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Foreword 

In the interdisciplinary and intercultural systems analysis that  constitutes the main 
theme of research in IIASA, a basic question is how to  analyze and support decisions with 
help of mathematical models and logical procedures. This question - particularly in its 
multi-criteria and multi-cultural dimensions - has been investigated in System and Deci- 
sion Sciences Program (SDS) since the beginning of IIASA. Researches working both a t  
IIASA and in a large international network of cooperating institutions contributed to  a 
deeper understanding of this question. 

Around 1980, the concept of reference point multiobjective optimization was 
developed in SDS. This concept determined an international trend of research pursued in 
many countries cooperating with IIASA as well as in many research programs a t  IIASA - 
such as energy, agricultural, environmental research. SDS organized since this time 
numerous international workshops, summer schools, seminar days and cooperative 
research agreements in the field of decision analysis and support. By this international 
and interdisciplinary cooperation, the concept of reference point multiobjective optimiza- 
tion has matured and was generalized into a framework of aspiration based decision 
analysis and support that  can be understood as a synthesis of several known, antithetical 
approaches to  this subject - such as utility maximization approach, or satisficing a p  
proach, or goal - program - oriented planning approach. Jointly, the name of 
quasisatisficing approach can be also used, since the concept of aspirations comes from the 
satisficing approach. Both authors of the Working Paper contributed actively to this 
research: Andrzej Wierzbicki originated the concept of reference point multiobjective o p  
timization and quasisatisficing approach, while Andrzej Lewandowski, working from the 
beginning in the numerous applications and extensions of this concept, has had the main 
contribution t o  its generalization into the framework of aspiration based decision analysis 
and support systems. 

This paper constitutes a draft of the first part of a book being prepared by these two 
authors. Par t  I, devoted to  theoretical foundations and methodological background, writ- 
ten mostly by Andrzej Wierzbicki, will be followed by Par t  11, devoted to  computer im- 
plementations and applications of decision support systems based on mathematical pro- 
gramming models, written mostly by Andrzej Lewandowski. Par t  111, devoted to  decision 
support systems for the case of subjective evaluations of discrete decision alternatives, 
will be written by both authors. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program. 
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1.1 What is multiobjective analysis? 

Various methods for multiobjective optimization and decision making that have 
been developed since the work of Pareto (1896) have been summarized in many books; 
see, for instance, Luce and Raiffa (1957)) Fandel (1972)) Bell, Keeney and Raiffa (1977), 
Hwang and Masud (1979)) Peschel (1980)) Rietveld (1980)) Spronk (1981)) Dinkelbach 
(1982), Zeleny (1982)) Sawaragi, Nakayama and Tanino (1985). In general terms, these 
methods deal with the situation where one or more persons must generate and choose 
between various alternatives that cannot be evaluated on the basis of a single aspect, an 
attribute or a scalar performance measure (a  "single-objective") alone. Instead, the 
evaluation must involve a number of aspects, of attributes, or of performance characteris- 
tics ("multiple objectives") which are often not commensurable. 

Such situations often arise when technological, economic, social or political decisions 
are made, and are usually resolved either by intuition, or by the collective processes of 
choice that have grown up throughout human history. Thus there is nothing new in mul- 
tiobjective decision making - people have been doing it for thousands of years. However, 
this term has recently taken on a new and much more specific meaning with the applica- 
tions of mathematical methods to the problem. These methods are generally designed to 
clarify the decision making situation and to generate useful alternatives; sometimes they 
involve considerable use of computers and computerized models. However, in none of 
these methods can a single practical decision be made without the involvement and 
approval of people - and the authors hope that this will never happen, except in the most 
routine of situations. To  call this group of methods "multiobjective decision making" 
without further qualification is therefore semantically misleading; we should perhaps 
rather refer to it as multiobjective analysis. 

Researchers concentrating on the mathematical part of the multiobjective analysis 
prefer to speak of multiobjective optimization. However, this would limit the field of 
study to a particular area of mathematics, while the motivation and importance of mul- 
tiobjective analysis come not from mathematics but rather from applied problems. Thus, 
for methodological clarity, we should consider multiobjective analysis as a part of the 
multidisciplinary applied science called applied systems analysis. 

Some readers might object to the definition of "applied systems analysis" as a "mul- 
tidisciplinary applied science". For example, Rietveld (1980) defines systems theory more 
traditionally as a new science concerned with the functioning of systems in general, and 
the word system itself has a very old meaning as a description of a set of elements and the 
relationships between them. However this definition is too broad: on this basis Ptolemy, 
Copernicus and Bohr were systems analysts, since the first two investigated the solar sys- 
tem, while the third studied the atomic system. The new factor in contemporary systems 
analysis is the realization that certain methodological principles and mathematical tools 
can be applied to systems in a multidisciplinary fashion. 

Contemporary systems analysis also lays great importance on the applied or empiri- 
cal aspects of research. Mathematical systems theory is a new and still developing branch 
of applied mathematics which includes the theory of dynamical systems, optimization 
theory, some aspects of economic equilibrium theory, game theory and multiobjective 
decision theory. Though the initial practical motivation (for example, mechanics, elec- 
tronics, economics) underlying any part of mathematical systems theory is responsible for 
the basic concepts, the theory still remains a branch of applied mathematics, where the 
fundamental questions are those of syntactical correctness and completeness of mathemat- 
ical language; questions of semantic importance are considered valid only in the sense of 



motivation. This interpretation of mathematics as a language in which empirical state- 
ments can be formulated and transformed, but never validated in the empirical sense is 
quite clear in the modern philosophy of science. Thus, it is the applied nature of systems 
analysis that  holds the real meaning, for all the beauty of the mathematical language that  
we can use to describe it. 

An empirical scientific statement is one that  purports to  explain some observations 
made in the real world and admits an empirical falsification test. In pure sciences, such 
statements may not have any immediate uses, a t  l e d  none that  can be easily perceived. 
By contrast, applied sciences concentrate on producing empirical statements of perceived 
direct usefulness, though these might be limited in their precision and validity. Some 
researchers distinguish between science and technology on the understanding that  science 
is interested in the universal questions of general validity, while technology considers 
questions of an  approximate, "good enough", "mostly", "can do" character see, e.g., Rose 
(1982). On this basis, systems analysis is a multidisciplinary methodology for technologi- 
cal thought. However, this understanding of technology is peculiar to  the English lan- 
guage; more modern usage and most other languages prefer the broader term of applied 
sciences. When using this phrase, however, we must avoid narrow interpretations in 
terms of utilitarian science. This can be illustrated by the classical anecdote about three 
people who, not knowing any thing about electricity, observed that  amber sometimes 
attracts pieces of paper. One of them, a utilitarian scientist, concluded that  this amusing 
fact could have no possible uses. Another one, a technologist, started to  produce toys 
based on this observation. Finally, the third individual, a motivated basic scientist, 
decided to  study the phenomenon, with the result that  he discovered electricity and all its 
potential applications. 

T o  summarize these initial remarks, we can state that  multiobjective analysis is a 
part of a multidisciplinary applied science called systems analysis, and is concerned with 
situations in which complex decisions involving many objectives must be made. Its pur- 
pose is to  clarify the problem by constructing prototypes of decision situations, using cer- 
tain fundamental concepts based on empirical observations. After the prototype situations 
and related concepts have been chosen, they are described in mathematical language, and 
mathematical tools can then be used to suggest how these situations should be handled. 
While the development of mathematical methods for multiobjective analysis is an  impor- 
tant  element of this scientific discipline, it is even more important that  any statement in 
the multiobjective analysis should be validated by repeated empirical falsification tests. 
Since we consider multiobjective analysis to  be an empirical scientific discipline, we must 
choose mathematical tools and language that ,  while syntactically correct, yield state- 
ments that  are both empirically testable and semantically valid. If we develop decision 
analysis methods, we cannot stop a t  mathematical idealizations, we must test our 
assumptions and methods on applications. 

1.2 W h y  Interactive Decision Analyeie? 

The progress in integrated circuits and computer technology over the last forty years 
has prepared ground for a new era; parallel processing, fifth generation computer princi- 
ples, user-friendly software and large scale production of microcomputers open almost 
unbounded opportunities for applications in information (data and knowledge) processing, 
research and development, automatization and robotization of technological, administra- 
tive, engineering design processes. However, it will take some decades to  take the full 
advantage of this new technology: new generations must assimilate the new computerized 
culture, learn to  use and live with computers, adjust to  the requirements of an era of 
advanced information processing in the professional and private life. The use of computers 
is no longer just a professional speciality; especially microcomputing is pervading our 



social structure - see, e.g., Hazan (1984). Researchers, designers, and educators have 
unprecedented opportunities - and responsibilities - in helping this technology to meet its 
potential. 

A broad class of computer applications is concerned with decision, policy and stra- 
tegy analysis. Computerized mathematical models of various aspects of human activity 
have long been used for these purposes. However, the principles behind computerized deci- 
sion analysis and support are by no means universally agreed upon, and there are many 
different schools of thought about how computers should be used. Some support the para- 
digm of predictive models, which give unique answers but with limited accuracy or vali- 
dity; some weaken this paradigm by scenario analysis. Some believe in normative models 
that  prescribe how things should happen (based on some theory), and reinforce this by 
exploiting the tools of mathematical optimization and game theory. Others criticize this 
approach for its lack of realism and put forward instead the idea of descriptive, behavioral 
modeling; this criticism is often directed without discrimination a t  both the normative 
methodological assumptions and the mathematical tools. Some instinctively dislike any 
models that  imply hierarchical organizations; others take hierarchy in organizations for 
granted and develop methods and tools for handling hierarchical models. 

There are even various schools and approaches with regard t o  mathematical tools: 
some prefer static models, while others claim that  without accounting for dynamic effects 
any decision analysis is doomed t o  failure; the different mathematical descriptions of 
dynamic processes (e.g., difference equations, ordinary or partial differential equations, 
equations with delay, differential inclusions, integral equations) all have their adherence. 
The proponents of linear versus nonlinear models, differentiability versus 
nondifferentiability, and various methods of handling uncertainty also create diversity. 
Some prefer t o  handle uncertainty using statistical models, some using deterministic 
models with scenarios and interval analysis, other broader probabilistic and stochastic 
approaches, others adaptive and learning procedures, while yet others argue for the use of 
fuzzy sets. 

The authors of this book believe that  a diversity of mathematical tools is necessary, 
and we should develop many of them. However, mathematical models and methods 
should play the role of decision support only; even if we could construct very precise 
models of reality, they will never incorporate all human concerns. Thus, an essential part 
of decision analysis are issues of interaction between a human decision maker and compu- 
terized models and decision support systems; and this interaction must be dynamic, in 
several senses. One sense is tha t  human decision makers typically learn when using a deci- 
sion support system, and we cannot assume that  a decision maker comes to  the system 
with fixed preferences. Another sense is that  dynamic models are of particular importance 
in any long-term or strategic planning; most applications in this book belong t o  such 
category. With all these divisions, increasing numbers of mathematical modellers and 
systems analysts have come to  the conclusion that  mathematical models for decision or 
policy analysis must be built and used interactively, that  is involving the users a t  all 
stages of the process. Again, there are various interpretation of what is meant by interac- 
tion. Some understand it t o  mean simply some way of improving communication between 
a user and a computerized model. Others stress the educational, learning and adaptive 
aspects of computerized simulation, experimenting with models, computerized simulated 
gaming, and procedures for organizing interaction between groups of experts, users and 
decision makers. Others understand interaction as a tool in decision making, and combine 
multiobjective optimization with normative decision theory t o  construct an interactive 
decision support system. Other try t o  broaden the principles of interaction while preserv- 
ing some mathematical rigour and exploiting a wide range of existing mathematical tools. 
Such a heterogeneity of approaches is not only an  inevitable, but also a desirable conse- 
quence of the turbulent history of computer modeling. However, new directions can often 
be found by trying to  bridge the gaps between existing approaches. 



In this book, we try to  present various aspects of interactive use of models in deci- 
sion analysis. However, we do  prefer a particular view on the role of interactive decision 
analysis: we see it mostly as a tool for learning about various aspects of a novel decision 
problem rather as a tool of selecting one optimal decision. 

Our preference is supported by recent studies on the differences in the style of deci- 
sion making between novices and experts - Dreyfus (1984). A true expert or master in a 
given field does not make his decisions analytically: he evaluates entire relevant informa- 
tion by "Gestalt" and arrives intuitively a t  the decision, in contrast to  novices who have 
to  order available information into analytical categories before painfully reaching a deci- 
sion. First when an expert faces a novel aspect in a decision situation, he starts  to  deli- 
berate: but even then he does not come back to  an  analytical decomposition of the prob- 
lem, but attempts to  find a new intuition by examining new angles and approaches. Thus 
interactive decision analysis - used either in teaching novices to  become experts, or h e l p  
ing experts to  perceive new aspects of a novel decision situation - should not concentrate 
solely on providing an analytical framework for ordering available information and reach- 
ing an optimal decision; it should much rather help in learning about various aspects of 
the decision situation, in forming an intuitive understanding that  results in the decision. 
This decision must be made by the human decision maker that  is responsible for i t ,  not by 
the computerized system. In this sense, we tend to believe in computerized, interactive 
decision analysis and support, much rather than in computerized (even if interactive) 
decision making. 

1.3 About this book 

This book presents a methodology of interactive decision support developed mostly 
by its authors, but with invaluable help of many friends and co-workers during several 
years of research in the International Institute for Applied Systems Analysis in Laxen- 
burg, Austria. Research on decision analysis problems originated in this Institute under 
its first Director, Howard Raiffa; subsequent Directors, Roger Levien, Crawford Holling 
and Thomas Lee gave unceasing encouragement and support to the research on decision 
analysis, its theory, methodology, software tools, decision support systems and their 
applications. An important step in the development of methodology of decision support a t  
IIASA was the concept of reference-point or reference-trajectory multiobjective optimiza- 
tion introduced around 1980 - see Wierzbicki (1979, 1980) and Kallio a t  all. (1980). Later, 
many other authors both in IIASA and in independent research institutions - see, e.q. 
Korhonen (1985) - further extended and developed this basic idea. 

The concept of reference-point optimization determined an international trend of 
research pursued in many countries cooperating with IIASA as well as in many research 
programs a t  IIASA - such as energy, agricultural, environmental research. By this inter- 
national and interdisciplinary operation, the concept of reference-point multiobjective 
optimization has matured and was generalized into a framework of aspiration-based deci- 
sion analysis and support that  can be understood as a synthesis of several known, 
antithetical approaches t o  this subject - such as utility maximization approach, or 
satisficing approach or goal- and program-oriented planning approach. Jointly, the name 
of quasi-satisficing approach can be also used, since the concept of aspirations comes from 
the satisficing approach, but is augmented by reference point optimization. 

This lead to  the creation of a family of aspiration based decision support systems in 
IIASA as well as in cooperating institutions in Poland, Bulgaria and other NMO coun- 
tries. Directly involved in this process were, besides the authors, Markku Kallio and Wil- 
liam Orchard-Hays, later Manfred Grauer who contributed significantly to  many ideas in 
this book, a t  IIASA, then Tomasz Kreglewski, Tadeusz Rogowski, Marek Makowski, 



Janusz Sosnowski, Janusz Majchrzak, Grzegorz Dobrowolski, Henryk Gorecki, Jerzy 
Kopytowski, Tomasz Rys, Maciej Zebrowski and many other researchers from various 
Polish research institutions, Manfred Peschel from the GDR, then Leo Schrattenholzer, 
Manfred Strubegger, Sabine Messner, Stephan Kaden, Sergei Orlowski, Erno Zalai and 
many other co-workers and friends a t  IIASA. Most of the development of this methodol- 
ogy was hosted by the System and Decision Sciences Program a t  ILASA, first under the 
leadership of Andrzej Wierzbicki, then of Alexander Kurzhanski who gave us support and 
encouragement to  finalize this book. 

Aspiration based decision support systems, in various stages of experimental 
development, were transferred to  over 50 collaborating research institutions in many 
countries of the  world and tested on a variety of substantive examples in many applied 
areas of systems analysis. The authors of this book and their friends have written 
numerous papers and gave many presentations on international conferences on the subject 
of this development; finally, we felt that  it is the highest time t o  summarize these experi- 
ences in a book form. 

We believe tha t  the main advantage of this book is a broad and synthetical outlook 
obtained from an extensive East-West collaboration on comparing various approaches or 
even cultures of interactive decision analysis. This was possible because IIASA supported, 
over many years, several conferences and workshops in this field, such as in the recent 
four years: 
- the Task Force Meeting on Multiobjective and Stochastic Optimization in 1981 a t  

IIASA in Laxenburg, Austria, 
- the International Workshop on Interactive Decision Analysis in 1983 a t  IIASA also 

in Laxenburg, Austria and 
- the International Summer Study on Plural Rationality and Interactive Decision 

Processes in 1984 in Sopron, Hungary, 
- the International Workshop on Large-Scale Modelling and Interactive Decisions in 

1985, Wartburg, Eisenach, G.D.R. 
- the Seventh International Conference on Multiple Criteria Decision Making, held in 

Kyoto, Japan in 1986, 
- the International Workshop on Methodology and Software for Interactive Decision 

Support in 1987 in Albena, Bulgaria, 
- a sequence of task force meetings New Advances in Decision Support Systems held 

either in IIASA or in cooperating countries during 1986 and 1987. 

The monograph is divided into three parts. The first part which constitutes the con- 
tent of this Working Paper was written mostly by Andrzej Wierzbicki. The second part 
relating to  the implementation issues of DIDAS family and several applications and the 
third part relating t o  the issues of group decision support systems are now being written 
by Andrzej Lewandowski. The second and third part will be published as separate Work- 
ing Papers. 

In the second chapter we classify basic decision situations. The centralized single- 
actor situation is considered first, with a discussion of its main concepts: the decision 
maker, the supporting team of analysts and the "substantive knowlegde" or mathematical 
model of the problem. Next the situation with centralized decisions and multiple actors is 
analyzed in terms of hierarchy versus consensus. The role of expert advice is also 
presented in this context. The autonomous multiple-actor situation is then described 
against a background of game-theory, gaming and conflict resolution. The impact of 
diverging perceptions on conflict is analyzed. This chapter concludes with a discussion of 
the the issues of uncertainty and dynamic planning. 

The third chapter presents major theoretical frameworks for rational decision mak- 
ing. It s tar ts  with the concept of utility maximization, describing its origins, and 



discussing the main developments and techniques, experience and criticisms associated 
with this framework. The origins and concepts of aspiration formation and satisficing 
behavior are then discussed and the main developments in satisficing decision making are 
described. Further, the origins and concepts of hierarchical rational decision making, so 
called "goal-and-program-oriented planning" are analyzed. Finally, a synthesis of these 
three frameworks that assumes a broader type of behavior of the decision maker, called 
quasisatisficing behavior, is conceptually presented. 

The fourth chapter presents mathematical foundations for quasisatisficing behavior 
and reference point optimization. It starts with the issue of completeness and construc- 
tiveness of characterizations of efficient solutions; leading to an almost complete and con- 
structive characterization by maximization of order-consistent scalarizing achievement 
functions. Various types of such functions are then discussed in detail, together with func- 
t ional~ needed for multiobjective dynamic trajectory optimization. Basic concepts of 
organization and phases of decision support based on the quasisatisficing framework are 
then discussed. This section ends with an analysis of convergence issues in quasisatisficing 
interactive processes, including the aspects of learning and adaptation of preferences by 
the decision maker. 



2. BASIC TYPES OF DECISION SITUATION AND OTWER ISSUES 

2.1 Centralized Single-Actor Situations 

Most of the work in multiobjective analysis is based on the prototype decision situa- 
tion illustrated in Figure 2.la. Thia involves a "decieion maker" (a single person who haa 
the authority and experience to  take the actual decision); an  "analyst" or team of analysts 
responsible for the analysis of the decision situation; and a "substantive model of the 
problem" that  is supposed t o  represent all the pertinent knowledge tha t  the analyst(s) can 
muster. It should be emphasized that  the term "model" is used here in a very broad 
sense. It is not necessarily a computerized mathematical model; it may just be a collection 
of relevant knowledge, da ta  and hypotheses. But this is still a model, not reality, and 
this fact should be stressed very strongly when examining the methodological implications 
of the basic prototype. The model is based on the analyst's perception of the decision 
problem, and this perception may be wrong, or inconsistent with that  of the decision 
maker. Thus, the model should be validated before use. However, before this the model 
must first be built. 

Figure 2.la. A simple prototype decision situation. 

Decision maker 

The methodology of model building is itself a separate subject in systems analysis, 
with its own extensive literature - see, for example, W ierzbicki (1977) and Lewandowski 
(1982). Here we shall list only a few general principles. 

, 

1. The ultimate purpose of the model should be the most important consideration in 
model building; the model should also be the simplest possible that  serves the purpose. 
One of the most important tasks of model building is t o  identify the relevant information, 
hypotheses, etc. 

2. Models should be built in an iterative fashion, a t  each iteration developing and 
executing falsification tests examining internal consistency, consistency with other infor- 
mation, consistency with available empirical data,  and consistency with new data  

/ \ 
/ \ 
I ' \ 
I Analyst (5) \ 
I A \ 
I I 

b 

Substantive modal OF the problem 



gathered specifically for falsification purposes. 

3. Models should be built interactively, involving not only analysts but also decision 
makers, so that  the decision maker's perceptions of the problem, of the relevant data,  and 
of the model validity can be taken into account. 

Unfortunately, these principles are not observed in many system-analytic studies, 
with multiobjective analysis being one of the worst offenders. A possible reason for this is 
that  multiobjective analysis is often influenced by economic traditions and i t  is known 
that  the methodological principles of empirical science are sometimes not followed in 
economic studies (see, for example, a recent critical essay by Leontief, 1982). However, 
important as the subject is, there is no place here for a detailed discussion of model build- 
ing. We must assume that  the substantive model of the problem has already been built 
and validated, and concentrate on the second stage: the use of the model t o  clarify the 
decision situation. 

b 

Decision maker \ 

/ \ 

/ \ 

1 k n i o r  analyst 
\ 

I f \ \ 
1 \ \ ,'/ \ \ 

I /  
f 

I I Team of analysts 
I 1  ; 

I I 
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Figure 2.lb. A prototype decision in situation with a hierarchy of analysts. 

Before we do  this, however, it should be noted that  the prototype situation shown in 
in Figure 2 . l a  is usually oversimplified. Much more common is the situation shown in Fig- 
ure 2. lb,  where there is an additional link, a senior analyst responsible for explaining the 
situation to  the decision maker. In other cases individual experts may be involved in 
evaluating the alternatives proposed by the analysts, as in Figure 2 . 1 ~ .  The elements of 
these nontrivial variants of the first prototype can also be combined in other ways. In 
addition, the "decision maker" from Figure 2. la could actually be a "senior analyst" or 
"expert" or "politician". These distinctions apply mostly t o  complex, non-repetitive deci- 
sion situations, often classified as strategic planning. In repetitive decision situations of 
operational planning, the prototype decision structure can often be simplified and involves 
only the problem and the decision maker. However, the main feature of all these 



prototypes is that  decision making is actually centralized, and that  one decision-maker 
(the single actor) is responsible for the decision. 

Figure 2 .lc A prototype decision situation with a group of experts. 

, 

Now, it is the duty of the team of analysts not only to  clarify the substantive aspects 
of the decision situation, but also to  formulate proposals taking into account the institu- 
tional aspects of this situation i.e., the characteristics of the political process that  will 
lead to  the actual decision. This principle is not generally followed in contemporary 
multi-objective analysis, where attention is concentrated primarily on the prototype 
situation from Figure 2.la. However, there are some notable exceptions. 

One of the most common aspects of political processes is that  neither the decision 
maker nor even the experts have much time to  study the very detailed reports prepared 
by the analysts. Even if this is not the case, the decision-making process is usually split 
into two phases. The first phase is usually performed by the team of analysts with some 
possible interaction from the decision maker, and involves the generation of a small 
number of alternatives. The second phase is the responsibility of the decision maker (pos- 
sibly with the help of experts and senior analysts) and concerns the choice between alter- 
natives. Both phases have characteristic features. 

Clearly, the stronger the interaction with the decision maker in the first phase, the 
easier is the second phase. However, in many situations the substantive model is not 
sufficiently formalized to  allow easy interaction. A team of analysts can sometimes have 
no option but to  generate (more or less intuitively) a number of alternatives that  seem 
professionally sound, and submit them to  the decision maker. 

On the other hand, if the substantive model can be formulated in mathematical 
terms and computerized, and if the decision maker or experts or even the senior analyst 
can work interactively with the model to  generate alternatives, the chances that  the 
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alternatives will be satisfactory are greatly improved. In such a case, it is important to 
computerize not only the substantive model, but also an interactive decision support sys- 
tem to help the user work with the substantive model (see Figure 2.ld). It is important to 
have a clear understanding of the role of interactive decision support systems in this 
situation. Firstly, they stimulate the work of the team of analysts in Figure 2.lb, gen- 
erating alternatives in response to the requirements of the senior analyst. A model user, 
although supported by the system, must either have some general analytical knowledge 
about the problem, or work with an analyst who helps him to interact with the model. 
Thus, Figure 2.ld represents a situation functionally similar to that illustrated in the 
lower part of Figure 2.lb. Secondly, the interactive decision support system enables the 
user to learn about possible alternatives, and assists him in choosing a set of alternatives 
for the next stage of the decision process. This second phase, choice between alternatives, 
can be very rarely suppressed by making the decision via interaction with the model. 
With these qualifications, however, interactive decision support systems are much more 
effective than analysts trying to prepare alternatives for the decision maker without his 
participation. 

User 
(decision maker,e*pert,wrrlyst) 

t 
Decision support system ------------__-- 

(with substantive model of tho problem: 

Figure 2.ld. A prototype decision situation with a decision support system. 

Thus, the decision maker should be involved in the generation of alternatives; con- 
versely, analysts should be involved in the decision making process. If the actual choice of 
a decision is made by a single toplevel expert intuitively, the analyst should try to under- 
stand what aspects of the problem are influencing the intuition of the decision maker and 
how to help him to understand these aspects more profoundly. If the actual choice is a 
result of a political process, this does not make it irrational; the analyst should try to 
understand the rationality of this process and help to choose a decision following this 
rationality. We should perhaps stress that we do not limit "rationality" to its traditional 
normative or economic meaning; political processes have their own (mostly procedural) 
rationality, which arises from experience in making political and social decisions. The 
best example of procedural rationality is given by the procedures of evidence in courts of 
law and, more generally, by the rationality of law: this is built on long experience with 
methods of handling controversial evidence and social disputes. An analyst who under- 
stands the rationality of the underlying processes is in a better position to represent the 
substantive aspects of the problem. 

Although there are several methods of multiobjective analysis that can help the 
analyst to clarify differences of opinion between experts (Keeney and Raiffa, 1976), or 
even to obtain consensus between decision makers (Rietveld, 1980), most of these 



methods are based on classical notions of normative or maximizing (Debreu, 1959) 
economic rationality. A study of procedural rationality and its possible applications in 
multiobjective decision making would be an important complement to existing methods 
for multiobjective analysis. However, these comments become truly relevant when we 
address the second basic type of decision situation, the centralized multiple-actor situa- 
tion. 

2.2 Centralized multiple-ac tor situation 

In many practical situations, a decision is made by some form of a committee. If 
either the nature of the decision (for example, how to divide a joint budget) or the com- 
mittee charter (for example, calling for a centralized plan of a transportation system 
development) prohibit the division and implementation of autonomous decisions by com- 
mittee members, we still address a centralized decision situation. In an oversimplified 
way, we could treat the committee as a single body (see Figure 2.2a) and demand just 
that the decision support system should serve them jointly. 
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Figure a.aa A prototype decision situation with a committee of decision makers. 

Typically, however, committees are established to represent diverse constituencies: 
various research groups in a research institute, professors and students a t  a faculty, vari- 
ous ministries a t  the national planning level. If the interests represented by committee 
members are strongly antagonistic, one could imagine a situation where each of them has 
his own group of advisers - or experts and analysts, his own substantive model of the 
problem and his own decision support system (see Figure 2.2b). 

Thus, each of the principal actors of this situation - each committee member, 
representing its own constituency - could select a decision which he thinks would be best 
for his constituency, and propose the decision as his preferred alternative to  the commit- 
tee. If each of the committee members sticks to his alternative, the committee would not 
get anywhere. In order to  get the committee's job done, the chairman of the committee 
would ask for arguments, learn about the concerns of each constituency, and ask his own 
advisors to extend their substantive model of the situation to include these diverse con- 
cerns. At this moment, it becomes rational for each committee member to ask  his advisers 
for a close cooperation with the chairman advisers - otherwise their concerns might not be 
correctly represented in the overall model or summary of substantive knowledge. 
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Figure a.ab A committee decision situation with disjoint decision support. 

