIVE 2 is computed. If pa > P1 W (s) then pa = P1 W (s) , in

the case pa < p2 W (s) then pa = p2 W (s) and otherwise p, is taken

as in ADAPTIVE I

Required parameters:

- upper bound mult. this is P2 from the definition of the upper

bound : p, = P2 W (s)

- lower bound mult. this is P1 from the definition of the lower

bound: pa = P1 W (s) .

all the parameters from ADAPTIVE 1 option

-CONTROLLED This option supplements ADAPTIVE options and never used

alone. The purpose of it is to assure convergence of ADAPTIVE

options. By themselves ADAPTIVE options are not theoretically

convergent, although nonconvergence is quite rare in experiments.

Nevertheless CONTROLLED option is provided to assure conver-

gence. In this option two additional sequences of positive numbers

are provided: p, = a 2 / s and p, = a l / s , where 0 < al < a2. In

case the stepsize is chosen according to one of these sequences the

process converges with probability 1 (see section 2). If one of the

ADAPTIVE options is selected simultaneously with

CONTROLLED option then preliminary value pap of the stepsize

is selected according to the ADAPTIVE option and the final value

p, is chosen as follows:

PI if Pap < PI

Pu if P,p'Pu
pap otherwise

Thus, pu and pl serve as bounding sequences, which assure conver-

gence of the algorithm.

Required parameters:

- upper sequence the constant a2 from the definition of the

upper bounding sequence a2/s

- lower sequence the constant al from the definition of the

lower bounding sequence al/s

plus all the parameters from the selected ADAPTIVE option

- PROGRAMMED this option features the simplest theoretically convergent sequence

(see section 2) and is provided for the reference. In this option the

stepsize is selected according to the formula p, = cl / (c2 + s)

where c l > 0, c2 2 0.

Required parameters:

- program constant 1 the constant c l from the definition of the

stepsize

- program constant 2 the constant c2 from the definition of the

stepsize

so far the stepsize had scalar values. This option provides for the

simple vector stepsize, which is the product of the scalar stepsize

p, and diagonal matrix R(s) . Initially these elements are set to 1

and after MI iterations the sums yi of the quantities Izr - zr"l

for j = I , . . ., MI - 1 are computed for all i = 1 , . . ., n, where n is

the number of decision variables. The values of the diagonal ele-

ments of R(s) are taken inversely proportional to the values of y ,

and such, that their sum equals n. These values are kept constant

for the next MI iterations when the new rescaling is performed

and so on. This device proved useful in the problems where "fastn

- VECTOR

and "slow" variables exist.

Required parameters:

- scaling frequency this is the number M I iterations after

which the scaling is performed

Compatibility considerations:

- INTERACTIVE option is compatible only with VECTOR option

- ADAPTIVE options are compatible with CONTROLLED and VECTOR options

which can be chosen simultaneously

PROGRAMMED option is compatible with VECTOR option

- VECTOR and CONTROLLED options can be chosen only simultaneously with

some other option

- If incompatible options are chosen in the most cases STEPSIZE MENU will be re-

peated

I I RANDON SEARCH 1 1

1 The values of the gradient of the random

I I SAME OBSERURTIONS 1 1

CENTRAL DIFF

FORWARD DIFF

I I FIXED DIFFERENCE I /

function f(x,u) are available, If this
option is selected the next five options
are i 1 legal

I I RANDOMIZATION) I

RUERACI NC

FIGURE 7

4.5. The selection of the step direction

This should be done in order to change algorithm and to do this choose DIREC-

TION option from the MAIN MENU. Then DIRECTION MENU would appear on the

screen in the due course. This menu is of the first type and selection from it is made by

means of highlighting as described a t the beginning of the section 4.2 (see Figure 7).

When it appears on the screen some of the options are highlighted already. These

options are either selected by user in this or previous run or default options supplied with

the system. Some of the options are incompatible. If the user still selects them the menu

will disappear for a while and then reappear again.

MENU OPTIONS:

First let's describe primary options. They are incompatible with each other and one of

them should be selected.

- GRADIENT the current direction 6' will be equal to the gradient or subgra-

dient of the random function f[zS, wS). In order to use this option

user has to provide subroutine for gradient calculation as

described in the section 3.4.2

- CENTRAL DIFF this and other similar options require only subroutine for the ran-

dom function f(zS, w3) values as described in the section 3.4.1. In

this case

where wiJl and wij2 are observations of random parame-

ters which can be different or can be the same, this be-

ing specified in the SAME OBSERVATIONS option,

ei are unit vectors of the n-dimensional Euclidean

space.

Required parameters:

- finite diflerence the step 6 in the finite

difference approximation is ei-

ther fixed or proportional to

the value of the stepsize, exact

way is defined in the FIXED

DIFFERENCE option

- FORWARD DIFF

- RANDOM SEARCH

requires only subroutine for the random function

f(zS, w8) values as described in the section 3.4.1. In

this case

where wiJl and W& are observations of random parame-

ters which can be different or can be the same, this be-

ing specified in the SAME OBSERVATIONS option,

e, are unit vectors of the n-dimensional Eucliden

space.

Required parameters:

- finite diflerence the step 6 in the finite

difference approximation is ei-

ther fixed or proportional to

the value of the stepsize, exact

way is defined in the FIXED

DIFFERENCE option

requires only subroutine for the random function

f(z8, wJ) values as described in the section 3.4.1. This

option is useful in the case when the dimension of the

problem is considerable and n + 1 or 2n function

evaluations per iteration, required by the finite

differences are impossible to afford. Then the number

L is chosen and the number of function evaluations

per iteration will be L + 1. The vectors ti, i = 1,. .., L

are chosen each iteration with components indepen-

dently uniformly distributed on the interval [O, 61.

Then

where wiJl and wiJZ are observations of random parame-

ters which can be different or can be the same, this be-

ing specified in the SAME OBSERVATIONS option.

Required parameters:

- random directions the number L of random vec-

tors ti used to determine c8.

- finite di'erence the size 6 of the interval from

which the components of ti are

chosen is either fixed or pro-

portional to the value of the

stepsize, exact way is defined

in the FIXED DIFFERENCE

opt ion

The following options are secondary and are selected together with one of the pri-

mary options

- SAME OBSERVATIONS If this option is not selected then values of the random

parameters wfl and w& are taken all different and in-

dependent for all i, if this option is selected then all

these values are taken the same and each new itera-

tion only one new random value is generated.

- FIXED DIFFERENCE

- RANDOMIZATION

This option defines how the value of the step 6 in the

CENTRAL DIFF or FINITE DIFF options and the

size of the random vicinity in the RANDOM SEARCH

option are determined. If this option is not selected

then on the step number s we have 6 = Ap, where A

is the value of the finite di'erence parameter. If this

option is selected then on the step number s the value

of the 5 equals the value of the parameter finite

di 'erence itself.

