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€

Figure 11.4: OLS residuals e; and smoothed OLS residuals against the index i for Quandt’s
data.

term followed a normal distribution with mean zero and variance equal to 0.2 times the
variance of Xf. Beginning from the 30th observation, the last 10 data were generated
using changed values of the parameters.

This is quite visible in Figure 11.1, where externally studentized residuals are plotted
against the case number. Thus, by the 30th residual, the smoothed curve is shifted down
beyond the lower envelope bound. [The simulated envelope bounds determine a kind
of confidence intervals for the smoothed residuals. Fluctnations of the smoothed curve
appearing inside these bounds are still acceptable for the given matrix X].

The plot of backward and forward recursive residuals, plotted against each other in
Figure 11.2, also indicates the two different regimes used to generate the sample data.
Note that it is possible to see this mainly because the smoothed points were plotted out.
The normal probability plot of the recursive residuals ( Figure 11.3) shows a great distance
between the curves which correspond to the forward and backward recursive residuals.
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Figure 11.5: Scatterplot of the OLS residuals e; smoothed by the (3RSSH, twice) and
(4253H, twice) techniques, against the index i for Quandt’s data.
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Figure 11.6: Scatterplot of Quandt’s data; the solid points are median summary points
for the left, middle, and right thirds of the data according to the order of the z-values.
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Figure 11.7: OLS residuals e; and smoothed OLS residuals against the year ¢ of the
observation for example 3.

Figures 11.4-11.6 are based on the data set given by Quandt (1958) which contains a
structural change by the 13th observation. The smoothed OLS residuals (Figure 11.4) in-
dicate a systematic decreasing tendency, starting at the 8th—-10th observations. Figure 11.5
shows the results of applying the smoothing techniques (4253H, twice) and (3RSSH, twice)
on these data. The smoothed residuals obtained by the first of these techniques (the up-
per plot in Figure 11.5) form two different configurations on the plot, separated by the
points 10, 11, and 12. The ocurrence of sequences of three points with the same level is
due to the repeated resmoothing used in this technique. Additional valuable information
concerning the structure of the data yields a simple scatterplot of y values versus z values,
which also contains the corresponding linear regression line (see Figure 11.6). Numbering
the points on this plot, one can see that the observations 13-20 probably would yield a
slightly different fitted line when used alone.

The last two examples are based on real data from the Austrian economy. Figures 11.7-
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Figure 11.8: Leverage plot for the trend variable ¢ and fitted line for example 3.
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Figure 11.9: Leverage plot for the variable X1, and fitted line for example 3.
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11.9 are based on the data used in examples given in the test processor of the IAS-SYSTEM
(see Sonnberger et al., 1986). The 23 observations from 1960 to 1982 were used to estimate
the parameters of the equation

Yi=a +axt+ a3 X1 +u;

The Quandt test indicates a change of the parameters in 1964. The CUSUM test does not
reject the null hypothesis that the parameters remain constant over time. The CUSUM-
SQ test indicates two regimes before and after 1964. The same phenomenon is indicated
by Ploberger’s (1983) fluctuation test.

Examination of the scatterplot for OLS residuals and their smoothed values (the
(4253H, twice) technique was used) does not show any significant change in the con-
figuration of the residuals (see Figure 11.7). The smoothed curve seems to rise a bit,
starting in 1965 but this may be due to the fact that there is an outlier in 1962 and
probably also in 1980. Analysis of the partial regression residuals (or “leverage”) plots
for the two exogenous variables (Figures 11.8 and 11.9) allows us to look for any special
subconfiguration of the given subset of successive data points. The leverage plot for the
variable X1 only indicates that the observations from 1964 to 1968 would lead to different
parameter estimates than the global estimation process.

The graphical analysis for the last example is based on the following equation for
demand for labor in the Austrian building industry given in Sonnberger et al. (1983):

K:b0+b1t+b2X2t+ut

where Y is the logarithmic transform of employment in the construction sector and X2 is
the logarithmic transform of the real output in the construction sector. A scatterplot of
the externally studentized residuals (Figure 11.10) shows not only an extremely negative
residual for 1975, but also indicates two other relatively high positive residuals for 1967
and 1973. The same plot indicates a possible break point in 1972 or 1973. [In fact, it is
possible to distinguish two subsequences of increasing residuals within the loop between
1973 and 1974. The smoothed values of residuals show the change in tendency of the
residuals’ distribution.]

The scatterplot of the backward recursive residuals plotted against the forward recur-
sive residuals (Figure 11.11) confirms this supposition. There is no linear dependency
between these two types of recursive residuals. This means that predictions made from
two different edges of the sample do not correspond to each other. Figure 11.12 and 11.13
show that there are no single influential points playing a crucial role in the determination
of the parameter estimates as well as extremely outlying observations. The effect of the
possible outlier in 1975 seems negligible, and influential points in 1967 and 1973 offset
each other's leverage on the estimated coefficients. The possible occurrence of the break
point in 1972-1973 is no longer quite clear in the light of Figure 11.12 and 11.13. The
observations for 1972-1978 might lead to a different slope of the regression line in these
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Figure 11.10: Scatterplot of externally studentized residuals f;, and smoothed values
against the index ¢t for example 4.
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Figure 11.11: Scatterplot of backward [ng)] against forward [ng)] recursive residuals for
example 4.
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Figure 11.12: Leverage plot for variable X2 and fitted line for example 4.
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Figure 11.13: Leverage plot for the trend variable ¢ and fitted line for example 4.
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figures when considered separately. [This slope is equal to the value of the coefficient’s es-
timate by variable t and X 2, respectively.] The observations in 1979 and 1980 still remain
in agreement with the old line. This can be interpreted as the return to the old state after
a temporary change of the regression regime which occurred in 1972.

11.5 Final Remarks

The four examples considered in Section 11.4 give an idea of the usefulness of graphical
displays in residual analysis. They provide important qualitative information about the
data structure and its effects in the estimation process. The plots of the smoothed resid-
uals show the general tendency in the residual configuration; and with partial leverage
regression plots, one can recognize influential subsets of data. These two features seem to
be especially important in the investigation of structural change.
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Part III

Model Building in the Presence
of Structural Change






CHAPTER 12

Adaptive Estimation and Structural

Change in Regression and Time Series
Models

Johannes Ledolter

Summary

Heuristic and model-based approaches to adaptive estimation in regression models are re-
viewed in this chapter. We describe a model-based approach that introduces time-varying
coeflicients explicitly and assumes that the coefficients follow certain autoregressive inte-
grated moving average time series processes. We show how these time-varying coefficient
models can be written in state space form, we illustrate how the Kalman filter approach
can be used to update the coeflicient estimates and forecasts, and we discuss why the re-
sulting estimates are more responsive to structural change than the standard least squares
estimates. The parameters in the underlying stochastic processes that generate the time-
varying coefficients are needed to update the coefficient estimates. It is shown how these
parameters can be estimated from historic observations. These parameters determine how
adaptive the resulting coeflicient estimates are to changes in the coefficients.

12.1 Introduction

The coefficients in statistical models (such as regression, time series, transfer-function,
ARMAX, and econometric models) are usually assumed to be constant. Under the as-
sumption of parametric stationarity, statisticians have developed methods for the efficient
estimation of the underlying parameters; for example, least squares, maximum likelihood,
or Bayesian methods can be used to estimate the underlying coeflicients.
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In applied work it is often recognized and anticipated that relationships change over
time. For example, the relationships before and after a certain event or intervention
may differ; the behavioral characteristics may change and drift with time; and linear
approximations to complex, nonlinear, and poorly defined phenomena may exhibit time-
varying structures.

If the parameters are expected to shift at a given point in time from one value, say
B, to some other value, say 8* = f + 6, then it is usually quite easy to formulate a
more general model, estimate the change in the coefficients, and test whether the change
is significant. For example, one can use F- and t-statistics to test the equality between
two sets of regression coeflicients; see Chow (1960). But, if the time period at which the
coefficients change is unknown, the problem becomes more difficult as one has to make
additional inferences to detect the unknown change point. There are many approaches
to this problem, and many papers have been written on this topic. The reader may
refer to the extensive bibliographies compiled by Shaban (1980) and Hackl and Westlund
(1985). Papers on two-phase or switching regression [see, for example, Quandt (1958,
1960, 1972), Goldfeld and Quandt (1973, 1976), Poirier (1976), Hinkley (1969, 1971}];
Bayesian methods for change detection [see Ferreira (1975), Broemeling (1985, Chapter
7)], and various cumulative sum procedures [see Brown et al. (1975), Hackl (1980)] fall
into this category.

Parameters may also change continuously over time, and this is the topic that is ad-
dressed in this chapter. Instead of assuming that the coefficients are constant or shift from
one value to another (step changes in the coefficients), we assume that they drift and vary
continuously over time. Recursive estimation plays an important role as recursive param-
eter estimates provide information on the existence of nonstationarity. Furthermore, it is
quite easy to modify recursive estimation procedures such that more weight is given to the
most recent observations and less to the ones in the distant past. Modifications may be
heuristic, such as various weighted least squares approaches where the weights decrease
with the age of the observations. Or, one can assume that the parameters follow certain
stochastic models. For example, one can assume that the coeflicients change smoothly ac-
cording to a random walk, 8; = (;—1 + Vi, where the v; are independent disturbances, and
can derive at each time period ¢t the optimal estimates of the coeflicients f; in this more
general model. Also, one may want to test whether the coefficients are in fact constant or
whether they exhibit time-variability.

12.2 Heuristic Approaches to Recursive Estimation in Re-
gression Models

Let us consider the multiple linear regression model

y=znb+...tepfpt+a= x;,B + a4 (12.1)

Here g, for t = 1,...,n, is the response in an experiment where the levels of the p ex-
planatory (or regressor) variables are set at z1,...,2sp. If an intercept term is desired in
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the model, one sets z;;y = 1. The disturbance terms a;, for t = 1,...,n, are independent
random variables with mean zero and constant variance o?. The vectors x; and 3 in model
(12.1) are p x 1 column vectors, defined as x; = (241,...,2¢) and B = (B1,...,B,). The
levels of the explanatory variables are assumed to be either nonrandom constants or ran-
dom variables which are independent of the error terms a;. In this chapter we assume that
t stands for time or run order. This means that the responses become available sequen-
tially in time. For example, they may refer to monthly, quarterly, or annual observations
on certain economic indicators or other variables of interest.

The coefficients in the regression model (12.1) can be estimated by least squares such
that the sum of the squared deviations S(8) = Y1, (y: — x}3)? is minimized. These least
squares estimates (which are maximum likelihood estimates if the errors are assumed
normal) can be written in matrix form as

B = (XnXa) ' Xpyn (12.2)

where X, is an (n X p) design matrix that consists of the levels of the explanatory variables,
and y, is an (n X 1) column vector of the responses. More specifically,

11 Z12 ... Typ hn

21 T32 ... Typ Y2
Xn = . . . ’ Yn =

Tpl Tp2 ... Tpp Yn

12.2.1 Recursive least squares

Let us assume that the observations become available sequentially in time, and let us
express the least squares estimate 3,, as a function of the previous estimate at time n — 1,
that is #,-1, and the new information at time n. We can write the least squares estimate
as

ﬂn = Pn(X,I-,,—lyn—l + xnyn)

where

2T
I

(X Xn) " = (X1 1 Xno1 +%ax,) 1 = (P2 + xaxp,) 7!
Py — Py yxn(1 4 %L Py 1xn) 1%L Py (12.3)

Here we have used a well-known result about the inverses of symmetric matrices; for
example, see page 29 of Rao (1965). Thus,
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Brn = [Paci — Pac1Xn(1+ X0 Pa1Xn) X0 Pt )( X} 1¥n-1 + Xn¥n)
= Bp-1— Pao1Xn(1 4+ X4 Pa1%0) 1 Bnc1 + Pac1Xnyn
— Pooyxn(1 4 XL Pas1X0) " X, Py 1 X0 Yn
= fn-1+ Pac1Xa(l + X, Pac1%,) " [~ X0 Bnr
+ (14 X, Pa_1Xn)¥n — X Pae1XnYn)
= Bac1 + Pac1xa(1 + X, Pa_1%X0) " yn — XiBn1)
= fn-1+ PaXp[yn — X\.Bn_1] (12.4)

since
P.x, = [Pn—l - Pn-—lxn(]- + x:,Pn—lxn)_lePn—l]xn

Praxa{1 - [xiuPn—lxn/(l + x::Pn-lxn)]}
Pn—lxn.(]- + x:;Pn—lxn)_l

il

I

Equations (12.3) and (12.4) give us a recursive method for calculating and updating the
least squares estimates. We can start with the first p equations of model (12.1) for t =
1,...,p, and calculate ﬁp = PpX,yp- This estimate implies a certain fitted, or predicted,
value for the next response yp11, that is §p11 = x,, +1ﬁp. The one-step-ahead prediction
€error, Yp41 — x;+1,@p, is used to revise the estimate, and ,BP.H is obtained. The vector of
weights that is attached to the prediction error is given in equation (12.4). The matrix
P, is revised according to the relationship in equation (12.3). The updating relationships
are very convenient as they involve no further matrix inversion. These equations are very
intuitive as they use the latest prediction error to revise the estimate that is obtained
at the previous stage. Also, the elements of the covariance matrix of the least squares
estimates,

Var(Bn) = 0*(XLX,) ! = o2 P, (12.5)

are easily updated from equation (12.3).

For nondegenerate explanatory variables (that is, when the elements of x, are not zero
all the time) the elements of the matrix P, = (X/.X,)"! and of the adjustment vector
P.x, in (12.4) approach zero. This illustrates that, eventually, when the sample size has
become very large, the coefficients will be virtually unchanged and unaffected by a new
observation.

These recursive updating equations have been known for a long time; see Plackett
(1950) for a discussion of recursive least squares. As a matter of fact, the development of
least squares theory in its recursive form goes back to Gauss and to the early nineteenth
century [see Appendix 2 of Young (1984)].
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12.2.2 Heuristic approaches to the estimation of time-varying coeffi-
cients

The least squares criterion gives each pair of observations (x;,¥:) the same weight. This
implies that after a while each new observation will change the least squares estimate
only little. If observations are collected sequentially and if one believes that the recent
observations are more relevant than the ones in the past, then one should weight the
observations differently.

We can use one of several heuristic approaches. Under one approach, we estimate the
coefficients at time n only from the s > p most recent observations; that is, those observed
at times n,n — 1,...,n — s + 1. This amounts to using a moving rectangular window
function. The other approach uses an exponential data weighting function and discounts
the observations according to their age. This amounts to minimizing the weighted sum of
squares S,(8) = Y, w™ [y: — x;B)?, where w = 1 — a is a discount coefficient that is
between zero and one; a is called the smoothing constant. For example, one could pick
w = 0.95.

Moving rectangular window function

If we estimate the parameters from only the last s time periods, the parameter estimate
at time n satisfies the normal equations

[ Xn: xext) Bn = [ Xn: X:Ye) (12.6)

=n—s41 t=n—s+1

We obtain this estimate from the one at time n — 1, B,_1, by adding the new observa-
tion (xyn,yn) and omitting the observation (xp_,,yn—,). In equations (12.3) and (12.4)
we learned how to revise estimates after adding a new observation. Adding the new
observation (x,,,y,) leads to the estimates

,B:; = ,Bn—l + Pn—lxn(l + X;P ——lxn)_l(y‘n - x:;,[;n—l) (12~7)
P: = Pn—l - Pn—lxn(l + X{,;Pn—lxn)_lx'lnpn—l (12'8)

Removing the observation (X,_,,Yn—,) leads to the revised new estimate

n n
Brn = ( Z xtx: _x‘"—‘xit—a)—l( Z xtyt_xn-—ayn—a)
t=n—s t=n-s
n
= ()" = %nmaxn )70 )0 %ol — XnoYn—s)
t=n—s

n

[P} + Prxos(1 — X, Prxn—a) ' x_,PE Y Xyt — Xn—s¥nos)

t=n—s

= ,é: + P:xn—a(x;——ap::xn—a - 1)—1(yn—a - xit—a:ér*t) (12'9)
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and

P = Pi— Pixn (X ,Pixa_s~1)'x, P} (12.10)

The four equations (12.7)—(12.10) are used recursively to update the estimates 3.
Ezponential window function
The weighted least squares estimator that minimizes Y 7 ; w™ !(y; — x{3)? satisfies the

normal equation

n

n
D txexi] Bn = 3w iRy (12.11)

t=1 t=1

It is given by

n n—-1
ﬂn =P, [an—txtyt] =P, [w Z wﬂ_l_txtyt + x-nyn] (1212)
t=1 t=1

n—1
Po = [wmtmad] = o 3w e ] = 0P 4 %o
t=1 t=1

1
= ;[P 1= Poo1xXp(w + X5 Pro1%,) " %! Py (12.13)

after applying the matrix inversion result in equation (12.3). Substituting (12.13) into the
expression for 8, we find that

n—1
ﬂn = ﬂn—l + P, —lxn(w + x;Pn—lxn)_l[“x;Pn—l Z n_l_txiyt
t=1
+ (1/w)(w + x;Pn—lxn)yn - (1/w)x:1Pn—lxnyn]
ﬂn—l + Pn—lxn(w + x,InPn—lxn)_l(yn - x:;ﬂn—l)
= Bn1+ Paxn(yn — x'Bn_1) (12.14)
since
1
Px, = _[-Pn——l - Pn—lxn(w + x;Pn—lxn)_lx:rPn—l] Xn
[

= Pn—lxn(w + x:r.Pﬂ—lxﬂ)_l
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We can use the equations in (12.13) and (12.14) recursively to update the coefficient
estimates. We can start with the estimates ﬁp and P, from the first p equations and update
the subsequent estimates in a recursive fashion. The updating equations are similar to the
ones for least squares estimates in equations (12.3) and (12.4), except that the recursion
for P, includes the discount coefficient w.

We found that for least squares estimates the elements of the matrix P, in (12.3) and
the elements in the adjustment vector P,x, in (12.4) approach zero as the sample size
n goes toward infinity. For an exponential data weighting function, this is no longer the
case. There P, approaches a steady state limit that is different from the zero matrix. This
implies that some adjustment will be done, even though a large number of observations
may already have been processed. Thus, these estimates are more responsive to changes
in the underlying coefficients. They allow for coefficient variability.

One disadvantage with this scheme is that all p coefficients are treated the same. It
is not possible to have one coefficient vary more than the other. A second disadvantage
is that one has to pick a discount coefficient. This coefficient can be chosen heuristically
(for example, one can set w equal to 0.95 or 0.90), or one can use historic data and select
it such that the sum of the squared one-step-ahead forecast errors is as small as possible.

Special case: Regression on functions of time

It is instructive to look at these updating equations for the special case when the explana-
tory variables in the regression model are functions of time. Let us consider models of the
form

Ynysi = IBO + ﬂl] +...+ ,Bp—ljp_l + Onyj = f,(])ﬂ + an+j (1215)

where xX,1; = £(j) = (1,7,...,7°!)'. Note that the coefficients in this trend model are
parameterized with respect to time origin n. These trend models relate the values of a
time series to functions of time. They are traditionally used for the prediction of time
series observations. The prediction of a future value y,; from time origin » is given by

In(5) = £(5) Bn (12.16)
where f3,, is the estimate of B in the model
yp=Ff(-t)f+afor t=1,...,n

One could use the least squares estimate, but this would give each observation the
same weight, irrespective of its age. If more recent observations should get more weight
than old observations, one could determine the estimate by minimizing the discounted
sum of squares

n

S(B) =D Wy — £t — m) B

t=1
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The resulting estimate is given by

n n

Br = [D_w" Mt —n)f'(t ~ )] DT - n)y (12.17)

t=1 t=1

If we use polynomial fitting (forecast) functions f(t), the matrix

n

Po = D W™ H(t — n)f(t — )] (12.18)

t=1

approaches a steady state limit as n goes to infinity; let us call this matrix P,. This follows
because, with increasing n, the terms in w™f(~n)f'(~n) go to zero, as the decrease in an
exponential is faster than the increase in a polynomial. Therefore,

n-1
B = PLIEO)yn +w 3w I (t — n) ] (1219)

t=1

Polynomial trend functions f(j) are such that they satisfy the difference equation

£(7) = L£(; - 1)
where L is a certain transition matrix. For example, consider the mean model with a
single constant forecast function f(7) = 1. In this case L = 1 is a scalar and f(0) = 1.

Or, take the linear trend model with £f(j) = (1,7)’. There the transition matrix and the
vector of initial fitting functions are given by

L:(i ;’) and f(o):(;)

Or, consider the quadratic trend model with f(5) = (1,7,5%)". There

100 1
L=|110 and f(o)=1| o
1 21 0

Using the special nature of these polynomial fitting functions, we can write the second
term in equation (12.19) as

n-1

wP Y W (t ~ n)y, = (L'~ Pf(0)f'(0)L'] Bny

t=1
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For a proof, see page 103 in Abraham and Ledolter (1983). Therefore,

ﬂn P, f(o)yn + L,Bn—l - P*f(O)f’(l) Bn—l

= L,ﬁn—l + P*f(O) [yn - fl(l))én—l] (12.20)

The new parameter estimate is a linear combination of the previous parameter estimate,
Bn_l, and the latest one-step-ahead forecast error y, — gn-1(1) = yn — f’(l)B,,_l. The
only purpose of the factor L’ in the first component is to update the coefficients for the
new time origin. Even if we predict y, perfectly, we have to update the 8 vector as it is
always parameterized with respect to the time origin of the latest available observation.

It is instructive to look at special cases and consider the mean model with f(j) = 1,
that is, yny; = #t + @ny;. Then with L =1 and f(0) =1,

fln = fln_1+ (1 - w) [yn - ﬂn—l] = (1 - w) Yn + Wiln_ (1221)

since

P, = (Z:u.:j)'_1 =1-w

320

The forecasts of all new observations made from forecast origin n are given by §n(j) = fin-
Equation (12.21) shows how they are updated with each new observation. The new mean
level is a weighted average of the latest observation and the previous mean level. Or,
equivalently, it is obtained by adjusting the previous mean level by a fraction of the latest
one-step-ahead forecast error. Note that each new observation carries some weight, even if
we already have observed a very long record. In the forecasting literature, this procedure
is known as simple exponential smoothing with smoothing constant a = 1 — w.

For the linear trend model, ynt; = 8o + 817 + @ntj, one can show by substitution into
equation (12.20) that the updating equations for the discounted least squares coefficients
in the forecasts §,(j) = Bo(n) + B1(n)j are given by

Bo(m) = bo(n—1)+fi(n - 1)+ (1 — &®)[gn — Gn-1(1)]
Bi(n) = Bi(n—1)+ (1 - w)[gn — Ga-1(1)] (12.22)
or, equivalently, by

fo(m) = (1= w?)yn + & [fo(n— 1) + fi(n — 1)] A
Bun) = [(1-w)/(1+w)ho(n) - fo(n — 1) + [20/(1 +w)]Bi(n—1)  (12:23)
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The estimate of the mean level at time n, Bo(n), is found as the weighted average of
the most recent observation, y,, and [Bo(n — 1) + B1(n — 1)], which is our best estimate
of that mean level based on observations up to time n — 1. Similarly, to get the new
estimate of the slope, 41 (n), we take a weighted average of the slope estimate at time
n—1,4 (n — 1), and the most recent estimate of slope that is obtained as the difference
of the mean levels, [Bo(n) — fo(n — 1)]. This procedure is known as double ezponential
smoothing with smoothing constant @ = 1 — w. The discount coefficient determines how
these components are weighted.

The updating equations in (12.23) illustrate how each new observation is used in the
revision of the previous estimates and show how the forecasts are updated. The discount
coefficient makes the estimates more responsive to changes in the trend of the time series.
The smaller the discount coefficient, the more adaptive the coefficient estimates will be.
The nature of this procedure is still mostly heuristic as no model for coeflicient changes
is ever specified. Also, there is only one discount coeflicient and, in this simple situation,
one cannot distinguish between coeflicients that are stable over time and coefficients that
are time-varying. [Extensions of this method that allow for different smoothing constants
do exist; see Abraham and Ledolter (1983, Chapter 3) for a discussion.]

There are very simple relationships between the forecasts from this discounted least
squares approach (or exponential smoothing approach, as it is called in the forecasting
literature) and the forecasts that are implied by the autoregressive integrated moving
average time series models discussed by Box and Jenkins (1976). For example, it can be
shown that the forecasts from simple exponential smoothing with smoothing constant a =
1—w are equivalent to the forecasts from the ARIMA(0, 1, 1) model y; = ¥;—1 +a; —was_1;
the a;s in this model are independent mean zero random variables. Similarly, it can be
shown that the forecasts from double exponential smoothing in (12.23) are equivalent
to the forecasts from the ARIMA(O, 2, 2) model ¥ = 2y;—1 — Yr-2 + a; — 2wap—1 +
w?a;_3. In general, it can be shown that the forecasts from the polynomial trend model
in equation (12.15), in which the coefficients are estimated with the moving exponential
window function, are the same as the forecasts from a certain restricted ARIMA(O, p, p)
model. [For a detailed discussion of these relationships we refer the reader to the paper
by Abraham and Ledolter (1986).] This shows that ARIMA models can be thought of as
polynomial trend-type models in which the trend coefficients are allowed to change with
time. This explains why these models have been so successful in describing and forecasting
time series data.

12.3 Model-Based Adaptive Recursive Estimation

The disadvantages with heuristic approaches (either the moving rectangular or the moving
exponential window function) are (1) that each coefficient is treated the same way, and
(2) that they require an ad hoc choice of additional constants — either the length s of
the moving window, or the exponential discount coefficient w. Instead of such heuristic
approaches, one can adopt a model-based approach to recursive estimation. There we
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assume a probabilistic model for the time-varying coefficients and suppose that the re-
gression coefficients 3; follow certain ARIMA time series processes. For example, in the
simplest case we assume that they follow a random walk,

Bt = Bi-1 + v (12.24)

where v; are independent random variables with mean vector zero and a certain covari-
ance matrix. Random walks generate smoothly time-varying coeflicients. The most useful
case in practice is the one where the covariance matrix is diagonal; this implies that the
coefficients vary independently from one another. The diagonal elements control the vari-
ability of the coefficients; if a diagonal element is zero, then the corresponding coefficient
is constant. If it is different from zero, the coeflicients vary smoothly over time.

The random walk is a special but very useful model. In econometric applications,
where we deal with mostly short series, it is usually difficult to identify more complicated
models for the underlying unknown regression coeflicients.

In theory one can always work with more elaborate model specifications and assume
that the coefficients in the regression model

¥t = XB; + a (12.25)

follow the difference equation model

Bt =TPi—1+ v (12.26)

This is a multiple first-order autoregressive model and includes the random walk model in
(12.24) as a special case (namely, when T’ = I, where I is the identity matrix). In fact, it
is a very general model as it can be shown that any multiple ARMA model of the form

By = ¢1fPe—1+ ...+ ¢pﬂg_p +vi—O1vi1— ... — qug_q (12.27)

can be written as such a difference equation. Here the matrices ¢y, ..., ¢p, 01, ...,0,
contain the autoregressive and moving average parameters. [For a detailed discussion of
multiple ARMA models, we refer the reader to the book by Hannan (1970) and the paper
by Tiao and Box (1981).] It is well known that we can rewrite an ARMA model as an
AR(1) model, but of larger dimension; see, for example, Abraham and Ledolter (1983)
or Harvey (1981). As simple substitution shows, we can write the ARMA(p,q) model in
(12.27) as

Bt ¢y I O 0 Bi-1 I

Bt g2 O I O Bi1.2 —b;

= : + V¢
:Bt*,k—l ¢k-1 O O I 'B:—l,k-—l —O_»
Pi % 0 0 ... 0/ \ piy 61
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or
B =TB{_,+ v} (12.28)

where k = max(p, ¢ + 1) and ¢; = O (matrix of zeros) for j > p and 8; = O for j > gq.

After extending the coefficient vector §; to B, we can write the regression model with
the ARMA time-varying coefficients given in (12.27) as

b = (x;wola ce yol)ﬂ: + ag
B = THL +v: (12.29)

where T, 8}, and v} are defined above. To simplify the notation in our presentation, we
assume that the model is given by equations (12.25) and (12.26). However, as we have
shown here, we can always generalize this model to more elaborate situations.

Two questions now arise:

1. How do we estimate and update the regression coeflicient estimates at time n, know-
ing that these coefficients are not constant, but follow this more general time-varying
coefficients model?

2. How do we make inferences about the underlying coefficient variability, and how can
we test whether the coefficients are in fact constant or time-varying?

Kalman filter equations can be used to estimate and update the coeflicient estimates;
the reader is referred to the work by Kalman (1960) and Kalman and Bucy (1961). The
books by Jazwinski (1970) and Young (1984), and the paper by Meinhold and Singpurwalla
(1983) include excellent reviews of this topic. There are two equations to the system in
(12.25) and (12.26). The first, equation {12.25), is called the measurement equation; it
describes the generation of the observations from a given state vector, which in our case
is the vector of unknown coefficients. The second equation, (12.26), is called the system
equation; it describes the evolution of the state (coefficient) vector. There are two error
(noise) components: the measurement and the process noise. It is assumed that a; and
v, are two independent white noise sequences with zero means and variances ¢ and o2Q,
respectively. The matrix Q is a matrix of variance ratios; it relates the variability in the
coefficients to the variability of the measurement noise.

Let us assume that the noise sequences are from normal distributions and let us suppose
that also the distribution of the initial state {coefficient) vector at timne zero, fo, follows
a normal distribution with mean vector, say Bo]o, and covariance matrix, say o2 Pojp. We
can think of this as the prior distribution. Then one can show that also the conditional
distribution of B,, given the data up to time n — 1, i.e., y* ! = {yn-1,¥n—2,...,¥1}, and
the conditional distribution of 3, given the data up to time n, i.e., ¥ = {yn, Yn—1,---, %1}
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are normal. (Of course, this requires that the parameters T', a2, , the initial values :BD|01
Pgjg, and the values of the explanatory variables are known.) Let us denote the mean
vector and the covariance matrix of the conditional distribution of 3,, given y™ by Bn|n
and azP,,,,,, and the ones for the conditicnal distribution of 3, given y"~! by :Bnin—l and
aanI,,_l. Then there exist convenient updating equations that revise the means and
covariance matrices; they are known as the Kalman filter equations:

:Bn|n—1 = T:én—1|n—1
Pn[n—l = Tan—1|n—1T’ +Q

Bain = Bain-1 + kn(yn — XpBajn_1) (12.30)
Pnln = Pn|n——1 - k'nx:;Pn|n—1
k., = Pn|n—1xn(1 + x;rpn|n-—1xn)_1

To start the recursions, one has to choose the starting values ﬁo\o and Pyjo. To reflect
ignorance about the parameters at time zero Py is usually taken as a diagonal matrix

with large diagonal elements, and ,50|0 is taken as the zero vector. The above equations
show how to revise the estimates. The first equation provides the prediction of the next
parameter estimate. From :Bn—lln—l (which is the estimate of 8,,_; given data up to time
n — 1) we compute ﬁnln—l: which is the “projected” estimate of 8, given the data up
to time n — 1. The third equation shows how to update this estimate and illustrates the
calculation of 'Bnlﬂ after the most recent observation y, has become available. The Kalman
gain vector k,, in this recursive updating equation depends on T, 2, and the past data.
It determines how much weight is given to the most recent one-step-ahead forecast error
Yn — x«:;ﬂn[n-—l'

Here we have explained the recursive equations in (12.30) from a Bayesian viewpoint
and have followed the approach by Ho and Lee (1964). Kalman has derived these equations
from an orthogonal projection argument, while yet others (see Duncan and Horn, 1972)
use a generalized least squares argument to derive these recursions.

The case when 7' = I (that is, the regression coefficients follow a random walk) has
been treated extensively by Athens (1974) and Harrison and Stevens (1976). Let us set
Brn = Bnjn and P, = P, to simplify the notation. Then the Kalman filter equations
become

Bn = ,én—l + [1 + xAIn(Pn—l + Q) xn]_l(Pn—l + Q) xn(yn - x:yén—l)
P, (P14 9) = [1 4+ x5 (Pact + Q) %) (Pact + Q) XXl (Pas1 + Q) (12.31)

In the regression model with constant coefficients (that is, 7 = I and = O), they
simplify to
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ﬂn = ﬁn—l + (1 + x;,Pn—lx-n)_IPn——lxn(yn - x;ﬁn—l)
P.,-,, = P'n—l - (1 + x:,P _1xn)"1Pn_1xnx;P -1 (1232)

They are the same as the updating equations for recursive least squares in (12.3) and
(12.4).

Additional insight into these recursions can be gained by considering the model with
just one independent variable, y; = Bz; + a;. For random walk coefficients, that is g; =
Bi-1+ v with Var(v;) = c?w where w is the variance ratio Var(v:)/Var(a:), the updating
equations are

ﬁn—l + P'n.:cn(yn - mnﬁn—l)
(Pr-1 +w)/[1 + 22 (Poy + w)] (12.33)

Bn
P

I

For constant coefficients (w = 0) the second equation simplifies after repeated substitutions
to

n n
Po=P(1+P Y 28y =3 20! (12.34)
t=2 t=1

Here we have set P; = 1/z2. With this, we find that for constant coefficients the updating
equation is given by

,én = fén—l + sz)—l - mnﬁn—l) (12.35)
t=1

In the linear regression model with constant coefficients, the adjustment weights for
Zn(yn — znﬁn_l) depend only on the past z-values. In the regression model with time-
varying coefficients, the weights P,, depend also on the parameter w > 0; they are always
larger than the ones for constant coefficients. This indicates that, as expected, the time-
varying coefficient model gives more weight to the most recent one-step-ahead forecast
error. Thus, estimates in time-varying coeflicient regression models adapt to changes
faster than the constant-coefficient least squares estimates.

This discussion has shown that models with time-varying coefficients lead to a faster
adaptation in the parameter estimates. However, in order to calculate these estimates one
has to select the elements in the variance ratio matrix . One can pick these coefficients
heuristically, which is very similar to the ad hoc choice of the discount coeflicient in the
moving exponential window estimates in Section 12.2. This is usually difficult. Alterna-
tively, one can use past data to estimate these unknown coefficients and, in addition, test
whether the coefficients are in fact time-varying or constant.
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Several estimation procedures are discussed in the literature. Here we describe one
that is based on the maximum likelihood principle. Under the usual normal assumptions
on the disturbances in equations (12.25) and (12.26) we know that also the conditional
(predictive) distribution of yn, = X8 + an, given the information on the past history
up to time n — 1 (that is, yo—1,¥n—2,...,%1), is again normal with mean x;;é,qn_l and
variance 02 + 0?x P,j,_1Xn = 0 f, where f, = 1+ x|, P, 1Xn. Since a joint density of
n random variables can always be written as the product of conditional densities, we find
that

(Y1, Un0 T, Q) = p(1)p(y2ly1) - - P(¥nlY¥n-1s-- -, ¥1)

n

_ 1 s
t:]___E(27rU2ft) 1/2 exp{—m(yt - xtﬁt|t_1)2} (12.36)

For given data on the response and the explanatory variables one can calculate the log-
likelihood function

{(T, 9, 0%|data)

n

1o 1 2
= constant — nlogo — 2 Zlog fe— 257 Z(yt — xiBsje-1)?/ fe (12.37)
t=1 t=1

Setting the derivative of the log-likelihood function with respect to o equal to zero, we
find that the maximum likelihood estimate of o2 is given by

n

6 = =3 (ne — by 1)/ e (12.38)

t=1

which is the average of the squared standardized one-step-ahead forecast errors. Substitut-
ing this expression into the log-likelihood function in (12.37) we obtain the concentrated
log-likelihood function

n
£.(T,Q|data) = constant — nlog & — %Zlog fe (12.39)
t=1

Estimates of T' and 2, subject to the constraint that the symmetric matrix ) is nonneg-
ative definite, can be found by numerical maximization of the concentrated log-likelihood
function. For given values of T" and (2, and for given starting values Bo|o and Fyjp, one can
use the recursive Kalman filter equations and update Bt|t—17 Pyy_q,and fy = 1+ %Pyt 1%y
Usually, one takes the zero vector and a diagonal matrix with large diagonal elements as
the starting values for ,[§0|0 and Fyjo-
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If the series are relatively short (as most economic series are), it will not be possible
to specify very complicated models for the time-varying coefficients. Parsimonious models
have to be considered to make inferences in these models feasible. The simplest model
that allows for time-varying coeflicients and includes constant coefficients as a special case
is the random walk model with 7’ = I,

Bt =Pi1+ve

If we further assume that the coefficients vary independently (that is, @ is a diagonal
matrix), we have to maximize the concentrated log-likelihood function with respect to the
p nonnegative diagonal elements w = (wy,...,wp)".

One may also want to test the null hypothesis that the coeflicients §; are constant
against the alternative that they follow a certain stochastic model. The alternative, for
example, may specify that the individual coeflicients vary according to independent ran-
dom walks. An approximate test of whether the coefficients are constant compares the
likelihood ratio test statistic

G = 2[t() — te(w = 0)] (12.40)

to the percentiles of the chi-square distribution with p degrees of freedom. Here £.(w)
and {.(w = 0) are the values of the concentrated log-likelihood function when evaluated
at the maximum likelihood estimate @ and at w = 0, respectively. However, simulations
by Garbade (1977) and by Pagan and Tanaka (1979) have shown that, under the null
hypothesis of constant coefficients, the distribution of this statistic is more concentrated
toward zero than the chi-square distribution that we ordinarily expect in likelihood ratio
tests. As a consequence, the likelihood ratio tests are conservative. Theoretical reasons
why this can be expected, as well as other estimation and testing procedures, are discussed
in a recent review of time-varying coefficient regression models by Nicholls and Pagan
(1985).

12.4 Extensions and Concluding Remarks

In this chapter we discussed the recursive estimation of coefficients in regression and certain
time series models and reviewed modifications of these recursions that make the estimates
more adaptive to changes. Extensions of these procedures to more general models, such as
ARMA time series models, transfer-function models, and ARMAX models, are possible.
Ljung and Soderstrém (1983), Soderstrom and Stoica (1983), Young (1984, 1985), and
Ljung (1985) discuss these models in detail and describe instrumental variable methods,
estimation methods based on the extended Kalman filter, and various self-adaptive (self-
tuning) estimation procedures. The interested reader is referred to these sources.
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CHAPTER 13

An Adaptive Method of Regression
Analysis

Yur: P.Lukashin

Summary

A new adaptive method of analyzing a linear regression with time-varying coefficients
is presented. The coefficients are adapted by means of exponentially weighted moving
averages (EWMA). The coeflicients’ trajectories imply possible improvements of the model
specification. Aspects of suitable preparation of the time series, such as the elimination of
time trends and parameter estimation, are also considered. The method is illustrated on
the basis of both artificially generated and real economic data.

13.1 Introduction

A basic assumption in ordinary discrete-time regression analysis is that the relation be-
tween the endogeneous variable y and the exogenous variables z;, ¢ = 1,...,p, can be
approximated by a linear equation with constant coefficients. These coefficients reflect the
force of interrelation between the variables. The regression equation is

p
Ye = Bizui+ e (13.1)

i=1

where f3; are the unknown regression coefficients, e; are the error terms of the model and
the subscript ¢ = 1,...,T denotes time points of observation.

In matrix notation
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y=XB+e (13.2)

where X = (x1,...,xr) iis a (T X p) matrix, y and e are T"-vectors, and § is a p-vector.
Numerical values for the unknown coefficients are usually derived by means of the least
squares estimator

b=(X'X) X'y (13.3)

However, the relation between the variables may be nonconstant over time. Thus, the
parameter estimates obtained under the hypothesis of constancy are in some sense averages
over the observation period, and it is doubtful whether they are a good basis for analysis
or forecasting. In other words, the linear regression with constant coefficients is too rigid
in some cases and can lead to serious failures.

One way to take possible nonconstancies into account is to adapt the estimates of the
coefficients to new observations. This would allow us to analyze the trajectories of the
coefficients over time and, moreover, to forecast their future values. The most popular tool
for this aim is the Kalman filter, originally used in engineering (Kalman, 1960; Kalman and
Bucy, 1961; Mehra, 1972). For applications in economics, Cooley and Prescott (1973, 1976)
proposed an adaptive estimation method for regression coefficients that obey a Markov

process. A survey on time-varying coeflicients regression analysis is given, for instance, by
Raj and Ullah (1981).

The mentioned methods need model parameters to be known such as the covariance
matrix of the error terms or the transition matrix of the Markov process. In applications to
economic data, however, this must be considered as a serious shortcoming. To overcome
the related difficulties, Lukashin (1979) suggested using an anti-gradient direction for
the adaptation of the coeflicients, an approach already suggested be Wheelwright and
Makridakis (1973). However, in some sitnations the adaptation process converges only
slowly. In addition, the corrections for the coefficients, being proportional to the forecast
errors, may be highly correlated.

In this chapter, a modification of Brown’s (1963) classical adaptive methods is sug-
gested. The main concept of these methods is the exponentially weighted moving average
(EWMA). The application of exponentially weighted moving averages for adapting regres-
sion coefficients considerably enlarges the family of adaptive models.

In Section 13.2 the suggested method of adapting the regression coeflicients is exposed.
In Section 13.3 the method is first applied to artificially generated data; then its practical
application is demonstrated by analyzing the effect of the inflation rate on the interest
rate. The chapter draws conclusions in Section 13.4.

13.2 Adaptive Estimation of Regression Coefficients

Let us consider the following regression equation with time-varying coefficients
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v =xPte (13.4)

The estimate b of the parameter vector 8 may be expressed in terms of the sample av-
erages of the mixed products of observations of the endogeneous and exogeneous variables,
ie.,

-1
1 my1 ... Myp mi1p+1

b=z

xm*%xwz (13.5)

Mp1 ... mm, mp.p.H

here my; = 3, zsize; /T, 4,5 =1,...,p+ 1, and 2441 = ¥

The main feature of an adaptive regression analysis procedure is a suitable updating
method for the averages m;;. It is proposed to substitute in (13.5) the whole period
averages m;; by local (or current) averages s;;:. Examples of suitable concepts for s;;;
are: In the context of moving regression analysis, the quantities s;;; are averages based on a
moving window of the observations. A straightforward modification is to use exponentially
weighted moving averages. A different approach of updating the s;;; is to approximate
the time trend shown by the s;;; with known functions of time or related models and to
extrapolate them.,

As already noted, most methods of adaptive regression analysis make use of an a prior:
stated model for the dynamic coefficients; sometimes even the parameter values of this
model are required to be known. Such approaches must be considered to be unrealistic
in many situations, particularly in economics. The method suggested here is based only
on the dynamic of the s;j:. These products form time series, which can be presented
graphically and analyzed visually or with the help of analytical means. The set of these
graphs represents the dynamic and structure of the process under study. For example,
the graphs allow us to locate points of suspected changes in the regression ‘coefficients: as
can be seen from (13.4), a jump in parameter 8 causes a change in the level of y and,
consequently, of all corresponding s;;;.

Thus, a multidimensional analysis is decomposed into p(p -+ 3)/2 unidimensional ones.
However, these unidimensional analyses should not be performed in isolation from the
corresponding simultaneous studies. All unidimensional problems must be submitted to
one global criterion.

The adaptive regression analysis will first be considered for the case where the vari-
ables do not show marked trends. For this case it is proposed to substitute for m;; the
exponentially weighted moving average s;;;. For all 1,7, and ¢, the updating recursion for
Sijt is

sijt = (1 — a)sije—1 + af@uiz;) (13.6)

where a (0 < a < 1) is the smoothing constant. Initial values s;;0 may be determined as
the arithmetic means of the first n; observations, i.e.,
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1 &
$ij0 = —— Z Z4iTtj (13.7)
™Mia

The estimates of the coefficients § are calculated for each t on the basis of (13.5) with s;;,
substituted for m;;.

As has been mentioned above, the number of quantities to be updated is p(p + 3)/2.
A simple version of the procedure is to use the same numbers n; and a for all pairs (¢, 7).
To find best values for n; and a, a suitable optimality criterion, such as the mean-squared
error of the one-step ahead forecasts, might be used:

Q(ny,a) = ¢&'¢/T

where é is the vector of residuals. The minimum of this global criterion @ may be found
iteratively by searching the minimal value of @ with respect to a for a suitable set of
integers n;.

Obviously, this method is based on the assumption that the mean levels of the quan-
tities m;; evolve only slightly. If this does not hold, the exponentially weighted moving
averages may not attain the mean levels of the products. This will be the case if, e.g., one
or several variables grow linearly in time. In such situations, polynomial models for the
m;; can be adapted using multiple exponential smoothing. Another way is to reformulate
the model by taking suitable differences of the time series so that the trend is eliminated
and a correct use of the method is possible. It should be noted that the results of the
analysis depend on the specification of the evolution of the m;;.

13.3 Illustrating Examples

Three examples are discussed in this section which demonstrate the applicability of the
suggested method.

Ezample 1:

The data to be analyzed are a series of 120 values z;, generated according to i1dN(1,1),
and corresponding values y; = z;8; + e;, where

B¢ = 3 + sin(nt/10)

and the random components e; follow izdN (0, 0.01).

Figure 13.1 shows the trajectories of the true coefficient 8 and of its estimates b ob-
tained on the basis of the proposed adaptive method. The plots show a good agreement
although there are some particular deviations.

Ezample 2:

The difference here, in comparison with Example 1, is that the coeflicients are generated
according to
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Figure 13.1: Example 1: Trajectories of the true parameter 3; and its estimate b; of
y=2f +e, withe ~ N(1,1) and e ~ N(0, 0.01).

3 if 1<t<39
Be=< 6 if 40<t<T9
3 if 80<t<120

i.e., there are two shifts of the coefficient 8. The trajectories of the true coefficient 3
and of its estimates are given in Figure 13.2. The agreement of the true values and the
estimates again is quite good. The rather small inertness corresponds to a small value of
a.

It should be noted that, in both examples 1 and 2, only little sensitivity of the results
to changes in ny in a wide range has been observed.
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Figure 13.2: Example 2: Trajectories of the true parameter §; and its estimate & of
y=2P+e, withz ~ N(1,1) and e ~ N(0, 0.01).

Ezample 3:

As an application to real data, the effect of the inflation rate z, derived from the consumer
price index, on the interest (commercial paper) rate y will be analyzed. The data to be
analyzed are quarterly for the period 1960 to 1984 from the USA. The coeflicients of
interest are 81 and f; from

=P +zfr+e
The coefficient 8; may be interpreted as the rate of interest after eliminating the effect of

inflation.

In Figure 13.3 the graphs of the trajectories for the estimates of 8; and 3, are shown.
The results seem to be meaningful in the sense that at least the turning points and the
local trends do not contradict the experts’ opinion.
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Figure 13.3: Example 3: Trajectories of the estimates b; and by of §; and (5 in
Y= 1+ 202 + e (y and z are the interest rate and the inflation rate, respectively).

13.4 Conclusions and Further Aspects

Often, changes in economic structures are not abrupt but appear, owing to the inertia
of economic mechanisms, as evolutionary processes. Therefore the proposed adaptive
regression analysis method may in many situations be an adequate tool for analyzing
structural changes. The trajectories of the coefficients give insights on how to respecify a
model] so that the nonconstant behavior of the coefficients is taken into account.
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The proposed method is rather intuitive; its main aim is to allow a simple, easily
applicable and useful adaptive analysis of linear regression models. It is obvious that the
method will not give good results in every case. The flexibility of the model gained from
allowing the coefficients to be time-varying causes an increased sensitivity to errors and
random fluctuations of the data.

Multicollinearity causes problems not only in the usual regression analysis. In the
adaptive version, multicollinearity may result in high correlations of the estimated coef-
ficients in some periods. In periods for which the precision of the adaptive estimates is
doubtful (e.g., due to suspected multicollinearity, indicated by diverging trajectories of two
coefficients), it is apparently better to rely on the “constant” estimates and to substitute
them for the corresponding adaptive estimates. Therefore, the adaptive regression anal-
ysis method might be useful as a supplement to the usual regression analysis. Problems
caused by multicollinearity are also known to occur with other adaptive methods, such
as the Cooley-Prescott method. It should be noted that multicollinearity does not affect
forecasts seriously. Errors in estimates of one of the coefficients tend to be compensated
by errors in estimates of others, owing to the correlation between the coefficients.

The method outlined in Section 13.2 can be modified in several ways. An impor-
tant modification concerns the automatic control of the smoothing parameter a (cf.
Lukashin, 1979). For instance, this is possible on the basis of a tracking control signal, or
by using an updating method that is also applied to a.
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CHAPTER 14

Changing and Random Coefficient
Models. A Survey

Jozef Dziechciarz

Summary

This chapter contains a survey of various econometric model formulations in which it is
assumed that coefficients vary across time. Depending on the accepted parameter variation
structure one may classify such models into two main groups: models with variable but
nonstochastic parameters and models with randomly varying coefficients. The latter group
consists of two types — models where coefficients are generated from stationary and models
in which coefficients are generated from nonstationary stochastic processes. All three
groups are surveyed. Several representative models from each group are shown with special
emphasis on estimation, testing the specification and possible fields of implementation.
Justification for the various model formulations is given. A detailed list of references ends
the survey.

14.1 Introduction

In classical econometric modeling, it is assumed that an economic structure generating a
statistical sample remains constant. This means that, explicitly or implicitly, the existence
of several factors is assumed:

1. A unique parameter vector connecting the endogenous variable with the set of inde-
pendent variables.

2. One set of parameters of stochastic processes generating the model’s disturbances.



218 Statistical Analysis and Forecasting of Economic Structural Change

3. A unique functional form of the econometric model.

The assumptions listed above define a very important property of the econometric
model -— namely “model stability”. [A detailed discussion of econometric model stability
is available in Dziechciarz (1980).] In other words, in an unstable model, the structural
parameters, disturbance distribution, or the model’s analytical form may not be the same
for all sample observations. This chapter deals mainly with the stability of structural
parameters.

Economics belongs to a group of nonexperimental sciences, and econometricians have to
work with statistical samples that are generated in uncontrollable economic processes and
frequently under unobservable conditions. Many attempts to model economic relationships
have been unsuccessful, and some of those failures were caused by parameter stability
problems. Researchers noticed that different samples yielded different sets of the model’s
parameter estimates. In this context, the constant-parameter assumption is not obvious.

An early way to deal with this problem was the attempt to isolate separate groups of
homogeneous observations. The different treatment of pre- and postwar data can serve as
a typical example. Unfortunately, although economists are aware of this factor, they do
not consequently limit their attention to at least approximately homogeneous data sets,
i.e., samples generated under stable economic circumstances. It has to be noted that some
aspects of structural instability are commonly recognized. One of the early attempts to
deal with this problem was the introduction of dummy variables in order to represent
seasonal, institutional, or other structural differences. Although dummy variables make a
convenient tool, their use often results in pure models and inaccurate forecasts.

Other early attempts to represent the instability of structural relations were adaptive
models, where an incorporated mechanism adjusted models’ shapes to changing relations.
Widely known models in this group are the crowing trend, introduced by Hellwig (1967),
and exponential smoothing, by Brown (1963). Since these models do not take into ac-
count the complex character of changing economic processes, such approaches are often
unsatisfactory.

In recent years, much effort has been devoted to the creation of a more general approach
to this problem of parameter variation, proper estimation, and testing techniques for new
types of models. Quandt’s papers (1958, 1960) initiated research to find new methods of
uncovering and handling the instability of models.