Arguments would develop not about the interests and concerns, but, much more construc- 
tively, about an adequate representation of them in the overall model. 

Thus, a decision situation when a centralized decision must be taken with no possi- 
bility of division, leads necessarily t o  information sharing between committee members 
and between advisory groups. This does not necessarily mean that  the information 
exchanged would not be distorted, biased in favor of any of the constituencies, which 
leads to  the question of incentive compatibility in information exchange: how t o  organize 
procedures for information exchange that  motivate truthful reporting. However, this 
question has been until now analyzed only in a very simple, single-objective decision 
situation; generally, we have to  assume that  sufficient means of cross-checking the infor- 
mation exchanged are available. Under this assumption, an overall substantive model 
including all pertinent aspects of the decision situation can be built. This leads t o  the 
situation depicted in Figure 2.2c, where all committee members have agreed upon the use 
of a joint substantive model, but they preserved their independent advisory groups, or an 
independent use of a joint decision support system. 

Using such a support system, each committee member would still select an alterna- 
tive decision that  is preferable for his own constituency; but he knows now the concerns of 
other members and can see how much they would lose under his preferred decision. This 
constitutes a starting point for various negotiations, forming coalitions, proposing reason- 
able compromises. There are, in fact, many possible procedures for organizing such 
processes of consensus seeking or finding an acceptable compromise; some of them might 
also be supported by a computerized decision analysis system. 



Figure 2 . 2 ~ .  A committee decision situation with joint decision support. 
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2.3 Autonomous multiple-actor situations 

I, 

Decisions are often made by independent actors (or "players") who, bearing in mind 
the fact that  the behavior of other actors might influence the final outcome, must choose 
whether to act independently or to  agree on joint action with others. Typical examples 
are two nations negotiating trade agreements or two regional authorities, one dealing 
with ecological protection, the other with industrial development. 

b 

This situation is typically represented by the prototype in Figure 2.3a. However, 
although this prototype has been studied in considerable depth by game theory - see for 
example, Aubin (1979), Germeer (1979), Young et  al (1981) - i t  is not a good representa- 
tion of a typical decision situation since it assumes that  decisions are prepared, evaluated 
and implemented directly by the principal actors or decision makers. A much more realis- 
tic prototype is illustrated in Figure 2.3b. Here the decision analysis is performed by 
teams of analysts, possibly with senior analysts serving as links between the teams and 
the principal actors. 

The situations in Figures 2.3a and 2.3b may be greatly complicated by antagonism 
between the actors. Actors and analysts who have common goals or share a cultural 
background (whether it be political, disciplinary or whatever) can agree relatively quickly 
on some common model of the problem. They would share their substantive knowledge of 
the problem, information about the political aspects or even about their real goals. This, 
however, does not apply to  truly antagonistic situations. The strategic aspect of informa- 
tion is the most important difference between the single-actor situation in which all infor- 
mation is assumed to  be shared, and multiple-actor situations in which any information 
(and, in particular, information about the importance of goals) given to  other actors 
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Figure 2.3a. A prototype gamelike decision situation. 
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Figure 2.3b. A gamelike decision situation with decision support by a joint model. 
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might change the outcome of the decision process. This is illustrated by Figure 2.3c, 
where another aspect of the situation - that  of correctness of own problem perception and 
uncertainty about perceptions of others - becomes also apparent. The autonomous 
multiple-actor situation is complicated by the fact that  there is no compelling reason - 
except for some common interests - for the actors to  act jointly, to  arrive a t  a decision 
acceptable for all; they can act independently, and their positions in a possible conflict 
might be affected by information exchange. 
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In highly antagonistic situations, it is possible that the teams of analysts cannot 
agree on a joint model of the substantive aspects of the problem, or do not want to  
exchange substantive information because even this might be too revealing. If a joint 
decision analysis is necessary in a situation where the actors come from completely 
different cultural backgrounds (not necessarily from different countries; i t  can be observed 
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Figure 2.3~. A gamelike decision situation with decision support and disjoint models. 

that  even economists from different political backgrounds understand each other better 
than, say, an economist and a lawyer from the same university), then a neutral mediator 
(see Figure 2.3d) has to  be employed, even to  assist in joint model building. Such media- 
tions might result in a model that  incorporates the models of all interested parties; how- 
ever, the various parties may or may not agree to the mediator transferring information 
about their models to  the other parties. Clearly, a mediator could theoretically be cor- 
rupted by some party; but if his prestige and other benefits depend on the negotiations 
being successful, he has a strong incentive to  remain natural - if his bias were detected 
then negotiations might be broken off. 

During joint decision analysis or actual negotiation, the role of a neutral mediator 
would be even more important. Empirical experience in negotiations (see, for example, 
Fisher and Ury (1981)) shows that ,  although the interested parties do not like to  disclose 
their real interests to  each other, a mediator often finds that  their interests are not as 
antagonistic as they suspect, and that  attractive compromises are possible. This empiri- 
cal evidence contradicts the usual perceptions of antagonists, who tend to believe the 
worst of their opponents and view negotiations as a zero-sum game in which they should 
take hard positions and have a definite, single objective mind. 

However, if life were really like this even the simplest negotiations over prices would 
almost always be unsuccessful. For, if both seller and buyer had the single objectives, say, 
of charging no less and laying no more than the market value, they could agree only on 
the current market price, without profit for either of them; there would be no reason for 
the general observation that  both the buyer and the seller conclude the bargaining with a 



Figure 2.3d. A gamelike decision situation with a mediator. 
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feeling of satisfaction. T o  explain this effect, it is necessary to assume that  both sides are 
working with more than one objective. The buyer might want a present for his wife, he 
might have taken a fancy to  the object in question, or he might be a collector who needs 
the object t o  complete his collection. The seller might not have had any customers that  
day, might have liquidity problems, or might want to  renew his stock. Thus, there is not 
a single price, but a range of prices a t  which both sides would conclude the bargaining, 
while the ritual of bargaining directs the price t o  this range by gradually disclosing the 
strength of interests on either side. 

It should be pointed out that  earlier analytical work on bargaining was concerned 
mostly with normative solutions to  actually single-objective problems (see Nash (1950), 
Kalai and Smorodinsky (1973)). Our analytical understanding of the multiobjective, mul- 
tiparty decision situation is as yet rather poor and has begun to  improve only recently - 
see Raiffa (1982). Much work has yet to  be done if we are to  describe such situations 
analytically. An attempt in this direction was given in Wierzbicki (1983a), where the 
principles of constructing a decision and mediation support system, indicated here in Fig- 
ure 2.3e1 are discussed; see also Grauer et a1 (1983). 
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2.4 Hierarchical multi-ac tor situations and other cases. 
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Although it has long been recognized that decisions are made within hierarchical 
structures, the prototype decision situations in which the hierarchy of decisions are inves- 
tigated have until now been influenced more by the syntactic possibilities of the language 
of mathematics than by their semantic relevance. Two prototypes have received particu- 
lar attention. The first assumes fully coordinated interests and single objectives, and is 
such that  an upper-level decision maker can influence and modify the (single) objectives of 
various Lower-level decision makers (see Figure 2.4a), thus maximizing his own objective; 
another interpretation is a competitive market where the actions of each actor can be 
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Figure 2.3e. A gamelike decision situation with a mediating role of a decision support system. 
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made independent once a correct coordinating price is established; however, the price can 
be established only by a hierarchically dominating market mechanism. 
The second prototype assumes shared information, noncoordinated interests and single 
objectives, and is such that  an  upper-level decision maker cannot influence the lower-level 
decision makers but is fully informed of their interests (single objectives); he can plan his 
moves to  maximize his objective assuming that the lower-level decision makers make their 
maximizing responses (see Figure 2.4b). 

The first prototype began with the Dantzig-Wolfe decomposition principle - see 
Dantzig and Wolfe (1960) - and was developed mostly by Findeisen et  al. (1980), the 
second began with the concept of Stackelberg equilibrium in game theory - see Stackel- 
berg (1938) - and was developed mostly by the Germeer school, see Germeer (1976); both 
have since been the subject of very considerable extensions and discussions. If we assume 
full coordination as in the first hierarchical prototype (the hierarchical optimization pro- 
totype), we must also describe the means by which the upper-level decision maker 
influences the choices and preferences of the lower-level decision makers; this is particu- 
larly difficult in multiobjective cases, see Seo and Sakawa (1980). It is questionable 
whether we could often adopt the assumptions of the second hierarchical prototype (the 
hierarchical game prototype) without modifications, since the assumption that  the 
higher-level decision maker has full information on the preferences of the lower-level, 
institutionally independent decision makers is not usually justified by empirical evidence. 
Much more research based on empirical falsification tests must be done before we can for- 
mulate prototypes for hierarchical decision situations that  are both realistic and 
mathematically tractable. 
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Figure 1.4a. A hierarchically coordinated decision situation with influencing local objectives. 
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2.5 The issue of uncertainty 
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The word "uncertainty" has actually many meanings. The outcome of any decision 
might be uncertain; but there is a world of difference between decisions that  might be 
many times repeated and thus averaged (either over time, or over a set of similar deci- 
sions) and a decision that  is made only once or only a few times in life. When playing a 
card game, buying a lottery ticket, or an insurance, we might consider statistical evidence 
and reasoning, but who would give us insurance against the effects of a nuclear war? In 
multi-actor decision situations, the uncertainty is compounded by the lack of information 
about the interests of other actors; in hierarchical situations, by the issues of information 
aggregation and authority delegation; in learning situations, by the changing preferences 
of the decision maker. 
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Yet there is a tendency in the classical decision analysis to  reduce all multiple 
aspects of uncertainty to  a probabilistic framework. Possibly, this tendency could be 
attributed to  an indiscriminate belief in mathematics (at  least, in statistics) as a semanti- 
cally valid description of reality. Once we accept, however, that mathematics is only a 
powerful tool of proving for syntactical correctness in our reasoning, we have to  address 
the question in which situations a probabilistic framework is also semantically adequate. 

The probabilistic framework is certainly adequate in all situations where we can give 
an empirical interpretation to  the mechanism of averaging - provided we are sure that  our 
assumptions about this mechanism and probability distributions of events are correctly 
specified. Thus, an individual might average the outcomes of a game for reasonable 
stakes or of minor financial decisions ("win some, lose some"); averaging the aggregated 
information about a large population has much broader applicability, and the information 
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Figure 2.4b. A hierarchical gamelike situation with full information on the upper level. 
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about probability distributions can be much more reliable in such cases. However, there 
are several traps even in situations with good empirical interpretation of averaging. The 
most elementary trap is the confusion of averaging over a set with averaging over time. It 
is obvious that a nationwide insurance company covering, say, losses due to floods, cannot 
base its statistics on even arbitrarily long records of data from some arid region of the 
country. However, in less obvious cases it is easy to fall into such a trap and assume the 
ergodicity hypothesis - that is, taking the average over time as an estimate of the average 
over a set - without questioning, while the hypothesis is valid only under rather stringent 
conditions on the properties of underlying stochastic processes. Another trap is to use 
probabilistic models without sufficient thought and data concerning probability distribu- 
tions: we then replace one unknown with another, more complicated unknown. It is easy 
to fall into this trap when working with subjective probabilities. A subjective estimate of 
probability is fully substantiated when we confront a problem with well understood pro- 
babilistic properties but without full information about probability distributions; say, a 
player of dice might not know at  the beginning of a game whether the dice is loaded, but 
he can take an enlightened guess after observing the course of the game - and he does not 
need full statistical data analysis, he can do it intuitively. However, speaking about sub- 
jective probability of a nuclear power plant accident is without meaning - if we do not 
specify very carefully what probabilistic components we estimate and how do we estimate 
them. This trap is particularly inviting if we erroneously assume that, once we evaluate 
subjectively the probability, we could also forget about a clear interpretation of what we 
are averaging. 
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If we consider the uncertainty of human preferences and learning processes, it is 
rather difficult to give a clear empirical interpretation of the averaging operation. There- 
fore, it is questionable whether the most adequate representation of uncertainty in human 
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preferences - as opposed to an uncertainty in a substantive model of reality - is the proba- 
bilistic framework. Some other frameworks, such as interval analysis, or  fuzzy set theory 
(which is based on the logic of fuzzy intersection of sets, not on averaging over them) can 
be more suitable for this purpose. 

2.6 The issue of dynamic planning 

In many decision situations - say, in policy analysis and planning - the issue of 
uncertainty is compounded by the fact that  all available information usually cannot be 
processed, must be aggregated, and even if it could, there are always gaps in information 
and knowledge. When building an aggregated model, the analyst has to  consciously 
neglect various factors that  he considers either to  be irrelevant or  not sufficiently under- 
stood to  be modelled. These neglected or unpredictable factors might be represented by a 
probabilistic model or  by interval characterization, but such representations are often 
inadequate. 

Before we can examine the effects of uncertainty on planning and policy analysis, we 
first have to consider what these terms actually mean. Most definitions of planning are in 
basic agreement (see, for example, Dror (1963)): "planning is the process of preparing a 
set of decisions for action in the future, directed a t  achieving goals by preferable means". 
Therefore, planning is in its essence concerned with process dynamics, with predicting 
future consequences of current and future actions. Substantive models for planning pur- 
poses must have dynamic character, that  is, describe the evolution of the state of affairs 
under the impact of decisions distributed in time, where the concept of state has a very 
good mathematical idealization in the dynamic systems theory: it corresponds to the set 
of initial conditions that  must be specified when running a dynamic model. Necessarily, 
the outcomes of planning when using dynamic models have the form of trajectories, that  
is, graphs over time of selected actions, of evolution of state or of other relevant out- 
comes. A basic question here is how we evaluate trajectories as outcomes? 

A classical approach t o  this question is conditioned by the mathematical technique 
of providing for scalar factors - often called performance indices - by computing a 
weighted average over time of one or several trajectories or of a function of momentary 
values of these trajectories. When applying this technique, any trajectory evaluation can 
be converted to an evaluation of a number of scalar factors, such as in the case of static 
decision analysis. However, the main difficulty with this approach is that  experts do  not 
evaluate trajectories this way and feel uncomfortable when presented with a set of aver- 
aged indices: they prefer to  be presented with full graphs of trajectories and thus, presum- 
ably, evaluate them by "Gestalt". Experiments with evaluation of outcomes of dynamic 
computer simulation indicate also that  experts sharpen their intuition by learning and 
forming aspiration trajectories, that  is, mental images of what good trajectories look like 
for a given case. This facilitates the evaluation by "Gestalt" since only the departures 
from the aspiration trajectories have t o  be accounted for. 

The issue of uncertainty in dynamic models for planning has many aspects. These 
are not only the questions of an adequate representation of uncertainty - in a probabilistic 
(or, more precisely in the dynamic case, stochastic) framework, or through interval 
analysis or fuzzy sets. The most important question here is how to represent the fact tha t ,  
in the future, we will observe additional data, gain additional information and might 
correct our planned actions. Should we plan while disregarding these future corrections or 
should we account for them in planning? Obviously, it would be better to  account for 
them, but this might be a very complicated task - and there are situations in which a 
separation principle applies, that  is, we cannot do any better than planning for an ideal 



course of affairs without accounting for future corrections and then considering a correc- 
tion mechanism separately. 

On the other hand, such a separation principle does not apply if we can learn in the 
future some truly new facts - for example, change substantially some nonlinear charac- 
teristics in our dynamic model. In such cases, we must plan while accounting for future 
corrections. There are many possible mechanisms of such corrections, depending on the 
mathematical framework used to  account for uncertainty. In stochastic optimization -see 
Ermoliev and Wets (1984) - there is the concept of optimization with recourse; more gen- 
erally, we could utilize the concept of optimal feedback control for stochastic process. 
However, the stochastic framework requires rather detailed information about probability 
distributions of stochastic processes - which, together with computational complexity, 
accounts for formidable difficulties when applying stochastic optimization for multiobjec- 
tive planning. An alternative, set representation of uncertainty in dynamic processes has 
been also studied intensively and might provide in the future for more adequate tools - as 
for example, the concept of guaranteed control, Kurzhanski (1977). However, an effective 
framework of dealing with uncertainty in dynamic multiobjective planning has not been 
developed as yet. These difficulties are reflected in the discussions about the concept of 
policy - clearly related to  the issue of dealing with uncertainty through feedbacks or other 
corrective mechanisms. 

There is a rather wide disagreement on the definition of policy. Ranney (1968) states 
that  "policy is a course of action conceived as deliberately adopted, after a review of pos- 
sible alternatives, and pursued or intended to  be pursued", but for many other definitions 
- see Harrison (1964) - stress either the political process of policy formulation or the 
implementation aspects. Nonetheless, there is a great similarity in the definitions of plan- 
ning and policy. As a basis for discussion, therefore, we shall assume that  planning is the 
process of policy formulation or policy specification (in the case when a higher-level policy 
is accepted as a basis for more detailed planning), while the concept of policy includes 
both formulation and implementation aspects. 

T o  obtain a comprehensive definition of a policy, we will distinguish between two 
types of uncertainty: predictable uncertainty and unpredictable uncertainty. The first 
can be included in a model by probabilistic means, supported by empirical data ,  while the 
second should be understood in a pragmatic and semantical (rather than syntactical) 
sense: due to  lack of empirical data,  or because of model simplifications, we accept that  
there are aspects of the problem that can be be predicted in the basic model that  we 
intend to  use for policy analysis. Having made this distinction, we can now define the 
various elements that comprise a policy - see Figure 2.5a. 

The first of these elements is the substantive content of policy - selected knowledge 
about real situation (economic, ecological, technological, regional) addressed by the pol- 
icy; the second is the political process - the institutional and sociopolitical aspects of pol- 
icy formation and implementation. Both of these elements are included in the analysis 
only to  a limited degree: both involve neglected, unpredictable or unknown factors as well 
as known or predictable factors. For this reason, the concept of policy also contains two 
other elements:: a normative core and a procedural belt. The normative core includes 
everything that  is known and predictable about the policy content and political process; 
the procedural belt describes implementat ion procedures for handling the neglected and 
unpredictable aspects. 

While the concepts of policy content and political process are well-known in policy 
analysis, the concepts of the normative core and procedurai belt are newer - see 
Wierzbicki, (1984) - and require further discussion. There are many reasons for introduc- 
ing these ideas: for example, the discussion on the merits of various planning approaches 
(blueprint versus process planning, etc.) is clearly related t o  the lack of any distinction 
between what we call here the normative core and the procedural belt of a policy. 
Rational comprehensive planning is clearly concerned with the normative core aspects of a 



Figure 2.5a. Two aspects of the concept of policy: normative core and procedural belt 
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policy: set a goal and decide in general how to  achieve it, assuming that  the world will 
behave as predicted. However, if anything can go wrong, it will: some aspects are always 
neglected or unpredictable and must be dealt with by providing specific implementation 
procedures as well as general normative directions, and by authorizing a 'man on the spot' 
to deal with developing situations as he finds appropriate. 
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There are many areas of human activity in which much time is spent considering 
what could go wrong and in devising procedural responses, i.e. in emphasis is on the pro- 
cedural belt. For example, one of the lessons of the Three Mile Island nuclear reactor 
accident was that  the operating procedures were not rich enough; another was that  the 
personnel were not trained in various emergency actions. Consider the case of the shop 
owner who says "It is our policy not to  accept cheques": it is clear that  the common lan- 
guage interpretation of "policy" includes the procedural belt and even concentrates on it. 
In economics, many widely disputed issues, such as the relative advantages of market and 
planned economies, are really related more to the robustness of the procedural belt than 
to the efficiency of the normative core. In control sciences, procedural belt issues 
correspond t o  the problems of stabilizing feedback systems, and these have been investi- 
gated quite widely. However, in only a few cases (e.g. Wierzbicki (1977)) is a mode of 
analysis adopted that could encompass both the normative core and the procedural belt. 

Now, how can we investigate something that  is unpredictable? In the same way that  
we train pilots: by imagining the most dangerous - if improbable - situations that  can 
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develop, and exposing the pilots to  them on a flight simulator. In terms of building 
models for decision analysis, this approach would mean constructing two models (see Fig- 
ure 2.5b) - a basic model and an eztended model. The first represents the known and 
predictable, while the second contains possible answers to  the question: which of the 
aspects of reality neglected in the basic model could have the most negative impact on the 
implementation of the policy? It should be stressed that the extended model is not a 
better representation of reality, it is simply a different representation of reality, a 
falsification hypothesis constructed to  check the robustness of the conclusions derived 
from the basic model. When checking this robustness, we would really like to  know which 
implementation procedures to  choose; there are usually many implentation procedures 
that are consistent with the course of action suggested in the basic model, but these pro- 
cedures might give quite different results when applied t o  an extended model. 
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Figure 2.5b. The role of the basic and the extended model in examining robustness of pro- 
cedural policies. 
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This framework immediately suggests several research questions. First, how should 
implementation procedures be generated? Second, how should the consistency of an imple- 
mentation procedure with respect to  the basic model (normative core) be characterized? 
Third, how should the robustness of an implementation procedure be defined operation- 
ally? The most natural definition would be the losses that result from the fact that the 
policy was devised using the basic model rather than the extended one. However, this 
might not be feasible, since i t  would involve deriving the normative policy for each 
extended model, and then comparing the results of applying two policies to  the extended 
model (one policy should be derived from the basic model, with some implementation pro- 
cedure, and the other derived from the extended model). If such simulation experiments 
are to  be performed on several extended models, the time necessary for robustness 
analysis might be excessive. This results in further questions: how could such a definition 
be made operational? How should we organize robustness analysis? Are there any 
mathematical methods that  would enable us to  compare the robustness of various imple- 
mentation procedures without requiring many solutions for the extended model and the 
calculation of its normative policy cores? 

Extended model - Simulated with 
impkmedution r u b  



It turns out that  all these questions have an answer, a t  least for single-objective 
decision problems - see Wierzbicki (1977), Snower and Wierzbicki (1982) - however, the 
question whether these results can be extended to the multiobjective case has not been 
answered yet. 

For some models, particularly those of a probabilistic nature, the distinction 
between the normative and the procedural aspects of a policy can be less sharp. For 
example, if we have a stochastic process model with some parameters that  are not known 
a priori, we can derive an  adaptive optimal feedback policy, i.e., a procedure that  both 
responds to perturbations and can learn by accumulating information - see Walters (1981) 
for an  empirical application of this mathematical idea. Surely this would be equivalent to  
a joint solution of the normative and procedural aspects of a policy, and, in this case, is 
the distinction really necessary? 

In the above case, we really assume predictability: the world will behave largely as 
we expect, although there may be some nasty stochastic effects and we cannot predict its 
behavior fully. There is no place here for really unpredictable events. Thus, although 
such cases include some procedural features, they really belong to the normative core: for 
example, the unique optimal feedback policy for a stochastic process might turn out to be 
wrong if there were some unpredictable parameter change of a type not assumed in the 
basic model. This is a known paradox in control theory: the optimal stochastic feedback 
policy suggests proportional controller forms, although a great deal of experimental evi- 
dence shows that  if we are t o  achieve robustness we must partly neglect optimality and 
adopt, typically, proportional-integral controller forms. This implies a multiobjective 
approach: even if there is a unique implementation procedure that  is consistent with the 
normative core of a policy, we might accept a decrease in the normative efficiency of 
another procedure if it guarantees a substantial increase in robustness in unpredictable 
cases. Finally, we should stress that  efficiency and robustness might not be the only 
objectives; another could be adaptability, the ability to  learn from experience. Thus, we 
might try to  design policies in a way that  takes all three objectives into account. 

After this discussion of the procedural belt and normative core, it would perhaps be 
useful to  formulate an extended definition of policy. Policy is a course of action, assumed 
to  include a basic normative direction and procedural implementation rules, which has 
been deliberately adopted after review of possible alternatives and assessment of predict- 
able and unpredictable aspects of both substantive content and political process. This 
definition, together with the framework discussed above, still leaves many questions for 
research; however, it seems to  be a constructive point of entry to  many important prob- 
lems. For example, the issue of 'process planning' can clearly be investigated in what we 
call the procedural belt of policy. 

2.7 The scope of this book 

After this rather broad discussion of various issues in decision analysis and planning, 
the reader must be warned that  we cannot cover all of those issues in this book. The main 
emphasis here in on interactive decision analysis - from issues that motivate it, through 
theoretical foundations and analytical tools, to  the design of decision support systems, 
ezamples of applications, details of computer implementation. Thus, most of the book will 
be concentrated on single-actor decision situations. The design of decision support sys- 
tems, their implementation and most of applications examples concern, however, the 
dynamic aspects of planning - since we have found these applications of decision analysis 
especially useful in practice. Most of the book does not address the issue of uncertainty, 
under an implicit assumption that  a separation principle holds, a t  least approximately, 
and our first task is to  plan for a middle course of events; in this sense, we consider mostly 



planning for a normative core of a policy. However, some aspects of uncertainty are also 
discussed briefly, and some other methodological extensions are indicated. 
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3. F R A M E W O R K S  A N D  T O O L S  F O R  R A T I O N A L  D E C I S I O N  M A K I N G  

3.1 T h e  concep t  of  plural rationality 

One of the major motivations for concentrating on interactive aspects of decision 
analysis, or  for stressing the role of learning when using decision support eyeteme, is the 
perception that  there are diverse meanings of what is a rational decision - and this diver- 
sity reaches much deeper than a simple difference of interests or tastes, i t  corresponds 
rather to  basic, culturally motivated differences of perceiving what constitutes rational 
behavior. The individualistic rationality of the industrialized West assumes the superior- 
ity of man over nature and differs much from the rationality of Bhuddist culture that  
stresses the unity of man and nature, both animated and nonanimated, and thus has far- 
reaching collectivistic consequences (see Zsolnai and Kiss 1984); other cultures might pro- 
duce intermediate or quite different concepts of rationality. Even in one country, various 
social groups or various professions can have difference concepts of rational behavior (see 
Schwarz and Thompson 1984). Small entrepreneurs confronting a broad competitive 
market will perceive rationality differently than managers in centrally planned economies. 

Therefore, when trying to  develop interactive decision support systems, we should 
attempt to  accommodate various possible perceptions of rationality. This requirement 
becomes even more important in multi-actor decision situations, where the parties 
involved might not share the same rationality; yet even quite culturally diverse actors can 
achieve agreement if they recognize their diversity, are willing to  learn and exchange 
information, and agree on the Legitimacy of some negotiation procedure, or on some prin- 
ciples of fairness for use in mediation. 

There exist several major frameworks for rational decision making; although they 
have often abstractive and mathematical character, they also express some deeply rooted 
cultural differences. Before proceeding to  them, some general comments are still neces- 
sary. 

The role of value judgement in decision analysis. Following Weber (see, e.g., Weber, 
1968)) many decision theorists take it for granted that  any serious scientific analysis must 
be value-free - although any actions based on this analysis are typically value-dependent. 
In order to  better understand this apparent paradox we must return to  some reservations 
made by Weber himself. He admits that  any concept or assumption used in scientific 
analysis, and indeed the choice of subject of study itself, might be influenced by value 
judgements. However, he considers these reservations to  be minor. On the other hand, 
the development of the theory of cognition after Weber has stressed the very basic depen- 
dence of concepts on language and thus on deeply rooted cultural values. On  this basis, it 
should not appear surprising that  the very concept of rational behavior might be quite 
different in different cultures. Therefore, Weber's postulate of value-free science must be 
understood as a methodological ideal worth striving for, but typically achieved to  only a 
limited degree. These reservations, although not really minor, do not imply a totally rela- 
tivistic attitude; for example, values such as global responsibility, tolerance, the pursuit of 
truth, understanding, and learning are upheld throughout the community of scientists, 
independent of their cultural background. Therefore, our purpose should be to understand 
plural perceptions of rationality rather than to  judge them. In this spirit, we should not 
call irrational or  pathological a behavior that does not conform with a particular percep 
tion of rationality but might be termed rational when following other perceptions. 

The dialectical triad of cognitive processes. Much attention has recently been paid t o  
the distinction between the descriptive, normative ( a  better word might be abstractive, see 
Raiffa, 1984) and prescriptive schools of decision analysis. This is a very important dis- 
tinction, since every process of human cognition involves observation and description, 



then abstraction (in order to  identify the important features of the observed 
phenomenon), and finally prescription (in order to  test or utilize the acquired knowledge). 
Individual researchers attach different importance to  these stages, some concentrating on 
abstraction, others on observation and critical analysis, and yet others on tests and utili- 
zation. However, we could equally well speak about passively empirical, theoretical, and 
actively empirical stages; most sciences treat these three stages as iterative steps neces- 
sary for progress, in the sense of the dialectical triad of thesis, antithesis and synthesis. 
Examples abound: empirical knowledge of the limited speed of light motivated Einstein t o  
work on relativity theory, and the theoretical understanding acquired in this way 
prompted not only observations of the deflection of solar radiation by Mercury, but also 
many other experiments of an  even more active nature. 