This option shifts the point in which direction cs is

computed from the current point zS to the point which

components are random variables uniformly indepen-

dently distributed in the interval [zf - A,, zf + A,],

where zf is the a-th component of the current point zS

and A, = rp,/2. This randomization is useful if the

function F(z) has nonregularities like

nondifferentiabilities or multiple close extrema. Then

- SAMPLING

- AGGREGATION

- AVERAGING

randomization smoothes function behavior.

Required parameters:

-point neighborhood the value r which defines the

proportionality between the

current value of the stepsize

and the size of neighborhood

from which the random point

is chosen

Each iteration the K direction vectors v33' are com-

puted according to the one of the primary options and

the final direction t3 is obtained as the average of all

these directions:

Required parameters:

- samples number K of the independent

direction vectors computed a t

each iteration

In this option the values of the previous step direc-

tions are used to form the current step direction,

namely the current step direction t3 is computed as

linear combination of all previous step directions:

J1 = vl, t3 = (1 - a) t 3 4 + a3, where v3 is comput-

ed according to one of the primary options. This tech-

nique can be called analogue of the conjugate gradient

method of the nonlinear optimization.

Required parameters

- aggregation the coefficient cr which is used

to for the linear combination

with the previous direction

This is another way to combine current direction with

previous ones. The number L1 is selected and for the

particular iteration s let L(s) = Ll[s/Ll] where [- I
denotes the integer part. Then the current direction t3
is computed as the average of the directions v8 during

- NORMALIZATION

previous s - L (s) iterations, where u8 is obtained ac-

cording to one of the primary options

Required parameters:

- averaging defines the value of L,

This option is useful if the norm of the quasi-gradient

c3 can vary considerably. Suppose that u3 was ob-

tained according to one of the primary options possi-

bly combined with one of the secondary options men-

tioned above. Then c3 = v 3 / J (u 3 J J

4.6. The selection of the constraints type

This should be done each time the new problem is being solved and to do this choose

CONSTRAINT option from the MAIN MENU. Then CONSTRAINT MENU would a p

pear on the screen in the due course. This menu is of the first type and selection from it is

made by means of highlighting as described a t the beginning of the section 4.2.

When it appears on the screen some of the options are highlighted already. These

options are either selected by user in this or previous run or default options supplied with

the system (see Figure 8). This menu only defines the type of constraints and user has to

describe actual constraints in the special file &cording to specified rules. This file has the

name, specified by user and this name is supplied as constraints f i le parameter, which a p

pears on PARAMETER DEFINITION MENU (see section 4.8). The composition of this

file depends on the type of constraints and is described in this section.

MENU OPTIONS:

- NONE

- BOUNDS

the unconstrained problem is solved and no additional infor-

mation is required

the feasible region is defined by upper and lower bounds on

the individual variables. This option is preferable to the

NONE option even if actually there are no bounds, but the

region with the optimal solution can be identified, however

loosely. In this case artificial introduction of bounds can

prevent overflow in the case when initial stepsize is in-

correctly chosen. The user should put the values of these

- EXAMPLE

bounds in the file with the name accepted by DOS. The con-

tents of this file should consist of the sequence of real

numbers separated by blanks, first come all the upper

bounds in order of increasing variable index and then all

lower bounds. The algorithm would make projection on the

bounds.

suppose that we have two decision variables x, and x 2 and

the feasible region is defined as follows: 0 5 x l 5 100,

10 < x 2 < 200. Then the constraints file looks as follows:

100 200

0 10

Stochastic QuasiGradients

NONE

BOUNDS

ONE L:INEIR

I

The set of general linear
constraints

Select iten by arrow keys or by the ke with the first letter of the desired
option, c o n f i m your choice by RETURN icy, exit Menu by pressing Esc key

FIGURE 8

Required parameters:

- ONE LINEAR

- EXAMPLE

- constraints f i l e any name acceptable by DOS, file

with this name should contain con-

straints information specified above

the feasible region is defined by one hyperplane and algo-

rithm makes projection on this hyperplane. The constraints

file consists of the sequence of real numbers separated by

blanks, first come hyperplane coefficients and then the right

hand side.

suppose that we have two decision variables zl and z2 and

the feasible region is defined as follows: 5z1 + 10.2~~ = 200.

Then the constraints file looks as follows:

5 10.2

200

Required parameters:

- constraints file any name acceptable by DOS, file

with this name should contain con-

straints information specified above

- GENERAL LINEAR the feasible region is specified by the set of general linear

constraints and bounds. In this case in order to make precise

projection i t is necessary to solve quadratic programming

problem. This is a too costly thing to do each iteration on

the computer like A T compatible. Moreover, the direction

t' only in average coincides with the gradient of the objec-

tive function F(z) and each individual t' could be very far

from actual gradient due to random effects, this questions

wisdom of precisely projecting imprecise direction. In this

particular version of SQG-PC the exact penalty function a p

proach is chosen instead. Each iteration the candidate yS for

the new point is computed y' = zS - pstS and if the point is

feasible with respect to general linear constraints then

zS = y' is taken. Otherwise the most violated constraint is

identified, suppose this is constraint with index j and vector

of coefficients 63, then we take zS = yS - -yepS bjll<'II/II bil l .

Here -y equals either 1 or - 1 depending on the type of con-

straint and c is the penalty coefficient, which can be

changed interactively by the user. If the point zS defined in

this way does not Fit within bounds then additional projec-

tion on bounds is performed. For sufficiently large, but finite

penalty coefficient c all the accumulation points of the se-

quence zS generated in this way belong to the feasible region

if the stepsize p, tends to zero. This method is of course not

competitive in deterministic optimization problems, but ex-

perience shows that it is quite reasonable in stochastic en-

vironment. For example the water resources problem from

the Appendix was solved on the XT compatible with exact

penalties and on the VAX 780 with projections, in both

cases approximately the same amount of CPU time was re-

quired.

The constraints file contains information about bounds and

general linear constraints and consists of the sequence of real

and integer numbers, separated by blanks. This sequence is

composed in exactly the following order:

- upper bounds - sequence of n real numbers, where n is the

number of decision variables

- lower bounds - sequence of n real numbers

- number nl of constraints, excluding bounds - integer in

the current implementation n l 5 200 constraints

- number n2 of nonzero coefficients in constraints - integer

in the current implementation n2 5 1000

- types of constraints - sequence of nl integer numbers,

these should be 0,l or 2, zero for equality constraint, 1 for

less or equal constraint and 2 for greater or equal constraint.

- numbers of nonzero elements in each constraint - sequence

of nl integer numbers

- column positions of nonzero elements in the corresponding

constraints - sequence of n2 integer numbers

- nonzero elements - sequence of n2 real numbers, the order

should be the same as in the previous array.

- right hand sides of constraints - sequence of n l real

numbers.