14.2 Defining an Adequate Model

An adequate model means in general

1. That a model’s equation represents reality, i.e., the equation does not contain any
systematic error, either in time or cross-sectional space covered by the statistical
sample used for the model’s estimation.
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2. That the necessary conditions to apply statistical tools in order to test the model’s
properties are fulfilled.

Checking the model’s efficiency and accuracy means testing relative statistical hypotheses.
For a very interesting discussion of econometric model evaluation criteria, see Dhrymes et
al. (1972).

Many types of model shortcomings are considered in the literature. Hackl (1980) lists
the following:

1. One or more important regressors are omitted.
2. The functional form of one or more regressors is incorrectly specified.

3. The model is unstable, i.e., structural parameters, disturbance distribution, or both
vary for different observations.

4. Disturbances for different observations are correlated.

5. Disturbances have other than the normal distribution.

One cannot consider those problems separately; they are often closely connected. For
example, an omitted variable can result in nonzero expected value of disturbance, insta-
bility of slopes, or variance of disturbances. Surveys of different types of model failure
are provided in Ramsey (1969) and Hackl (1980). Several alternative techniques for as-
certaining a model’s imperfections based on analyses of errors are surveyed in Hackl and
Katzenbeisser (1978).

Many scientists argue that recent theoretical works dealing with parameter variation
represent a new fashion without significant importance for the practice of econometric
modeling. It has to be clearly stated that the conventional econometric model with con-
stant parameters is, and will remain, very important and a wholly useful tool. Its basic
merit is simplicity in looking into economic interrelations not obscured by additional de-
tails describing changes in the outside world. Whenever it is possible to uncover stable
economic relations, which satisfy at least approximately the assumptions of the conven-
tional model, it can be used with confidence and convenience. Sometimes, however, the
researcher is not lucky or skilled enough to specify stable regression equations, lack of
which changes the relationships being studied.

Although classical models will remain the basic tool in econometrics, the need quite
frequently arises to represent a more detailed picture of the modeled processes. It is
extremely important, for that reason and from a strategic point of view, to choose prop-
erly between models with constant and with varying parameters. Such a decision is a
compromise between complexity connected with accuracy and simplicity connected with
inaccuracy.

The above discussion is true once there is agreement that varying parameter formu-
lation is more general. It is assumed that, generally, model parameters are generated in
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a nonstationary random process, which means that parameters do not have a constant
mean and/or variance and can vary systematically. Such models are relevant mainly for
modeling the systematic structural variation in time.

The special case of this general formulation is the model whose parameters are gen-
erated in a stationary random process. In this case parameters do have constant mean
and variance, and therefore they cannot show systematic change for different observations
(time, units). Such a model is relevant mainly in modeling cross-sectional data and the
time series of cross-sections; see Rosenberg (1973a). In particular, it is assumed that cross-
sectional units have the same regression regimes, which are constant in time. Individual
reaction of particular units in different time points is treated as a random selection from
parameter population with constant mean. In the simplest situation, parameter variance
is zero, which yields models with constant parameters.

14.3 Arguments for Varying Parameter Specification

Such arguments are extensive, some of which are specified below:

1. Response of the dependent variable to a signal from the independent variables may
not be the same for all observations, although true parameters are constant. Formulation
with varying parameters can be relevant because of the nature of econometric models:
they are abstractions with some simplifications caused by available data, time, financial
resources, and a tendency to formulate a soluble model with acceptable results. Under
such circumstances specification errors, which can result from poor quality descriptors,
and forecasts have to be taken into account. Introduction of the proper varying-parameter
structure can neutralize specification errors. The most frequent specification errors are
omission of an important regressor, introduction of the proxy variable and aggregated
data, and neglecting nonlinearity. Omission of the important explanation variable can be
brought about by inadequate theory, inaccessible data, or by the search for simplicity.

2. Such omitted variables are often connected with structural changes caused by fashion
evolution, technological progress, and institutional and organizational changes. In the
conventional model, it is assumed that the effect of those omitted factors can be treated
as random and that their distribution is constant in time. Additionally, it is assumed that
omitted variables are orthogonal to those used in the model. This assumption implies that
omitted regressors do not affect parameter estimates explicitly taken into consideration in
the model. In reality, the time series of such variables show nonstationary behavior and
are nonorthogonal to regressors used in the model. In these circumstances, it is very likely
that estimated response parameters will be unstable in time. Minimal expectation is that
omitted variables with nonzero effect will result in the intercept variation.

3. Since statistical data for many economic variables are inaccessible, proxy variables
are quite frequently applied in the econometric model construction. Proxy variables are
also introduced into models — especially dynamic models — in order to represent factors
that are difficult or impossible to measure: patterns of future projections or consumption
trends, for example. Unfortunately, proxy variables reflect only partially the variation
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of the represented processes. In addition, the relationships between proxy variables and
their counterpart variables can vary. Under such circumstances, changes of real variables
controlling development of the process being modeled lead to instability of proxy variables’
parameters.

4. The possible instability of parameters in models using aggregate data is widely
discussed in literature; see, for example, Zellner (1962). Since aggregated data are mea-
sured by weighting the relative importance of heterogeneous subsets of economic units,
parameters in estimated aggregated equations are constant only as long as those weights
are constant. In time series, the constant weights assumption, i.e., the constant relative
importance of individual units in the aggregate, is not easy to satisfy. Because changes
of aggregating weights are a rule, rather than an exception, parameters connected with
aggregated variables are usually not stable.

5. The inexact specification of the functional form of the relationship being studied
is another possible source of the parameter variation. For example, if on the pretext of
Taylor’s series, a linear model is estimated as an approximation of a real nonlinear relation,
the assumption about constant parameters can be proved only if regressors vary in some
narrow range. Once regressor variation exceeds that range, where the linear approximation
is acceptable, parameters become unstable; see Rausser et al. (1982). Observation of the
long-range evolution of many economic time series shows that any construction based
on an assumption of a narrow range of variation must be rejected. Approximation of
nonlinear true relationships with simple linear constructions, along with observations of
variations outside the assumed narrow range, gives one of the strongest arguments for the
varying-parameter structure formulation.

6. Economic theory substantiates varying-parameter models. In many situations,
economic theory allows for the expectation that relationships will vary over time. For
example, changes in economic policy result in changes in the economic environment of
the economic units. On the assumption that those units act according to the rules of
rational behavior, changes in economic policy result in changes of equations describing
their behavior. Indeed, dynamic economic theory and the theory of rational behavior
provide no arguments for model formulations with constant parameters.

7. Frequently, the relationship is properly specified, but it is different for some subsets
of the sample. It is clear that common parameters represent none of the existing subsets in
the available sample. Division of the sample and introduction of more than one regression
regime can improve the accuracy of the model and resulting forecasts.

14.4 Types of Varying-Parameter Models
As stated earlier, varying-parameter models may be classified into three main groups:

1. Random parameters from a nonstationary process:

e the Cooley-Prescott model
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¢ Rosenberg’s convergent-parameters model
e Kalman’s filter models

2. Random parameters from a stationary process:

e the Hildreth-Houck model
e Harvey-Phillips’ return-to-normality model
e Swamy’s random coefficient model

e Hsiao’s random coefficient model
3. Varying but nonstochastic parameters:

o models with constant slope coefficients and intercept that varies over individuals

e models with constant slope coeflicients and intercept that varies over time and
individuals

e seemingly unrelated equations

e systematically varying parameters

e seasonality models

e switching regression models

To the first two types of models in group (3) belong dummy variable models and a type
that is often referred to as variance or error component models. The latter also may be
considered in a stochastic models framework. The switching regression model represents
a number of different formulations, which assume in common that there are groups of
observations where parameters are constant. The parameters may vary across subsets of
observations within the sample and are nonstochastic. Our survey will begin with the
nonstochastically varying coefficient models.

Assuming that parameters can vary across observations or subsets of observations, but
not in stochastic way, the structure of the parameter variation must be specified. One
of the possible solutions is to relate the parameter variation to one or more explanatory
variables.

14.4.1 PFixed coefficient models

One of the most popular models that allows for differences in behavior over cross-sectional
units or any differences in behavior over time for a given cross-sectional unit is the model
where all coefficients are constant and the disturbance is assumed to capture differences
over time and individuals.

These models may be classified further, depending upon whether the variable coeffi-
cient is assumed to be random or fixed. The fixed assumption leads to dummy variable
models and the seemingly unrelated regression model, while the random assumption leads
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to the model referred to as the error components model. This type of model is also some-
times called the variance component model. Since models with constant slopes and variable
intercept are not the topic here, only some general remarks and literature references will
be made about them. Introductory discussions concerning the model with constant pa-
rameters and a variable intercept may be found in the works of Maddala (1971), Nerlove
(1971a), Swamy (1971), Mundlak (1978c), Hausman and Taylor (1981), and Judge et al.
(1980, 1982, and 1985).

The model with constant coefficients and a variable intercept (the error components
model version) may be regarded as the one with random parameters (but some of which —
the slopes — are constant), or as one where all coefficients are constant and the disturbance
covariance matrix is identical for all individuals. Disturbances in different time periods
for the same individual are correlated, but this correlation is constant over time and it
is identical for all individuals. Alternatively, the assumption that the intercept may vary
over individuals and time may be accepted.

Maddala (1971), Nerlove (1971a), Swamy (1971), and Arora (1973) recommend the es-
timation technique, which may be regarded as some generalization of the dummy variable
estimator. Balestra and Nerlove (1966), Nerlove (1971b), Swamy (1971), Arora (1973),
and Fuller and Battese (1973) discuss some convenient transformations for the estimation
of this model. Lee and Griffiths (1979) and Taub (1979) suggest a best linear unbiased
predictor for the random components. Battese and Fuller (1982) consider a “best con-
strained predictor”. A number of variance component estimators are suggested; these
include estimators based on the ordinary least squares residuals, as seen in Wallace and
Hussain (1969), Maddala (1971), Swamy (1971), and Arora (1973). Other estimators are
proposed by Henderson (1953, 1975), Fuller and Battese (1973, 1974), Rao (1970, 1972),
and Kelejian and Stephan (1983). The maximum likelihood version comes from works by
Amemiya (1971), Nerlove (1971a), and Maddala (1971). Swamy (1971) and Fuller and
Battese (1973) consider the distribution of the various estimators. An important work
is that of Searle (1979). Finite sample properties are investigated by Swamy and Mehta
(1979) and Taylor (1980). Arora (1973), Maddala and Mount (1973), and Baltagi (1981)
study some estimators in Monte Carlo experiments.

Breusch and Pagan (1980) suggest a test based on the Lagrange multiplier statistic
for testing hypotheses that state that the intercept is constant for all observations. This
is an alternative approach to the classical procedure where a dummy variable estimator
is employed jointly with the F-test based on restricted and unrestricted residual sums of
squares.

The choice between the assumption that variable component is random or fixed is
crucial for the choice of the estimation procedure. Mundlak (1978b), Chamberlain (1978,
1979, and 1983), and Hausman and Taylor (1981) consider this problem. Wallace and
Hussain (1969), Swamy (1971), Nerlove (1971a), Swamy and Arora (1972), and Mundlak
(1978c) exarmine a statistical test that helps to choose between a dumnmy variable and an
error components model. Other sources include Lee (1978b), Chamberlain and Griliches
(1975), Hausman (1978), and Pudney (1978).
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Mundlak and Yahav (1981) investigate a combined model integrating fixed and random
effects. Quite a number of different extensions of the model may be found in the litera-
ture. Balestra and Nerlove (1966), Nerlove (1967 and 1971b), Maddala (1971), Trognon
(1978), Berzeg (1979), Chamberlain (1979, 1983), Anderson and Hsiao (1981, 1982), Nick-
ell (1981), Sevestre and Trognon (1982), and Bhargava and Sargan (1983) explore prob-
lems that occur when a lagged dependent variable is included. An alternative disturbance
covariance structure is considered in studies by Hause (1977 and 1980), Glejser (1978),
Lillard and Willis (1978), Lee (1978a), Pudney (1978), Lillard and Weiss (1979), Revankar
(1979), Kiefer (1980), Bhargava et al. (1982), MaCurdy (1982), and Schmidt (1983).

Models with discrete and truncated dependent variables are evaluated by Chamberlain
(1978, 1979, and 1983), Heckman (1978), Flinn and Heckman (1982), and Singer (1982), as
well as by Griliches et al.(1978), Hausman and Wise (1979), Kiefer and Neumann (1981),
and Maddala (1978). Error components models with heteroscedasticity are investigated by
Mazodier and Trognon (1978}); and nonlinear error components models with heteroscedas-
ticity, by Griffiths and Anderson (1982). Other works include Avery (1977), J6reskog
(1978), Baltagi (1980), Magnus (1982), Prucha (1984), Reinsel (1982), and Biorn (1981).
Mundlak (1978a) proposes the use of biased estimators with a lower mean square error.

14.4.2 Systematically Varying Parameter Models

The most general systematically varying parameter model may be formulated in the fol-
lowing way.

Yir = XiBit + €t (14.1)

where y;; is the observation of the ith unit in the tth time period, x;; is the (K x 1) vector
of nonstochastic explanatory variables, 8;; is the (K x 1) coefficient vector, and e;; is the
disturbance term, the set of which are normally and independently distributed random
variables with zero means and variances 02 >0,i=1,...,N;t=1,...,T.

Since (K NT + 1) parameters are to be estimated with only NT observations available,
some additional information is required to make the problem tractable. In general this
additional information places some structure on how coefficients vary across observations.
Without this, the problem is not tractable. Some typical nonsample information can be
introduced. Following Belsley (1973a, 1973b, and 1973c), let nonsample information be
described by K linear relations:

Bit = Ly (14.2)

where Z;; is the (K x M) matrix containing observations on variables explaining the
way parameters, 3;; vary across observations, and 7 is the (M X 1) vector of coefficients
associated with variables in the matrix Z;;.

In the nonstochastic formulation of the Belsley model under consideration, the Z;; is
a known, nonstochastic matrix. This means that equation (14.1) is an exact, rather than
a stochastic, relation. Combining (14.1) with (14.2) results in



Jozef Dziechciarz 225
Yie = Xifis + €ir = Wit + €; (14.3)

where wi, = x},Z;; is the (1 x M) vector of observations of the interaction variables. With
the assumptions made about e;;, the least square estimator of the 7 and f;; is best, linear,
unbiased. This is true whenever Z;; is known and nonstochastic.

Frequently, the variation structure in this model is assumed to be stochastic, the
resulting formula being given by the following stochastic equation system:

Bit = Lyt 4 vt (14.4)

where v;; is the normally distributed disturbance vector with means zero and covariance
matrix V,. In the nonstochastic formulation of Belsley’s model, Z;; is a known, non-
stochastic matrix and v;; is a zero vector. The resulting model is

Yir = Xifi + Wit = W + Uit (14.5)

where w/, = x},Z;; is the (1 X M) vector of observations of interaction variables, and
ui = 2!, Vi + e;; the disturbances u;; have zero mean and variance E[u?] = x!, V,x;: + 02.

Disturbances u;; are heteroscedastic; the least squares estimator for T is consistent,
but ineffective in comparison with the Aitken’s estimator. If the matrix x;; contains a
unit vector, its coefficient (intercept) and the estimate for equation disturbance will be
indistinguishable. This formulation is a special case of the model presented by Hsiao
(1975). In the case T = 1, techniques of the Hildreth-Houck model could be applied to
estimate parameters with the generalized least squares method. The case of N = 1 is
discussed by Singh et al. (1976). They consider a model in which Z;; contains functions of
calendar time and vy is normal with mean zero and a diagonal covariance matrix. Singh
et al. develop both modified Hildreth-Houck and maximum likelihood estimators.

Some additional remarks may be made about relationships in equation (14.2). When-
ever parameters 3;; are thought to be dependent on the set of the same variables, related
rows of the matrix Z;; will be identical. On the contrary, if all parameters are functions
of different variables, in the matrix Z;; there will be zeros in proper places. It is unlikely
that all elements of 3;; will be the same linear function of the same set of explanatory
variables. Given that Z; contains zeros in appropriate places, equation (14.2) is general
enough to cover different possible forms of those functions. The following situations may
be distinguished:

1. Z;; may contain functions of variables included in the matrix x;;. That means that
the true form of relationships in (14.1) are nonlinear.

2. Z; may contain functions of variables other than those appearing in x;; — for exam-
ple, calendar time. The justification for using calendar time for an explanation of the
structural parameters f;; variation is the same as that used when such variables are
included in regression models. Calendar time acts as a surrogate for all the unknown
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time-related dynamic forces within the economy. Caution is always recommmended in
using trend-related variables because very often they tempt one to engage in gross,
curve-fitting exercises.

3. Z;; may contain qualitative variables. Those variables may be both stochastic or
nonstochastic. In such a case, one can expect the existence of different regression
regimes.

Alternative formulations of matrix Z;,, listed above, includes several specifications of
models considered in the literature. An interesting model can be formulated by assuming
that the first column in matrix Z; is a unit vector, and v} = (v4,0,...,0), that means
that only the intercept is random. In this case v;; serves as the model’s disturbance and all
other parameters are deterministic functions of variables from matrix Z;;. Each parameter
can be written as

Bek =T + Tozoe, + ...+ TMZM:, (14.6)

where k =2,...,N;t=1,...,T.

14.4.3 Switching regression models

These contain a wide spectrum of different constructions based on the general assumption
that there are several regression regimes controlling the process being modeled for rela-
tive groups (subsets, partitions) of the sample, which allows constancy of the regression
parameters within parts of the sample. Parameters are different between subsets. This is
a modification of the previously recognized assumption, where structural parameters were
allowed to be different for each observation. Models of this type can be considered in the
framework of previously introduced terminology as containing in matrix Z;; qualitative
variables sorting observations into different subsets.

One of such a group of models allows the systematic parameter variation for differ-
ent seasonal periods. The other examples are dummy variables models, and a family of
segmented (piecewise) regression models discussed by Quandt (1958), McGee and Carl-
ton (1970), Hinkley (1971a and 1971b), Gallant and Fuller (1973), Goldfeld and Quandt
(1973a, 1973b), Poirier (1973, 1976), and many others. In particular, one can distinguish
two basic situations. In the first of them, the switch points are known; in the second, they
have to be estimated. In the sample, the piecewise regression model can be continuous or
not. Because this type of model is used mostly in a time series context, for the sake of
convenience and interpretation, this context is mainly considered.

Many economic variables show a seasonal variation that is connected with time. Vari-
ation is observed especially with variables such as output, consumption, employment, and
others reported systematically — every week, month, quarter, or year. The models with
seasonally varying economic variables are referred to as seasonal models. The situation
where a sample can be divided into two or more subsamples in connection with some
seasonal variable will be considered:
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Ye =21+ 22082+ ...+ ek Pk + & (14.7)

wheret=1,...,T.

It is assumed that, for some subsamples, values of model parameters can be different.
For the sake of simplicity, it will be assumed that the regression structure is constant
and different in two parts of the sample, i.e., for t = 1,...,¢ (first subsample), and for
t=1to+1,...,T (second subsample). Additionally, it is assumed that not all structural
parameters vary, only §; does, where i =p+1,...,K;pe {0,...,(K-1)}, K=p+4q. A
standard model with dummy variable D defined as follows:

D= 0 if t=1,...,%
] 1 if t=to+1,...,T

takes the form

K

Y = Z ztkﬂk + (zt_p+1 D)6p+1 + ...+ (zt'KD)ﬁx + €3 (148)
k=1

wheret=1,...,T.
Model (14.8) may be rewritten in two parts: one for the first subsample:

K
Ely) = Z zukfK
k=1

and one for the second part of the sample:

P K
Elyl =Y zabr+ Y, 2e(Br + )

k=1 k=p+1

Parameter §; measures the incremental change of the structural parameter connected with
variable 2,4 in the second part of the sample. Judge et al. (1980, in chapter 14) introduce
an interesting alternative — a dummy variable-related approach that is sometimes easier
and more convenient than a classical one and gives equivalent estimates of the parameters.
(In chapter 16 of the same work, the authors provide a detailed discussion of a general
dummy variable model. The parameter and variance estimation, as well as some alterna-
tive parameterization and testing techniques, are considered. An illustrative example is
shown.) Of course, it is possible to extend the above model for more than two subsam-
ples. Application of such a model is based on the assumption that there is more than
one regression regime with constant parameters in each of them. It is also assumed that
structural changes are rapid and abrupt.

If data with seasonal patterns are exogenously determined, and the data generating
process is stable, then Zellner’s (1962) seemingly unrelated regression model framework



228 Statistical Analysis and Forecasting of Economic Structural Change

gives a good and convenient tool for statistical modeling of a seasonal variation. Judge
et al. (1982) discuss the example in which the seemingly unrelated model framework is
employed to model statistical data with quarterly seasonality; several estimation methods
and tests are compared. Kmenta (1986) and Johnston (1984 pp. 234-239) argue that
the problem of seasonally varying parameters can be solved by means of dummy variables.
Seemingly unrelated regressions seems to be easier and more straightforward in estimation
and inference. Dummy variable models require additional calculations in order to obtain
estimates of original parameters and their variances. The problem of seasonal variation
of structural parameters can be easily solved whenever it is possible to identify economic
or noneconomic factors that determine the seasonal variation. In such cases, model (14.1)
can be directly employed with those factors used as explanatory variables.

Some variables are published by government agencies after deseasonalization by us-
ing a moving average process. Because deseasonalized variables contain very little or no
information about the seasonal parameter variation, such a variable should not be used
in dynamic statistical models. See, for example, Wallis (1974), Sims (1974), and Judge
at al. (1985, chapter 10) for detailed discussions of consequences of using deseasonalized
variables in econometric modeling. Havenner and Swamy (1981) consider consequences
of using deseasonalized variables in the random coefficient model. In Zellner (1984) the
procedures of deseasonalizing are reviewed.

For expository purposes, the time series context with two partitions will be considered
without loss of generality, i.e., N = 1 will be set in model (14.1). Such a switching
regression model can be easily extended to situations where there are both more than
one statistical unit (time series of cross-sections) and/or a greater number of partitions.
In the simplest case, observations for which different regression regimes hold are known.
In other words, the sample may be split into two groups of T) and T, observations with
T = T3 + T5. Those partitions may be both sequential or not in time.

A piecewise regression model with known join point may be formulated as

X 0 5 e
() - ) (8)+(3) 1

Segments of model (14.9) are not necessarily joined. Some restrictions may be imposed
to guarantee appropriate properties. For example, if some coefficients are expected not
to change, condition that guarantee equality of the corresponding elements of 5; and 3,
across the sample partitions may be imposed. A very important problem is that of joining
the segments of model (14.9). Whenever two regression regimes are assumed to join at
the point ¢o € [1,T], model (14.9) would be estimated subject to the condition

xéo(ﬂl —B3)=0 (14.10)

Smoothness restrictions can be formulated in some other way. A very important al-
ternative formulation of (14.10) assumes that in the joining point the first and second
derivates are equal. Models with segments being cubic polynomials in a single variable
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(time) are widely known as cubic splines. Poirier (1973 and 1976) gives a detailed theo-
retical review of cubic splines methodology; Buse and Lim (1977) discuss some alternative
techniques. Cubic splines have been extensively used by physical scientists, and in eco-
nomics there were also several very interesting applications. Although cubic splines are
very flexible functions and may approximate available data very well, they give very lit-
tle information about the nature of both the process being modeled and the nature of
structural change.

In piecewise regression models with unknown join point, the point of structural change
is unknown and therefore is treated as an unknown parameter to be estimated. Goldfeld
and Quandt (1973b) assume that in model (14.9) ey, and ez are normally distributed
with mean zero and variance 7 and 0%, respectively. They assumed also that (81,0%) #
(B2,0%). There are several possible ways to choose between the two regression regimes:

1. The deterministic choice is based on some variable compared with some unknown
threshold. The basis of the choice may be the trend variable or other economic
variable.

2. Choice is based on some unknown probabilities.
In the deterministic case where the switch occurs on the basis of a time index, it is

assumed that the first regime holds for ¢t < ¢y and the second elsewhere. The estimate of
tp may be obtained by maximizing the likelihood function

to
_ —tg —(T— 1
L(ﬁl,ﬁz,af,ffglto) = (27l’) T/201 t°02 (T—to) eXP{—EU% Z(y: - xfeﬁl)z
t=1
1 T
- 505 > (3 —xiB2)"} (14.11)
t=to+1

The likelihood ratio test is used to determine whether two regression regimes are
equal, i.e., whether there is one single regression over the entire sample. Brown et al
(1975) investigate the constancy of the regression relations over time by considering some
functions of recursive residuals generated in moving regressions. They provide a test that
answers the questions whether the regression is stable and where the instability occurs.
Farley and Hinich (1970) and Farley et al. (1975) suggest some alternative techniques for
investigating regression regimes equivalency. Assuming that the model

% =%x0 +e
where 3; = B + t6, i.e., the model may be rewritten as

Y = xéﬁ-{— tx;6 + e,
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The likelihood ratio test of the hypothesis § = 0 is used to test the constancy of the
structural parameters. Farley et al. (1975) look at properties of some stability tests by
means of Monte Carlo experiments. Their test exhibits robustness with respect to gradual
parameter shifts in one or more parameters. The power of this test is not great, and the
test is reliable only with a large sample or a great shift.

The procedure for the case where shifts are determined by time can be applied to cases
where a single economic variable (other than time) determines switching regression. Sam-
ple data have to be reordered according to increasing values of that variable. The problem
becomes more complex in the presence of autocorrelation and/or lagged dependent vari-
ables. In recent years, much effort was devoted to evaluate Bayesian techniques for solving
switching regression problems. See, for example, Ferreira (1975), Choy and Broemeling
(1980), Smith and Cook (1980), Booth and Smith (1982), Holbert (1982), Ohtani (1982),
Tsurumi (1982), and others. In particular, there is the question how a priori information
can be incorporated in order to improve the quality of estimate of both switching points
and structural parameters.

Whenever the deterministic choice of regression regimes is based on a variable other
than time, frequently it is assumed that more than one variable exists with observations
21ty -+ -y Zmt, t = 1,...,T. Regimes are selected according to whether z;r < 0, or z{r > 0,
where 7 is an unknown coeflicient vector. Goldfeld and Quandt (1973b) suggest the
introduction of a dummy variable with values Dy = 0 if z;7 < 0, and D, = 1 if z{7 > 0.
The two-regimes switching regression model became

¥t = x[(1 — D¢)B1 + DB2) + (1 — Dy)err + Die (14.12)

where 31, B2, 0%, 0%, and D, have to be estimated. Those unknown parameters can be
found by maximizing the log likelihood function

1 17
( = _ETmzr—EZm[af(l—Dt)”"?D?]

t—1

B li {y: - xi[B1(1 - D) 4 B2 D]}
25 o%(1 — D;)? 4 o%D?

(14.13)

where D, is approximated by a continuous function — for example, by a probit function

Z,T 1 ,
Dt: ——exp{—ﬁu }du

1
—00 v27r02

The log likelihood function (14.13) is maximized with respect to 81, 82, 7, 02, and % upon
replacing D, by its approximation function. Frequently estimated values of D, = f(z}r)
are not exactly zero and one; the simplest solution is to partition the sample according
to whether D; < 1/2. Goldfeld and Quandt (1973b) suggest that, in the case when D, is
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not exactly zero or one (the discrimination is not perfect), one of the possible solutions is
then to create two subsamples on the basis of whether z,7 < 0, or z}7 > 0. The likelihood
ratio test may provide the answer whether there are separate regimes in each subsample.

Given that observations belong to different regression regimes with some unknown
probabilities a and (1 — a), the stochastic choice of regimes may be introduced. The log
likelihood function is

T

€= Ing(yxe)

t=1

where g(y:|x;) is the density function of y,:

g(velxe) = afi(yelxe) + (1 — a)falyelxe)
= —= eXP{_L(yt - xi6:)*} + loa eXP{—L(yt - x,02)*}
2mwa? 207 2mo? 203 i

and may be maximized with respect to 81, 82, 0%, 0%, and @. In a more complex case, «
can be the function of some exogenous variables.

Goldfeld and Quandt (1973a) propose an alternative method in which a Markov chain
with explicitly specified transition probabilities is employed as a mechanism of choice of
regression regimes. They consider several possible solutions where transition probabili-
ties were fixed or nonstationary and were functions of exogenous variables. The likeli-
hood function has to be maximized with respect to relevant variables. Tishler and Zang
(1979) develop computationally simple approximation functions to the likelihood function.
Swamy and Mehta (1975b) offer the Bayesian approach and some other generalizations.
Lee and Porter {1984) suggest a model for the case in which sample separation information
is imperfect.

14.5 Random-Parameter Models

In Section 14.4 the structural parameters were allowed to vary in a nonstochastic way. A
model in which parameters are assumed to be random draws from some stochastic process
will be considered in this section. First, it will be assumed that the process generating
structural parameters is stationary, in the sense that it has a constant mean and variance.
Such models are referred to as random coefficient models. They represent an improved
alternative over dummy variable models because the number of parameters to be estimated
is reduced.

14.5.1 Hildreth-Houck random coefficient models

Such models have the form [see Hildreth and Houck (1968)]
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¥ = x\6; (14.14)
wherei=1,...,N; B; = Z;7 + v;, where Z; = I, and 7 = ; and
Bi= B+ v (1415)

The parameter vector §; contains population average parameter A and random distur-
bances v;. Disturbances v; are independently distributed with zero means and covariance
matrix V. Note that the equation disturbance is indistinguishable from intercepts dis-
turbance vy; and therefore does not appear in equation (14.14). Model (14.14) may be
considered as a variation of the previous model with 7" = 1 and with parameters assumed
to be stochastic in the sense of (14.15). Combining (14.14) with (14.15) gives

yi = xif +ei (14.16)

where e; = x!v;, with distribution e; ~ (0,0?), 07 = x!Vx;. It is assumed that E[v;] = 0,

Elv;vl]] =V, and E[v;v] = 0if i # j. Whenever V is the matrix with known elements,
generalized least squares may be applied for the estimation of 8 in this model. The best,
linear, unbiased, generalized least squares estimator for § may be obtained from

= Za x;X;) Za X:¥:) (14.17)

It has the covariance matrix (Y1 ; o7 2x;x!)~1. Griffiths (1972), Swamy and Mehta (1977),
and Lee and Griffiths (1979) show that the best, linear, unbiased predictor for the vector
of individual coefficients may be obtained from

B = B+ Vxi(x;Vx;)™ (i — x{B) (14.18)

However, since elements of matrix V are unknown rather than known, the way of
finding their values is to be developed. Let W contain distinct, unique elements of V,
and let 0 = x{Vx; = Z'W. Matrix Z; may be found by calculating Kronecker product
x! ® x; and combining identical elements; matrix Z; also contains explanatory variables,
their second powers, and their combinations. [Note that the variance of y; is a linear
function of a set of exogenous variables, i.e., the Hildreth-Houck model has heteroscedastic
errors. Such models require special treatment. Judge et al. (1985, in chapter 11), provide
an excellent survey of those problems.]

Another problem connected with variance estimation arises. Since elements of V
are variances and covariance, the estimation has to be restricted to positive values of
the estimates. This problem is very difficult to handle because of its nonlinear nature.
Hildreth-Houck (1968) consider the case of diagonal matrix V; they advise replacing the
negative estimates with zeros or using a quadratic programming estimator. The other



Jozef Dziechciarz 233

possible solution is an ad hoc adjustment in the estimated matrix V, such that it is
nonnegative definite. Schwaille (1982) finds a reparameterization to be useful in this
case. Several different estimators are proposed by Swamy and Mehta (1975a, 1975b) and
Srivastava et al. (1981).

A generally good estimator of the covariance matrix for random coefficients in the
Hildreth-Houck model does not exist. Even provided this matrix is diagonal, usual esti-
mators may not be nonnegative. Important for the application of the random coefficients
models is testing for the randomness in the coefficients; the Breusch-Pagan (1979 and
1980) test seems to be the best for this purpose.

Several other tests in use with the heteroscedastic models are also relevant. Chow
(1984, pp. 1239-1242) discusses the applicability of his test, the likelihood ratio test [see
Chernoff (1954), Moran (1970), and Gourieroux et al. (1982)]; the Lagrangian multiplier
test of Silvey (1959) along with the score test of Rao (1972, p. 417); the test of Pagan
and Tanaka (1979); and the test of LaMotte and McWhorter (1978). Chow concludes
that none of them is good enough and further work is required to obtain computationally
simple, uniformly most powerful test statistic with known distribution in a small sample.
Rajet al. (1980) consider distribution moments in a finite sample. Griffiths et al. (1979),
Liu (1981), and Liu and Hanssens (1981) evaluate the Bayesian approach to the Hildreth-
Houck model.

14.5.2 Return-to-normality models

Harvey and Phillips (1982) suggest a model referred to as the return to normality model,
which is a generalization of the Hildreth-Houck random coefficient model. This term was
first used in the work of Schaefer et al. (1975), who were investigating a model with the
parameters generated by a first-order autoregressive process. It is specifically suited for
use with time series data. It enables releasing the assumption that the coefficients in the
regression model are constant over time — an assumption that is frequently unreasonable.

The dynamic parameters of this model follow a stationary process with a fixed but
unknown mean. Harvey and Phillips consider the model

v = X0 (14.19)
where

B:— B =®(Bi1 - E) + e (14.20)
with t = 1,...,T; y: is the observation on the dependent variable; x; is a (K X 1) vector

of nonstochastic observations; 3 is a (K x 1) vector of stochastic parameters, including
the fixed component 3; ® is the (K x K) matrix of parameters with characteristic roots
less than 1 in absolute value; e, is the (K X 1) vector of disturbances, which is assumed to
follow a multivariate normal distribution with mean vector zero and a covariance matrix
Eleie}j = 0?Q, Eleie)] =0 fort # s.
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Note that model (14.19) is written without an error term. It is assumed that the first
element of x; is unity so that the variance of the first parameter is indistinguishable from
the equation error variance, and thus it is ignored. Not all of the elements in coeflicient
vector ¢ need to be time-varying. Some of them may be fixed, others may be random. In
the case of the existence of fixed parameters, they drop out of expression (14.20). Note that
if ® = 0, (i.e., the parameters are random rather than dynamic), the model reduces to the
Hildreth-Houck random coefficient model, and thus represents a dynamic generalization.

Harvey and Phillips (1982) suggest a full maximum likelihood method and two-step es-
timation procedures, both of them based on Kalman filtering [Kalman (1960) and Kalman
and Bucy (1961)], linked with the recursive residuals technique suggested by Phillips and
Harvey (1974), and by Brownet al. (1975). In a Monte Carlo experiment, Harvey and
Phillips compare small-sample properties of the maximum likelihood estimator gained
over ordinary least squares and two-step estimated generalized least squares. The latter
estimator provided substantial improvement over the OLS.

A very important generalization of (14.19) is obtained by using

A(L)(B: - B) = e (14.21)

instead of (14.20) as the parameter generating process; here, A(L) is a rational function
of finite polynomials, which implies that (8; — B) follows a multivariate ARMA process.
This model covers a number of important special cases. Burnett and Guthrie (1970),
Rosenberg (1972, 1973a, 1973b, and 1973c), Cooley and Prescott (1973a, 1973b, 1973c,
and 1976), Harvey and Phillips (1979), and Swamy and Tinsley (1980) consider models of
this class. Pagan (1980) discusses sufficient conditions for asymptotic identification of such
models, assuming (8; — B) is stationary. He also establishes sufficient conditions for the
consistency and asymptotic normality of maximum likelihood estimators without assuming
stationarity, but by assuming asymptotic identifiability. Liu and Hanssens (1981) consider
estimation of (14.19) from the Bayesian perspective using noninformative priors.

14.5.3 Swamy random coeflicient models

In the Swamy random coefficient model, a (K X 1) response parameter vector for each
individual, 8;, is regarded as a random vector drawn from the probability distribution
with mean f and the covariance matrix V; see Swamy (1970, 1971, 1973, and 1974).
Note the similarity of this model with the Hildreth-Houck model. The latter was designed
to model cross-sectional data; the Swamy random coefficient model is relevant for time
series of cross-sectional data. In both it is assumed that the process generating values
of the dependent variable vary and that this variation can be confined in the structural
parameters of the linear model. Because of the estimation requirements, in both models
a certain structure of the parameter variation is to be specified. The nature of parameter
variation is continuous rather than an abrupt, unique switch.

The Swamy random coefficient model for 7th unit may be written as
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yi = Xi(B + i) + e (14.22)
b=+ m (14:23)

where i = 1,...,N, E[y;] = 0, E[u;p]] = V, and E[p;p}] = 0 for j # .

Every unit in the sample has a unique parameter vector 3;. The parameters for each
individual are constant in time and have a common mean parameter vector 3, but a differ-
ent disturbances vector p;. Several alternative sets of assumptions about e; yield different
model variations. Judge et al. (1985, chapter 12) list a number of such assumptions of
varying degrees of complexity in the context of seemingly unrelated regression equations,
which is a nonstochastic counterpart of Swamy’s random coefficient model. All sets of
assumptions listed there may be also used for Swamy’s model. Here a set of assumptions
defining a relatively simple case will be considered.

Let E[ese}] = 071 and Ele;e] = 0 for j # i. This means that the disturbances are
heteroscedastic across individuals, but that the disturbances corresponding to different
units are uncorrelated; there is no serial correlation. In such a case if 8; were a fixed
parameter vector, the least squares estimator b; = (X!X;)~!X!y; would be best, linear,
unbiased. In order to estimate the mean parameter vector § and predict the individual
parameter vectors f;, first one must estimate the variances upon which the generalized
least squares (GLS) estimator for # and the best, linear, unbiased predictor for 4; depend.
Testing the hypothesis that V = 0 may answer whether structural parameters vary.

After including all NT observations, model (14.22) may be rewritten as
y=XB+Zu+te (14.24)

where Z is a (NT x NK) block diagonal matrix with blocks X;; i = 1,...,N; y is an
(1x NT) observation vector on dependent variable; p' = {u!},i=1,...,N;Bisa(1xNK)
vector of unknown, fixed parameters to be found; and e = {e!}, ¢ = 1,..., N. Composite
disturbance (Zg + ) has the block diagonal covariance matrix & = E[(Zu +e)(Zp + e)'],
with the diagonal block given by ®; = Z;VZit + 021 It is convenient to write the GLS
estimator for B as

- N
B =X X)Xy = [Z LX) T (Xidstyi) ZWb (14.25)
Jj=1 i=1

where

N
O IV +o55(X5X5) 7TV 4 oa(XIXG) T
i=1
b; = (XiX:)"'Xly: (14.26)

z
Il
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Estimator (14.25) has the usual GLS properties. Judge et al. (1985) argue that the
predictor of §3; given in equality (14.26), based on the matrix results of Rao (1965a, p.
29), is convenient for computational purposes. It requires a matrix inversion of the order
K, which is especially important with large T. The GLS estimator may be interpreted
as the matrix-weighted average of estimators (14.26) with weights inversely proportional
to their covariance matrices. Mundlak (1978a) provides a different interpretation of this
estimator.

An important task is to predict individual components of 8;. Having done this, it is
possible to predict future values of dependent variable for each individual and to describe
its behavior. Several predictors have been proposed in the literature.

Swamy (1970, 1971) and Lee and Griffiths (1979) suggest some alternative approaches.
Most widely known are their best, linear, unbiased predictors — BLUP estimators; others
may be obtained by minimizing some quadratic function with respect to 8 and 8;. Smith
(1973) and Leamer (1978) consider Bayesian solutions. Both parameter vectors 8 and
B; are dependent on the unknown variances V and o;;. Therefore their estimates are
required.

Using results of Rao (1965b), Swamy (1970) suggests consistent estimators for both
variances. The GLS estimator for 3, based on those variance estimates, is consistent and
asymptatically effective. The problem is that the estimator for V may not be nonnegative
definite; see Dielman et al. (1980). Swamy (1971) discusses this problem and gives some
suggestions about how to handle this situation. He argues that negative variance estimates
may result from incorrectly specified assumptions about the form of the disturbance covari-
ance matrix (for example, about homoscedasticity, serial correlation, or contemporaneous
correlation). Swamy (1974) suggests appropriate corrections for the violations of accepted
assumptions.

The other possible source of negative variance estimates is that certain coefficients are
not random. The model containing both fixed and random coefficients is referred to as
a mixed random coefficient model. It was first proposed by Swamy (1971, pp. 143-155)
and is analytically examined by Rosenberg (1973b), Mundlak (1978a, 1978b, 1978c¢), and
Dielman (1980). The solutions given by Swamy are not obvious and can destroy properties
of estimators. Dielman (1980) reviews available statistical procedures to test for the
possibility that parameters are not random. Swamy (1970, 1971) gives some alternative
suggestions about how to test if individual coefficient vectors are not random and are all
identical to the mean. Rao (1972) gives conditions under which the estimator for B has
a finite mean and is unbiased. Swamy (1971, 1973) and Rosenberg (1973b) discuss the
possibility of applying maximum likelihood techniques for the parameter estimation.

The assumptions that have been made about e; could be regarded as fairly restrictive.
Parks (1967) adopts an alternative set of assumptions that relax some of these restrictions.
He assumes that the disturbance for each unit follows a first-order autoregressive process,
and that there exists a contemporaneous correlation. (Parks adopts this set of assumptions
for the fixed coefficient model.) Swamy (1973, 1974) considers Parks’s assumptions when
introduced into the random coefficient model. Another extension is given by Swamy (1974)
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for the case when X contains a lagged dependent variable. Rosenberg (1973b) considers
estimation when the covariance matrix could be singular. Swamy (1973, 1974) attempts
to evaluate estimators that may be biased, but with a lower mean square error.

Mundlak (1978a, 1978b, 1978c) suggests that the regression coeflicients can be always
regarded as random; but in the case when parameters f3; are regarded as being fixed and
different (in a seemingly unrelated regression framework), the inference is conditional on
the coefficients in the sample. The random coefficient model uses additional information
provided by an assumption about the randomness of the coefficients. It should be ex-
pected that if the assumption is true, the estimates will be more efficient. In some cases,
variable coeflicients perform a correlation with the explanatory variables; then Swamy’s
assumptions are unreasonable and the GLS estimator for mean coefficient vector 8 will
be biased. Mundlak (1978a) advises one to incorporate into the model any dependence of
the coefficients on the explanatory variables.

Pudney (1978) provides the procedure to test whether variable coefficients and ex-
planatory variables are uncorrelated. Chamberlain (1982) considers further properties of
the estimators under these circumstances. Zellner (1969a, 1969b) shows that if the co-
efficient vectors of the individual units satisfy Swamy’s assumptions, a macro coefficient
estimator will not possess an aggregation bias. Applications of Swamy’s model can be
found in Swamy (1971), Boot and Frankfurter (1972), Feige and Swamy (1974), Boness
and Frankfurter (1977), Mehtaet al. (1978), and Hendrickset al. (1979). Johnson and
Lyon (1973) describe a simulation study with stochastic explanatory variables. Swamy
(1971, pp. 1-23) and Spjotvoll (1977) survey other random coefficient models.

14.5.4 The Hsiao random coefficient model

This is an extension of Swamy’s model where all coefficients may vary both over time and
over individuals; see Hsiao (1974, 1975).

K
Yie = D (Br + pii + The)zhit + €t (14.27)

k=1

withi=1,...,N;¢t=1,...,T. More compactly for the ith unit, equation (14.27) may
be rewritten as

yi = XiB + Xipi + 237 + e (14.28)

where y; and X; have dimensions (7" x 1) and (T’ x K), respectively; p; = (a4, ..., pKi)';
' = (7,...,7p); 7 = (T1e,. .., 7ke); € = (eqn,...,e7); and iy, = (zuit,...,2Ki) is
an element of block diagonal matrix Z¢ which is of order (T' x TK). Hsiao assumes that
E[ei] =0, E[ﬂ"i] =0, E[Wt] =0, E[ei’e:'] = UEL E[eiae_lj = 0 for ¢ 7/: 7 E[ﬂ"i’ﬂ':’] =V,
Elp;,ps] = 0 for i # j, E[m,m;) = A, E[m;,m;] = 0 for t # s. It is assumed also that p;,
7, and e; are all uncorrelated, and that covariance matrices V and A are diagonal with
elements v and ay, respectively.
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Rewriting (14.28) more compactly to include all NT observations yields
y=XB+Zu+2Z°t+e (14.29)

where y' = (y1,...,¥n); X{ = (X1,...,Xx); Z is block diagonal with X; as ith diagonal
block; Z°' = (Z°%,-..,Z°y); &' = (k},...,py); and € = (e},...,ely). Provided that
equation (14.26) is reparameterized to eliminate redundant parameters, and that NT is
sufficiently large, if 4 and 7 are regarded as fixed parameters, y;, 7, and B may be esti-
mated by applying the ordinary least squares to (14.26). Since the matrix (X, Z,Z°) is of
dimension [NT x (T + N +1)K], and of rank [(T + N — 1)K, 2K parameters are redun-
dant. It is convenient to drop (pan,..., KN, T1T, ..., K T), provided that corresponding
columns of Z and Z° are also eliminated. The minimal number of observations required
is NT > [(T+ N - 1)K].

Such estimation when p and 7 are random, with the above-listed assumptions, requires
an estimate of the covariance matrix of the composite disturbance. Covariance matrices
V and A and variance o2 are assumed to be known. With these assumptions, an estimate

(-4
of the covariance matrix of the composite disturbance may be obtained from

® = E[(Zp+ Z°7+ e)(Zp + Z°7 + €)'
= Z(INn®V)Z' + Z°(Ir ® A)Z"° + oInT (14.30)

Then the GLS estimator for 8 = (X'®~1X)"!X'® !y is the best, linear, unbiased one for
B, and has the covariance matrix (X’®~1X)~1. When NT is large, inversion of ¢ could
be computationally difficult. Hsiao (1974) provides a computational procedure where the
largest order of inversion is reduced to max{NK,NT}, which still may be quite large.
Wansbeek and Kapteyn (1982) suggest a convenient inversion procedure for their model.

Lee and Griffiths (1979) show the best, linear, unbiased predictor for the random
component associated with each cross-sectional unit:

i=(In® V)Z2'® (y - XP) (14.31)
Covariance matrices V and A and variance ¢ are assumed to be known, although typically
they are unknown. Hsiao has found a minimum norm, quadratic, unbiased estimator

(MINQUE) and provided maximum likelihood procedure for variances estimation. Those
estimators are used to construct a feasible Aitken estimator of 3.

Alternatively, Hildreth-Houck techniques may be used. Hildreth and Houck (1968)
list conditions under which their variance estimators are consistent. Hsiao (1974) gives
sufficient conditions for the consistency of the estimated GLS estimator for 3, based on
Hildreth-Houck’s variance estimates.

Kelejian and Stephan (1983) extend some of Hsiao’s asymptotic results. Problems with
those estimators are the same as those discussed earlier: they may have negative values.
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All comments made above on this problem also apply here. As before, p;; and 7, may
be assumed to be either fixed parameters to be estimated or random variables. Generally,
it is assumed that they are random; sometimes it is convenient to estimate them as fixed
parameters. Pudney (1978) points out that it may be reasonable to assume that one of
the components is fixed and the other is random. To estimate variances, N and T have to
be sufficiently large. Otherwise, any estimate of the variance will be unreliable. In such a
situation it would be preferable to include appropriate dummy variables, and an inference
conditionally on the sample variance. Note that if the time effects are replaced by dummy
variables, the model becomes identical to the Swamy random coeflicient model.

There are several alternative models considered in the literature. Singh and Ullah
1974), Swamy an ehta (1975a, 1975b, 1977), and Pudney (1978) discuss the mode
74), S d Meh 7 75b, 1977 d Pudn 78) di h del

it = 3 (B + Bhi + €kit)Thit (14.32)
P

The disturbance ey;; replaces the model’s disturbance. Time effect 7, has been replaced
by random component eg;;; this element is not restricted to be the same for units in a
given time period. Swamy and Mehta (1975a, 1975b, 1977) modify Hsiao’s assumption
that covariance matrix V is diagonal; i.e., they allow contemporaneous correlation among
the coefficients. Swamy and Mehta construct an approximate minimum average risk linear
estimator for 8 in their model. (The estimator is approximate because it uses the estimates
of the variance and covariance components, not the true values.)

Both models mentioned above assume that random coefficients vary around a constant
mean. Rosenberg (1973¢), Johnson and Rausser (1975), Harvey (1978, 1981, and 1982),
and Liu and Hanssens (1981) analyze other models where parameters vary systematically
over time. A special case of Hsiao’s model, where random coefficients are associated
only with time invariant and individual invariant variables, is studied by Wansbeek and
Kapteyn (1978, 1981, 1982).

Other references on random coefficient models with parameters generated in a station-
ary process include Burnett and Guthrie (1970), Belsley (1973c), Cooper (1972, 1973),
Sarris (1973), Sant (1977), Pagan (1980), Rausser et al. (1982), and Chow (1984, chapter
21), as well as Chamberlain (1984, chapter 22). Important collections of papers on the
topic are a special issue of the Annals of Economic and Social Measurement (1973, no.
2); a special issue of the Annales de ’INSEE (1978), entitled “The Econometrics of Panel
Data”, edited by Mazodier; and a special issue of the Journal of Econometrics (1982),
entitled “Econometrics of Longitudinal Data”, edited by Heckman and Singer.

14.6 Nonstationary Random-Parameter Models

Up to now it was assumed that parameters in the econometric model have a constant
mean. This assumption can now be replaced by the assumption that parameters are
generated in a nonstationary random process. Contrary to the models with parameters
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generated in a stationary random process, here coefficients do not have a constant mean
and variance. Thus, they may vary systematically over observations. This means that a
less restrictive structure is placed on the parameter variation. Such models are suitable
to describe systematic variation over time.

14.6.1 Cooley-Prescott models

Cooley and Prescott (1973a, 1973b, 1973c, 1976) suggest a model where parameters vary
from one time period to another on the basis of a nonstationary process. They consider
the model

Yyt = x5t (14.33)

wheret = 1,...,T, x; is a (K x 1) vector of nonstochastic observations, and f; is a (X x1)
parameter vector subject to stochastic variation. Parameter variation is modeled as

B: =B +u, (14.34)
where
B =B, +ve (14.35)

It is assumed that the parameter variation is of two types: permanent and transitory. Per-
manent component 3f, of the vector i, allows some tendency in the parameter variation.
The terms u; and v; are independent, normal, random vectors with mean vectors zero
and covariance matrices U, and V,, where E[uu}] = (1 - 7)0?U, and E[v;v{] = 7¢%V,,.
Covariance matrices U, and V, are assumed to be known up to the scale factor and nor-
malized, i.e., the element corresponding to the intercept is unity — the first regressor is
the constant term. The transitory component of the corresponding parameter’s variation
plays the role of the additive disturbance in the regression equation. Element r measures
the relative importance of the permanent and transitory changes. The close-to-one value
of 7 means relatively large permanent changes and relatively small transitory changes.

Cooley and Prescott evaluate the maximum likelihood estimation procedure, which
provides consistent estimates of 7 and asymptotically efficient estimates of ﬂt}:q (r). The
nature of the model precludes any notion of the consistent estimation of ,65_1. Cooley and
Prescott (1976, pp. 172-173) discuss the possibility of testing hypotheses about 7, and
they evaluate asymptotic distribution of 7. Although it is relatively simple to estimate,
interpret, and infer in the Cooley-Prescott model, its application is not straightforward.
In particular the need to specify matrices U, and V, may be very complicated. They
have to be assumed on the basis of theoretical considerations, which in turn presumes the
ability to specify the relative variability of the parameters.