A mature science uses all these three stages of research. Therefore, we cannot use 
this distinction as evidence of plural rationality - although it is true that  a number of per- 
ceptions of rationality with different methodological emphases have been developed. As 
decision analysis matures, however, we might expect these three stages of research to  be 
accepted as equals. 

Methods of decision-making and types of rationality. When trying t o  classify various 
methods of rational decision making, we must first distinguish between holistic and 
analytical ways of making a decision. The holistic approach is based on the decision 
maker's reaction t o  the situation as a whole; it is not necessary to  identify elements or 
information before making the decision (Dreyfus, 1984). Purist decision theorists may 
question whether such a method of decision making is rational a t  all, since heuristic 
assumptions and intuition could play a significant role. This leads us t o  the question of 
what we mean by "rationality". A broad concept of this type can be restricted by the 
development of mathematical theory that  analyzes only chosen aspects of the concept. 
However, such a restriction might be detrimental to  the development of an applied sci- 
ence; hence, we prefer to  use the word "rationality" in its broader, more conventional 
sense. A rational decision does not have to  be based on all the available information, nor 
does it have to  be optimal. It should only take into account the possible consequences of 
the decision and be intended not to  be detrimental to the values and interests of the deci- 
sion maker. As a reasonable compromise, we can define various types of rationality: 
super-rationality (ability to  deal with the paradoxes of rationality), optimizing rationality, 
satisficing rationality (Simon, 1953), procedural rationality (see, for example, Dobell, 
1984), and so on. Using this broader definition, an adaptively formed decision rule or pro- 
cedure can lead to quite rational decisions; the effectiveness of various decision rules in 
multi-actor decision situations is a very interesting subject for study (Rapaport, 1984). 
Moreover, it can be argued that  most day-to-day decisions are made in a holistic way 
(Dreyfus, 1984) and even that  the holistic approach is often superior in the long run, as 
shown by computer tournaments of repetitive prisoners' dilemma games (Axelrod, 1984). 
However, decisions based on inadequate experience or involving new issues often require a 
calculating or analytical approach to decision making, i.e. a systematic evaluation of possi- 
ble alternatives and related outcomes before making a decision. Several frameworks for 
analytical decision making have been developed. 

3.2 Utility maximization 

Without implying any value judgement, we can say that  the utility mazimization 
framework originated from the very core of the individualistic culture of the West - from 
the belief that  every individual, when striving for his maximal welfare, contributes posi- 
tively to  the welfare of the society, as exemplified by Adam Smith's "invisible hand" con- 
cept and substantiated by the study of ideal markets. The abstractive aspects of this 
framework has been developed for a long time and it has now the strongest theoretical 



and mathematical foundations. Partly because of its abstractive elegance and partly 
because of implied, deeply-rooted cultural convictions, this framework is now widely 
accepted as a basis of defining rationality - with an unfortunate consequence that  other 
possible definitions of rationality are often looked upon as somehow "less rational". 

To introduce mathematical foundations of the concept of utility, consider first the 
decision space E, and an admissible decision set X, c E,. At this moment, no 
mathematical structure of this space and set is needed. The set X, might consist of a 
finite number of alternative decisions (the case of discrete alternatives) or of a continuum 
of possible decisions (the case of continuous alternatives), the elements z of this set might 
be alternative, verbal descriptions of proposed plans of action, of bundles of commodities 
that  a consumer can buy under a restricted budget. The last is the classical example that  
motivated much of the development of utility theory. 

We assume that  a decision maker (in this example, a consumer) can compare any 
pair of elements zl,z" E X,, in terms of "better", "worse", "indifferent". Let z' 2 z" denote 
that  z' is better or indifferent to  z". This constitutes a preference relation between the 
elements of X,. Typically, three abstract axioms of such a relation are postulated: 

(i) Rejlezivity: 

2' 2 z' for all z' E X, 

(ii) Transitivity: 

2' > 2" and z" 2 z"' implies z' 2 z"' for any z', z", z"' E X,. 

(iii) Completeness: 

for all z', z " ~  X,, a t  least one of the relations z' > z" or z" 2 z' holds. 

Rejlezivity has an obvious meaning: z' should be indifferent to  itself. Transitivity 
implies consistency of pairwise comparisons done by a decision maker, no matter how 
many such comparisons he is making. However, decision makers are notoriously incon- 
sistent - for many reasons, the simplest one being that  it is the privilege of humans to  
change their mind. Completeness implies that there is no pair of alternative decisions 
about which the decision maker is uncertain and would not like to express his opinion. A 
stronger requirement than that  of completeness is that  any alternative outside the set X, 
might be termed irrelevant and should not influence the preference relation for X E X,. 
This requirement of independence of contezt, though in a slightly different form - is a cen- 
tral requirement in expected utility theory and will be discussed later. Another 
modification of this requirement in decision theory is called the axiom of independence of 
irrelevant alternatives. The requirement of independence of context is also related to that  
of transitivity; in the process of comparing alternatives and when coming across an unat- 
tainable but attractive alternative, or an avoidable but dangerous one, a decision maker is 
apt  to  change his mind and make the following comparisons inconsistent with the previ- 
ous ones. 

A relation that  satisfies (i), (ii), (iii) is called complete preordering (sometimes, 
equivalently, a total quasi ordering), while a relation that  satisfies only (i), (ii) is called 
partial preordering. We prefer to  adhere to the convention that  any reflexive and transi- 
tive relation, admitting nonsingleton equivalence classes ( that  is, such that  z' > z" and 
z" > z' do not necessarily imply z' = z" ) is called preordering, complete if i t  satisfies 
(iii); incomplete preordering is thus called here partial preordering. Such a relation 
implies also an equivalence (or indifference) relation: 

z' M z" iff z' 2 z" and z" 2 z' (3.1) 

and a strict preference relation: 



Z' > Z" iff Z' 2 Z" and -, z" fir z' (3.2) 
Clearly, z' > z" can be also defined as z' > z" or z' M z". We preserve here the notation 
z' >> z" for a relation that  is even stronger than z' > z" which means that  z' is preferred 
to  z", but it might be preferred only because one of its aspects is better, while being 
indifferent in other aspects; z' >> z" will mean that  z' is preferred to  z" in all its aspects. 

The basic question in utility theory is: under which conditions a complete preorder- 
ing can be faithfully represented by a scalar-valued utility junction u: X, + R ~ ,  in the 
sense that  "better" corresponds to  "a greater value of u(z)"; such a function is called also 
value function, worth function, preference function, or ordinal utility function (see further 
comments on expected utility and cardinal utility functions). 

Z' 2 Z" iff ~ ( z ' )  2 u(zt'); 

Z' > 2'' iff u(zt) > u(zt'); (3.3) 
Z' M 2'' iff u(zt) = u(zt') 

This question depends on the mathematical structure of the space E,. Suppose i t  is a 
topological space, suppose X, is closed, and postulate another requirement on the prefer- 
ence relation ( > ): 

(iv). Continuity: 

for all z' E X,, 

the sets {z E X,: z > 2') , { E X, : z' 2 z)  are closed. 

Some complete preorderings do  not satisfy this requirement. For example, let 
E,=x,=R~ and consider the lexicographic ordering (such as applied in a dictionary) 
defined by: 

( ~ i ,  z i )  > (zi), 2;) iff either (2; > zi)) or (2; = zi) and > 2;); 

(2; , z i )  M (zi), 2;) iff z i  = zi) and 2; = 2; (3.4) 

This ordering does not satisfy the requirement (iv) and, therefore, does not admit a faith- 
ful representation by a continuous utility function, according to the following theorem: 

Theorem 3.1 (Debreu, 1959). If X, c E, is a closed subset of topological space, 
then the conditions (i), (ii), (iii), (iv) are satisfied if and only if there exists a continuous 
utility function satisfying (3.3). 

This function, however, is not defined uniquely; if we take an such utility function 
and any continuous strictly monotonically increasing function v: Rr+  R', then the func- 
tion ti'(%) defined by ut(z)=v(u(z)) is another such utility function. In other words the 
utility function that  faithfully (3.3) represents a continuous complete preordering is 
defined only on an ordinal scale, up to  any order-preserving transformation, and is often 
called an ordinal utility function. 

For ordinal utility functions, above considerations apply without much modification 
if we introduce, beside the decision space E,, a space Eq of decision outcomes (or objec- 
tives, or attributes) and a mapping f:E, + Eq that  transforms each decision into its out- 
comes. Since it might be argued that  a decision maker evaluates rather outcomes of alter- 
native decisions than the details of those decisions, a plausible form of the utility function 
is: 

where U :  Eq -+ R1 is another utility function. Since the space Eq is usually equipped with 
a partial preordering relation, we can say much more about the properties of the function 
U - for example, it should be monotone with respect to this relation (called also order- 



preserving, see next chapters). If the decision outcomea are characterized by scalar perfor- 
mance indices of positive values, Eq = RP and X, c Rp+, then typically assumed forms of 
utility functions often exploit the fact that  a norm is order-preserving in the positive 
ortant of the space. The weighted ll norm results then in the following form of utility 
function: 

5 x ~ = I ;  X ~ > O  for i = l ,  ...p 
i= 1 

Similarly, a function analogous to  the weighted Ik norm but with k < 1 is also monotone 
in the positive ortant and can be directly used as an  utility function 

& x ~ = I ;  x ~ >  o for i=l, ...p; t < 1 
i=l 

since for k < 1 it is concave in the positive ortant - and the concavity of utility functions 
is usually required in order to  obtain uniqueness of maximization results over (strictly) 
convex sets. Because of this requirement, the Euclidean norm 12, norms Ik for k > l ,  and 
the Chebyshev norm I, cannot be used directly as utility functions and must be first 
modified - by shifting the origin of the space and changing signs appropriately. For exam- 
ple, the so called Lshaped utility function analogous to  the Chebyshev norm has the 
form: 

min Xiqi 
uw(q)zl<i<p 

& X ~ = I ;  )ii > o for i = l ,  ...p 
i= 1 

There are also various multiplicative forms of utility functions. However, these convenient 
forms of utility functions are seldom good predictors of individual behavior, even if their 
parameters are well estimated statistically. On the other hand, they are rather success- 
fully applied in economics t o  predict mass phenomena, such as consumers' behavior. In 
the same sense, welfare economics uses so called welfare functions, or utility functionals 
defined on a space of trajectories of dynamic decision outcomes q(t),  in a typical form: 

where p>O is interpreted as a discount coefficient for the future. Again, an  individual 
decision maker asked to  suggest a reasonable value of such a discount coefficient is typi- 
cally a t  loss, even if he would know how to  evaluate outcome trajectories q(t) in 'Gestalt'; 
on the other hand, i t  is possible t o  make reasonable estimates for the discount coefficient 
from observed economic mass phenomena. 

The concept of utility functions has been substantially modified and refined by con- 
sidering decisions under risk - tha t  is, under conditions of uncertainty but with a clear 
interpretation of averaging and well substantiated probabilistic description. The proto- 
type decision situation considered (von Neumann and Morgenstern, 1944) describes a 
choice between probability distributions of various outcomes and has the following form. 
Suppose X,={l,.. j,.. J). Suppose n possible outcomes qi, i = l ,  ... n,  have been specified 
from a possible outcome space (which, a t  this moment, can have an arbitrary nature) and 
the decision maker can strictly order them according to  his preferences, hence 



These possible outcomes are not precisely the outcomes of the decisions z=l,..j,..J; the 
actual outcomes of these decisions are probability distributions 

where p,, is the probability of the possible outcome q, if the decision j is chosen. Such 
probability distributions are supposed to be known a ~ r i o r i  for each decision j and are 
sometimes called strategies (because of game theoretic interpretations). Suppose the 
preferences of the decision maker over possible outcomes can be represented by some util- 
ity function U, with 

If we would use for this purpose any ordinal utility function (called a value function in 
this context), we would have quite a wide choice, since these functions are determined up 
to  a strictly monotone transformation. 

The fundamental question of the expected utility theory is how t o  limit the class of 
utility functions so that  they would give consistent results when assuming that  the deci- 
sion maker is averaging his utility under risk, that  is, he is trying to  maximize the 
expected utility of the decision j: 

This assumption is well justified in examples when outcomes have direct monetary 
interpretation and probabilities are well known, such as buying lottery tickets. Now, it 
can be seen from the form of (3.10) that  an arbitrary monotonous transformation of U 
will affect the results of maximization of u; for example, a monotonous transformation of 
U can change it from concave to  convex and completely change the order of u(j) .  The 
only class of transformations of U that  does not change the results of maximizing u ( j )  
over j - nor does it change the concavity or convexity of U - are affine strictly increasing 
transformations of the form v(U) = aU+b, with a > 0. Utility functions that  are defined 
up to  such a transformation are said to  be measured on interval scale (since these 
transformations preserve the ratios of intervals) and are called cardinal utility functions. 

In order to  elicit from the decision maker his utility function, the expected utility 
theory applies usually the so called principle of certainty equivalence. We can fix arbi- 
trarily U(ql)=O and U(qn)=l, since this corresponds only t o  a certain choice of a and b in 
the affine transformation. The decision maker is asked to  compare a possibility of getting 
the outcome q,, with subsequent i=2, ..., n-1, for certain, with a possibility of the result of 
a lottery of getting qn with probability m, or getting ql with probability 1 - m,; the pro- 
bability m; is varied until he states his indifference between these two options. Thus 
obtained probabilities m i  are measures of his utility of q,, mi = U(q,); observe that  m l  = 0 
and m n  = 1 consistently with this definition. When this is done for all i, the optimal j can 
be selected by maximizing 

This prototype procedure has been extended to  various other situations, including 
estimations of various functional forms of U(q) both for single- and multi-dimensional Eq 
(in multiattribute utility theory - see Keeney and Raiffa, 1975) as well as the examination 
of risk-proness and risk-aversion of decision makers - equivalent to  convexity or concavity 
of the cardinal utility function - and other related subjects and applications. 

As in the case of ordinal utility, cardinal utility theory depends on the conditions of 



existence of utility functions that  are defined up to  an &ne transformation. Since this is 
a subclass of ordinal utility functions, the required conditions are much stronger. 

Theorem 3.2 (see Fishburn, 1970). Let P be the set of all probability measures 
with finite support in Eq and let 2 with implied > be a complete preordering in P ;  let 
E(u,R)  denote the expected value of a function u: Eq + R' under a probability measure 
R E P. Then, for the existence of such a function u that  would satisfy: 

Q > R iff E(u,Q) > E(u,R)  for all Q, R E P  (3.1 1) 

it is necessary and sufficient that  two following conditions hold: 

(i) Independence of side-alternatives : 

a Q + ( l - a ) S  > a R + ( l - a ) S  

for all Q, R ,  SEP such that Q > R and all aE(0; 1). 

(ii) Continuous interpolation of ordering : 

if Q > R > S f o r s o m e  Q,  R ,  SEP 
then there exists a, PE(O; 1) such that  

a Q + ( l - a ) S  > R and R > PQ+(l-P)S. 

Moreover, u is unique up to  a strictly increasing affine transformation. 

The requirement of independence of side alternatives means that  the relation Q > R 
cannot be influenced by mixing (in the probabilistic sense, since a and P should be inter- 
preted as probabilities in the above theorem) Q and R with any side alternative S ,  no 
matter how inferior (or even disastrous) this alternative might be. It can be interpreted as 
a requirement of strict independence of the decision maker's preferences on context; but 
decision makers are often known to  change their minds depending on the context, particu- 
larly when faced with some possibilities of disastrous alternatives. The requirement of 
continuous interpolation of ordering means that  an inferior alternative S ,  no matter how 
bad, can dominate a reasonable alternative R when S is mixed with the superior alterna- 
tive Q - and conversely. This requirement can be violated in many decision situations, 
since decision makers often resist, for reasons of basic cultural values, the idea of mixing a 
disastrous alternative with very favorable ones. For example, consider a question such as: 
"given a lottery of one per cent chance of nuclear destruction of Earth and ninety nine per 
cent chance of winning a billion dollars, how much are you willing t o  pay for this lot- 
tery?" Most people would refuse to  answer such a question on the grounds that  there are, 
after all, values that  are incomparable, and not all can be bought with money. In other 
words, our basic cultural values are often hierarchically (for example, lexicographically) 
ordered and do not admit continuity assumptions. 

When not applied to  such extreme cases, when limited to  applications of clear sta- 
tistical and monetary interpretations, expected utility theory has had considerable 
successes, particularly in applications to  clarify conflicting motives of complex decisions. 
However, for all its theoretical power and analytical elegance, expected utility theory is 
rather poor empirical predictor of individual decision behavior. One of possible explana- 
tions is that  maximizing behavior is not necessarily the dominant mode of individual deci- 
sion making. Under presure of economic mechanisms such as market forces, people might 
tend in average t o  maximizing behavior; but in other environments or cultural settings, 
different modes of behavior might dominate. In order t o  solve some specific problems, or 
as an excellent tool for clarifying limits of achievement, people might use optimization; 
but optimization is not necessarily the main goal and explanation of human behavior. 

Another possible explanation is that individual decision makers, even when trying to  
maximize, do not have constant utility functions and change them depending on context. 
This is best illustrated by the following paradox, due to Allais (1953). Consider a choice 



between lotteries l,, j = 1, ... 4; each of the lotteries can have outcomes 

q,, q1 = 0, 92 = l M ,  93 = 5M 

(where M is a million monetary units, which are assumed to  be significant in value for the 
decision maker) with some probabilities pi,. The probabilities and the straight 
(unweighted) expected values of these lotteries are given in the following table: 

Outcomes qi 0 1M 5M Straight 
expected 

Lotteries 1, Probabilities Pij values 

I* 0.00 1 .OO 0.00 1.00M 

The decision maker has to  compare pairwise ll with l2 and l3 with 14. Almost all peo- 
ple prefer l3 t o  l4 but a majority of them would also prefer ll (1M for sure) to  l2 (expected 
1.39M, but a chance one in hundred to  get nothing). However, there does not exist a util- 
ity function that  is consistent with both of these choices. 

There are various attempts to explain the above paradox, as well as many variants 
of this paradox. Here we adopt the simplest explanation that the utility function of the 
decision maker is not constant, but depends on the expectations or aspirations formed 
relative to the pair of lotteries assessed. Assume, for example, that the decision maker 
takes the lower expected value of the pair of lotteries compared as his aspiration & thus 
i j  = 1.00M for the comparison of ll and 12, while i j  = O.llM for the comparison of l3 and 
14. Assume that  the decision maker has a strong regret  (similar ideas are presented, for 
example, by Kahneman and Tversky, 1982) when the actual outcome falls below his 
aspirations; if the regret coefficient is, say, 100, we can postulate the following utility 
function for his choice: 

where 

q = minE(q I 1,) 
i'i" 

and 

if = l.OOMifjt = 1, j" = 2, qB = O.llM 

if j' = 3, j" = 4. Take the expected values of this non-classical utility function (which 
depends, through the aspiration levels q, on the probabilities p,, and thus is not con- 
stant). We obtain then 

and l l  is preferred to  12; 

and l3 is preferred to  14. 

Many decision theorists would protest against calling u(q,q) a utility function, 
because of its dependence on probabilities pi, through q. Therefore, we shall adopt here 



another name and call it an achievement function, see further paragrapha. The form of 
u(q,q) used above is not cardinal; but we can make it cardinal, independent of affine 
transformations of q by simply subdividing it through the range Aq = q3 - q, = 5 M  of 
outcomes: 

Thus, the cardinality of a utility function is a different issue than its independence 
on broadly understood context, while the latter concept includes also expected outcomes 
and aspirations formed relative to them. We see that there might be a t  least two reasons 
for decision makers behaving differently than predicted by classical utility theory: one is 
that they do not necessarily maximize, and the second one, that  their preferences might 
depend on broadly understood context and aspirations, even if they try to  maximize. 

3.3. Satisficing behavior and aspiration formation. 

The hypothesis that  people seldom maximize when preparing individual decisions 
was analyzed first in considerable detail by Simon (1957, 1958)) though many other 
researchers (such as Boulding, (1955)) Galbraith, (1967), Kornai, (1977)) March, (1958)) 
Sauerman and Selton, (1962)) Tietz, (1983)) contributed to  an advance of this thesis and 
to  so called behavioral school of decision analysis. The main arguments of this school are: 

A. Bounded rationality. People cannot maximize their utility in individual decisions, 
because of many reasons. Optimization problems can be very difficult to  solve, and people 
do not necessarily have time and ability to  solve them; the cost of solving optimization 
problems might outweight the gains from solving them. The information about the state 
of the world and about other people intentions, that  is necessary to  solve optimization 
problems, is typically not fully available. 

B. Institutional and behavioral approach. When facing various institutional limita- 
tions in the complex life of administrative and large industrial organizations, people 
develop systems of rules and procedures for decision making. These historically formed 
procedures (legal, legislative, administrative, etc) allow for plausible inference under 
uncertainty, for information collection and learning, but are often difficult to  understand 
from an abstract "normative" point of view - and are not easy to  change. Thus, a decision 
analysts' task is to  observe decision behavior and to construct plausible, if often ad hoc, 
models of this behavior. 

C. Aspirations and satisficing behavior. When following such empirical direction of 
research, a recurrent observation is that people, while learning about the state of the 
world and the results of the actions of others, tend to summarize their learnings by form- 
ing aspirations on desirable outcomes of their decisions. When predicted outcomes of 
their decisions fail to  satisfy their aspirations, people tend to  work hard and seek ways to  
improve the outcomes; however, when their aspirations are satisfied, people turn their 
attention to  other matters. 

Intense discussions and research that  resulted from this antithesis to  the utility max- 
imization framework had modified somehow the original meaning of these arguments, par- 
ticularly the argument about bounded rationality. This argument states that  people 
could not maximize, because the problems are too complex; however, this argument is not 
entirely convincing today. Research on deliberative, holistic decision making (see 
Dreyfus, 1984) has shown that  expert decision makers can intuitively, by "Gestalt", 



process all available information and make optimal decisions. If they need analytical s u p  
port in novel decision situations, the modern development of computer technology, optim- 
ization techniques and ways of treating uncertainty has enormously extended the class of 
optimization problems that can be solved computationally - far beyond the classical for- 
mulations of the utility maximization school. Moreover, these developments provided for 
a methodological reflection on the use of optimization tools. We know that  most of 
optimization problems are solved up to a given accuracy; that  however complicated an 
optimization problem might be, i t  can always be approximated by a simpler one; that  
there exist heuristic and artificial intelligence techniques for solving approximately optim- 
ization problems. Thus, when treating optimization as a tool, not as a goal or main 
model of behavior, we can support even very complex decisions. 

The relevant question is, therefore, not whether people could, but whether they should 
optimize. Observe, first, how strong is the cultural background of the maximizing school 
that  any departure from it must be called "bounded", somewhat less than perfect; but this 
background is deeply rooted in the individualistic culture of belief in the Adam Smith's 
"invisible hand". On the other hand, there are a t  least two reasons why people should not 
mazimize without reservations. 

D. Collective rationality. The fact that  satisficing behavior in big industrial organiza- 
tions is related to  collegial decision making was noted already by Galbraith (1967). We 
can give now much more reasons for this relation. When facing any multiactor decision 
situation other than a perfect market - say, in any nonzeresum n person game with n<oo 
- an individual decision maker can fall into a social trap (Rapoport, 1985) or even start  a 
conflict escalation ( Wierzbicki, 1983). Both these phenomena are characterized by the 
fact that  unmodified individual maximizing behavior leads to  much worse results than 
foregoing individual maximization and seeking some measures of cooperation. A social 
trap involves non-cooperative equilibria that  are much worse for all concerned than 
results of cooperative action; such examples as the "tragedy of commons" or the "prison- 
ers' dilema" have been known for some time, but strategies for repetitive situations of this 
type have been only recently developed and studied. Conflict escalation occurs in a more 
complicated situation when the noncooperative equilibria are nonunique - as in so-called 
"game of chicken", or in many environmental simulation games - and each player tries to  
select a different equilibrium that is advantageous for him, which results in persistent 
disequilibria much worse than even the non-cooperative equilibria. We can give abstract 
and mathematical models of such phenomena; moreover, recent studies show that  there 
exist non-maximizing strategies that  give an individual much better chances of evolution- 
ary survival than purely maximizing strategies (see Axelrod, 1984); one of the most 
elegant and effective strategies of this type, proposed by Rapoport and called "tit for tat", 
can be described as "non-naive altruism that  gives best chances for survival" - see Rapo- 
port in Grauer, Thompson, Wierzbicki, 1985). However, a detailed discussion of these 
developments is beyond the scope of this book; it is sufficient to  note here that  the need of 
foregoing individual maximization and developing some rules of collective rationality has 
been long recognized in the historical social development of mankind, in our ethical sys- 
tems, laws and customs. 

In many discussions of utility theory, the issue of collective rationality is dealt with 
by an argument that  an individual can introduce such attributes as compassion, coopera- 
tion, etc, in his utility. However, such an argument serves only to  avoid a deeper analysis 
of this issue: no matter whether an individual would include cooperation in his utility, 
there would be still multiactor situations resulting in social traps or conflict escalation, 
and we better study them explicitly in order to  understand them. Collective rationality 
means placing some values, such as preservation of Earth for the human race, hierarchi- 
cally higher than others, such as monetary gains; already this violates axioms of utility 
theory and leads to  discontinuous utility functions. Collective rationality means also 
learning about concerns and interests of others and thus an adaptive dependence of own 
decisions on the context, which again violates axioms of utility theory. All this leads to  



the conclusion that ,  when trying to  account for collective rationality, we cannot use util- 
ity functions in their classical forms and must a t  least operationalize the concept of their 
dependence on the context; moreover, we must assume that  an individual will have, in 
certain social situations, t o  forego his tendency to  maximization. 

However, it is only fair to  add that  collective rationality has its own traps. These 
traps occur because the concept of fairness has no reasonable absolute meaning, can be 
defined only relatively to  a status quo situation and develops historically. Through many 
centuries, people fought for equality before law; later, equality of chances has become the 
major objective of social struggles. Out of human compassion, we tend to  think that  
equality of chances should be accompanied by a t  least some measure of equality of results 
(for example, in the standards of living); the issue of an appropriate measure of equality 
of results has been a major element of social struggles of the last century. However, an 
absolute meaning of fairness - an ultimate equality of results - could be only achieved if 
all men would think alike, consume the same, make the same inventions and publish the 
same books and papers; such a society could not develop any further nor adapt t o  change. 
Thus, the trap of collective rationality is that  one could always demand more fairness - 
and stop all human development, learning and adaptation. 

E. Learning and adaptation. Though supported by other aspects of satisficing 
behavior, learning and adaptation have their own independent meaning. The phenomenon 
of human curiosity - the propensity to  learn much more than it is needed for direct appli- 
cations - was perhaps the decisive factor of the evolution of human civilization, but can- 
not be consistently explained by utility maximization. An explanation that  curiosity 
might be one of the attributes of individual utility is tautological and leads to  similar 
inconsistencies as the attempts t o  include compassion and cooperation into utility. Thus, 
learning must be considered as an independent factor in human decisions. 

Except in the most simple cases, learning is done a t  the cost of optimality. This 
general observation has been formalized mathematically for the case of learning under- 
stood as quantitative adaptation. If a structure of an adequate model of a given process is 
known but the parameters of this model are not, then, parallely to  trying t o  control the 
process optimally, we must identify the parameters. For the basic case when the model is 
linear, the unknown parameters relate only to  the initial state of the process or to  an 
additive perturbation of known stochastic properties, and the costs are quadratic, Kalman 
(1960) has established the principle of separation: one can go on with the optimal control 
while parallely estimating the parameters, without any loss of optimality. However, the 
principle of separation does not apply to  any more complicated case, for example, when 
the model is nonlinear or even if it is necessary to  estimate unknown parameters that  
enter multiplicatively an otherwise linear model. In general, any more complicated situa- 
tion requires active experimentation and probing in order to  identify parameters. If we try 
to  control optimally, we should adhere to  optimal decisions and forego probing; but if we 
do not estimate correctly the parameters, we might end up applying decisions that  are 
optimal but for a different problem. Thus, there is a dynamic trade-off between the qual- 
ity of learning and optimality: it pays t o  forego optimality first and learn more a t  the 
beginning in order to  be better off a t  the end. These concepts have been formalized 
mathematically by Feldbaum (1962) who called them the principle of dual control (with 
dual purpose: that  of learning and that  of optimization). 