EXAMPLE: For the water resources problem from the A p

pendix the constraints file is JD.CON on the Example

diskette and looks as follows:

156.448 201.866 225.297 512.886 592.872 654.152 720.183

Required parameters:

- constraints file any name acceptable by DOS, file

with this name should contain con-

straints information specified above

4.7. The selection of the information processing options

This should be done each time the new problem is being solved and the type of the

stepsize selection is changed. It is especially important for the ADAPTIVE stepsize o p

tions, but also useful for providing on-line information to the user about the process

behavior. The most important information which is selected are the estimates of the

current value of the objective function and its gradient. T o make selection choose INFOR-

MATION option from the MAIN MENU (see Figure 9). Then INFORMATION MENU

would appear on the screen in due course. This menu is of the first type and selection

from it is made by means of highlighting as described a t the beginning of the section 4.2.

When it appears on the screen some of the options are highlighted already. These

options are either selected by user in this or previous run or default options supplied with

the system.

Stochastic QuasiGradien ts

I
FUNCTION ESTIMATE 2

FUNCTION ESTIMATE 3

USE DIRECTION

GRADIENT ESTIMATE 1

The estimate F(s) of the function value
at the current point is obtained as the
average of all previous observations of
the function f(x,u)

Select iten by arrow keys or by the ke with the number of the desired
option, conf irn your choice by RETURN !ey , exit menu by pressing Esc key

FIGURE 9

MENU OPTIONS:

- FUNCTION ESTIMATE 1 The estimate F (s) of the current value F(z3) of the

objective function is computed as average of the all

previous observations of the random function f (z i , w'):

l S . .
F(s) = - C f (z l , w')

' = I

where w' are independent observations of the random

parameters of the problem. This estimate can use as

little as one value of the random function per iteration

to form the current estimate of the objective function

value. In some stepsize and direction options the pro-

gram generates more than one observation of the ran-

dom parameters and compute more than one value of

the random function (this is the case for example in

DIFF and SAMPLE options of the DIRECTION

MENU). These additional function evaluations can be

used in the estimates F(z) too, for more details see

USE DIRECTION option of this menu

- FUNCTION ESTIMATE 2 The estimate F(s) of the current value F(zS) of the

objective function is computed as the moving average

of all previous observations of the random function
. .

F(zt , wt):

F(1) = f (z l , wl),

F (s + 1) = (1 - a l) F (s) + alf(z3, w3)

where 0 < al 5 I . This estimate less depends on the

initial observations, which are made far from solution,

but unlike the previous estimate it does not converge

asymptotically to the true value of the objective func-

tion.

Required parameters:

- moving average coefficient a

- FUNCTION ESTIMATE 3 This estimate is similar to the FUNCTION ESTI-

MATE 1 except the average is computed for the last

K iterations:

Required parameters:

- memory size the value K of the "depth* of

memory, this is the same

parameter as described in

ADAPTIVE 1 stepsize selec-

tion option

- USE DIRECTION This is supplementary option to the FUNCTION ES-

TIMATE options. If this option is not selected then

only one observation of the random function per itera-

tion will be used to form the current estimate of the

objective function. If this option is selected then addi-

tional observations will also be incorporated in the es-

timate. These additional observations are made for

the estimation of the step direction in the CENTRAL

DIFF, FORWARD DIFF, RANDOM SEARCH and

SAMPLE options.

- GRADIENT ESTIMATE 1 The estimate G (s) of the current value F z (z S) of the

objective function gradient is computed as the average

of all previous observations of the step direction cS

where wi are independent observations of the random

parameters of the problem.

- GRADIENT ESTIMATE 2 The estimate G (s) of the current value F z (z S) of the

objective function gradient is computed as the moving

average of all previous step directions tS:

G (l) = t l , G (s + 1) = (1 - a 2) G (s) + azJS

where 0 < az 5 1 . This estimate less depends on the

initial observations, which are made far from solution,

but unlike the previous estimate it does not conver-

gence asymptotically to the true value of the objective

function gradient.

Required parameters:

- gradient estimator coefficient a2

This ends the description of the preliminary actions, which consist of problem and

algorithm definitions. After pressing the ESC key from the last selected MAIN MENU op-

tion the optimization process begins.

4.8. Defining the values of the algorithm parameters

This is done a t the beginning of the solution process from the PARAMETER D E

FINITION MENU which appears after option menus invoked from the MAIN MENU (see

Figure 10). This menu is of the second type and features two columns. The column of the

parameter values comes first and the column of the parameter names comes second. The

menu displays either the default values of the parameters or values defined by the user

previously. These values can be changed as described in the general information on the

menus of the second type in the beginning of the section 4.3. All parameters relevant t o

Selec t s t eps i ze , d i rec t ion and infomation p a r a ~ e t e r s

I B . 0 i n i t i a l s t eps i ze
i 8.5 change ~ u l t i pl i e r
1 28 ckan e f r e uency
i 8.1 houn % leue 7

lee. 00 upper sequence
58.8 lower seyuence
8.02 aggregation
2 8 ~ e ~ o r y s i z e

gradient e s t i ~ a t o r
~ d . c o n cons t r a in t s f i l e
018861 f e a s i h i l i t y
5 . 1 penalty coe f f i c i en t

Specify the i n i t i a l value f o r s teps ize

Press Escape key when f in i shed wi t k changes

FIGURE 10

..
I l i t e r I method I s t e p I const- I

I I I I I
I I I I I

la t ion I pe r for I s i z e ! r a i n t s I x(1) I x(2) 1 x(3) I x(4) 1 x(5) I
I I nance I I v i o l a t i I I I I I
I I I I I I
I
I I / l e u I / l e e r / l e i 1 / l e 0 I / l e u / l e e I / l e u t / l e e I ..

Press Escape key t o access runtime menu

FIGURE 11

the options selected previously and described in the sections 4.4-4.7 will appear in the

PARAMETER DEFINITION MENU. It is recommended tha t user first try default values

and only then change the parameter values from the RUNTIME menu described in the

next section. T o s t a r t iterations press Esc key.

4.9. Iteration loop

Now the iterations have started and the display screen looks like the Figure 1 1 with

new lines of information adding below. The table is appearing on the screen, which con-

tains information about the process. The first column of the table is always iteration

number, contents of other columns can be changed by the user. In Figure 11 the second

column contains the value of the algorithm performance function W(s), defined in the sec-

tion 4.4, the third column contains the value of the stepsize and the third the absolute

value of the worst violated constraint. All the subsequent columns contain the values of

the decision variables. Note the bottom row from the table header. This row contains

things like / l em or * lem where m is positive number. These figures represent scales and

mean tha t displayed numbers in these columns were obtained by division or multiplica-

tion of the original numbers by l o m . The scales can be changed from RUNTIME MENU

as described in the section 4.9.1.3.