Similar models have been considered by Belsley (1973a, 1973b), Cooper (1973), Sarris
(1973), Sant (1977), Rausser and Mundlak (1978), and Rausser et al. (1982).
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14.6.2 Convergent parameter models

Rosenberg (1973c) evaluates a convergent parameter model, which is devoted to investigat-
ing the time series of cross-sections. It is assumed that parameters of each unit may vary
randomly in time, but they tend to converge to some value (population parameter). This
feature differentiates Rosenberg’s model from that of Cooley-Prescott, where parameters
also vary over time but in some systematic way and were not convergent to any value. In
the interest of simplicity, the one-unit variant will be shown.

The basic model has the form

v = x,0: + e (14.36)

wheret = 1,...,T; e; are independent with the same normal distribution with mean zero
and E[e?] = o?. Rosenberg models parameter variation in the following way:

Be=B+ABr1—-B)+ve=BI-A)+AB_1+ v, (14.37)
where 3 is a (K x 1) vector of the mean parameters in the population; A is a (K x 1)
convergence matrix with elements 0 < §; < 1, ¢ =1,..., K. Convergence rates §; show
the relative difference between § and B3;_;, which still exist at time point ¢. The (K x 1)
disturbance vector v; has mean vector E[v;] = 0 and the contemporaneous covariance
matrix E[vyvi] = V,.

Rosenberg evaluates maximum likelihood and Bayesian estimation techniques for the
general model. For the sake of simplicity, it will be assumed that é; = § foralli = 1,..., K;
i.e., formula (14.37) could be rewritten:

Pe=(1—8)B+ 681+ ve (14.38)
or

(1-6L)B:=(1—8)B +v¢ (14.39)
which eventually leads to a model

Yo = X [(1 — 6)B) + bys—1 + wy (14.40)
where

wy = X4V + e — bepg (14.41)
Estimation of this kind of model is similar to the models with infinite geometric lag but

with a much more complicated error structure. The estimation of infinite geometric lag
models is described, for example, in Judge et al. (1980, chapter 16).
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14.6.3 Kalman filter models

One of the most general models with random parameters generated in a nonstationary
stochastic process is the Kalman filter model. Many models which have been presented
here may be regarded as special cases of the Kalman filter models; see, for example, Belsley
(1973c), Cooper (1973), Sarris (1973), Sant (1977), and Rausser and Mundlak (1978).

The basic model may be written as

Y = X\B; + e (14.42)
where t =1,...,T — 1; with the following general parameter variation structure:
,3t+l = §,Bt + Vil (1443)

where @ is the (K X K) matrix of transition probabilities; E[v;] = 0; E[vyvi] = V,; ¢,
and v; are uncorrelated for all ¢t and s. Assuming that T, V,, and (o are known and
performing some calculations, (14.43) may be rewritten in compact matrix form as

,3 = §1,30 + §2V (1444)

For estimation purposes, the values of ®, V,,, and 89 have to be known. Not much
could be said about the first two matrices, although Sarris (1973) provides some guidelines
on how they could be specified. Provided they are somehow known, being specified in a
theoretical or in another way, without knowledge about By one is in a situation where
the nature of the development is known, but the starting point of the path is not known.
Although vector B¢ cannot be specified in any theoretical way, on the basis of a prior:
knowledge, there are some possibilities for finding starting points on the basis of the
available statistical sample. Cooper (1973) suggests a comfortable reparameterization
of the model that enables one to make a maximum likelihood estimation of unknown
parameters, provided that matrices ® and V, are known. Generally, it may be stated
that estimation of the Kalman filter model is not satisfactorily solved.

14.7 Summary and Conclusions

In modeling economic processes by means of the varying or random coeflicient model,
several problems have to be taken into consideration. For modeling changes over time,
one may

1. Assume a constant correlation structure of the disturbances and use the error com-
ponent model.

2. Assume that disturbances are generated in some autoregressive or moving average
process.
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3. Choose a dummy variable model and regard inference as conditional on changes in
the sample.

A decision has to be made about the nature of the model: are all coefficients likely to
vary, or is it reasonable to assume that some of them are constant, or is only the intercept
able to capture behavioral differences in the sample? If the coeflicients are likely to vary,
does this variation depend on the explanatory variables? In such a situation, an applied
researcher may choose a dummy variable model or the seemingly unrelated equations.
Once there exists a correlation between individual effects and the explanatory variables,
an error component model or Swamy’s random coeflicient model may be reasonable.

A very important factor is the size of the sample. Having a small sample means that
the random assumptions requiring some variance estimates are unlikely to be reliable.
It may be better to treat the coeflicients as fixed even when the random assumption is
reasonable. In the model where the parameters are assumed to be random the relative
size of the sample has an important bearing on the finite sample reliability of variance
estimates and, consequently, on the estimated generalized least squares estimators for the
slope coeflicients.

A number of model specification tests may be used to help choose between model
specifications. Once a model has been specified, there are additional problems concerning
the most efficient estimation procedure and the testing of hypotheses about parameters.
The problem of testing the constancy of the coefficients, with the varying coefficient model
serving as the alternative, is not completely resolved, although many tests have been
suggested.

It is necessary to remember that there is a great danger of misspecification. The model
chosen is only as good as the structural information introduced on the parameters’ varia-
tion. Theoretically, by introducing more information about the nature of the process being
modeled, the model should be more informative; but because the information imposed may
not be true, the danger of misspecification is great. The general recommendation is that
in applied work a judicious use of tests with a prior: knowledge about the nature of the
problem should be combined.

The problem of estimating models with changing parameters deserves further study.
In particular, finite-sample properties as well as pretest estimator properties have to be
further investigated. The same may be applied to finite-sample properties of a number
of test statistics used in the regression model with varying parameters. Since the vari-
ances necessary to estimate parameters by means of generalized least squares are unknown
rather than known — and maximum likelihood estimates are used — their finite-sample
properties and the sampling distributions of the slope estimates based on them are not
sufficiently known.
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Periodical Abbreviations

AESM  Annals of Economic and Social Measurement
Al Annales de l'INSEE

AMS Annals of Mathematical Statistics

ANS Annals of Statistics

APS Applied Statistics

B Biometrila

BS Biometrics

E Econometrica

EL Economic Letters

ESQ Economis Studies Quarterly
IER International Economic Review

JASA Journal of the American Statistical Association
JBE Journal of Basic Engineering

JE Journal of Econometrics
JET Journal of Economic Theory
JF Journsal of Finance

JFQA Journal of Financial and Quantitative Analysis
JISA Journal of the Indian Statistical Association
JMCB  Journal of Money, Credit and Banking

JSCS Journal of Statistical Computation and Simulation
MOR Methods of Operations Research

MOSS  Mathematische Operationsforschung, ser. Statistik
PS Przeglad Statystyczny

RES Reviev of Economic Studies

RSSB Journal of the Royal Statistical Association, Series B
SH Statistische Hefte

T Technometrics
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CHAPTER 15

Nonparametric Estimation of
Time-Varying Parameters

Peter M. Robinson

Summary

A sequence of observations y,t = 1,2,..., N, is generated by the time-varying multiple
regression model

¥ =Bz +ovuy, t=1,2,...,N,

where, fort = 1,2,..., N, u; is an unobservable random variable with zero mean and unit
variance, z, is an observable p-vector-valued variable, and o; and j3; are, respectively, un-
observable scalar and p-vector-valued parameters. No model (stochastic or nonstochastic)
is assumed for the o; or f3;; instead they are assumed to be smoothly varying over ¢, in
a certain sense. A class of estimators of the (;, o is proposed, for each value of ¢; the
estimators optimize a criterion prompted by Gaussian maximum likelihood considerations,
and may be viewed as analogous to certain nonparametric function fitting estimators, em-
ploying a kernel function and band-width parameter, both selected by the practitioner.
Consistency and asymptotic normality are established in case of independent u;, and a
consistent estimator of the asymptotic covariance matrix of the f3; estimators is given.
Such results are also possible for serially correlated u;. We discuss questions of implemen-
tation, in particular the choice of kernel function and band-width. Generalization of the
class of estimators to include certain robust estimators is possible, as is generalization of
the methods to more general models involving time-varying parameters.
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15.1 Introduction

To model the dependence of a scalar time series y; on a p X 1 column vector time series
z;, we consider the time-varying multiple regression

¥ =Pz +owy, t=12,...,N (15.1)

The p X 1 vector B; is unknown for each ¢, and is not assumed constant over ¢, and the
prime denotes transposition. The sequence of random variables u; is likewise unobservable.
Throughout, we assume u; is independent of z,, for all s and ¢, and

E(u) =0, V(iw)=1

The sequence of residual variances o7 is unknown, and not assumed constant over t.
Observations on z; and y; are available for ¢t = 1,..., N. It is of interest to estimate the
ﬂt and ag¢.

If 8; and o, are modeled as known functions of t and finitely many unknown parameters,
the problem reduces to a standard one of parametric estimation. For example, polynomials
in t might be employed. So far as 3; is concerned, the parameters, §, on which it depends
might be estimated by linear or nonlinear least squares, depending on whether 3; is linear
or nonlinear in §. The parameters describing both 3; and o: might be simultaneously
estimated by optimizing a Gaussian likelihood.

An alternative approach to the modeling of §; and o; takes them to be generated by
a finite parameter stochastic model. This approach has been employed so far as fg; is
concerned (with o; = o assumed) by many authors, taking the stochastic model for j; to
depend on finitely many unkown parameters — typically, a stationary autoregressive or
autoregressive moving average model or a random walk. Again, after some manipulation,
the estimation problem is of parametric type.

While various such parametric models for the 8; and o; — be they stochastic or
nonstochastic — may prove computationally convenient and afford precise estimation when
they are reasonable, the goal of explaining time-varying parameters so parsimoniously may
be overly ambitious. While they do afford more generality than time-invariant regressions,
they need not necessarily provide a good approximation to the actual data generating
mechanism. In this chapter, we avoid finite parameterization of 3; and oy, relying only on
smoothness assumptions. Our approach is nonparametric, in the sense that we can regard
the number of free parameters as increasing slowly with N.

In order to provide asymptotic justification for our estimators, it is convenient to regard
the f;, o; as being generated from functions 4(¢) and o(t) on (0,1):

ﬂt:ﬂ(%)v Ut:a(_) ) t=172,'-'7N (15'2)
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Thus, the B, o, depend on N in this framework, though our notation does not empha-
size this. The specifications (15.2) are analogous to ones standardly employed, for the
same reason, in the nonparametric curve fitting literature; see, e.g., Nadaraya (1964),
Benedetti (1977), Clarke (1977), Gasser et al. (1985) and Wong (1983). The model con-
sidered by these authors is more general in the sense that some of their results apply to
irregularly spaced observations. However, their model is more special in that it applies
only to the case where z; consists only of an intercept, so p = 1, z; = 1, and in that
they assume oy is constant over t. In addition, whereas we, like these authors, assume the
residuals u; are independent, we also indicate how our results may be extended to allow
for serially dependent u;.

Condition (15.2) might seem strange because it makes the 8, o; depend on sample size,
N. The reason for this requirement is that an estimator of 8; or o; will not be consistent
unless the amount of data on which it depends increases; and merely increasing the length
of the series N will not necessarily improve estimation of 8; or o; at some fixed point ¢,
even if some smoothness condition is imposed on the §;, o; sequences. The amount of
local information must increase suitably if variance and bias are to decrease suitably. A
convenient way to achieve this is to regard the 8;, o, as ordinates of smooth functions 3(-),
o(-) on an equally spaced grid over (0,1), which becomes finer as N — oo, and consider
estimation of 8(7), o(7) at fixed points 7, while defining u;, 2;, and y; on the integers, as
is conventional in time series analysis.

Notice that this problem does not arise in two related nonparametric estimation prob-
lems: spectral analysis and regression on a stochastic explanatory variable. In spectral
estimation, a periodic function is being estimated, so its support can be taken as finite
such that increasing N permits calculation of approximately independent discrete Fourier
transforms over an ever-finer grid on the Nyquist frequencies, and thus estimation of the
spectrum with both increasing resolution and precision. In stochastic nonparametric re-
gression, the density of observations on the regressors increases with N, with similar effect.
In our case, however, the natural support of the 8, o, is the integers, which do not become
more dense as N increases, so that as in the nonparametric curve fitting literature referred
to above, the problem has to be rephrased.

Our representation does not, however, regard the sampling of the y;, z; as taking place
on agrid on (0, 1), which would make the preservation of independence or weak dependence
properties as N increases implausible. We note that the device of taking the y;, z; to be
observations at intervals 1/N on a continuous process on (0,1) that itself is independent
of N would not work because it does not achieve the accumulation of new information
as N increases that is necessary for consistency. Making the parameters dependent on
sample size is not unknown elsewhere in the statistical literature (for example, in Pitman
sequences), and any asymptotic scenario is open to the criticism that in many applications
there is no possibility of increasing N, the motivation being merely to provide approximate
Jjustification for an inferential procedure based on a finite sample.

In the following section, estimators of the 3, o; are proposed. In Section 15.3, we
show them to be consistent. In Section 15.4, asymptotic normality of the f; estimator is
established. In Section 15.5, we discuss the implications of serially dependent u;; describe
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alternative estimators, including robust ones; and indicate that analogous estimators can
be obtained for other models involving time-varying pararmeters.

15.2 Estimators of the 3;, o,

We introduce a kernel function k, that is a real-valued function heavily concentrated
around the origin. Let h be a positive constant, dependent on N, and for 7 € (0, 1) define

Nt—t
ke = k(—=—
¢ = k—7)
To estimate B(7), o(7) for any 7 € (0,1) consider the Gaussian pseudo log likelihood

function

UB(r),0(7)] = D krelog flyelee; B(T), 0(7)] (15.3)

where }, is a sum over ¢ from 1 through N and

flalei ,0) = ——exp{ -3 (20

The first-order conditions for a maximum of ¢[3(7), o(7)] are
Zk‘rtzt(yt —B(r)z) =0
1 (= Blr)=)?) _
Sk sy~ B =0

When solved, these yield the Gaussian pseudo maximum likelihood estimators of 8(7),

o(r)?,

ré("') = (Z k‘rtztz:)~1 Z kriziys

5(r)? = (O kre) 7 D krelye — B(7)'2]?

The implementation of this procedure depends on the choice of k and h. Consider

<
It <1 (15.4)

1
-4
k(t)"{ 0, |t>1
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In case (15.4), for sufficiently large A, ,B('r) and &(7)? reduce, for all 7, to the Gaussian
estimators of A and ¢? in the familiar time-invariant regression model

Yo = Pz + ouy

namely,

ﬁ = (Z ztzi)_l Z 2eYs
t t

5=~ S (v - Blee)?
N4

For suitably small h, B(r) and 6(7)? exhibit variation over 7. With k given by (15.4),
the 8, = B(s/N),s =1,..., N, are the moving regression estimators of Brown et al. (1975)

ﬁ,:( > ztzg)_ S oz

|t—s|<Nh t—s| <N

We have for 62 = §(s/N)?

1 R

A2 ( _al 2

g, = § : Yt ﬂ’zt)
Nh lt—s|<Nh

Notice that the formulae for (1), &()? are computable for any 7 € (0,1), allowing for
“interpolation”. Viewed as a function of T € (0,1), for k given by (15.4), 5(7), (r)? are
discontinuous at 7 = s/N, for integer s. A continuous 3(7), 6(7)? trajectory is obtained

via use of k(t) that is everywhere continuous, such as

-, <1
0

k(t):{ , > 1

see Epanechnikov (1969). Many other choices of k are possible, including ones with infinite
support, such as the Gaussian kernel

k(t) = —— exp(— ~1?), —o00 <t < 00 (15.5)

V2T 2

and ones discussed by Gasser et al. (1985).

The choice of band-width A is generally believed to be more crucial than that of k in
kernel estimation. Statistically, small A tends to correspond to small bias in ,B('r), a(r)%
large h to small variance. (Of course, the value of p will induce a lower bound on A.) In
practice h is often chosen in an ad hoc fashion.

Alternatively, an automatic method, such as cross-validation, might be employed. To
describe this, introduce
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Zk tZ424) Zk tZ Yt

t#e t#o
A possible choice of h is h given by
CV(h) = min CV (k)
where

CV(h) = [y — BL.(s/N)z.)?

s

Wong (1983) considers this criterion in the “nonparametric curve fitting” special case of
(15.1), where p = 1,2, = 1, 04 = o, providing some asymptotic justification.

The computation of 3(), &(r)? for given h and many 7 — for example, for all T = s/N
when N is large — is likely to be expensive. In the latter case, however, an approximate
computational method, based on the fast Fourier transform, is available. Suppose we know
K such that

= / K(u)e ™ du

for example, K (u) = exp(—3u?) in case (15.5). Then for any sequence z,t=1,...,N

(15.6)

Z ka/N,tzt
t

et —1s u itu
/ K(u)exp(——— h Zz,exp Nh)d

h [~ —1i5v
— — d
27 _mK(27r)ep2N)Z 2 exp N)U

We may thus approximate (15.6) by passing the z; through the fast Fourier transform,
multiplying by the K (%), for integer v, and using the inverse fast Fourier transform. We
can construct 3, and 2 by using for z; the functions z,z},2.y;, and (y; — B,z;)?. The same
type of approach has been used by Silverman (1982) in connection with kernel probability
density estimation.

15.3 Consistency

We shall establish consistency of (1), &(7)? for 8(7), o(r)? under the assumption that
the u; are independent across ¢, which is standard in the nonparametric curve fitting
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literature, though unlike in that literature that we do not assume o2 = o?. We assume
E|luy|*™ < C < oo, for some > 0, some C, independent of t. We allow for serial
dependence in z; (which is not present in the usual curve fitting problem).

Specifically, we assume z; is stationary such that M = E(z,z}) is positive definite,
Eljz;|**® < oo, some § > 0, and =z, satisfies the strong mixing condition [see, e.g.,
Deo (1973)] with mixing coeflicient ¢; satisfying

a; = sup |P(An B)- P(A)P(B)|
A€A BeB

such that A and B are the o-fields of events generated by z:,t < s, and z;,t > s + 7,

respectively, for 7 > 0. We assume £ is bounded and continuous except possibly at finitely
many points, that it integrates to 1, and

/;: |k(u)] du < o0

We assume (3(7) and o(7) are continuous and bounded on (0,1).

We may write

B(r)-B(r) = (O knzzt) ) knzizi{B8: — B(7)} (15.7)

+ (Z krezezy)™t z krizioiu,
: :

We shall show first that

1
— > knpzz DM (15.8)
Nh 4

when h — 0, Nh — 00, as N — 00. Let z;; be the ith element of z; and m;; be the (7,7)th
element of M. For B > 0 denote

!

)DICTED DU DUy

t [rN—t|<BNh t |rN—t|>BNh
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For any 2,j

1

z
Nh Zkﬂ(z,tzﬁ mi;)] < { Z kre(zizje — mii)]z} (15.9)
1
v Z |th| Ellzizje — mij] (15.10)
t
Using inequality (2.1) of Deo (1973), the r.h.s. of (15.9) is bounded by

L

2
{Z SCEEDY Z k| (Elziezs[+/2])4/(4+) aii/_‘f.*”}

CI(Nh)™ 7 4+ B{(BNR)™ Y of/**9y3)
i<BNhR

where C denotes a generic constant. We can bound (15.10) by

NhZ Ik.rt|—>C/ u)|du, asN — oo

by a slight extension of Lemma 1 of Benedetti (1977). Then (15.9) and (15.10) — 0 by
letting N — oo then B — co. Because

iX:k.rt — / k(u)du=1, asN — o0 (15.11)
Nh2 oo

by a slight extension of Lemma 1 of Benedetti (1977), we have established (15.8). Next,
with || - || denoting Euclidean norm,

o 3 ke 6~ B}
t
C "
< sup  ||B(2) Z |kre| tr(M ﬂz {kre| to(M
t

[t—T|<Bh

<ol suwp [1A(t) - ()l + / [k(w)] du] + o{1)

ft—TI<Bh |u|>B
which — 0 as A — 0 then B — oo. Finally,

1
Zkﬂztatutn ] (Nh Zkzt tl‘ ) t2 :O(W)—)O
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‘We have thus established

To handle ¢(7)? we may write

ye — B(r) 2 = opue — vy
where
ve = {B(7) — B(T)}Yz¢ + {B(T) — Be}'z:

Thus,

(5) Gt = o)) = 375 Sbel (v = ) o))
which is majorized by
7 S ket = 1) ¢ g S ko~ o))

1 1
z 1 z 1
+2 (NhZ|k‘rt|Utut> (ﬂ;[krt]vf) +|ﬂzt:krtvt2|

Using von Bahr and Esseen (1965) , and taking 0 < n < 2,

1 2/(2+n)
Zk,tat — 1 ] < ((]V—h)l-}-—n/ZZ|that 1+7)/2E[|u |2+7I])

n
3 el B[]
t

arguing as above. We have next

1 ! C "
< sup lo(t)? — o(7)?] WZ [kre| + N Z |kre] — O
t t

261
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Finally,

Nih Yo kavi < 2{A(r) - ﬂ(r)}’]—vlz 3 lkrelzezi{B(T) — B(7)}
307 20 el (B(r) ~ By eeet{8(7) B} 2 0

in view of what has already been established. Thus, because of (15.11),

15.4 Asymptotic Normality

We focus here on the asymptotic normality of ﬁ('r), centered at $(7), and under the
assumption o? = 2. We assume, in addition to the previous conditions, that 3(r) satisfies
a Lipschitz condition of order e, 0 < a < 1, and assume in addition to h = 0, Nh — oo,
as N — oo,

NA'T2® 0, as N - oo

We also assume now, for simplicity, that k has compact support, which we take for con-
venience to be [—1,1].

We wish to show that

(NBE{A(r) — B(r)} S (0, 0 [ k(w)? dub™) (15.12)

— 00

assuming the integral is finite. Using steps following (15.10), note that

1
(Nh)z

B > knzex{Be — B(m)H]

So far as the term
—UT Z krizius (15.13)
(NR)z 7

is concerned, note that z;u, are martingale differences with finite (2 + 5)th moment, some
n > 0, and the remaining relevant conditions of Scott (1973) may readily be checked to
show that (15.13) is asymptotically N(0,02M), using
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o0

1
—Zkf —»/ k(u)? du
NR <™

—co

by a slight extension of Lemma 1 of Benedetti (1977). The proof of (15.12) follows by
invoking (15.8).

A consistent estimator of the limiting covariance matrix in (15.12) is given simply by

/_ : Fw)? du (% Xt: ztzi) B

Notice that (15.12) implies that the limiting distribution is independent of 7. More-
over, it may readily be shown that not only are () and 5({) asymptotically identically
distributed, for fixed, distinct 7, ¢, but they are also asymptotically independent, because

1
|El(+7 D Ekrziue Y kpzou)]|
t t

tr(M) Z c (-1
= [kreket| € — Z |ket| < Cmaxk(s+25—)—0
Nh 4 Nh N TN ls|<1 h

ash— 0.

It is possible to establish asymptotic normality of ﬁ(‘r) without the assumption that
0; is constant. The limiting covariance matrix is no longer oM !, however, but it may
be consistently estimated as in Eicker (1963).

15.5 Extensions

15.5.1 Serially correlated u,

Consistency of (r), (7)? may also be established in the presence of a variety of serial
dependence assumptions on u;. Asymptotic normality also may be established under such
assumptions, though the form of the asymptotic covariance matrix will reflect this. More
efficient estimators than B(T), ()% can be constructed in this case, in a way analogous
to that in constant-parameter models.

15.5.2 Alternative estimators

Concerning (15.3), the function f can be replaced by an alternative, non-normal, density
function, if this seems appropriate. Alternatively, log f might be replaced by a form of
robustified loss function, leading to estimators that are less sensitive to outlying observa-
tions [cf., Hardle and Gasser (1984)]. Such estimators will typically have to be computed
by numerical iteration.
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15.5.3 More general models

The estimators /3(7'), &(7)? can clearly be computed in the case where z, includes lagged
dependent y;, though the asymptotic statistical theory will more difficult. Extensions to
other models in the regression family are also apparent. Indeed, the same type of approach
may also be applied to more general models, that are not necessarily of regression type.

Consider a vector random variable z;, having density function g(z6,), where 6; is
a vector parameter generated from a function 6(7) via 6; = 8(¢/N). Then 6(r) can be
estimated by maximizing

> kyilog glz:|6(7)]
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CHAPTER 16

Latent Variables in Regression Analysis

Valer: V. Fedorov

Summary

Attention is drawn to the fact that a number of results from econometric analysis of regres-
sion models with unobservable variables can be readdressed using traditional regression
analysis techniques. This observation is of importance in the choice of comparatively sim-
ple methods for handling corresponding problems, particulary in cases when unobservable
explain structural changes in the final regression models.

16.1 Introduction

Models with unobservable variables are widespread in econometric investigations. This
chapter concerns two of the most popular models of this kind.

The first model [compare with Robinson and Ferrara (1977)] can be described by the
following system:

% = Yozite

z Bizi+vi, i=1,...,n (16.1)

In (16.1) y; is an observable variable (response), the vector z; € R' describes the con-
ditions of observation and is supposed to be known; the vector z; € R™ corresponds to
unobservable variables; ¢; are ¢2d random variables with mean zero and variances o¥ y;
are random vectors with zero means and variance matrix d; and vector J¢ and matrix By
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Wy

contain unknown components; stands for transposition; the index “0” points out the

true value of the parameters.

The second model under consideration is described by the following set of equations
[compare with Zellner (1977)]:

¥ = Yzt
Byz; (16.2)
zit+ vy

I

Zi

Ui

In (16.2) all notations and assumptions which take place for (16.1) are fullfiled. However,
the relation between z; and z; does not contain random values, and the vector z; is observed
only through u; with some additive random errors.

Both models can be generalized for multiresponse cases (y; can be a vector). The
generalization of the estimators is straightforward, and this is the reason why we consider
the scalar case in this chapter. Our main purpose is to show that the models (16.1) and
(16.2) can be transformed into some well-known regression models for which the properties
and the numerical procedures are well studied, and which can efficiently be used after the
appropriate adjustment.

16.2 The Regression Model with a Variance Containing
Unknown Parameters

It is obvious that for model (16.1) the variables z; can be eliminated:
% = 9Boz; + & (16.3)

where E[¢;] = 0 and E[&€;] = 6;;(0? + dpddy), i.e., (16.1) is equivalent to a regression
problem (nonlinear, if both elements B and 9 are unknown) with a variance depending on
parameters Jp [see, for instance, Carroll (1982); Fedorov (1974); and Malyutov (1982)].

When 9y and dy are given and some elements of the matrix B are unknown, model
(16.3) can be transformed into

% =70 +& (16.4)

where 79 = BdY. This model is a traditional linear regression model with unknown
variance s? = 0% + 9, dodo. Therefore, not more than [ linear combinations of the elements
of B can be estimated and the least squares method provides the best linear unbiased
estimators of these linear combinations.

When all elements of the matrices By and dp are known, one still must deal with a
rather trivial situation, which, nevertheless, is of some interest for applications. For the
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sake of simplicity, let us assume that the rank of By is m. Then model (16.3) can be
transformed into the linear regression model with an unknown variance depending on the
parameters 9 [see Malyutov (1982)]:

¥ = owi + &

where w; = Boz;, and §; is defined in the comments to (16.3).

The estimation problem for model (16.3) becomes more difficult when both ¥ and
B depend upon the same unknown parameters. Consider the most simple case with
I=m=1and ¥ = vy, B = by, where v and b are known. The model (16.1) can be
reduced to

¥ = e’z = &
where
a=vb, E[& =0, E[&,E;]=6i;(c*9y%d)

It is obvious that the parameter v for (16.1) is consistently estimated if at least a sign of
Yo is known a prior:.

In the general case, when ¥ = 9(7), B = B(y),l, m > 1, and v € R*, one has
¥ =9 (v0)B' (vo)zi + & = ¥'(v0)zi + &
where

El&] =0, E[&,&]=8;(0*Y(10)d¥(70))

It is known [Wu (1981): Theorem 1] that if there exists a consistent estimator for all
70 € I' C R¥, where T' is compact, then (under very mild conditions on the distribution of

&)
[T(7) — T(70)) Ma[T(7) — ¥(0)] — o0 (16.5)

asn — oo for all ¥ # 7o in I'. Here M,, = 37, z;2.. Moreover, condition (16.5) provides
the consistency of the least squares estimator of 4. In other words, an experimenter should
appropriately choose a design {z;}7 as well as I'. Note that condition (16.5) is not fulfilled
if the set T' includes ¥ = —vo in (16.5). It is clear from (16.5) that no more than [
parameters can be estimated if either 0% or d is unknown.

In cases when o? is a function of z: 0?(z,7), which can also depend upon 7, one has
to apply iterative least square estimation [Fedorov (1974); Jobson and Fuller (1980); and
Malyutov (1982)]:
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‘? = ,l_i.IB) Vs
R [yi — ¥'(7)=:])?
s = argmin
7 g Y ; 0’2(2:1‘)’,_1) + 19,(7a—l)d19(78-1)

(16.6)

The estimator 4 will be consistent if (16.5) is fulfilled. It is worthwhile to note that
the straightforward least square estimator

_ ey - ()]
7 = argmin 2 o?(z17) + 9'(7)dd(7)

=1

is not consistent.

A method similar to (16.6) can be used for approzimate estimation of parameters of
the generalized version of (16.1):

¥ = n(70,2)+t e
p(Yo,2i) +dvi=pi +0vi, i=1...,n (16.7)

Il

2

where v stands for both parameters ¥ and B, n € R!, p € R}, and v € R¥; ¢; are iid

random values with variance o?; v; are #id random vectors with unit variance matrix d;

and 4 is some constant.
It will be assumed that the function #(v,2) has derivates with respect to z up to the
third ones for all z; = p(v,2;), 7 € T C R*, where T is compact, and

El|lviptigrir[] L ¢ <00, i=1,...,n, pg,r=1,...,m

Similar to Fedorov (1974), one obtains

Ely] = En(vo,pi + 8v:) + ] = @(70,2:) + O(8°)

E((y - Ew:])’] = A7(r0,2:) + O(6%) (16.8)

where
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82 oy,
o(1,2) = n(rp)+ o tra TN:P)

A
2 dpdp pmslr.2)
A(y,2) = %+ 6 on( ,P)d on(v,p)
ap' ap p=p(y.2)

Therefore the modified model (16.7) can be approximated by the regression model

¥i = @(70,2:) +

where /\1/2(70, z;)u; are iid random values. The estimator of « is defined, similar to (16.6),
as a limit point of the following iterative procedure:

4 = lim 4,
ve = argggpzk(vs-l,z;)[w—‘P(%zi)]z (16.9)
=1

The estimator will be consistent within the frame of approximation (16.8) under very
mild assumptions, the main one of which is

n

Z ’\(707 3;’)[99(‘)’, zi) - 99(‘)’0, :l:,')]2 — 00

as n — oo for all 4 # 4o in I'. For “sufficiently” smooth functions (7, z;), the estimator
(16.9) is normally distributed asymptotically:

T(;Yn _7) - N(OvM_l)

where ; — 00 as n — o0, and

n

. - 0 y T4 0 y 5
M = Jim 7t 35 00) 267 260020

=1

(16.10)

Naturally, the existence of the limit in (16.10) is suggested. The last result is more
general than a similar one from Fedorov (1974) and it is the obvious corollary of Theorem 5
from Wu (1981).
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16.3 Multiresponse Regression Model

The model (16.2} can be treated as a specific case of the multiregression model

w; = (Y, %) + (16.11)

where 7(v,z) is a given vector function, v € R¥; the random vectors p; are iid with zero
means and the covariance matrix

2
T n_w_[oe° O
E[ﬂ.m]—z—( 0 d‘)

Consider the case when all elements of B and ¢ are unknown. Model (16.2) can be
transformed to model (16.11) if one assumes that

7I = (1-917"'71-9m’B117-"7B11)"')B1ma"'1Blm)

4

m i 1
771(7,3) = Z Vo Z Bgazg , 772(7,3) = Z Bgizg , ﬂm+1(7,-’6) = Z Bgmzp
=1 B=1 B=1 p=1

Model (16.11) was studied, for instance, by Phillips (1976) and Fedorov (1977). Several
slightly different estimators were suggested for v and T (the case when X is given is too
well-known to require discussion here). Similar to the estimator defined by (16.9), both v
and ¥ can be estimated with the help of the following iterative procedure.

¥y = ‘l_i’IEO‘YJ ) 2 :‘]irgloza
T = arggggZ[w; — n(7,2:))' 5, Hwi — n(y,z:)] (16.12)
i=1
B = O [wi — (a1, 2:)][wi — 0(Vam1,2:)]
i=1

Unlike model (16.1), in the case under consideration, all elements of B and ¥ can be
consistently estimated if the sequence z,,...,2, is appropriately chosen. The estimator
(16.12) asymptotically coincides with the maximum likelihood estimator when the p; are
normally distributed.

The estimator (16.12) can be improved if the structure of the covariance matrix X is
taken into account, and in the iterative procedure instead of the matrices X,, one uses

1_ (% 0 _ <~ (5i— ) 0
z, = ( 0 d, ) —Z( o (u,.—z,,-)(ui—zsi)') (16.13)

=1
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where 2,; = Blz;; 5 (or 9 and B) and £ (or 2 and d) denotes the improved estimators
of 4 (or ¥ and B) and T (or o2 and d).

Let us introduce matrices

n n n
- ] -t I
My, = Zz,'z,- , Miz= Zz;z,- , Maz = Zz;zi

=1 1=1 i=1

where %; = B'z;. Using the standard techniques of regression analysis, it is possible to
check that the consistent estimator D of the variance matrix D = E[§4'] can be calculated
in the following way:

D=(J1+J2)_1
where
. M ¥ Q@ M! 0 0
_s-1( _MMn v 12 _ _
h=e (19®M12 1919'®M22) and T2 (o d_1®M22)

The matrix J; can be interpreted as the information matrix corresponding to observation
of y;, and the matrix J, can be interpreted as the information matrix corresponding to
observations of z;.

When rank(Bo) = rank(dg) = m, then the paramter ¥ and B will be consistenly
estimated by (16.12) if

. (max eigenvalue of Mj,)(1t<)/2
lim p
n—oo max eigenvalue of Mz,

< ¢ < oo

for some ¢ > 0. This fact is derived from the results of Wu (1981) and from the structure
of the matrix D, which is mainly defined by the matrix Mj,:

M11 = BIMzz.é and M]_g = Mzz.ﬁ

In conclusion, it should be emphasized that (16.9), (16.12), and (16.13) not only de-
scribe the estimators with some admissible statistical properties; they, moreover, deliver
the effective numerical procedures that are based on the well-studied standard least square
techniques.
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CHAPTER 17

Structural Change and Time Series
Analysis

Lyle D. Broemeling

Summary

This investigation introduces changing-parameter ARMA processes as a way to model
a time series. Many time series exhibit a changing trend or a changing autocorrelation
structure; that is to say, they have certain nonstationary characteristics that cannot be
modeled by the usual ARMA representation. The analysis of a changing parameter pro-
cess is accomplished by a Bayesian approach, where the posterior distributions of the
parameters are derived, and the analysis is illustrated with a moving average model that
has a changing autocorrelation function.

17.1 Introduction

Modern approaches to time series analysis assume that the realization or a tranformation
of the data was generated by an ARMA process that is stationary and invertible. If the
data exhibit a changing trend or an unstable covariance, differencing the data will often
induce stationarity, and one can assume an ARMA process generated the data. This is the
technique used in a Box-Jenkins (1970) time series. However, sometimes no transformation
can induce stationarity.

In this chapter, the approach is to model the realization with ARMA processes that
have changing parameters. If the data exhibit a changing trend or a changing covariance
structure, these characteristics can be captured with such processes. In addition, such
processes can be employed with a Box-Jenkins as diagnostic tests; however, such uses will
be explored at a later date.
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The following three sections will introduce: (a) ARMA processes with a changing
trend, (b) ARMA processes with a changing autocorrelation function, and (c) a Bayesian
analysis of these changing-parameter models, along with an example of a moving average
process that has a changing covariance structure.

17.2 Trends in the Data

Consider the following model, where the observation Y () is given by the stochastic dif-
ference equation

Yt)=C14+ (C2—C1)S{t—m)+0Y(t—1)+e(t) — de(t — 1) (17.1)
where t is any integer and the process [e(t): ¢t € I] is a sequence of independent N (0,77 1)

random variables. The parameters C,C5,8, and ¢ are real, and || < 1. In addition, m
is an integer called the shift point and S is the function

0, t<m
S(t—-m):{ L t>m (17.2)

The model (17.1) is a changing parameter Gaussian process with mean value function

E(t)
E(m +3)

Ci(1-6)1, t<m
°Ci(1-0)" 4+ C(14+0+...4+671), s=1,2,... (17.3)

Thus, the mean is constant until time m + 1, at which point it changes and either
increases or decreases in value depending on C; and C;. One can say the initial mean is
C1(1 — 6)! while the “final” value of the mean is

Lim E(m+ ) = Ca(1 ~ )71
Now assuming that the variance of the process is a constant, then it must be
V(t)= 71— ¢ - 206)(1— 01, tel

where V(t) = Var[Y (¢)]. The covariance process is that of an ARMA(1,1) model, and
the lag-one value is

Coul¥ (£), ¥ (¢ + 1)] = (1 - 04)(6 — $)(1 — 67)"

for all ¢.

This model has a stable autocorrelation function, but its mean is changing. In a later
section, the Bayesian analysis will be demonstrated.
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17.3 Changing Covariance Structure

How do we construct an ARMA-type model that has a constant mean but a changing
covariance structure? One way to do this is by the stochastic difference equation

Y(t)=C+0Y(t—1)+e(t) - [¢1+ (2 — ¢1)S(t —m)]e(t - 1) (17-4)

where everything is as before, but where ¢; and ¢, are real with |¢;| < 1,7 =1,2.

It can be easily shown that the mean of the process is
Et)y=Cc(1-6)"1, tel (17.5)
and is thus constant. On the other hand, the variance of the process is
V() =711+ ¢} —2041)(1 -6, t<m (17.6)
and
V(m+s) =02V (m) + 771+ ¢2 — 20¢2)(1 + ... + 62°7%)

where s =1,2,....

The process begins with a variance that remains constant, then begins to change at
time m + 1, and the limiting value of the variance is

lim Vim+ ) = 7} (1+ ¢ - 26¢2)(1 - 67"

which is the same as that of an ARMA(1, 1) process with parameters § and ¢,.

The autocovariance function is quite involved but the lag-one value is
Cov[Y(t),Y(t+ 1) =771 (1-041)(0 — $1)(1 - 6*)"!, t<m-—1
CovlY(m+s),Y(m+s+1)] = 0V(m+s)~¢7"!, s=0,1,... (17.7)

where V(m) is given by (17.6).

17.4 The Bayesian Analysis

The following analysis of a changing ARMA process is quite similar to that done by
Broemeling and Shaarawy (1986) and Broemeling and Tsurumi (1986).

Consider the previous ARMA process (17.4) with a changing covariance structure;
there the tth residual is
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e(t) =Y (t) = C —6Y(t — 1) + [¢1 + (¢2 — $1)S(t — m)]e(t - 1) (17.8)

where t € I. Let

be a realization of n observations and assume 1 < m < n—1. Thus, the change in variance
occurs somewhere during the period of observation, but we do not know at exactly which
point. The likelihood function is

L(C,8,¢1,¢2,7,m|D;) /2 exp {— % Xn: ez(t)} (17.9)

t=1
but unfortunately the sum of squared residuals is nonlinear in the parameters and depends

on the unobservable residuals. By letting €(0) = 0 and then estimating the parameters by
minimizing

iez(t) = 55(m,0,¢1,¢2,0) (1710)

t=1

over the region where m = 1,2,...,n—1; |8] < 1, |¢s| < 1,7 = 1,2, and then letting
6(t) = u(t) - € — Byt — 1)+ 61 + (B2 — b0)S(t — m)) (¢ — 1) (a711)

where é(0) = 0 and ¢t = 1,2, ..., n, the likelihood function can be approximated by

L(C,8,¢1,62,7,m|D,) x T2 exp {—%Xn:éz(t)} (17.12)
where
é(t) = y(t) — C — 0y(t — 1) + [#1 + (¢2 — ¢1)S(t — m)] é(t — 1) (17.13)

and é(t) is given by (17.11).

If this is done, the approximate likelihood function is of a normal-gamma form in the
unknown parameters. Combining L with the prior density

7r(m,0,¢1’¢2,7—) & T_l (1714)
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where m=1,2,...,n~ 1,80 € R, ¢; € R, and 7 > 0 will yield posterior inferences for the
parameters. For example, by eliminating €, ¢;, and ¢2, using the properties of the normal-
gamma distribution will give the marginal posterior density of the shift point m, and one
can estimate where the change in the variance occurred. Inferences about 8, ¢;, and ¢2
will be based on a mixture of trivariate {-distributions, where the mixing distribution is
the marginal posterior mass function of the shift point m.

As an illustration, consider the Broemeling-Tsurumi (1986, pp. 178-180) example of a
moving average process

Y(t) = e(t) + [0.5 — (0.5 + 0.5)S(t — m)] e(t — 1)

where the e(t) ~ N(0,1) and the moving average coeflicient changed from —0,5 to 0.5 at
m = 40. The realization contained 80 observations y(t), ¢ = 1,2,...,80, and the injtial
least squares estimates were ¢, = —0.54, ¢» = 0.66, and m = 42. The Bayesian analysis
gave the following posterior information

E[M]} Var[M] mod[M] E[$] E[p2] Var[¢$1] Var|[d,]
41.96 10.12 42 —0.56 0.b9 0.028 0.032

The above information was calculated from the appropriate marginal posterior distribution
and more of the details can be found in Broemeling and Tsurumi (1986, Table 6.7). The
results show that the Bayesian analysis does not give unreasonable inferences. The actual
change was at m = 40, while the posterior mean was 41.96 and the posterior mode was 42.

Since this is a moving average process, the variance function is

_ 7_1(1+¢2)’ t:,m
V(t)_{ T_1(1+¢%) , t=m+1,...

and the correlation function is

-1+ o), t=...,m-1
pIY(£),Y(t+8)] =< —a(1+¢3) V21 +3)" Y2, t=m
—¢2(1+43)71, t=m+1,...

where s = 1. The lag-two correlations are zero. A challenging problem here is to estimate
the variance function directly by its posterior distribution. Note in the above example the
correlation (lag-one) changed from a positive to a negative value.

17.5 Summary and Conclusions

The presentation here opens the door to many interesting problems. The most basic
question is: does a changing-parameter ARMA process offer a viable alternative to the
usual way of doing a time series analysis?
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Another thought is the use of changing parameter representations as a diagnostic tool
for the Box-Jenkins analysis. For example, suppose one tentatively identifies the series
as being generated from the ARMA(1,1) process. The assumption in such an analysis is
that the generating model is stationary; thus, it would have a constant mean and variance
structure. A test for a constant mean could be based on the model (17.1), where one
would extend the support of the shift point to m = n. A test of no-change in the mean
could be made by computing the posterior probability that m = n.

These and additional questions will be studied in later investigations.
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CHAPTER 18

Thresholds, Stability, Nonlinear
Forecasting and Irregularly Sampled
Data

Howell Tong

Summary

The central theme in this Chapter is unconventional analysis of time series data, the
conventional one being that based on linear models (e.g., autoregressive/moving average
models) and second-order moments (e.g., spectral analysis). After the natural emergence of
thresholds, attention is focused on the stability of the global system in connection with that
of each constituent subsystem delineated by the thresholds. Exotic results are obtained
by relying on simple linear algebraic analysis of the system, which may be considered an
application of symbolic dynamics. Some unexpected results are described in nonlinear
forecasting, which expose a myth generated by linear mentality. Finally, comments are
made about nonlinear modeling of irregularly sampled data.

18.1 Introduction

In conventional time series modeling, linearity is a common assumption, the adequacy
and appropriateness of which in practice has been seriously challenged only quite recently.
Under this assumption, the whole dynamic system, if globally and asymptotically stable,
is destined to approach a steady state. This type of situation is actually the dullest, and
often the most unrealistic, because one and the same mode of dynamics is assumed no
matter where the current position of the system lies. Linearity will simply ignore satu-
ration, starvation, etc., which exist in most (e.g., economic, ecological, etc.) systems and
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which will almost certainly lead to a structural change, i.e., a change in the fundamental
dynamics, somewhere in the state space.

As soon as we recognize the necessity of structural changes under certain conditions, we
are effectively postulating the existence of thresholds, which may be either real and sharp
(e.g., the effect of melting a glacier on riverflow at a critical temperature) or conceptual
and blurred (e.g., an over-heated economy or a saturated animal population). A threshold
is an expression of nonlinearity. It is, in fact, a form of “strong” nounlinearity in that a
distinct mode of dynamics pertains to each side of the threshold. In other words, the
whole state space is now divided into a number of regimes, each with its own dynamic.
Once again, we can clearly visualize the great constraint imposed by the assumption of
linearity: there the universe (i.e., the whole state space) is under the dictatorship of one
single regime!

18.2 Threshold Inference

Can we infer something about the thresholds from real data? This is a crucial question,
which often permits extremely interesting interpretations in different disciplines, such
as the notion of a critical temperature in a meteorologic-hydrological system, a critical
population size in demographic dynamics, the “take-off” point (state) of an economic
system, etc.

The existence of a threshold in the dynamic implics a discontinuity of the dynamic,
and this usually poses technical difficulties. One approach to statistical inference on the
threshold from observations is to start with a net of smooth models that include the
discontinuous case in the limit.

Let F(.) denote a sufficiently smooth distribution function with a F’(.) rapidly decaying
at the tails. One possible choice is the standard normal distribution, which we now use
for convenience of discussion. A net of smooth models may be constructed formally as:

Xy = s+ Xia+...+apX;
X, -
+(bo + b1 X1 + -4 by Xs_p) F (_t;’—") e (18.1)

where d (an integer) > 1, p (an integer) > 0, {e;} is a sequence of ¢id random variables
with e; independent of X,, s < t, and with zero mean and finite variance. The parameter z
is real-valued and controls the amount of smoothing. As z varies over the real numbers we
have a net of models. Clearly, the larger is 2, the smoother is the transition, over states,
from the linear dynamic specified by (ao,@as,...,a,) to that specified by (ao + bo,a; +
bi,...,ap + bp). The model becomes discontinuous at z = 0. The critical change point,
i.e., the threshold, is the real-valued parameter r. If 2 is negligibly small, then r delineates
two regimes, within each of which the simplest dynamic is postulated. (It is obviously
possible to incorporate a more complex dynamic within the regimes, if so desired, but our
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Figure 18.1: Time plot of square root of blowfly data.

focus here is on the threshold parameter.) Chan and Tong (1986) have given a rigorous
discussion of conditions for ergodicity/stationarity of the models and other probabilistic
aspects. As far as statistical inference is concerned, the key result is as follows.

Let 0 denote the vector of parameters (ag,ay,. -, ap, bo,b1,...,bp,7,2)". Let 6y denote
the true vector of parameters. Given a set of observations X, t = 1,...,n, let 6, denote
the conditional least squares estimate of 8y, i.e., it is the minimizer of the conditional sum
of squares

Qn(0) = i[XtH —g(8,F))? (18.2)

t=m

where m = max(d,p), 9(0,F;) = Eg¢[Xiy1|Fi], F: being the sigma field generated by
Xl,Xz,...Xt. Then

Vi (0, — 80) ~ N(0,02V 1)
where

69(007Fm) 69(00’Fm)

V= Ee | =5, 80;

We now illustrate the approach with a real data set. Our analysis is quite preliminary,
focusing on the threshold only.

In 1950, A.J. Nicholson started an experiment: Some blowflies were kept in cages,
and a fixed amount of liver was provided daily. The population size of the blowflies was
enumerated bi-daily for approximately two years. For more details about the experiment
and other relevant data, see, e.g., Brillinger et al. (1980).

We have carried out analyses of the raw, the square root transformed, and the log,q
transformed data. The general conclusions are similar, and we give details only for the
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log, transformed data. The results are summarized below. (Approximate standard errors
are bracketed.)

First half of data set:
do i ay bo by b, 7 F &2
2.51 0.34 -0.03 -2.32 110 -0.49 3.103 0.084 0.021
(0.31) (0.12) (0.07) (0.35) (0.17) (0.15) (0.025) (0.045) (0.002)

Second half of data set:
g a bo by 7 z o2
0.85 0.77 -—0.37 0.03 3.95 0.16 0.011
(0.19) (0.05) (0.70) (0.22) (0.18) (0.13) (0.001)

It is clear that for the first year the coefficients, the b’s, are significantly different
from zero, implying that different dynamics pertain to the different regimes delineated
by the threshold parameter estimate #. It would therefore seem reasonable to accept the
population dynamicists’ hypothesis of a threshold (i.e., a critical population size imposed
by protein limitation), which is one of the main factors contributing to the observed
population cycles in the first year (see Figure 18.1).

In contrast, the situation is quite different in the second year, where the b's are ac-
ceptably negligible, implying the universality of the linear dynamics specified by a’s. Note
that the “nuisance parameters” r and z are, strictly speaking, absent under the null hy-
pothesis b; = 0, all <. This gives rise to a rather interesting nonstandard problem, the
formal solution of which is yet to be found. In conclusion, the threshold effect supported
by observations in the first year seems to have disappeared after a prolonged period of
captivity of the flies. For more details, see Tong (1987).

18.3 Stability

The idea of innovations is now well developed and may be formalized by the expression
X: — E[X:|F;_,] where, as before, F, denotes the sigma field generated by X,, X,_1,....
Let the innovation sequence be denoted by {¢;}. Clearly, under general conditions (typi-

cally, we require the existence of the first moment), we may decompose a time series {X,}
by

X, =X, + € (18.3)
where

X, = E[X|F_4), e=X,—2X,
This may be put on a parallel with the classic decomposition

Time Series = Trend + Random Series (18.4)
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or the more recent and exotic decomposition

Dynamical System = Slow Manifold + Fast Manifold (18.5)
We prefer to call

X=X (18.6)

the skeleton of the time series specified by (18.3); see, e.g., Tong (1986). Note that the
skeleton is deterministic, but equation (18.3) specifies a stochastic process.

An interesting and fundamental question is: can we say something about the time
series (18.3) by looking at its skeleton (18.6) only? Rather surprisingly, we can say quite
a lot in the case of nonlinear autoregressive models, i.e., models of the form

X =g9(Xic1)+ & (18.7)
and its higher-order generalization. In this case

X, = 9(Xe-1)
and

€@ =e

Now, under very mild conditions on the distribution of e; (milder than normality!) and
on g (milder than continuity), if the skeleton is asymptotically stable at the origin in the
sense that the recursion

Ty = g(xt—l) (18.8)

always tends to 0 as ¢ — oo regardless of initial 2q, then the time series defined by (18.7)
is ergodic and, associated with equation (18.7), is a properly defined, strictly stationary
time series. This very useful result may be greatly generalized and converse results may
also be obtained. For references, see Chan and Tong (1985) and Chan (1986).

Now, except for the linear case, there is no systematic way of checking stability. For
this reason, applied mathematicians and engineers have accumulated vast experiences,
and it is up to us to “hitch hike” on them. Quite often a first-principle approach yields
fascinating rewards. We now describe some of our experiences hitherto not reported in
the West. (The discussion that follows is based on joint work with Dr. K.S. Chan, now
at the University of Chicago, USA.) We are concerned here with stability in the sense of
Lagrange, i.e., bounded trajectories of (18.8) and its higher-order generalization.