In cases of qualitative learning, when we face a new situation and try to  probe its 
numerous aspects in order to  determine which of them are truly important, the same 
observation is valid though much more difficult to formalize mathematically. Various 
existing models of learning processes might be yet not fully satisfactory, but both these 
models and experimental research indicate some general conclusions: 

- learning consists of probing and we learn mostly by making mistakes; 

- two basic cases should be distinguished: a customary situation, in which we have 
an adequate framework or model and need only to fill in details, and a novel situation, in 



which we have to  devise a framework; 

- in customary situations, learning can be described as a nonstationary but conver- 
gent process of assessing some basic parameters; 

- in novel situations, there are two phases of learning: the search for a framework, 
terminating in an "aha" effect, and then the resulting customary situation of filling in the 
details; 

- one of the greatest difficulties of learning is the recognition that  a situation is 
novel, since adherence t o  an  old framework typically prevents such a recognition. Master 
experts - such as chess champions of international level - are particularly sensitive to this 
need of recognizing novel and potentially dangerous developments, feeling an uneasiness 
that  forces them t o  search for new angles. 

The last observation on the difficulties of learning applies also to  the recognition of 
the satisficing framework of rationality: while it was accepted as a "bounded" rationality 
concept, as a description of possible departures from "true" rationality, the developments 
of abstract foundations of decision theory continued to  be concentrated on the utility 
maximization framework. Thus, mathematical tools for the satisficing framework have 
been considerably less developed than for the utility framework - with some important 
exceptions. Mesarovic et al. (1970) gave first mathematical formalization of satisficing 
decision making. The dynamics and impacts of aspiration levels on decision processes 
have been thoroughly studied (see Sauerman and Selton, 1962, Tietz, 1983, 1985). In 
economic theory, satisficing equilibria of markets have been studied see, e.g., Kortanek 
and Phouts, (1982). In multiobjective optimization theory, techniques of goal program- 
ming (see Charnes and Cooper, 1975) and of displaced ideal point (Salukvadze, 1971, Yu 
and Leitmann, 1974, and Zeleny , 1973) have been developed. We present here shortly the 
main ideas of the technique of goal programming. 

Let the decision space be Ez=Rn and the admissible decisions belong to  the set 

Let the decision outcome space be Eq=RP and the decision outcomes be characterized by 
f: R n  + RP, so that  the set of attainable outcomes is Qo= f(X,). Suppose all the out- 
comes improve for the decision maker if the values of the corresponding outcome functions 
fi(z) increase, where 

this case is sufficiently general, since we can transform to it most other cases (when the 
decision maker prefers to  decrease some outcome functions, or t o  keep their values a t  
some specified level) by suitably modifying the form of the function f. 

The goal programming technique assumes that  the decision maker specifies goals 
Q,, i=l, ...p, jointly denoted by the goals can be equivalently interpreted as aspiration 
levels for all outcomes. The typical formulation of goal programming technique assumes 
that a decision support system solves the following mathematical programming problem 
in response to the aspiration levels Qstated by the decision maker: 

minimize h(qt, q-) = { fi ai(q; + q;)k}(l/k) (3.12a) 
i=l 

subject to  constraints 

where ai > 0 and the function h(q+, q-) is, in fact, equivalent to the weighted lk norm of 



the difference f(z)-8. The use of q+ and q-, interpreted as overachievement and undera- 
chievement of 8 , stresses the possibility of transforming the mathematical programming 
problem (3.12a,b) to  a linear programming problem provided that  the function f is linear 
or affine, the set X, is described by linear inequalities, and k=l, the lI norm is used. In 
this particular case, goal programming technique has been widely applied. The following, 
elementary theorem characterizes the results of the goal programming technique: 

Theorem 3.3. Let the set Q, = f(X,) be compact. Then a solution 2 of the 
mathematical programming problem (3.12 a ,  b) exists and # = f(2) has the following pro- 
perties: if q € Q, - we say then that  q is attainable - then # = g if q $ Q, - is not attain- 
able - then # is an element of Q, that  is closest t o  Q in the lk norm. If additionally (see 
Theorem 4.8) Q, is convex and 6 > #;, i = l,..p, then # is an  efficient outcome: a com- 
ponent 4, of it cannot be improved without deteriorating other components #,, j # i .  

Clearly, the goal programming technique does not necessarily suggest decisions that 
are maximizing a monotonous utility function or efficient; it only suggests decisions that 
have outcomes closest to  the goals. Although the goal programming technique apparently 
represents precisely the rationality of satisficing decision making, it also expresses the 
inconsistencies of interpretations of this framework, related t o  the question whether a 
decision maker could not or should not maximize. If we adhere to the interpretation that  
a decision maker could not maximize because of complexity of decision problems, the goal 
programming technique directly contradicts this interpretation, since i t  uses a - hopefully 
adequate - mathematical model of the decision situation and a mathematical program- 
ming technique that  could support the decision maker in maximization. If we say that  the 
decision maker could, but perhaps should not maximize in certain situations, then the 
goal programming technique is inadequate as a decision support tool - because the deci- 
sion maker should then choose to forego maximization on the basis of full information 
available, that  is, he should be informed how much he could gain if he chose not t o  forego 
maximization. This inadequacy of goal programming can be overcome in the 
quasisatisficing rationality framework, described in detail later in this book, and was, in 
fact, one of the motivations for developing this framework. 

Beside the prototype formulation (3.12a,b) of goal programming, there are many 
refinements and further developments of this technique (see, e.g., Masud and Hwang, 
1981, Ignizio, 1983). For example, the overachievements q+ and underachievements q- 
can be further transformed by so called achievement functions; however, the question of 
desirable properties of achievement functions that  would help to  overcome the basic 
inconsistency of goal programming was addressed only in research on quasisatisficing 
framework (Wierzbicki, 1982). A hierarchy of goals expressed either by the weighting 
coefficients a, or by a lexicographical ordering of objectives can be also introduced in goal 
programming; however, these technical possibilities do not express a clear-cut hierarchical 
approach to decision making, such as represented by the next rationality framework - 
that  of goal- and program-oriented planning and management. 

3.4 Goal-  and program-oriented planning and management 

We have already observed that  hierarchical, lexicographic ordering of fundamental 
values is a typical characteristic of human cultures. This observation forms a basis of an 
alternative framework of rational decision making, developed in the Soviet Union by 
Glushkov (1972), Pospelov and Irikov (1976) and others, but also perceived independently 
as a reasonable framework for rational action by researchers from other cultures (see, e.g., 
Umpleby, 1983). This framework distinguishes between (at least) two groups of 



objectives: primary objectives or goals, and secondary objectives or means; both of them 
can be treated dynamically, in which case we speak about a program of goals or of means. 
A rational plan of action is such that  guarantees the attainment of aspired values for pri- 
mary objectives or goals due to a reasonable choice of secondary objectives or means. In 
other words, if a goal appears in the first round of analysis to  be not attainable, we should 
not concentrate on devising trade-offs between primary objectives, but much rather on 
finding such constraints that  should be shifted - as means - in order to  make this goal 
attainable. As a culturally determined perception of what constitutes rational decisions, 
this framework is related to  the culture of planning; thus, it is quite different than the 
utility maximizing framework and also different - although perhaps closer methodologi- 
cally - than the satisficing framework. Formally, if we consider the primary goals as con- 
straints and address the question of reasonable choice of means via utility maximization, 
we could reduce the goal- and program-oriented planning to  maximizing framework (as 
we could do also with satisficing decisions, if we introduced some form of disutility of 
further maximization; such formal reductions do not increase our understanding of 
different perceptions of rational decision making, but might be useful in mathematical for- 
malizations). Similarly, we could reduce the goal- and program oriented planning to  the 
satisficing behavior - possibly, with a better behavioral reason - by addressing the ques- 
tion of a reasonable choice of means via satisficing. However, a goal- and program 
oriented decision maker concentrates his attention on the question why his aspired values 
of primary goals might be not attainable and modifies these aspirations much less readily 
than those for secondary means. 

A mathematical formalization of the goal- and program-oriented decision making 
that  addresses the question of reasonable choice of means in partly satisficing and partly 
maximizing way is as follows. Let the space of primary objectives or goals (or goal pro- 
grams) be denoted by Eql and take, as a simple example, Eql = Rpl; denote the aspired 
values (or trajectories in case of dynamic goal programs) of these objectives by ql . Simi- 
larly, denote the space of secondary objectives or means by Eq2 and take, as a simple 
example, E ~ ~ = R P ~ ;  suppose that  the decision maker forms also aspiration levels h for 
secondary objectives. Observe that  means should not be confused with detailed decisions 
from the admissible set X, in the decision space E,. Take, as a simple example, 

X, = {z E E,:g,(z) 5 0,  j = 1, ... m), 

where g, : E, -+ R are constraint functions called shortly constraints; these constraints 
can be later redefined as means, and only in simple cases, when constraints have the form 
of simple bounds on some decisions, means and decisions can coincide. Let the outcomes 
of decisions be described by the mappings fl : Xo -1 Eql and f2 : X, -+ Eq2; if Eql = Rpl 
and Eq2 = Rp2, then fl(z)  = (fl flDl) and f2 = (f2 f2.,). Denote the sets of 
attainable outcomes for primary objectives by Q1_ = fl(Xo) and for secondary objectives 

The essence of goal- and program oriented decision making lies in a test of goals' 
attainability, whether q1€Q1,,; if not, first the space Eq2 together with the constraints of 
the set X, and then possibly even the space Eql (or the aspired goals q1 ) must be interac- 
tively redefined. For example, suppose that  the test of goals' attainability gives first nega- 
tive results, but we can identify some active constraint g, of the set Xo that  can be con- 
sidered as a secondary outcome or a component of means. We redefine then the set X, 
and the space Eq2 by taking the function g, out of the set of constraints and putting it 4 
an additional dimension, f2,2+, (z)=g,(z), of the space of secondary outcomes, together 
with an appropriate aspirat<& level (which can be defined, a t  first, as 52+1=0, since the 
aspirations for secondary objectives need not be attainable). After this redefinition, we 
test again the attainability of goals. If this test fails again, we might look for other con- 
straints to  be redefined as means or secondary outcomes; first when there are no more 



constraints that could be considered as means, we can check whether some of the primary 
goals could not be moved to the category of secondary outcomes or, if this also fails, 
whether we should modify the aspired values for goals. Under quite general assumptions 
(since, in the end, we can also modify the aspired values for goals, hence it is sufficient to 
assume that the set QIn is not empty), this process of problem redefinition ends with 
aspired values of goals that are attainable. 

Now comes the phase of selection of actual decisions and means that result in attain- 
able goals. In this phase, goals can be treated as additional constraints and we face a mul- 
tiobjective decision with outcomes in the space of secondary objectives or means. This 
secondary phase can be solved by following either the maximizing or satisficing frame- 
work; if we assume that the aspiration levels for secondary objectives are not attainable, 
we can use a norm of the difference between these levels and the actual values of secon- 
dary objectives as a disutility function, similarly as in the goal programming technique. 
Without this assumption, in a more general setting of quasisatisficing decision making, we 
can use special achievement functions in an interactive technique of selection of means, 
see next sections and chapters; in fact, the goal- and program- oriented decision making 
was also one of the motivations for developing the quasisatisficing framework. This frame- 
work is also helpful in the first phase of goal- and program-oriented decision making, since 
it provides for easy tests of attainability together with a measure of under- or overattain- 
ment of goals; although goals are typically specified at rather high levels and an overat- 
tainment of them is not very probable, there are specific cases when a measure of overat- 
tainment is useful. For example, if the decision maker specifies two goal levels: a reserva- 
tion level, which must be reached, and an aspiration level, which should be reached if pos- 
sible, then the goal- and program-oriented decision making loses its strict hierarchical 
nature and a measure of overattainment of reservation levels for primary objectives must 
be compared with measures of attainment of aspirations for secondary objectives. 

3.5 Quasisatisficing decision making 

The quasisatisficing framework of decision making was developed (mainly by the 
authors of this book, but also in cooperation with many others, whose contributions are 
presented later) in order to provide decision support for decision makers that adhere 
either to the maximizing, or satisficing, or goal- and program-oriented perceptions of what 
constitutes rational decisions; in this sense, it is a generalization of the three preceding 
frameworks. We say that a decision maker behaves in a quasisatisficing way if,  aware of 
his objectives (together with possible distinctions between primary and secondary objec- 
tives, such as in the goal- and program-oriented decision making), aware of the scales of 
attainability of these objectives, aware of his aspirations (together with possible distinc- 
tions between aspiration and reservation levels for his objectives), he tries to reach the 
aspiration (or reservation) levels by maximizing when the outcomes of admissible deci- 
sions fall below these levels, but, when the aspiration (reservation) levels are attainable, 
he can choose either to further maximize in order to reach efficient outcomes, or to forego 
maximization for additional good reasons (such as reaching cooperative solutions in multi- 
actor decision situations). 

This definition has two essential elements: first is the awareness of objectives, their 
importance, scales of attainability and aspirations for these objectives, which implies 
adaptive learning of the decision maker about the decision situation with possible changes 
of his aspiration levels (also, if he has any utility function, this function might be chang- 
ing during the learning process); second, the assumption that the decision maker can 
choose between satisficing and further maximization upon reaching his aspiration levels. 
This specific assumption is of particular importance in multiactor autonomous decision 



situations; in centralized decisions, either with a single decision maker or in collegial deci- 
sion making where objectives of all members of the group are jointly considered, reaching 
aspiration levels for certain objectives might strongly influence trade-offs and priorities 
between objectives, but does not as a rule prevent searching for efficient solutions. 

Here we return to  the question whether a decision maker could not or should not 
maximize in certain situations and the relation of this question t o  the concept of 
efficiency. Recall that  a decision is called efficient with respect t o  a certain number of out- 
comes or objectives if there does not exist another admissible decision that  is as good as 
the efficient one in all outcomes and strictly better a t  least in one outcome; in other 
words, an efficient decision cannot be improved in one of its outcomes without deteriorat- 
ing other outcomes. The concept of efficiency is very naturally related to  that  of rational- 
ity and can be expressed as the following az iom of efficiency: if a decision maker is certain 
that he has listed all relevant outcomes, there exist no rational reasons for him to  be 
satisfied with outcomes there are not efficient. Since a simple way to  guarantee efficient 
decisions is t o  maximize a function which is strictly increasing with improvements of all 
outcomes - for example, an utility function - the efficiency axiom has been used as one of 
the main arguments of the proponents of maximizing against satisficing. 

However, the concept of efficiency is relative to  the completeness of decision out- 
comes considered, which fact is often not stressed enough in decision analysis. If the deci- 
sion outcomes considered are not complete, there might be rational reasons for foregoing 
complete efficiency. For example, the traditional argument that  a decision maker could 
not maximize is based on the assumption that  the costs of optimization or of procuring 
additional information are implicit additional outcomes that  cannot be precisely assessed. 
In the quasisatisficing framework, this assumption is not valid: a decision maker, aware of 
his objectives and their scale of attainability, can assess the costs of information and 
optimization, if these are relevant outcomes. On the other hand, there are other good rea- 
sons for incompleteness of outcomes considered, indicating the situations in which a deci- 
sion maker should not necessarily maximize. One, in autonomous multiactor decision 
situations, is the unwillingness to  consider or uncertainty about the outcomes of interest 
for other actors. Another, common also for centralized decision situations, is the uncer- 
tainty about own intentions and the necessity to  learn; hence, in the beginning phase of a 
quasisatisficing decision process, a decision maker must be prepared to  make mistakes in 
the specification of his objectives and aspirations and to  learn by them, before he is sure 
that  he specified objectives completely. 

However, a decision support system that  is designed t o  help in such learning should 
not misinform the decision maker by proposing to  him outcomes that are inefficient rela- 
tive to  the current specification of objectives; if the decision maker wishes to  change the 
concept of efficiency or to  stop a t  a seemingly inefficient solution for any reason, he should 
do it consciously, as an effect of his own learning and not of an inefficient decision sup- 
port. [n this sense, a traditional goal programming technique is not an adequate tool for 
quasisatisficing decision support, since it does not necessarily propose efficient decisions if 
the aspiration levels are attainable - because, in order to  propose efficient decisions start- 
ing from attainable aspiration levels, we would have not to  minimize but t o  maximize the 
distance of actual outcomes from these aspiration levels. 

Another concept in the quasisatisficing framework of rationality, relating it to  utility 
maximization, is the following principle of interactive reference point optimization.  

Suppose the decision maker is maximizing his utility, but he does not have full infor- 
mation about the admissibility of alternatives and about their possible outcomes; he has 
only some mental model of them. Still, suppose he is an expert and can intuitively, hol- 
istically maximize his utility function over this mental model of decision situation. He 
arrives then a t  some "best" decision and outcome that is not necessarily attainable; let us 
call this outcome his aspiration or reference point. He communicated his reference point 
either to his supporting staff of advisers - his team of analysts - or to  a decision support 



system; what should be the function of a good decision support system in such a case? 

The staff of advisers or a decision support system should gather all pertinent infor- 
mation about the decision situation-alternatives, their constraints, their outcomes; this 
leads to  the concept of the substantive model of the decision situation. The decision s u p  
port system should then take the reference point as a guideline and try to  find efficient 
solutions corresponding to  this point, optimize i n  response to a reference point. If the 
reference point is not attainable, the decision maker should be informed and presented 
with alternatives that  give outcome possibly close to  the reference point. If the reference 
point is attainable, the decision maker should also be informed about it;  if there are 
efficient alternatives with better outcomes than the reference point, they should be 
presented to  the decision maker. 

In view of the above discussion, quasisatisficing decision support needs a concept of a 
function that: 

a) is similar t o  an utility function and, when maximized, produces efficient decisions 
relative to  the current list of objectives; moreover, can be used as an approximation to a 
class of utility functions; 

b) is explicitly dependent on aspiration levels stated and modified by the decision 
maker and thus makes operational the concept of adaptive dependence of utility on learn- 
ing and context; 

c) corresponds to  the minimization of a distance of decision outcomes to aspiration 
levels, if the latter are not attainable, and to  the maximization of such a distance, if the 
aspiration levels are attainable; however, can be modified by the decision maker, if he 
wishes to  forego maximization; 

d) can be modified by the decision maker to  express his hierarchy of goals, such as in 
the goal- and program-oriented decision making; 

e) can be easily used to test attainability and efficiency of aspirations; 

f) can be easily generalized to  the case of dynamic outcomes in form of trajectories. 

Such a class of functions exists and is, in fact, a result of long research and develop 
ment (see Wierzbicki, 1975, 1977, 1978, 1980, 1982, 1984). We shall call here these func- 
tions order-consistent achievement junctions or, in short, achievement junctions. An 
axiomatic definition of this class of functions will be given later; here we start  with an 
example of two useful members of this class. 

Consider a decision maker who, supported by a team of analysts or a decision sup- 
port system, faces a problem of choosing a decision out of an admissible set X, and has 
specified p objectives; without loss of generality, suppose that  all outcomes of decision 
improve if the values of objectives increase. Assume that the decision maker, either rely- 
ing on his own experience or supported by the team of analysts, has established (judge- 
mentally or analytically) a mapping j : X, -+ Eq=RP that specifies the outcomes of deci- 
sions and, with possible help of the decision support system, has learned about the ranges 
of attainability ( ~ i , ~ ~ , , ;  Q , , ~ ~ ~ )  of each decision outcome. These ranges need not be very 
tight bounds of the set of attainable decisions Q, = j(X,); they might give rather broad 
bounds for this set, or even broad bounds of its reasonable subset - for example, of the set 
of efficient outcomes; it is only important that  they have been accepted as reasonable out- 
come ranges by the decision maker. 

Suppose that ,  in this situation, the decision maker specifies his reservation level q,! 
and his aspiration level q,!', where these levels satisfy 

Qi, min < q,! < q/ < Qi, max 

for each objective or outcome, i= l ,  . . . p .  What can the team of analysts or the decision 
support system conclude about the preferences of the decision maker on the basis of such 



information? 

One way would be to select an established theoretical tool; to this type of informa- 
tion, the most appropriate tool would be the theory of fuzzy sets - see, e.g., Sakawa, 
(1983). Membership functions for the assessment of satisfying decision makers require- 
ments on each outcome could be postulated in the form: 

where q,= f,(z) denotes the i-th outcome of the decision; the convolution of these member- 
ship functions could be interpreted in the sense of minimum operation: 

p = min pi 
l < i < p  

The level sets of this function in case p = 2 are shown in Figure 3.1. 

Figure 3.1. Level sets of the membership function (3.13). 

However, the logic of fuzzy sets is still too sharp to describe fully the preferences of 
the decision maker: the membership function does not describe his disutility of not reach- 
ing his reservation levels, nor his possible utility of reaching more than his aspiration lev- 
els; this would require an extension of the membership function (3.13a,b). Such specific 
utility function, explicitly dependent on the aspiration and reservation levels of the deci- 
sion maker, can be constructed when accepting following assumptions: 

(i) The decision maker prefers outcomes that satisfy all his reservation levels to any 
outcome that does not satisfy a t  least one of his reservation levels; similarly for aspiration 
levels; 



(ii) The satisfaction of the decision maker a t  reaching (all, or the last of) h' is reserva- 
tion levels can be measured by 0, while his satisfaction a t  reaching (all, or the last of) his 
aspiration levels can be measured by 1; 

(iii) The satisfaction of the decision maker a t  reaching the maximum of the range of 
all outcomes can be measured by 1+P, where /3 2 O is a parameter (if p=O, then the deci- 
sion maker behaves in a strict satisficing way); the (dis)satisfaction of the decision maker 
a t  reaching the minimum of the range of a t  least one of the outcomes can be measured by 
-7 , where 7 > 0  is another parameter; 

(iv) Since all available information for the construction of this special utility func- 
tion has been already used, the simplest form of this function that  would satisfy (i), (ii), 
(iii), obtained through linear interpolation, is postulated. 

Such a function has the following form: 

s(q,ql,ij") = min pi 
l l i s p  

The function s above is called an achievement function (also an achievement scalariz- 
ing function or a scalarizing function, see Wierzbicki, 1977, 1982) since it belongs to  the 
class of order representing achievement functions, defined axiomatically in the next 
chapter; its level sets - see Figure 3.2 for the case of p=2 - coincide with the shifted posi- 
tive cone RP+ that  defines the partial preordering of the outcome space in case of maximi- 
zation of all outcomes. 

This function has several interpretations. One of them is a Gshaped utility function, 
consistently summarizing the information contained in the points qmin, ijl, ijl, qmax and 
thus serving as an approximation to  the preferences of the decision maker. Observe that  
this particular function is not an ordinal, but a cardinal utility function (it is defined by 
ratios of intervals and thus independent of any positive monotone affine transformations 
of outcomes); therefore, it can be even used for statistical averaging or in interpersonal 
comparisons of utility in collegial decision making. 

Another interpretation of this function is a transformed and weighted (with chang- 
ing, but piece-wise constant weighting coefficients) Chebyshev or 1, norm of the 
difference between the point qmax and the actual outcome q= f(z). T o  illustrate this 
interpretation more clearly, consider a case when the points qmin, ijl are not specified and 
denote ~ " = q ;  the function (3.14a,b), after an affine transformation, simplifies then to  the 
form: 

which can also be written (after subtracting a constant term) in the form: 

Since we assume that  q, < qilmaZ for all 1 5 i 5 p, the achievement function corresponds 
in this case to  the weighted Chebyshev norm with changed sign; however, the weights a, 
are not specified explicitly by the decision maker, but defined implicitly through his state- 
ment of aspiration levels ij as compared t o  the upper bound point qmaX . Interpreted as an 
achievement function, this function was used, for example, by Wierzbicki, (1984) and 



Figure 3.2. Level sets of the achievement function (3.14) 

Lewandowski, Toth, Wierzbicki, (1985); as a Chebyshev norm, by Nakayama, (1984) and 
Steuer and Choo, (1983). The case when a decision maker specifies a reservation and an 
aspiration point was also investigated, though not in the form of the achievement function 
(3.14a,b), by Gorecki et al., (1984), and by Weistroffer, (1984). 

The simplification (3.15a,b) of the achievement function (3.14a,b) is not the only one 
possible. If the decision maker knows both upper bound point q,,, and the lower bound 
point q,i, but specifies only one reference point ij, this point should be interpreted as an 
aspiration level point rather than reservation level point; but in mathematical 
modifications of (3.14a) we must treat it as reservation level, q=ijf, and let the aspiration 
level coincide with the upper bound, ij" = q,, (otherwise the function (3.14a) would 
become discontinuous, if we would let ij"=ijt ). If both aspiration and reservation levels 
are specified but the lower bounds are not available, the definition of the function (3.14a) 
for ij: < qi < ijy must be used also for q, 5 ij:. 

An achievement function can be interpreted also in various other ways, as a penalty 
function (Wierzbicki, 1975, 1977, 1978, Weistroffer, 1984), as a tool of characterizing 
efficient solutions (Wierzbicki, 1977), as an utility function of an ideal team of staff in 
response to aspirations set by the boss (Wierzbicki, 1982), as a tool for organizing interac- 
tion with the decision maker in decision support systems (Wierzbicki, 1980, Kallio, 
Lewandowski and Orchard-Hays, 1980, Wierzbicki, Grauer and Lewandowski, 1982); 
some of these interpretations will be discussed in detail in further chapters. 

The achievement function (3.14a,b) or (3.15a,b) has, however, one disadvantage. It 
is not strictly monotonous with respect to the decision outcomes q;=f;(z); in fact, it is . . .  . 
constant when one of the outcomes increases much above other outcomes that are kept 
constant. This implies, theoretically, that  the maxima of this function might be not 



efficient but only weakly efficient (see next chapter) and, behaviorally, tha t  the decision 
maker does not pay any attention t o  overachievements, however large, in some outcomes, 
as long as other outcomes show underachievements. Since most decision makers would 
allow a t  least some degree of compensation of underachievements by large overachieve- 
ments in other outcomes, it is necessary to modify the function (3.14a,b). We can do  i t  
when adding the following postulate to  the list (i), (ii), (iii), (iv): 

(v) If an  outcome shows underachievement when compared to  its reservation (or 
aspiration) level, and other outcomes show overachievements, the decision maker is wil- 
ling to accept a compensation of the underachievement by the average overachievement in 
other outcomes (all measured relative to the scales implied by points qmin, Q", Q1, qmax ) 
with a weighting coefficient p, where 0 < p 5 p. 

This postulate leads to  the following form of the achievement function (which is an  
example of order approzimating achievement functions, see next chapter): 

with p,  defined as in (3.14a). This achievement function is also a cardinal utility function. 
Its maxima are not only efficient, but also properly efficient (with a priori bounded trade- 
off coefficients, see next chapter). Its level sets - see Figure 3.3 for the case p=2 - approxi- 
mate from outside the shifted positive cone R?. Beside these properties, it has all the 
interpretations of the function (3.14a,b). 

Figure 3.3. Level sets of the achievement function (3.16). 

Functions of this and similar types have been extensively used in so called DIDAS 
decision support systems, based on the quasisatisficing framework of rationality and often 
called interactive reference point methods. The use of achievement functions in decision 



support is motivated not only by the fact that  they constitute a reasonable approximation 
of preferences of the decision maker, explicitly dependent on his aspiration levels which he 
can modify when learning with the support of the system. We can also construct the fol- 
lowing mental model of a decision support process. Suppose the decision maker knows 
well what he wants and is an  expert in his field, however, does not have full information 
about present and future alternatives of decision and all their consequences. Since he has 
some information and is an expert, he can holistically optimize his utility function on an 
imagined set of alternatives; their way, he arrives a t  some hypothetical decision outcomes 
that  are expressed as aspiration levels. The decision support system contains a much 
more adequate model of present and future decision alternatives and their outcomes con- 
structed by a staff of analysts and called here the substantive model. Now, the construc- 
tion and maximization of an  achievement function is a tool of organizing interaction 
between the substantive model and the decision maker, who learns from the substantive 
model about decision alternatives and their consequences but preserves his full 
sovereignty of preferences and final decisions. Thus, the maximization of achievement 
function is only a tool in organizing good interaction. 

Each maximum of an achievement function is (weakly or properly) efficient; but 
achievement functions can be also used to  test attainability and efficiency of any given 
aspiration point (hence they are very useful in goal- and program-oriented decision mak- 
ing). If, say, a reservation point is (weakly or properly) efficient, then an (order represent- 
ing or order approximating) achievement function achieves its maximum, equal zero, a t  
this point. If a reservation point is not attainable, then the maximum of an achievement 
function over attainable outcomes is negative, and conversely; if this maximum is posi- 
tive, then the reservation point is attainable and not efficient, tha t  is, dominated by 
attainable points. These properties are related to the question of completeness and con- 
structiveness of characterizations (necessary and sufficient conditions) of efficient deci- 
sions, discussed in the next chapter. 
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4. QUASISATISFICING AND REFERENCE POINT OPTIMIZATION - 
MATHEMATICAL AND PROCEDURAL FOUNDATIONS 

4.1 Completeness and constructiveness of characterizations of efficient 
solutions. 

Given a mathematical model of the decision problem and a list of objectives specified 
by the decision maker and represented in the model as outcome variables, we assume that  
a decision support system should respond to any further information supplied by the user 
(that is, the decision maker or expert o r  analyst) by proposing some decisions and out- 
comes that  are efficient with respect to the list of objectives. If the user would prefer 
inefficient outcomes, it means that  he has other, yet not specified objectives in mind. He 
can then either supplement the list or, in the case when his additional objectives are not 
represented in the model, change the ordering of the already specified objectives in such a 
way that  some of them should not be maximized nor minimized, but kept close to some 
given levels. This modifies the meaning of efficiency of solutions and enables the user to  
choose solutions according to  his preferences; however, this does not change the basic 
requirement that  the decision support system should "try to  do its best" and respond only 
with efficient solutions once the list of objectives and the character of their ordering is 
given by the user. Thus, the basic theoretical questions when constructing multiobjective 
decision support systems are how to  characterize mathematically efficient solutions and 
which characterizations can be constructively used for computations in a decision support 
system. 