During the iteration loop the user can change the values of the algorithm parame-

ters, penalty coefficient, composition of the screen, can switch from the numerical t o the

graphical process information representation, estimate more precisely the value of the ob-

jective function F (z) a t the current or specified point and jump to arbitrary point from

the current one. T o d o this i t is necessary to suspend execution of the iteration loop and

access RUNTIME MENU. This can be done after any iteration by pressing the Esc key.

4.9.1. Interactive capabilities during iteration process

Press Esc key and the screen would appear as on the Figure 12. Two horizontal lines

appear on the top of the table. The first one is RUNTIME MENU with 8 options and the

second is the short explanation of the option where the cursor is currently situated.

The RUNTIME MENU is very similar t o the menu of the first type described a t the

beginning of the section 4 .2 . The main difference is that for the cursor movement it is

necessary to press left and right arrow keys instead of upper and lower arrow keys. The

initial position of the cursor is in the very beginning of the menu line. Initial selection is

RESUME option and if nothing else would be selected the program would resume execu-

tion of the iteration loop after the Esc key is pressed. In order to select other options it is

necessary to place the cursor in front of the option and press the ENTER key, the selected

option will be highlighted. T o select option proceed in a similar fashion. Several options

can be selected simultaneously and in this menu there are no incompatible options. After

selection is finished press the Esc key and one or several of the parameter definition menus

will appear successively. After the new values of parameters will be entered the execution

of the iteration loop will be resumed.

4.9.1.1. Changing stepsize parameters

In order to do this choose STEPSIZE option from the RUNTIME MENU. The A L

GORITHM PARAMETER MENU will appear which is menu of the second type and con-

tains all parameters relevant to the stepsize selection (see Figure 13). Any of them can be

changed now as described in the beginning of the section 4.3. In case of only one relevant

parameter then instead of the whole menu only one line on the place of the RUNTIME

MENU will appear and the current table with the process information will be retained.

The manipulation with this single line is exactly the same as with the whole menu. When

the changes are finished press the Esc key to exit this menu and to go to the next selected

menu or to resume iterations loop.

4.9.1.2. Changing direction parameters

In order to do this choose DIRECTION option from the RUNTIME MENU. The

ALGORITHM PARAMETER MENU will appear which is menu of the second type and

contains all parameters relevant to the stepsize selection (see Figure 14). Any of them can

be changed now as described in the beginning of the section 4.3. In case of only one

relevant parameter, as in this particular example then instead of the whole menu only one

line on the place of the RUNTIME MENU will appear and the current table with the pro-

cess information will be retained. The manipulation with this single line is exactly the

same as with the whole menu. When the changes are finished press the Esc key to exit

this menu and to go to the next selected menu or to resume iterations loop.

If both STEPSIZE and DIRECTION options from the RUNTIME MENU are select-

ed then only one ALGORITHM PARAMETER MENU will appear, which will combine

relevant parameters for both stepsize and step direction options.

m 1 0 2 aggregat ion
..

I l i t e r I method I s t e p I const- I
I I I I I
I I I I I

l a t ion I p e r f o r I s i z e I r a i n t s I x(1) I x(2) 1 x(3) 1 x(4) I x(5) I
I I mance I I u i o l a t , I I I I I 1
I I I I I I
I I
I I / l e 0 I / l e e I / l e e l / l e e I / l e e I / l e e I / l e e I / l e 8 ..

FIGURE 14

S e l e c t sc reen parameters

Specify the number k l such t h a t
execut ion will be s topped a f t e r each k l
d i s layed i t e r a t i o n s and runtime menu P wil be shown, You can g e t t h i s nenu any
time by p r e s s i n g Escape key too

I

Press Escape key when f i n i s h e d with changes

FIGURE 15

I 2 5 0 how of t en t o s t o p
1 d isp lay f requenc
1 d i sp layed v a r i a b e 1
2

r
d i sp layed v a r i a b l e 2

3 disp layed v a r i a b l e 3
4 disp layed v a r i a b l e 4
5 d i s l a ed v a r i a b l e 5
0 mu1 i p y column 1
0

P r
mult ip ly column 2

0 mult iply column 3
0 mult ip ly column 4
0 mul t ip ly column 5
0 mult ip ly column 6
0 mu1 t i p l y column 7
0 mult iply column 8

no screen composi t i on

4.9.1.3. Changing type of information displayed on the screen

In order to do this choose MONITOR option from the RUNTIME MENU. The PRI-

MARY SCREEN MENU will appear which is menu of the second type and contains all

parameters relevant to the stepsize selection (see Figure 15). Any of them can be changed

now as described in the beginning of the section 4.3.

PRIMARY SCREEN MENU includes the following parameters:

- how often t o s top the program will suspend execution of the iterations loop

after the number of iterations, defined by this parameter

and display RUNTIME MENU

- display frequency integer number m l , the program will display on the screen

only information about each ml-th iteration

- displayed variable 1 the number of the first displayed decision variable, this is

important because it could be up to 1000 decision variables

and all of them can not be shown on the screen simultane-

ously. There is the same number of displayed variable

parameters as in the current information table header, this

number can be changed in the SECONDARY SCREEN

MENU

- multiply column 1 this is the scale l1 of the first column as described in the sec-

tion 4.9. It can be positive or negative integer. If the value
1

of l I is positive then original number is divided by 10 and

then displayed in the corresponding column, if it is negative
1

then the original number is multiplied by 10 before being

displayed. All other multiply column parameters has the

same meaning.

- screen composi t ion This is access parameter to the SECONDARY SCREEN

MENU and can take two values: yes and no. In the case of

no the program will proceed to other menus or to execution

of the iterations loop after the Esc key is pressed, in the case

of yes the SECONDARY SCREEN MENU will be accessed.

This menu enables to choose what process characteristics

will appear on the screen and how many decision variables

will be displayed.

SECONDARY SCREEN MENU is also of the second type and how to change

parameters in this menu is described in the section 4.3 (see Figure 16). It defines the

screen composition during the INTERACTIVE iterations loop. It contains two groups of

parameters. The first group defines the process characteristics which can be displayed dur-

ing iterations. These parameters can have only two values: yes and no, yes means that

corresponding parameter will appear on the screen and no means that it will not be

displayed. This group consists of the following parameters:

- performance measure this is algorithm performance functional W(s) described in

the ADAPTIVE 1 option part of the section 4.4

- function estimate the estimate F(s) of the current value F(z8) of the objective

function. The estimate selected in the INFORMATION

MENU will be displayed

- f(z, w) observation one of the observations of the random function f(z3, wd) per-

formed on the iteration number s. This option is very use-

ful when the problem is deterministic, then the value of the

random function coincides with the value of the objective

function

- stepsite value

- gradient norm

the value of the current stepsize p3

the norm of the average of the step directions c3. The aver-

age selected in the INFORMATION MENU will be

displayed.