First, we consider the following very simple model:
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— ¢1Xn—1 lf Xn—l >0
Ko = { $1Xn-1 otherwise (18.9)

It is known that the necessary and sufficient conditions for (18.9) to be Lagrange-stable
is g1 <1, ¢; <1and ¢1¢4; < 1. [See, e.g., Petruccelli and Woolford (1984)]. For this
system, the Lagrange stability of the whole system implies stability of at least one of the
subsystems. Moreover, the Lagrange stability of the two sub-systems guarantees that of
the whole system. The Petruccelli-Woolford condition is extremely interesting because
either ¢; or @] (but not both) is allowed to be very large negatively without causing
instability. Next, we give a class of examples showing that the whole system may be
Lagrange-unstable even though all its subsystems are Lagrange-stable.

Consider

PTr1 + P22n_2 if 2,2>0

= 18.10

o { P Tn_1 otherwise (18.10)
Suppose that ¢; > 0, ¢ < 0, ¢] < 0, and ¢? + 4¢2 < 0.

To understand the stability of (18.10), it is more convenient to use the following rep-
resentation, the so-called state space representation. Let

N
3
I
TN
:NN :NH

-5 =%
o%

[s=]

1
TN

-
[ =}
~——

Note that A and B are both companion matrices, B being degenerate. Then, (18.10) is
equivalent to

[ AZnpy if 22, >0
Zn = { BZ,_; otherwise (18.11)
z, = (1,0)Z,

Clearly, z,, is Lagrange-stable iff Z,, is so. Since ¢? + 4¢, < 0, A is similar to a rotation
followed by a contraction (or expansion).

Define
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Figure 18.2: Action of A on U.

U = {(zy):y>0}

L = {(zy):y<0}

Q: = {(z,y)eU:z>0}
Q: = {(z,y)eU:z<0}
Qs = {(z,y)eL:z<0}
Qs = {(z,y)eL:2=0}
Qs = {(z,y)eL:z2>0}

For every Z,, € U, Z,1 is obtained by the action of A on Z,. We say that A controls
U. Similarly, B controls L.

As

A(8)- (%) m a(2)-(%)

we have the pictorial representation of Figure 18.2, which displays the action of A on U.

Now, A is a rotation followed by a contraction or expansion after a change of basis.
Hence, there exists a positive integer k, such that for every vector xg € U, there exists a

positive integer k(xo) < k, such that

AFX)xo e I and Aixg¢ L, 0<j< k(xo)
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NEE Qs

[©]es (o]

Qs N es
Figure 18.3: Action of B on L.

In particular, Yxg¢ € Q2, k¥(%xo) = 1. The action of B on L is displayed in Figure 18.3.
Let

x:(21)€R2
Z2

and T: R? — R? be defined by

Tx = Ax if z,>0
~ ] Bx otherwise

Then, (18.11) is equivalent to

Z,

Zn

T(Zn_l)
(1,0)Z, (18.12)

Given Zg, {Z;,1=0,1,2,...} is the trajectory under T with initial state Zy. We now
classify these trajectories. Let xo € U; then let k = k(xo). We say that the trajectory is
of type (S51,52,53,-..,5%; 54, S1,--.,5,_,) iff for j > 1,
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Table 18.1: Trajectories (semi-colon is omitted inside the parentheses where k = 0)

Region Type
Qiand Q2 (AA,...,A;B BA)
N e ——

k(xo) of them

Q3 (B'IB)A)
Q4 (B;0)
Q5 (B)A’B)
, S;Ti g ifl1<j<k
T’z = J i . R
‘ { S;’,._k_l(modl)T’ g if j>k

where S; and S are A or B or 0 (the zero matrix), 7%z = 2.

Table 18.1 summarizes all possible types of trajectories under study. Types are not
uniquely represented because

(B,A,B) = (B,A;B,B,A)

Thus, it is readily seen that the “tail” of the trajectory starting from any initial (point),
excepting those in Q4, can be understood by examining the trajectory starting from

(%)

! ! 2 '
AB2=(¢;1 43)2)(411 g><¢11 g)=(¢1¢1¢;1-2¢2¢1 g)

Now

and
¢\ _ [ 4191+ 2
A(%)- (")
giving
AR? ¢1¢'1,+¢2 = ¢\ ($16, + b2) ¢1¢11+¢2 (18.13)
¢ 1

Theorem 18.1 If {Z,} satisfying (18.12) has ¢1 > 0, ¢2 < 0, ¢} < 0 and ¢? + 442 < 0,
then it is Lagrange-stable iff ¢1(d1] + ¢2) < 1.
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Proof:  First note that the tail behavior of points excepting @4 is the same as that of

$161 + b2
#

and the latter is bounded iff ¢} (@14} + ¢2) < 1. [Recall that, by assumption, ¢}(¢1¢] +
¢2) > 0.] For points in Q4 they remain at the origin after the action of B.

Corollary 1:  If {X,} satisfying (18.10) has ¢1 > 0, ¢2 < 0, ¢} < 0, and ¢? + 4¢, < 0,
then it is Lagrange-stable iff ¢/ (¢1¢] + ¢2) < 1.

Ezample 1: This is modified from an example given in Tong and Pemberton (1980).

X = 1.8X,_1—-09X, ., ifX, >0
") -0.9X,_, otherwise

The two subsystems are stable. However ¢)(¢1¢] + ¢2) = 2.268. Therefore {X,} is not
Lagrange-stable. This helps to explain the observation made by Tong and Pemberton
(1980) to the effect that subsystem stability does not imply system stability.

Ezample 2:

w2 [ 08Xe 1= 01X, HXa2>0
") —11X,-1 otherwise

Here, the “upper” subsystem is stable, but the “lower” one is unstable. However, the
whole system is stable since ¢{(¢1¢] + ¢2) = 0.836 < 1.

The conditions in Theorem 18.1 are complicated. The characteristic equation of A
has complex eigenvalues iff ¢? + 4¢, < 0. A is then similar to a rotation followed by an
expansion (or contraction). As this last property guarantees that, after a finite number of
iterations, points in U will go to L, it is assumed to hold in subsequent discussion. In order
that the discriminant of the characteristic equation be negative, ¢, must be negative. If
¢} is non-negative, then points once in Q3 U Q4 will always lie in Q3 U Q4. Thus, when
¢, > 0, the whole system is Lagrange-stable iff ¢; < 1. Now we consider the case when
é1 < 0 and ¢} < 0. The action of A on U is displayed in Figure 18.4.

Now, similar to the discussion preceding Theorem 18.1, it is clear that the trajectories
starting with

¢

1
gives us an idea about the Lagrange stability of the whole system. If A(¢] 1) lies in Qs,
then it is of type (A,B,B). If A(¢] 1) lies in Qq, then it is of type (0). If A(¢] 1)’ lies
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Figure 18.4: Action of A on U.
22 22
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Figure 18.5: Action of A on L.
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in Qs, then it is of type (A, B). Since A(@] 1) = (¢19] + ¢2 ¢}), it will lie in Q3 or Q4
or @, according as ¢1¢] + ¢2 < 0 or = 0 or > 0.

The action of B on L is displayed in Figure 18.5.

For the case ¢; < 0 and ¢} > 0, we note that, as discussed above, ¢ must be less than
or equal to 1 if the model is to be Lagrange-stable. Moreover, the trajectory of (¢] 1)
gives us information about the Lagrange stability of the model.

First, let ¢} > 0. Then it is clear that A(¢] 1) € U and A%(¢, 1) € L. Since
1 1

&1 o2
A2 & - ($2 + ¢2)¢1 + ¢162
1 D101+ D2

A?%(¢) 1) € Q3 or Q4 or Q5, depending on whether (¢? + ¢3)P; + ¢162 < 0 or = 0 or > 0.
Thus, the type of (¢] 1) may be (A, A;B)or (A,A;0) or (A,A,B).

Now,

AZ — (¢%+¢2 ¢1¢2>

BA?

¢ 0 B2+ d2 102 _ P (D4 @) P 12
1 0 & &2 2+ ¢2 192

2 ¢ _ [ 4118+ )+ b2 \ | o
BA ( 11> _ ( l¢i(¢%+¢2)+¢1¢2 )—[¢1(¢1+¢2)+¢1¢2]< 11)

If ¢} = 0, then A(¢] 1) € Qs. Hence, the type of (¢} 1) will be (A, B;0). Theorem 18.1
may therefore be extended to the following theorem.

Theorem 18.2 Let {Z,} satisfy (18.12). Suppose ¢p7+4¢2 < 0. Then {Z,} is Lagrange-
stable iff one of the following conditions holds

L. ¢} <0, ¢1 > 0and ¢(¢1¢] +¢2) <1

2. ¢} <0,¢1 <0, $1¢) + ¢2 < 0and ¢1(d1¢) +¢2) <1

3. 91 <0,¢; <0and ¢1¢] + ¢2=0

4. ¢ <0,¢1 <0, $14] + ¢2 > 0 and ¢14] + ¢2 < 1

5. ¢1 =0

6.1>¢1>0,¢1>0

7.1 > ¢1>0,¢1 <0, (¢ + ¢2)¢) + ¢1¢2 <0
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8. 1> ¢} >0,¢1 <0, (¢? + ¢2)¢) + d162 > 0, and ¢} (¢? + ¢2) + d1¢2 < 1

Corollary 1 may be extended likewise.

Finally, we have since learned from Professor Zhu Zhao Xuan of the Department of
Mechanics, Peking University, China, that our above analysis is an application of what is
known as symbolic dynamics, the “symbols” being the matrix operators A and B in our
case. We conjecture that similar but more complex analysis would lead to a complete solu-
tion of the general case involving an arbitrary (but finite) number of arbitrary companion
madtrices.

18.4 Nonlinear Forecasting
Once again, we consider a first-order nonlinear autoregressive model
Xt:h(Xt_1)+€t y t:O,:{:l,:{:2,... (1814)

where {e;} is a sequence of iid random variables with E[e;] = 0 and Var[e,] = o2, (0 <
0% < o) for all ¢. Since we have here a Markov chain over R, we may recall the Chapman-
Kolmogorov relation

f@ermlz) = [ f@ermlzen)f(@enleden (18.15)

where f(z,|z;) denotes the conditional probability density function of X, given X, = z;
(assumed to exist). Suppose that model (18.14) is strictly stationary. Let g denote the
probability density function of e;. Let k denote a well-behaved (i.e., Baire) function
of X, and suppose E[k(X;)|]] < oo. Let K,,(X;) denote the conditional expectation
E[k(Xttm|X:)]- Equation (18.15) gives immmediately

Km(zt) = [_co Km_l(zt+1)f($t+1|2t)dzt+1 (18.16)

Kn(e) = [ Knslu)aly - (=) dy (18.17)

Equation (18.17) gives, in particular, recursive formulae for conditional expectations
and conditional variances, which are of the type recently discussed by, e.g., Al-Qassem
and Lane (1987) and Pemberton (1987), as alternatives to the methods developed by
Jones (1976). Except for special cases of h (e.g., the linear case), the integral in equation
(18.17) does not readily admit analytic solution, and numerical integration is commonly
the only solution. Experiences show that, for piecewise linear h, numerical techniques



292 Statistical Analysis and Forecasting of Economic Structural Change

work quite efficiently. Needless to say, if numerical integration is employed, care must
be taken to avoid accumulation of rounding errors. An alternative techniques that is
especially useful for higher-order autoregressive models is the Monte Carlo method. Here,
a sufficiently long record of data is simulated in accordance with the model [i.e., equation
(18.14) or its higher-order generalisation] and the sample estimate of K,,(z) is taken as
an approximation of K,(2). Detailed comparison will be given elsewhere. Suffice it to
say that both methods give reasonable approximations.

On using a numerical integration technique with accuracy to more than two decimal
places, Table 18.2 gives the results of two experiments. In Experiment I, 29 = 4.0435, and

1.5-0.92 if 2<0
h(z) = { ~04-06z if z>0 (18.18)
and in Experiment II, z¢ = 5.0 and
1.5-072z if <0
hz) = { 104082 if z>0 (18.19)

In each experiment, e; ~ N(0,02).

Several comments are in order:

1. Let h™(z) denote h(A(...(h(z))...)), the m-fold application of h. With decreasing
signal-to-noise ratio, the difference between Xo(m) and 2™ (zq) increases.

2. For model (18.19), which admits only a periodic attractor of period 1 [i.e., A™(z) —
5.0 as m — oo, for all 2], &(m) is a monotonic increasing function of m for all the
three choices of o.

3. In contrast, for model (18.18), which admits a periodic attractor of period 2 at
C = {-2.8261,4.9435}, [i.e., A™(2) — C as m — oo, for all 2], we observe that
for o = 0.4 and 1.0, &(1) < 6(3) < &(5)... and &(2) < (4) < &(6).... However,
a(2m) £ 6(2m+1),m=1,2,....

4. It is clear that the limiting behavior of A™(2) as m — oo exerts important influence
on the multistep forecasts and their precision (i.e., the conditional variances). The
influence is progressively more transparent with reducing noise variance. In general,
if A has a limiting r-cycle ¢;,¢s,...¢,, i.e.,

h:ec;—eipq for i=1,2,...,r—1 and h:c¢, — ¢

then we would expect the stationary probability density function to attach a weight
1/7 to each of the regions around ¢j, ¢z, ..., ¢, and the density could be expressed as
(filz—c1)+...+ fr(2 —c)]/7, where fi,..., f are density functions with variances
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Table 18.2: Conditional means and conditional variance [¢(m) = y/Var[X,|Xo)] of

two threshold autoregressive models.

=04 c=1.0 o=20
m  Xo(m) &(m) XKo(m) &(m) Xo(m) &(m)
Ezperiment I
1 -2.8261 0.4000 -—2.8261 1.0000 -—2.8261 2.0000
2 4.0435 0.5381 4.0392 1.3571 3.9151 2.8762
3 -2.8261 0.5141 -—2.8177 1.3076 —2.5339 2.9890
4 4.0435 0.6116 4.0092 1.6107 3.5602 3.6110
5 —2.8261 0.5428 -—-2.7736 1.4859 —2.1061 3.5869
6 4.0435 0.6314 3.9524 1.7772 3.1537 4.0278
7 —2.8261 0.5509 —2.7073 1.6497 -—-1.6943 3.9603
8 4.0435 0.6371 3.8805 1.9228 2.7753 4.2814
9 -—2.8261 0.5533 —2.6309 1.8038 -—-1.3321 4.2007
10 4.0435 0.6387 3.8022 2.0557 2.4444 4.4415
11 —-2.8261 0.5540 —2.5508 1.9454 -—1.0225 4.3601
12 4.0435 0.6392 3.7217 2.1769 2.1615 4.5453
13 —-2.8261 0.5542 —2.4701 2.0741 —0.7604 4.4685
14 4.0435 0.6393 3.6414 2.2871 1.9217 4.6137
15 -2.8261 0.5542 —2.3902 2.1905 -—0.5394 4.5438
Ezperiment I
1 5.0000 0.4000 5.0000 1.0000 5.0000 2.0000
2 5.0000 0.5123 5.0000 1.2806 5.0091 2.5477
3 5.0000 0.5727 5.0000 1.4315 5.0524 2.7939
4 5.0000 0.6082 5.0003 1.5198 5.1159 2.9150
5 5.0000 0.6299 5.0007 1.5731 5.1551 2.9802
6 5.0000 0.6433 5.0012 1.6058 5.1966 3.0177
7 5.0000 0.6518 5.0018 1.6260 5.2300 3.0401
8 5.0000 0.6572 5.0024 1.6387 5.2565 3.0542
9 5.0000 0.6606 5.0029 1.6466 5.2772 3.0633
10 5.0000 0.6628 5.0033 1.6515 5.2934 3.0693
11 5.0000 0.6642 5.0037 1.6546 5.3058 3.0734
12 5.0000 0.6651 5.0040 1.6566 5.3154 3.0763
13 5.0000 0.6657 5.0042 1.6578 5.3228 3.0784
14 5.0000 0.6660 5.0044 1.6586 5.3285 3.0799
15 5.0000 0.6663 5.0046 1.6591 5.3329 3.0810

293
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o,...,a}, respectively. The f;s tend to the §-functions as the noise variance tends

to zero. Therefore, unless the o;s are all equal (this would be trivially so if » = 1),
monotonicity of &(m) in m will not be obtained. It may be shown that o;s are all
equal only in exceptional cases.

The above comments fully expose the myth perpetuated by the linear mentality in
believing that &(m) is a monotonic increasing function of m, i.e., the myth that the
further ahead we forecast, the less “reliable” is the forecast. [This section is based on joint
work reported in Tong and Moenaddin (1987).]

18.5 Irregularly Sampled Data

In practice, we frequently come across irregularly sampled time series data. For example,
some pollution data are known to be collected irregularly with higher frequencies in the
high-risk periods; some medical data are also collected irregularly so as not to cause the
patients undue inconvenience; and daily business data typically contain gaps corresponding
to weekends, public holidays, or other extraneous factors. The analysis of such data has
been attracting substantial attention recently. See, for instance, the proceedings edited by
Parzen (1984). However, the analyses are overwhelmingly linear-model-based and second-
order moment-orientated.

We now sketch a possible nonlinear-model-based approach. Let {X(t;): k=1,...,n}
denote the irregularly sampled data, i.e., the time differences ¢, — t;_; are not all equal.
Now, R.H. Jones [see, e.g., Parzen (1984)] introduced the ingenious idea of “embedding”
these in a continuous-time linear autoregressive model of the form (written heuristically
and to first order only for simplicity of discussion)

X0 - rxw+ew) (18.20)

where F and G are constants and W (t) is a continuous-time white Gaussian process with
zero mean and unit variance. Since the observations lie on the integral path of (18.20),
they must satisfy the equation

X(tk+l) = ¢(tk+1,tk)X(tk) + Wi (18.21)

where

G(tr+1,tk) = exp{F(te+1 — )}

and {W;} is a white noise sequence with

tr41
Wern N©O,Qu), Q= [ [@(tuss,7) Gldr

ty
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Jones [in Parzen (1984)] has developed an algorithm based on Kalman's filter to obtain
maximum likelihood estimates of F' and G through those of ¢ and Q.

Now, the general threshold principle (which states that we should simplify a complez
nonlinear system by a process of introducing thresholds to partition the state space into
regimes within each of which the simplest dynamic obtains) suggests that we should con-
sider piecewise linear differential equations as our approximation to a complex nonlinear
system. Thus, equation (18.20) may be generalized to

{ X - RX(t)+ GW(t) if X(t)<r (18.22)

%ﬂ = FRX({t)+G.W(t) if X(t)>r

We keep the number of regimes to two for simplicity of discussion. In principle, there is
no difficulty in increasing the number of regimes. The beauty of piecewise linearization is
that we can still integrate equation (18.22), piece by piece, to obtain a complete integral
path upon which {X(tx)} are assumed to lie. Jones’ algorithm can be lifted with minor
modifications to suit the present case provided we make the not-unreasonable assumption
that, if X(t;) and X(¢;11) lie in different regimes, then the integral path will cross r only
once over the time interval [t;,2;11]. Details of our approach will be reported elsewhere.

18.6 Concluding Remarks

Nonlinearity should be the rule, rather than the exception, in any realistic analysis of
real systems, and the notion of a threshold is generic for nonlinear analysis. Some have
complained that nonlinear systems defy simple analysis. However, we have shown in
this chapter that, by postulating the simplest type of dynamic (namely, linear) within
each of the regimes delineated by the thresholds, we do achieve a remarkable conceptual
simplification of what would otherwise be a very complex system.

We have followed up by illustrating the possibility of simple analysis (linear algebra
being the prerequisite of every educated time series analyst or econometrician!), which
often leads to previously unexpected vistas. If this chapter persuades readers to take a
long and hard look at the shackles of linearity, then I consider my efforts in writing it well
expended.
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CHAPTER 19

Forecasting in Situations of Structural
Change: A General Approach

Francis X. Diebold and Peter Pauly

Summary

The problem of optimal forecast combination is considered in situations of structural
change. We develop a rather general approach, which combines the time-varying-parameter
models of Diebold and Pauly (1987a) with allowance for prediction-error serial correlation
as in Diebold (1988). The methodology is based on the regression-based paradigm of
Granger and Ramanathan (1984), so that many earlier results emerge as special (and
often restrictive) cases. Both deterministic and stochastic parameter variations are con-
sidered, with and without allowance for serial correlation. The results are illustrated in a
series of examples.

19.1 Introduction

Forecasters are constantly challenged by continuous structural changes in the relation-
ships of interest. As Makridakis et al. (1984) write, “... forecasting must ... accept that
structural changes in the data are and will be taking place .... The major question, then,
becomes how the various methods perform under a continuously changing environment.”
Naturally, modelers seek to identify structural changes in the process of model specifica-
tion, and they generally attempt to incorporate extraneous adjustments in the forecast to
account for those shifts not yet modeled in a nonparametric way. Nevertheless, forecasts
remain susceptible to changes in the environment. Furthermore, various candidate mod-
els, such as different structural econometric models, nonstructural time series models, or
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expert consensus forecasts, may turn out to be vulnerable to structural change in different
degrees.

In this chapter, it is suggested that the techniques of forecast combination can be
used successfully to partially alleviate the effects of structural changes on forecasting
performance. In their pioneering work, Bates and Granger (1969) showed that if a number
of unbiased forecasts of the same variable are available, then it is rarely (if ever) optimal
to seek out the best of the competing forecasts and use it alone. Rather, the forecasts
can always be combined in such a way that the composite forecast has (asymptotic)
variance less than or equal to any of the competing forecasts; in that sense, all sources
of information may prove valuable. Similar reductions in mean squared error may be
achieved for (possibly) biased forecasts via the regression-based technique of Granger and
Ramanathan (1984).

The basic concept of combining has been extended in various directions. Of most im-
mediate concern in the present context are those efforts that are directed toward allowing
the combining weights to be flexible over time. For our present purposes, we view the
explicit modeling of nonconstancies in the combining weights as an attempt to compen-
sate for the poor performance of the primary forecasts in situations of structural change
of unknown form. In many situations, such an approach yields powerful increases in fore-
casting performance because the available primary forecasts do not adequately account for
structural change. Furthermore, even if it is desired to model structural change explicitly
in the primary forecasts, it is often difficult (or impossible) to locate and compensate for
the changing structure, particularly in an ongoing forecasting organization where timely
forecasts must be produced.

In Section 19.2, we review the basic theory of combining forecasts. In Section 19.3, we
present alternative ways to model nonconstancy of weights within the class of regression-
based combining methods, which include weighted least squares and various forms of
varying-coefficient models. Those models are more general than, and include as special
cases, time-varying variance-covariance methods. In Section 19.4, we outline testing pro-
cedures for various aspects of these models. The improvements in forecasting performance
delivered by these methods are illustrated by a numerical example in Section 19.5. In
Section 19.6, we summarize the major results and directions for future research.

19.2 The Basic Theory of Combining

In this section, we shall give a brief overview of the recent literature on the combination
of forecasts; for a detailed exposition see Diebold and Pauly (1986,1987a).

19.2.1 Variance-covariance combining

Consider a set of m competing forecasts ftllt—l’ ceey ft’,’;_l of a variable y;, made at time
t — 1, and examine linearly combined forecasts of the form
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m-—1

Ct = ,Blft1|t_1 + ﬁzft2|t_1 +...+ (1 - Z ,Bi)fz'ﬁ_l (19'1)

=1

The one-step-ahead combined prediction error e = y; — C; can be shown to satisfy the

same equality

m—1
ef =Pref + P2l + ...+ (1= D Bi)el (19.2)
=1
Thus,
Var(el) = Blo? +2) Y Bifjoi; (19.3)
i=1 i=1 j=1
s

Minimization of this expression leads to the optimal combining weight vector (Reid,
1969; or Granger and Newbold, 1974):

Bg* = (Z7)/(Y= 1) (19.4)

where 8* is a (m x 1) vector, ¥ is the variance-covariance matrix of the one-step-ahead
forecast errors, and iis a conformable column vector of ones. We will refer to the calcula-
tion of the optimal weights in this fashion as the “variance-covariance” method. Note the
intuitive results that

lim,2_,o, Bf =0 .
hmo;?—»oo Br=1, j=1,...,m (j#1i) } for each 7 (19.5)

Thus, the more reliable f*, the more weight placed on it, and vice versa. Note also that
the covariances o;; play an important role in determining the weights, and that the re-
striction that the combining weights sum to unity ensures that the combined forecast will
be unbiased if the primary forecasts are unbiased. Under this assumption the minimum-
variance combined forecast is also the minimum MSE combined forecast, which can, ez
post, be no worse than the best individual forecast (Granger and Newbold, 1977). Alter-
natively, if all variances and covariances are known, the combined forecast can be no worse
than the best primary forecast.

In practice we estimate 3* by replacing ¥ with an estimate ﬁ], where ﬁ:,‘j = EL €itejt.
Thus, the elements of ¥ are viewed as fixed, but unknown, quantities to be estimated
from the T sample observations. Even in a real-time forecasting environment, in which
Br is updated recursively and therefore changes as T — oo, the change is viewed not as
structural, but rather represents the convergence in probability of Br to B.

A number of authors have recognized that the true but unknown matrix ¥, and henced
the vector 3, may not be fixed over time. In such situations, the use of
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fr = (57)/(15 %) (1.6)
where
. 1L
Eij = ? Z e;tejt (19'7)
t=1

may be severely suboptimal.

Suboptimality of fixed-weight combinations occurs for many reasons. For example,
differential learning speeds of different forecasting groups and/or forecasting techniques
may lead to a particular forecast becoming progressively better over time, relative to
others. Similarly, the design of various forecasting models may make them relatively better
forecasting tools in some situations than in others. In such a situation, a truly optimal
combining procedure should weight one or more forecasts progressively more heavily over
time. Also, nonlinearity in the underlying economic structure leads directly to nonconstant
forecast error variances and, hence, to the desirabilty of nonconstant combining weights,
as argued by Greene et al. (1985). The major focus here is, however, on change in the
macroeconomic environment, and certain forecasting techniques may be relatively more
vulnerable to such change. Moreover, if many different types of structural change are
simultaneously occuring, we would expect them to have differential effects on forecasts
produced by different methods.

Most of the procedures that have been proposed to deal with the drift problems for the
variance-covariance combining method are adaptive “real-time” algorithms for calculating
the combining weights. These methods make use of a moving data subset (e.g., the V
most recent observations) to calculate the weights. Thus,

Pr = (2711)/(PEFH) (19.8)
where
. T
Bir=Vt Y e (19.9)
t=T_V41

This has the desirable properties of giving the most weight to those forecasts that
have performed best in the recent past and allowing for the possibility of a nonstationary
relationship over time between the primary forecasts. On the other hand, the choice of V'
is arbitrary, and its value will have substantial effects on the estimated combining weights.
Furthermore, as noted by Bessler and Brandt (1981), most of these methods not only lead
to convex combining weights (as opposed to weights that simply sum to unity), but also
force each weight to lie in the interval [0,1/(m ~ 1)], where m is the number of primary
forecasts. This limitation is particularly severe if one primary forecast is substantially
better than the others.
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Granger and Newbold (1977) suggest the following possibilities, in addition to (19.8),
which we list here for comparison with later results. Assuming that m forecasts are to be
combined, we have

T m T
Br=( 3 &)YD( Y &)Y i=1,...,m (19.10)
t=T-V+1 3=1 t=T-V+1
. R T m T
Bir = afira+(1-a)( Y e)/D( D k)7
t=T-V+1 i3=1 t=T-V+1

(0<a<1), i=1,...,m (19.11)

pr = (E7%)/(I'87M) (19.12)

where the elements of 37 are: £;7 = (ST e,teJt)/(ET A A> 1,

Bir = ( ZA‘ 2) 1/[Z ZA” 1 (A21), i=1,...,m (19.13)

t=1 j=1 t=1

These formulae represent different ways of discounting past information, and treating
covariances, when constructing combining weights. Clearly, (19.9) represents a moving
sample approach using all variance and covariance information; ({eqdi.10) uses the same
moving sample but ignores covariance information; (19.11) is an “adaptive” scheme which
ignores covariance information; (19.12) uses the full sample but weights recent observations
more heavily; and (19.13) is like (19.12) but ignores covariance information.

In a recent development, Engle et al. (1984) used the model of autoregressive condi-
tional heteroscedasticity (ARCH), due to Engle (1982a), actually to model the evolution of
prediction error variances and covariances over time. This approach makes use of the full
sample to produce a sequence of time-varying weights in a rigorous and systematic fashion,
rather than simply (and artifically) basing the weight calculations on a recent subset of
observations. While this approach represents a notable contribution, it has problems of its
own. First, it produces an extremely noisy weight sequence, as opposed to the smoothly
changing weights argued for by Granger and Newbold (1974). Second, although their
ARCH-combined forecast does improve upon the individual forecasts, it does not compare
favorably with a fixed-weight combination. They note that this may be due to misspecifi-
cation of the diagonal bivariate ARCH-model that they use, and that further research in
this area is needed.

It should be noted that the Engle-Granger-Kraft approach requires the modeling of an
entire conditional covariance matrix over time, which is a formidable task. Combination
by a regression approach with time-varying parameters, on the other hand, may be more
tractable since the evolution of only one parameter must be modeled. The regression esti-
mator, while depending on all available variances and covariances, models their evolution
implicitly rather than explicitly. We now consider such an approach in detail.



302 Statistical Analysis and Forecasting of Economic Structural Change

19.2.2 Regression-based combining

Granger and Ramanathan (1984) show that the above variance-covariance forecast com-
bination theory has a regression interpretation, by estimating a linear regression model

y=FB+u (19.14)

withy = (y1,¥2,.--,%), u = (u1,u2,...,u), B = (Bo,51,.--,8m), and £ = (lalefz—v
fﬁt_l, e, f;l’;_l)’, where the u; ~ iidN(0,02), and F is a matrix with tth row f], subject
to linear constraints 8o = 0, > 1=, B = 1.

The information set consists of actual realizations for the variable of interest up to pe-
riod ¢, and of primary forecasts of this variable for the same sample period. The restriction
can be expressed as R3 = r, where

100 ... 0 0
R‘(o 11 ... 1) ’ r—(l)
Least squares estimation of (19.14), subject to the set of restrictions will generate a vector
of weights

Bhrs =B — (F'F)'R/[R(FF) 'R (RS - 1) (19.15)

where f is the unrestricted least squares estimate of the set of weights. The weights
obtained from (19.4) are the same as the ones obtained from (19.15), and they lead to an
unbiased combined forecast if the component forecasts are unbiased and the constraint is
satisfied. It should be noted, however, that the variable being forecast must be stationary.
Otherwise, an appropriate stationary-rendering transformation should be performed prior
to analysis.

Generally, we will refer to the calculation of the optimal weights in this fashion as
the “regression method”. It is interesting to note that there exists also a well-defined
Bayesian interpretation of these weights (Bunn, 1975; Bordley, 1982, 1986). Furthermore,
a seemingly unrelated regressions estimator (SURE) for multivariate combining problems
can easily be derived analogous to (19.15) (see, in a somewhat different context, Diebold
and Pauly, 1987b).

Failure to impose the £8; = 1 constraint in the regression method leads to a combined
forecast that is biased unless E(fi) = y;, Vi, and $6; = 1. The major virtue of (19.15)
is that it leads to combining weights identical to those based on the variance-covariance
method. Alternatively, one can ignore the constraints and obtain the unconstrained least
squares combining vector

fors = (F'F)"'F'y
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Any bias that may be present in the component forecasts may be eliminated by including
an intercept, which amounts to adding the unconditional mean of y as a constituent
forecast.

The unrestricted OLS predictor of ye41, given fi11 = (1, f},4,..., f7},)" has a mean
squared error

MSE(§es1) = o[£ 1 (F'F) iy +1]
while for the constrained predictor we obtain
MSE(y;,,) = o2 {f 1 [(F'F)™ = (FF)7'R'(M — 0’ Mé§' M)R(F'F) " [fy41 + 1}

where M = [R(F'F)" 1R/ and § = R - r.

If M — 0-2Mé&6'M is positive definite, M SE(y},,) < M SE(§4+1) and the constrained
combined predictor will be more efficient. This will be the case if RG = r, i.e., if the
constraints are correct. If R # r or if the primary forecasts are not unbiased, unrestricted
least squares combining is preferable. Clemen (1986) and Trenkler and Liski (1986) argue,
however, that for certain values of 3 and o2, even with R # r, the gain in efficiency from
imposing the constraints in the presence of biased primary forecasts may offset the incurred
bias. For the remainder of this chapter we shall deal only with unrestricted combining
regressions.

Granger and Ramanathan (1984) note that, even if the primary forecast errors are
white noise, there is no guarantee that the combined forecast errors will be white as
well. The presence of serial correlation in the combined prediction error would make
the estimates of combining weights inefficient and provide inconsistent standard errors.
Furthermore, the least squares combined forecast would not be the best linear unbiased
predictor. Diebold (1988) examines these issues and shows that in general the unrestricted
regression-based combined prediction errors will be serially correlated if the variable to be
forecast (y:) is serially correlated or if one or more of the constituent forecast errors e;,
i=1,...,m, are serially correlated. He suggests that the latter is likely to be of minor
importance, while the former may be of great importance. In fact, if y, is not serially
correlated, it is linearly unpredictable, and any attempt to combine different primary
forecasts is useless as well.

In addition, Diebold (1988) shows that unless y, and e; (1 = 1,...,m), strictly follow
(possibly degenerate) finite moving average processes in deviations from their means, the
combined prediction error will generally follow an ARMA (p,q) process, where both p
and ¢ are nonzero. Consequently, the linear combining model (19.14) will have to be
generalized to

y=F8+u with ®(L)u, = a(L)e,

where ©(L) =1 — 6L — 6,L% — ... — 6,L? and a(L) = 1 + a1 L + a2 L? + ... + a L9 are
finite-order polynomials in the lag operator L.
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Efficient estimation of the combining weights will therefore have to be based on a fea-
sible generalized least squares (FGLS) procedure, i.e., the optimal weights are determined
as

Bers = (F'S7'F)'F'Sy (19.16)

where ¥ denotes a consistent first-stage estimate of the variance-covariance matrix. In
practice, the structure of £ = ¢2Q will be rather complex for most specifications of ©(L)
and a(L). Generally, however, an ARMA (1,1) will be sufficiently flexible. We then have
Qe = (14 a® + 2a8)/(1 — 6%) and Q;, = [(8 + a)(1 + 0a)dt—*1=1]/(1 — 6?) for t # s.
Estimation procedures for this specification are given in Ansley (1979) and Harvey and
Phillips (1979).

19.3 Non-Constant Weights

19.3.1 Weighted least squares

The general success of time-varying weights constructed by the variance-covariance method
should extend to weights produced by the regression method. The relaxation of the re-
striction that the weights sum to unity and the ability to handle biased forecasts are strong
advantages of the regression approach, so that it is particularly desirable to explore the
possibilities for time-varying weights in that framework. In this section we shall therefore
explore the potential for an application of weighted least squares techniques.

Instead of choosing  to minimize u'u = "2 (3 — S ﬁif:19—1)2 we instead chooose
it to minimize the matrix-weighted average u"Whu, or

T T
Z Z Wy ¢ UpUy! (19.17)

t=1¢'=1

where the (T x T') matrix of the quadratic form is given by W = [w,p]. For most
applications it will be adequate to assume that the weighting matrix is diagonal, i.e.,
W = diag(w11, ..., wr ), which means that we minimize the weighted sum of squares

T m .
Zwtt(yt - Zﬁiﬂ|z—1)2
t=1 1=0
The least squares estimator is, of course,

Bwrs = (F'WF) ' F'Wy (19.18)
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Note that a “moving sample” estimator, analogous to the moving variance-covariance
estimator in (19.9) earlier, emerges as a special case when W = diag(wg, wp) with (T V)-
and V-vectors w, = (0,...,0) and w; = (1,...,1), respectively.

A simple method for ensuring that the influence of past observations declines with
their distance from the present is to specify

W = diag(wy,...,wr) (19.19)

where wy > wy—q for t = 2,...,T.

There are, of course, insufficient degrees of freedom to maintain such generality, so
that explicit parameterizations such as linearly or geometrically declining elements of the
weighting matrix may prove extremely useful. In Diebold and Pauly (1987a), we discuss
several such schemes; we summarize those results now, and we integrate them with the
serially correlated disturbance structures discussed earlier.

Extracting a factor k (£ > 0), a general nonlinearly declining weight specification,
closely related to the Box-Cox transformation, is given by:

1* 0
W=tk R (19.20)
0 TA

or W = diag[w;] = [kt}], where k, X > 0. Note that dw,/dt = kXt?=1) > 0, which guar-
antees that the recent past is weighted more heavily than the distant past. Furthermore,

d"’wu >0 if A>»1
= kA1 = A2 { :
dt? ( ) <0 if A<1

Thus, the sign of (A — 1) determines whether the weights decline at an increasing rate or
at a decreasing rate (as we go further back into the past). A full Box-Cox transformation
may also be undertaken by letting W = kW*(}), where

t — i <1
oy = {{f, 00 1903

However, with the Box-Cox weight structure, we can only obtain weights in the region
bounded by linear and log-linear schemes, but others are excluded. The t* specification,
on the other hand, appears quite attractive. First, note that constant weights emerge for
A = 0 and linear weights emerge for A = 1. Furthermore, unlike a geometric specification,
this specification can produce weights that decrease either at an increasing or a decreasing
rate, which increases its potential usefulness and applicability. In Figure 19.1, we see the
t* weights as ) ranges from 0 to 7. Without loss of generality, the weights are normalized
by T?, so that wyg = 1. Like geometric weights, t* weights are capable of dying out very
quickly, for large A.
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Figure 19.1: X\ weight structures over time.

Finally, we need not pick W arbitrarily; rather, it too can be estimated. If W =
kW*(A), then we simply choose A and 8 to solve

minu' ' Wu
2B
or

T m
If\u[? Z wi(A)(ye — Z ,Biftih—l )?
=1 i=0

Note that there is no need to choose k, since it cancels from the expression for the WLS
estimator.

This analysis highlights the extreme restrictions imposed by the “moving sample”
approach, since it restricts the weights on the V most recent observations to be constant
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and equal to unity, while all other weights are restricted to be constant and equal to
zero. The WLS approach, on the other hand, uses all the data and requires only that the
weights be decreasing. Furthermore, these facts should lead the WLS method to produce
a non-noisy sequence of combining weights.

We have already seen that the moving sample approach (19.9) to the variance-cova-
riance method emerges as a special case of the WLS regression method for a particular W
matrix. The WLS regression approach also sheds light on the “weighted” variance-cova-
riance approach (19.12). In particular, it is equivalent fo geometric WLS, with no intercept
and subject to the restriction that > 3; = 1. It can be shown that the optimal weight
resulting from (19.12) is identical to the expression for the restricted OLS estimator for
data that have been transformed by v/A¢, i.e., it is our geometric WLS estimator.

The WLS regression approach also highlights the large amount of information that is
lost in (19.10), (19.11), and (19.13) by ignoring covariance information, and the conve-
nience of the WLS approach in terms of not having to explicitly compute all the elements
of X.

It is now straightforward to combine the WLS approach with a more general error
specification that allows for the presence of serially correlated prediction erors. Analogous
to (19.18), we can define the matrix & = WQ~!. The FGLS estimator in the presence of
parameterized weighting is then given as

BY. s = (F'F)'F'dy (19.21)

Operationally, an iterative estimation procedure for (19.21) involves an injtial WLS stage
as in (19.18); based upon this initial estimate of u, we can construct an estimate of
Q, which enables us to construct &. Alternatively, FGLS estimation of the combining
equation on transformed variables can proceed as in (19.16) above, with y and F replaced
by ¥ = P'y and F = P'F to incorporate the weights (PP = W). A grid search over A
can be performed to obtain the global optimum.

19.3.2 Deterministic time-varying parameter models

While the WLS regression-based approach may offer substantial benefits relative to the
moving sample variance-covariance approach, we may also want to consider a regression-
based systematically time-varying parameter model, which makes use of the full sample.
The simplest and straightforward member of this class has deterministically time-varying
parameters. This gives the combining equation

y=Ff+u (19.22)

where 8¢ = Pi(t), P'(t) = ph + pit + ...+ pit", i = 0,...,m. Thus, the smoothly varying
combining weights will be deterministic nonlinear (polynomial) functions of time.

If the evolution of the elements of 3 (due to the evolution of underlying forecast error
variances and covariances) is well described by low-order deterministic time trends, then
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exploitation of that fact may yield substantial increases in forecasting performance. The
advantage of this approach relative to our earlier WLS regression-based approach is that
it enables us to model explicitly any parameter evolution in the combining equation and
to project that evolution when combining the forecasts. For example, consider the simple
bivariate restricted combining equation

v~ fE =B - 1)
Now, at time T, the following data will be available:

T T
{yt}g;l , {ft1|t—1}t=+11 ) {ft2|t—1}t=+11

For constant parameter combination, ﬂ is obtained from the T-observation combining
regression, and then the forecast of yry; is obtained as

741 = ﬁf:}'ﬂw +(1- ﬂ)f:lz"+1|T (19.23)

With the (linearly) deterministically time-varying parameter model, on the other hand,
the combining regression is

(ye — fﬁtq) = (Bo+ ﬂlt)(ftl|t—1 - ft2|t—1)
Bo(Fije—1 — Fhee1) + Brt(filer — Fleoa) (19.24)

The estimated parameters o and ﬁl are then used to produce the forecast as

drsair = Bo+ AT + )b pyr + 11— o — Bu(T + DIfEpr (19.25)

The extension to general polynomial trends and unrestricted regression-based combination
is immediate.

For example, the unrestricted regression-based analog of the above example is

(P§ + P3t) + (P5 + P1t) fle—1 + (P5 + PIO)FE, o
Pg + Ptl)t + P(l)ftllt—l + Pi (tftllz—l) + P(z)ftzlt—l + pftftzlt—-l (19.26)

Yt

After estimation of the parameters p} and p} (i = 0,1,2), the predictor is obtained as

Gerre = [P0 + (T + 1)) + [Bo + Pr(T + 1)]f:ll‘+1|T + [P +p2(T + 1)]f12‘+1|T (19.27)

In addition, while the use of time-varying parameters lessens the need to weight recent
observations more heavily, it does not eliminate it. Thus, a WLS approach together with
time-varying parameters may prove useful. Finally, if the combined prediction errors are
serially correlated, the predictor (19.27) should be changed, as in Diebold (1988), to reflect
that fact.
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19.3.3 Stochastic time-varying parameter models

It may be more realistic to make the regression-based combining weights stochastic, rather
than deterministic, functions of time. We now view the disturbance term in the standard
combining regressions as arising from random coefficients, i.e.

y=FB=3 Ff (19.28)

=0

(where f0 = 1 for all t) with 8} = F + 4, B(ui) = 0, Var(ul) = 4%, foralli = 0,...,m
and all ¢. This gives the (heteroscedastic) combining equation

w=S fiB +u)=S B fi +i (19.29)

=0 1=0

where vi = ", fiui. This model was studied by Hildreth and Houck (1968) and further
refined by Crockett (1985). The model as stated represents purely random-coefficient
variation, so it is inadequate for our purposes. However, making use of the results of
Singh et al. (1976), we can produce a stochastic systematically varying-parameter model
for the combining equation.

We retain y; = f,3; and write 8{ = g*(t) + u where g*(t) is a function of time. Thus,
= 3060 + s
Rewrite this as
Y = égi(t)f: + we

where w; = "¢ fipi. Again, we assume that E(ui) = 0 and Var(ul) = v*. Thus, we
have E(w;) = 0 for all ¢ and

o) 0
} = Cov(w) = (19.30)
0 ?zo(f’})z‘ii

We may estimate the stochastic systematically varying-parameter model quite simply
by recalling that

e =9 ()f; +we (19.31)
i=0
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ory = Xg+w where x, = (1,t,..., 8, f},... . ¢°f}, ..., f",...,°f*) and g = (g3, - .., 93,
290> 95) . As usual, ® = My, where M =1 — X(X'X)"'X’. Note that

&=MX\F+7=G/T+1n (19.32)
(where a “.” indicates squaring all elements, and v = (9%,...,9™)" is the vector of
parameter disturbance variances). Thus, 4 is immediately obtained as

5 =(G'G) GG (19.33)
This enables us to obtain ! and then, finally,
Bers = (X'Q7' X)Xy (19.34)

As discussed earlier, additional gains may be obtained by modeling serially correlated
residuals and weighting the data.

19.4 Testing Procedures

In the preceding sections, we have shown that the standard regression-based model of
combining can be generalized in various directions to increase its flexibility under structural
instabilities. Naturally, systematic hypothesis-testing procedures can be employed to test
these specifications against a given body of data. In general, test procedures based on
likelihood ratio, Wald, and Lagrange multiplier (LM) principles are available. All three,
of course, lead to asymptotically equivalent tests in the sense that they have the same
asymptotic power characteristics. On practical grounds, the only difference between the
test statistics is computational; for further discussion, the reader is referred to the surveys
in Breusch and Pagan (1980), Pagan and Hall (1983), and Engle (1982b, 1985).

Based on the ease of estimation under the null hypothesis in the present context, we
recommend the use of LM tests, which only require estimation of the model under the null.
For all specification tests that arise here, LM tests can be computed. Moreover, in many
instances the LM statistic can be computed as T R? from a regression of (a transformation
of) the estimated residuals on their lagged values and possibly a vector of (transformations
of) explanatory variables in the original combining regression. Specifically, in the present
context one may wish to test for, among others,

1. Linear constraints on parameters, i.e., restricted versus unrestricted least squares
(Engle, 1985, pp. 790-791).

2. Serial correlation (Godfrey, 1978).

3. Nonconstant variances (Breusch and Pagan, 1980, pp. 246-247).
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All these tests are well developed and need not be discussed further. We shall, how-
ever, describe a test for the stochastic systematic parameter variation introduced above,
which can be derived easily applying a result of Breusch and Pagan (1979) as modified by
Koenker (1981).

Consider the heteroscedastic alternative
Qtt = h(z,':a)

where z; = (1,[z}]') and a = (¢?,[a*]') are (m x 1) vectors.
The m-dimensional null hypothesis is that a* = 0 or Q, = &% for all £. Under the

assumption of normal disturbances, the Lagrange multiplier test statistic does not depend
on h and is given by

qZ(Z'Z2)'Z'q

LM =
254

(19.35)

where q = & — 6%, Z = (z1,...,27) is a T X (m + 1) matrix, and 6% = &'&/T; iis a
(T x 1) column vector of ones, & is the OLS residual vector, obtained under the null, and
the “.” operator squares all elements of a vector or matrix. Conveniently, the numerator
of LM is equal to the explained sum of squares in a regression of & on Z. Under the null,
LM is asymptotically distributed as x2,.

Koenker (1981) shows that the size and power of this test are extremely sensitive
to the normality assumption, and he develops a robust LM test by replacing 25* with
S (@F — 52)?)/T. The reason for the robustness of the Koenker test to nonnormality is
that, while both 26* and Y (&? — 6%)?)/T may be viewed as estimates of Var(w?), the
former estimate is valid only under normality since only in that situation is Var(w?) = 20*.
On the other hand, ¥ (&? — 62)%)/T is consistent for Var(w?) under much more general
conditions, which Koenker specifies. Furthermore, the modified LM test may be calculated
as TR? in a regression of & on Z.

Thus, to implement the test, we proceed as follows. First, note that because in our
case the functions g*(t) are time polynomials, we can write under the null

m
Yy = Z!J'(t)ﬂ + we
=0
= (g0 +g0t+ . +gptP) + (g0 + 91t + ...+ )+
+(g5t + g7t + .+ GV T+ w (19.36)
Thus y; is regressed on an intercept, t, tZ, ..., tP, fi, tf}, ..., tPf, fE, tf%, ..., tPfE,
con LA, .., P f. The residuals from this regression are retained, and squared.

Then, w is regressed on i.e., (f{)?, i =1,...,m. The LM statistic, given by the uncen-
tered coefficient of determination from this regression multiplied by sample size, is then
distributed as x2, under the null.
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19.5 Examples

In order to illustrate the results, four artificial data sets, each with different stochastic
properties, were generated. Each of these data sets, which we will refer to as case 1 to
case 4, respectively, consists of 80 observations on 3 variables, y,, f},:_l, and ft"];'_l. The
y: variables are the same in each case (to aid in variance reduction) and are realizations
of the stationary AR(1) process

(1-09L)(y: —20) =<, , & ~ iidN(0,1)

To obtain these, we set yp = 0 and generated 480 observations on the process; the last
80 observations were then used as our sample, to guarantee that the initial condition had
absolutely no effect. In case 3, f:':_l and ftz];—l are two different forecasts of y,, made at

time ¢ — 1. For each case, f!* and f% are generated as

fi|it—1 =1+ e'ttie—l + U

Thus, each forecast (in each case) has a unit bias, and is equal to the true realized value
¥ plus a one-step-ahead prediction error. It is the variance-covariance structures of e!*
and e? that are changed across the cases.

In case 1, the one-step-ahead prediction errors are uncorrelated and have constant,
but different, variances throughout the sample (; = 1 and o3 = 2). Clearly, although we
would expect f1! to receive more weight in the combination than f2!, we would not expect
our time-varying coefficient methods to outperform the traditional constant coefficient
methods here.

In case 2, we again have g, = 2 throughout the sample, but now o3: = 1,¢ =1,...,50,
at which point it begins to grow linearly until it achieves a value of 5 by t = 80. The
forecast errors are again independent throughout the entire sample. In such a situation, we
would expect our time-varying methods to lead to substantial forecasting improvements.

Case 3 is identical to case 2 for t = 1,...,50, but o;; then grows linearly from t =
50,...,65, at which point it reaches its maximum of 5. It then retreats linearly back
to 1 by t = 80. Again, we would expect our time-varying methods, particularly those
with quickly decreasing weights and/or nonlinearly deterministically varying combining
weights, to perform well.

In case 4, we explore the possibility of a changing covariance between the forecast

errors. We hold o; = 3 and o5 = 4 throughout the entire sample, while the covariance is
held at 0 for t = 1,...,50, but grows linearly to 11.7 by ¢t = 80.

The details of the generation of variances and covariances are described in Diebold and
Pauly (1987a). For each case the following methods were used to produce time-varying
weights:

M1 WLS, t* weights
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Table 19.1: MSPE results with associated optimal A

Method Case 1 Case 2 Case 3 Case §
(M1) WLS, t*
OLS 0.638 (9.0) 1.595 (23.0) 1.461 (24.5) 1.654 (26.0)
AR(1) 0.542 (6.0) 0.801 (4.0) 0.862 (6.5) 1.230 (5.5)
(M2) t*, lin
OLS 0.700 (3.5) 1.453 (12.0) 1.290 (14.0) 1.305 (17.0)
AR(1) 0.610 (3.0) 0.861 (2.0) 0.903 (4.5)  1.140 (3.0)
(M3) t*, qd
OLS 0.828 (1.0) 1.497 ( 6.0) 1.347 (7.0) 1.244 (10.0)
AR(1) 0.654 (2.0) 0.941 (1.0) 0.919 (3.0)  1.060 (1.5)
(M4) OLS
OLS 0.658 3.336 3.374 3.009
AR(1) 0.476 0.734 0.988 2.100
(M5) Var-Cov  2.130 8.010 7.240 10.690
f1 alone 2.018 15.980 12.625 9.193
f2 alone 7.569 7.569 7.569 24 475

M2 WLS, t* weights, linear deterministic time-varying parameters
M3 WLS, t* weights, quadratic deterministic time-varying parameters
M4 OLS (simple unrestricted regression-based combination)

M5 Restricted OLS (variance-covariance combination).