4.1.1. Basic concepts. 

We consider here the basic case when the decision space is E, = R n  and the set of 
admissible decisions X, c R n  is compact. Let there be p objectives or outcomes of 
interest to  the decision maker, Eq = RP, and let the outcome mapping (vector-valued 
objective function) f : X ,  -t RP be continuous, hence the set of attainable outcomes 
Q, = f(X,) be also compact. If the decision maker wants to  maximize all outcomes (when 
he wants to  minimize some of them, we can simply change the signs of corresponding 
components of objective function), then we say that  the partial ordering of the outcome 
space is implied by the positive cone D = R q  - which, in other terms, means that  the ine- 
quality 

q r  2 q" a q' - qf' f D (4.la) 

is understood in the sense of simple inequalities qif 2 qiM , i = 1, ... k for each component of 
vectors q', q" while the st r ic t  i n e q u a l i t y  

q' > q" U q' - q" € 6 = D\{O} (4.lb) 

means that  qif 2 qif' for all i = 1, ... k but there exists j = 1, ... k such that  q,' > qif' , and 
the s t r o n g  i n e q u a l i t y  

qf>> q" u 9 ' -  q 1 ' ~ i n t  D (4. lc)  

means that  qif  > qif' for all i = l,..k. 

However, we admit here also the possibility that  the decision maker would like to  
maximize (or minimize) only first p, of outcomes, while the last p - p, outcomes, num- 
bered here by p,+l ,....,p, are to  be kept a t  some given levels. In this case, we redefine the 



positive cone t o  the form 

D = { q ~  RP: qi 1 0 ,  i =  1 ,... p,, q i = O , i = p o  + 1 ,... p)  (4.2) 
Observe that  the cone D does not have an interior in this case; however, it is still a closed 
convex cone, independently whether p, < p or p, = p (in which case, clearly, the 
definition (4.2) reduces t o  D = R q ) .  If the cone D is closed and the set Q, is compact (in 
fact, much weaker assumptions are sufficient here, see Wierzbicki, 1977, and Benson, 
1978)) then there exist D-efficient or D-optimal elements of Q,. These are such ele- 
ments if E Q, that  

where fi = D\{O) is the cone D except its origin (fi is called strictly positive cone) and 
4 + D denotes the set D shifted by 4. If D = R$, then D-efficient elements are called also 
Pareto-optimal; in other words, they can be defined as such outcomes that  none com- 
ponent of them can be improved without deteriorating other components. The 
corresponding decisions 4 E X,  such that  4 = f(4) are called D-efficient or Pareto-optimal 
as well. The set of all D-efficient outcomes 

is called the D-efficient set (D-optimal set, Pareto set) in objective or outcome space. 
Several other concepts of efficiency are essential for the discussion of characterizations. 
The weakly D-efficient elements belong to  the set 

Q,, = ( 4  E Q,: Q, n (4 + int D) = 4) (4.5) 

If D = R q ,  then the weakly D-efficient elements are such that  they cannot be improved 
in all outcomes together, in the sense of the strong inequality 

q' >> q" e q' - q" E int D 

while the D-efficient are such that  they cannot be improved in any outcome, in the sense 
of the strict inequality 

Although important for theoretical considerations, weakly D-efficient elements are not 
useful in practical decision support, since there might be too many of them: observe, for 
example, that  if p, < p and the interior of D is empty, then all elements of Q, are weakly 
D-efficient. 

Another concept is tha t  of properly D-efficient elements; there are many almost 
equivalent definitions of such elements (see Sawaragi e t  al, 1985). We adopt here the 
definition of Henig (1982) that  characterizes properly D-efficient elements as Dl-efficient 
elements for any cone D' that  contains D in its interior 

Q, = u ( 4  E Q,: Q, n (4 + 6 ' )  = 4 ); OD = {D': D' 1 int D) (4-6) 
D'E OD 

If D = R q ,  then properly Pareteoptimal elements have bounded trade-off coefficients 
that  indicate how much one of the objectives must be deteriorated in order t o  improve 
another one by a unit. In applications, i t  is more useful to  restrict further the concept of 
properly Pareto-optimal elements and consider only such that  have trade-off coefficients 
bounded by some a priori number. This corresponds to  the concept of properly D-efficient 
elements with a prior; bound e  or D,-efficient elements that  belong to  the set 

where 

D, = { q E RP: dist(q, D)  5 e l ) q ( (  ); 6, = D,\{o) (4.8) 



while c > 0 is some small given number - see Wierzbicki (1977). The D,-efficient elements 
are properly efficient with trade-off coefficients bounded (approximately) to the interval 
(c; I/€). Beside weakly D-efficient, properly D-efficient and D, -efficient elements, there is 
also the concept of strongly D-efficient elements - such that the set Q, consists of a single 
element. However, problems with strongly D-efficient outcomes are rare and, in a sense, 
trivial, since the essential difficulty of mu1 tiobjective decisions relates precisely to the 
selection among many elements of the efficient set. In order to better distinguish D- 
efficient elements defined by (4.2), (4.4) as opposed to properlylor yeaklx D-$ficient ele- 
ments, we shall call them here (strictly) D-efficient. The sets Q,,, Qop, QO, Qow are con- 
tained in each other, Q,, c c Q, c Q,,, and the relation between them is illustrated 
in Figure 4.1 for the case when D = R:. 

Figure 4.1. The concepts of weak efficiency, efficiency, proper efficiency and proper efficiency 
with a priori bound. 

We see from this example that a practical decision maker would be mostly interested 
in D,-efficient elements which do not admit very large trade-off coefficients between out- 
comes. 



4.1.2. Parametric characterizations and representations, their completeness, 
computational robustness and controllability. 
In mathematical language, a characterization means any conditions that  are both 

necessary and sufficient. In multiobjective optimization, moat characterizations are 
related to  the use of some substitute scalarizing function that  typically depends not only 
on the objective values but also on some additional parameters. There are two classes of 
such parametera that  are important for applicationa in deciaion aupport ayateme: weight- 
ing coefficienta and objective function levels (which can be interpreted as reference, 
aspiration or reservation levels). Generally, we consider a set A of such parameters in R P  
(although RP-' would suffice and RP+' is sometimes used). Let a substitute scalarizing 
function be denoted by s: Q, x A + R1; important examples are (bi)linear functions, 
norms, achievement functions. Such a function should desireably have two basic proper- 
ties, denoted here by (S) and (N). 

(S) The sufficiency property: for each a E A, 

Argmax s(q, a )  c Q, 
9 E Qo n Q,(a) 

where Argmax denotes the set of maximal points of a scalar-valued function (obviously, 
by changing the sign of this function, minimal points could be used as well), while argmax 
will denote the same set if it contains only one point; A, is a subset of A for which the 
condition (4.9) holds and Q,(a) represents possible additional constraint set. An analo- 
gous property could characterize weakly efficient points (with A, replaced by ?,, and Q, 
by Q,,) or properly efficient points (with A, replaced by AASp an$ Q, by Qop). If (S) 
holds, then a point-to-set mapping of A, (A,,, Asp) into Q, (Q,,, Qop) can be defined: 

+(a) = Argmax s(q,a)  
9 E Q, Q,(a) 

Such a mapping is typically used as a basis of interaction between a decision maker and a 
decision support system. In such applications, however, we need a single point in the set 
+ ( a ) ,  that  is, a selection $(a) E +(a). The decision maker, called also the user, specifies 
some a E A, and the system responds with an efficient outcome 4 = $(a) E Q,; hence, 
parameters a will be called controlling parameters. Clearly, the system should respond 
also with the corresponding efficient decisions 2 E 2,; although we limit here most of dis- 
cussion to  the outcome space only, we shall keep in mind that one of the main difficulties 
of multiobjective optimization consists in the fact that  the set Q, is defined implicitly and 
we can only compute its elements corresponding to given z E X,. The mapping +(a ) ,  or 
its selection $(a), will be called here a parametric representation of Q,. 

However, the scalarizing function s(q,a) that  implies a parametric representation 
should also desireably have the following property: 

(N) The necessity property: for each 4 E Q,, there exists ai E A, such that: 

4 E Argmax s(q,ai) 
9 E Qo n Q,(a^) 

This property can be also modified !or weakly efficient or properly efficient points (with 
A, substituted by A,, or Anp and Q, by Q,, or Qop). The necessity property is typically 
used for checking the efficiency of a given 4 E Q,. Observe that ,  if Q,(a) = Q,(a) and 
A, = A,, then we check both necessary and sufficient conditions when (N) and (S) both 
hold. The pair of conditions (S) and (N) will be called here a parametric characterization 
of solutions to  multiobjective optimization problems. Such parametric characterizations of 
vector optimality have certain peculiarities when compared to  optimality conditions for 
other problems, where necessary conditions are typically used to  generate some a priori 
unknown candidate for optimal solution and sufficient conditions are used to  check 
optimali ty of a given solution. In mu1 tiobjective optimization, sufficient conditions can be 



typically used directly to  generate a priori unknown efficient solutions, but i t  is desireable 
that  necessary and sufficient conditions coincide in the above sense when testing efficiency 
of given solutions. Therefore, we shall say that  (S) and (N) completely characterize 
parametrically the efficient set Q,(Q,,, gap) if the same function a is used in both (S) 
and (N) and if A, = A,, Q,(a) = Q,(a) for all a E A,. 

The sets Q,, of weakly efficient solutions and gOp of properly efficient solutions 
have several Acharacterizations that  are complete. Characterizations of the (strictly) 
efficient set Q, are either almost complete (in the sense that  A, is the closure of A, or 
that  different, but convergent to  each other functions a, and a, are used in (S) and (N)) 
or they have other drawbacks. The sets A, and A, might depend on the set Q, and thus 
on computational accuracy; the intersections of Q, and Q,(a) or Q,(a) might become 
empty by computational inaccuracies a t  some a ;  the mathematical operations required in 
characterizations might be unreasonable from a computational point of view. Thus, we 
shall say that  a characterization of the type (S), (N) is robustly computable if it satisfies 
the following conditions: 

(i) The conditions (S), (N) do not contain additional requirements of p t i m e  repeti- 
tion of maximization (if the computational effort required increases too strongly with the 
dimensionality, then it prohibits applied extensions to  large-dimensional cases of multiob 
jective trajectory optimization), nor requirements of uniqueness of minima (because we do 
not have dependable computational tests of uniqueness). If the sets A, or A, depend on 
Q,, then the characterization should be valid when using internal points of A,, A, only, 
that is, it should not depend on precise information about the set Q,. 

(ii) The intersection of Q, with Q,(a) or Q,(a) should not become empty when the 
set Q, is slightly perturbed. In other words, for any 4 E Q, there should be a neighbor- 
hood U(4) such that  the intersection of of Q,, U(4) and Q,(&) or Q,(&) contains more 
points than 4 alone, that  is, for example, 

Qo " Qn(&) n u(B)\{B) # 4 
If Q, is of arbitrary, a priori unknown shape, this however means that  for each 4 E Q, 
and the corresponding & in (N), there is a neighborhood U(4) such that: 

u(4) c Qn(d) (4.12) 

Thus, if a characterization is robustly computable, (S), (N) cannot contain additional 
constraints that  might be active a t  any 4 E Q,: all such constraints should be included in 
the form of the function s ( ~  ,a), say, by penalty techniques. Unfortunately, completeness 
and robust computability of characterizations of (strict) efficiency do not coincide, which 
will be shown later in an impossibility theorem. 

Beside robust computability, there is also a special issue of constructive computabil- 
ity of the necessary conditions (N). Some of them specify, in their proof, the value of 
parameters & E A, for which these conditions should be checked; such necessary condi- 
tions will be called direct. Other asssure us only of the existence of such & while search- 
ing for this & might be computationally cumbersome; such necessary conditions will be 
called indirect. 

Another important aspect of parametric characterizations is their controllability. If a 
characterization is complete, then the related parametric representation has a specific 
"onto" property: 

which, in fact, can be taken as a precise definition of completeness of characterizations. 
For incomplete characterizations, the equality sign in (4.13) must be substituted by an 
inclusion; for almost complete characterisations, a limit or a closure must be added on the 



left-hand side of (4.13). This can be interpreted that complete or almost complete charac- 
terizations provide for a kind of global control labi l i ty  of the parametric representation by a 
user: he can reach (almost) all 4 E Q, by suitably changing a. 

However, a user of a decision support system needs also local  control labi l i ty  of a 
parametric represent-ation in the sense of being able to easily and continuously influence 
his selection of 4 E 9,; otherwise, he might become frustrated by his attempts to obtain a 
desireable outcome that the system can produce theoretically but does not produce -in 
actual interaction. This means that the computable selection +(a) E *(a), +: A, -+ Q,, 
should be Lipschitz-continuous: 

I +(a1) - +(a") 1 5 B' I a' -a1' I for all a', a" E A, (4.14) 

which, in turn, necessitates a Lipschitz-continuity of the mapping 9,  for example, in the 
sense of Hausdorff distance: 

distH(\k(al), \k(al')) <_ I a' - a" I for all a', a" E A, (4.15) 

with reasonably small values of Lipschitz coefficients p, p. Unfortunately, there are 
until now very few results on Lipschitz-continuity of parametric characterizations. We 
give later an example of such result for a simple case; in other cases, intuitive or negative 
statements can be still made, based on logical evaluation or simple counterexamples. 

4.1.3. O the r  aspects  of constructiveness of characterizations. 

Beside robust computability and controllability, there are several other aspects of 
constructiveness of parametric characterizations and representations of efficient solutions 
to multiobjective optimization problems. Some of these aspects can be expressed 
mathematically, some have purely subjective form. 

One of such aspects of characterizations is their independence on a priori informa- 
tion. Many characterizations use information about so-called idea l  or u t o p i a  po in t .  
Abstractly, this point is defined as the strict upper bound to the efficient set or as the 
unique (strong) D-maximal point of the set { q E RP : Q, c q - D), see Figure 4.2(a). 
However, such points do not exist if the set Q, has an interior and the cone D does not. 
Therefore, it is more useful to define the utopia point as the composition of results of 
scalar maximization of each objective function separately: 

iilmat = max qi, i = 1, . . .p  
PE Q, 

and remember that this point should be interpreted with care if some objective functions 
are not maximized but kept close to given levels. A characterization should not depend on 
the precise knowledge of the utopia point, because it would not then be robustly comput- 
able. As long as only approximate information about the utopia point is required in a 
characterization, it does not constitute an excessive dependence on a priori information, 
because an approximate utopia point can be computed once for entire 9,. The issue of 
using approximate upper bounds instead of precise utopia points becomes rather impor- 
tant in multiobjective trajectory optimization, when the number of objectives, if not 
infinite in any computational approximation, is nevertheless rather large; in such a case, 
computing upper bounds for each computed trajectory point would require rather exten- 
sive effort and approximate upper bounds for entire trajectories should be computed 
instead. 



Some interactive decision processes use also (not for characterizations, but for other 
purposes) lower bounds of the efficient set Q,. The strict lower bound, called nadir point, 
is defined as the D-maximal point of the set {q E Rp : go c q + D), but this strict nadir 
point is not constructively computable (except in cases of discrete optimization). How- 
ever, even an approximate lower bound t o  the efficient set might be useful in an interac- 
tive decision process; such an approximate nadir point can be expressed (in the case of 
maximization of all objectives) as: 

i ( j )  E Argmax q, 
QE 80 

where 9(j)  is an arbitrary selection from the set of elements maximizing q,, see Figure 4.2 

(b). 
While the use of approximate bounds to  the set Q, is quite constructive, the require- 

ments of further a priori knowledge of Q, are not. For example, if a priori knowledge of 
entire Q, is used in (N), i t  makes the necessary condition rather useless, since we cannot 
then apply (N) to  check whether t j  belongs to a priori unknown Q, (if we knew Q,, it 
would be simpler t o  check 9 E Q, by more direct means). (N) shall be called tautological 
in such a case. 

Experience in applications of parametric representations in multiobjective optimiza- 
tion and interactive decision support has led now most authors to  agree more or less 
explicitly on several subjective attributes of constructiveness of such characterizations 
and representations. These attributes are: 

Simplicity. A parametric representation should be conceptually simple and easy to  
grasp mentally. 

Generality. A parametric representation should be, if possible, applicable not only to  
linear and convex problems, but also to  nonconvex, discrete and dynamic problems of 
multiobjective trajectory optimization. 

Interpretability of parameters. The parameters in the sets A, should have an easy 
and reasonable interpretation for the user (who needs such an interpretation when chang- 
ing these parameters in order t o  control the parametric representation), not for theorists 
only. 

Computability. Beside the requirements of robust computability and directness of 
necessary conditions, parametric representations should be computable by means of algo- 
rithms that  do not require excessive computer time and are can be relied upon t o  produce 
results without the need of adjustment by the user. 

4.1.4. Alternative characterizations and parametric representations of efficient 
solutions. 

There are many characterizations that  imply various parametric representations. We 
shall subdivide them into three classes: (A) those based on weighting coefficients used in 
(bi)linear functions and various norms; (B) those based on aspiration or reservation levels 
used in various norms and achievement functions; (C) other possible characterizations. 
We shall discuss here only the classes (A) and (B). 

(A) Characterizations by weighting coeficients.  These characterizations are obtained 
if a is a vector composed of weighting coefficients cri used in (bi)linear functions or 



Figure 4.2. Concepts of the utopia point (a) and the nadir point (b). 

various norms that scalarize the components qi of the outcome vector. All characteriza- 
tions in this class have one fundamental disadvantage in common: weighting coefficients 
are not easy to be understood well and interpreted by an average user, since they actually 
belong to a dual space to the space of outcomes and the relations between the dual and 
the primal spaces are not necessarily easy to interpret. In particular, users find it difficult 
to interpret weighting coeficients for objective trajectories. The typical interpretation of 



weighting coefficients through their relation to the trade-off coefficients does not help 
much since the concept of trade-off itself is, in a sense, dual to the concept of preference. 
On the other hand, weighting coefficients are well understood by mathematicians, hence 
the theory of characterizations based on weighting coefficients is best developed; for a 
review, see Sawaragi et  al., (1985) or Jahn,  (1985). For all characterizations of this class 
we assume that  D = R q ;  modifications to other forms of D are possible but not neces- 
sarily straightforward, since they require a consistent use of dual spaces and cones. 

(Al )  (Bi)linear functions used as substitute scalarizing functions have the following 
form: 

with a = (al, . .ai, . .ap); the sets A,, A, are defined by: 

Theorem 4.1. Let s, A,, A, be defined as above. If a E A,, then each 4 that  max- 
imizes s(q,a)  over q E Q, is efficient. If 4 is efficient and Q, is convex, then there exists 
d E A, such that  4 maximizes s(q,d) over q E Q,. Moreover, d is in such a case the nor- 
mal vector to a supporting ("from above") hyperplane of Q, a t  4; if such hyperplane is 
unique (the boundary of Q, being smooth a t  d), then the trade-off coefficients a t  4 are 
defined by: 

A 4 .  a , .  
- lim 4 - - 

Ai+O Aqi aj  ' 4 + A4 E Q, 

If a E A,, then each 4 that  maximizes s(q,a)  over q E Q, is weakly efficient; if 4 is 
weakly efficient and Q, is convex, then there exists & E A, such that  4 maximizes s(q,d) 
over q E Q,. If a E A,, then each 4 that  maximizes s (q ,a)  over q E Q, is properly 
efficient; if 4 is properly efficient and Q, is convex, then there exists & E A, such that 4 
maximizes s(q,&) over q E Q,. 

For the proofs of various parts of this well-known theorem see, for example, 
Sawaragi et al. (1985) or Jahn (1985); originally, this characterization dates back to  
Koopmans (1951), Kuhn and Tucker (1951) and Geoffrion (1!368). See also Wierzbicki 
(1977) for extensions to  arbitrary convex closed cones D in linear topological or Banach 
spaces. 

We see that ,  for convex cases, this characterization is complete for weak and proper 
efficiency and almost complete (since A, is the closure of A,) for (strict) efficiency. More- 
over, it is easy to see that  thesecharacterizations are robustly computable but indirect for 
necessary conditions (since determining a supporting hyperplane is not necessarily 
straightforward). They are also independent of a priori information, conceptually simple, 
rather general (with the restriction of necessary conditions to  the convex case) and easily 
computable for sufficient conditions. The main drawback of them, beside bad interpreta- 
bility of weighting coefficients, is the fact that  the related parametric representations are 
not ~i~schi tz-cont inuous  for such basic cases as when Q, is a convex polyhedral set, 
which can be easily seen on simplest examples, see Figure 4.3. Thus, these representa- 
tions are not locally controllable by the user. 

Similar properties to the above characterizations have those based on a ll norm: 

7 )  = a , ,  - 1 ;  a E A, 
i=l 



Figure 4.3. An example of the discontinuity of the parametric representation $(Q) when using 
linear substitute scalarizing functions. 

with A ,  defined as in (4.19) and a upper bound point q" restricted by: 

Actually, q" > j,,, would suffice, but the strong inequality in (4.22) is assumed to obtain 
computational robustness. These characterizations will not be discussed separately. 

(A2) A weighted lk-norm is also often used as a substitute scalarizing function: 
, 

with A ,  defined as in (4.19) and q" restricted as in (4.22); the parameter k E ( I ;  + w )  can 
be also treated as (p+l)-th component of the parameter vector. 

Theorem 4.2. Let s(q,a) ,  a,k,q", be selected as above. Then each q^ that  minimizes 
s(q,a)  over q E Q ,  is properly efficient. If 4 is efficient, then for each E > 0 there exist 
such a E A, ,  such k E ( I ;  + w )  and such i' with 1 4 - ij' I < E that  4' minimizes s(q,a)  
over q E Q,. 

This form of this theorem is due to  Gearhart (1983); earlier, similar results were 
given by Salukvadze (see, for example, 1979), Zeleny (1973), Yu and Leitmann (1974), 
while a most general and early form of the sufficiency part of this theorem for Banach 
spaces with suitable assumptions on the cone D was given by Rolewicz (1975), see also 
Wierzbicki (1977). We see that  this characterization is almost complete for proper and 
(strict) efficiency also in non-convex cases; in this sense, i t  is stronger than this by 
(bi)linear functions. 



This characterization is robustly computable, but the necessary condition is indirect. 
The Lipschitz-continuity of the related parametric representation has not been studied, 
but we might suspect local controllability. The characterization depends on a priori infor- 
mation, but not excessively and is not tautological. It  is not quite simple conceptually, 
but rather general. The interpretability of the parameter pair (cr,k) for an  average user is 
bad; moreover, this representation might be not easily computable if k is very large, since 
i t  leads to  badly conditioned nonlinear programming problems. 

(A3) A weighted I ,  (Chebyshev) norm is a very useful substitute scalarizing func- 
tion: 

where A, is defined as in (4.19) and f restricted as in (4.22). 

Theorem 4.3. Let s (q ,a) ,  q", A, be defined as above. Then each 4 tha t  minimizes 
s (q ,a)  over q E Q, is weakly efficient. If the minimum is unique, then such a tha t  rninim- 
izes s(q,a)  over q E Q, is efficient. If 4 is weakly efficient, then there exists such 6 E A, 
that  4 minimizes s(q,d) over q E Q,. If a is efficient, then there exists such 6 E A, that  4 
uniquely minimizes s (q ,a)  over q E Q,. 

This theorem is due to  Dinkelbach (1971) and Bowman (1976). We see that  this 
characterization is complete for weak efficiency and also for (strict) efficiency even in a 
nonconvex case, but a t  the cost of the requirement of uniqueness and thus lost of robust 
computability for (strict) efficiency. Beside this basic drawback, this characterization 
depends on a priori information but not excessively and is not tautological, is rather sim- 
ple conceptually, general, and easily computable (since we can substitute the operation 
max in (4.24) by p inequalities; recently, nondifferentiable optimization algorithms are 
becoming more dependable and could possibly in future be also applied for this case). 

The basic drawback of all weighting coefficient methods - their bad interpretability - 
can be overcome in this case by making these coefficients dependent on aspiration or refer- 
ence levels qi for objective function, that  is, by introducing a transformation a ( ~ ) .  Under 
the restriction that  fi < q",, we can take: 

a i (q)  = ( l /(qi  - qi))/ 9 I/(@, - qj) (4.25) 
j- 1 

which has the interpretation that  the closer is an aspiration or reference level qi to  the 
upper bound level q",, the more important is the objective, see Figure 4.4(a). When check- 
ing necessary conditions in Theorem 4.3, the application of (4.25) with qi = =, makes 
these conditions directly computable, see Figure 4.4(b). This modification has been used 
by Steuer (1983), Nakayama (1985) and others; however, if aspiration or reference levels 
are used as the controlling parameters, then the method belongs to  another class since the 
norm (4.24) changes its form of dependence on controlling parameters and should be 
interpreted as an achievement function. In this sense, we shall show later that  the 
corresponding parametric representation is Lipschitz-continuous and thus locally controll- 
able. 

(A4) A composite norm, in particular - a combination of weighted I l  and I ,  norms is 
one of the strongest scalarizing functions: 

a E A,, ap+l E (0; 11 

where A, is defined as in (4.19) and g" restricted as in (4.22). 
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mi n 

Figure 4.4. Defining the weighting coefficients for a Chebyshev norm with help of aspiration 
levels: a) sufficiency; b) necessity. 

Theorem 4.4. Let s (q ,a) ,  q', a p + ~  and a E A, be defined and restricted as above. 
Then each 4 that  minimizes s(q ,a)  over q E Q ,  is properly efficient; if q^ is properly 
efficient, then there exists a (sufficiently small) a p + ~  and a E A, such that  4 minimizes 

3(q1a) over q E 9,. 
This theorem is due to  Iserman and Dinkelbach (1973). We see that  this completely 

characterizes proper efficiency without convexity assumptions; since (4.26) converges to  
(4.24) with ap+l 0, we obtain also an almost complete characterization of (strict) 



efficiency. This characterization is robustly computable and its necessary condition 
becomes direct if we apply (4.25) with = 4, and choose ap+l smaller than an a priori 
bound on (the inverse of) trade-off coefficients. 

This characterization depends on a priori information but not excessively and is not 
tautological. It  is not quite simple conceptually but rather general and easily computable 
(again, we can transform the problem of minimizing (4.24) t o  a simpler one by using p+ l  
inequalities; if Q, is a convex polyhedral set, this leads to  a linear programming problem). 

- - - - 

Thus, it might be one of the best characterizations - provided, however, that  we use the 
transformation (4.25) of weighting coefficients in order to assure easy interpretability and 
local controllability. This has been used by Wierzbicki (1985), Lewandowski et  al. (1985) 
and applied in the Dynamic Interactive Decision Analysis and Support (DIDAS) system, 
although not as a norm but as an achievement function. 

(B) Characterizations by objective function levels. These characterizations assume 
that  a is a vector composed of objective function levels that  are interpreted either as 
reservations (values that  must be achieved), aspirations (values that  should be desirably 
achieved) or reference values (which can be, in fact, interpreted as aspirations). While 
much better interpretable for an  average user than the characterizations by weighting 
coefficients, most of the characterizations by objective function levels have several disad- 
vantages that  can be overcome first by introducing the concept of order-consistent 
achievement functions - a class that  includes functions such as (4.24) under the transfor- 
mation (4.25) but is much more general. 

(B l )  Directional search. If a direction w E R$ and the utopia point imax are given, 
we can construct a substitute scalarizing function for the directional search: 

with an arbitrary norm in RP and with t selected as the smallest value of t E [O;+cm) for 
which the minimum of s over q E Q, is equal zero. This is actually an additional minimi- 
zation requirement; moreover, imaX should be known exactly in the corresponding 
sufficient condition, hence the following incomplete characterization is certainly not 
robustly computable: 

Theorem 4.5. (N)  Let g^ E Q, be (strictly) efficient and let an upper bound point 
q' > a,, be given. If ri, = q' - 4, then t = 1 is the lowest value of t such that  
q - t ri, E Q,; the minimum of the function s above with q' = i,, over q E Q, is then 
equal zero. (S) If p = 2 and Q, is convex and compact, then, for each w E R+P, the smal- 
lest value of t > 0 such that  i,,, - t w E Qo results in a (strictly) efficient 4 E Q,. If 
p > 2, counterexamples show that  an analogous sufficient condition cannot be proven 
even under convexity assumptions. 