- constraint violation the absolute value of the most violated constraint

The second group of parameters of the SECONDARY SCREEN MENU are the

indexes of the displayed decision variables. The total number of these parameters is 8

minus the number of the parameters in the first group with yes values. The displayed

variable parameters are the same as in the PRIMARY SCREEN MENU and are included

in the SECONDARY SCREEN MENU for conveniency.

When the changes are finished press Esc key to exit this menu and t o go to the next

selected menu or t o resume iterations loop.

r p o - 5 5 5 5 5 5 5 5

4.9.1.4. How to make estimation and/or continue from the new point

In order to do this chose ESTIMATE option from the RUNTIME MENU. The ES-

TIMATION MENU will appear which is menu of the second type and contains parame-

ters relevant to the estimation and new point selection (see Figure 17). Any of them can

be changed now as described in the beginning of the section 4.3. This menu allows to

suspend iteration process and estimate the value of the objective function F(z) a t the

current or any specified point and then resume optimization process from the current or

arbitrary specified point. It is possible t o change the current point without estimation. Es-

timation capability is useful when random function evaluation does not take too much

time and couple of estimations per problem solution are affordable. In this case estimation

helps t o understand the pat tern of approaching the optimal solution.

The ESTIMATION MENU consists of the following parameters:

- estimate can take values yes or no, in the case of yes estimation will

be performed, in the case of no there will be no estimation.

The no value of this parameter is used for the point chang-

ing without estimation

- number of samples the total number N of independent observations of random

parameters w' which will be used to make the estimate of

the objective function. The final estimate F(z , s) will be

computed as follows:

- messages frequency integer number N1, it defines the frequency with which the

intermediate estimates of the objective function value will

be displayed

- new point

- file with point

can take values yes or no. In the case of no the estimation

will be performed' a t the current point, in the case of yes the

estimation will be performed a t the point specified by the

user.

this parameter makes sense only if the value of the new

point parameter is yes. Then it should be the DOS name of

the file where the user has put the new point, the contents of

this file should be the string of the n real numbers separated

by blanks, where n is the dimension of the space of the deci-

- replace point

sion variables. If the value of this parameter is sc reen then

the program will take the input from the screen.

this parameter can have two values: yes and no. In the case

of no the optimization will be finally resumed from the

current point, otherwise it will be resumed from the new

point.

- resume opt imiza t ion the value should be yes or no . In the case of n o after the end

of the estimation the ESTIMATION MENU will be

displayed again, thus allowing further estimation, perhaps

a t the new point. In the case of yes no further estimation a t

this moment is possible and other selected RUNTIME

MENU options will be processed and optimization resumed.

When the changes are finished press the Esc key to exit this menu and to begin esti-

mation process or resume optimization from current or specified point. In the case of esti-

mation the picture similar to Figure 18 will appear (on this figure estimation was con-

ducted a t the new point and then the point is displayed). After estimation process is

finished press any key to continue the estimation or to resume optimization as defined in

the resume opt imiza t ion parameter.

new !!l!l00e0000 40 , 00000000 120,
0000
Press Esca e key to terminate estimation

101 774,52779996
200 772 , 95947266
300 778 , 66210937
400 764,22845898
500 784,40319824
600 800,90301514
700 811 , 37976074
800 814,81536865
900 825 , 91162109

100l 828 72619629
final estimate

828 , 72619629
Press any key to continue

FIGURE 18

4.9.1.5. How to display process information graphically

Any numerical information which is currently being displayed on the screen can be

alternatively displayed graphically. In order t o do this choose GRAPH option from the

RUNTIME MENU. The RUNTIME MENU will disappear, but the process information

table will remain. The two first lines with RUNTIME MENU will disappear and another

two lines will appear on their place. These two lines constitute GRAPH SELECTION

MENU, which is similar in structure to the RUNTIME menu (see Figure 19). Selection

from this menu is made by means of highlighting as described in the section 4.9.1.

1- 1 2 3 4 ? m 6 7 8
ma e e number of i terations the x varia e o the graph

l i t e r I nethod I s tep I const- I I I I I I
I I I I I

Iation I perfor I s i z e I raints I x(1) I x(2) I x(3) I x(4) I x(5) I
I I I nance I v io lat , I I I 1 I I
I I I I I I
I I
I I / l e e I / l e e I / l e e I / l e e I / l e e I / l e e I / l e e I / l e e

Select i ten by arrow and Return keys, proceed further by Escape or F2 key

FIGURE 19

The GRAPH SELECTION MENU consists of 9 entries, first entry corresponds to

the column with iterations number and remaining 8 enumerate columns with the process

information. It is necessary t o select a t least two entries from this menu. The first entry

will define the independent variable t o constitute the horizontal axis of the graph, while

the remaining entries would be dependent variables depicted along the vertical axis.

There could be more than one dependent variables, but it is not recommended t o choose

more than four of them.

After the selection of depicted variables is performed it is necessary to leave GRAPH

SELECTION MENU by pressing the Esc or F2 key. If the Esc key is pressed then the

program will draw the graph and continue the iterations loop with information about the

process continued to be displayed graphically.

The example of the program performance in the graph mode can be seen in the Fig-

ure 20. This is the example of one of the runs of the water resources example from the Ex-

ample diskette. Graph on the Figure 20 has the number of iterations on the horizontal

axis and z2 on the vertical axis as dependent variable. This picture shows the typical

behavior of the stochastic optimization algorithm. The stepsize here is chosen according

to ADAPTIVE 1 and CONTROLLED options with FUNCTION ESTIMATE 1 informa-

tion option and the step direction is chosen according to the GRADIENT and A G G R E

GATION options. At first the values of the variables oscillate heavily between approxi-

mately 38 and 112 and then the program accumulates information and begins to divide

stepsize which lead to convergence with oscillations between 38 and 40. This is the most

what can be achieved with the algorithm of this type, after iteration number 200 conver-

gence slows down and oscillations become almost stationary diminishing with the rate

proportional to the l/& which is almost invisible. The picture of these is shown on Fig-

ure 21, where scales of the graph were changed automatically. This stationary process is

shown also on Figure 22, where the axis are different: horizontal axis is zl and vertical

axis remained z2. In Figure 23 constraints violation is shown, which again oscillates con-

siderably between 0 and 550, but then converges almost to the constant zero.

Let us return to Figure 20. The first line contains suggestions for the process control.