We begin the exercise in period 50, in which {y;}32,, {ftllg—l $l,, and {fﬁ;_l},‘:’;l are
available, 72 = 1,...,4. These 50 observations of y are regressed on the first 50 observations
of the two forecasts, and the combined forecast g5, is obtained as

il;1 = ﬂﬂ +ﬂ1f;il5o +ﬂ2f52;|50 ) i= 1,...,4

This process is then repeated recursively until the entire sample is exhausted. The end
result, then, is four sets (corresponding to i = 1,...,4) of five forecasts (corresponding
to M1,...,M5). The mean squared one-step-ahead prediction errors of these forecasts
(for optimal A, calculated by a grid search) are given in Table 19.1. For methods (M1)
to (M3), we report standard least squares results and estimates based on a model with
AR(1) errors.

Some general characteristics of the results are at once apparent. First, the standard
(ie., unrestricted OLS) regression-based combined forecast absolutely dominates the pri-
mary forecasts f!* and f% (as well as the restricted variance-covariance combination),
cutting the MSPE by approximately 60%. In addition, our time-varying combination
procedures lead to substantial further reductions in MSPE in cases 2—4.
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Figure 19.2: Case 2, Method M1: MSPE as a function of A.

Recall that in case 1, in addition to the usual bias of 1.0 for both f1' and f?!, the
forecasts are uncorrelated and ¢? = 1, o2 = 4, for all £. The MSPE of f!! is 2.018, which
is very close to the variance plus squared bias, while the MSPE of f2! is 7.569, which is
somewhat above the expected MSPE of 5. The equally weighted combined forecast has
MSPE of 0.658, which is less than 9% of the MSPE of f!! and less than 33% of the MSPE
of %1, Furthermore, the WLS method is not helpful, which is what we expected for case 1.

Moving to case 2, we see that the MSPE of the first forecast is 15.980 while that of
the second forecast is 7.569, and the MSPE of the unrestricted regression-based combined
forecast is a greatly reduced to 3.336. More importantly, the time-varying combining
methods enable further reductions in MSPE of approximately 50%. Consider first WLS
with ¢ weights. The optimal A was found to be 23 and led to a combined MSPE of 1.595.
This large value of A implies quickly declining combining weights, which are needed to
capture the quickly changing prediction error variance of f!2.

When we allow for linear deterministic time-varying combining weights in addition to
the geometric WLS scheme (M2), the MSPE drops to 1.453, and A* drops to 12. The drop
in MSPE is expected since the use of linearly time-varying combining weights enables us
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Figure 19.3: Case 2, Method M1: Weights [31 and ﬁz as functions of time.

to model and forecast the structural change which is occurring. The drop in A* is also
to be expected, because once we model the evolution of the combining weights there is
less need to heavily discount the past. Allowing for quadratic time-varying weights (M3)
yields a slightly higher MSPE, which is explained by the estimation inefficiency incurred
by including the unnecessary quadratic term. (Recall that ¢, is simply growing linearly
over time.)

The results for cases 3 and 4 are very similar; a substantial decrease in MSPE is ob-
tained through the use of time-varying coefficient methods. Whenever applied, a first-order
autoregessive correction reduces the MSPE appreciably; the estimates of p are generally
in the range of 0.6 to 0.8 and highly significant.

Figures 19.2, 19.3, and 19.4 illustrate, respectively, for one of the examples (case
2, method 1), the dependence of MSPE on A, the evolution of the weights, and the
improvement in forecast performance in the combined forecast.
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Figure 19.4: Case 2, Method M1: y, f', f?, and combined forecasts as functions of time.

19.6 Conclusions and Directions of Future Research

We have developed and illustrated the potential usefulness of regression based WLS and
time-varying parameter methods of forecast combination in the context of structural
changes in the primary forecasts. It was shown that all of the earlier methods of fore-
cast combination, based on the variance-covariance approach, emerge as special cases of
the WLS regression approach, and that the suppression of explicit modeling of variances
and covariances, facilitated by our approach, is particulary useful. In effect, our time-
varying parameter models replace the explicit modeling of the evolution of variances and
covariances, as in Engle et al. (1984), with the simpler modeling of time-varying regression
parameters, for which a well-developed theory is available. In the example we presented,
our combined forecasts had MSPE of as little as 10% of that of the worst primary forecast,
and 40% of the unrestricted OLS regression-based combined forecast.

The research is currently proceeding in a number of directions. First, we are considering
other systematically time-varying parameter models, such as the random walk parameter
model, which can be conveniently estimated using the Kalman filter. The Kalman filter
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approach also facilitates real-time parameter “updating” and can readily handle both
stationary (e.g., ARMA) and nonstationary (e.g., integrated ARMA) parameter drift.

Second, nonlinear combining equations may lead to large decreases in MSPE, partic-
ulary if a number of linear forecasts are being combined, but the true (and unknown)
process is nonlinear. An obvious possibility is to view the standard combining equation as
a first-order Taylor expansion, and therefore to include higher-order terms. More gener-
ally, if we view forecast combination as a “production” process with the primary forecasts
as “inputs”, the use of flexible functional forms may prove worthwhile.

Finally, while combined weights obtained by our methods enable quick adaptation to
structural change, they may be unduly influenced by outliers, so that robust estimation
methods, such as least absolute deviations or m-estimation, may prove useful for the
combining equation. Recent experience with the combination of real macroeconomic time
series (see Kang, 1986; or Clemen and Winkler, 1986) indicates also that instability in the
combining weights may be caused by severe multicollinearity of the primary forecasts due
to overlapping information sets. In Diebold and Pauly (1987b), we explore these issues by
using Bayesian shrinkage techniques to incorporate prior information into the estimation
of combining weights.

References

Ansley, C. (1979), An algorithm for the exact likelihood of a mixed autoregressive-moving
average process. Biometrika, 66, 59-65.

Bates, J.M. and Granger, C.W.J. (1969), The Combination of Forecasts. Operations
Research Quarterly, 20, 451-468.

Bessler, D.A. and Brandt, J.A. (1981), Forecasting livestock prices with individual and
composite methods. Applied Economics, 13, 513-522.

Bordley, R.F. (1982), The combination of forecasts: A Bayesian approach. Journal of the
Operations Research Society, 33, 171-174.

Bordley, R.F. (1986), Linear combination of forecasts with an intercept: A Bayesian ap-
proach. Journal of Forecasting, 5, 243-249.

Breusch, T.S. and Pagan, A.R. (1979), A simple test for heteroskedasticity and random
coefficient variation. Econometrica, 47, 1287-1294.

Breusch, T.S. and Pagan, A.R. (1980), The Lagrange multiplier test and its applications
to model specification in econometrics. Review of Economic Studies, 47, 239-253.

Bunn, D.W. (1975), A Bayesian approach to the linear combination of forecasts. Opera-
tions Research Quarterly, 26, 325-329.

Clemen, R.T. (1986), Linear constraints and the efficiency of combined forecasts. Journal
of Forecasting, 5, 31-38.

Clemen, R.T. and Winkler, R.L. (1986), Combining economic forecasts. Journal of Busi-
ness and Economic Statistics, 4, 39-46.

Crockett, P.W. (1985), Asymptotic distribution of the Hildreth-Houck estimator. Journal
of the American Statistical Association, 80, 202-204,

Diebold, F.X. (1988), Serial correlation and the combination of forecasts. Journal of
Business and Economic Statistics, 6, 105-112.

Diebold, F.X. and Pauly, P. (1986), The combination of forecasts. Prévision et Analyse
Economique, 7, 7-31.

Diebold, F.X. and Pauly, P. (1987a), Structural change and the combination of forecasts.
Journal of Forecasting, 6, 21-40.



318 Statistical Analysis and Forecasting of Economic Structural Change

Diebold, F.X. and Pauly, P. (1987b), The Use of Prior Information in Forecast Combina-
tion, Special Studies Paper 218, Washington, DC: Board of Governors of the Federal
Reserve System.

Engle, R.F. (1982a), Autoregressive conditional heteroskedasticity with estimates of the
variance of U.K. inflation. Econometrica, 50, 987-1008.

Engle, R.F. (1982b), A general approach to Lagrange multiplier model diagnostics. Jour-
nal of Econometrics, 20, 83-104.

Engle, R.F. (1985), Wald, likelihood ratio, and Lagrange multiplier tests in econometrics,
in: Z. Griliches and M.D. Intriligator (eds.), Handbook of Econometrics, Vol. 2.

Amsterdam: North-Holland.

Engle, R.F., Granger, C.W.J., and Kraft, D.F. (1984), Combining competing forecasts
of inflation using a bivariate ARCH model. Journal of Economic Dynamics and
Control, 8, 151-165.

Godfrey, L.G. (1978), Testing against general autoregressive and moving average error
models when the regressors include lagged dependent variables. Econometrica, 46,

1293-1302.
Granger, C.W.J. and Morris, M.J. (1976), Time series modeling and interpretation. Jour-

nal of the Royal Statistical Society, A-139, 246-257.

Granger, C.W.J. and Newbold, P. (1974), Experience with forecasting univariate time
series and the combination of forecasts. Journal of the Royal Statistical Society
Sertes, A-137  131-164.

Granger, C.W.J. and Newbold, P. (1977), Forecasting Economic Time Series. New York:

Academic Press. o
Granger, C.W.J. and Ramanathan, R. (1984), Improved methods of combining forecasts.

Journal of Forecasting, 3, 197-204.

Greene, M.N., Howrey, E.P., and Hymans, S.H. (1985), The use of outside information
in econometric forecasting, in E. Kuh and D.A. Belsley (eds.), Model Reliability.
Cambridge, MA: MIT Press.

Harvey, A.C. and Phillips, G.D.A. (1979), Maximum likelihood estimation of regression
models with autoregressive-moving average disturbances. Biometrika, 66, 49-58.

Hildreth, C. and Houck, J.P. (1968), Some estimators for a linear model with random
coefficients. Journal of the American Statistical Association, 63, 584-595.

Kang, H. (1986), Unstable weights in the combination of forecasts. Management Science,
32, 683-695.

Koenker, R. (1981), A note on studentizing a test for heteroskedasticity. Journal of
Econometrics, 17, 107-112.

Makridakis, S. et al., (1984), The Forecasting Accuracy of Major Time Series Methods.
New York: John Wiley.

Pagan, A.R. and Hali, A.D. (1983), Diagnostic tests as residual analysis. Econometric
Review, 2 (2), 159-218.

Reid, D.J. (1969), A comparative study of time-series prediction techniques on economic
data. Ph.D. thesis, Department of Mathematics, University of Nottingham, UK.

Singh, B., Nagar, A.L., Choudhry, N.K., and Raj, B. (1976), On the estimation of
structural change: a generalization of the random coeflicients regression model. In-
ternational Economic Review, 17, 340-361.

Trenkler, G. and Liski, E.P. (1986), Linear constraints and the efficiency of combined
forecasts: A note. Journal of Forecasting, 5, 197-202.



CHAPTER 20

Updating Parameters of Linear Change
Point Models

Jirgen Kleffe

Summary

A method by Gill, Golub, Murray, and Saunders for updating matrix factorizations is
used to improve the computations necessary for detecting a change point of the regression
line in linear models. The method shows considerably higher speed and better numerical
stability than using standard routines for linear regression. It is based on updating the
residual sum of squares and the least squares estimators for the regression parameters if
one regression equation gets added to or deleted from the model.

20.1 Introduction
We consider a linearchange point model
Y = zib1+et , t=1,...,m
¥ = zhote, t=m+1,...,n
where y; are independently distributed observations, z; are given g-vectors of regressors,
and e, are 7id error variables. The unknown parameters are by, b, and m, the change point

index. This index is usually identified by minimizing the residual sum of squares

SSR(m) = SSRy(m) + SSRy(m) (20.1)
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subject to m, where

SSRy(m) = i”y,—z:bl(m)ﬂz
58 Ry(m) = Zﬂj llye — ztba(m)|1?

t=m+1

and b;(m) and bz(m) are least squares estimators based on the first m and on the remaining
n — m observations, respectively.

It is now common practice to compute all the above terms for each individual m sepa-
rately, using standard packages for least squares estimation. We propose a method of com-
puting both SSR,(m) and 5SS R,(m) in a more efficient manner, based on updating matrix
factorizations. This method provides the entire series of values SSR;(1), ...,5SR;(n) by
the time the usual manner may take to get b;(n), only. Some linear change point models
require the computation of b;(m) and b2(m) as least squares estimators that satisfy given
linear constraints, often also depending on m. An extension to such problems is indicated.

20.2 Updating SSR;(m)

Let X be the matrix formed by the rows 2}, ¢ =1,...,mand Y = (31,...,%m)’. Then
b1(m) satisfies the normal equation

X'Xby(m) = X'Y

But for numerical calculations, this is known to be about the worst way of finding b;(m).
Let T be an orthogonal transformation such that

and R is a m X (¢+ 1) upper triangular matrix. Some of the leading elements r; > 0 may
vanish. But, by definition, let us agree

ri =0 iff ri; =0, i=1,...,9+1 (20.2)

Such triangular factorization is unique, i.e., if R'R = R, R, for any two factorizations R
and R,, then R = R,. Further, orthogonality of T implies

1Xb — Y|* = | R1b ~ Ra|f?

for any b, so that
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5S Ry(m) = ml;in||Xb - Y| = T§+1,q+1

Hence, computation of SSRy(m) does not require computation of 4;(m). But, if wanted,
b1(m) follows by solving the triangular system of equations

Rlbl(m) = Rz

where we ignore the (¢ + 1)th equation, which is generally inconsistent with the first ¢
equations.

It is now interesting to know how R changes as m increases by one. This problem is
one of finding the triangular factorization R, say, belonging to

X Y
2::,,+1 Ym+1

But as R is already the result of an orthogonal transformation of (X:Y), it remains to
transform

D= ,R1 R,
Zm+1 Ym+1

for which the following series of elementary orthogonal transformations has been proposed
by Gill et al. (1974).

Denote the individual rows of D by d},...,d;, ;. The first transformation annuls
Zm41,1 (the first component of z, ,,), if necessary, supposing that ry; # 0. Otherwise, we
make d] ., = (2, 41,Ym+1) the first row of D. In general, we form

™
c=rnje; d=znpy11/e; e= \/21271-}—1,1 +r3
and replace dj and dj, ,; by new lines
dy — cdy + dd:n-}—l i g1 Cd:n+l + dd;

The second transformation acts on the changed matrix D and annuls z,,4, 2, if necessary,
using the second line d,. This process goes on until the complete triangular structure is
obtained. The final matrix is denoted by R, and

SSRy(m+1)= (T;+1,q+1)2
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where 77, .., denotes the element in the (¢ + 1)th row and (g + 1)th column of R.,.

Note 1:  Zero lines in R. or D have no effect on the computations so that the computations
need space for a (¢ + 1) X (¢ + 1) triangular matrix R and a (g + 1)-vector, only.

Note 2:  This method of updating SSR1(m) or b1(m) does not rely on any assumption
made for X, Y, and the row (], ¥m+1). We can actually start with just one regression
equation incorporating each new line in turn. The initial value for R is (z},y1).

Note 3: It is obvious that the entire series of values SSR;(j), 7 = 1,...,m is a by-product
of factorizing R.

Note 4: Several familiar updating techniques are based on the result
(H+ 2mp12r,41)” = H —aH 212, H” (20.3)

where H = X'X and a = 1+ z, . ; H 2,,41. Equation (20.3) holds if 2,41 € R(X'), the
column space of X’. There are also many results on updating a least squares g-inverse of
X. But calculating along such formulae is generally more complex and involves a good
deal of instability. These formulae are all in two parts, one for the case z,41 € R(X')
and one for zmi1 € R(X’'). But all numerical criteria to distinguish these two cases are
also based on matrix factorizations.

Note 5 SSRi(m) is not always a continuous function of X. For instance the two
regression equations

bi+by=1; b1+(1+w)b2:2 (20.4)

imply SSR1(2) = 0 for w > 0, but SSR1(2) = 1/2 if w = 0. Such situations occur in the
proposed algorithm when we arrive at a small diagonal element »;; = w. Replacing this
by zero contradicts (20.2). It is then necessary to introduce a zero line in R and absorb
the ith line into the lower part of R. This results in a discontinuous increase of SSR,(m).
For the regression equations (20.4) the triangular matrix R is

2 2 3
R=4/1/2| 0 w 1
0 0

ifw > 0, but
2 2 3
R=4/1/2| 0 0 0
01

if w = 0. We may avoid such effects by annulating each diagonal element of R that is less
than a prespecified small value. In this way, we reduce the rank of X'X when one of its
eigenvalues is close to zero. In other words, we omit estimation of only purely estimable
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parameters in favor of estimating others. This stabilizes the updating procedure. It is
easily seen that each diagonal element 7; of R grows monotonically by absorbing further
regression equations — thus providing a measure of information about the 7th regression
parameter.

20.3 Updating SSR;(m)

Updating S5 R2(m) requires an operation inverse to what was described in Section 20.2.

Let X be the matrix formed by the rows z,,.,,...,25, Y = (¥m+1,...,¥n)’, and assume

knowledge of an upper triangular matrix R such that

!
T : (Z)’; y;)—»R:(RIERZ)

for some orthogonal transformtion 7. We are interested in deriving an upper triangular

matrix R, = (R}:R}), which differs from (X:Y) by an orthogonal transformation. Gill et
al. (1974) suggested the following method.

Step 1:  Find some solution p to
Rp=(2mym) ; PP<1
The above system of equations is consistent, and
(XYY(XY)=R'(I-pp)R>0
implies p'p < 1 for every solution p € R(R). But every single component p; of p is unique

if »;; > 0 and arbitrary if r; = 0. Therefore, a solution p € R(R) is obtained by choosing
p; = 0 if r;; = 0. The vector p has at most ¢ + 1 nonzero elements.

Step 2: Let p2=1-p'p,

F=|P? R

po O
and denote by fi,..., f the rows of F. Now use elementary orthogonal transformations in
order to annul the nonzero elements p; in the first column of F, but maintain the triangular

form of the submatrix R. These transformations introduce a 1 in the position of py and
certain nonzero elements in the last row of F. We start with line f,; by forming

¢c=pgr1/e, d=pofe, e= /Pl +P}
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and replace f,, and f, by

f;+1 — df;+1 - Cf; y fal — Cf;+1 + dfal

The new matrix F owns a zero in the position of pgy1, and we continue annulling p,
in the same manner, based on lines f; and f;. If this process ends with a matrix

(o ®
F*_(l ri)

say, the relation F,F, = F'F yields r, = (z],,ym) and

R'R=R.R.+ ( :/m ) (Zn, ym)

m

Consequently, R'R, = (X:Y)(X!Y) and R, is the wanted triangular factorization since
it is unique.

The effort required for deleting one row is about twice of that for adding one row.
Also, the condition pg > 0 may cause this method to fail by rounding errors. But stability
of computation improves if we avoid small diagonal elements of R. They may lead to very
large values for p;, whereas p; has to be zero if r; = 0. Therefore, when arriving at a
small r;;, we suggest replacing it by zero and modifying R accordingly. This procedure
can be justified by the argument that the deleted line of observations carried all consider-
able information about the ith regression parameter. What is left is unsure information,
possibly based on computational errors. It should not be used in the analysis.

Alternative methods based on g-inverses are computationally more complex and in-
volve at least the same chance of breaking down. In difficult situations, we recommend
computing the series SSRz(n), ..., SSR,(1) backward, using the algorithm of Section 20.2
for incorporating the regression equations in the inverse order.

20.4 Example

A small basic programm was written to test the proposed algorithm. The data, taken
from Table 2.3.1. in Schulze (1986), are reported in our Table 20.1.

We computed the series of 16 triangular matricies R incorporating all lines in turn,
using the updating algorithm of Section 20.2, and continued computing backward, deleting
lines in the inverse order. The same procedure was repeated, starting with line 16 and
passing on to line 1. No differences due to computational errors appeared within 4 digits
following the decimal point, i.e., we got the same answers for each triangular matrix R,
whatever the method of computation. The series of values for the SSR(m), SSRy(m),
and SSR,(m) are reported in Table 20.2.
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Table 20.1: Some data from Schulze (1986).

1 2z zo Ye

1 1.0 0.00 0.0228
2 1.0 0.25 0.0277
3 1.0 0.50 0.0337
4 1.0 0.75 0.0408
5 1.0 1.00 0.0481
6 1.0 1.25 0.0600
7 1.0 1.50 0.0713
8 1.0 1.75 0.0865
9 1.0 2.00 0.1029
10 1.0 2.25 0.1228
11 1.0 2.50 0.1246
12 1.0 2.75 0.1256
13 1.0 3.00 0.1253
14 1.0 3.25 0.1239
15 1.0 3.50 0.1253
16 1.0 3.75 0.1228

Table 20.2: Residual sums of squares for Schulze’s (1986) data.

m SSRi(m) SSRi(m) SSR(m)
1 0.0000  0.0485  0.0485
2 0.0000  0.0485  0.0485
3 0.0004  0.0482  0.0482
4 00011  0.0473  0.0473
5  0.0016  0.0452  0.0453
6  0.0046  0.0411  0.0413
7 0.0069 0.0356 0.0363
8 00108  0.0271  0.0292
9  0.0164  0.0167  0.0227
10 00216  0.0029  0.0218
11 0.0217  0.0020  0.0218
12 00277  0.0016  0.0228
13 0.0267  0.0016  0.0268
14 00336 00016  0.0336
15  0.0403  0.0000  0.0403

fu
»

0.0485 0.0000 0.0485
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A more critical view indicated some trouble with the algorithm of Section 20.3 if there
is a change in rank of X. We observed that deleting all but the last two lines does not
introduce errors within 7 digits after the decimal point. But then errors suddenly grow so
that only 4 digits remain correct. These errors always start to appear after getting a small
negative value for pg, which we changed to zero in order to continue computation. This
problem did not appear when we truncated each 7;; to zero, which was less than 1076.

An investigation of more complex data, obtained by adding the variable z3 = z2,,
showed the samne results.

20.5 Linear Constraints

In some problems b, (m) is a least squares estimator subject to linear constraints Ab;(m) =
a. A and a may depend on m, often through by(m). Therefore, we suggest updating the
factorization of the regression equations as described in Section 20.2 and correcting for
the side constraints in each step, separately. This correction takes three steps:

1. Factorize the matrix (A'a) using the same method as described in Section 20.2 and
express rank(A) components of b (m) in terms of the remaining ones.

2. Replace these rank(A) explicitly given components of d;(m) in the factorized sys-
tem represented by R and reduce it to ¢ — rank(A) unknowns. The new system,
represented by R, say, no longer has triangular structure.

3. Factorize R, anew and find SSRy(m) as the square of the [¢ + 1 — rank(A)]th
diagonal element of R.,.

The constraint least squares estimator by (m) follows partly from R, and the factorized

constraints (A:a).
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CHAPTER 21

Change Point Problem Relating to the
Poverty Structure

Pranab K. Sen

Summary

An index of poverty reflects the extent to which individuals in a society or community
fall below a minimal acceptable standard of living. It is generally framed in terms of a
set poverty line, the income distribution of the poor, and other social welfare functions
relevant to the poverty structure; the Gini coefficient plays a vital role in this context.
The income distribution and other measures based on this distribution rarely remain
stationary over time, so that in studying the poverty structure over a period of time, one
essentially encounters a time-dependent model that may be analyzed in a parametric or
nonparametric manner. In this context, the change point problem is very relevant, and
the related methodology is considered in a systematic manner.

21.1 Introduction

For a society or community, poverty is usually defined in terms of the extent to which
individuals fall below a minimal acceptable standard of living. As such, for a given society,
at a given point of time ¢, an indez of poverty (m;) may generally be framed in terms of
a set poverty line (w;), the income distribution (of the poor) {Fi(y),y > 0}, and other
social welfare functions {W,} which may have relevance to poverty. Generally, w, Fi(.),
and W; may not remain stationary over time, and, as a result, 7, may vary over time (%)
in a rather involved manner.

In a parametric setup, usually, the social welfare functions are taken into account in
formulating an adjusted income distribution F}(.) [= {F{(y),y > 0}]; and it is taken for
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granted that Fy* is of some specified functional form (viz., Pareto). In this setup, there are
some unknown parameters 0, appearing as algebraic constants in F;', and, hence, given
wt, a poverty index m; [= (¢, w;)] can be solely expressed in terms of w; and §;. Thus, to
study the poverty structure over a period of time T', in such a parametric setup, one needs
to assume that, for the adjusted income distributions {Fy,t € T}, the same functional
form remains intact, while the parameters 6;, t € T may be time-dependent. Whenever
such an assumption holds, the analysis can be done relatively simply (as we shall see
in Section 21.3). However, such an assumption may not be very reasonable in all cases
(particularly when the span of T is not small). Moreover, even relatively small departures
from the assumed functional form of the F*(.) may cause considerable distortion in the
interpretation of the associated parameters 6, so that poverty indexes based solely on 6,
(and w;) are, in general, not robust against plausible departures from the assumed model.
For this reason, other nonparametric indexes of poverty are often advocated in practice.

One of the simplest indexes is the following:

ar = Ff(w) = proportion of people (21.1)

at time ¢ with adjusted income below the set poverty line w;

for t € T. Note that a; may be estimated in a parametric as well as nonparametric setup.
In a parametric setup, o is a known function of 6, and w, (and, thereby, it has the same
limitations as discussed above). The parametric estimator may be considerably biased
(and may even be inconsistent) for any departure of the assumed model from the correct
one. In a nonparametric setup, a; can simply be estimated from the empirical (adjusted)
income distribution. Either way, a: is generally a crude index of poverty as it does not
take into account the income inequality of the poor people, and more meaningful indexes
of poverty have been considered by various workers.

In this context, we may define the income gap ratio (8;) of poor people (at time ¢) by

Br=1—w; {o; " /Ow' ydFf(y)}, teT . (21.2)
This may be incorporated in the formulation of a second index of poverty — namely,
ma=osf, teT . (21.3)
A refined index of poverty, due to A.K. Sen (1976), is the following:
s = o{fe + (1 — Be)Gyay} , tET (21.4)

where Gi(a) is the Gini coefficient of the income distribution among the poor at time t,
and we shall formally define it in Section 21.2.

Takayama (1979) considered another index:
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T = Gf(w) 9 te T y (21.5)

where G} w) is the Gini coeffictent of the income distribution censored at w; (to be defined
in Section 21.2). There are certain undesirable properties of m,r, while 7,5 is generally
higher than 7,4 or 7;7. Based on certain robustness criteria, Sen (1986) has proposed the
following poverty index:

7= a{f M), teT . (21.6)
It has been shown there that for arbitrary income distributions and poverty lines:

0<mr <ma<w <ms<afe(2-Pt) <y . (21.7)
Further, it follows from Sen (1986) that

Gilw) = AGi(o) T (1 — ar)(1 — asfy) {Be — Gy}, t€T (21.8)

where Gy(,) < B¢, V. Given this picture, we can express each of these poverty indices in
terms of a;, B;, and Gy(4). Thus, we consider a general poverty index of the form

T = m(as, B, Ge(a)) » tET . (21.9)

Also, as in Sen (1986, Sec. 3), we assume that over the unit cube F3 = {x: z; € [0,1],
1 = 1,2,3}, w(x) is monotone in each of its three arguments (when the other two are
held fixed). Further, we introduce the following partial ordering of income distributions
[considered in Sen (1986)]:

Two income distributions Fy and F, are said to be poverty index (PI-)ordered, i.e.,
B >pl Fy, 1f {a(Fl),,B(Fl)aG[a(Fl)]} > {C!(Fz),ﬁ(Fz),G[a(Fz)]} where x > x' means
z; >zl fori=1,2,3.

It follows from the above that if the (adjusted) income distributions F; are PI-ordered
and 7, in (21.9), is a monotone function of each of its three arguments, then the =;,t € T,
are ordered, too. In a nonparametric setup, this PI-ordering of the adjusted income
distributions may be incorporated in a convenient manner to study the poverty structure
in a coherent way. This will be mainly exploited in the current study.

Due to inflation and progressive changes in socioeconomic conditions, the poverty line
wy, income gap ratio B¢, a; as well as the Gini coeflicient Gi(q) rarely remain stationary
over T'. On the other hand, from time to time, some extraneous factors may have profound
impact on the socioeconomic condition, and, thereby, may lead to an instantaneous change
in these measures. For example, the “oil embargo” (by the OPEC) in 1973-1974 produced
a serious inflatjonary effect all over the globe (with more serious effects on the Third World
countries); as a result, ay, B¢, wy, Gy(a), etc., were all shaken up at that time. On the other
hand, the recent “lowering of oil prices” by OPEC has not led to a similar effect (in
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the opposite direction), as most of the governments have absorbed the difference in the
form of direct or indirect taxes. Due to such considerations, it may be quite plausible to
formulate the “change point model” relating to the poverty structure in such a way that a
smooth change in the picture over the time period T constitutes the null hypothesis, while
a change from this smooth pattern at some intermediate point (in T') is to be taken as the
“change point”. Thus, unlike the classical case, the constancy of the m; (over ¢ € T') may
not be the null hypothesis of interest.

Along with other preliminary notions, this basic formulation of the “change point”
problem relating to poverty is considered in Section 21.2. Some parametric procedures
are then presented in Section 21.3. The main emphasis is on suitable nonparametric
procedures, which are presented in Section 21.4. The concluding section offers some general
remarks.

21.2 Preliminary Notions

Keeping (21.4), (21.5), and (21.6) in mind, we proceed first to define the various versions
of the Gini coefficient of income distribution, and present some of their basic properties.
These results are mainly adapted from Sen (1986).

For the sake of notational simplicity, we denote an adjusted income distribution by
F = {F(z),z > 0} and let
pp = / ¢dF(z), F'(u)=inf{z: F(z)>u}, 0<u<l ; (21.10)
0

Ar(u) = u;.l{/;F_l(“)z dF(z)}, 0<u<l . (21.11)

Also, for any given w (> 0), we let @ = a(w) = F(w). Then the income distribution of
the poor is defined as the truncated distribution of the income on [0, w], i.e.,

alP(z), 0<z<w
Fa(z) = { . es (21.12)

On the other hand, the censored income distribution (at w) is defined as

,_. Flz), 0L<ze<w
Fw(z):{ lf) osE< (21.13)

Plotting Ar(u) against u on [0,1]? gives the Lorenz Curve for the income distribution
F, and the Gint coefficient is twice the area formed by the Lorenz curve and the diagonal
line joining the lower and upper corner of [0,1]%. Analytically, the Gini coefficient G may
be expressed as
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G = (ur) BlYa — Yl = 1- 25" [ yF(w) dF() (21.14)

where F(y) = 1— F(y), y > 0, and Y3, Y, are two independent r.v.’s, each having the d.f.
F. If in (21.14), we replace the d.f. F by F, (or F{), then the corresponding measure is
the Gini coeflicient for F, (or F¢); (21.12), (21.13), and (21.14) lead us to (21.8). Other
properties of the versions of the Gini coefficient are studied in Sen (1986).

Note that if we have two income distributions, F; and F5, such that for some arbitrary
k(> 0),
Fi(z) = Fy(kz), Yz € R* (21.15)

then the Gini coeffficients for F; and F, are the same (for every £ > 0). This scale-
invariance of the Gini coefficient has an important role to play in our study. If the set
{Fy;t € T} of the adjusted income distributions satisfies the following:

F}(z)= F*(kiz), 2 € RT, teT (21.16)

where {k;;t € T} is an arbitrary set of positive numbers, then the Gini coefficients for the
FY are all the same. In such a case, if poverty lines wy, t € T are adjusted accordingly,
ie.,

wi=k;lwy, VteT (21.17)
where the k; satisfy (21.16), then we have by (21.1), (21.16), and (21.17),
o = Ft*(wt) = F*(wo) =ay, YVteT (21.18)

and little analysis yields that by (21.2), (21.16), (21.17), and (21.18),
wo
Bi=fo=1- wo-‘{aglf ydF*(y)}, VteT . (21.19)
0

Further, (21.16) and (21.18) may be used to verify easily that, for the income distributions
of the poor, the Gini coefficients satisfy the following:

Gya) = Glag) » VEET . (21.20)
As a result, we conclude that under (21.16) and (21.17),

=7, VIET . (21.21)
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Thus, if inflationary forces induce only scalar changes in the income distributions and if
the poverty lines are adjusted by the same scale factors, than the poverty indices remain
stationary over time. This may be the basic idea of cost-of-living adjustments followed in
some countries, but it could be generally misleading if, besides the scale changes, there
are other changes in the income distributions.

On the other hand, if the inflationary factors induce (in addition to possible scale
changes) some other changes in the “shape” of the income distributions and/or the poverty
lines are not adjusted for the inflationary factors, then (21.21) may not hold. In this
framework, it is quite reasonable to frame a null hypothesis

Hél): 7y = o (unknown), VteT (21.22)

against an alternative

1) - (1. g . T = 7o, t<r
H TLEJTH, . HS s f 7o, LT . (21.23)

Thus, T represents the usual “change point” with respect to the poverty index. Both
parametric and nonparametric tests for this change point problem will be considered here.

As we shall see in Section 21.3, even in the simplest parametric case, an income distri-
bution is characterized by a scale parameter and a second parameter reflecting the income
inequality. In such a case, (21.16) is not so general and a variation in the “income in-
equality” parameter may vitiate (21.21) even if the poverty lines are adjusted by the scale
factors. Thus, a second “change point” model may be framed in terms of the homogeneity
of the income inequality parameters against possible shifts at an unknown time point
(belonging to T') where the scale parameters may be treated as nuisance parameters. Both
parametric and nonparametric tests for this problem will be considered.

In a general framework, an income distribution may not be solely characterized by
scale and “inequality of income” parameters. Nevertheless, whithin the subclass of PI-
oredered family of income distributions, a change point problem may equivalently be
posed in terms of the triplet {a;, S, Gt(a)}. It may therefore be convenient to introduce a
parameter (vector)

ft = (at’lgtaGt(a))l ) teT (2124)
and to pose the hypothesis in terms of the £. To be more general [than in (21.22)-(21.23)],
we may conceive of a vector {; = ((1¢,...,(gt)’ of known functions of the variable ¢ (viz.,

the (;;: are the orthogonal polynomials of degree jint € T, 0 < § < ¢ —1, for some ¢ > 1),
and write

Ee=Te, teT (21.25)
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where T'; is a 3 X ¢ matrix of unknown constants. The relevant null hypothesis (of no-
change-point) is framed as

Hy: Ty =T (unknown), VteT (21.26)
against an alternative

‘I‘t:ro, t< T

H=\J H:; HT'I‘tzI‘T#I‘o, >

TeT

(21.27)

Thus, T represents the usual “change point” with respect to the structural relationship
in (21.25). This problem is posed more in line with the “constancy of the regression
relationship over time” problem treated (for linear models) in Brown et al. (1975) and
others. The hypothesis in (21.18) through (21.20) can easily be framed by letting ¢ = 1
and (3; = 1,Vt € T. Thus, introducing a more general (; in (21.25) and drawing a parallel
to the “constancy of regression relationship” problem, we are able to formulate a more
general “change point” problem relating to the poverty structure, and the main purpose
of the current study is to provide suitable statistical procedures relating to this problem.

21.83 Parametric Formulation

Corresponding to the income distribution F = {F(z); ¢ > 0}, we define the survival
distribution F by

F(z)=1-F(z), >0 . (21.28)

In the parametric case, the most commonly used income distribution is the Pareto distri-
bution, which corresponds to a survival function of the form

F(z) = { g"”/”)_7 ’ z z Z (21.29)

where ¢ > 0 is a scale parameter and ¥ > 0 is an indez of inequality. Although (21.29) may
quite adequately describe the “upper tail” of an income distribution, it may, generally,
have some drawbacks for the lower tail; and, for the poverty indexes, we are confronted
with this lower part of the income distribution. A Burr distribution having the survival
function

F(z) = {1+ (z—p/o)’}7, 2> p(>0) (21.30)
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is often used to provide a more flexible form of the income distribution of the poor. In this
formulation, u, §, ¢, and v are all nonnegative parameters. The particular case of § = 1
(ie., F(z) = ki(z + ¢)77, = € RT,) is known as the “Pareto distribution of the second
kind” or the Lomaz distribution {viz., Johnson and Kotz (1970)]. In fact, there is also a
“Pareto distribution of the third kind”, for which the survival function is given by

F(z) = ke (2 4+¢)™", ka>0,>0,7>0 . (21.31)

For a nice treatment of the statistical interpretations and estimation of the parameters of
such (generalized) Pareto distributions, we may refer to Johnson and Kotz (1970, ch. 19),
where other references are also cited.

For the original Pareto distribution, which is (21.29), the arguments made in Sec-
tion 21.2 [viz., (21.15) through (21.23)] provide simple statistical procedures for the change
point model. In fact, for the scale-adjusted poverty line, for the model (21.29), we have
thus the reduced problem of testing the equality of the v, (i.e., the indexes of inequality)
against a possible change at an unknown time point 7 (€ T'). Thus, if {v,, t € T’} stands
for the set of the index of inequality parameters of the F;, t € T [each of which having
the form (21.29) with possibly different ¢}, then based on independent samples from the
F;, maximum likelihood estimators (MLE) of the 4; may easily be incorporated in the
formulation of CUSUM or some other recursive tests for the change point problem. Based
on the asymptotic normality and other related properties of these MLE (as well as the
consistency properties of the estimated information matrices), the theory developed in
Brown et al. (1975) and others can easily be adapted. Instead of the MLE, one may {as
in Johnson and Kotz (1970)] also use quantile estimators of the o;; and these estimators
may also be used in a similar manner for constructing the test statistic for the change
point problem. If, however, the poverty lines w;, t € T, do not satisfy (21.17), then the
test based on the estimators of the v;, t € T, gives only a partial picture.

This inadequacy becomes much more significant when the F; follows the pattern in
(21.30) or (21.31). In such a case, we have a multiparameter model, so that a change
point needs to be posed in terms of all the parameters (, 04, 8:,7:) or (kat, b, ¢t,72) as
well as the w;, t € T. This can, of course, be done in the same manner as in the nonpara-
metric case (which we shall be considering in detail in Section 21.4). However, we have
some reservations about advocating these parametric procedures over their nonparametric
counterparts:

1. In the nonparametric case, we would be dealing with vectors {; in (21.24) having
three basically meaningful components az, 8:, Gy(a), While in the parametric case,
for (21.30) or (21.31), we have four parameters, not all of which may be relevant
to the poverty structure. This redundancy may generally entail some loss of power
(or efficiency) of the tests for the parametric model (relative to their nonparametic
counterparts).

2. The parametric model-based tests may not be that robust against plausible depar-
tures from the assumed model, while the nonparametric ones are not based on any
such particular form of the F;, and, hence, remain robust for a broad class of F;’s.
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3. Finally, (21.29)—(21.31) are all known to be more appropriate for the higher income
structure, while for the income distribution of the poor, under various social welfare
functions, the income distributions may not conform to any one of them. In fact,
it is not unlikely to have positive probability mass at the null income point (due to
unemployment, etc.) or at some other levels, so that a generalized Pareto distribution
may not be so appropriate.

For these reasons, we shall study the nonparametric case in detail, and append a small
discussion on some parametric procedures that may be formulated along the same line.

21.4 Nonparametric Formulations

Based on the PI-ordering of the income distributions in Section 21.1, we may consider a
general family F of income distributions, and within this family, the change point problem
relating to the poverty structure may conveniently be studied in terms of the triplets a,
B, Gt(a) in (21.24).

Note that a; = F{*(w;) is the proportion of the poor people at time ¢, while, defining
the truncated income distribution as in (21.12), w,(1 — B;) is the average income of poor
people at time ¢ and Gy, is the corresponding Gini coeficient. All of these are therefore
estimable parameters of the income distribution F} and its truncated version Fj,. The
natural estimator (&) of o is the sample proportion of poor people at time ¢, and it
is therefore a simple U-statistic of degree 1; we may refer to Hoeffding (1948) for the
definition and other properties of the U-statistics. Similarly, B:, the estimator of By, is
a function of two U-statistics, and é’t(a), the estimator of Gy(q), is a function of two U-
statistics (i.e., the symmetric, unbiased estimators of u; and E|Y; — Yi2|, respectively,
where the Y;; are independent with the truncated d.f. F},). This characterization enables
us to incorporate the existing theory (in an asymptotic setup) in the forrhulation of the
proposed tests for the change point model.

We denote the time domain T by
T={t,...,tx}, h <...<tg , (21.32)

where K is a positive integer. Suppose that at the time point t;, we have a sample of
n; observations on the income variable; and based on this sample of size n,, we have an
estimator fk = (at,ﬂt, Gk) of & in (21.24). As has already been discussed earlier, each of
Gy, Br, and Gy, is a function of (at most two) U-statistics. This enables us to make use of
the standard properties of U-statistics (including the asymptotic normality and moment
convergence) for the study of the corresponding properties of the &, k < K. Note that
the coordinates of £ are all nonnegative and bounded from above by 1. Thus, we have
no problem in claiming the usual moment convergence results [on the ni/ ®(€x — &,)) along
with the usual asymptotic normality results.

Keeping this in mind [along with (21.25)], we assume that
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b =Ty, +er, k=1,...,K (21.33)

where the e, have zero mean vector and dispersion matrix n,;lv,,, k=1,...,K. Usually,
in a nonparametric setup, these Vi are not known. Nevertheless, as in Sen (1977), suitable
jackknifed estimators of them may easily be obtained. We denote the usual jackknifed
estimator of Vi by Vi, for £ = 1,..., K. Then, whenever the n, are large, we may
assume that for each k (= 1,..., K),

1/ e, ~ N(O Vi) , (21.34)
v;lvk = I3, asnp — 00 . (21.35)

The restriction that the n; are all large does not pose a serious problem in this study (as
large data sets are generally available). We define

N=n+...+ng (21.36)

and assume that there exist positive numbers A, ..., Ag, such that as N becomes large,
K

N'ng > X, k=1,...,K, where D> X=1 . (21.37)
k=1

21.4.1 The pseudo two-sample approach

As in the classical change point problem, the tests we shall formulate may be based on a
“pseudo two-sample” approach or on the so-called “recursive residuals”. We consider first
the pseudo two-sample approach. For every k (¢ < k < K — ¢), we consider the partition
of ék into two subsets

{i;i<k} and {&;k<i<K} (21.38)

and assuming the homogeneity of the I';, from each of these subsets, we consider the usual
weighted least squares estimates. Thus, we consider the usual quadratic norm:

>omil& —T¢)' (VI ™HE — TGy;) (21.39)
i<k
> milé - T¢) (V) (&~ T¢) (21.40)
k<i<K

and minimize each with respect to the unknown I' (having 3¢ elements). We denote
these weighted least squares estimators by T N(k) and I"(k) N, respectively. Note that these

estimators are linear (in the f,).

In the next step, we consider a suitable “norm” for the difference f‘N(k) - f‘(k)N, ie.,
we take
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|A - B]| (21.41)

where A and B are 3 x ¢ matrices. Actually, we may roll out A and B into 3¢-vectors, and
then ||A — B|| may be taken as the “maz norm” (i.e., the maximum of the coordinatewise
distances) or as a quadratic norm (often termed the Mahalanobis distance). Let then

-DNk:Nl/ZHf‘N(k)_f‘(k)N” , k=¢q,...,K — ¢ (21.42)
*
Dy = qgféai?—q Dpr . (21.43)

Note that for £ < ¢ (or k > K — ¢), T is not estimable from the first (or second) subset
in (21.38), and, hence, in (21.42)—(21.43), we confine ourselves to ¢ < k < K —q.

Under the null hypothesis (of homogeneity of the I';), the Dy, in (21.42) are all
bounded in probability (and, hence, Dy is also so). If, however, this null hypothesis is
not true, but (21.23) holds, then for at least one k (¢ < k < K — gq), ||f‘N(k) — f‘(k)N” will
be stochastically different from 0, and, hence, Dy will be large, in probability. This leads
us to consider the following test procedure:

Accept or reject the null hypothesis (of homogeneity of the I';) according
as Dy is < or > D}, where (0 < ¢ < 1) is the desired significance level (21.44)
of the test and D}, is the corresponding critical value.

Note that by virtue of (21.34)—(21.37) and the general theory of weighted least squares
estimators, there exist stochastic matrices Zg, ¢ < k < K — ¢, such that

| N2 {Dyy ~ Tayn} — Ziell B0, Vk, ¢g<k<K-g¢ (21.45)
and under the null hypothesis,
D
Z = (Zq, ey ZK_q) — N3q(K—2q+1)(07 A.) (21.46)

where A depends on the A, Vi as the (;, t € T. Thus,

D
Dy B 2= max |Z . (21.47)

Hence, to carry out the testing procedure, we need to find out the distribution of
Z* under the model (21.46). We shall make detailed comments on it later on. If the
null hypothesis is not true but (21.27) holds, then D¥ = O,(N'/?), so that the test in
(21.44) is consistent against () in (21.27). The testing problem in (21.22)-(21.23) may
be treated in a more simple manner by using the (scalar) estimates of the poverty indexes
from the first k and last K — k samples; and in this case, the theory in the classical change
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point model applies directly. Since most of these results have been discussed in detail in
Sen (1985, Ch. 3), we omit the details.

Let us also denote I' N(K) by I'y and let

Dnik =N Pypy—Tnll, k=g,....K (21.48)
e —
Dy = qg}:;XK Dpyp . (21.49)

Then, a variant form of the test in (21.44) may also be based on D)y in (21.49). The
asymptotic results in (21.45)—(21.47) may easily be extended to this case, and, hence, we
may conclude that under the null hypothesis,

-* D -* -
Z* = Z 21.50
Dy = Zax (|2l (21.50)

where the Z; have jointly (asymptotically) a multinormal distribution.

Following the Bayesian formulation of the change point problem relating to the normal
mean [viz., Chernoff and Zacks (1964)], we may also consider a different procedure based
on the estimates Iy, ¥ < K. Let Ly, k£ < K be a monotone function of k (e.g.,

Iye = N2k — (K +1)/2],1 < k < K) and let

DY = > tni(Pnwy —Tn), Dy =|IDRI - (21.51)
k<K

Then, under the null hypothesis, the asymptotic multinormality of D% may be obtained
along the same lines as in (21.45)—(21.46), so that we have

D% B 2° = 2% ; Z° ~ N3y (0,A°) . (21.52)

The matrix A depends on the Vi, A, G, t € T, as well as on the £y, k < K. One
possibility is to choose the {y, in such a way that the test based on Dy has (locally)
maxinmim average power, where 7 is allowed to assume each of the points ¢;,...,tgx with
a given probability distribution x(k),

From the operational point of view, in each case, the basic problem is to derive the
percentile points of the distribution of Z* (or Z or Zo), where these statistics do not
generally have the normal, chi (square) or other simple forms of distribution. Though in
some specific cases, the exact distribution of Z* (or the other statistics) can be obtained
in a closed form, in the general case, we may have to rely on numerical or simulation
methods. The Bessel process results of DeLong (1981) may be used in some specific cases.
However, we may consider the following simulation method in the general case.

From the given (;, t € T, &, k < K, and the jackknifed estimators Vi, k<K, we
derive a suitable estimator A of the dispersion matrix A in (21.46). Note that there exists



Pranab K. Sen 341

a matrix B* such that A = B*(B*)’. Let p=3¢(K —2¢+ 1) andlet Y = (13,...,Y}) be
a vector having the normal distribution N(0,I,). We generate a large number (say, M)
copies of Y (i.e., pM standard normal deviates), and denote these by Y¥,, 1 < s < M. Let
then Y} = B*Y,, 1 < s < M and let Y(’;) = ||'Y;l|, the norm being defined as in (21.47).
We arrange these M Y(’;) in ascending order of magnitudes, so that the [Me]th observation
from the top provides the desired simulated value for D} .. Since the computation of B*
is needed once for all, this simulation procedure is relatively inexpensive and can be done
for a broad range of situations. When K is large, Gaussian process approximations may
also be used toward the same goal.

It is clear that this pseudo two-sample approach can also be used for the parametric
model. We may have to estimate the parameters (pq, o¢, 8;,4:) (or ko, by, ct,:) and their
dispersion matrices, and with these, we may repeat the steps in (21.42) and (21.43) [or
(21.48)—(21.49)]. The disadvantage here will be that instead of 3¢ parameters (¢ > 1),
we would have 4q parameters, so that for ¢ > 1, the nonparametric approach will be
computationally simpler, too.

21.4.2 The recursive-residual approach

Define the estimates f‘N(k) as in (21.39)—(21.41). Consider then the recursive residuals:
wye =& — Tnge-1ye, fork=q+1,.. K (21.53)
Also, define the CUSUMs for these recursive residuals by

Wre=) wyi fork=q+1,... K (21.54)
i<k

We may then define

_ Wi, k=¢q+1,....K
Whie = { 0, k<gq (21.55)
o= . 21.56
Wi = maxW (21.56)

The test procedure is similar to that in (21.44). Thus, the basic problem is to obtain the
critical values for W§,. For large K, invariance principles for recursive residuals considered
by Sen (1982) and others may be incorporated to provide a Bessel process approximation to
the CUSUM:s in (21.54), so that boundary-crossing probabilities for such Bessel processes
[studied by DeLong (1981) and others] can be used to provide the desired critical levels.
For values of K not so large, it may be quite appropriate to consider a simulation method
similar to the earlier case.

Note that under the null hypothesis, by (21.34), (21.35) and (21.53), (21.54),
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NYYWhgi,..., Wag) B Nyx_g)(0, &) (21.57)

where the dispersion matrix A can be consistently estimated by A”, using the jackknifed
estimators V3, k < K and the (¢, t € T. Thus, if we choose a B” such that A" = ﬁ*(ﬁ*)',
we may again generate normal (vectors) Y, = (Yi,,...,Y ), 2= 3(K — q), 7 > 1, such
that Var(Y,) = I, and let Y} = B"Y,, » > 1. We define then Y;* = || Y7||, 7 > 1. The
M generated Y; are arranged in ascending order of magnitudes and the [Me]th value from
the top provides a consistent (empirical) estimate of the critical level of NY/2W5.

A similar recursive residual test may also be worked out for the parametric approach
[using the estimates of the parameters ky;, by, ¢, 9: and forming the recursive residuals].

21.5 Some General Remarks

In Section 21.2, we characterized the change point model relating to the poverty struc-
ture in terms of all the parameters in the parametric case and ai, B, and Gy in the
nonparmetric case. If, however, we choose a specific index of poverty, 7y, such as the one
in (21.4), (21.5), or (21.6), then in the parametric case, 7; can be expressed as a real
valued function of the parmeters [in (21.30) or (21.31)]. Then, in terms of the estimates
#; (derived through efficient estimators of these parameters), we would have a univariate
model in (21.33), and the analysis would have been simpler. Similarly, in the nonpara-
metric case, 7; would be a real valued function of three U-statistics [namely, the estimates
of at, wi(1l — Bt), and a¢Gy(q)], so that we could have written a model on these 7, t € T,
parallel to (21.33), where the ey are scalar random variables having asymptotic normal
distributions.

In either case, the deailed analysis made in Section 21.4 simplifies a great deal, and
the normal theory model considered by Brown et al. (1975) can be readily amended to
provide good approximation to the critical values of the test statistics. For robustness
considerations, however, we prefer to use the multidimensional model in Section 21.3 or
21.4. This is because the real valued function of the & [such as the m¢ in (21.9)] may not be
sensitive to changes in all directions and, hence, may not be totally relevant to the broad
spectrum of poverty structure. A better picture is conveyed by the vector §;, t € T, and,
hence, the analysis made in Section 21.4 would reveal this picture to a greater extent than
the one based on the #; alone. Also, between the parametric and nonparametric models,
as has been explained earlier, the nonparametric ones seem to be more meaningful and less
dependent on the form of the underlying income distributions. Thus, on such robustness
grounds, we prefer to use the nonparametric methods.