The above theorem is well known, but we give the proof of it in Appendix t o  illus- 
trate why it is impossible to  obtain a complete characterization by directional search if 
p > 2. Thus, the above characterization cannot be used to generate a priori unknown 
efficient solutions in response to  user requirements; i t  is only a very good tool for checking 
efficiency of given $. 

(B2) Reservation levels or constraints on objective functions. Here several simple 
substitute functions and constraints are used: 

where: 



Theorem 4.6. Let D = RP+ and sk, Ak(q) be defined as above. If, for some 
k = 1, ...p, i maximizes sk over q E QonAk(q)  with some E i,, - R q ,  then i is 
weakly efficient; if tj is weakly efficient, then there exists k = 1, ...p such that i maximizes 
sk over q E Ak(4) with 4 = q. If, for all k = 1, ...p, 4 maximizes sk over q E Q, n Ak(I) 
with some tj  E i,, - R q ,  then 4 is (strictly) efficient; if 4 is (strictly) efficient, then 3 
maximizes sk over q E Ak(i)  with 8 = 4 for all k = 1, ...p. Let Q, be convex. Then i is 
properly efficient if and only if the problema of maximizing s k  over Q , n ~ k ( i )  are stable, 
that is, the perturbation functions: 

are Lipschitz-continuous for all k = 1, ...p. 

The proof of this theorem, due to earlier results of Changkong and Haimes (1978) 
and Benson and Morin (1977) can be found in Sawaragi et al. (1985). This characteriza- 
tion is complete and rather general (valid without any convexity assumptions but not 
easy to generalize for the case of trajectory optimization). However, it is not robustly 
computable for (strict) efficiency, because of the requirement of p-times repeated maximi- 
zation and because Qo n Ak(i)  becomes a singleton set ( 4 )  in necessity statements. 
Thus, only the weak efficiency part of this characterization has found broader applica- 
tions. Moreover, the proper efficiency part of this characterization is not direct. On the 
other hand, we can suspect local controllability, although Lipschitz continuity of this 
representation has not been investigated. 

The characterization depends on a priori information but not excessively and is not 
tautological; it is conceptually simple and the parameters are easily interpretable as reser- 
vation levels for objective values. For the weak efficiency part of this characterization, it 
is also easy to compute. 

Another, early variant of characterization by using reservation levels is related to 
one of two possible interpretations of goal programming: this of trying to improve given 
attainable lower bounds or reservations for objective values. Originally suggested by 
Charnes and Cooper (1961), further developed by Fandel (1972) and Ecker and Kuada 
(1975), it has been studied extensively in various modifications - see Gal (1982) for a sur- 
vey. Its prototypical formulation is: 

with some fixed a E A, defined as in (4.19). This gives a complete characterization of 
(strictly) efficient solutions: 

Theorem 4.7. Let D = RI; and s ( q , ~ ) ,  Q(Q) be defined as above with Q E Q,. If i 
maximizes s(q,tj) over q E Q, n Q(Q), then tj is (strictly) efficient; if q^ is (strictly) 
efficient and we set = q ^ ,  then q  ̂ maximizes s(q,rj) over q E Q0 n Q(4). 

This theorem is well known, but we give its proof in Appendix in order to illustrate 
the basic drawback of this characterization: it is not robustly computable. In fact, we use 
here Q, n Q ( i )  = {i) in necessary conditions and this singleton set might become empty 
by any, however slight, perturbation of Q,, see Figure 4.5. Lipschitz-continuity of the 
related parametric representation has not been investigated (this repre!entation is obvi- 
ously Lipschitz-continuous with coefficient 1, if we consider only Q E Qo, in which case, 
however, it is not computationally robust; for E Q ~ \ Q ~  the problem of Lipschitz- 
continuity is more complicated). Except for these essential drawbacks, this characteriza- 
tion does not depend on a priori information, is simple conceptually, very general (no con- 
vexity assumptions are needed and a generalization to  multiobjective trajectory 



optimization is easy), well interpretable and easily computable if we do not come with 4 
too close to  9,. 

Figure 4.6. Characterization of efficient points by reservation levels 4 treated as constraints: a) 
sufficiency; b) necessity. 

The drawbacks of this otherwise excellent class of characterizations could be over- 
come when substituting constraints by penalty functions - but this leads to  the concept of 
an achievement function. Before adressing this concept, yet another class of characteriza- 
tions must be considered. 

(B3) Aspiration levels with various norms. This class consists of two subclasses. The 
first subclass, called compromise programming, corresponds to  the case where aspiration 
levels for objective function values are above utopia point and thus far from being attain- 
able, Q >> G,,. This is actually the case of classes A2, A3, A4 with the upper bound 
point q' - called in this case the displaced ideal - treated as the controlling parameter and 
interpreted as aspiration level point; this case will not be considered here any further (see, 
for example, Zeleny 1982 or 1984 for more detailed discussion). The second subclass 
corresponds to  the second, widely used interpretation of goal programming: this of trying 
to come close to  given aspiration levels or goals which are typically not far from being 
attainable. In fact, consider formula (4.23) with another interpretation: 

where a E A ,  is treated not as the controlling parameter but as a constant and q' is the 
controlling parameter instead. The limit case when k -, w is a form similar to  (4.24). If 
k = 1 and q' = Q, we obtain a form similar to  (4.31); however, there is a basic difference: 
the function above should be minimized and not maximized as it was the case with (4.31). 
Theorem 4.7 implies that  one must mazimize a norm or a measure of improvement from 
attainable reservation levels in order to  get to  the ef ic ient  set; from unattainable aspiration 
levels, however, one must minimize the distance to the attainable and ef ic ient  set .  Thus, 
there are two precisely opposite interpretations of goal programming techniques used as a 
tool for reaching efficient solutions. T o  distinguish between them, we must have 



additional means of checking that their boundary - the efficient set - has been crossed. 
Theorem 4.8. Let D = RP+, a(q,q) be defined as above with any k E (1; w ) ,  and Q, 

be convex. If tj minimizes a(q,#) over q E Q, and tji < for all i=l,..p, then tj is properly 
efficient. If tj is properly efficient, then there exists such 4 with > tji for all i = l,..p 
that tj minimizes a(q,tj) over q E QO. 

The proof of this complete characterization of proper efficiency is given in Appendix; 
similar results are given by Jahn (1985). By admitting limit casea k = 1, k = w and weak 
inequalities between (some, but not all) tji and tji, a similar complete characterization of 
weak efficiency and an almost complete characterization of (strict) efficiency can be prm 
ven. For convex compact Q,, we can use this characterization constructively but not nec- 
cesarily directly. Suppose tj is arbitrary and the minimum of the distance (4.40), equal 
zero, is attained a t  tj = q; thus we know that tj is attainable but do not know whether it 
is efficient. By moving q in a direction from int RP+ sufficiently far (or several times) we 
can be sure that  finally q- tj E int RP+ is obtained which, in the convex case, implies that 
the efficient set has been crossed - see Figure 4.6. The necessary condition is even less 
direct since the trade-off coefficients a t  tj must be first computed in order to  determine the 
direction # - tj  that  is needed when checking the efficiency of tj. 

Figure 4.6. The impact of convexity on the efficiency of goal programming solutions obtained 
by increasing goals. 

On the other hand, goal programming is simple conceptually, easily interpretable 
and relatively easily computable; therefore, i t  has been widely used, see Charnes and 
Cooper (1975), Dyer (1972), Ignizio (1983). In the terminology of goal programming, the 
components I q, - 61 of the distance function are often called achievement functions (or 
under-achievement and over-achievement functions, if the sign of qi - q, is taken into 



account). The drawbacks of goal programming suggest, however, that  a strenghtening of 
this concept would be useful: we need such achievement functions that  would preserve 
monotonicity when Q crosses the efficient boundary, since we would not then have to 
change from maximization to  minimization. Such functions are called here order- 
consistent achievement functions and are discussed in detail in the next section. 

4.1.5. Concepts and propert ies of order-coneietent achievement func tions. 

When trying to  specify a class of characterizations based on objective function levels 
that  would have good properties in applications for decision support, i t  is essential to  
choose first appropriate concepts that  correspond to the nature of the vector optimization 
problem. We address here two such concepts: this of monotonicity, essential for 
suficiency parts of characterizations, and that  of separation of sets, essential for the 
necessity parts of characterizations. 

The role of monotonicity in vector optimization is explained by the following basic 
theorem: 

Theorem 4.9. Let a function r : Q, + R1 be strongly monotone, that  is, let 
q' > q" (equivalent to  q' E q" + d )  imply r(qr) > r(q"). Then each maximal point of this 
function is efficient. Let this function be strictly monotone, that  is, let q' >> q" (equivalent 
to q' E q" + int D)  imply r(qr) > r(q"). Then each maximal point of this function is 
weakly efficient. Let this function be E-strongly monotone, that  is, let q' E q" + d, imply 
r(ql) > r(ql1), where D,, I)", are defined as in (4.8). Then each maximal point of this func- 
tion is properly efficient with bound c. 

Various parts of this theorem are well-known (see Yu and Leitman, 1974, 
Wierzbicki, 1977, Jahn, 1984, Sawaragi et  al., 1985); to  illustrate its basic simplicity, the 
proof of the proper efficiency part is given in Appendix. Observe that  a function con- 
structed with the help of a norm, r(q) = I q - Q l ,  is strictly monotone for all q < Q if the 
Chebyshev norm is used and strongly monotone for all q 5 Q if any other norm is used; a 
composite norm of the form (4.28) where r(q) = s(q,cr) with some cr E A, is €-strongly 
monotone for all q 5 Q if c is sufficiently small when compared to  crp+l. 

The second concept, that  of separation of sets, is actually used implicitly or expli- 
citly whenever necessary conditions of scalar or vector optimali ty are derived. We say 
that  a function r: RP - R1 strongly separates two disjoint sets Q1 and Q2 in RP, if there 
is such ,fl E R1 that  r(q) 2 ,fl for all q E Q1 and r(q) < ,fl for all q E Q2. Since the 
definition of efficiency (4.4) requires that  the sets Q, and Q + d are disjoint (or Q, and 
4 + int D for weak efficiency, or Q, and 4 + d, for proper efficiency with bound), they 
could be separated by a function. If Q, is convex, these sets can be separated by a linear 
function of the form (4.18); this separation of sets is precisely the primal concept beyond 
the dual concept of weighting coefficients. If Q, is not convex, the sets Q, and 4 + d 
could still be separated a t  an efficient point 4, but we need for this a nonlinear function 
with level sets {q E RP: r(q) > ,fl) which would closely approximate the cone 4 + D. 
There might be many such functions; we shall define first their desirable properties and 
then give several exampels of them 

(B4) Order-representing achievement functions are defined generally as such continu- 
ous functions s:Q, x A - R1 that  s(q,f) is strictly monotone (see Theorem 4.9) as a 
function of q E Q, for any Q E A and, moreover, possesses the following property of order 
representation: 

(9  E RP: s(q,Q) > 0) = Q + int D ,  for all Q E  A (4.33) 



which implies, together with the continuity of s(q,Q), that: 

s(q,ij) = 0 for all q = QE Q, (4.34) 

Here we assume A = RP or any reasonably large subset of RP containing Q, or, a t  least, 
Q,,; the controlling parameter Q is interpreted as aspiration level point that  might be 
attainable or not. A simple example of such a function is: 

s(q,ij) = min a,(q, - Q,) 
l s i s p  

with A = RP and some fixed a E A, defined as in (4.19). Other examples are functions 
(3.14a,b) or (3.15a,b); still other examples of order-representing functions will be given 
later. At any weakly efficient point tj, an order representing function with Q = tj  strictly 
separates the sets tj + int D and Q,. However, an order-representing function cannot be 
strongly monotone, since i t  could not be continuous in such a case. 

(B5) Order-approzimating achievement functions are defined generally as such con- 
tinuous functions s: Q, x A - R' that  s(q,Q) is strongly monotone (see Theorem 9) as 
a function of q E Q, for any ij E A and, moreover, possesses the following property of 
order approximation: 

Q + D, c {q E RP: s(q,Q) 2 0) c Q + D,, for all Q E A (4.36) 

with some small r > F > 0, for some reasonably large set A containing Q, or, a t  least, Q,; 
the requirement (4.36) implies also (4.34). A simple example of order-approximating func- 
tion is: 

with A = RP, ai > 0, i = 1, ...p and some ap+l > 0 that  is sufficiently small as compared 
to  r and large as compared to this function is not only strongly monotone, but also F- 
strongly monotone. Another example is function (3.16); other examples of order- 
approximating functions will be given later. At any point 4 that  is properly efficient with 
bound r, an order-approximating function with ij = 4 strictly separates the sets tj + d, 
and Q,. 

Order-representing and order-approximating functions are jointly called order- 
consistent achievement functions. When the concepts of monotonicity and separation of 
sets are used, the following theorem that  characterizes efficient solutions by maxima of 
order-consistent functions might appear simple to the point of triviality; but this is pre- 
cisely the power of arguments based on separation of sets that  they simplify complex 
problems. 

Theorem 4.10. Let s(q,ij) be an order-representing function. Then, for any ij E A, 
each point that  maximizes s(q,ij) over q E Q, is weakly efficient; if 4 is weakly efficient 
(or efficient), then the maximum of s(q,ij) with ij = tj  over q E Q, is attained a t  4 and is 
equal zero. Let s(q,d) be an order-approximating function with some C, c as in (4.36). 
Then, for any Q E A, each point that  maximizes s(q,Q) over q E Q, is efficient; if tj is 
properly efficient with bound c (D,-optimal), then the minimum of s(q,ij) with Q = tj  over 
q E Q, is attained a t  tj and is equal zero. Let, in addition, s(q,Q) be F-strongly monotone 
in q; then each point that  minimizes s(q,Q) over q E Q, is properly efficient with bound C. 

Parts  of this theorem were given earlier (Wierzbicki 1977, 1980, 1982), also for 
infinite-dimensional normed spaces. In Appendix, we give only the proof of necessary con- 
ditions for proper efficiency with bound. 

The essential difference between the use of displaced ideal or goal programming tech- 
niques, based on norms, and the use of order-consistent achievement functions - even if 
simple forms (4.35), (4.37) of achievement functions strongly resemble norms (4.24), 



(4.26) - is that  the aspiration point i j  needs not to be above the utopia or ideal point, as 
in the case of displaced ideal, nor to be unattainable in order to achieve efficiency, as in 
the case of goal programming. No matter whether the aspiration point i j  is attainable or 
not, the results of maximizing an order-consistent achievement functions are efficient 
(weakly or strictly or properly with bound r), because such a function possesses an  
appropriate monotonicity property. Somewhat simplifying, we can say that  an order- 
consistent achievement function switches automatically from norm minimization to max- 
imization when the aspiration point crosses the efficient boundary and becomes attain- 
able. On the other hand, the characterization by Theorem 4.10 is obtained without con- 
vexity assumptions, because the order-representing or order-approximating properties of 
achievement functions result in a constructive though nonlinear separation of sets Q, and 
Q + d (or Q + int D ,  or Q + 6 , )  even in nonconvex cases - see Figure 4.7. Therefore, this 
characterization can be also used when Q, is a discrete set. 

Therefore, classes (B4, B5), without any convexity assumptions nor restrictions on 
controlling parameters Q, completely characterize weakly efficient elements and almost 
completely characterize properly efficient elements (if we take the closure of sets of maxi- 
mal points of an order-approximating achievement function as E - 0). By adding the 
requirement of uniqueness of minima in Theorem 10, we could make this characterization 
complete also for efficient solutions, but we forego this generalization because it would 
mean the loss of robust computability. The requirement that  i j  = Q in necessary condi- 
tions is not tautological, if we want to use these conditions to  check the efficiency of a 
given element: it is direct and robustly computable, since we do not assume any a priori 
knowledge of Q,, nor do we limit the maximization to  a single point. 

These characterizations are not quite simple conceptually, but the controlling 
parameters q and the values of the achievement function s ( q , ~ )  are very well interpret- 
able: while q is interpreted as aspiration levels, the sign of the maximum of achievement 
function indicates whether these aspirations are attainable or not, and the value zero of 
this maximum indicates that  aspirations are attainable and efficient. These characteriza- 
tions are also very general, valid not only for nonconvex and discrete cases, but also easy 
to  extend for problems of multiobjective trajectory minimization - see Wierzbicki (1977, 
1980) for appropriate extensions of Theorem 4.10. Computationally, their applications are 
either simple - if Q, is a convex polyhedral set, then the problem of maximizing (4.35) or 
(4.37) can be rewritten as a linear programming problem - or more complicated for non- 
linear or nonconvex problems. In such cases, we must either represent (4.35) or (4.37), by 
additional constraints, or apply nondifferentiable optimization techniques, since the 
definitions of order-consistent achievement functions imply their nondifferentiability at  
q = q. 

These characterizations are also, most probably, locally controllable; before estab- 
lishing Lipschitz-continuity of a parametric representation corresponding t o  the simple 
achievement function (4.35) we must, however, indicate the use of order-consistent func- 
tions for checking the uniqueness of maxima. The concept of separation of sets used in 
Theorem 4.10 implies the following corollary: 

Corollary. If Q is a maximal point of an r-strongly monotone order-approximating 
function sl(q,q) over q E Q, with any Q E A ,  then Q is also the unique maximal point of 
an order-representing function s2(q,q) with Q = Q over q E Q,. 

This corollary is an immediate consequence of the separation of the sets Q + d and 
Q, by the cone Q + Dr On one hand, this confirms only an easy theoretical conclusion 
that  an order-representing function has unique maxima a t  all properly efficient points. 
On the other hand, however, the corollary gives a constructive computational way of 
checking the uniqueness of maxima of an order-representing function. 

If Q is, for example, a maximal point of function (4.35), we can take function (4.37) 
with some small c . ~ ~ + ~  and ij = and maximize the latter function; if we obtain the same 
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Figure 4.7. The principle of separation of sets by an order-consistent achievement function: (a) 
at weakly efficient elements; (b) at properly efficient elements with bound e .  

result of this second maximization, we are sure that  the maximum of the former function 
is unique. This applies, however, only to  order-consistent functions in multiobjective 
minimization, and is by no means a general way of checking the uniqueness of maxima of 
other functions, for which task we do not have constructive computational methods. 



The above corollary explains also why we can use rather strong assumptions in the 
following theorem. 

Theorem 4.11. Let the order-representing function s(q,Q) be defined as in (4.35) 
and consider the set A of such Q E RP that  the maxima of this function are properly 
efficient elements of Qo, that  is, are unique. Then the parametric representation: 

4 = +(Q) = arg max s(q,Q) 
9 E  9, 

is Lipschitz-continuous with the Lipschitz constant 4, that  is, 

where the Chebyshev norm is used, which implies also Lipschitz-continuity in any other 
norm in RP. 

The proof of this theorem is given in Appendix. Finally, next theorem explains the 
impossibility of complete and robustly computable characterization of efficient elements 
4 E Q,. 

Theorem 4.12. Let s:Q, x A -+ R' be a continuous substitute scalarizing func- 
tion for vector minimization problems over an arbitrary set Q, c RP. 

(a) Suppose that  for each efficient 4 E Q, there exists an B E A, c A such that  q  ̂ is 
a maximal point of s(q,B) over q E Q, n Q(B), where Q(B) is an additional constraint 
set, and that  each maximal point of s (q ,a)  over q E Q, n Q(a)  is weakly efficient for any 
a E A, c A; let A, n A, f @. If, for each 4 E Q, and the corresponding B E A,, the set 
Q(6) contains a neighborhood U(4) of 4, then the function s(q,a)  has the following pro- 
perty of local order-representation: 

{q E U(4): s(q,a)  > s(q^,a)) = (4 + int D) n U(4) for all a E A, n A, (4.39) 

(b) If a continuous function s(q,a)  has the property (4.39) then, for sets Q, of arbi- 
trary form, there exist maximal points 4' of this function over q E Q, n U(4) that  are 
weakly efficient but not efficient. 

Hence, a complete characterization of efficiency by maximal points of such a function 
is impossible, if we do not apply additional conditions of uniqueness or repetitive maximi- 
zation. This theorem indicates that  the class of characterizations by order-consistent 
achievement gives, in a sense, strongest possible characterizations of efficiency for sets Q, 
of arbitrary form: we cannot then obtain a complete characterization of (strictly, as 
opposed to  weakly or properly) efficient solutions without foregoing the computational 
robustness of this characterization. 

4.2. Examples and properties of order-consistent achievement functions 

As it was shown in the previous chapter (point 3.5), an  achievement function can be 
interpreted as a non-stationary approximation to  a utility function, explicitly dependent 
on a changing context, while the influence of this context is summarized by a special 
parameter of this function - the aspiration or reference point Q. In order to  obtain good 
properties of parametric representation and characterization of efficient solutions through 
maximal points of such a function, we have added abstract requirements of order- 
consistency to  the definition of an achievement function. However, the definitions of 
order-consistent functions do not require that  all level sets of the function s(q,Q) should 
represent or approximate order; only the zero level set should have this property. Hence 



there are many examples of order-consistent functions. 

4.2.1. Order-representing achievement functions. 

We consider here achievement functions first for the case when D = RP+; for the 
more complicated positive cone (4.2), order-representing functions are anyway not 
interesting, since their maxima would occur a t  any admissible decision and attainable 
outcome, all attainable outcomes being weakly efficient for positive cones without inte- 
rior. If D = RP+, a general form of an order-representing function can be written as fol- 
lows: 

where v: RP - R' is a strongly monotone value (or utility) function with the property 
that  v(q-Q) = 0 for all q - Q E D\int  D ,  and any norm in RP can be taken to  define the 
distance. If we take a multiplicative form of v - for example, the Nash (1950) compromise 
function - and use the norm lk with k 2 2, then the function s(q,Q) is differentiable except 
for q - Q E  D\int  D: 

where (f i  - qi)+ = max(0, Qi - 9,). 

Another form of order-representing function is piece-wise linear and can be inter- 
preted as an  exact penalty function for the characterization (4.31) of efficient solutions: 

with some ai > 0. This function is determined by the sum only for such q - q E D that  

which is possible only when p > 1 - see Figure 4.8. 

The above function is useful when applied to  linear vector optimization problems, 
where Q, is a convex polyhedral set. In such cases, we rewrite the problem of maximizing 
(4.42) by using additional variables zi = ai(qi - Q,), i = l , . .p, zp+, = s(q,Q), t o  the fol- 
lowing form: 

Observe that  the additional variables z,, zp+l are not restricted in sign; hence, when using 
standard linear programming codes, additional modifications might be needed. This func- 
tion has been used in the DIDAS system of decision support - see Lewandowski e t  al. 
(1982)) Grauer et.a1.(1984) and further chapters. Similar transformations are possible for 
all concave or concave-like - see Jahn (1984) - piece-wise linear functions s(q,Q), such as 
(4.35)) (4.37) or their further modifications given below. 



Figure 4.8. Level sets of the order-representing function (4.42). 

The prototype order-representing function (4.35) has also several modifications in 
case when additional information about Q, is available. The function (3.15a,b), or the 
Chebyshev norm (4.24) under transformation (4.25), after slight modifications can be 
written in the form: 

~ ( q y f )  = I~ , i~p(qi - f i ) / (C,maz - b) (4.44) 

where q'i,maz > tji,moz, i = l , . .  .p, is an upper bound higher than utopia point component 
for the i-th outcome or objective function. In applications to  interactive decision support, 
when the user can change the controlling parameter f arbitrarily, an important considera- 
tion is tha t  fi should be always smaller than, and - for computational reasons - not too 
close to  q',,,,,. This can be practically secured by selecting an additional scaling point q' 
such that  Bi,maz < Q;. < q'i,maz - a reasonable choice might be, for example, 

and by using this scaling point as an upper bound for aspiration levels. The user should 
be informed that  his aspirations qi must not exceed 6, but the decision support system 
should also automatically take fi = q', if the user specifies fi > >,. This restriction might 
be considered as a drawback of function (4.44); however, the function has several other 
advantages. Firstly, the function has a cardinal form (it is independent of positively 
monotone affine transformations of the outcome space) and can be thus used as an 



approximation t o  a cardinal utility function of the user. Secondly, the weighting 
coefficients ai = l/(cj,,,, - tj,), implied by the aspirations tji specified by the user, 
represent the relative importance of various outcomes or criteria to  him: the more close qi 
to  g,,,, or &, the more important is the i-th outcome. When using achievement function 
(4.44), he can much more easily influence the selection of an efficient outcome t j  = 4(tj) by 
changing the controlling parameter tj, than when using functions (4.35) or (4.37), see Fig- 
ure 4.9. 

Figure 4.9. Controllability properties of order-consistent achievement functions: (a) functions 
(4.35), (4.37); (b) functions (4.44), (4.49); observe the difference in 4"' = $J(Q"') in these cases. 

Another modification of the prototype order-representing function (4.35) is function 
(3.14a,b), based on two general information points - an upper bound point ij,, > ),, 
and a lower bound point < imi, - as well as on two reference points spec~fied by the 
user - a reservation point Q' and an aspiration point $"' whereas 

ijilmin < fit < q," < 4irnaz, i = 1,. . . p  

For the convenience of the reader, we repeat here the definition of this function: 

~(q,tj',Q") = min pi(qi,ijit ,Qif' ) (4.45) 
l s i s p  

The main controlling parameter, corresponding to  the role of Q in the definition of 
order-representing achievement functions, is here the reservation level point Q'. However, 
the use of both aspiration and reservation levels as controlling parameters by the user of a 
decision support system expresses an important aspect of user's uncertainty in aspira- 
tions. Because of the form of this function, the user obtains important information about 
attainability of his aspirations and reservations, contained in the maximal values of (4.45) 
over q E Q,. Since 



the user knows that  his reservation levels are attainable and the aspiration levels are not, 
if the maximal values of this function are contained between 0 and 1. 

The above function can be used in decision support systems with subjective evalua- 
tion of merits of discrete decision alternatives by a committee of experts - for example, 
the SCDAS system, see Lewandowski et al. (1985); in such applications, the parameters 
P , r  > 0 can be chosen arbitrarily to obtain a scale of achievement that is easily interpret- 
able by the user (for example, P = 7 = 1, which results in achievement values -1 for the 
lower bound, 0 for reservation levels, 1 for aspiration levels and 2 for the upper bound). In 
applications to  decision support systems with a substantive model of the outcome m a p  
ping q=f(z), however, an important consideration is that  all functions pi  should be con- 
cave in q, which simplifies computational aspects of maximizing s(q,~',q") over q E Q,. 
This can be achieved by selecting appropriate values of the parameters 0 , ~  and addition- 
ally restricting the selection of aspiration and reservation levels. Such additional restric- 
tions (which should obviously be communicated to  the user but also imposed automati- 
cally by the system) might take, for example, the form: 

q," 5 ,ji" 

where 

and 

where 
- Q;.' = di,rnin > Q;.,min - ii,min - O.Ol(ii,ma - qi,min) 

and, finally, 

For the concavity of pi, it is sufficient then to  take p = 0.01 or less and 7 = 100 or more. 

If the functions p i  are concave and Q, is a convex polyhedral set, defined by a 
number of linear inequalities or equations, then the problem of maximizing (4.45) over 
q E Q, can be rewritten equivalently as a linear programming problem of maximizing an 
additional variable z (not restricted in sign), where: 



4.2.2. Order-approximating achievement functions. 

Order-approximating achievement functions can be obtained from order-representing 
functions by adding linear terms. For example, function (4.45) can be made order- 
approximating by modifying its form to  (3.16), which we repeat here for the convenience 
of the reader: 

where p E (0;p); i t  is easy to  check that  this function is r-order-approximating and G 
strongly monotone with C sufficiently small and r sufficiently large as compared to  p. 
Thus, this function can be used to  generate properly efficient solutions with bound r in 
response to  reservation levels Q' and aspiration levels g" specified by the user. If the user 
wishes to  specify these two reference points, this function might be in fact most appropri- 
ate t o  be applied in decision support systems either with discrete alternatives or based on 
a substantive model of linear programming type, because in most practical situations we 
can restrict the selection of efficient solutions to properly efficient solutions with bound. 
If p,  are concave functions of q;, as discussed above, and Q, is a convex polyhedral set, we 
canrewrite the problem of maximizing (4.47) to the linear- programming form by the fol- 
lowing transformation: 

where the variables z,, zp+l are not restricted in sign. 