As in the numeric mode pressing the Esc key would suspend the process and display

RUNTIME MENU with all the options described above. The F1 key will resume numeri-

cal display of the process information and F3 key will clear the screen and start drawing

anew. This is especially useful when horizontal axis is not the number of iterations be-

cause in this case the graphing area becomes congested quite soon and redrawing is need-

ed frequently. The F2 key will give GRAPH SETTINGS MENU which is needed for the

changing of the graph pattern and will be discussed later. The second and the third line

are devoted to the numerical information. The second line is the simplified header of the

numeric information table and the third line displays the current numerical values of the

process parameters as selected in the SECONDARY SCREEN MENU (see section

4.9.1.3). The axes are marked with the integer number of the decimal digits, for instance

you will never find markings like 0.3456. On the fifth line from above in the upper left

corner of the graphing area the scaling parameter * 100 is present. It means that the actu-

al number which marks the vertical axis should be multiplied by 100, for instance the

FIGURE 20

Esc - runtime menu, Fl - numeric mode F2 - draw menu, F3 - redraw
i t e r a t , perform s t e p s i z e c ~ n s t r ~ x(1) x(2) x(3) x(4) x(5)
230 1,636 0,435 0,000 498,117 38,242 58,006 69,426 57,496

Esc - runtine menu, F1 - nuneric node F2 - draw menu, F3 - redraw
i t e r a t , perform s t e p s i z e cons tr , x(1) x(2) x(3) x(4) x(5)
358 0,923 0,279 8,596 498,180 38,199 56,876 74,386 52,356

I

.

FIGURE 21

, , . , , ' ' , ' ' ' , 0 I . I I , . . I I I I . . , 1 1 1 1 , I

1 I I

180. , a

I I I I

.
! I I I

I I

, l . . , . . , . . l l . l l . .
I I ' ' ' '

1 I ,
I I , , , , . . , . I . ~ I , . . I . I I . . .

I

I

I

I

, , , . , , , ' 4 ' ' '

FIGURE 22

Esc - runtime menu, F1 - nuner ic node F2 - draw nenu, F3 - redraw
i t e r a t , pe r fo rn s t e p s l z e c o n s t r , x(11 x(2) x(3) x(4) x(5)

353 0,872 0 ,283 1 ,838 497,180 39,199 57,931 74,917 54,759

Esc - r u n t i n e Menu, F1 - nuner ic node F2 - draw nenu, F3 - redraw
i t e n t , pe r fo rn s t e p s l z e c o n s t r , x(11 x(2) x(3) x(4) x(5)

232 1 , 6 6 4 0 ,431 B l O O O 497,862 38,242 58,419 69,962 58,105

4 ,

3.9.

3 , 8 .

I I 1 I

50 108 150 2 00

FIGURE 23

f l . , . . , . , . , ,

i 1 0 I I I I

I

I

I I

I ,

:, , , . . , : . , , , , , '

I I

I I

I I

I t

, I

1 , I

. , , , , , , , , , . . , , . , , . , , ,
I I " " " I " , ,

I I I I I I

I I I , I

I I I I I I

I I 1 + 490.0
I I I

I 1 1 I I I

3 0 4 , 0 5 , 8 6 , 8 7 , 0 8 0

number 1.1 opposite the scaling parameter is actually 110. Besides scaling parameter

there could be also shifting parameter, for instance it is present in the Figure 22, in the

lower right corner of the graphing area above the horizontal axis. Its value is 490.0 and it

means that i t is necessary to add this number to values which mark horizontal axis.

Sometimes both scaling and shifting parameters are present.

In order to change graph appearance it is necessary to invoke GRAPH SETTINGS

MENU by pressing the F2 key any time during graphing mode. For instance curves on

Figure 20 are too edgy and in order to investigate stationary process the horizontal scale

was increased and vertical scale was decreased which produced Figure 21. The majority of

the GRAPH SETTINGS MENU parameters will be rarely changed by the user, except

scale z azis and scale y azis parameters. This menu is of the second type and the parame-

ter values are modified as described a t the beginning of the section 4.3 (Figure 24).

Menu parameters:

- zoom

- previous iterations

- scale z azis

- scale y azis

the real number a l which defines magnification of the area

around current point with preserves scaling proportions. Use

this parameter when exploring convergence pattern in deter-

ministic problems when successive steps becomes progres-

sively smaller

this parameter defines the number ml of the previous itera-

tions which will be depicted after switching from numeric to

the graphing mode. These last iterations are used also for

automatic scaling. Important role in what follows play the

span of the graphed variables during the last ml iterations,

which will be denoted sp(z) or sp(yk), k = 1,- - 4.

the real positive coefficient a, which defines the scale of the

horizontal axis. The span sp(z) of the independent z vari-

able occupies 7, = 0.9a,al part of the horizontal graphing

space. If 7, > 1 then the part tha t fits into the whole hor-

izontal graphing space is shown

the real positive coefficient ay which defines the scale of the

vertical axis. If automatic scaling is selected then the span

s p (~) of the main y variable occupies ry = 0.9aya1bi part of

the vertical graphing space, where b, is the scale of the main

y variable and i is its number. If ry > I then the part that

fits into the whole vertical graphing space is shown

- main y variable

- scale y variable 1

- automatic shifting

- screen marking

This is the dependent variable which is used for the vertical

scaling of the graph. Values of all other dependent variables

are not shown on the vertical axis.

this is the scale of the first selected dependent variable, for

explanation see the description of the scale y azis parameter.

All scale y variable i parameters have the similar meaning.

this parameter can be either yes or no. In the case of yes

spans of all dependent variables are centered around the

central horizontal line of the graphing space. In the case of

no the total span of all variables is computed which is used

for scaling

this parameter can be either yes or no. In the case of yes the

graphing area will be marked with ticks as shown on the

Figures 20-23. In the case of no there would be no marks on

the graphing area.

- automatic scaling all the dependent variables are scaled to the size of the main

y variable span

For the most of the graphing within SQG-PC the values of the last three parameters

should be set to yes. In Figure 25 the most common change of the graphing parameters is

shown which produced Figure 21.

Leave the GRAPH SETTINGS MENU after finishing with changes by pressing the

Esc key.

Select graphing parane ters

1110 zoon
10 previous iterations
0,85 scalexaxis
0,8 scale y axis
1 main y variable
1,0 scale y variable 1
1 1 0 scale y variable 2
1 ,8 scale y variable 3
3,8 scale variable 4

Yes autona ! ic shifting
Yes screen barkin
yes automatic sca 9 ing

Select multiplier to magnify the ima e
of the region around the current poin !

Press Escape key when finished with changes

FIGURE 24

Select graphing parane ters

1 1 8 zoom
10 previous iterations
8, 1 scale x axis

scale y axis
1 main y variable
1 8 scale y variable 1
l,0 scale y variable 2
1 1 8 scale y variable 3
3 1 8 scale variable 4

Yes autona ! ic shifting
Yes screen napkin
yes automatic sea 3 ing

Select multiplier to magnify the scale
of the y axis

Press Escape key when finished with changes

FIGURE 25

4.9.1.6. Changing penalty coefficient

This makes sense only if GENERAL LINEAR option is selected in the CON-

STRAINTS MENU. In order to do this choose CONSTRAIN option from the RUNTIME

MENU. In this case there is only one relevant parameter and instead of the whole menu

only one line on the place of the RUNTIME MENU will appear and the current table

with the process information will be retained (see Figure 26). The manipulation with this

single line is exactly the same as described a t the beginning of the section 4.3. When the

changes are finished press the Esc key to exit this menu and to go to the next selected

menu or to resume iterations loop.