It is not uncommon to have indefinitely large sample sizes ny, ..., ng, so that in (21.33)-
(21.34), the error terms e, would have negligible covariance matrices. In this case, from
(21.42) and (21.43), we may conclude that the test in (21.44} will be sensitive to any
departure from the assumed homogeneity of the Ty, ¢ € T. Thus, from a descriptive
analysis point of view, the test in (21.44) provides a good interpretation of the basic
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model and allows the normal theory procedures to have the leading role in the proposed
analysis when the nj are not small.

In Section 21.4 (or 21.3), we considered the case where k, the number of time points
belonging to the interval T, is fixed. In economic analysis, it is not uncommon to have
a large number of time points in T (as may be obtained by considering the monthly or
quarterly pictures instead of the annual ones). In such a case, one may have to be a little
extra careful in identifying the seasonal and/or other short-term fluctuations in the income
pattern.

For example, for workers in the agricultural sector, the income pattern may vary
drastically from the harvest season to the winter one, so that on a fixed poverty line,
the same group of people may not always be under the poverty line. We may, of course,
seasonally adjust the poverty line, but that is likely to impose a seaonal structure on the
poverty indexes. Hence, in (21.25) or elsewhere, such seasonality effects should be taken
into account. This would naturally make the analysis more complicated.

It is better to eliminate the seasonality and other short-term effects in the definition
and interpretation of poverty structures and indexes, and then to carry out the proposed
analysis on such adjusted estimators. For large values of k, the multinormal models
worked out in Section 21.4 can easily be extended to multivariate Gaussian processes, and
parallel results can be obtained by reference to the change point models pertaining to such
Gaussian processes. Some of these developments are discussed in Sen (1985, Ch. 3), where
other references are also cited.

Finally, for the parametric models in Section 21.3, we may use some convenient esti-
mators of the parameters (other than the maximum likelihood estimators), such as the
L-estimators discussed in Johnson and Kotz (1970, Ch. 19). In the nonparametric case,
too, the £, are based on (functions of) U-statistics. To reduce possible bias, we may as
well use the corresponding jackknifed estimators. By virtue of the results in Sen (1977),
these jackknifed estimators lead to the same asymptotic theory, and, hence, the results in
Section 21.4 remain intact.

Instead of the weighted least squares method in Section 21.4, we may use some other
robust methods, too. For example, keep in mind the linear model in (21.35); it is quite
conceivable to use M-estimators of the I',. Recursive M-estimators in the change point
model have already been studied by Sen (1984). For some further developments in this
direction, we refer interested readers to Huskova and Sen (1986) and to Chapter 6 of this
volume.
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CHAPTER 22

Statistical Identification of Nonlinear
Dynamics in Macroeconomics Using
Nonlinear Time Series Models

Tohru Ozaki and Valerie H. Ozaki

Summary

A mathematical model is introduced to explain the dynamics of the Hicksian IS-LM
paradigm, in which the difference between the attitudes of Keynesians and monetarists
is representable by a difference in the parameters of the model. Statistical identification
procedures are introduced for both this model and for the nonstationary model of a time-
varying Hicksian IS-LM structure. Application of the models to simulation data is also
discussed, and numerical results are given.

22.1 Introduction

It is well known in macroeconomics that there is a sharp conflict between “monetarists”
and “Keynesians”. The difference between the two “schools” is generally held to center on
whether money supply or fiscal variables are the major determinants of aggregate economic
activity and, hence, on the most appropriate tool of stabilization policies (Morgan, 1978).
The two groups also differ over the question of whether stabilization policies are needed
(Modigliani, 1977).

Several explanations have been presented to justify Keynesians’ or monetarists’ views
on macroeconomic policy. These explanations are, as seen in the succeeding section, mostly
based on the Hicksian IS-LM paradigm. It is a pity that the monetarists and Keynesians
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Figure 22.1: IS and LM curves.

use different assumptions about the IS-LM curves to come to different conclusions about
effective economic policy. It would be useful if the rationality of these assumptions could
be checked by some statistical method on some historical economic data.

Our purpose in this chapter is to introduce a dynamic model for the IS-LM paradigm,
and an identification method for this model. With the identification method, we can
estimate the IS-LM curves and the strength of the stabilizing power of the equilibrium
point of the IS-LM paradigm. A Bayesian method of estimating IS-LM curve changes over
time is also presented, together with some numerical results.

22.2 Dynamic Modeling of the Hicksian IS-LM Paradigm

The Hicksian IS-LM paradigm is a model that explains the dynamics of interest rate and
output. The IS curve shows the relation between the equilibrium output in the goods
market and interest rate. The LM curve shows the relation between the equilibrium of
interest rate and output. The intersection of the two curves is the equilibrium point of
both the output and interest rate (see Figure 22.1).

The difference between Keynesian’s and monetarist’s macroeconomic policies comes
from different assumptions about the IS-LM curves. Keynesians assume thet the slope of
the IS curve is large and almost vertical, while the slope of the LM curve is small and
almost flat. Therefore, shifting the LM curve by increasing money supply is not effective
in increasing output. On the other hand, shifting the IS curve by the fiscal policy of
government spending is effective in increasing the equilibrium output (see Figure 22.2).
Monetarists start from opposite assumptions: the slope of the LM curve is almost vertical,
while the slope of the IS curve is almost flat. In this situation, fiscal policy is effective in
increasing it (see Figure 22.3).

Unfortunately, there has been no objective method to check which of these contradic-
tory assumptions are more realistic and preferable. This may be because there is no model
that explicitly specifies the dynamics of IS-LM paradigm in mathematical form. If such a
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Figure 22.3: Monetarists’ IS-LM curves.
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mathematical model were given, we could use a statistical method to identify the model
from the time series data of interest rate and output. To provide a method of checking the
appropriateness of the competing assumptions about the IS-LM curve, we first introduce
a mathematical model of the IS-LM paradigm.

The dynamice of the interest rate y and output = are expressed by the following
dynamic system

filz,y)z
v = fil=9)y (22.1)

z

il

where fi(2,y) and fa(2,y) are some functions of # and y. At the equilibrium point of the
interest rate, we have y = 0 for which fa(z,y) = 0. This relation between z and y gives us
the LM curve. From the equilibrium condition of the output, # = 0, for which fi1(z,y) = 0,
we have the IS curve. Naturally, the intersection of fi(z,y) = 0 and fa(z,y) = 0 gives
the equilibrium point of both the variables. The simplest functional form of f;(z,y) and
f2(=,y) is the linear function. For example, let

fi(z,y) = a1 +az+asy
f2(z,y) by + boz + b3y

It can be proved that the equilibrium point (z,y) of the dynamical system (22.1) given
by the intersection of the two lines, a; + asz + agy = 0 and b; + byz + b3y = 0, is a stable
equilibrium point (Hirsh and Smale, 1974). This means the trajectory of (z,y) starting
from a point near (2, Yoo) converges to (2o, Yoo ) for At — 0.

In macroeconomics it may not be realistic to think that the system is deterministic —
that the future behavior of the system is completely determined by its initial state. It may
be more realistic to think of the system being disturbed by external, unpredictable, random
shocks. This uncertainty is realized by making the system into a stochastic dynamical
system by adding a random white noise. For example, let

filz,y)e 4+ m(t)
f2(z,9)y + na(2) (22.2)

z

(]

where n(t) = [n1(2), n2(t)]' is a bivariate Gaussian white noise whose variance-covariance
matrix is & = (0;;). The stochastic process (z,y)’ defined by (22.2) is a Markov diffusion
process whose transition probability p(z|zo,t), from the state zo at ¢ = 0 to the state
z = (z,y)’ at t, satisfies the following Fokker-Plank equation

Op(z|zo,t) o 0 1G9t
at - _;a_z’[f“(z)p] + EiJX:::l aZiaZj [a.",]p]
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Figure 22.4: Trajectory [2(t), y(t)] of example 1.

We can see how the dynamical systems (22.1) and (22.2) work as the model of the
IS-LM paradigm in the following examples.

Ezample 1: = (y—z)z

y=(20-2z-y)y
The equilibrium point of the model is (10,10). The trajectory of the model, starting from
the initial state zg = (20, 1), converges to the equilibrium point, as is seen in Figure 22.4.

Ezample 2: & =(20—-y— 2)z

y=(z-yy
The equilibrium point of the model is also (10,10). The trajectory, starting from the
initial state zo = (1,20), converges to the equilibrium point (10,10), but in a different way
from the previous example (see Figure 22.5). When these systems have white noise input,
as in model (22.2), we have trajectories that fluctuate around the stable equilibrium point
(10,10) (see Figure 22.6 and 22.7).

22.3 Time Discretization

The difference between the assumptions of Keynesians and monetarists on the slopes of
the IS and LM curves and the strength of the stabilization power of the equilibrium point
can be realized by the difference in the parameters, a;, as, as, b1, bz, and bs of the following
model,

z = (a1+az+ asy)z+n(2)
(by + boz + bgy) = + ma(t) (22.3)

.
Il
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Figure 22.5: Trajectory [2(t), y(t)] of example 2.
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Figure 22.6: Trajectory [z(t), y(¢)] of the model of example 1 with white noise input.
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Figure 22.7: Trajectory {z(t), y(t)] of the model of example 2 with white noise input.

It is well known that the estimation of parameters of a continuous-time stochastic dynam-
ical system is not easy, except for linear cases. On the other hand, the estimation of the
parameters of a discrete-time stochastic dynamical system, which we call a nonlinear time
series model, is easily obtained by applying the maxirmum likelihood method. Our idea for
estimating the parameters of a continuous-time dynamical system is to derive a discrete-
time version of the continuous-time model and use the maximum likelihood method for
the estimation of the discrete-time model. For this purpose we rewrite model (22.3) in
vector form as follows:

z = f(zla,b) + n(t) (22.4)

where z = (z,y)/, f(z]a,b) = [— fi(z]|a), — f2(z|b)], and n(t) = [n1(t), n2(t)]'. We assume
that the white noise processes ni(t) and n;(t) are independent and their variances are
equal to o2.

It is shown in Ozaki (1986) that when we assume that the dynamical system is locally
linear, i.e., the Jacobian matrix

is constant on each short interval [¢, ¢ + At), we have, from (22.4), the following discrete-
time model:

Ziiar = exp{K;At}z; + WAt (22.5)

where Wi a; = ftH'At exp{K.(t + At — u)}n(u)du, K; = ﬁlog A;, and A, = 143!

x(exp{J:At} — I)F;; I is a unit matrix and F; is a matrix satisfying Fiz = f(z¢|a,b).
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The matrices exp{K;(At)} and log A; are defined respectively by exp{K;At} = I +

S, M, logA; = 322, K%X(At ~ I)!. The variance-covariance matrix of w;ia¢
is

t+At t+At
E[/t‘ exp{Kq(t + At — u} n(u)du[ n'(u) exp{K;(t + At — u)}du]

i

t+At o 0
/ exp{K:(t + At — u)} 0 o exp{Ki(t + At — u)}du
t

€11811 €12812
otV ( V!

€21821 €22822

where V, is a matrix which satisfies V; 'KV, = ( ’81 ,? ) and is given by
2

V.= ( o ) (22.6)

The elements e1y, ..., €22, $11,..., and 83, are defined by

exp{2m At} -1

€11 = 2
1
_exp{(m + p)At} -1 _
€12 = = €21
B1 + 2
exp{2u, At} — 1
T
2
P
11 =
(1 — p2)?
14+ paps
s = — "2 =3
12 (i1 + pa)? 21
P .Y
1n = T/
(#1 - #2)2

where A1, A, are roots of the polynomial A% — (e11811 + €22522)A+e11511€22822 — €2,5%, = 0.
With V, given in (22.6) and

U, = 1 ( €12512 A2 — €22827 ) (22.7)
\/e§23§2 + (A1 —e11811)? A —ensn €12812

the variance-covariance matrix of w;a¢ is
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Figure 22.8: Function Ay (z,*).
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From (22.5) we have the following nonlinear bivariate time series model:
Zerat = Az + Bingyag (22.8)

where

VA 0
A, = exp{K;At}, B,=V,U; ( 0 ! Wi )

and n, is a discrete-time bivariate white noise with variance-covariance matrix oL

It is well known that most discretization schemas, although they are consistent, give
us an unstable model for a fixed At. The present scheme gives us a stable discrete-time
model from a stable continuous-time model (Ozaki, 1985b). When At is small, B; is almost
constant and we have B; = VAt L. A, is very different from a constant matrix. We can
see how the matrix A; changes as a function of z; and y; using example 1 of the previous
section. Figure 22.8 shows the (1,1)-element Aq1(2;,y:) as a function of z; for a fixed
y: = 10. Figure 22.9 shows A;1(z¢,y:) as a function of y; for a fixed z; = 10. Aj2(z:,y:)
and Aji(2;,y:) are very small, compared with other elements, and can be ignored. The
figures of Asz2(z¢,y:) as a function of z; and as a function of y; are shown in Figures 22.10
and 22.11, respectively.

The information on the behavior of the matrix elements as a function of z; and ¥,
are useful for the parameterization of the model in the discrete-time domain in the next
section.
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Figure 22.10: Function Aj,(z,*).
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Figure 22.11: Function Ays(x,y).
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22.4 Model Identification

To identify the stochastic dynamical system model (22.4), we first try to estimate the
parameters of the discrete-time model (22.8) from the data, z;,2,...,2zy, where z; =
(zi,yi)'. The log-likelihood of the model (22.8) is given as follows.

log p(z1,22,. . .,zN|a,b, %) (22.9)
= logp(ZZ""7zN|z17a,ba02) +10gp(zl|a,b,02)
= logp(nz,...,nN|z1,a,b,a'2)+logJ(z n) +logp(z1|a b,a?)

N -1 2
B, (2441 — Az N
_Z IB: " ( t+210»2 124 )| _ log[a- Il - Zk’ngtl + logp(zi|a,b, o )
t=2

where J(z,n) is the Jacobian of the transformation from (z2,...,zx) to (nz,...,ny), and
||| means the Euclidian norm. For large N, the last term is negligibly small, compared
with the rest, and can be ignored. Since the maximum likelihood estimate 6% satisfies

dlogp(z,...,znla,b,a?)
do?

=0

2_52
a ——GN

we have 6% = min, }, 0%(a,b|z), where o%(a,blz) = ﬂﬁjzi\;z IB; (ze41 — Aszi)|)?
To minimize ¢2(a,b|z) with respect to a and b, some nonlinear numerical optimization
procedure is needed (see, for example, Fletcher and Powell, 1963).

To see if the maximum likelihood method works numerically, we performed some sim-
ulation studies. We simulated the model (22.4) with the following parameters: a; = 10,
@z = —1,a3 = -1, b; = 0,b; =1, and b3 = —1. The variances of the white noise, n(t)
and ny(t), are equal to 1. We generated 400 data points (z1,%1)’,...,(Z400,¥100)’, which
are plotted in Figure 22.12.

The maximum likelihood estimates obtained by applying the above-mentioned method
are a.1 = 9.8882, a, = —0.9856, azg = —0.9970, b1 = 0.1893, bz = 0.9738, 173 = —0.9261,
and 62 = 1.0161.

By the above maximum likelihood method, we obtained the maximum likelihood es-
timates a, b, and 62 for the model zir1 = Aai(zi]a,b)z; + Bae(ze|a,b)ng 1 but not for
z = f(z|a,b) + n(t). That means the nonlinear function that we have obtained by the
maximum likelihood method is not f(z[4, b) but some function fa;(z|a, b), which satisfies
the local linearization relationship

N -1 .
fa:(z|a,b) = [exp {WAt} - I] W[Am(zlé,ﬁ) - Iz (22.10)
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Figure 22.12: Simulated data (z1,31), .- -, (€400, Y400)-

with AM(z[é,B). In general, we cannot give an explicit form for fa¢(z|a,b). Instead, we
can obtain fa¢(z|a,b) by the following numerical iterative procedure:

£3;7) (24 51a,b) (22.11)
= (1-As) fg;)(z,"jla,b) + As[exp{J;,jAt} - I]—I[AAt(z,"jla,b) — I]z,‘,j

for each point z; ; = (zi,¥;), (¢ =1,2,...,7 = 1,2,...) on any finite region. This is because
fat(zi j|a,b) can be considered as a limiting function fa.(z, oola,b), characterized by

0fas(z, s|a, b)

=0
Os

of a deterministic spatial process fa;(z, sja,b), defined by the partial differential equation

0fas(z, s|a, b)

B = —fas(z, s|a,b) (22.12)
Ofas(z, s|la,b ~1 [16fa(z,s]a,b
+ eXP{M(a—zl)At} - I] [%} [Aa¢(z]a,b) — Iz
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Ji j is a matrix obtained by approximating the Jacobian matrix

[afm(z|a, b)]
0z z=(:,y;)’

by some numerical differencing method with Az = (Az, Ay)’. We have fg’;+l)(z,~,j|a,b) —
fa:(zijla,b) for k — oo if As of (22.11) is sufficiently small, compared with Az and Ay.
For the initial function of the above iteration, the following function

1
fgot)(z]a,b) = E[AM(zla,b) — 1)z

which is obtained from the local linearization relationship (22.10) by employing the ap-
proximation

exp {—afm(azla, b) At} ~I+ ——afmgzla’ b) At

will be useful.

Of course, the function fa;(z|a, b) obtained from f(z|a, b) through the locally linearized
A¢(zl|a,b) using ’

af(z]a,b)]_l [exp {8f(z|a,b)

At} - I] F(z|a,b)

is not equal to the original f(z|a,b) since the local linearity approximation is used in
deriving A a.(z|a,b) from f(z]a,b). We can easily see how fast f5;(z]a,b) approaches the
true f(z|a, b) for At — 0 by employing the above numerical procedure (see Ozaki, 1985a).

The above-mentioned numerical procedure suggests another possible method of identi-
fying f(z|a,b). Instead of giving a continuous-time parametric model, z = f(z|a,b) + n(t)
we can give a discrete-time model parametrization thus:

Zern = Aae(Ze| )2z + Bae(2e|o)nipas (22.13)

where Aai(z:|p) is some matrix function, with parameter vector v = (1, v2,...,0k)"
Ba¢(z¢|p) is determined from A a.(z:|¢) as follows:

Bat(ze|p) = Vi(2:|0)Us(ze|p) < \/’W 0 )

0 A2(zZ:|p)
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Vi(zel@), Us(zel@), Mi(zelp), and Aa(z¢|p) are functions of e;; and s;; (1 = 1,2 and
J = 1,2), which in turn are functions of the eigenvalues pi(z¢|p) and pa(z¢|p) of the
matrix log Aae(ze|p), as in the previous section. We note log Aae(z:|p) is well-defined
when ||A a¢(2¢|@) —I|| is sufficiently small, which is always true when the data are sampled
from the original continuous-time process with a sufficiently small sampling interval. For
the parameterization of A a;(z:|p), the behavior of the functions Ayy(2¢,y:), A12(2e,3:),
Az (2, yt), and Aza(e,y:) of Aa(zeja,b), described at the end of the previous section,
gives us useful information. Ajz(z:,y:) and Agi(2:,y:) for the model (22.3) are almost
zero compared with A;q(z:,y:) and Azz(z:,y:), which are smooth functions of z, and y;
(see Figure 22.8 to 22.11. Therefore a reasonable parameterization would be

T+ T2&e + T3Ye

Ari(ze, )

22.14
Agp(ze, 1) = 61+ G220 + O3y ( )
or
An(ze,ye) = w1+ maal + may?
22.15
Ax(ze,ye) = 01+ 022} + O3y} ( )
or
Ap(ze,ye) = w1+ mae " 4 mge™ W
Azz(zt,yt) — 01 + 028_2' + 036“3" (22.16)
or
Aui(2,9) = m1+me T 4 mge W (22.17)

Axp(ze, ) = 61+ fae7 + O3V

By applying the least squares estimation method, which is asymptotically equivalent
to the maximum likelihood method, to the data of Figure 22.1, with the parameterization
(22.14) we obfained the estimates 71 = 1.7965, 3 = —0.0947, 73 = —0.0648, 6, = 0.9602,
6, = 0.0865, 63 = —0.0781, and &2 = 0.0996. For the matrix

o T + Tazy + T3y 0
A Ty, 77)0 = ) ) )
at(ee, ye|7,0) ( 0 61 + B2z, + O3y, )
we have the approximate relation i‘At(zhyt) ~ ﬁ[AM(z"y‘lﬁ’é) ~I(ze %)

From this relation, approximate IS-LM curves are obtained by

1, . .

E(ﬁ — 1+ #oze + Fa3ye) 2 =0
1
At

f1($t, yt)
fz(lﬁt,yt)

(él — 14 bpz, + ésyt) =0
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Figure 22.13: Estimated IS-LM curves by the model (14).

which are shown in Figure 22.13, where we see very close estimates to the original true
lines. Using the parameterization (22.15), and applying the same least squares estimation
method, we obtained the following estimates: #; = 1.3946, 7, = —0.0092, %3 = —0.0065,
6, = 0.9748, 6, = 0.0088, §3 = —0.0077, and &% = 0.0996. From the estimates we obtained
the approximate IS-LM curves, which are also close to the true curves (see Figure 22.14).

Since By(z:|¢) is almost constant and equal to v/AtI, we have a linearly parameterized
nonlinear discrete-time model z;11 = At(zt|<p)+«/ﬂ n;,; where ¢ = (my,...,03); neyq is
a bivariate Gaussian white noise with variance-covariance matrix o?I; A;(z:|p) is given by
(22.14), (22.15), (22.16), or (22.17). The least squares estimate ¢, which is asymptotically
equivalent to the maximum likelihood estimate, is obtained by solving a linear equation.
For example, for the parameterization (22.14), we have only to solve the following equation:

X'Y = X'Xy
where p = (7"1)7"2:7‘-3’01702’03)11 Y = (32ay27331y3,- . azNayN)l) and
1 :cf 11 0 0 0
0 0 0 0 %121 H
T :B% Z2Y2 0 0 0
X = 0 0 0 Y2 Y222 y2
en_1 zh_; zN_1yN-1 O 0 0
2

0 0 0 YN-1 YN-1ZN-1 Yn_1
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Figure 22.14: Estimated IS-LM curves by the model (15).

22.5 Bayesian Estimation of Time-varying IS-LM Curves

In the previous section, we introduced a stationary dynamic model for the IS-LM paradigm.
However, a real economy is unlikely to be stationary. The slopes of the IS and LM curves
may change over time. The strength of the stabilizing power may also change as time
passes.

Let us allow the parameter ¢; = (71, 72, 73,61, 602,03); of the following model

Tyl = TWTg + 7!'22,:2 + T3LtYs + 6&_1*_)1
2
Yep1 = Oy + Gazey; + 93yf + E§+)1 (22.18)
tc be stochastic and slowly change as ¢;y1 = @ + Wiy 1, where wi,; is a Gaussian

white noise with variance-covariance matrix 02I. Then we have the following state space
representation

Ptr1 = P+ Wigl
Zer1 = Fepioe + v (22.19)

here 2,41 = (¢4+1,¥t+1)', Vet is a bivariate Gaussian white noise with variance-covariance
matrix o2I, and

T 22z, O 0 O
ik 0 0 0 ¥ wz ‘yt2
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The estimate of ¢; which minimizes E(||¢;||?) is obtained recursively by applying the
Kalman filtering algorithm. ||@;||? means the sum of squares of the components of ;, the
estimation error of ¢; given by @ = ¢, — Py, where @y, is an estimate of ¢, given the
observations 2, Z¢—1, -..,%1. The state estimates, @1}, @22, - - ., PN, thus obtained by
the Kalman filtering algorithm are equivalent to the estimates ¢, ¢,, ...,@n obtained
by maximizing

L_[L(¢) + &[0 — wll3]}

I(¢) = exp pry=?

and are given as the mean of the posterior distribution defined by the data distribution

1\7 /1\V 1
sl o) = (32) 7 (3) expl-57L0) (22.20)
and the prior distribution
1\7 /1\* 4
s6ld) = (52)" (5) 1€R] expl—5o5le — wolla} (2221

L(¢p) is a sum of squares of the prediction error of z; and y; for parameter ¢; ||.||% denotes
the norm defined by a positive definite matrix R; |R| denotes the determinant of R; &
is the dimension of the parameter space, i.e., ¥ = 6 in the present case. In the above
model (22.19) we have |l¢ — ol = ||co — D¢||? where D is a properly chosen matrix,
and ¢o = Dyo. In the Kalman filtering algorithm o2 and o2 of (22.19) are assumed to be
given. In real applications we need to decide their values. A practical Bayesian criterion
for the choice of the variables, 62 and o2 which correspond to o2 and d? in (22.20) and
(22.21), is given by Akaike (1980). (Details of the procedure and an algorithm for the
estimation of the above model will be given in a future paper.)

Let us see how the procedure works in some simulations. We generate data from the
model

¢ = [a1(t) + aa(t)e + as(t)y]z + na(t)
v = [b1(t) + ba(t)e + bs(t)y]y + nal(t) (22.22)

where the vectors [a;(t),...,b3(t)]’ slowly change from (21.25,-1,-0.25,0,1,—0.25) for
t = 0 to (21.25,-0.25,~1,0,0.25,~1)' for t = NAt; N = 400 and At = 0.1. The
generated data (z1,31)', ..., (2400, Y400)" are plotted in Figure 22.15. The intersection of
the two lines defined by a;(t) + az(t)z + as(t)y = 0 and b1(t) + ba(t)z + bs(t)y = 0 are
plotted in Figure 22.16.

For this simulated data, by applying the above estimation procedure with o2(= At o?)
= 0.1 and ¢ = 1075, we obtained a sequence of estimates @;, ...,@n. As we saw in



362 Statistical Analysis and Forecasting of Economic Structural Change
24.00
18.00

12.00

6.00

0.00 4———— e,
0.00 6.00 1200 18.00 24.00

Figure 22.15: Simulated data (N = 400) of nonstationary model (22).
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Figure 22.16: Trajectory of equilibrium points of nonstationary model (22) with 0% = 1.
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Figure 22.17: Estimated trajectory of the equilibrium points with ¢Z = 1075.
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Figure 22.18: Estimated trajectory of the equilibrium points with g2 = 107",
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Figure 22.19: Simulated data (N = 400) of model (22) with ¢? = 12.

the previous section, each estimate @¢; = [1‘r£’), 1‘rg’), 1?:(;), ég’), ég’), é:(;)]’ defines two lines,
1’r£i) -1+ ﬁgi)zt + ﬁg’)yt = 0 and égi) -1+ égi)zt + é:(;)yt = 0, which are approximations
of the IS and LM curves. The sequence of the intersections of the two lines is plotted
in Figure 22.17. Figure 22.18 shows the sequence of the intersections of the lines, where

02 = 107. The procedure seems to work well even with quite a large noise variance o2.

w
Figure 22.19 shows the data (N = 400) generated from the same model as (22.22) but
for 02 = 12. Figure 22.20 shows the plotted sequence of the intersections of the lines
defined by the estimated sequence of the parameters ¢y, ..., @ obtained by applying the

procedure with ¢2 = 1077 and o2(= Ato?) = 1.2.

22.6 Discussion

The dynamical system model (22.2) is valid not only as a model of the dynamics of interest
rate and output, but also as a model of the dynamics of other variables in macroeconomics,
such as inflation rate and unemployment rate, or labor demand and labor supply.

Dornbusch and Fischer (1978) introduced a model to explain the dynamics of inflation
rate and output. In their model the equilibrium point of the inflation rate and output is
realized by the intersection of the demand curve (A D-curve) and the supply curve (AS5-
curve). The dynamics explained by the Dornbusch-Fischer model are explicitly realized
in a mathematical form in the model (22.2), where =z is the inflation rate, y is the output,
fi{z,y) = 0 defines the AS-curve, and f(z,y) = O defines the AD-curve. Since the
coefficients of fi1(z,y) and fo(z,y) are dependent on the money supply and the government
spending, the AD-AS curves and the equilibrium point could be shifted. This means that
the Phillips curve, which is obtained from the AS-curve by changing the variable from
output to unemployment rate using Okun’s law, could also shift depending on monetary
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Figure 22.20: Estimated trajectory of the equilibrium points with ¢2 = 10~7.

and fiscal policies.

Application of the present model and identification method to real economic data will
be discussed in a future paper.
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CHAPTER 23

Econometrics of Technical Change:
Techniques and Problems

André Keller

Summary

Technical change greatly contributes to the explanation of economic structural changes.
Numerous studies attempt to quantify and model this essential aspect of economic growth.
This study surveys the models, their estimation techniques, and the problems and pitfalls
in the applications. Particular emphasis is laid on aggregated production functions, factor
productivity, and input-output approaches.

23.1 Introduction

Technical change and structural change are tightly interrelated in the economic growth
process, as is shown in numerous theoretical and empirical studies. Denison (1980, 1983),
in evaluating the 3.8% growth rate of national income from 1948 to 1973, attributes 156%
to capital contributions and 37 % to advances in technologies, managerial skills, and orga-
nizational knowledge. Moreover, technical progress has a special importance for longrun
simulations of economic models. For Kennedy and Thirlwall (1972), technical progress
embraces two main aspects: the effects of changes in technology (macrostudies) quantified
as the rate of technical progress, and the changes in technologies themselves {microstudies)
to explain the process. Here, we are mainly concerned with the first interpretation.

Technical progress, which embraces the process of innovation and the longterm deter-
minants of capital accumulation as well, has been designated as one of the driving forces
of structural change along with population growth, capital accumulation, and the use
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of resources [Krelle (1984)]. Pasinetti (1985) postulates a multisector economic system
wherein technical progress occurs at different sectoral rates. He criticizes macroeconomic
growth models only containing a single commodity (or a composite one with invariable
composition) and where technical change is introduced in the form of an “overall rate of
technical progress.” But his approach differs from input-output models in the sense that
he prefers to consider vertically integrated sectors.

Empirical studies aim at providing a longrun analysis of technical progress and struc-
tural change. For example, Fgrsund and Hjalmarsson (1983) estimate vintage models on
the basis of microdata for individual firms in the cement industry. In response to rising
fuel prices in the 1970s, the approach was extended to other branches of industry, such
as the aluminium industry in Norway; see Fgrsund and Jansen (1983). To elucidate the
process of technical change, these authors generally had to reformulate existing models.

Input-output techniques have been extensively explored in the survey of Sato and Ra-
machandran (1980). The authors describe the improvements that have been introduced.
Vaccara (1970) and Carter (1970) compute measures of technological progress on the basis
of both direct input-output matrix and Leontief inverse matrix, to study structural change
in the US economy. Istvan (1974) introduces lags in a dynamic input-output model to
evaluate the economic impact of projected technological changes. Carter (1974, 1976) com-
bines these two propositions into a general equilibrium analysis. Craven (1983) discusses
the properties of input-output systems in which the technical coefficients may change over
time.

A shift in the aggregate production function over time is generally considered as an
effect of technical progress because of greater efficiency in combining the inputs. These
shifts are done in a variety of ways, including changes in the coeflicients of labor and
capital. These problems led econometricians, in particular, to question the stability and
the consistency of estimated parameters in production functions. Difficulties arise when
one is attempting to distinguish between movement along a given production function and
shifts. The Divisia index of technical change helps to make this distinction as long as the
production function is differentiable; see Haltmaier (1984).

Nelson (1980) tends to consider as a “fragile construct” the usual assumptions on
production sets, their efficiency frontiers (constant return to scale of techniques, concave
and differentiable isoquants), and technological knowledge (shift of the production function
explained by R&D spending differences). Thus, the distinction between moving along and
shifting the production function supposes that learning and doing are seperate activities.

Theoretical and empirical aspects of the technical progress have been extensively con-
sidered in numerous papers and books. Most of them attempt to model this essential aspect
of economic growth. The surveys cover various aspects of technical change. Several impor-
tant contributions discuss the economics of technical change — Mansfield (1968), Rosen-
berg (1971, 1974), Mensch (1975), and others — or industrial innovation, such as Free-
man (1974). Production functions are extensively examined by Hildebrand and Liu (1965),
Walters (1968), Ferguson (1969), and Sato (1975). Other surveys are based on the theory
and empirical analysis of production and cost functions [see Walters (1963), Frisch (1965),
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Solow (1967), Nerlove (1967)]; of factor productivity and R&D [see Nadiri (1970), Kamien
and Schwartz (1982), Nelson (1981), and Griliches (1984)]. Technical progress problems
are exposed by Kennedy and Thirlwall (1972). These surveys, which deal with technical
change, show the specificity of econometric questions concerning availability and mea-
surement of data, specification of equations and models with technical change, estimation
techniques, and resolution procedures.

Following Rosenberg (1974), most empirical studies of technological change attempt to
evaluate the contribution of technical progress to growth and to study the rate at which
new inventions exert their impacts on productivity growth. The diffusion process and the
pattern of inventive activity are considered. Gort and Wall (1986), for example, investigate
the optimal path of investment into innovation.

Major econometric topics relating to technical change will be surveyed in this study.
The restrictive approach still represents an ambitious task because of the various complex-
ities and propositions that have been introduced into practice. Particular emphasis will be
laid on aggregated production functions; but we will also consider input-output models,
which are more appropriate to describe structural changes in economics. This focus on
econommetric techniques and problems in studying technical change will simply follow the
different stages one usually passes through in applied econometrics: data availability and
measurement problems are first considered; then we examine usual specification of equa-
tions, such as production functions and their duality forms; finally, we consider problems
that arise in estimation and try to evaluate the sensitivity of results owing to alternative
specifications, estimation methods, and errors in the variables.

23.2 Description and Effects of Technical Change

23.2.1 Characteristics and bias of technical change

The characteristics of technical change may be shown by the shifts of the unit isoquant to-
ward the origin over time, but they are also known through their consequences. According
to Nadiri (1970), better techniques allow for reducing the unit cost of all factors equally.
A greater saving in one input than in others will result in a bias in technical change.
Exchanging factors in the production process is measured by the elasticity of substitution.
Then, a bias in technical change will be represented by a modification in the position of
the isoquant and will lead, for example, to greater labor savings for all techniques. The
isoquant may also change its curvature, which will increase the specificity of capital and
labor when the elasticity of substitution & is reduced.

The neutrality of technical change arises since such characteristics as capital/output
ratio, output/labor ratio, factor proportions, and marginal productivities depend not only
on technology, but also on factor proportions [Beckmann and Sato (1969)]. It is therefore
necessary to neutralize the effects of any change in input factor proportions. This ques-
tion leads us to consider unchanged relationships under technical change. Moreover, since
increases in efficiency are reflected in increased productivity for all existing capital equip-
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ment, technical progress is considered as being “disembodied” and corresponds to the first
class of real growth models with technical progress considered by Ott et al. (1975). The
second class, which is examined later, corresponds to the vintage models where technical
improvements only concern certain kinds of capital equipment.

Disembodied technical progress embraces Hicks-neutral, Harrod-neutral, and Solow-
neutral forms of technical change. Technical change is Hicks-neutral if the ratio of marginal
products remains unchanged at a constant capital/labor ratio. Technical change is Harrod-
neutral if it augments labor input, the rate of return of capital remaining unchanged at
a constant output/capital ratio. Technical change is Solow-neutral if it augments capi-
tal input, leaving the wage rate unchanged, at a constant output/labor ratio over time.
The properties of neutral forms of technical progress have been extensively discussed in
the literature on growth models. See, for example, Hahn and Matthews (1964), and
Ott et al. (1975). In particular, it has been shown that Hicksian and Harrodian defini-
tions are equivalent when the elasticity of substitution equals unity. This is the case of
a Cobb-Douglas production function. Beckmann and Sato (1969) derive other forms of
technical change. They distinguish product augmenting, factor augmenting, and input
decreasing. Following Nadiri (1970), bias in technical change, which is defined in dif-
ferent ways [Stiglitz and Uzawa (1969)], may be measured by the relative shares of the
inputs. Thus, the Hicksian bias may be symbolically represented by the following partial
timederivative

> labor-saving

O(FkK)/(FLL

_(_%(_L_) =0 , K/L constant , neutral (23.1)
< capital-saving

where F1, and Fg figure the partial derivatives of output with respect to capital L and
labor K.

The underlying production function is
Q = AF(L,K) (23.2)

where A represents the disembodied technical change. The function F' states a homo-
geneous and differential production function. Neutrality is achieved when the derivatives
equal zero; labor-saving technical change requires the derivative to be positive; and capital-
saving technical change, negative. Unfortunately, because these characteristics of neutral
technical change are highly interdependent, it becomes difficult to distinguish between
them.

Brown and Popkin (1962) propose one specific statistical procedure to decompose
neutral and nonneutral technical change and returns to scale. The method consists in iso-
lating periods of no nonneutral technical change and then inferring measurement of output
changes due to nonneutral technical change. Nonneutral technical change is measured by
the ratio of marginal products of factors, say, a/(a + 3), where o and 3 design the elas-
ticities with respect to labor and to capital, respectively. [Based on this method, Brown
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and Popkin (1962) find, for the US economy, that the period 1890-1937 was labor-saving
and the period 1919-1959, labor-using.] Salter and Reddaway (1969) attempt to seperate
neutral from nonneutral technical change on the basis of aggregated data for industry.
In their survey on technical progress, Kennedy and Thirlwall (1972) also express doubt
as to the possibility of distinguishing bias on technical progress from factor substitution.
Moreover, the test for bias in technical progress involves serious identification problems.

The embodiment hypothesis implies that new inputs are more apparent than older
ones because of technological improvements. In this case, technical progress can only
be embodied in new capital goods. New capital will be introduced by scrapping old
capital equipment. Vintage models are generally classified into three groups, depending
on assumptions about the substitutability of labor and capital. The “putty-clay” model
allows for a substitution only when new equipment is introduced. After the installation of
the equipment, the capital/labor ratio remains constant until new equipment is introduced.
The “putty-putty” model is a vintage model with smooth substitution. In this case, new
equipment continues to be used indefinitely with declining associated labor. In the “clay-
clay” assumption, the capital/labor ratio remains constant, whatever new equipment may
be introduced. The theory of vintage models includes technical progress as a function of
the investment rate; see Kaldor (1957) and Solow (1960). Kaldor and Mirrlees’ (1962)
study is based on the rate of change of investment. Arrow’s (1962) models of learning by
doing introduce the notion of cumulative investment. The production function may be
described by

Q = Ch(t) L)' *K* (23.3)

where b(t) is the labor efficiency which depends on capital knowledge.

Nadiri (1970) mentions that the bias in technical change depends upon the elasticity
of substitution and the differential rates of growth of labor and capital embodiment. The
relation (23.2) may be written

Q = AF(ML, X K) (23.4)

where A; and )\, are the coeflicients of factor augmentation. The direction of technical
change then depends upon the ratio A1/MA2. Technical change is Hicks-neutral when A1 /A;
remains constant, Harrod-neutral with the constancy of A, (labor-augmenting), and Solow-
neutral with the constancy of A; (capital-augmenting). Solow (1967) calculates the bias
in the three following cases, so that we have

1-0o [d)\ d,\z]
B= - —— |2 -=2 3.5
o |:A1 Az (2 )
C = (1 - U)dxl/Al (236)

D =(1-0)d\) (23.7)
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where o is the elasticity of substitution between K and L. Bias B is equally labor- and
capital-augmenting; C is labor-augmenting; and D capital-augmenting.

Intriligator (1965) incorporates both embodied and disembodied technical change for
the US manufacturing sector. Alternative measures are used for labor inputs (adjustment
of the effectiveness of labor force), for embodied capital input. Mairesse (1977, 1978)
objects that the following studies based on aggregated time series did not succeed in sep-
arating the influence of embodied and disembodied technical change: Intriligator (1965),
Berglas (1965), Wickens (1970), and Barger (1976). Mairesse’s studies, which are based
on panel data for French manufacturing, determine that the embodied technical progress
is an important factor explaining the differences in labor productivity between firms.

The induced technical change approach of Kennedy (1964) aims at incorporating factors
that will determine the direction of the bias in new techniques. The innovative possibility
curve (IPC), which he introduces, relates the proportional reduction in requirements of L
and K due to new technologies. The curve is completely determined by the relation

élprL,px) =0  withdup/dug < 0 and d?pr/dp% > 0 (23.8)

Here, the choice of techniques depends on the relative share of inputs, sp and sk, and
technology represented by py and pg. The bias depends upon whether up is larger, equal
or less than pg. If sg > sk, then pup > pg. This introduces a labor-saving bias in this
case.

According to Nadiri (1970), this approach differs from the preceding Schumpeterian
view of technical change, which was supposed to be autonomous, neutral, and growing at a
constant rate because of the knowledge and inventions. Ahmad (1966), Fellner (1969), and
Hicks (1964) considered the effect of relative prices on the direction of technical change,
because some firms tend to anticipate the relative real factor prices and, consequently,
to substitute factors. However, Nadiri (1970) observes that technical change may occur
without any influence of relative prices by means of a learning process.

Endogenous technical change has been previously considered by Arrow (1962), Shell
(1966), Schmookler (1966), Mansfield (1968), and Nelson (1968); see also Sato and Suzawa
(1983) for an extensive presentation. The authors aimed at pinpointing the determinants
and the direction of the accumulation of capital knowledge. For Lucas (1967) and Nord-
haus (1969), the rule and timing of technical change could be determined by the discount
rate at relative prices. Nordhaus (1969) stated a production function for technology, de-
fined by

dAJA = NPrA=Pz (23.9)

where A is the stock of technology, and N is the number of inventions. The optimum
value of N is given by

[B:QA~F2¢]"/0 A1)

N =
D

(23.10)
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where ¢ is the discount factor, and D the cost per invention.

Griliches (1964, 1979) largely initiated empirical studies on the role and impact of
R&D, as we shall see later.

23.2.2 Measurement of technical change and sources of errors

Productivity indezes have been widely used to evaluate technical change; see, for example,
Kennedy and Thirlwall (1972), and Nadiri (1970) for a presentation of the approaches.
Solow’s geometric index is based on a Cobb-Douglas production function with constant re-
turns to scale for an autonomous neutral technical change. In this approach, Solow (1967)
determines technical change as a residual as follows

dA _dQ  dL

dK
-~ _a—_—f—— 23.11
A-0 %I Px (23.11)
Thus the rate of change of total productivity (dA/A) which is used as an indicator of
technical progress, equals the difference between the rate of growth of the real product and
real factor inputs variations. Kendrick’s (1961) measure is consistent with the aggregate
production function

Q = tKL(cLf + dK*)!/° (23.12)

where t stands for disembodied technical change, ¢ and d for efficiency parameters. The
equivalence of Kendrick’s measure to Solow’s is established by Levhari et al. (1966) for
small variations in the inputs.

Several difficulties may arise from the previous method, since the production functions
used in the calculations require a precise specification and, hence, an accurate estimation
of the parameters a and #. Moreover, weighting inputs by their respective share in the
total output supposes the existence of perfectly competitive markets, where prices equal
marginal products. Massell (1962) mentions another statistical difficulty, resulting in an
excess of technical change in the US manufacturing sector over a weighted average of
individual firms, due to interindustry shifts. International and interregional comparisons
are also difficult because of changing prices and lack of data. Econometric difficulties will
be discussed later.

Errors in the variables certainly constitute the main source of difficulties: measurement
of output and inputs, of quality changes, of nonmarketed items; influence of unobservables,
such as the state of knowledge and technology, management, etc. [see Lindbeck (1983)
and Morris (1983)]. Jorgenson and Griliches (1967), who discuss this major problem
extensively, present two kinds of errors: first, errors of aggregation, coming from the
combination of heterogeneous inputs and outputs; and second errors of measurement in the
variables. Aggregation problems may result from modification in technical characteristics
over time. Errors of aggregation are generally labelled “quality change” in the sense that
differences in the rates of growth of quantities may occur within a given group. The
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choice of an appropriate unit of measurement is difficult. A suitable approach consists in
using engineering characteristics and transposing the aggregate measure into quantities.
A further advantage is provided by the wide range of available observations, unlike time
series or cross-section data. Chenery (1949, 1953) and Moore (1959) pioneered the use
of engineering data to find out industrial production functions. Heady and Dillon (1962)
adopted the approach for the agriculture sector; Ferguson (1951), for air transport [see
Walters (1963a)]. To eliminate the error of aggregation, Solow (1957) suggests to replace
the initial index of total inputs by a Divisia index of labor and capital input.

Moreover, difficulties may arise from the measurement techniques. Production is gen-
erally measured by a deflated index. Labor may be measured by the number of employees
or manhours without difficulties. However, capital is more difficult to estimate since offi-
cial data are generally not available. Capital stock may be derived from the sequence of
investment expenditures and then be deflated. But capital in use seems to be more rele-
vant as a variable. Mairesse (1978) precisely describes the sequence of corrections needed
to elaborate significant measures of the variables. Thus, capital stock, which proceeds
from the book value of gross fixed assets, is reevaluated by the price index of invest-
ment in equipment and structures. The consequences of measurement errors have been
extensively discussed by authors who suggest that the residual change in the total factor
productivity would be much smaller, since the evaluation of inputs are generally underes-
timated. Jorgenson and Griliches (1967) lay emphasis on other likely useful variables of
technical change, such as R&D expenditures. Griliches (1979) considers the insufficiency
of R&D data and especially the lack of high-skill labor-intensive deflators to be critical.
Patent applications are only a rough indicator of technical advances, because of their het-
erogeneous composition. The economic value of patents has been discussed by Taylor and
Silberston (1973), Stoneman (1983), and Schankerman and Pakes (1984). Nevertheless,
Hall et al. (1986) attempt to capture the lag structure of the patents-R&D relationship.

23.2.3 Estimates of technical change for the US economy

Disembodied technical change has generally been obtained by means of a Cobb-Douglas
production function with time trend term for different periods. Various methods of evalu-
ation have been used to calculate the change in the total productivity, which is generally
considered an indicator of technical progress. The results are shown in Table 23.1, which
is only concerned with disembodied technical change. The rate of growth of disembod-
ied technical change may be derived from a Cobb-Douglas production function with an
exponential time trend

Q = CeMLoKP (23.13)
From (23.12) we deduce

AQ AL _AK
o= Ao+ (23.14)
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The results of Table 23.1 clearly show the sensitivity to the choice of the specifications
such as first differences, according to Brown (1966), or levels, for others. When we consider
the evolution of the results from one period to another, technical change tends to increase.
More recent estimates of the residual by Kendrick (1981) give the following rates of growth
of technical progress in the US economy: 40.5% in 1960-1973, +0.4% in 1973-1979.

Embodied technical change, which involves an increase in the effectiveness of factor
inputs due to the improvement of quality or efficiency over time, may also be determined.
Intriligator (1965) incorporates both embodied and disembodied technical change in a
production function for the aggregate US manufacturing sector. The rate of embodied
technical change, which corresponds to the “best” estimates, is 4% annually over the
period 1929-1958. Mansfield (1968) and Solow (1962) also retain a rate of 4% as embodied
technical change. Ignoring disembodied technical change in his equation, Solow (1960)
obtains 2.5% per annum. [Mairesse (1978), for French industries, simultaneously estimates
embodied and disembodied technical change by using a Solow production function. Both
forms of technical progress then increase at a 2% annual rate over the period 1966 to
1975. Barger (1976) estimates that embodied and disembodied technical change would
have been more rapid in the 1960s than in the 1950s in the nine European countries and
in the US economy.]

The corresponding Cobb-Douglas production function that incorporates embodied

technical changes may be rewritten

A AL AK

80 _ MN4a—+B—+(1-a)dg — (1 - a)dgAa (23.15)

Q L K

where )’ is the disembodied technical progress, @ is the average age of capital equipment,
Ad is a rough measure of the gap existing between the “best practice technology” and the
average level of technology, and Ag is the growth rate of the average quality of capital.

This estimation form simply results from a Nelson-Solow version of the Cobb-Douglas
with embodied technical change, as we shall see later [Nelson (1964)]. However, when
gross investment both adds new capital goods to the existing capital stock and raises the
quality of intermediary inputs, productivity calculations underestimate the importance
of capital accumulation (a quality reduction is also due to obsolescence), according to
Lindbeck (1983).

23.3 Econometric Specification of Technical Change

23.3.1 Specification of production functions with disembodied techni-
cal change

The specification of a production function and the form of technical change correspond to
one another. Beckmann and Sato (1969) show that certain forms of production function
preclude some forms of technical change. The model is based on the usual assumptions:
one homogeneous production function of degree one with two factors, L and K; perfectly
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Table 23.1: Estimates of technical change for the US manufacturing sector.

Period Con- Method Estimates Reference
cept ¢ (in annual
rates [%])

1869-1928 TFP  Factor shares 1.1 Schmookler (1952)
1869-1928 TC Cobb-Douglas 0.75 Valavanis-Vail (1955)
1870-1914 TFP  Cobb-Douglas 1.1 Tinbergen (1942)

with time trend
1890-1906 TC Cobb-Douglas in 0.18 Brown (1966)

first differences
1890-1960 TC Cobb-Douglas in 0.61 Brown (1966)

first differences
1899-1953 TFP  Cobb-Douglas 1.7 Kendrick (1961)
1909-1949 TFP  SMAC production 1.6 Kendrick and Sato (1963)

function
1909-1949 DTC Embodied-disem- 1.6 Intriligator (1965)

bodied model

1919-1955 TFP  Cobb-Douglas 1.5 Massell (1960)
1919-1957 TFP  Solow production 1.5 Solow (1957)

function
1929-1958 DTC Embodied-disem- 1.6 Intriligator (1965)

bodied model

1950-1965 MFP  Productivity function 21 Baily (1984)
1950-1968 TC Cobb-Douglas 1.62 Coen, Hickman (1980)
1960-1973 TFP  Cobb-Douglas 1.2 Aberg (see Lindbeck) (1982)

(cross-country data) 1.8 Lindbeck (1983)
1965-1973 MFP Productivity function 1.96
1969-1978 TC Cobb-Douglas 1.03 Coen, Hickman (1980)
1973-1978 TFP  Cobb-Douglas 0.6 Aberg (see Lindbeck) (1982)

(cross-country data) 1.2 Lindbeck (1983)
1973-1981 MFP  Productivity function 0.76 Baily (1984)

“TFP: total factor productivity; TC: technical change; DTC: disembodied technical change; MFP:

multifactor productivity
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competitive markets in the long run; and exogenous technical change. Hence, the marginal
productivities of labor and capital equal their respective prices — say, w and r

w=08F/0L and r=0F/0K (23.186)

The role of the technical change may be introduced as usual. Hicks-neutrality (product-
augmenting) is represented by

Q = A(t)F(L, K) (23.17)

where A(t) is the technical progress.
Harrod-neutrality (labor-augmenting) is given by

Q = F[A(t) Lo, K] (23.18)

A formal proof of (23.18) is given by Uzawa (1960-1961).
Solow-neutrality (capital-augmenting) is given by

Q = F[L, A(t)Ko] (23.19)

Alternative specifications and underlying production functions that may correspond
to each major type of technical change are described in Table 23.2. According to this
presentation, the implied production function has been obtained by integration of the dif-
ferential equations that correspond to the retained econometric specification and previous
assumptions. The production functions are close to a Cobb-Douglas form in the linear
case and to a CES form in the nonlinear case. As to the empirical results obtained by
Beckmann and Sato (1969), Solow-neutral technical change ranks first in the US economy
when we consider the R? statistics ( Table 23.3).