If the user wishes to  specify only one reference or aspiration point as the controlling 
parameter, a similar modification of (4.44) leads to an order-approximating function 
which can be interpreted as a transformation of the composite norm (4.26): 

This form has been used in Lewandowski et a1.(1985) for evaluating discrete alternatives. 
Similarly as (4.44), this function results in a better controllability, than the prototype 
order-representing function (4.37), of the selection 4 = +(Q) of an efficient outcome by the 
user, cf. Figure 4.9. Through a transformation similar t o  (4.48), if Q, is a convex 
polyhedral set, the problem of maximizing (4.49) can be rewritten as a linear program- 
ming problem. The same applies to  the prototype order-approximating function (4.37) or 
to  an order-approximating function that  can be obtained by modifying (4.42): 

s(q,Q) = (4.50) 

This function has been used in DIDAS systems, see further chapters. 

Until now, we have considered the case when D = RP+ . In the case when the positive 
cone D has the more complicated form (4.2), that  is, when only first po outcomes should 
be maximized and the remaining outcomes po+l, ...p, should be kept close to  their 



respective reference levels or stabilized, all theoretical concepts and definitions of order- 
approximating functions together with the appropriate parts of Theorem 4.10 remain 
valid; however, we must modify then the form of order-approximating achievement func- 
tions. The modification of the prototype order-approximating function (4.37) is rather 
easy : 

s(9.q) = min y + ap+l fi 
l < i < p  i= 1 

The problem of maximizing this function over a convex polyhedral set can be 
equivalently rewritten as the following linear programming problem: 

where the additional variables z" are, in fact, less or equal 0 for i = po+l , . .  .p. 

The order-approximating achievement function (4.49) can be modified for the case 
when D has the form (4.2) in the following way: 

and the problem of maximizing this function over a convex polyhedral set can be rewrit- 
ten similarly as (4.51b) to  a linear programming form. 

Before modifying the order-approximating function (4.47) for the case of positive 
cones of the form (4.2), it is necessary to  define more precisely what does i t  mean to  sta- 
bilize an outcome variable between the reference levels qit, qitt . Both these levels play 
then the role of reservation levels and both @,,,, should be then interpreted as 
lower bounds; but what are aspiration levels and upper bound in this case? We can rea- 
sonably assume that  the upper bound of achievement in this outcome variable is the 
arithmetic mean 0.5(qit + q," ), while the aspiration levels correspond to  coming close to  
this mean, for example, as close as between 0.6qit + 0.4q;" and 0.4qit + 0.6qi1' . Thus, 
the modification of (4.47) can be defined as follows: 



If q," 5 Q;." , where 

and q,' 2 6,' , where 

then it is sufficient to  take p = 0.01, 7 1.250 to guarantee the concavity of the above 
function. In this case, the problem of maximizing (4.53) over a convex polyhedral set can 
be equivalently rewritten in a linear programming form similarly as (4.48), (4.51b). 

4.2.3. Smooth order-approximating functions. 

Order-consistent functions are nondifferentiable a t  q = Q; this might cause 
difficulties in applications to  decision support systems with nonlinear substantive models 
of the outcome mapping q = f(z) and with nonlinear constraints defining the set X, and 
thus Q,. These difficulties occur because nondifferentiable optimization algorithms, 
though already quite advanced, are not yet as robust and reliable as smooth nonlinear 
optimization algorithms. There are two ways to  overcome these difficulties. One is to  
transform the problem of maximizing a nondifferentiable achievement function through 
introducing additional inequalities, as it is done in the linear programming case, and then 
to  apply nonlinear programming algorithms. Another way is to modify the concept of 
order-approximation in order to  admit smooth functions (see Wierzbicki, 1980). For this 
purpose, the concept of approximating the cone D by the cone D, must be weakened; we 
need here an approximation of the form: 

D,,  = {q E RP: dist(q,D) 5 cr(l q I)) (4.54) 

where r : R$ - R$ is a positive monotone function such that  l imr(t)  = 0. This class of 
t4n - - 

approximations is much broader than that  implied by cones D,. 



A smooth order-approximating function is a continuous and differentiable function 
s:Q, x A --+ R' such that  s(q,Q) is strongly monotone in q for all E A and satisfies, 
moreover, the following smooth order approximation property: 

Q + D c {q E RP: s(q,q) 2 0 )  c Q + D,,, for all Q E A (4.55) 

for some e > 0 . 
Each maximal element 4 of a smooth order-approximating function is properly 

efficiently; however, when using smooth order-approximating functions, necessary condi- 
tions of proper efficiency cannot be stated directly as in Theorem 10. On the other hand, 
we can expect that  smooth order-approximating functions might have properties similar 
to those stated in Theorem 4.2, that  is, if 4' is properly efficient and e is sufficiently small, 
then a maximal element 4 of s ( q , ~ )  over q E Q, with Q = 4' should not be too far from B', 
see Figure 4.10. 

Figure 4.10. The approximation property of efficient solutions by maximal elements of smooth 
order-approximating functions. 

The following smooth order-approximating function: 

s(q,Q) = 1 - { ( l / ~ ) e ~ ( @ i , m u  - qJ/(i i , rnu - q ; ) ~ ~ } ~ ~ ~ ;  i m a  2 4 m a  (4.56) 
I= 1 

is, in fact, a modification of the norm used in Theorem 4.2; however, the controlling 
parameter Q used in this function is different than the weighting coefficient a used in that  
norm. Observe also that  the function (4.56) is not a weighted norm of the distance 
qi - q,, because it depends on the controlling parameter t j  in a more complicated way. 
Because of these differences, both attainable and unattainable aspiration points Q can be 
used as controlling parameters, as long as Q 5 ima. This function is a smooth 



approximation of the order-representing function (4.44) or its order-approximating vari- 
ant  (4.49). T o  obtain a close approximation, a sufficiently large k should be used (it is 
easy to check that  (4.56) converges to (4.44) for k + w). However, this would result in 
badly conditioned nonlinear optimization problems when maximizing this function over 
q E Q,, hence k = 4...8 is used for applications in decision support systems - for example, 
in nonlinear optimization extensions of DIDAS methodology, see Kaden and Kreglewski 
(1986). 

Figure 4.11. Level sets of the smooth order-approximating function (4.56). 

A more complicated problem is a smooth approximation of the order-representing 
achievement function (4.45) or its order-approximating variant (4.50), where two refer- 
ence points ( a  reservation point $ and an aspiration point Q") are used as controlling 
parameters. As before, we assume that  5 imin and g',, > q",, are given and that  

Q;.,min < q/ < <: < for all i = 1, . . .p. Such a smooth order-approximating function 
has the following form: 

where r, 0, t are shortened denotations of the following norms: 



whereas <(T) and p ( t )  are differentiable spline functions: 

the additional parameters p' and p" are defined by: 

P' = l l i s p  ma' (f,,mU - fi,min)/(Qil - ii,min) 2 1 (4.57g) 

and the additional scaling points f;, and (Lax have the form: 

-1 - 
Qmax - fmin  + P'( q' - fmin) 2 Lax 

- 11 

Qmax = q' + p"(f - Q') > q",, 
whereas 

Moreover, p,  7 > 0 are scaling parameters such that  

The additional parameters S, rl E 10; 1) influence the monotonicity of this achievement 
function. 

The spline functions <(T) and p ( t )  are shown in Figure 4.12a; they mix together the 
norms T, t ,  used in the definition of this function in various regions. The sets 

and 

are disjoint. If q E Q or, more generally, if q 6 Qt u Q ,  then p ( t )  = 1, ((7) = 1 and 
function (4.57a) is defined by its first term only, which depends on the norm 8 scaled by 
the difference q" - q': 

s ( Q , ~ ~ , ~ I ~ )  = ptl - e ( ~ , q l , ~ I ~ )  

If q E Q ,  then function (4.57a) is a differentiable mix of the norms 8 and T ; if q E Qt,  
then it is a differentiable mix of the norms 0 and t .  The role of the additional scaling - I1 points @La, , qmax and the construction of this achievement function are illustrated in 
Figure 4.12b)c. 



Figure 4.1%. Spline functions t ( ~ )  and p(t). 

Figure 4.12b. Level sets of the smooth achievement function (4.57a). 

As it can be seen from Figure 4 . 1 2 ~ )  function (4.57a) approximates well, for 
sufficiently large k, function (4.45)) but only for q E Q - tha t  is, for outcomes that  are 
between reservation and aspiration levels; however, this range of decision outcomes is t y p  
ically most interesting for the user of a decision support system. If parameters P ,  7 are 
chosen sufficiently large and 6,q - sufficiently small, then function (4.57a) is strongly 
monotone and all its maximal points are indeed efficient. 

Theorem 4.13. If q 5 g,,,, k < oo and 



Figure 4.1%. Limits of these level sets as k + oo. 

7 2 {('/PI fi ( (A '  - fi,min)/(kl' - qi' ))k}llk/(l - 6) (4.58b) 
i= 1 

then (4.57a) is a strongly monotone function of q. 

The proof of this theorem is given in Appendix. This theorem suggests for applica- 
tions in decision support systems that  the minimal difference between aspiration and 
reservation levels qil' - gi' should be limited as compared to  the range 4,,, - 

say, to  be above O.O1(fi,moz - filmin). When choosing 6 = v = 0.5, the values of the 
parameters p = 7 = 200 suffice then for the monotonocity of the achievement function 
(4.57a). Although the bounds (4.58a)b) are not very tight, counterexamples show that  
(4.57a) can indeed loose its monotonicity if P and 7 are much smaller than indicated by 
this bounds. 

This smooth order-approximating achievement function has quite complicated 
analytical form; however, this does not matter much, since the user of a decision support 
system does not need to  understand the details of this function definition - i t  is sufficient 
for him t o  know that  the maximal values of this function, if contained between 0 and 1, 
indicate that  his reservation levels are attainable and his aspiration levels are not. There- 
fore, this achievement function might be very useful in decision support systems with sub- 
stantive models of nonlinear programming type, if the user of this system wishes to  con- 
trol his selection of efficient outcomes by specifying or changing two controlling parame- 
ters - the reservation point q' and the aspiration point Q". 



4.2.4. Achievement functions for trajectory optimization. 

When considering continuous-time dynamic models and their trajectories as decision 
outcomes, infinite-dimensional outcome spaces and positive cones in them are needed. 
However, most computational applications in decision support systems are based on 
discrete-time approximations of such models which reduces the outcome spaces to  finite, 
though large dimensions; the discussion here is limited t o  such cases. Still, i t  is necessary 
to  know that  no basic theoretical difficulties arise when the number of dimensions grows 
very large. It is one of the advantages of the approach based on order-consistent achieve- 
ment functions with reference points used as controlling parameters that  the theoretical 
foundations of this approach, such as Theorem 4.10, are valid without major 
modifications also in infinite-dimensional spaces - see Wierzbicki (1980, 1982). 

Another, more practical advantage is related to  this approach. When controlling the 
selection of efficient outcomes, the user of a decision support system should be able to  well 
interpret his controlling parameters. If he used weighting coefficients as controlling 
parameters, he might be baffled in their interpretations when their number grows large. 
When using aspiration or reservation points, he can interpret them as reference trajec- 
tories by aggregating a number of reference values in a meaningful trajectory and evaluat- 
ing this trajectory by "Gestalt", see Figure 4.13. If the outcomes of a decision are 
represented by a solution of dynamical model, there is a natural way of aggregating them 
into trajectories: we combine the values of the same outcome for consecutive instants of 
time, and the number of these instants can grow rather large, but we still deal with the 
same kind of trajectory. Even for models of static type with a large number of outcomes, 
it is useful to combine these outcomes into meaningful trajectories - for example, distribu- 
tions of income or patterns of trade in an economic model. Once a meaning of a trajectory 
of outcomes is well understood, the specification or interpretation of a related reference, 
aspiration or reservation trajectory becomes easy. 

It is a known psychological fact that a human cannot compare or evaluate in his 
mind more than five to  nine objects, depending on their complexity; however, this does 
not mean that these objects should be characterized each by only a scalar-valued attri- 
bute. For example, we can compare five maps of some geographical region, or five photo- 
graphs of various or the same person, each containing a large amount of information; we 
have even the concept of a reference photograph - for example, the synthesized picture of 
a suspect. Thus, the conclusion that  no more than five to nine scalar attributes should be 
compared in a decision system is valid only when defining attributes for subjective evalua- 
tion - and even in this case, the attributes might be the results of hierarchical aggregation 
of a number of lower-level attributes; in decision support systems based on substantive 
models, we can as well compare five to  nine trajectories each containing a large amount of 
information. 

Dynamic models can have various mathematical character, see Kalman et al. (1969). 
Here, we shall consider only a relatively simple but widely applied class of such models - 
with concentrated state and discrete time. The prototype form of such a model is as fol- 
lows: 

w[t + 11 = h(w[t], u[t], t),  t = O , l ,  ... T - I, (T) ;  w[O] - given (4.59a) 

g(w[t], u[t], t) < 0, t = O , l ,  ... T - 1 (4.59b) 

q[t] = f(w[t], u[t], t), t = 0,1, ... T - 1, ( T )  (4 .59~)  

where t is the discrete time variable (counted in days, years, or any other time units). 
The decision variable u[t] E R n  is often called control, the theory of such dynamic models 
being closely related to  the control theory; but the actual decision variable is here the 
entire control trajectory or decision trajectory u = {u[O], u[ l ] ,  ... u [ T  - I]) E R ~ ~ .  The 
additional variable w[t] E Rm' is called the state of the dynamic model, being defined as 



Figure 4.13. Examples of combining outcomes and reference points in trajectories (a) for 
dynamic models with sparse discrete time; (b) for dynamic models with dense discrete time; (c) 
for static models. 



the set of initial conditions that  must be specified in order to  solve the model (in this case, 
w[O] is assumed to  be given, but we could start  solving this model a t  any other instant of 
time); the entire state trajectory 

is actually one period longer than the decision trajectory, because we must account for 
dynamic consequences of the decision in the last period, u [ T  - 1). The same applies to  the 
outcome trajectory (called also output, performance or objective trajectory) 
q = {q[ol, q[l] ,- . .q[T - 11, q[T]) E R P( + I) while q[t] E RP. Thus, if the number of 
periods or time horizon grows, the dimensionality of the outcome space could increase 
substantially - but, as commented above, this does not really matter as long as the 
number of outcome trajectories, p,  is not too high. Equation (4.59a) is often called the 
state equation of the dynamic model, while inequalities (4.59b) are called state-dependent 
constraints (sometimes additional control or decision constraints of the form u [t]  E U,[t] 
are taken into consideration) and equation (4 .59~)  is called the outcome or output equa- 
tion of this model. On the last period T,  the outcome equation should not depend on the 
variable u[T]  which is not included in the definition of the model. 

The theory of analysis and optimization of dynamic models is rather extensive - see, 
e.g., Wierzbicki (1977b) - and will not be presented here in detail. For the purposes of this 
book it is sufficient t o  note that  an  important class of such models are linear dynamic 
models, where f,g,h are linear or affine functions; a piece-wise linear concave achievement 
function, when maximized over outcomes of such a model, results in a linear programming 
problem. 

We shall consider here only order-approximating achievement functions for trajec- 
tory optimization. The prototype order-approximating function (4.37) can be written for 
this purpose in the following way: 

T o  construct other forms of order-approximating achievement functions, we need 
often an upper and possibly a lower bound for efficient outcomes. This creates a major 
difficulty in case of outcome trajectories: a computation of an utopia trajectory and an 
approximation of a nadir trajectory as in (4.16), (4.17) would require in this case 
p ( T  + 1) scalar optimization computations, which in most cases is an excessive computa- 
tional load. However, precise upper bound and lower bound trajectories are not needed in 
most cases of decision support and their approximate values often suffice, if we use the 
concept of order-consistent achievement functions. A convenient way of computing such 
approximate upper and lower bounds, used in DIDAS systems, is to  maximize function 
(4.60) p times with some neutral values of weighting coefficients ai (they could be set all 
equal to  1 or l / ( p ( T  + I)) ,  if all components of outcomes are expressed in reasonable 
units of scale) and with p different reference trajectories 

6;) = {&j)[0], +j ) [ l ]  ,... @[T - 11, V ( ~ ) [ T ] ) ,  j = 1 ,... p 

where the components d j ) [ t l  are chosen to  be very high if i = j and very low if i # j .  
Denote the results of this maximizations - which are properly efficient outcomes, since 
(4.60) is strongly monotone - by 4 )  = ( )  Approximate upper bound and lower 
bound for trajectories can be constructed then as follows: 

4i,maz[t] = 4ji)[t], t Y O ,  t ,... T - 1, i =  1 ,... p (4.61.) 

&,mi,,[t] = min i / j ) [ t ] ,  t = O ,  1 ,... T - 1, T,  i = 1 ,... p 
l < l < P  



@m,[t] = Bm=[t] + 6(Bm=[t] - Qmin[t]), t = 0, 1,ee.T - 1, T 

qmin[tI = dmin[t] - 6(Bm,[tI - Bmin[t]), t = 0, Q,... T - 1, T 

where reasonable values for the additional parameter 6 are 6 = 0.1 ... 0.5. 
This way of computing bounds on trajectories has, however, one drawback: while the 

trajectory 4i,mnz[t] comes from an actual trajectory of the dynamic system, the con- 
structed trajectory cjiImin[tj does not. Another, preferable way of computing Bi,min[t] is to  
perform additional p maximizations with reference trajectories chosen in such a way that 
components q!j)[t] are very low if i = j and very high if i # j; b,(t) and h i n ( t )  are 
then defined similarly as above. Once the results of such approximation are combined in 
an upper bound tm, and lower bound qmin for trajectories (it should be stressed that, 
precisely speaking, qm, and tmin are not trajectories of solutions of the dynamic model, 
only trajectories of approximate bounds for such efficient solutions), other forms than 
(4.60) of achievement functions for mutiobjective trajectory optimization can be specified 
that result in a better controllability of efficient outcome trajectories by changing refer- 
ence trajectories. The order-approximating achievement function (4.49) can then be 
rewritten in the form: 

In a similar way, other order-approximating achievement functions, such as (4.47), 
(4.49), or even smooth order-approximating functions, such as (4.56), can be rewritten for 
the case of multiobjective trajectory optimization. Some other examples of achievement 
functions for this case are discussed in Wierzbicki (1980). 

4.3 Phases and procedures of decision support. 

There are many diverse meanings of the concept "decision support". When under- 
standing this concept very broadly, we can include into it many functions or activities, 
such as just filing and organizing information, aggregating and processing information, 
interpolating the aggregate results in order to build mathematical models, establishing 
decision rules for some customary decision-making situations, identifying these decision 
rules in form of mathematical models, etc. Therefore, the term "decision support system" 
is understood today in a very broad sense, including computer data base or spreadsheet 
systems for organizing, aggregating and processing information, knowledge base systems 
for proposing decisions based on established inference rules, and various other types of 
systems that support the actual processes of choice or selection among alternatives. This 
book addresses only a subclass of this last group of decision support systems - designed for 
cases where a choice among many alternatives is helped by a substantive model of a deci- 
sion situation, a model that summarizes in a computerized form the knowledge of a group 
of experts and analysts for a substantive class of decision problems. In this specific case, 
the decision support process has several important phases that will be discussed here in 
some detail. The particular arrangement of these phases constitutes the procedural foun- 
dation for the quasisatisficing decision approach, at least in the situations with a single 
decision maker responsible for the final selection of the decision. 



4.3.1 Substantive model definition and edition. 

A substantive model represents pertinent knowledge about a class of decision prob- 
lems, such as forecasting and planning forestry economic factors in a country, planning 
the development of a branch of chemical industry, planning energy sector development 
strategies, controlling ground water quality and quantity in a region, etc. For each case, a 
substantive model has to  be developed, computerized, tested and validated on relevant 
data. T o  be useful for decision support, a substantive model must include relevant deci- 
sion or control variables and their constraints as well as all outcome variables that  might 
be of interest to  the decision maker; thus, it is crucial to  involve final users in the phase of 
model building. 

Even if such a model is ready, it must be prepared for the utilization in a decision 
support system, that  is, defined and edited in a format that  allows for an easy communi- 
cation with other parts of the system. Since we assume interactive multicriteria optimiza- 
tion of the outcomes of the model, its format must be adapted t o  the optimization algo- 
rithm used in the system; this algorithm depends on the mathematical type of the model. 
In contemporary optimization techniques, there are several classes of problems that  
require distinct optimization tools. Among these are: linear programming or linear optim- 
ization problems; nonlinear differentiable optimization problems; nondifferentiable optimi- 
zation problems; stochastic optimization problems and other approaches t o  optimization 
under uncertainty; discrete optimization problems. Here we are mostly concerned with the 
first two classes of problems, although the mathematical foundations of quasisatisficing 
can be also applied to  other classes and thus decision support systems of DIDAS family 
described in this book can be also constructed for those classes. In fact, experiments with 
nondifferentiable and stochastic optimization algorithms for decision support systems of 
DIDAS family has been made and pilot versions of discrete optimization algorithms for 
such systems developed. However, reliable and robust optimization algorithms that  allow 
for an easy interaction of the user with the decision support system have been best 
developed for linear and discrete time dynamic linear optimization problems as well as for 
nonlinear and discrete time dynamic nonlinear differentiable optimization problems; thus 
we restrict our attention to these classes. 

Defining and editing a linear or dynamic linear model for optimization purposes is 
typically done in the standard MPS format of linear programming. For nonlinear or 
dynamic nonlinear models, no such standards exist, and a format of a computer language 
subroutine (with or without using automatic calculation of derivatives of all functions in 
the model) is then applied. Since such formats are highly specialized, this phase of deci- 
sion support requires the participation of an analyst that  would prepare the final format 
of the substantive model for the decision support system. Since the substantive model is 
usually a result of work of a team of analysts, preferably one of them should edit the 
model in the desired format. The use of professional microcomputer with more modern 
standards of user-friendliness of software systems substantiate, however, the possibility 
that  a user himself might define and edit the substantive model in an easy format such as 
a computerized spreadsheet. Moreover, a given substantive model is typically related to  a 
specific type of graphical representation of results of its analysis; thus, appropriate com- 
puter graphic tools must be chosen. These aspects are described in more detail in a further 
chapter on DIDAS systems implementations. 

4.3.2 Specification and initial analysis of a multiobjec tive problem. 

A substantive model can be used to  support analysis of various multiobjective prob- 
lems defined according to  the needs of the decision maker. Thus, when the substantive 



model is defined and edited, the user can proceed to  the specification of hie multiobjective 
analysis problem; obviously, the participation of the final decision maker in this phase is 
crucial. Since the decision maker is free to change his mind about the objectives during 
the analysis, the system must allow for an interactive, easy specification of the multiob- 
jective analysis problem. 

The specification of this problem consists in: 

selecting outcome variables of the substantive model that  represent the objectives of 
the decision maker; 
specifying the ordering in the space of objectives, that  is, defining for each objective 
variable whether i t  should be maximized, or  minimized, or kept close (from both 
sides) t o  a desired reference level. 
Once a multiobjective problem is defined, the initial analysis of this problem can be 

performed. It consists in: 
evaluation of the outcomes of some decisions proposed by the user, in order either to 
test the adequacy of the substantive model or to  obtain some reasonable outcomes 
for comparison with results of further analysis; 

assessment of the best attainable values for each objective (or approximately best 
attainable trajectory for each objective trajectory in dynamic cases), that  is, the 
assessment of the precise or approximate utopia point in the objective space; 
assessment of the worst reasonable (efficient) values for each objective or objective 
trajectory, that  is, of an approximate nadir point in the objective space. 

This initial analysis is a crucial prerequisite of the further multiobjective analysis of 
the problem, because it gives to  the decision maker the possibility to  learn about reason- 
able ranges of each objective or objective trajectory. It can be preformed automatically by 
the system once a multiobjective problem is specified, but some special features of this 
analysis must be understood by the user. 

Firstly, an  evaluation of the outcomes of one or several decisions proposed by the 
user is optional; the user might omit this, if he wishes to  proceed to  further stages. 

Secondly, a precise assessment of the best attainable values for each objective 
requires a number of optimization runs equal to  that  of objectives and might take too 
long a time if the number of objectives is too large. In dynamic cases, there is no sense to  
assess precisely the best attainable values for each point of a trajectory, since i t  would 
take too much time. Moreover, a collection of such points would not have the interpreta- 
tion of an attainable trajectory and might give misleading information t o  the decision 
maker. Therefore, an approximate assessment of the best attainable trajectory for an  
objective can be preferably obtained by maximizing an achievement function with refer- 
ence points corresponding to  a 'high' aspiration trajectory for the objective in question 
and to  'low' aspiration trajectories for all other objectives. The same procedure can be 
also applied for static objectives; naturally, it must be repeated for each objective or 
objective trajectory. 

Thirdly, a precise assessment of the worst reasonable values for each objective is, in 
general, not possible, because we restrict our attention to  efficient outcomes understood as 
reasonable. It should be stressed that  Eq. (4.17) gives a precise nadir point only in case of 
two objectives; if there are more than two objectives, it is easy to  construct examples 
when Eq. (4.17) gives results "above" the nadir point and a precise computation of the 
nadir point would require very large effort and time. Fortunately, the decision maker is 
usually not interested in the precise nadir point, he needs only t o  know reasonable ranges 
of objective values. A reasonable approximation t o  the nadir point can be computed by 
maximizing an achievement function based on a very "low" aspiration level (or aspiration 
trajectory) for the objective in question and "high" aspirations (or trajectories of aspira- 
tions) for all other objectives, repeatedly for all objectives or their trajectories. The user 



must be, however, informed that the results of such computations give only an approxi- 
mate nadir point. For this reason, it is better to use somewhat broader upper and lower 
bounds than the utopia and nadir points; this was discussed in more detail in previous 
sections. 

Naturally, one could establish more precise "lower" bounds to all objectives by 
1 1  minimizing" each of them separately (we use here the terms "lower" and "minimizing" 
in a relative sense, assuming that the objective is originally one to be maximized; if the 
objective is to be minimized - as, for example, variables representing costs - "lower" 
should be replaced by "upper" and "minimized" by "maximized"). However, this would 
include also inefficient outcomes and might result in unreasonable values. Moreover, some 
variables in a substantive model might be unrestricted when we move in an unreasonable 
direction, if the model is not very carefully constructed. 

This is related to  the third special feature of the initial analysis: to the understand- 
ing of bounds of objectives that should be neither maximized nor minimized but kept 
close to an aspiration level. As shown in previous sections, the meaning of the correspond- 
ing components of the utopia or the nadir point in such a case looses its sense and these 
components must be interpreted differently in a construction of an achievement function. 
However, the user should still know what values for this objective are reasonable. This 
can be assessed by minimizing and maximizing values of such objectives separately; thus, 
the user should know that he can specify such objectives when they are otherwise bounded 
(if they are not, he should modify the substantive model by adding constraints on such 
variables, or treat such variables not as objectives but as additional constraints - which, 
however, has some disadvantages). When assessing utopia or nadir point components for 
other objectives, variables that should be kept close to a given reference level (and are not 
treated as constraints) must be considered as free, that is, should not be included into an 
achievement function used for the purpose of such an assessment. 

Once the bounds on the ranges of reasonable objective values have been assessed, 
they can be used as scaling units for these objectives in further computations. Even before 
the preliminary analysis, it is useful to ask the user (preferably, the analyst that prepared 
the substantive model) to specify a priori reasonable scaling units for all outcome vari- 
ables in the model; any optimization performed on a model with unreasonably scaled vari- 
ables (say, cosmic distances computed in micrometers) can fail for numerical reasons. 
After the preliminary analysis, however, the user knows much more about reasonable 
ranges of outcomes and is well prepared to specify aspiration levels for each objective and 
thus for further interactive analysis. 

4.3.3 Exploration of efficient alternatives and outcomes. 

Observe that the decision support system and the analysts constructing the substan- 
tive model in the previous stages of the process performed the role of staff in an ideal 
organization while preparing for the boss or the decision maker not only a summary of the 
pertinent knowledge in the form of the substantive model but also specifying for his infor- 
mation reasonable bounds on attainable decision outcomes. This analogy can be pursued 
further - see Wierzbicki, 1982: an ideal staff should be able to respond to repeated instruc- 
tions of the boss by specifying, upon his request and following his general instructions, 
what detailed decisions and course of action should be taken in order to  attain efficient 
decisions that are best attuned to these general instructions. A human staff might become 
too tired if asked to perform such a job repeatedly with changing general instructions, but 
the boss would be certainly better informed if many such efficient alternatives were ela- 
borated. A computerized decision support system does not tire, it can prepare new plans 
as many times as the decision maker wishes to change his general instructions and to see a 



new alternative. Thus, if the user specifies general instructions by setting aspiration levels 
for all previously defined objectivee, the decision support system should test, whether 
these aspirations are attainable, and: 

a)  if the aspiration levels are not attainable, inform the user about this fact, but a t  
the same time propose a detailed efficient decision that  leads to outcomes in some sense 
uniformly close to  the aspiration levels; 

b) if the aspiration levels are attainable and it is possible to  surpass them (they do  
not correspond t o  efficient outcomes), inform the user about this fact and a t  the same 
time propose a detailed efficient decision that  leads to  outcomes in some sense uniformly 
better than the aspiration levels; 

c) if the aspiration levels, either by chance or as a result of interactive learning by 
the user, are just attainable and correspond to  efficient outcomes, inform the decision 
maker about this fact and elaborate a detailed efficient decision that  leads precisely to  
these efficient outcomes. 