4.9.1.7. Quitting iterations loop and changing algorithm

To do this choose the QUIT option from the RUNTIME MENU. Then after exiting

from the RUNTIME menu the MAIN MENU will appear again (see section 4.2). At that

point everything assessible from the MAIN MENU can be changed, including change of

the stepsize and step direction options, switch to the AUTOMATIC mode and quitting

altogether.

4.10. Termination in the INTERACTIVE mode

In order to terminate the program execution in the INTERACTIVE mode choose

the QUIT option from the MAIN MENU. This option has priority over all other options

and its execution will be started immediately after exiting from the MAIN MENU. The

TERMINATION MENU will appear which defines the final actions of the program (see

Figure 27). This menu is of the first type and selection from it is made by the means of

highlighting as described a t the beginning of section 4.2.

Menu options:

- VARIABLES if this option is selected then the final point will be displayed on the

screen, otherwise it will not be displayed. Irrespectively of this option

selection it will be stored in the file with the name specified in the

INITIALIZATION MENU.

- PARAMETERS If this option is selected then changes to the algorithm parameters

made by the user during the current session will be retained and be-

come the new default values of the algorithm parameters. Otherwise

all the changes made by the user will be discarded and a new session

will s tart with the previous default values.

After making the selection exit this menu by pressing the Esc key, which will ter-

minate the program and return to DOS.

4.11. AUTOMATIC mode

This mode should be chosen after parameters of the algorithm are tuned in the IN-

TERACTIVE mode. TO choose this mode select the HIDE option from the MAIN MENU.

Then after exiting the MAIN MENU and the processing of other options the STOP

MENU will appear, which defines the stopping criterion (see Figure 28). This menu is of

the second type and defines the values of parameters, how to make changes in these values

are described a t the beginning of section 4.3.

Menu parameters:

- number of i terations the maximal amount of iterations algorithm is allowed to

perform. This is the first stopping criterion of the program.

- minimal stepsize The minimal allowed value of the stepsize. If the stepsize

remains below tis level for the successive number of itera-

tions defined by i terations t o check parameter then the

second stopping criterion of the program is satisfied

Specify stopping conditions m

l o o nwber of iterations

8,82 minimal stepsize

8,201 minimal gradient

10 iterations to check

no a1 1 condi t ions

Specify the number of
iterations after uhich the
program would terminate

Press Escape key when finished with changes

FIGURE 28

- minimal gradient

- i terations t o check

- all condit ions

The minimal allowed value of the norm of the step direc-

tions average. Type of the average is defined in the INFOR-

MATION MENU. If this norm remains below the level

specified by the minimal gradient parameter for the succes-

sive number of iterations defined by the i terat ions to check

parameter then the third stopping criterion of the program

is satisfied.

The successive number of iterations to check for the second

and the third stopping criterion

this parameter can take values yes and no. In case of yes

program termination will occur only after all three stopping

criterions are satisfied. In the case of no the program would

terminate after arbitrary one of the stopping criterions will

be satisfied.

Exit this menu by pressing the Esc key. The program will display after that P A R A M E

T E R DEFINITION MENU where the values of the algorithm parameters can be changed

(see section 4.8). After that the program will clear the screen and continue execution

independently from the user until the stopping criterions would be satisfied and ter-

minate. However, the user can regain control and invoke INTERACTIVE mode by press-

ing the Esc key. This will produce RUNTIME MENU (see section 4.9).

APPENDIX

This is the problem which is contained on the Example diskette and has its origins

in the water resources management. For a detailed explanation and comparison of

different solution techniques see [17].

minimize F (z) = Ewj(z , w) = zo

+ c Ew max 0, max {wi- + d , - 2,) ((1=2,3,4

subject to constraints

where d, = 12.7, i = 2, 3, 4. The random vector w = (wl, w2, w3) is distributed normally

with

expectations e = (20.2, 27.37, 10.65)

standard deviations q = (8.61, 10.65, 6.00)

penalty coefficient c was equal 100. The convenient feature of this problem is that we can

easily obtain very good lower bound for solution by minimizing zo subject to constraints

stated above. This gives F (z) >_ 494.88 where z is the optimal point.

I 1. 0.360 0.125
and correlation matrix 0.360 1. 0.571

0.125 0.571 1.

Due to the stochastic nature of the problem it was not possible to obtain the optimal

solution with precision, say, 5 decimal digits. Moreover, the objective function of this

problem is quite insensitive around optimal point to the changes in some of the variables.

T o validate results of SQG-PC the test runs on the VAX 780 were used. The version of

the program which is installed on the VAX differs from SQG-PC among other things in

that i t uses projection for constraints handling. The Tables 1 and 2 represent results of

two runs with different sequences of random numbers. The stepsize rule was ADAPTIVE

1 and starting point (1 000, 100, 100, LOO, 100). Each iteration required one observation of

random variables. The last column of the table represents the estimate of the value of the

objective function F(z) using 10000 independent observations of random variables. Such

extensive estimation is impossible on a PC, but here it gives an idea as to how the

method approaches the optimum.

,

TABLE 1

Step S tepsize Z~ z~ 22 z3 z4 F(z)

number

TABLE 2

Step S tepsize z~ zt z2 z3 z4 F(z)

number

In what follows there is the listing of the Fortran code defining this example.

- 59-
function uf (n,x)
dimension r(10),d(10)

dimension x(n)
common/klklkl/nr,pen,d
common/klklk2/k

common/omeg/lomeg,momeg
if (k .eq. 3) g o t o 300

Reading data

if pr=2
if id=3

open(ifid,file='jd.dat')
open(ifpr,file='jd.rec')

read(ifid,t) n r
write(ifpr,f) 'number of random variables'
write(ifpr,S) n r
read(ifid,S) pen
write(ifpr,S) 'penalty coefficient'
write(ifpr,S) pen
read(ifid,t) (d(i),i=l,nr)
write(ifpr,t) 'rhs constants in random inequality'
write(ifpr,t) !d(i),i=l,nr)

close(ifid)
close(ifpr)

k=.3
continue

function evaluation

if (lomeg .eq . O g o to 301
if(momeg.ne.1) g o t o 302
momeg=C)
call ranv(nr,r)
continue
kid=(:>.
dc* 1 00 i=l,nr
sr=r(i)-x(i+2)+d(i)
if(sr.gt.tid) tid=sr
continue
uf=;:(l)+penttid
return
end

subroutine ug(n,x,g)
dimension x(n),g(n)
dimension r (1 0) , d (11:))
common/klklkl/nr,pen,d
common/klklk2/k
if (k.ne.0) g o t o 300