The accuracy of the specification of the production function will generally govern the
quality of the productivity measurement. The differentiation of a Hicks-neutral production
function, such as (23.17), with respect to time gives

dA _dQ LFpdl KFgdK (23.20)

A Q Q L Q K

In equation (23.20), the residual clearly depends upon the form of the production function,
as determined by the partial derivatives Fy, and Fk, by the measurement of the variables
L and K and also the adjustment of their quality change, and by the omitted variables.
[Morris (1983) also mentions interrelations and multiple causalities among capital, labor,
and output; between real and financial variables; and between supply and demand factors.]
The methods of estimation are the area for another source of error that we shall discuss
later. A measure of the specification error is given by Nelson (1965), who compares
a Cobb-Douglas production function with constant returns to scale, and Hicks-neutral
technology with a CES production function. The measure of technical change by the CES
function will differ by the following expression
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Table 23.2: Correspondence between major types of technical change econometric specifi-
cations and implied production functions [according to Beckmann and Sato (1969)).

Type of Equa- Econometric Implied production
techn. tion specification function Q/K ¢
change form
Hicks Linear r/w=a+b(L/K) A(t)[a+ (1 +b)L/ K]0+
Log-lin. In(r/w)=a'+b1n(L/K) A(t)[e® + (L/K )Y ]/0-)
Harrod Linear r=a+b(Q/K) M—-{- 3
Log-lin. In7 =da' 4 ¥1n(Q/K) {e* [ (t)(L/K)]1 b'}1/(1-5")
Solow Linear w=a+b(Q/L) (L/K){iii)T"_%l— + %)
Loglin. lnw =a'+ b1n(Q/L) (L/K){e® + [A(t)(K /L)t }1/(~t)

%The calculation may be illustrated for Harrod neutrality in the linear case. The production function
is: Q¢ = F(Ly, Ky,t) or % = F(£,1,t). With ¢ = Q/K and z = L/K we get ¢ = f(z,t). Since
the marginal productivity of capital (K) equals its price: r = 8F/8K = f — zf;. The econometric
specification gives r = a + b;. Then we deduce the following differential equation: (1 —b)f — X fy = a
where X = A(t)z. By integration, we get the corresponding production function which is given by:

Q/K = 5{[A(t)L/K]'~" + a}.

Table 23.3: Importance of some technical change forms for the US, Japan, and German
private nonfarm sectors: R statistics from log-linear regressions [according to Beckmann
and Sato (1969)].

Type of UsA Japan Germany
neutrality (1909-1960) © (1930-1960) (1850-1959)
Hicks 0.831 0.785 0.708
Harrod 0.933 0.855* 0.422
Solow 0.944* 0.758 0.980*

“Period of the available data; the authors do not precise the period of fit. The asterisk indicates what
type of technical progress ranks first.
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E=+ %a(l — a)[(o - 1)/0)ldK /K — dL] L]’ (23.21)

where o is the elasticity of substitution between L and K. Hence, we have

d d d dK

2°-¢ o1 -

The productivity changes dA/A will then be affected if o differs from unity and also if the
growth rates of inputs differ considerably.

Structural forms of production functions with neutral technical progress may differ.
The easiest way is to allow the scale parameter A to vary without affecting the marginal
rate of substitution. Then, for a Cobb-Douglas production function [Cobb and Dou-
glas (1928)], we have

Q1) = AL () KP(t) (23.23)

Tinbergen (1942) introduces an exponential time trend as a proxy variable for technical
change, with

A(t) = Age™ (23.24)

In this case, technical change occurs smoothly over time. This approach has been ex-
tensively used in global macroeconometric models. However, Kopp and Smith (1982)
support the use of explicit technological indicators in preference to a time trend variable.
Nelson (1984) considers the time trend to be a “catchall variable” for various technological
factors, such as learning by doing, organizational changes, etc. Bodkin and Klein (1967)
introduce a time trend into a Cobb-Douglas production function. For example, the pro-

duction function may be written as follows when the random error is supposed to be
additive

Q = ALOMLoKP t ¢ (23.25)

where the variables @, ¢, L, and K are vectors of data observations.

Bodkin and Klein (1967) also introduce a marginal productivity condition in the struc-
tural form to represent the costminimization behavior on the competitive factor markets.
We deduce the system of equations

Q = AIOML°KP + ¢ (23.26)

r_pBL
—_ = —— 23.27
w OLK+E (23.27)
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The parameters o and 3 are estimated simultaneously.

We also have to consider that one way to obtain nonneutral change is to allow the ratio
a/f to vary over time. Hence, technical change will be capital-using if the parameter «
rises relatively to 3. The constant elasticity of substitution (CES) function, introduced by
Arrow et al. (1961), presents interesting properties as they include the Cobb-Douglas and
the Leontief production functions as special cases. This function has also been widely used
in empirical works; see for example, Domar (1961), Dhrymes (1963), David and Van de
Klundert (1965), Jorgenson and Griliches (1967). Kennedy and Thirlwall (1972) question
whether the CES production function is useful, since a large diversity of results may be
performed in time series and cross-section studies. Thus, the estimates of o are frequently
lower in time series studies than those issued from cross-section approaches. In their study,
Bodkin and Klein (1967) introduce a likely time trend. Thus, they propose an estimation
form defined

Q = ALOM[K ™" + (1 - 8§)L PP + ¢ (23.28)

where § is a distribution parameter with 0 < § < 1, p is a substitution parameter with
p # —1, and p is the degree of returns to scale. The marginal productivity relationships
based on cost minimization introduces

r ] KN\t
1.3 (f) + e (23.29)

The system (23.28)—(23.29) may then be used to find out the values of the parameters
by means of techniques we shall present later. Tables 23.4 and 23.5 give some of the
results achieved by Bodkin and Klein (1967), using Cobb-Douglas and CES functions with
different specifications. Here, we will consider the straight regression and the simultaneous
estimation in the case of additive errors. Moreover, the parameters of the Cobb-Douglas
production function are estimated without constrained returns to scale. The residuals of
the production function are significantly autocorrelated as regards the low value of the
von Neumann-Hart test (the critical value is about 1.52 at 5%). The parameter estimates
of the straight equation differ from those calculated from the system. For either the
Cobb-Douglas or CES production function, Bodkin and Klein found increasing returns to
scale. In the Cobb-Douglas function, capital is not significant. This result is not consistant
with CES results where § significantly differs from unity. The rates of disembodied neutral
technical change that we have indicated vary between 1.2 % and 1.6 % annually. Bodkin
and Klein (1967) also indicate that increasing returns to scale generally allow for a slower
pace of neutral technical change [see also Diwan (1963) and Walters (1968)].

A reduced form of production function may also be used to infer the value of the
parameters of the structural form, provided that identification will then be possible. Thus,
the underlying production function of the French Mogh model [see Courbis et al. (1980)]
may be found in the following way

Qm = CeMLEKP (23.30)
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Table 23.4: Estimates of a Cobb-Douglas production function for the US economy
over the period 1909-1949, according to Bodkin and Klein (1967). (The ¢-statistics
are shown within parentheses.)

Method ¢ A a B8 a+p A Aln10® ®° 6;:— ¢

SR 88.31 1.145 0.062 1.207 0.0069 1.6 % 0.99 1.07
(156) (16.5) (0.8) (18.9) (16.0)

SE 61.87 0.964 0.501 1.465 0.0053 1.2% +0.98 0.64

(793) (148) (14.7) (149) (8.3)

“SR: straight regression; SE: simultaneous estimation; the errors are assumed to be additive.
*Evaluation of the growth rate of disembodied technical progress.

°Von Neumann-Hart statistic: a ratio of the mean square successive difference of the residuals
to their total variance.

Table 23.5: Estimates of a CES production function for the US economy: 1909-1949,
according to Bodkin and Klein (1967). (The t-statistics are shown within parentheses.)

Method ¢ A p o= ﬂl_—p & u Ax 102 Alnlo R %;—
SR 40.46 10.18 0.0894 0.999 1.22 0.663 1.5% 099 1.09
(4.3) (1.2) (163.8) (19.5) (13.8)
SE 58.39 0.475 0.6780 0.447 1.362 0.589 14% 098 0.62
(36.0) (2.5) (10.3) (15.0)  (9.7)

“SR: straight regression; SE: simultaneous estimation; the errors are assumed to be additive.

L Q\" .
= (Q—m> with 0<y <1 (23.31)

where Q,,, L,, are maximum values of @ and L. From equation (23.30), we deduce
Ly = CVog (et g-Blagl/a (23.32)

Equations (23.31)23.32) are determining the effective employment, L, so that

—B/a v
1 — o-Vag-(a) (Q£> (Q&> QU-B)e (23.33)

Taking v = K/Q,, for the capital/output ratio and C, = Q/Q,, for the capacity
utilization, we may calculate the average labor productivity so that we deduce from (23.32)

1__2_ a =1
Q _ p1/ag(r/e)t p/e C)F T Qe (23.34)
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where Q,, has been replaced by Q/C, in (23.32). The estimation form may be written in
differential terms

(Q/L) = f(#,Cp, Q) (23.35)
where X = %‘ﬂ—f. An application to French industry over the period 1961-1978 [Cour-
bis (1983)] gives

(Q/L) = 0.032 + 0.2526_;+ 0.209C,+ 0.406Q— 0.0188de3 (23.36)

(8.8)  (3.5) (2.1) (6.1) (-3.1)

where dg3 is a dummy variable for the year 1963. Then, the structural parameters can
be evaluated as a = 1.182, § = 0.298, a + § = 1.48, A = 0.038 (or 3.8%) annually, and
v = 0.385.

Schmookler (1952) makes use of a factor shares method to calculate the estimates of
the structural coefficient of the production function. Thus, under perfect competition, we
can deduce the marginal productivity conditions of inputs — for example, labor

Q_w
'Bf = (23.37)

The equation (23.36) may be written

Ing=1In (%) +e (23.38)

eB is not an unbiased estimate, even if InJ is an unbiased estimator [Walters (1963a)].
Klein (1953) extensively used a variant of this method.

Duality forms of production functions result from the minimization problem where
the total cost wL + rK is minimized, given a production function @ = F(L,K). Cost
functions are usually easier to estimate than a generalized production function, when the
latter is confined to two inputs. For the Cobb-Douglas Q = AL*K#, the cost function
according to Intriligator (1978) is

C = A'lwrPQ/(eth) (23.39)
The elasticities « and 8 can be estimated from the linear form

1
nC=d+—2_In P In 23.40
@ a+p w+a+ﬂ r+a+ﬂ Qe ( )

The rate of growth of technical change may be deduced from variations in the cost func-
tions. Nelson (1984) includes a technology variable in the general cost function specifica-
tion. Ohta (1974), and Berndt and Khaled (1979) have shown that the rate of technical
change is related to the growth rate of total factor productivity.
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23.3.2 Specification of production functions with embodied technical
change

Capital vintage models have been introduced by Abramovitz (1952), Johansen (1959),
Solow (1960), and Kaldor and Mirrlees (1962). Nelson (1964) found an appropriate ap-
proximation to the estimation problem raised by Solow (1960). In these models, the capital
stock is no longer considered homogeneous. The previous definition for capital and labor
was

t t
Ki=) Ky and L= ) Ly (23.41)
‘U=V

where K, is the vintage stock of capital v, which is still in use at time ¢. This formulation
for K. is replaced by

t
Jy =Y (14 Ax)" Ko (23.42)
u:V

where A is the rate of embodied technical change. We also have
Kpu=(1-68)}"1, (23.43)

where § is a depreciation rate, and I, is the gross investment in equipment of time v.

Since we suppose a Cobb-Douglas production function with constant returns to scale,
Q¢ = Ae" LT} (23.44)

then, we can replace L; and J; by their respective definitions in (23.41)-(23.43)

t
= AeMLT[> (1+ Ag)*(1 - 8L} (23.45)
v=V

The expression (23.45) may be easily approximated by

t
Q= AOPLA S (14 (6 + Ag)" L] (23.46)
v=V

where ¥ is the rate of disembodied, Ax is that of embodied technical change, and 8 = 1—a.
In this model, technical change is a combination of embodied and disembodied forms.

All technical change is embodied when ¥ = 0. The neutrality depends on the elasticity of

substitution o between L and J. It would be neutral if ¢ = 1, labor-saving with o > 1,

and capital-saving with ¢ < 1. The assumption of constant return to scale can be modified
[Westfield (1966), Solow (1960)].

A clay-clay vintage model has been retained for the French DMS model [INSEE (1978)].
The production function is described by the following four equations
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Qut = toe Ly, (23.47)
Qut = Avtly (23.48)
pot = o' (1 4+ po) (L + p1)® = a'(1 + &) (1 + ¥')* (23.49)
Aot = a(1+ X)) °(1+ XM )°(1 - &) = a(l +a) (1 +b)° (23.50)

where L* is the required labor for this production; g and A are average productivities of
inputs.

In equations (23.49)—(23.50), the parameters A; and y; describe the embodied technical
change. The evolution of the technical coefficients along with the age of equipment is
measured by the parameters Ag and pg. The parameter £ represents the depreciation rate
of equipment. If we introduce a partial adjustment process on labor

Ly/Li—y = (L}) Do) (23.51)

the system of equations is described by the equations (23.52)—(23.54):

Q(t) = a(1 + a)t ti (1481, (23.52)
t—m(t)
Qm(t) = a1 + af tz_: (1+8)°L (23.53)
t—m*(t)
t t—1 B\? A
L(t) = [I(t - )] [% (;I:,) <11j:b,> I,,] (23.54)
t—m(t)

where m(t) is the effective extensive margin (i.e., the age of the oldest capital equipment
in operation) and m*(t) is the extensive margin of capacity (i.e., the age of the oldest prof-
itable capital equipment). The determination of the variable is described in Figure 23.1.

In the French METRIC model [INSEE (1980)], the implicit production function is
putty-clay. Hence, at each period of time, firms have to determine the convenient tech-
nology. Thereafter, the combination of inputs remains unchanged. The costminimization
behavior of firms consists in minimizing C = wL + K, given a production function such
as Qg = e* L], where Q, is the supplement of possible added value. We have

k= é = be~ X <%>a (23.55)
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Figure 23.1: Process of the production functions in the DMS model.

Then, variable k enters the investment functions.

A Solow-Cobb-Douglas production function with age of capital, time variables, and
individual firm effects is used by Mairesse (1978), who attempts to estimate the respective
contribution of embodied and disembodied technical progress, simultaneously. The objec-
tive of the study is to explain which type of technical change best explains the difference
in labor productivity between French manufacturing firms. The retained formulation is

Q J
In-~ = Z .
T a]_nL + (a + 6t) (23.56)

where J is [just as defined in (23.42)] the stock of capital in efficiency units, and § is the
rate of disembodied progress.

In order to facilitate the estimation of parameters, Mairesse (1978) introduces several
simplifications. Thus, capital J is approximated by

where A; is the average age of capital. Thus, the model takes the following specification

m%:am%—ﬁA+7t+a (23.58)
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In this specification, the elasticity of scale and the elasticity of substitution of capital for
labor are both equal to one [see Mairesse (1978)]. Then, the respective rates of disembodied
and embodied technical change are § =y — § and Ag = §/a.

Econometrically, when the estimates § = 4 — 3 and Ag = f3 /& are derived from least
squares techniques, the estimates &, 3, 4 are consistent. We then approximate

= [z 2 5 = 6:/4
5= /95105 and &5 =d;/d (23.59)

Since the model has been fitted to individual time series data, it concerns the firm 12
at time ¢, such as

&

i Ji
lnit=ah1L—t—ﬂA,-t+7t+a+(€i+77it) (23.60)
it it

where the additive error term €; + 7, in the log-linear form, is supposed to be composed
of a constant individual error ¢; and a standard regression disturbance ;.

Table 23.6 gives some of the results we may be interested in. The empirical results,
achieved upon two different samples of firms, indicate that the rate of embodied technical
change derived from between-estimates exceeds the rate achieved from within-estimates.
The disembodied technical change registers the invers result.

The translog functions, which are estimated by Nelson (1984), also incorporate the
effect of the average age of the plants in steam electric generation and of a time trend for the
disembodied technical change. The translog cost function [Griliches and Ringstad (1971)]
may be defined by

1
C:(ao—%Zailnw,'-i-EZZ‘y;j ln‘w,'lnwj)Q (23.61)
i [ 1

where w; (i =1,...,n) are the wages of n inputs.

Welfe (1985) does not find any chance of applying the vintage approach, because of the
lack of appropriate data on the age distribution of equipment. Moreover, the introduction
of a time trend to capture the joint effects of embodied and disembodied technical change
seems erroneous, since embodied technical progress has no reason to develop at constant
growth rates. The construction of an indicator of embodied technical progress (IE') is
based on the assumption that the rate of growth of net output due to embodied technical
change depends on the rate of growth of fixed capital. Hence, we have

Ky — Ki

f(t:f(t‘*‘i{t_1 where Ktz
K4

(23.62)

or

t

=1
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Table 23.6: Estimates of the Solow production function for two French manufacturing firms
over the period 1966-1975, according to Mairesse (1978). (The t-statistics are shown in
parentheses.)

Method ¢ a 8 5 a Technical change  R?
§ Ak

Sample 1: SEDES / Caisse des Dépots

A 0.344 0.024 0.036 2.38 1.2 7.0 0.602
(38.2) (8.0) (18.0) (59.5) (3.0 (7.8)

B 0.224 0.013 0.040 - 2.7 5.8 0.566
(8.6) (3.3) (20.0) (6.8) (3.2)

C 0.350 0.026 - 2.57 1.4 74 0.619
(14.0) (3.7 (21.4) (3.7)

Sample 2: Crédit National

A 0.355 0.041 0.030 2.56 -1.1 11.5 0.538
(39.4) (13.7) (15.0) (64.0) (-2.8) (14.4)

B 0.165 0.000 0.043 - 4.3 0.0 0.494
(9.2) (21.5) (10.8)

C 0.376  0.057 - 2.76 -3.1 15.2 0.583
(163) (5.7) (23.0) (5.6)

“The estimation is based on gi¢ = In(Qs¢/Li:) (method A), on the deviations from the means ¢ic — ¢:.
(method B), and on the means ¢;. (method C).
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The production function takes the form

Q. = QU)E; (23.64)
where ¢ is a parameter. We have

. - t K; - K,' K
Qt:cKt:cEz_l & E;_o = c— t
K, , K 4

(23.65)

The application to Poland justifies including the effects of imported technology, which
increases the efficiency of production. Welfe (1985) introduces an additional variable,
which is defined as the lagged share of imported machinery equipment (M7) in the total
investment outlays for machinery equipment (JV'). The corresponding production function
is

. (M7
Q.= ALSK K¢ (—) et (23.66)
JV /i

23.3.3 Specification of production functions with endogenous technical
change

Endogenization of technical change has been achieved in different ways, such as the in-
troduction of specific relations on technical change, or specific variables in the production
function, or the endogenization of the same parameters. Sato and Suzawa (1983) develop
the following model

Qt = Ty F(Ly, Kt) (23.67)
T, = h(B;,0,) (23.68)
B, = f(62) — puB, (23.69)

where T; is the state of applied knowledge, B, is the stock of basic knowledge, with the
assumption that h(0,6;) = 0, 8, is the current investment in applied research, and 8, is
the current investment in basic research.

The introduction of specific variables of technical change among the inputs modifies
the specification of a production function [Griliches (1979)] like

Q = F(L, K, K) (23.70)

where K 1s the current state of technical knowledge. Moreover, there may exist lags
between K and R&D expenditures such as
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K =G(R-;) (23.71)

The variable R&D, which has been extensively introduced, will be examined later. For
Sato and Nono (1982), a production function not only depends on current research, but
also on a stock of technical knowledge that has been accurmulated over several years. The
learning process and education both affect the quality of labor. Brown and Conrad (1967)
make the parameters of a CES production function dependent upon education. Their
empirical results show significant effects.

R&D ezpenditures seem to have significant effects on growth. Griliches (1964) intro-
duces public expenditures on agricultural research as an input variable in a Cobb-Douglas
production function. The cross-section estimations give a significant elasticity of R&D on
a growth rate of 0.05. Mansfield (1968) extends the approach to the manufacturing sector.
Minasian (1969) regresses the total productivity growth on current and lagged R&D for
a cross-section of chemical and pharmaceutical firms. In another attempt to estimate the
contribution of R&D to productivity growth, Griliches (1979) introduces a sequence of
past R&D expenditures and also takes the induced effects of R&D into account. In his
FUGI gobal macroeconometric model, Onishi (1985) precisely specifies the direct impact
that R&D have, not only on labor productivity, but also on non-housing fixed invest-
ment, and on trade relationships between Japan and the USA. To give an example, the
productivity function that has been estimated for Japan over the period 1973-1984 is

Q Q E?:OR—“' DPe
InX= 16 4+ 03 In(~¥) + 04 =£=2"" _ o004 (= (23.72)
I a5 (23) ( ) 18 (-2.3) <P)-1

where R_; is the R&D at constant price over the past five years, pe is the average crude
oil export price, and p is the deflator of the GDP.

Schott (1978) formalizes the relationship between industrial R&D and factor demands
by private sector producers. The desired levels of factor demand are derived from the
following cost minimisation problem:

minC = LHw+ Kc+ Kb st. Q= kL H®K*CH K (23.73)

where C are the total costs, L is the number of persons employed, H are the hours per
person, w is the hourly wage rate, X is the capital stock, ¢ is the user cost of capital,
K is the technical knowledge stock, b is the user cost of technical knowledge, @ is the
potential industrial output, k is a constant, and C,, is the rate of capital utilization. Thus,
the optimum long-run demand function for technical knowledge is [Schott (1978)]

K* = st,}'{P wRea—a2)/p lea—a1)/p [(as—as)/p yres/p p—(e1tes)/p (23.74)

with constants p, a1, a2, as > 0, and ks, C' = co §(U) = §¢/8U > 0 is a composed
function c o § of U where § is the depreciation rate, and w' = dw/0H > 0.
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Griliches (1986) incorporates both disembodied and embodied technical knowledge
in a Cobb-Douglas production function: Q; = AeMI.(;"K,f3 Lt1 ~# Where Q: is the output
(sales or value added), [Griliches mentions difficulties with the measurement of Q in a
research-intensive industry where the “quality may be rampant”.] X is the rate of disem-
bodied “external” technical change, and K = > ; wiR:_;, a mean of accumulated and still
productive research capital [Griliches (1986)] where R is the deflated gross investment in
research.

Thus, K measures the distributed lag effect of past investments on productivity. Lag
effects occur since there exist lags between investment in research and the actual invention
of a new technique, between invention and development and the acceptance of the new
technique (or product) by the market [Griliches (1986)].

The elasticity of output with respect to R&D investment was about 0.07 in 1957-1965
on the basis of cross-section data on 883 US manufacturing corporations [Griliches (1980)].
Nadiri (1980) is also referring to a three-input Cobb-Douglas production function and
estimates a “basic model” of labor productivity growth. [For Giersch and Wolter (1983),
the correlation between the growth of labor productivity per employed person to the
capital/labor ratio (in Cobb-Douglas accounting) or to the growth of real output, ceases
to be statistically significant in 1973-1979, contrary to the period 1960-1973.]

lnP:ao—i—alan/L—i—azant+a3Aant+a4lnR+a5t (2375)

where P is the level of ouput per manhour, K/L is the ratio of gross capital stock to
manhours, U is the gap between the rates of growth of actual and normal output, R is a
measure of aggregate stock of R&D (Kendrick’s definition), and ¢ is the time trend, which
is a proxy for the disembodied technical change.

In the regression analysis, the time trend is dropped because of multicollinearity effects
with the variable R&D in 1949-1978. The slowdown of R&D contributes for about one-
fourth of the slowdown in productivity of US aggregate productivity growth. Distinctions
may be found in the studies between federal and company R&D [Lichtenberg (1984)].

Giersch and Wolter (1983) test the technology gap hypothesis using international cross-
section data from 1964 to 1973 and 1973 to 1979. For industry, the authors get

1. period 1964-1973: P = 25.33 — 4.868lnGAP64 , R’ =0.43
(—2.9)

2. period 1973-1979: P = 3.0 — 0.019InGAP63 , R’ =0.00

(—-0.01)

where P is the average annual growth of the real output per employee; and GAP64 and
G AP73 are per capita income for an-individual sample country in percentage of per capita
incomes of the United States in 1964 or 1973, respectively, valued at purchasing power
parities.
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Lindbeck (1983) introduces a variant of technological gap, noting the changes in
Denison-type residuals between the US and other countries. The author finds that the
distinction between effects of capital accumulation and technological catch-up is arbitrary.

23.3.4 Specification of technical change in multisectoral and disaggre-
gated models

The interindustry relationship between total factor productivity growth and R&D is re-
confirmed in the study of Griliches and Lichtenberg (1984). Schmookler (1966) relates
the improvements of a given firm’s performance to the R&D expenditures made by other
firms, as well as linking the incorporated R&D to purchased intermediate goods. Griliches
and Lichtenberg (1984) compare their results to those of Scherer (1982), who proved the
importance of “imported” R&D in the explanation of productivity growth. Three types
of R&D are distinguished in this study: “own” process of R&D, “own” product R&D, and
product R&D embodied in the inputs purchased from other industries. Some results of
the regressions of total factor productivity growth rate on these three categories of R&D
are presented in Table 23.7 for two subperiods.

Input-output models receive an important revision by Sato and Ramachandran (1980)
in their survey on input-output analysis. [An extensive description of input-output mod-
els and modeling can be found in Grassini and Smyshlyaev (1983)]. Technical change
problems in multisectoral models are studied by Bacharach (1970), who examines bipro-
portional changes in inputs coefficients and finds that product-oriented R&D within a firm
is less influential on performance than either process R&D or R&D embodied in purchased
inputs. Caravani (1981) proposes a more general formulation with a production innovation
model. Craven (1983) derives conditions on the changes in input coefficients, so that the
economy remains productive all the time, and defines Harrod-neutral change in a Leontief
system. Under certain conditions, it is shown that Harrod neutrality increases output pos-
sibilities as fast as other forms of technical change. Special emphasis is given to technolog-
ical change in the Finnish long-range model system [Forssell et al. (1983)]. The production
functions in the price model (an extended input-output price model) are clay-clay vintage
production functions with embodied and disembodied technical change. A discussion of
structural changes with input-output models can be found in Smyshlyaev (1983).

Input-output coefficients may depend on a number of variables. In the model proposed
by Arrow and Hoffenberg (1959), these variables are real disposable income, trend varia-
tions due to taste and technological changes, and learning effects depending on previous
behavior. Ozaki (1976) considers the effects of technical change in economics through the
variations of input-output coefficients. Recent experiences with changes in input-output
coefficients are notably reported by Tomaszewicz (1983) for Poland and by Forssell (1983)
for Finland. Forssell mentions the difficulties we may have in trying to separate the causes
of changes in the specification

aij(t) = fii(Kj,m5, Mj, £Q;) (23.76)
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Table 23.7: Regressions of total factor productivity on R&D: intensity variables ¢
on cross-sectional industry data ®, according to Griliches and Lichtenberg (1984).

Period “Own” “Own” “Imported” Constant
Process  Product Product
R&D R&D R&D
1959-63 to  0.762 0.211 0.289 0.093
1964-68 (2.8) (2.5) (0.6) (4.5)
1964-68 to  0.578 0.040 0.687 0.005
1969-73 (2.8) (0.6) (1.9) (0.3)
1969-73 to  0.384 0.299 0.465 -0.1
1974-78 (1.4) (34) (0.9) (-4.9)

“Expenditure per unit of output.

193 US manufacturing industries.

where K; is the technical development of industry j, r; is the relative price input of
industry j, M; is the product mix, and AQ; is the change of output.

Fontela and Pulido (1986) briefly survey the main results that have been achieved by
more extensive studies on the variation of technical coefficients. In particular, they point
out that it has been proved that changes in technical coefficients take place very slowly.
The reason may be the delay necessary for the adoption of an innovation by an entire
economic sector. Indeed, the process of technical change is only measurable in terms of
new investment in equipment. The explanatory model remains a possible approach to the
input-output coefficient. But Fontela and Pulido (1986) also consider other technological
variables besides price effects, such as the stock of technological knowledge, the rythm of
technological diffusion, and technological expenditures. In a disaggregated model, initiated
by Krelle [see Kiy (1984)], the input-output coeflicients depend on the price ratios, the
capital/labor ratio, the degreee of capacity utilization, and other factors [see Krelle (1964)
and Krelle et al. (1969)]. Hence, technical progress is only induced by higher capital/labor
ratios, which in turn are induced by changes in the capital/labor cost ratio. In this
model, the input coefficients are specified in a log-linear form. The input coefficients are
determined by firms’ cost minimization, given a Cobb-Douglas production function with
constant return to scale, such as

n n ’
x}lj.nZPiXij st. Qj = ag;7; H X?jij (23.77)
o=l i=1

with a;; > 0 and >, a;; = 1, where X;; stands for factor inputs, 7; for the state of
technology.

The specification of the domestic input coefficients in the model is

M
aij = coj(PM /pi)™ (KG/L5)% 67 (23.78)
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where pM /pi, K;, and L; are the mean values calculated at each time ¢t on the 4 or 6
preceding years, M is an index for imports, and § is the degree of capacity utilization.

Thus, for ag 3 (3 = chemical industry, 11 = transport) we have

—7——1.0027 ____
az1 = pgl/pa (Kll/L11)1.5428€-—10.369 (23‘79)

the respective t-statistics of the estimates being 1.94, 9.1, and —12.7. The real technical
coefficient a3 ;; then increases with induced technical progress, since the elasticity of the
capital/labor ratio is 1.5428.

23.4 Estimation Techniques and Problems of Technical
Change

23.4.1 Time series and cross-section data bias

Several sources of bias are common to time series and to cross-section data. In both
cases, the stability estimates depend heavily on aggregation techniques. The grouping
and weighting of individual observations may not remain unchanged over time, notably
because of the modifications in technical characteristics. But the evaluation of capital
inputs in both cases raises severe difficulties for both types of data, as already mentioned
by Walters (1963a) and Nadiri (1970) in their surveys, respectively, on production func-
tion and total factor productivity. This is due to the various kinds of equipment. The
imperfection ot time series and cross-section data generally imposes alternative measures
and adjustments. Denison (1967) evaluates the value of capital in terms of cost, so that
increases in quality will be reflected in technical progress, rather than in capital input.
Several sources of bias are common to time series and cross-section evaluation of the
estimated elasticity of substitution in a CES production function [Nadiri (1970)]:

1. The data read out in the estimation refer to the “average practice” factor propor-
tion to input prices, while the marginal productivity condition supposes the “best
practice” factor proportions.

2. The estimates heavily depend on interclass and intraclass elasticities of substitu-
tion, since the empirical production function may combine Cobb-Douglas and CES
functions.

Several sources of bias differ as between time series and cross-section data. The defla-
tion of time series that are observed in current value may raise severe difficulties. Thus,
since there exists no obvious price of capital equipment for both interindustry and in-
terfirm studies, there is no need of deflated data [see Walters (1963a)]. Of course, this
is not the case for international cross-section studies. Moreover, the changing utilization
of capital may be rather less important in cross-section studies than in time series ones.
Generally, errors of measurement in the variables are more important for microdata.
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The comparison between time series and cross-section estimates may be considered
a test of “fitness” of the model specification. Indeed, the results achieved by Douglas
in 1948 on both time series and cross-section data, for the US manufacturing industry,
showed convergent results. Nerlove (1967) also considers both types of data to estimate a
CES production function for the postwar period. The time series estimates of the elasticity
of substitution are less than unity. The results vary among the different industries, but
remain close to unity when they proceed from cross-section data. Other follow-on results,
which are reported by Nadiri (1970), reach the sample conclusion with respect to the
elasticity of substitution.

23.4.2 Methods of estimating technical change

Single-equation least squares estimates of a system described by a production function
and marginal poductivity relations will be consistent and unbiased only under certain
statistical circumstances. We have

Q=F(L,K)u (23.80)
% - (%) - (23.81)
% - (;7) 2 (23.82)

where up, u;, and u, are random variables, reflecting errors in the production process and
relative factor prices. Under the normality assumption and independence of errors, as

E(ug,u1) = E(ug,uz) = 0, simple least squares estimates will be consistent and unbiased.
The model

Q¢ = AMLIKPy, (23.83)

where technical change is supposed to be Hicks-neutral, may be treated as a log-linear
relationship since

InQ,=lnA+ M+ alnl,+ Ak, +Inu (23.84)

where Ilnw,; is treated as an additive error term with zero mean. The CES production
function, which is highly nonlinear, cannot be made linear by simple transformations.

The stepwise procedure of estimation is used, notably by Diwan (1963) and also by
Bodkin and Klein (1967). The method is applied to Cobb-Douglas and CES production
functions with disembodied technical change. The marginal productivities, which are
used in the procedure, result from a cost minimization. Hence, the first step consists in
estimating
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"t) )
In (wt’ =ag+ bln (Kt, + e (23.85)
where
P -
ag =In - and b=1 (23.86)

in the Cobb-Douglas production function with unconstrained returns to scale; or

in the CES production function. In the second step, we replace the values of (é) obtained

by (23.86) and of 4,5 by (23.87) in the corresponding production functions, which are
rewritten

InQ:=lnmA+ A+ allnL;+ (ﬁ) In K] + Inu, (23.88)

the Cobb-Douglas production function, where 4, A, and a are estimates of the second
step,

InQ;=1nA+ A\t - —1n[6Kt +(1-8)L;?] + Inv, (23.89)

the CES production function, where A, A, and p are the estimates of the second step.

A nonlinear mazimum likelihood procedure is also recommended by Bodkin and Klein
(1967). The system may be described by a Cobb-Douglas production function (23.90) and
a marginal productivity condition (23.91), which is deduced from a cost minimization in
competitive factor markets

Q¢ = AMLIKP + v, (23.90)
r L
wtt _ gfi " (23.91)

where u;, v; are random disturbances (v; reflects an incomplete minimization).

Then, we form a joint likelihood function, stating that L, and K, are endogenous
and Q;, ¢, w; exogenous. The likelihood function to be maximized with respect to the
parameter values is

L(A) a, ﬁa ’\1 Q|Tt7 Wy, Qt) (2392)
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where Q is the population variance-covariance. Thereafter, the likelihood function will be
solved iteratively until achievement of the lowest sum of squared errors. The convergence
is very sensitive to the choice of initial conditions [Bodkin and Klein (1967)] [The authors
also consider the use of a Cobb-Douglas production function with constrained returns to
scale and a CES productivity function following the iterative procedure of Eisenpress and
Greenstadt (1966))].

A full-information mazimum likelihood method may be used for a constrained joint es-
timation problem, derived from the production function and factor demand determination;
see Coen and Hickman (1970). The production function may be viewed as a “planning
relation” between the expected output @,,, and desired input labor L* and capital stock
K*. The Cobb-Douglas function with disembodied neutral technical progress is

Qm = A (K*)*(L*)? (23.93)
Under competitive factor markets, costminimization behavior by firms will require the

ratio of marginal product of labor and capital to be equal to the ratio of their expected
prices. Then, we derive the input relations

* ay
I* = ao (r—*) (Qm)2 e (23.94)
w
7'* b_1
K* =bo <—*) (Qun)2e bt (23.95)
w

where ag = [(8/a)* A~ (+8) and by = [(a/B)P A~/ (@A) g) = a/(a+ B) and b; =
B/(a+B), a2 = by =1/(a+p), and ag = bg = v/(a+ B). The singleness of the production

function then prescribes the following restrictions: 152%’; =bp, a; +b; =1, and a; = b,

az = bz. The estimation form of the system will be achieved with the determination
processes of the expected values r*/w* and Q,, and those of the desired inputs L* and
K*. Expected values X* and desired values Y* may be derived from

1
Xf=> wipXe i, j=1,2 (23.96)
i=0
where wj; are weights associated to both equations (23.94) and (23.95); and
Yo/Yeor = (Y /Y)Yy,  §=1,2 (23.97)

where u; are stochastic terms.

Then, the estimation form may be written as

2

I 2 , Aray Araz
—— = ap' | Y wy (—) > k1Q i emMast =My, (23.98)
L, = W/ it =1
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K 2 —A2b1 2 Azb2
i — -
K—l = béz Z’wgi <E> '+1:| <Z k2iQ—i+l) € )‘zb3tK_l>‘2’l)2 (23.99)
- =1 -1 =1

where v; and v, are stochastic terms.

The estimation of (23.98)-(23.99) can be achieved by full-information maximum like-
lihood method, using the algorithm proposed by Eisenpress and Greenstadt for nonlinear
systems. [The algorithm modifies the Newton-Raphson method.] A stepwise procedure
may also be realized by successive estimations and identification of parameters, as pro-
posed by Coen and Hickman (1970).

Tterative procedures among trial values for the parameters are extensively used in the
estimation of vintage models [Benassy et al. (1975) and Vilares (1980)]. Thus, with equa-
tion (23.46) we had

l-a

t
Qe = AeOTB L2 1N 14+ (6 + AT,
=V

Trial values are assumed for a, §, and 7 in order to estimate Ag by means of the iterative
procedure. Berglas (1965) and Solow (1960) show that the estimates of Ag are very
sensitive to trial values.

The French DMS model has been described by equations (23.52)—(23.54). The estima-
tion procedure kept for good by INSEE (1978) consists in different steps on an iterative
process: parameters have been fixed a prior:, such as b and m;; trial values are taken for
b’ and extensive margins m; are determined iteratively; and coefficients a, o/, a, and d
are econometrically determined.

The error components model combines time series and cross-sectional data. The
stochastic specification of the Solow production function in Mairesse’s (1978) study con-
siders the overall errors as composed of individual effects, u;, specific to firms and of the
standard regression error w;;. The model, which has already been presented [equation
(23.60)] is

i J;
hl(Qt) :a].n( t) —~BAy +vt+a+ e (23.100)
Ly Ly

with e;; = €; + 7. Since the covariance matrix of errors has a convenient structure, we
may compute the quasi-generalized least squares, which should be more efficient than the
ordinary least squares when large samples are involved.

A modified ridge regression method [Maddala (1977)] is introduced by Lee (1983) in
order to estimate a translog production function on the basis of farm records from a survey
during the period 1955-1975 in Japan. [Another application of this method to Japan on
a regional basis is proposed by Uno (1976).] Lee uses the translog production function
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1
Ingr=ao+ b+ 2+ Za;tln:c,-f 2 ZZ,B,-J-ln:c,-fln:cjf + uy (23.101)
i i 3

with f=1,...,Nand r = 2,..., R, where f refers to the sample farm, r to the prefecture,
and i and j stand for production factors. Factor share functions are derivatives, provided,
that the production function is linear homogeneous and that the marginal productivities
of factors inputs are equal to their prices. Thereafter, the factor share functions can be
used to estimate the coefficients of the production function. The resulting estimation of
the modified ridge regression method by Lee (1983) is

b=p+(X'X + k)T RIR(X'X + kI BT (r ~ RB) (23.102)

where 8 = (X'X + k)71 X'y, r= RfB; R and r stand for linear restrictions on 8; and k is
a nonnegative biasing factor.

23.4.3 Econometric problems

Technical progress estimation problems refer to a larger class of problems regarding the
induction of production or productivity functions by means of econometric techniques
applied to time series, cross-section, or panel data. A constant parameter model may be
attached to a time trend in a production function, and thus will reflect neutral disembodied
technical change. The parameters of a model may also be time-varying, since we are
interested in reflecting nonneutral technical change. Moreover, other specific problems
with technical change will arise in econometrics, as we attempt to distinguish between
the effects of disembodied and embodied technical change. In any case, the econometric
problems commonly linked to the estimation of a production function may necessarily
have severe consequences in the evaluation of technical change, since it can be introduced
in the equation as a variable (time trend, R&D expenditures, etc.) or considered a proxy
of variations in global productivity.

Instability and inconsistency of the parameters may arise from incorrect measurement
in the variables of the production function. The lack of direct evaluations, overdepreciation
of equipment, and difficulties in adjusting the inputs for changes in utilization will intro-
duce errors, whose consequences will generally be to underestimate the contribution of
capital to growth and to overestimate the elasticity of labor because of incorrect weighting
[Griliches (1963) ].

An omission of variables may result in a traditional production function limited to
labor and capital inputs. Nadiri (1970) indicates that the omission of materials in the
production function will often lead to a positive bias in the estimation of the returns to
scale as well as the elasticity of substitution between factors. Especially, the omission
of R&D expenditures by the goverment may understate the growth rate of capital and,
hence, overstate the rate of growth of global productivity.

Identification may be made difficult, owing to the lack of degrees of freedom as in time
series data. Thus, it will be difficult to separate adequately the effects of parameters in
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the production function [Jorgenson (1966)]. Simultaneity and multicollinearity problems
that may arise will make the estimates very imprecise. Individual data may be the best
way to reduce these problems.

The specification of the production function can give unbiased, efficient, and consistent
coefficients. But the parameter estimates will lose the unbiased property, since nonlinear
operations are involved in deriving them from the regression coefficients [Wallis (1973)]. In-
deed, we have E(1/b) # 1/E(b). The parameter estimates remain consistent.The Durbin-
Watson statistic, usually associated with time series, may be a useful indication of mis-
specification in cross-section data.

Sensitivity analysis thus seems to be very helpful, since the results of production
functions are sensitive to the measurement of variables, to the data, and to the alternative
specification as well as to econometric methods.

23.5 Conclusions

This survey on econometric approaches to technical change aimed at giving us useful
insights on this crucial problem of economic growth. Technical progress was early confined
to a time trend in a production function on the aggregate level or reduced to the variations
of the global productivity indexes. Since then, numerous studies have been devoted to
measurement problems in the output and input factors. Errors in measurement and lack
of data still raise great difficulties in empirical studies.

Improvements in the economic theory and practice of measuring technical change have
certainly been stimulating, since new classifications and concepts have been introduced.
Hence, the understanding of technical change has been greatly enhanced by aggregated
and multisectoral models, as well as by input-output approaches. The interrelation of
industries and firms and input-output models may help to clarify the process of technical
change and further our understanding of structural change as well. Capital vintage models
have helped to specify the process more precisely, since the heterogeneous nature of capital
and firm’s decisions regarding the allocation of factors may be taken into account. Endoge-
nous technical progress is another class of technical change that has also been extensively
studied. Thus, R&D expenditures of firms and governments tend to be introduced into
models’ production functions and other equations, as well as the investment of firms and
sometimes international trade relations.

The econometric approach to technical change still raises numerous questions and
difficulties, because of measurement errors in the variables, and the complexities of the
specification of the equations and their estimation. The estimation problems have many
origins, such as nonlinearities, interdependence of parameters, or the need for a more
complete system (which may increase the estimation issues still further). However, the
corroborative results tend to be encouraging, since different techniques and kinds of data
have already been used.
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CHAPTER 24

Local Autoregression Models for
Detection of Changes in Causality

Wolfgang Polasek

Summary

Macroeconomic time series often exhibit various nonstationary influences, such as outliers,
breaks or jumps in levels. These imply very sensitive estimation not only for univariate
and multivariate autoregressive time series models, but also for a Wiener-Granger causality
analysis. This chapter investigates the impact of nonstationary behaviour by estimating
local stationary AR processes. Two types of local stationarity analysis are proposed: a
so-called consecutive bisectrix method, where time series are repeatedly halved as long as
reasonable estimation is possible; and a certain span or estimation window moving along
the time axis. For both methods, the Geweke (1982) causality measures are derived by
comparing univariate and multivariate AR models for the same time spans. An example
involving Austrian interest rates for the 1970s demonstrates the two approaches. It is
shown that causalities changed considerably in the 1970 decade and that at least three
different causality periods can be detected.

24.1 Introduction

24.1.1 Purpose of this chapter

The assumption of constant relations between time series is a crucial one for multivariate
time series, but it can hardly be justified for many economic processes. Besides extreme
observations, which have a nonrobust influence on most time series estimates, we observe
a series of changing regimes where the exact change points are often not known. This
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implies that we have to analyze nonstationary time series, but it may be generally difficult
to specify a particular class of models which are appropriate.

Local stationary models are a simple way of approximating nonstationary time se-
ries without specifying a certain class of models. The estimated stationary blocks can
be considered as a first approximation to an unknown structure. Such an analysis is re-
stricted only by the number of observations and the recording interval. Small recording
intervals can be found quite frequently in the monetary sector of an economy, and there-
fore a local analysis seems to be appropriate: Many interest rates can be obtained on a
monthly, weekly, or even daily basis. Unfortunately, a smaller recording interval does not
always imply that the influence of nonstationarities decreases. Extreme observations can
become more visible (e.g., “ultimo” problem in financial transactions), and other types of
relationships (seasons) gain weight.

Nevertheless, we explore this changing field of time series relations through two types
of modeling procedures. First, we estimate on the basis of AIC [Akaike’s information
criterion, see Akaike (1973)] local stationary models by the so-called bisectrix method.
The time series are successively halved and tested to see whether the parts belong to one
or two generating processes. Geweke causality measures can be easily calculated for such
periods and indicate changes in the influence patterns. The second method employs the
estimation of locally moving models with a fixed time span. By dropping the first and
including a new observation, we can find out how the causality pattern changes over time.
The associated relative Geweke causality measures are arranged in a so-called causality
profile. These methods are demonstrated for five Austrian interest rates during 1970-1981:
the Call Money and 3-Month Money Rates, the Deposit and Lending Rates, and the Bond
Rate.

Section 24.2 discusses the results for univariate, Section 24.3 for multivariate, local
stationary models. In Section 24.4 , we transform these AR estimation results into local
(Wiener-Granger) causality measures using the Geweke (1982) approach. In a final section,
we summnarize our results.

24.1.2 Locally stationary AR models

Given the univariate time series Xy, ..., Xy, which is possibly nonstationary, we try to
find locally stationary blocks by the following procedure. We divide the time interval
(1, N) into & blocks, the ith of the length n;, n1 + n2 +... +n, = N. The following locally
stationary AR model is fitted to the data

T, = ai:cn_l +...+ aﬁn(i):cn_m(i) + Ei , N1 <n<n;, 1t=1,...,k (24.1)

where the ¢}, are Gaussian white noise with mean zero and variance o?.

Computing the likelihood of this model, we find that the AIC of our locally stationary
model is then given by
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k k
AIC =Y n;logo? +2) [m(3) + 2] (24.2)

=1 i=1

If the number of stationary blocks k is unknown, we have to find those k’s and n;’s
(i=1,...,k) m(i)s that minimize the AIC.

Since such a procedure is very time-consuming, a simpler method is recommended for
practical applications [see Kitagawa and Akaike (1978)]: We specify the basic span n; = n
in advance and calculate the first AR model for the first data block, z1,...,2,. For the
second block of data, €41, .,Z2,, Wwe have to choose between the following two models:

1. Compound model for block 1 and block 2: We fit an AR model of order My to block
1 and an AR model of order M; to the second block. The AIC of the joined model
is then given by the sum (assuming independence)

AICy = molog o + ny loga? + 2(Mo + M + 4) (24.3)

where o2 and o7 are variances for the respective blocks with ng and n; observations.

2. Pooled data model: By pooling the data of block 1 and block 2, we fit a new AR
model to the pooled data z;,..., s, by the minimum AIC procedure. The AIC of
this model is given by

AIC, = (ng + n1)logo? + 2( M, + 2) (24.4)

where o2 is the variance and M, is the order of the pooled AR model.

If AIC, is less than AIC, we switch to the new model of block 2, because the pooling
of data did not yield a better model. If AIC, < AIC; we find that block 1 and
block 2 can be considered homogeneous and the pooled model is accepted. This new
model forms the basis for the comparison of AR models of block 3. Now the pooled
model has an increased basic span; and the AR, model takes the role of the ARy
model in the compound model.

24.2 Univariate Locally Stationary Models

For the following analysis of the fitting of locally stationary AR models to the monthly
Austrian interest rates, we choose a basic span of 18 months and the maximum lag length
is set to be 10. Naturally, the choice of the span and the lag length determines the
number of degrees of freedom. A ratio of 1/2 was considered to be appropriate. The main
restrictions are the data length (91 observations) and the usefulness of the results for the
multivarate nonstationary analysis.
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Table 24.1: Deposite Rate 73.1-80.7

Span  AIC  Variance Coefficients Periods

11-28 29.3 0.0407 0.91 73.11-75.4

(1146 32.9 0.0223)

29-46 15.0 0.0036 0.95 75.5-76.10

(29-64 —11.7 0.0065)

47-64 —-12.0 0.0091 1.02 76.11-78.4

(47-91 673  0.3573)

65-91 56.6 0.0518 1.03 -0.21 0.46 -0.52 78.5-80.7

Table 24.2: Corrected Lending Rate.
Span AIC Variance Coefficients Periods
11-28 —68.8 0.018 1.00 73.11-75.5
(1146 -137.5  0.020)
29-46 —138.6 0.006 0.40 0.27 0.55 0.04 0.23 75.5-76.10

—-047 023 0.04 0.10 -0.48

(29-46 —130.6 0.019

(47-64 -131.3 0.026 0.86 76.11-78.4)
47-91 —136.4 0.040 0.98 0.25 —-0.33 76.11-80.7
(65-91 —135.4  0.048)

Table 24.3: Lending Rate.
Span AIC  Variance Coefficients Periods
11-28 —4.53 0.622 0.80 73.11-75.4
(1146 -29.2 0.396 )
29-46 399 0.065 1.00 —-0.75 0.69 -0.46 0.38 75.5-76.10

—-0.17

(2946 —89.2 0.057)
(4764 —97.0 0.026 0.86 76.11-78.4)
47-91 -—-135.6 0.048 76.11-80.7
(65-91 —136.2 0.041 0.98 0.25 —0.32)
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Table 24.4: 3-Month Money Rate.
Span AIC  Variance Coefficients Periods
11-28 —-26.4 0.185 0.49 72.11-74.4
(1146 —37.9 0.312)
(2946 —39.5 0.199 0.56 043 0.35 —-1.03 0.96 74.5-75.11)
0.09 -0.12
29-64 —28.9 0.288 0.78 0.19 -0.22 0.15 0.29 T74.5-774
0.13 —0.44
(47-64 —27.5  0.295)
(47-82 —39.3 0.448)
65-92 —42.1 0.344 1.37 —-0.61 77.5-78.10
(65-116 —43.3 0.387)
83-116 —43.6 0.363 1.02 78.11-81.9
Table 24.5: Call Money Rate.
Span AIC  Vartance Coefficients Periods
11-28 —-13.0 0.389 0.44 72.11-74.4
(1146 —34.8 0.340)
(2946 —45.0 0.121 142 -045 74.5-75.11)
(29-64 —46.6 0.220 1.39 —0.85 0.42 74.5-77.4)
(47-64 —45.1  0.310)
29-82 —59.8 0.258 1.32 -0.68 0.31 74.5-78.10
(65-82 —58.7 0.168)
(29-116 —65.1  0.407)
83-116 —70.8 0.643 0.98 78.11-81.9
Table 24.6: Bond Rate.
Span AIC  Variance Coeffictents Periods
11-28  -92.2 0.0043 1.54 —0.62 75.11-77.4
(1146 —173.2 0.0069)
29-46 —174.2 0.0035 0.88 041 -0.07 0.03 0.01 77.5-78.10
—-042 -0.87 0.10 0.88
(29-80 —177.3  0.0283)
47-80 —187.3 0.0401 1.03 78.11-81.9
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Figure 24.7: Summary: locally stationary models.

Table 24.7: Corrected Lending Rate (span = 12, order = 10).