All these goals can be achieved by maximizing an order-consistent achievement func- 
tion with the aspiration levels taken as the controlling parameters. The test of attainabil- 
ity is then the maximal value of this function, which is negative in case a) ,  positive in 
case b), and equal zero in case c) - cf. Theorem 4.10. 

The maximization of an achievement function is performed in the system by a spe- 
cial optimization algorithm, called here solver, that  must be chosen depending on the 
nature of the substantive model as discussed above; thus, in DIDAS-type systems, robust 
and reliable solvers for linear and dynamic linear models as well as for nonlinear and 
dynamic nonlinear differentiable models have been partly developed but mostly especially 
adapted for the use in decision support. 

The achievement function used in such decision support is generally an order- 
approximating one; but it can have one of several forms discussed in section 4.2. Depend- 
ing on the form of the achievement function, i n  important issue might be this of relative 
scaling of all objectives that  defines the sense of uniform approximation of aspirations by 
efficient outcomes in cases a) ,  b). Some of the forms of achievement functions, such as 
(4.47), assume automatic scaling of objectives by the differences between aspiration and 
reservation levels; other forms might admit various scaling factors. 

If only one aspiration point is used as the controlling parameter, which is the case in 
most current implementations of DIDAS-type systems, and an achievement function of 
the form (4.37) or (4.50) is used, which is typical for linear models, then three types of 
objective scaling by defining the coefficients are possible: 

(i) a user-supplied scaling with a, = l/Aqi7 where Aq, are reasonable scaling units for 
objectives supplied by the user or the analyst constructing the substantive model; 

(ii) a bound-implied scaling with a, = l / A & ,  where A &  are the differences between the 
upper and lower bounds defined by (or slightly broader than) approximate utopia 
and nadir point components; 

(iii) an aspiration-implied scaling with a, = l/(qilm, - qi), where q;,,, - qi is the 
difference between the corresponding component of the upper bound (equal to  or 
somewhat higher than the approximate utopia point) and the currently specified 
aspiration level. Naturally, q,,,, - q, must be positive in such a case and a special 
automatic modification of aspiration levels that might have been specified too high 
by the user is necessary in the system. 
In the initial analysis phase, only the scaling of type i) is possible. In the phase of 

interactive exploration of efficient alternatives, the user can also choose between cases (ii) 
and (iii) . Both the theoretical considerations on the controllability of parametric selection 
of efficient outcomes and practical experience suggest, however, that  the use of scaling of 
the type (iii) is advisable. This scaling results in an achievement function of the form 



(4.49) and is also a typical scaling applied for nonlinear differentiable modela with an  
achievement function of the form (4.56). 

Until now, we assumed that  the decision support system responds with only one 
efficient solution t o  each specification of aspiration levels by the user. However, the user 
might wish to  see several alternative efficient solutions as a response to  his aspirations. A 
natural way of preparing such a response is to  perturb the aspiration point along each 
objective (or trajectory of objectives) in the positive or negative direction and then to  per- 
form the maximization of the achievement function with such perturbed reference points - 
see Figure 4.14. 

This requires naturally that  the user gives a special command to  obtain a scan of 
alternative responses, specifies the sign of perturbations and a coefficient that  defines the 
magnitude of perturbations relative to  the current scaling units of objectives, preferably 
using the bound-implied scaling or the aspiration-implied scaling. 

After a number of experiments with changing and/or perturbing aspiration levels 
and observing the efficient solutions proposed by the system in response to  these changes, 
the user learns typically enough about the shape of the efficient frontier. Sometimes, how- 
ever, he might wish to  learn more by looking a t  various cuts through the efficient frontier 
that  can be computed by the system and displayed graphically. 

If the number of objectives is small, the user might wish to  look a t  cuts through the 
efficient frontier obtained by changing two specified objectives and keeping other objec- 
tives constant. Various procedures can be applied to generate such cuts. One of them is as 
follows: suppose the user specifies an efficient point 4' in the outcome space (obtained, 
say, as a system response in previous experiments with changing aspiration levels) and 
two components q,, qk of the objective vector that  should be varied. Together with these 
data,  the user should specify a coefficient a that indicates which part of the reasonable 
range of variation A c  and Atk should be covered by the cut as well as a number N of 
additional points that  should be used when constructing the cut. The system can con- 
struct now N reference points, say, by the formula 

(where the opposite signs are used for i = j and i = k) and use these points consecutively 
as aspiration levels for q,, qk in a special achievement function that  will be maximized in 
order to  obtain the efficient points needed for constructing the cut. All other components 
of objective vector in this achievement function are treated either as constraints or, 
preferably, as stabilized objectives that  should be kept closely to their set values 
ij;, i # j k, with sufficiently large weighting coefficients ai. After obtaining N efficient 
points through the maximization of such s ecial achievement function, their com- d' ponents ijjn), ijln), together with the point 4;) & can be used to illustrate graphically a 
piecewise-linear approximation to  the cut through the efficient frontier. If the user wishes 
to  compare several cuts for varying anchor points ijO , they can be accumulated in the sys- 
tem and displayed jointly, see Figure 4.15. 

If the number of objectives is large, the same procedure can be generalized to  pro- 
duce a cut through the efficient frontier approximately along a ray starting from an 
efficient outcome point ijO in a direction 6q specified by the user - see Korhonen (1985). 
The user should specify, additionally, whether he would like to  see a cut only in the posi- 
tive direction of the ray, or in both directions, a coefficient a indicating the part of the 
range of change that  the cut should cover and a number N of additional efficient points 
computed for the construction of this cut. In the case of constructing the cut in the posi- 
tive direction of the ray, the additional reference points are constructed as: 



Figure 4.14. Scanning a region on the efficient frontier by perturbing the aspiration point: a) 
perturbation relative to bound-implied scaling; b) perturbation relative to aspiration-implied 
scaling. 

where 

T = min T ,  ; T, = 
l < i < p  

( 4  - q i m , ) / q i  if 6% < 0 

+ oo if Sfi = 0 

, - 4  if 6% > o 



Figure 4.15. Two-variable cuts through the efficient frontier: a) the principle of constructing a 
cut; b) joint representation of several cuts. 

while in the case of constructing the cut in both directions, they modify to: 

= (O - o f 6 i  + ~ ( f  + f t ) 6 @ / N ,  n = 1, ... N 

where 

f = min rit; rit = + oo 1 if 61j; = 0 
e i t i p  

(4: - q;,min)/6k if Q, > o 



Since all objectives are changed when constructing the cut, there is no need to  use a 
special achievement function; the system maximizes then the achievement function used 
originally in i t  for the interactive exploration of efficient alternatives, while changing the 
aspiration point to the consecutive reference points specified above. This results in N 
additional efficient points that  are not precisely but only approximately located along the 
ray; nevertheless, the graphs of change of values of each objective in these efficient points 
might give valuable information to  the user, see Figure 4.16. 
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Figure 4.16. Cuts through the efficient frontier along a reference ray 6Q (cut in the positive 
direction of the ray). 

Quite often, when the user has explored in detail alternative efficient decisions for a 
particular definition of multiobjective analysis problem, he comes to the conclusion that  
he should change the definition. A typical reason for such conclusion is the feeling that  he 
would prefer decisions that  are not efficient in the sense of current problem definition but 
would take into account also other aspects of the decision situation he has in mind. He 
must then return to  the previous phase and try to  change or add objectives selected 
among model output variables that  were not used until now for this purpose. Sometimes, 
the substantive model is not rich enough and must be enhanced for this purpose, either 
through simple aggregation of variables that  already are represented in the model, or by 
adding quite new variables and functional blocks to  the model. In other cases, the user 
might forego the difficult task of changing the substantive model by correlating in his 
mind unforrnalized objectives with a variable represented in the model. In such cases, it is 
often useful to change the ordering in objective space: such specially interpreted objectives 



are better not maximized nor minimized, but stabilized, that is, kept close to aspiration 
levels specified by the user (as indicated before, the introduction of such an objective 
changes the sense of efficiency by including many decisions that would be considered 
inefficient if the objective would be maximized or minimized). Naturally, each time either 
the substantive model or the multiobjective problem formulation is changed, the phases of 
preliminary analysis and of exploration of efficient alternatives should be repeated, but 
the latter phase might take much less time if the user is already experienced in the 
analysis of the substantive model. 

4.3.4 Learning and convergence. 

The next question is: what should a user or a decision maker do, when he explored 
sufficiently many efficient alternatives and multiobjective problem formulations to feel 
that he has learned enough about the substantive problem and the particular decision 
situation he has in mind? 

Many multiple criteria decision analysis systems actually start at  this point by 
assuming that the problem is well defined and the purpose of the system is to support a 
convergent selection of one 'best' alternative decision, consistent with the preferences of 
the decision maker which should be somehow identified, typically through a sequence of 
pairwise comparison questions. This is a standard focus of analytical decision support and 
a broad array of approaches has been developed to address this issue, some exploiting the 
tools of utility theory, some taking into account various drawbacks of this theory and pro- 
posing new ways of stating pairwise comparison questions that would be psychologically 
more acceptable to the decision makers and avoid many traps of more classical 
approaches - see, for example, Larichev (1979), and Saaty (1982). 

On the other hand, the investigations of the role of learning in decision processes - cf. 
Dreyfus (1985) - indicate that the decision maker might not need any further decision 
support once he has learned enough about the decision situation. An expert decision 
maker needs the decision support only to learn about some novel aspects of the decision 
situation; he knows that the models employed in a decision support system are not ideally 
representing the reality, that not all objectives are formalized; he has enough experience 
to select the actual decision once he understands sufficiently its possible implications. A 
novice decision maker also uses a decision support system more for the purpose of learning 
than actually selecting a decision. A decision maker who comes with a predetermined 
decision and wants to use the decision support only in order to find rational arguments for 
his particular choice, would like to learn how to rationalize his opinion not how to change 
it. Whatever is the particular case, users of decision support systems tend to stop using 
them when they have learned enough. This is also confirmed by experience in applying 
DIDAS-type systems to analyze some substantive problems: although some implementa- 
tions of these systems were equipped with an option of supporting convergence to a 
"best" solution, this option was seldomly used and most current implementations are not 
equipped with such an option. Thus, the DIDAS-type systems are mainly aimed a t  s u p  
porting learning by the decision makers. 

This does not mean, however, that options of converging to a "best" solution cannot 
be included in DIDAS-type systems; on the contrary, the framework of quasisatisficing 
decision making is especially designed to be relatively universal, to be applicable for s u p  
porting decisions in other frameworks. If the user wishes to obtain only satisficing deci- 
sion, he can easily do so in the quasisatisficing framework by simply changing most or all 
of his objectives to the stabilized type that should not be maximized nor minimized but 
kept close to aspiration Levels. If the user wishes to pursue the framework of goal- and 
program-oriented planning and management, he wouId use such type of objectives for the 



upper-level objective goals and maximize or minimize his lower-level objective means. If 
the user wishes to  let his utility function be identified and modelled, such a model of 
user's preferences can be incorporated in a DIDAS-type system: an additional optimiza- 
tion solver would then change aspirations automatically until the corresponding efficient 
outcomes would maximize the utility function. 

There might be also cases when a user is not satisfied with generating and learning 
about efficient alternatives with the support of a DIDAS-like system and wishes that  the 
system would guide him in some easy manner to  a "best" alternative. Two aspects of the 
user-friendliness of such a convergent process are of basic importance: the psychological 
easiness of questions and robustness of answers required from the user in the convergence 
process, and the freedom of the user to  learn further during this process, t o  change his 
mind and be inconsistent but  still arrive a t  some final solution. These aspects are, unfor- 
tunately, in conflict. 

If we take the position that  most important is the psychological easiness of questions 
put to  the user in order to  provide for most consistent answers, then the conclusion is - 
see Larichev (1979) - tha t  the user should compare outcomes that  differ in only one objec- 
tive component a t  a time. In quasisatisficing framework, this would mean tha t  aspiration 
levels for subsequent computations of efficient outcomes should differ in only one objective 
component a t  a time. Such a process of finding a "best" alternative can be added to  
DIDAS-type systems and experiments with such a process have been performed. However, 
such a process takes many iterations and easily tires the user; moreover, i t  is convergent 
only under the assumption tha t  the user has already learned enough and does not change 
his preference structure during the process. 

If we admit inconsistencies of the user and concentrate on questions that  would 
guarantee most robust results, then a preferred form of such questions would be - see 
Saaty (1982) - pairwise comparisons of the importance of improvements of all objectives. 
When applying this methodology for DIDAS-like systems, one can obtain truly robust 
and reliable indications, how to  change aspiration levels in order to  move the efficient 
alternatives in a preferred direction. However, making pairwise comparisons of the impor- 
tance of improvements of each objective can take much time and should be repeated a t  
each iteration of the interactive process. On the other hand, such a process could be con- 
vergent even if we allow for learning and inconsistencies of the decision maker. 

This possibility results from several theorems on the convergence of stochastic 
optimization algorithms for single- and multicriteria optimization, due mostly to  the 
results of Ermolev and Gaivoronski (1982) and of Michalevich (1986); these theorems will 
not be quoted here, but only shortly summarized and interpreted. 

Suppose the decision maker has a changing utility function which, however, con- 
verges to  some final function. Consider the utility function in the space of controlling 
parameters or aspirations Q as determined by the transformation u'(Q) = u($(rj)) where 
$(f) is the parametric representation of efficient solutions in dependence on aspirations Q; 
suppose this transformed utility function is subdifferentiable and quasiconvex, both a t  
each particular time and in the limit. Suppose a direction of improvement of a contem- 
porary utility function is elicited from the decision maker; this might be done either by 
generating random directions of decreasing length, showing to  him outcomes related t o  
aspirations perturbed along these directions and asking for pairwise comparisons of these 
outcomes, or  by pairwise comparisons of the importance of improvements along each 
objective, or by any other means; i t  is important only that  these directions should 
approximate stochastically a direction of a subgradient of the transformed utility func- 
tion. He might also make random mistakes (with probability less than 0.5) a t  a pairwise 
comparison of any two outcomes or a t  the determination of a direction of improvement of 
utility. However, if a stochastic optimization algorithm is applied, with stepsize 
coefficients that  converge to  zero sufficiently slowly (such that  the sum of them converges 
to infinity and suitably defined differences between the contemporary and the final utility 



functions converge to  zero faster than the stepsize coefficients; on the other hand, the 
sum of squares of the stepsize coefficients must remain finite), then the outcome of such 
process converges to  an outcome that  maximizes the final utility function. 

This interesting result substantiates the use of rather simple algorithms for the con- 
vergence to  some final 'best' alternative even if we allow the decision maker to  make mis- 
takes, be inconsistent, change his preferences - as long as he learns sufficiently fast and 
thus has a convergent utility. We do not need to  identify his utility function, we can use 
the achievement functions that  approximate roughly and not necessarily differentiably his 
utility, as long as we can elicit from him the directions of changing aspiration levels that  
approximate stochastically a subgradient of his changing utility. The crucial point, how- 
ever, is to  select a procedure for eliciting such directions from him that ,  on one hand, 
would give robust results and, on the other hand, would not tire the decision maker too 
much, since the convergence of stochastic optimization algorithms is known to be rather 
slow and to require many iterations. 

Other approaches t o  providing for a good convergence procedure for DIDAS-type 
systems have been also investigated - see Kallio et  al. (1980). However, the question of a 
selection of such a procedure is by no means settled, not because of theoretical difficulties 
but because of the unwillingness of decision makers to  be involved in lengthy iterative 
procedures with tiring questions; this difficulty is, in a sense, common to all decision s u p  
port procedures that  aim a t  convergence to  a "best" solution. 

Appendix to Chapter 4. 

Proof of Theorem 4.5. (N)  Denote B = ( t j  - D) r l  ( i  + 6).  B is nonempty 
because Q 2 i,, and t j  E Q, c i,, - D. Since B is convex and w = q' - i ,  hence 
Q - tw E B for all t E [0;1). But Q, n B = @, according to  the definition of efficiency. 
Hence t = 1 is the lowest value of such t that  y - tw E Q,. 

(S) If p = 2 and Q, is convex and compact, each ray: 
2 T, = {q E im, - R + :  q = im, - tw, t 2 0, w E R : )  

intersects Q,. For, suppose otherwise. Then dist(Q,,T,) > 0 and T, separates strongly 
Q, either from the half-axis T1 or T2, where: 

Then there is a positive distance from Q, to  either T1 or T2 which contradicts the 
assumption that  i,, is the utopia point. 

If T, intersects Q, for all w E R:, then there exists the lowest value f of such 
t > 0 that  

Take 4 = i,,-fw and determine the supporting hyperplane (here - a line) L to  Q, a t  4. 
If L would intersect only one of T1,T2, then it would separate strongly the other one from 
Q,, which would again contradict the assumption that  q,, is the utopia point. Thus, L 
intersects both T1,T2 a t  some q' = i,, - t tel ,  q" = i,, - tNe2. If L does not contain 
either of T1, T2, then t' > 0, t" > 0 and L has an  orthogonal unit vector a with strictly 
positive components. Therefore 4 maximizes a l q l  + a2q2 over q E Q,, hence 6 is efficient 
according to  Theorem 4.1. If T1 c L or T2 c L, then q  ̂ E T1 n Q, or 4 E T2 n Q,; since 



4 is the closest point in these sets to  dm,, it is efficient (other possible points in these sets 
being weakly efficient). 

If p > 3, even if Q, is convex and compact, there might be rays T, that  do  not 
intersect Q since for a separation of Q, from a half-axis we need then a hyperplane, not 

0' 
a ray. T o  ~llustrate this, consider p = 3 and a ball Q, in a corner of a room; there are 
such rays starting from this corner that  do not intersect the ball and even such rays that  
touch the ball a t  nonefficient pointa. 

Proof of Theorem 4.7. (S) If a E A,, then function (4.33) is strongly monotone 
and - see Theorem 4.9. - its maximal arguments are efficient elements of the set 
Q, n Q(Q), hence - as it is easy to  check - also efficient elements of the set Q,. 

(N) Since Q(Q) = Q + D, hence Q, n Q(Q) = {Q) according to  the definition of 
(strict) efficiency. On this singleton set, maximum of (4.33) is trivially attained - how- 
ever, each perturbation of Q, might make the intersection Q, n Q(Q) empty. 

Proof of Theorem 4.8. If a E A, and qi < 6 for all i = l , . .p, then 

and this function is strongly (negatively) monotone; each minimum i of such function 
over q E Q, is efficient (Theorem 4.9). However, a normal vector t o  a supporting hyper- 
plane of Q, a t  i is is the minus gradient of s(q,q") with respect to q a t  4. The components 
of this gradient are: 

Since these components are all strictly positive and bounded, their ratios that  determine 
marginal substitution rates a t  are bounded. Therefore, 4 is properly efficient. 

Suppose a properly efficient $ is given. Determine a normal vector to  a supporting 
hyperplane to  Q, a t  #; its components are all nonzero and positive, denoted here by ci. 
Normalize this vector in the dual weighted norm lkll where k" = k/(k - 1) by taking: 

k" 1/ kt' 
ci = ci/{ $ cj(cj/aj) } (4.A.3) 

j= 1 

Assume any value p of the weighted lk norm of @ - # and determine q" by: 

It is easy to  check that  for such q", with any assumed P, the components of the gradient 
(4.A.2) are equal c;. Since Q, is convex, this means that  minimizes s(q,q") over q E Q,. 

Proof of Theorem 4.9, the case of proper efficiency with bound. Suppose the 
thesis does not hold: let r(q) be e-strongly monotone and 4 maximize r(q) over q E Q, 
but 4 be not D,-optimal. Than there exists such q' E Q, that  q' E 4 + 6 , ;  but, a t  the 
same time, r(4) 2 r(ql) which contradicts the assumption that  r(q) is e-strongly mono- 
tone. 

Proof of Theorem 4.10, necessary condition of proper efficiency with bound. S u p  
pose i is properly efficient with bound, Q, n (4 + D,) = @, but the thesis does not hold, 4 
does not maximize s(q,q) over q E Q, with Q = 4. Then there exists such q' E Q, that  
s(ql,$) > s ( ~ , T )  = s(4,4) = 0 and q1 f 6. Thus q' E # + D, according to  the property of 



order approximation (4.31); aince q' # 4, q' E 4 + fi,. Therefore, q' E Q, n (4 + d,) # 0 
which contradicts the assumption that  4 is properly efficient with bound E .  

Proof of Theorem 4.11. By rescaling the coordinates for both q and q equally 
(which does not change Lipschitz constants for any dependence between them) we can 
assume a, = l l p  or even a, = 1 (which in turn does not change the maxima of s(q,f)). 
Observe that  with s(q,ij) = min (q, - q,) and e = (1,..1,..1), all points 

I < ~ < P  

lead to  the same 

4 = argmax s ( q , ~ )  
qE Qo 

Let 1.1 denote the Chebyshev norm, take any 

4:)'' E gap, )' # )" 
and select q' = )' E A along with such Q" E A that  has the minimal distance from q'; 4' 4" 
thus, the distance of any two points in Ad#, A is not smaller than Iq" - 11. Suppose, 
without loss of generality, that  )," 2 (1(: and determine f 'E  AT such that  

f l u  = ql' = ill. Since 

g," - q,' = ,j," - q;' - ql" + ql' 

we have 

If" - Q l  5 2 I$' - q'l 
for I",$ as defined above as well as for any q" E A and any q' E A$. 

Q 

Because dl" 2 i l l ,  f" = )" + t l e  with t l  5 0. Because )',)" are efficient, we have 
a t  least one i = 1 such that  4;" 5 ),'. Take j such that  

) ." - ) .' = min (4," - 
I I l < i < p  4') 

Select the point f" E Ak for which t," = f,'. This point has coordinates 

t." - q.' = 4," - q,' - i," + q,' 

hence, 

I' - -11 However, we can represent f" also as q - q + t2e, where t2 5 0 since )'li 1 )'I. 
Hence, there exists /3 E [O;l] such that  )" = /3f" + (1 - /3)f"; since )' = f', this implies 
that: 

) - ) m a x (  - 1 ,  18' - ql )  5 2l(" - 5 4lq" - 11 (4.A.5) 

for any q" E Ain and any q' E A 4" 
This proves that  

IrO(4") - rO(~')l I 414'' - ~1 
-11 -1 A for Q",$ belonging to some lines A?, Apt passing through points q ,q E Qop. If a point J 

does not belong to  any such line, we translate it t o  A4 passing through 



by this translation the Lipschitz inequality will be only strengthened. Observe that  if 
p = 2, the Lipschitz constant can be tightened from 4 to  2. The inequality (4.A.5) 
depends on the use of Chebyshev norm; since all norms are topologically equivalent in RP, 
there exist also Lipschitz constants for any other norm. 

Proof of Theorem 4.12. (a) Let 4 be efficient; since Q, is of arbitrary form, any 
point q $! 4 + d might belong to  Q,. Since i t  is assumed that  q  ̂ maximizes e(q,d) over 
q E Q0 n Q(6) for some d E A,, hence s(q,d) can further increase in q only for points in 
4 + 8; being continuous, it caq further increase only for points in the open set 4 + int D. 
Take this property for all 4 E Qo and all corresponding d E A,: 

{q E Q(d):  e(q,6) > ~ ( 4 , s ) )  c (4 + int D)  n Q(d) ,  for all 6 E A, (4.A.6) 

It is also assumed that  each maximal point of the function s(q ,a)  over q E Q, n Q ( a ) ,  for 
any a E A,, is weakly efficient; if a point q E Q, is not weakly efficient, 
(q + int D)  n Qo # 0 ,  then it cannot be a maximal point and the function s(q ,a)  must 
have the property that  it further increases a t  any point in q + int D. Since Qo is of arbi- 
trary form and its weakly efficient points cannot be distinguished from other points before 
maximizing s(q ,a) ,  this property must apply also for 4 that  are weakly efficient: 

{q E Q(a ) :  s (q ,a)  > s(4 ,a) )  3 ($ + int D)  n Q(a) ,  for all a E A, (4.A.7) 

Jointly: 

{q E Q(a):s(q,a) > s(4 ,a) )  = ($ + int D) n Q(a) ,  for all a E A, n A, (4.A.8) 

If U(4) c Q(a) ,  then the property of local order-representation (4.41) follows from 
(4.A.8). 

(b) If the function s(q ,a)  has the property (4.41) and is continuous, then: 

{q E U(4): s (q ,a)  > s(4,a))  3 (4 + D) n U(d), for all a E A, n A, (4.A.9) 

Together with (4.41) and for Q, of arbitrary form this implies, however, tha t  if a point 4 
maximizes s (q ,a)  over q E Q,, then this maximum is not necessarily unique: any point 
d' E ((4 + D)\($  + int D))  n U(4) might also maximize s(q ,a) .  Suppose Qo is such that ,  
beside 4 ,  there is only one such additional maximal point 4' # 4. Even if s (q ,a)  is strictly 
monotone as a function of q, which implies that  both 4',$ are weakly efficient, they cannot 
both be efficient since 4' E (d + d )  n Qo. Hence, the function s(q,a)  cannot completely 
characterize efficient solutions; besides, (4.A.9) implies that  such a function cannot be 
strongly monotone. 

Proof of Theorem 4.13. For this proof, we need first a lemma: 

Lemma. If hl:[tl;  t2] - R' and h2:[tl; t2] - R1 are strictly monotonically 
increasing functions of t ,  such that  h2(t) > hl(t)  for all t E Itl; t2], and if X:[tl; t2] - R 1 

is also a strictly monotonically increasing function of t such that  X(t) E [0;1.] for all 
t E [tl;t2], then h ( t )  = X(t)h2(t) + (1 - X(t))hl(t) is also a strictly monotonically 
increasing function of t E [tl;t2]. 

Proof of the lemma. Let t' < t" E (tl;t2); since X(t) is strictly increasing 
0 < X(tf) < X(t") < 1. The difference h(t") - h( t f )  can be written as: 

h(t") - h( t f )  = X(tf)(h2(t") - h2(tf))  (4.A. 10) 

+ (1 - X(tf))(hl(t") - hl( t f ) )  

+ (X(t") - X(tf))(h2(t") - h1(tM)) 



where the two first terms are strictly positive and the third is nonnegative. Hence 
h(t") > h(tl). 

For the proof of the theorem, denote: 

Hence: 

Since Q, = {q E RP: r(q,vl,$') < 1) and Qt = {q E RP: t(q,41,~11) > p1 - 1) are disjoint, 
we can consider three cases: A, when q 6 Qt n Q, B, when q E Q,, and C, when q E Qt. 

In the case A we have: 

" 11 Since q 5 Lax 5 qmax and k < oo, the norm in (4.A.13) is a stongly decreasing 
function of q and (4.A.13) is a strongly increasing function. 

In the cases B, C, we consider the function s on a ray q + w(ql - q) where 
q' - q E R$ and w > 0, for w such that  q + w(ql - q) 5 qm,. In case B,  the norm 

is a stricly decreasing function of w,  hence we can introduce a one-to-one map ~ ( 7 )  and 
consider s as a function of r; for the proof of the theorem in this case, it is sufficient to  
show that  this function strictly decreases with r. This function has the form: 

Since the norm in (4.A.14) strictly decreases with w(r) and thus strictly increases 
with r, hence we can apply the above lemma to  the function h(r) = - s (which should be 
strictly increasing with r, if s should be strictly decreasing). Take: 

hz(r) = Iq&ax - 'I - w(r)(ql - ' ~ ) l ( ~  q - p" (4.A.15) 
9 nlax 

It remains to show that  ha(') > hl(r) for r E [0;1]. We have: 

where the last inequality follows from the assumption (4.60a) in the theorem. On the 
other hand, since 

and 
- I1 + w(r)(ql - q) 5 @ m a  5 qmax 

we have 



which, from the triangle inequality, impliea hz(r) 2 hl(r). Thus, the lemma can be 
applied which finishes the proof in case B. 

In case C, we consider the norm 

which is a strictly decreasing function of w. Hence, we introduce a one-bone map w(t) 
and consider s as a function of t; for the proof of the theorem in this case, we must show 
that this function is strictly decreasing with t. This function has the form: 

Again, we shall apply the above lemma for the function h(t) = - s, whereas: 

We shall show that h2(t) 2 hl(t) for t E [p' - 1; p']. Since q + w(t)(Q1 - 9) 2 {mi, and 
p" = [Lax - Q I ( ~ , ~ ,  we have: 

On the other hand: 

where the last inequality follows from the assumption (4.60b) of the theorem. Hence, 
h2(t) > hl(t) and the lemma can be applied, which finishes the proof for the case C. 
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