C

c Reading data
C

if pr=2
if id=3
i c o=O

open(ifid,file='jd.dat')
open(ifpr,file='jd.rec')

read(ifid,t) nr
write(ifpr,t) 'number of random variables'
write(ifpr,f) n r
read(ifid,t) pen
write(ifpr,t) 'penalty coefficient'

-60-
write(ifpr,f) pen
read(ifid,d) (d(i),i=l,nr)
write(ifpr,S) 'rhs constants in random inequality'
write(ifpr,t) (d(i),i=l,nr)

close(ifid1
close(ifpr)

k=Z
300 continue

C

c Computing gradient
C

iccrico+l
call ranv(nr,r)
tid=O.
nid=l
g(1)=1.
9(2)=0.
do 100 i=l,nr
sr=r(i)-x(i+2)+d(i)
q(i+2)=0.
if(sr.le.tid) go to 100
tid=sr
nid=i

100 continue
if (tid.gt.0.000001)g (nid+2)=-pen
return
end

subroutine ranv(k,rvec)
dimension rvec(k),ex(3),~ig(3~3)~rr(J)
if(kk.ne.0) go to 380

open(3,file='nor.dat')
open(2,file='nor.rec')
read(3,f) nnor
write(2,f) 'number of uniform observations',nnnr

read(3,f) (ex(i),i=l,k)
write(2,f) 'expectations ',(es(i),i=l,k)
read(3,f ((sig(i9j),i=l,I::) ,j=l,k)
write(2,*) 'variance square root ' , ((~ i g ! i , j) , i = l , k) ~ j = l ~ k)

close(3)
close(2)
ssor=nnor
a m m = 2 . f s q r t (3 .) / s q r t (s s o r)
am2=0.5*ssor

kk=1
300 continue

C

c computing random vector
C

do 111 i2=l,k
111 rr(i2)=(3.

do 110 il=l,nnor
d o 200 i=1,3
rr(i)=rr(i)+uran(dummy)

200 continue
110 continue

do 112 i2=1,k
rr(i2)=(rr(i2)-am2)$amm

112 continue
do 113 il=l,k

rvec(il)=O.
d o 113 i2=l, k

11Z rvec(il)=rvec(il)+rr(i2)Isig(il,i2)
do 101 i = l . L:

101 rvec (i) =rvec (i)+ex (i)

r e t u r n
end

f u n c t i o n c!ran(:.:)
d a t a k: .! 1:) /
i f (k . e q . 1) go to 300
:.:1=3.14159263
x2=(5.tt6/2.tt21)/(5.tt9/2.tt21)
L: = 1

7 .-.(.)(:I - con t i nue

5 = :.; 1 + ;.; 2
;.: 1 = >: 2

i f (s - 4 .) 2 , 2 , 1
1 s=s-4.
2 uran=s./4.

., -3- :.; 1 - 5

r e t u r n
end

REFERENCES

Dantzig, G . and A. Mandansky (1961): On the solution of two-state linear programs
under uncertainty. Proc. Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Vol. 1 Univ. California Press, Berkeley, 165-176.
Ermoliev, Yu. and R. J-B Wets (eds) (1988): Numerical Techniques for Stochastic
Optimization Problems. Forthcoming, Springer-Verlag, Heidelberg.

Wets, R. (1983): Stochastic programming: solution techniques and approximation
schemes. In: A. Bachem, M. Groetschel and B. Korte, eds., Mathematical Program-
ming: The State-of-the-Art, Springer-Verlag, Berlin, 566-603.

Ermoliev, Yu. (1976): Methods of stochastic programming (in Russian). Nauka,
Moskva.
Kall, P . (1979): Computational methods for solving two-stage stochastic linear pro-
grams. 2. Angew.-Math. Phys. 30,261-271.

PrCkopa, A. (1987): Numerical solution of probabilistic constrained programming
problems. In: Ermoliev, Yu. and R. Wets eds. Numerical techniques for stochastic
optimization problems. Springer, Berlin.

Ermoliev, Yu.M. 1983: Stochastic Quasi-Gradient Methods and their Applications t o
Systems Optimization. Stochastics, No. 4.
Robbins, H. and S. Monro (1951): Stochastic Approximation Methods. Ann. Math.
Statist. , 22,400-407.
Ermoliev, Yu. M., G . Leonardi and J. Vira (1981): The Stochastic Quasi-Gradient
Methods Applied t o a Facility Location Model. Working Paper WP-81-14, Laxen-
burg, Austria, International Institutte for Applied Systems Analysis.

Gaivoronski, A. (1987): Stochastic quasigradient methods and their implementation.
In: Ermoliev, Yu. and R. Wets eds. Numerical techniques for stochastic optimization
problems. Springer, Heidelberg.

Gupal, A.M. (1979): Stochastic Methods for Solving Non-Smooth Extremal Prob-
lems. Naukova Dumka, Kiev (in Russian).

Urjas'ev, S.P. (1986): Stochastic Quasi-Gradient Algorithms with Adaptively Con-
trolled Parameters. Working Paper WP-86-32 IIASA, Laxenburg, Austria.

Ruszczynski, A. and W. Syski (1986): A method of aggregate stochastic subgradients
with on-line stepsize rules for convex stochastic programming problems. Mathemati-
cal Programming Study 28, 113-131.

Marti, K. and E. Fuchs (1986): Computation of descent directions and efficient
points in stochastic optimization problems. Mathematical Programming Study 28,
132-156.

Pflug, G . (1983): On the determination of stepsize in stochastic quasigradient
methods. Collaborative Paper CP-83-25, IIASA, Laxenburg, Austria.

Kushner, H. and D. Clark (1978): Stochastic approzimation methods for constrained
and unconstrained systems. Springer-Verlag, New York.

DupaEovi, J . , A. Gaivoronski, Z. Kos and T . Szbntai (1986): Stochastic Program-
ming in Water Resources System Planning: A Case Study and A Comparison of
Solution Techniques. Working Paper WP-86-40, IIASA, Laxenburg, Austria.

Rockafellar, R.T. and R. J-B Wets (1986): A Lagrangain finite generation technique
for solving linear quadratic problems in stochastic programming. Mathematical Pro-
gramming Study 28,63-93.
Birge, J . and R. J-B Wets (1986): Designing approximation schemes for stochastic
optimization problems, in particular for stochastic programs with recourse.
Mathematical Programming Study 27, 54-102.

Nazareth, J . and R. Wets (1986): Algorithms for stochastic programs: the case of
nonstochastic tender. Mathematical Programming Study 28, 1-28.

Robinson, S.M. (1987): Bundle-Based Decomposition: Conditions for Convergence.
Working Paper WP-87-80, IIASA, Laxenburg, Austria.