Span AIC  Variance Coefficients Periods
11-22 —44.0 0.013 043 1.22 -0.62 73.11-74.10
(11-34 96.8 0.015)

23-3¢ —-104.7 0.003 1.25 -0.74 047 74.11-75.10

(2346 —92.8  0.008)

35-46 —107.3 0.006 041 037 0.68 007 —-004 75.11-76.10
—0.65

(35-58 —78.7  0.021)

47-58 827 0.035  0.84 76.11-77.10

(47-70  —83.9  0.026)

59-70  —90.2  0.002  0.77 0.04 -046 0.66 0.16 77.11-78.10
0.64 042 —037 —0.61

(59-91 —96.7  0.042)

71-91 —-107.0  0.067  0.96 78.11-80.7
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Table 24.8: Corrected Lending Rate (span = 24, order = 10).

Span AIC  Variance Coefficients Periods

11-3¢ -96.8  0.015  0.98 73.11-75.10

(11-58 -174.3  0.024)

35-58 —175.7 0.021  0.62 0.29 041 —0.05 0.07 75.11-77.10
—0.39

35-91 —181.3 0.034 0.84 029 004 -003 —029 77.11-80.7

(59-91 —175.6  0.042)

72 73 74 75 76 77 18 79 80 81
Years ] I i i | I l | 1

I&d Imlnfslfvzl Ve I vI?

Span 12 I _1 |

1 (] 5
Span 24 (g o

Figure 2{.8: Summary: Corrected Lending Rate.

The results for every time series are displayed in Tables 24.2 to 24.6 and Figures 24.1
to 24.6. A summary of the univariate analysis is given in Figure 24.7. There are at least
three nonstationary periods for every time series.

For the Deposit and the Lending Rates, we find more nonstationary influences in the
first half of the series than in the second half. The outliers in the Lending Rate affect only
the first half of the series.

The 3-Month Money Rate and the Call Money Rate are also closely related in their
nonstationary behavior. While both series show at both ends nonstationary influences,
the behavior in the middle of the series (75-79) seems quite stable.

The Bond Rate is the shortest of all six series, but even for this series we find stationary
intervals. Except for the Call Money Rate, almost all series show a pronounced cyclic
behavior in at least one stationary period. It is interesting to note that these periods are
different for every series. The only common feature is that the cyclic period was never the
first period for all of the analyzed time series.
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24.2.1 Deposit Rate

Four locally stationary models are found for the Deposit Rate. In the first three periods
we find an AR(1) process close to a random walk but with different residual variance. The
fourth period from 78.5-80.7 shows the highest variance together with a fourth order AR
process. The spectrum in Figure 24.1 shows clearly two peaks: one around 20-24 months,
and one at the 3-month lag. In Table 24.1, the rows in parentheses show the competing
models that have not been choosen.

24.2.2 Corrected Lending Rate (without outliers)

The Corrected Lending Rate exhibits 3 stationary periods. While the first 3 years can be
decomposed into two very different periods, the last 3.5 years have more similar spectra
(see Figure 24.2). The first period (i.e., the first 1.5 years) from 73.11-75.4 shows an
almost flat spectrum, while the second period is characterized by a cyclic component.
(The AIC attained the minimum at the maximum lag length 10). For this period, we
find two peaks: one low-frequency peak at 6 months, and a pronounced short-term peak
at 4 months. The last 1.5 years show no peak in the spectrum and the estimated AR(3)
process exhibits the highest variance. (See Table 24.2.)

24.2.3 Lending Rate

Knowing the position of the outliers, we expect a behavior different from the original
Lending Rate only for the first 2 periods. Also, we see from Table 24.3 that the variances
are approximately 10 times as high as for the Corrected Lending Rate. Especially for the
second period, 75.5-76.10, we see that the pronounced peaks completely vanished. Only
2 bumps around 3 and 6 months can be seen.

24.2.4 3-Month Money Rate (72.1-81.9)

The nonstationarity procedure yields 4 different periods. The first period, from 72.11 to
74.4, has a flat spectrum and a small-valued AR(1) process. The second period extends for
3 years and exhibits three peaks in the spectrum: one long-term at 24 months, a half-year
cycle (6 months), and a short-term peak at 3 months. The last two could be harmonics
of the 2-year cycle. The corresponding AR process has an estimated lag of 7. The last
two periods are AR(1) processes. The spectrum of the period from 77.5 to 78.10 shows a
small peak arouund 18 months.

24.2.5 Call Money Rate

The Call Money Rate can be divided into three periods. The first period, from 72.11
to 74.4, shows a flat spectrum similar to the first period of the 3-Month Money Rate.
The second period is 4.5 years long, extends from 74.5 to 78.10, and can be estimated by
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an AR(3) process; but the spectrum shows hardly any cyclic behavior. The last period,
78.11-81.9, is again dominated by an AR(1) process.

24.2.6 Bond Rate

The Bond Rate can be also divided into three periods. The first one, from 75.11 to 77.4, is
estimated by an AR(2) process without cyclical components in the spectrum. The second
one, from 77.5 to 78.10, shows a rich cyclical behavior: 2-year cycle and pronounced peaks
at 5 months and 3 months can be seen in Figure 24.6. The process in the last period,
from 78.11 to 81.9, is close to a random walk.

24.2.7 Stability of the results

In order to check the stability of the nonstationary analysis of this section we have tried
different block-lengths. Tables 24.7 and 24.8 show the results for the Corrected Lending
Rate for spans 12 and 24, respectively.

The detailed analysis for span 12 shows that the cyclical influence of period II in
Figure 24.7 is caused by a short cyclic period for 12 months in the years 76/77. The
yearly analysis also shows that there has been another year with pronounced cyclical
movement: 78/79. This explains why there are two cyclical periods for the 24-month span
analysis. In the period from 78 to 80.6, the influence of the “cyclic year” 78 is large enough
to be preserved for the whole period. In Table 24.8 this is not the case: the nonstationary
influences at the end of the series are dominating.

We see that these results are in concordance with the analysis of the 18-month span.
But additionally we see that the Corrected Lending Rate has nonstationary influences
almost every year. With a view to the multivariate analysis in the next section, the choice
of an 18-month span seems to be an acceptable compromise.

24.3 Maultivariate Locally Stationary Models

Using the program TIMSAC-78 [described in Akaike et al. (1979) and Kitagawa and
Akaike (1981)], we can extend the method of nonstationary analysis to bivariate and
trivariate models. Continuing the analysis of Polasek (1983), we estimate locally stationary
models only for the following three multivariate processes: (1) Deposit Rate and Corrected
Lending Rate, (2) 3-Month Money Rate and Call Money Rate, and (3) 3-Month Money
Rate/Call Money Rate and Bond Rate.

Because the locally stationary models are estimated by a different method involving
least squares and the Householder transformation [see Kitagawa and Akaike (1978)], we
have to compare the locally stationary models with the same estimation technique for
the whole series. The difference between the two estimation methods is the following:
while the original method uses the multivariate autoregressive processes of increasing
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order, including all parameters of the AR matrices, the Householder method starts with
the univariate estimated series and selects only those components of the AR coefficient
matrices that reduce the AIC value significantly. Consequently, this estimation procedures
produces longer lag lenghts and “structural” zeroes in the AR coefficient matrices.

Table 24.9: Deposit Rate/Corrected Lending Rate: Multivariate AR model (all observa-
tions: Householder OLS).

AIC Variance matriz Coefficient matrices
_593.9 0.0303 D, 091 0.31 0.0 -0.25
) 0.0148 0.0277 L 0.27 0.75 -0.10 0.15
0.0 0.0 0.0 0.0
%] = 62.027 ( -0.10 0.0 ) ( -0.16 0.0 )

Table 24.10: Call Money Rate/3-Month Money Rate: Multivariate AR model (all obser-
vations: Householder OLS).

AlIC Variance matriz Coefficient matrices
_9505 0.3723 R, 0.78 0.42 -0.09 -0.36
’ 0.2215 0.3357 3R; 0.24 0.84 -0.06 -0.22
0.02 0.17 0.34 -0.22 0.0 -0.10
|2} = 0.07592 0.01 0.10 > ( 0.20 -0.13 ) ( 0.0 -0.06 )

0.0 0.25 0.0 -0.32
0.0 0.15 0.0 -0.19

Table 24.11: 3-Month Money /Call Money/Bond Rate (pmax = 4): Multivariate AR model
(all observations: Householder OLS).

AIC Variance matriz Coefficient matrices
0.3507 0.59 0.39 0.79 0.0 -0.29 0.98
—457.6 0.2571 0.4540 0.21 0.86 0.42 0.0 -0.21 0.72
0.0198 0.0350 0.0207 0.02 0.01 1.01 0 -0.02 0.06

0.0 0.18 -1.78
0.0 0.13 -1.30
0.0 0.01 -0.10

The results are given in Tables 24.9-24.11 and are generally different from the esti-
mated models in the Polasek (1983) study. Now we can see more seasonal effects. Since
stationary time series estimation methods are very sensitive to the estimation method and
nonstationary effects, the comparison of these estimation methods is very difficult. Both
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methods might be regarded as an approximation to the observed nonstationary process.

For the bivariate model of the Deposit Rate and the Lending Rate, the analysis shows
at least three stationary periods. The first and the last sections of both time series are
dominated by a strong autoregressive component at lag 1 and special seasonal interac-
tion effects at lag 3 and 4. The model of the middle period from 75.6 to 77.5 also has
autoregressive components at lag 1, but shows more interactions at lags 2 and 3.

The results of the locally bivariate Call Money/3-Month Money Rate analysis depend
also very much on the specification of the key parameters — block-length and maximum
order. The smaller the basic span, the more the time series is divided into stationary
blocks. Roughly speaking, we find three different blocks where the model of the middle
period, 75-78, of the time series shows the highest seasonal activity.

The trivariate local analysis is based on the smallest amount of available observations,
since the Bond Rate was recorded only after 1978. Therefore, the results we found are
more sensitive to changes in the key parameters than for the other models. In general, we
also see two distinct periods. While the first period is characterized by an almost complete
absence of any influence by the 3-Month Money Rate, the second period shows a strong
unidirectional influence of the Bond Rate on the other two series.

Table 24.12: Bivariate models: Deposit Rate/Lending Rate (span 24, order 5).

Period  Span AIC Variance matriz Coefficient matrices
73.6 0.0277 D, 0.94 0.11
—- —60.
75.5 6-29 60.2 ( 0.000 0.014) Li ( 0 1.10)
0 0 0 0
_ -4
IZ] = 3878 x10 0 -0.30 ) < 0.28 0.45

0 0 0 O
-0.65 0.27 033 0
(6-53 —157.3)

75.6 0.0175 D, 0.44 0
775 S0 1675 (o.ooo 0.014) L <—0.09 0.68)

011 0
— —4
2] = 2.45 %10 ~0.02 0.30 )
033  0.07
~0.07 —0.01

(30-91 —156.4)

77.6 0.0307 D, (081 039
- ~1177.

go.r 491 1 (0.020 0.033) L (0.17 0.84

0 —0.29 0 0
3| = 6. 10—4
%] = 6.131 x (0.05 0.1 ) —0.38 0)
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Table 24.13: Bivariate models: Deposit Rate/Lending Rate (span 30, order 6).

Period Span AIC Variance matriz Coefficient matrices
73.7 0.0230 D, {093 0.10
7512 0 783 (0.000 0.012) L§ (0.23 1.11)
|Z| = 2.76 x 10~* _0032 _0049)
0 0
0.36 0.59
0 0 0 0
—-0.65 —0.26 034 0
(7-66 —197.7)
76.1 0.0144 Dy { 070 0.24
78.6 37-66 —208.8 (0.0000 o.o179> L¢ (0.76 0.45)
0.30 —0.18
— —4
|| = 6.914 x 10 007 0'26)
0 0
—-0.11 0.33
0 0
-0.74 —0.30
(37-91  130.1)
78.7 0.0339 0.023 D, 0.68 0.20
80.7 67-91 1594 (0.023 0.036) L¢ (—0.04 0.81)
0 0 0 0
_ -4
IZ| = 6.914 x 10 (0.04 0.29) (—0.36 o)

Table 24.14: Bivariate models: Deposit Rate/Lending Rate (span 36, order 8).

Period  Span AlIC Variance matric  Coefficient matrices
73.9 0.97 D, 0.92 0.10 0 0
68 O 138 0.000 0.016) LS (0.25 0.94) (—0.30 0
|Z] = 0.01552
(9-91 —211.0)
76.9 0.0303 0.015 Dy 0.86 0.36
45—~ —215.3
80.7 ol 215 ( 0.015 0.028) L <0.21 0.81
0 —0.30 0 0
- —4
2] = 6.234 10 ( 0.01 0.13 ) —0.36 0 )
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Table 24.15: Locally bivariate models: Call Money Rate/3-Month Money Rate (span 24,
order 5).

period Span AIC Variance matriz  Coefficient matrices
72.6 0.403 R, 0 1.26
—29 —67.
74.5 6-2 673 (0.208 0.206) 3R, ( -0.31 1.34)
0 —0.43
|Z| = 0.039754 (0 o 22)
(6-53 —124.4)
74.6 0.363 R, 105 O
-53  —130.
76.5 30-53 130.1 (0.227 0.297) 3R, 0.51 0.45)
|Z| = 0.056282 :g‘gz —00i3;9>
0.07 —0.45 0.54 0.27
0.04 -0.22 0.26 0.13
(30-77 —121.5)
76.6 0.278 R, 1.54 -0.39
54-T77 —-1325
78.5 13 (0.183 0.344) 3R, (0.60 0.67 )
—-0.9 .
B = 0062143 | o0 %
0.22 0.32
—-0.12 -0.14
0.43 -1.10 0.51 0
0.72 -0.75 035 0
(54-116 —133.3)
78.6 0.414 R, 0.58 0.49
81.6 78-116 —144.5 0.203 0.305 3R, (0.10 0.90)

|B| = 0.085061
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Table 24.16: Locally bivariate models: Call Money Rate/3-Month Money Rate (span 30,
order 6).

Period Span AIC Variance matriz  Coefficient matrices
72.7 0.319 R, 0.51 0.68
74.12 7-36 ~86.7 (0.146 0.184) 3R, (—0.05 1.09)
0 —-0.46
I%| = 0.03738 ( o 091 )
(7-66 —159.2)
75.1 0.375 R 0.98 0
— —180.9
77.6 37-66 18 (0.189 0.265) 3R, (0.60 0.28)
—-0.07 -0.33
|Z| = 0.063654 004 —0.20
043 -0.49 0.40 O
0.27 -0.30 0.25 0
023 0 —-033 0
0.14 0 —-0.20 0
(37-116 —171.0)
7.7 0.393 R, 0.66 0.38
81.6 67-116  ~187.0 (0.243 0.377) 3R, (0.31 0.92)
0 0
3| = 0.089112 (0 _0.29)

24.3.1 Results for the Deposit Rate and Corrected Lending Rate

In Table 24.9 we find the estimation results of the VAR model for the Deposit Rate
and the Corrected Lending Rate using the least squares method with the Householder
transformation [see Kitagawa and Akaike (1978)]. The results differ considerably from
the Polasek (1983) analysis. Now we obtain a fourth-order bivariate AR process with 3
“structural” zeros in the last two lag matrices. At lag 1 we find positive feedback, but at
lag 2 negative feedback between the series. The Deposit Rate is influencing the Lending
Rate negatively at lags 3 and 4.

Due to the nonstationary influences in both time series, the estimation results are
not very stable. To allow comparisons with the bivariate nonstationary analysis, we have
chosen a maximum lag length of order 8. There are some seasonal effects at lag 18; but
because of the shortness of the time series, the estimation procedure failed to produce
reliable results for larger lag lengths.

The results of the locally stationary analysis are given in Tables 24.12-24.14. We have
chosen 3 types of spans — 24, 30, and 36 months — and the corresponding maximum
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orders are 5, 6, and 8.

For the shortest span of 24 months, we obtain a fifth-order process for the period 73.6-
75.5. This period is also characterized by a long-term influence of the Deposit Rate on the
Lending Rate (until lag 5), but only a short-term influence for the reverse relationship.
The second period, from 75.6 to 77.5, exhibits a shorter AR(3) process, and we observe
small interactions between the time series at lags 2 and 3.

For the third period, from 77.6 to 80.7, we observe a high short-term interaction at
the lag 1 coeflicient matrix. There is a negative influence of the Deposit Rate at lag 3,
while the Lending Rate has a negative effect at lag 2.

Table 24.17: Locally bivariate models: Call Money Rate/3-Month Money Rate (span 36,
order 8).

Period Span AIC Variance matriz  Coefficient matrices
72.9 0.254 R, 0.69 0.55
75.8 944 —117.0 (0.123 0.168) 3R, (0‘08 1.00)
0 —0.56
=0.0
b 27543 (0 _0_27)
(9-80 —181.9)
75.8 0.366 R, 117 0
78.7 45-80 1944 (0.236 0‘337) 3R: (0.62 0.45>
—0.57 0 0.30 0
=0.0
Rl 67646 —0.43 0 (0.23 o)
0.04 0 0.23 0
0.03 0 0.18 0
—0.40 0O 0.54 —0.52
—0.30 0 0.40 —0.39
75.8 0.375 R, 0.76 0.38
gl.e  oTl6 —l4d4 (0.230 0.378) 3R, (0.32 0.82)
—0.06 —0.35 0.02 0.14
=0.0
R 8885 —0.04 —0.35) (0.01 0.09)

0.54 -0.27 0 -0.21
0.33 —-0.17 0 -0.13
0 0.32 0 -041
0 0.20 0 -0.25

(81-116 —141.8)

For span 30, we get a similar result for the first and the last span of the time series;
but for the middle period, from 76.1-78.6, we can estimate an AR(4) process with some
seasonal interactions. For span 36, we find two periods, and both AR processes are very
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similar to the overall process of Table 24.9.

24.3.2 Results for the Call Money and the 3-Month Money Rates

For the whole observation period, we can estimate a bivariate AR(7) process for the pair
of time series Call Money/3-Month Money Rate. Note that the lag matrices between
order 5 and 7 have a particular structure. While the 3-Month Money Rate is influenced
by the Call Money Rate and its own seasonal activities, there is no influence in the other
direction. Up to order 4, we see a mutual interdependence between both time series.

Table 24.18: Locally bivariate models: Call Money Rate/3-Month Money Rate (span 36,
order 4).

Period Span AIC Variance matriz  Coefficient matrices
72.5 0.306 R, 0.61 0.63
75.4 5-40 —111.9 C.144 0.1733 3R, (0.04 1.04)
0 -0.45
= 0.03220
|2} = 0.032202 (0 091 )
(5-76 —183.9)
75.5 0.359 R, 1.01 0
78.4 41-76  -196.5 (0.219 0.317> 3R, (0.63 0.29
-0.54 0 0.48 —0.38
%] = 0.066714 —0.34 0) (0.30 0.24 )
0.57 -0.28
0.35 -0.18
(41-116 —152.3)
78.5 0.487 R, 0.64 0.67
81.6 77-116 - —161.8 (0.305 0.427) 3R, (0.11 1.03)
0 —0.28
|| = 0.114924 (0 _0.15)

Looking at the locally stationary estimated models in Tables 24.15-24.18, we see that
the seasonal activities are higher for the middle period (75-78) of the time series than for
both ends. Also the differences for the AIC between the blocks are smaller for this pair
of time series than for the Deposit/Lending Rate pair. Furthermore, the results depend
very much on the choice of the maximum lag length. In Table 24.17, we have calculated
local stationary models with a 3-year span and order 8, while in Table 24.18 only for order
4. We see that except for the ends of the time series, where an AR(2) process dominates,
the middle period is highly seasonal. Only for order 8 do we get a two-period result from
this nonstationarity analysis. From Table 24.17, we also see, that essentially the period
(76-81) dominates the structure of the whole series, since the estimates for this period are
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very close to the overall estimates in Table 24.10.

24.3.3 Results for the trivariate 3R,/ R,/ B; model

The overall model in Table 24.11 was estimated by an AR(3) process. At lag 1 we see a
complete interrelationship, while at lags 2 and 3 the 3-Month Money Rate produces no
influence at all.

Table 24.19: Locally trivariate models: 3-Month Money/Call Money/Bond Rates (span
= 36, order = 3).

Period  Span AIC Variance matriz Coefficient matrices
75 4 0.325 0 0.84 0
783 4-39 —308.0 0.165 0.175 —-0.24 137 -2.75
0.013 0.014 0.0039 —-0.02 -0.01 1.46
0 0 0
|Z| = 0.86814 x 1074 0 —0.81 4.19
0 -—-0.03 -0.38
0 O 0
0 053 -23
0 0.04 -0.18
(4-80 —465.5)
0.350 3R, 0.88 0 1.18
;?: 40-80 —-532.9 0.256 0.450 R, 0.58 0.41 0.78
0.020 0.035 0.021 B; 0.03 0.02 0.96
0 0 0.52
|Z| = 0.001681 0 0 034
0 0 0.02
0 0 —1.59
0 0 -—-1.05
0 0 -0.05

Looking at Table 24.19, we see that this pattern is a little more pronounced for both
stationary periods. In the first period, from 75.4 to 78.3, the 3-Month Money Rate acts like
a white noise process while the Call Money and the Bond Rate are very much interrelated
up to lag 3. This result is a little bit surprising when compared with the univariate
analysis in the previous section ( Table 24.4). One explanation is certainly the drastic cut
of the maximum lag length in order to enable the short-term estimation process. (Longer
maximum lag lengths produce nonsense results).

For the second period, 78.4-81.6, we also estimated an AR(3) process. Now the 3-

Month Money Rate has a 0.88 coefficient at lag 1 and shows feedback to the other variables.
But the characteristic feature of the second period is the strong influence of the Bond Rate
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Figure 24.9: Summary: bivariate models.
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on the other series throughout lag 1 to lag 3. The structural zeroes in the lag matrices 2
and 3 emphasize the strong unidirectional influence.

24.4 Local Causality Analysis

Based on the estimated vector autoregressive models of Sections 24.2 and 24.3, we can de-
rive temporal (Wiener-Granger) causality measures. Using the concept of the generalized
variance (determinant of the residual covariance matrix), Geweke defined three so-called
“feedback” measures: unidirectional causality (= feedback) from X to Y (X — Y'), unidi-
rectional causality from Y to X (Y — X), and instantaneous causality (X «Y). All these
measures add up to a common so-called “measure of linear dependence”, which can be
interpreted as the information gain of a multivariate time series model to all (independent)
univariate models.

These causality measures are defined as

F(X-Y) = WnVar(Y)/Var(Y|U))
FY - X) In[Var(X)/ Var(X|U)) (24.5)
F(XxY) InVar(Y|U)xVar(X|U)/ Var(X,Y|U)]

where “Var” stands for generalized residual variance, U denotes the chosen multivariate
information set (past and present variables), and (Y|U) and (X|U) denote the Y and
X block of the multivariate residual covariance matrix (X,Y|U). More details on these
measures can be found in Polasek (1983) and Geweke (1982). Because the three measures
in (24.5) add up to one common measure, only their relative contribution are listed in
Figure 24.10.

A better understanding of the changes in the relative sizes of the causality measures
can be obtained, when we also consider the local mean and variances of the time series.

24.4.1 Deposit and Lending Rates

The local analysis for the pair Deposit (D)/Lending (L) Rate (only the Corrected Lending
Rate is used in this section) is given in Figure 24.10. In part (b) of Figure 24.10, we find
in the last row (label “all”) the mean and the variance of the total time series: D = 5.42
and L = 9.12. This means that the interest differential in the period 73.7 to 80.7 is 3.7%,
while the variances of both time series are approximately equal: Var(D) = 0.316 and
Var(L) = 0.305. The means of the time series are written above the time axis, while the
variances are listed below. (Note also the legends in the right column.)

The Geweke causality measures are given in part (a) of Figure 24.10. The overall
measures are also found in the third row (label “all”) and the three figures add to 100%.
F(L - D)= 215%, F(D - L) = 17.5% and F(D x L) = 61%. Instantaneous causality
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is dominating, followed by an equal amount of feedback between the series. Proceeding
to a 2-period local analysis (42 month = 3.5 years) in the second row of part (a) of
Figure 24.10, we see that the instantaneous part is vanishing for the first period (73.7-
77.1), but is more pronounced in the second period (77.1-80.7). This can be explained by
the strong fluctuations of interest rates in the late 1970s and is also even more visible in the
2-year = 24-month analysis, given in the first row of part (a) of Figure 24.10. In the first
of the 3 periods, the influence of the Deposit Rate on the Lending Rate was the strongest
(82.8%), followed by two periods where the amount of feedback was approximately equal.

Economically, the strong (D — L) causality can be explained by an inelastic demand
for credits in the early 1970s in Austria. Banks were looking for money savings to sat-
isfy this demand, which resulted in a markup of the lending rates. When the interest
rates started to climb, this unidirectional influence was absorbed by high instantaneous
causality.

The local mean and variance analysis exhibit some more details about the nonstation-
ary behavior of both time series. The variances are the largest for the first period, because
the Deposit Rate and Lending Rate started climbing about 1.5% within one year (74/75).
The middle period shows the smallest amount of variation (but on a high level), while
the last period has again a higher variation. This is because, after a drop of the interest
rates during 1979, the figures started climbing again in 1980. This is also reflected in the
movement of the differences of the local means to their overall mean, i.e., D; — D and
L; ~ L, which are listed above the time axis in the first and second rows of part (b) of
Figure 24.10.

24.4.2 Call Money and 3-Month Money Rate

The local Geweke causality and the local mean/variance analysis of the pair Call Money
(R) and 3-Month Money Rate (3R)can be found in the parts (a) and (b) of Figure 2{.11,
respectively. Because two more years of data were available, 4 periods could be used for
the local analysis.

Looking at the third row of part (b) of Figure 24.11, we see that the overall mean of
the Call Money Rate (R = 6.86) was 1.1% less than the mean for the 3R Rate (3R = 7.95).
The variance of R is about one-third higher than that of 3R. An increasing trend and
fluctuations can be seen in both time series by the increase of the local mean and variances

in the first and second rows of part (b) of Figure 24.11.

Part (a) of Figure 24.11 shows that the instantaneous causality part was the biggest
for both ends of the time series with almost no influence from R — 3R at the same time.
The middle periods show the highest amount of feedback.

Summarizing, we can state the result that the influence directions have not been con-
stant during the observation period. The changes are mainly reflected in a large or small
amount of instantaneous causality. Both pairs of interest rates show an almost equal
amount of feedback in all local periods, except the first and the last period of the pair
(R,3R) where there is only influence from R — 3R.
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Span Time
(a) Geweke causality measure (%) Causality directions
17.2 53.1 144 L—-D
82.8 45.0 10.6 D—- L
0.0 1.9 75.0 instant.
24: L ! I |
0 7(73.7) 30(75.7) 54 (11.7) 91 (80.7)
23.4 15.4
76.6 10.7
0.0 74.
42: L | 4.0 J
0 7 48 (77.1) 91
215
17.5
61.0
all: L | ! |
0o 7 91
(b) Local means (D;, L;) and variances:
-0.15 0.33 0.06 D;-D
0.60 -0.17 -0.22 L-1
24: L I I |
7
O 74330 0137 % o208 O Var(D;)
0.385 0.195 0.336 Var(L;)
—-0.09 0.06
0.32 —0.26
42: L i L J
0 48 91
0.327 0.180
0.294 0.325
5.42
9.12
all: LI |
0 7 0.316 91
0.305

Figure 24.10: Local causality analysis for Austrian Deposit (D) and Lending (L) Rates:
73.1-80.7.
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Span Time

(a) Geweke causality measures (%)

15.5 51.1 33.3 21.7
2.8 35.7 40.9 1.8
81.7 13.2 25.8 76.5
24: Ll | [ I |
0 7(72.7) 30(74.7) 54(76.7) 78 (78.7)
10.7 23.6
7.6 27.6
81.7 48.9
48: L | 1 |
0 7 54 118
9.3
11.8
78.9
96: L J
0 7 118
(b) Local means (R;, 3R;) and variances:
~0.32 ~1.08 0.0 1.14
-0.41 -0.58  —0.22 1.0
24: Ll | 1 | |
0 7 1092 30 294 54 2335 78 7960 118
0.822 2.38 2.136 6.134
-0.70 0.71
—0.50 0.54
48: L4 ! J
0 7 2.017 54 5.817 118
1.599 4.611
6.86
7.95
96: L | J
0 7 4.204 118
3.345

118 (81.8)

Causality directions

3R— R
R — 3R
instant.

Figure 24.11: Local causality analysis for the Austrian Call Money (R) and the 3-Month

{3R) Money Rate: 72.1-81.8.
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For the pair (L, D) we find that the influence direction D — L is dominating in the
first part of the observation period and is more balanced toward the end. Both results
support the Polasek (1983) analysis on the same subject and give more insight into the
dynamics of time series.

24.5 Locally moving AR-models

The third method we propose in this section is the analysis of the changing behavior of
a time series by locally moving AR models. By prespecifing a fixed span n, we move a
“window” of n consecutive points along the time axis. Again, univariate and multivariate
models are estimated, and the Geweke measures are derived and assigned to the midpoint
of the window-interval. Because every interval incorporates a new observation and drops
an old one, the estimates are no longer independent. This is in contrast to the bisectrix
approach, where the comparison of AIC values could be used for a likelihood ratio test.

The results of the local causality analysis is graphically summarized in a so-called
causality profile, as in Figure 24.12. The standardized Geweke measures between two
time series, X and Y, are ordered by the unidirectional influence from ¥ — X, the
instantaneous part (X %Y'), and the other unidirectional part X — Y. Figure 24.12 shows
the causality profile for the Call Money Rate and the 3-Month Money Rate (1972-1982)
for a window span of 36 months. Note that the relative sizes of influence direction have
obviously changed, but it is difficult to determine the exact location of the change points.

A simple way of getting a more clearcut profile is the application of so-called data
smoothers, a method of the exploratory data analysis (EDA) field, to smooth the fluctu-
ations of the causality profile. We suggest taking a running median of length 3 or 5 (i.e.,
3R, 5R, or 53R), because the smoothing of such series tends to produce plateaus (intervals
with a constant smooth value). The transition periods from one plateau to another can
be used to locate change points [see also Polasek (1983)].

The smoothed causality profile is shown in Figure 24.12. The window midpoints run

from 73.11 to 80.3, and a window is centered on a midpoint, spreading out for +1.5 years.
The causality profile shows that 3 or 5 intervals can be detected:

1. The first period with causality tripel (25, 66, 8) lasts from 73.11 to 74.11 for about
one year. It is the starting period after the capital market was deregulated in 1973.

2. The second period (25, 25, 50) from 74.11 to 76.11, extends for two years.

3. A one year period follows with a 0-causality direction from 3R — R(0,80,20) and
interrupts the relatively homogenous period in the second half of the 1970s. This can
be explained by the fact that 1977 was a year with balance-of-payments problems.

4. The next period returns to a more uniform causality distribution (33, 42, 25) lasting
until 79.9. It reflects a consolidation phase after the 1977 balance-of-payment crisis
year.
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span 36  causality directions
R — 3R instantaneous 3R - R mid-window

74.1

175.1

|
176.1

771

78.1

179.1

'80.1

Figure 24.12: Smoothed causality profile of (R) the Call Money Rate, and (3R) the
3-Month Money Rate (span: 36 months).
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5. The instantaneous causality part again increases in the last few months to 66% on
account of unidirectional influences. This can be explained by the sharp increase of
interest rates at the beginning of the 1980s.

Summarizing, we see that turbulent years tend to have a larger instantaneous causality
share (up to 80%). This might be due to more alert behavior by all economic agents in
such circumstances. Periods with stable developments reduce the instantaneous causality
down to 20%, giving way to more influence from short-run to long-run (up to 50%) interest
rates. Interestingly, the influence in the other direction can vanish completely for short
periods.

The relation between the bisectrix method and the causality profile method is as
follows: the causality measures of the bisetrix method can be explained as cuts in the
causality profile, as is shown in Figure 24.13. Depending on the interval spans, the bisectrix
technique is a summary of moving causality measures. We have to distinguish two cases:

1. When the bisectric span 1s smaller than the moving span, a point of the causality
profile encompasses the bisectrix result. ( In our case the moving span of 36 months
is one year longer than the smallest bisectrix span.)

2. When the bisectrix span is larger than the moving span, the causality decomposition
of the bisectrix model is a certain average of the moving models which fit into that
window span of the causality profile.

It should be mentioned that a causality profile for an “evolving window” was also
tried, starting from the lowest possible model up to the model for the total time series.
The results of this method have not been satisfactory because one cannot get rid of bad
observations. Bad observations have a very sensitive (nonrobust) impact on the estima-
tion of time series models. High sensitivity to extreme observations is the disadvantage of
the evolving method, while the disadvantage of the moving window method is its possible
dependence on the window span. However, this example demonstrates that the combina-
tion of different approaches provides a good starting point to attack the difficult field of
changing causality directions.

24.6 Conclusions

The analysis of 5 Austrian interest rates with local stationary models shows that ho-
mogeneous blocks of stationary developements are in general very short. Therefore, the
assumption of a stationary monthly model for the whole period between 1972 and 1981
is not a very valid one. On the other side, forecasting properties can not be improved if
the differencing procedure of Box-Jenkins modeling is applied [see also Polasek (1983)].
Therefore, we are faced with a specific nonstationary behavior, which cannot be solved by
traditional methods of stationarity transformations.
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Figure 24.13: Local causality measures: relationships between moving and bisectrix mea-
sures for Austrian Call Money Rate (R), and 3-Month Money Rate (3R).
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Despite the fact, that only a limited amount of monthly data are available for fitting
local nonstationary models (note that the parameter/observation ratio becomes close to
one), we find the following results:

1. In univariate models, we can find up to 4 different stationary blocks, if we choose a
block length of 18 months and longer.

2. The longest stationary block was found for the Call Money Rate between 1974 and
1978.

3. Most of the blocked models (13 are AR(1) processes; 10 models are AR(2) or AR(3)
processes.

4. Only 4 blocks of the Deposit, Corrected Lending, 3-Month Money, and Bond Rates
show seasonal cyclic behaviors (see Figure 24.7).

5. If the block length is reduced from 18 to 12 months, more stationary intervals can
be found (see Figure 24.8).

6. Results of bivariate blocked models are more sensitive to the chosen block length
and maximum lag length than univariate models (see Figure 24.8).

7. In general, 3 blocks can be found for the pair Deposit/Corrected Lending Rate and
Call Money/3-Month Money Rate.

8. Two blocks are found for the bivariate model Call Money/3-Month Money/Bond
Rate.

9. Local causality results show that the instantaneous influence is dominating on both
ends of the time series.

10. Most local periods show balanced feedback between the time series. The direction
D — 3R is dominating in the first and the last local period; the direction D — L is
dominating in the first half of the time series.
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CHAPTER 25

Investment, Taxation, and Econometric
Policy Evaluation: Some Evidence on
the Lucas Critique

Jean-Marie Dufour

Summary

The aggregate investment schedule may be used to study the impact of various policy mea-
sures, such as changes in corporate tax rates, depreciation allowances, and investment tax
credits. Its parameters should be invariant with respect to the policy changes themselves,
a point forcefully stressed by Lucas (1976). On the impact of investment tax credits, Lucas
makes two predictions: first, if the model is implemented under an assumption of static
expectations (versus rational expectations) and estimated from a period during which pol-
icy rules changed appreciably, it will exhibit parameter instability; second, the impact of
tax credits is likely to be heavily underestimated. This chapter presents empirical evi-
dence on both these effects by studying a version of the Hall-Jorgenson model estimated
from US data (1956-1972). For this purpose, we use recursive stability analysis, an ex-
ploratory methodology that makes very weak assumptions on the form of the instability
to be detected and provides indications on the direction of prediction errors. The main
finding is a discontinuity associated with the first imposition of the tax credit (1964-1966);
further, this shift led to underprediction of investment. The results thus support Lucas’s
hypothesis.




442 Statistical Analysis and Forecasting of Economic Structural Change
25.1 Introduction

The stability over time of the aggregate investment schedule has great importance for
macroeconomic policy. In particular, one may use this relationship to study the impact
of various policy measures, such as changes in nominal corporate tax rates, changes in
depreciation allowances, investment tax credits, and the like. An ingenious formulation of
an investment function making possible such studies is due to Hall and Jorgenson (1967).
This model was employed, for example, by Gordon and Jorgenson (1976) to study the
impact of investment tax credits in the United States over the period 1960-1985.

It is easy to understand that the model used for such policy simulations should exhibit
a good stability over time. In particular, the parameters should be invariant with respect
to the policy changes themselves, a point forcefully stressed by Lucas (1976). This author
argues that parameters in econometric relationships reflect economic agents’ decision rules:
since the latter integrate knowledge about policies, changes in policy rules are likely to
induce shifts in the parameters. Lucas describes three cases where such phenomena could
be observed: the first one deals with income transfers and the aggregate consumption
function, the second one concerns studies of the effect of investment tax credits with the
help of the Hall-Jorgenson model of investment demand, while the third one is based on the
Phillips curve. In this chapter, we provide empirical evidence on this issue by considering
the second example.

In this case, Lucas argues that the effect of a change in the rate of an investment tax
credit depends crucially on expectations concerning future changes in this rate: the impact
of a change in the tax credit differs, depending on expectations about future changes of
the tax credit. In other words, the response coefficient to a change in the rate of the
tax credit depends on expectations about future changes of this rate. In particular, after
developing a simple investment model, Lucas shows that the impact of a given change may
be substantially bigger if it is viewed as transitory rather than permanent (once-and-for-
all) [1]. Consequently, if an investigator assumes that changes in the investment tax credit
are viewed as permanent by the relevant economic agents, while the latter in fact view it
as transitory, he may appreciably underestimate the impact of the tax credit. Thus, to
forecast accurately the effect of a proposed change in the tax credit, it is important

1. to make correct assumptions concerning expectations on future changes in the tax
credit that will follow a proposed change;

2. to specify and estimate the model under correct expectational assumptions over the
historical period used for estimation.

Note here that Hall and Jorgenson (1967), as well as Gordon and Jorgenson (1976), as-
sumed that changes in tax rates were viewed as permanent.

To get evidence on the Lucas critique, we shall reexamine the same model and data
as Gordon and Jorgenson (1976). Over the sampling period used for the estimation of
their investment function (1956-1972), five major changes in the tax credit took place.
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The tax credit was originally introduced in 1962 to stimulate investment. Then “the effec-
tiveness of the tax credit was increased substantially in 1964 with the repeal of the Long
Amendment [2]. The investment tax credit was suspended in 1966-1967 and repealed in
1969 in order to reduce the level of investment. The tax credit was re-enacted in 1971 to
stimulate investment expenditures” [3]. These events suggest that policy regime changes
took place over the period considered and, from Lucas’ argument, we should observe pa-
rameter instability in the Gordon-Jorgenson model (unless expectations effectively obeyed
the scheme implicitly assumed by Hall and Jorgenson). Further, since it is argued that
the assumption of static expectations should lead to underestimating the impact of the
tax credit, we also expect that the introduction of the investment tax credit be associated
with underpredictions of investment expenditures.

To study such general effects, we need an exploratory methodology that is sensitive to
a wide variety of possible structural changes and capable of providing information on the
timing of structural change. Further, it should give indications on the direction of predic-
tion errors associated with the use of a model. An attractive procedure of this type consists
of estimating the model recursively (adding one observation at a time) and examining a
number of resulting statistics. This approach was first formalized by Brown et al. (1975);
a systematization as well as a number of extensions were provided by Dufour (1979, 1982,
1986). [For further work along those lines, see also Hackl (1980)]. Because it is especially
well adapted to our objectives, this is the approach we will follow to study the Lucas
effects.

In Section 25.2, we present the investment model that will be analyzed. In Section 25.3,
we describe succinctly the methodology used and define the main statistics considered. In
Section 25.4, we present the empirical results. In Section 25.5, we summarize our findings
and conclusions.

25.2 The Model

The model studied by Gordon and Jorgenson (1976) is based on quarterly data and has
the form

6
IPDE58; = a+ 6K+ Y BiViei + uy (25.1)

1=0
where I PD E58, is real investment (1958 dollars) in producers’ durable equipment (during

period t), K, is gross beginning-of-period real capital stock of producers’ durable equip-
ment, V; is a proxy for the desired capital stock defined as

V;g = (PGNPt_z)(GNPSSt_l/Ct_Z (252)

G N P58; is the real gross national product (1958 dollars), which, like TP DE58;, is sea-
sonally adjusted and measured at annual rates; PGNP, is the GNP price deflator, C; is
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the rental cost of capital, and wu; is a random disturbance. The cost of capital C; is given
by the expression

Cy= PIPDE,0.138 + R, (1 - Uy)[[1 = U4 Z, — TC, + Y, Z,TC, U] /(1 = Uy) (25.3)

where PIPDE, is the price deflator for investment in producers’ durable equipment, 0.138
is the depreciation rate on producers’ durable equipment as calculated by Christensen and
Jorgenson (1969), U, is the nominal corporate tax rate, R; is the interest rate on new
issues of high-grade corporate bonds, Z; is the present discounted value of depreciation
allowances, TC; is the effective tax credit and Y; equals 1.0 during those years in which
the Long Amendment applied and zero otherwise.

In order to estimate this model, Gordon and Jorgenson (1976) used a second-degree
Almon polynomial lag structure constrained to pass through zero after seven periods. This
imposes the restrictions

Bi=ap—aii—asi?, i=0,1,...,7 (25.4)

with 8; = ap — Ta; — 49a, = 0, so that there are effectively only two free parameters in
the distributed lag on V;. Under these conditions, the equation to be estimated is

IPDES8, = a+ 6K + aiWy + aaWa + uy (25.5)
where
6 6
W= (T-i)Vii and Wa=) (49-"Wisi . (25.6)
1=0 1=0

Furthermore, since the original Durbin-Watson statistic was 0.7554, a first-order autore-
gressive transformation was used (with p = 0.6223, estimated by the Cochrane-Orcutt
method). The following equation, based on the period 1956/1-1972/IV, was finally ob-
tained:

IPDE58; = -9.656 4+ 0.0572 K, 4+ 0.00181 V; + 0.00218 V;_,4

(1.522) (0.0163) (0.00071) (0.00033)
+ 0.00233 V,_, + 0.00228 V,_3 + 0.00202 V,_, + 0.00156 V,_g
(0.00019) (0.00031) (0.00038) (0.00036)
+ 0.00088 V,_g, R?=0.9577, DW =1.9788, SE =1.0150. (25.7)
(0.00023)

The sample 1956/I1-1972/IV represents effective observations, not including those obser-
vations that are “lost” because of the presence of lagged explanatory variables and the
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autoregressive transformation. The standard errors are given in parentheses. R? is the
multiple correlation coefficient, DW is the Durbin-Watson statistic, and SE is the stan-
dard error of the regression (all for the transformed model).

This model is based on a static-expectations assumption [see equation (25.2)]. By
contrast, in his theoretical argument, Lucas (1976) considers a tax credit that follows
a Markovian scheme, which includes as special cases both a permanent credit (i.e., the
probability that the tax credit will disappear is zero) and a frequently imposed but always
transitory credit (i.e., the probability that the tax credit will disappear soon is high). As-
suming rational expectations on the part of investors, he then shows that the impact of the
tax credit can be much bigger if it is viewed as transitory rather than permanent. Indeed,
under reasonable values of the model parameters, the ratio of the actual to predicted effect
may be in the range of 4 to 7.

In this chapter, we study the stability over time of the above model. For this pur-
pose, we use an “exploratory” methodology aimed at being sensitive to a wide variety
of instability patterns. It is based on estimating recursively the model under study and
considering associated paths of coefficient estimates and prediction errors. An especially
interesting aspect of this approach for our problem is that it can give us information on
the timing of parameter shifts and the direction of prediction errors, two issues for which
Lucas’s conjecture has implications. In the next section, we give a succinct description of
the methodology employed.

On the basis of this approach, we shall present (in section 25.4) the results of three
different recursive estimation experiments with the same data as Gordon and Jorgen-
son (1976). In the first one, we simply estimate equation (25.5) recursively by ordinary
least squares. In the second one, we take into account the fact that Gordon and Jorgen-
son (1976) made a correction for “autocorrelation” (which, however, may only be an ad
hoc response to a parameter instability problem) and we study how the conclusions are
affected after making such a correction. We thus estimate recursively the transformed
model

IPDE58t(ﬁ) = C!(]. — ﬁ) + 5Kg(/3) + a1W1t(/3) + ll2W2t(/3) + E: (258)

where p = 0.6223, IPDE58,(p) = IPDE58 — jIPDE58;_1, Ki(p) = K¢ — pK;_1, etc.
[See Dufour (1982, Section 2.5) for a discussion of this procedure. Note that p is not
recursively estimated.]

Finally, in the third experiment, we try to deal with an extra difficulty: since the
capital stock K; is a function of past investment, K, cannot, strictly speaking, be taken
as independent of the disturbance vector. The regressor K; may be viewed as a form of
lagged dependent variable, and the tests performed in the two first experiments cannot be
considered exact. A suggested in Dufour (1982, Section 2.5), we get rid of the troublesome
regressor K,(p) by subtracting § K¢(5) on both sides of (25.6) where § is the estimate of §
based on the full sample. We thus consider the regression

IPDES8.(5) - §Ki(p) = a(1 - p) + e Wii(§) + aaWael$) + ] (25.9)
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where § = 0.0572 and p = 0.6223, and perform the recursive estimation experiment on
the remaining coefficients. Of course, this third experiment loses some of the advantages
of “recursivity” (6 is not estimated recursively), which may lead to a loss of power. But
it appears necessary in the present circumstances as a way of cross-checking the results
obtained without taking into account the presence of a lagged dependent variable.

25.3 Methodology

In this section, which draws heavily on Dufour (1986, Section 2.3), we sketch the main
features of recursive stability analysis and define the main statistics used. For a detailed
description and more complete bibliography, the reader is referred to Dufour (1982).

Let us consider the following regression model:
w=z,8+w, t=1,...,T (25.10)

where y; is an observation on the dependent variable, z; is a K X 1 column vector of
nonstochastic regressors, 3 is a K X 1 vector of regressor coefficients, u; is a disturbance
term that follows a normal distribution with mean zero and variance ¢2. Assume also that
the disturbances u;,...,ur are independent.

We wish to investigate the constancy of the regression coefficient 3 over different
observations. In other words, we consider the alternative model

w=zf+u, t=1,...,T (25.11)

and wish to test the null hypothesis Ho: 81 = ... = 7 = 8.

When the data have a natural order (e.g., time), a simple way to investigate the
stability of regression coefficients is to estimate the model recursively. Using the first K
observations in the sample to get an initial estimate of 3, we gradually enlarge the sample,
adding one observation at a time, and reestimate 3 at each step. We get in this way the
sequence of estimates

b, = (X X)) 'X]Y,, r=K,...,T, (25.12)

where X! = (21,...,2,) and Y, = (y1,...%.). We assume here that rank(X,) = K,
r=K,...,T. A computationally efficient algorithm allows one to get this sequence easily
[see Brown et al. (1975, p. 152)]. It is intuitively clear that the examination of this
sequence of estimates can provide information on possible instabilities of the regression
coefficients. We see also that two different permutations of the data usually yield different
sequences of estimates. However, when the data are ordered (e.g., by time), it appears that
the most easily interpretable results will be obtained by putting the data either in their
original time order or in the reverse order. In the first case, one gets “forward recursive
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estimates”; and in the second case, “backward recursive estimates”. In this chapter we
will concentrate our attention on forward recursive estimation.

Recursive estimates are a descriptive device reflecting the influence of different ob-
servations in a sequential updating process. However, recursive estimates are strongly
autocorrelated, even under the null hypothesis of stability, and the analysis of their be-
havior remains delicate from a statistical point of view. One can show easily that recursive
estimates follow a “heteroscedastic random walk”; see Dufour (1982, eq.24). Thus the ob-
servation of a “trend” must be interpreted with great care. Consequently, it is important
to have statistics that are easier to interpret. For this purpose, we look at the associated
sequences of prediction errors. Namely, we consider the sequences of prediction errors

Vkr = Ypr — z:-br—k, r=K+ k,- . ,T (2513)

where 1 < k < T — K. Since these have different variances, it is convenient to standardize
them and to compute

Vkr

kr  r=K+k,...,T (25.14)
di»

Wer =

where dp, = [1 + zL(X:_kX,_k)“lz,]é. We call the sequence wg,, 7 = K + k,...,T,
“k-steps-ahead recursive residuals” — or simply “k-step recursive residuals”. Depending
on whether the sample is in forward or backward order, we get “forward” or “backward
recursive residuals”. It is easy to verify that, under the null hypothesis of stability,

E(wr,) =0, E(wi)=o>
Further, when k = 1, one has
E(w,wis) =0, 7#s

so that the sequence wi,,» = K 4+ 1,...,T, is a normal white noise. For k > 2, the
sequence wg,, 7 = K + k,...,T, is dependent but only up to lag k — 1 [see Dufour (1982,
pp. 41-44)].

It is not difficult to determine how relatively simple forms of structural ché.nge will
affect the behavior of prediction errors (or recursive residuals). For example, a sudden
shift in the coeflicients at some point to will, in many circumstances, lead to an increase
in the size of prediction errors and/or a tendency to either overpredict or underpredict
the dependent variable (for ¢ > #o); a systematic drift in one or several of the coefficients
will often lead to a systematic tendency to over- or underpredict; etc. Thus, we will first
use the sequences of standardized prediction errors to perform an exploratory analysis
and search for patterns indicative of possible structural shifts. For this purpose, it is
especially useful to look at several “clues”. The simple statistical properties of the one-
step recursive residuals (forward or backward) designate them as the basic instrument of
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analysis for that search. However, we will find instructive to compare these with the k-step
recursive residuals (k > 2): since the latter are forecasts using estimates from a sample
further away in time, they may exhibit better-defined and more recognizable patterns;
they can also help to identify possible breakpoints.

When interpreting and comparing various sets of residuals, it is always useful to recall
that all recursive residuals have the same standard error ¢ (under the null hypothesis).
Interpretation will generally be easier if we scale the residuals with an estimate of o. Since
the most natural estimate is the one obtained from the full sample (i.e., the standard error
of the regression), one computes

e = 2 s =K +k,...,T (25.15)
g

where

5% = (Yr — X7br)'(Yr — Xrbr)
B (T - K)

This procedure can also help display the recursive residuals, for in most practical situ-
ations, it will bring all residuals in a convenient scale — not too close to zero and well
inside the interval (—10,+10) [4].

Though the first purpose of the instruments we defined is exploratory, it is important to
assess the statistical significance of what is observed. Because one-step recursive residuals
have such simple statistical properties, we will use these for this assessment. Roughly
speaking, we expect two main types of effects to result from structural shifts: tendericies
either to over- or underpredict the dependent variable and discontinuities in the size of
the prediction errors. Consequently, we will compute a number of simple statistics aimed
at being sensitive to these characteristics. Statistics especially sensitive to the sign of
prediction errors include the CUSUM test originally suggested by Brown et al. (1975), a
Student t-test and the corresponding Wilcoxon signed-rank test, run tests based on the
number of runs and the length of longest run, and serial dependence tests. Statistics
sensitive to discontinuities in the size of prediction errors include the CUSUM of squares
test suggested by Brown et al. (1975) and heteroscedasticity tests. We now define succincty
the various test statistics.

If welet wy = wyy, t = K+ 1,...,T, the CUSUM test is based on considering the
cumulative sums

1 T

W, = - ; = .

f &.E w;, r=K+1,...,T (25.16)
j=K+1

where 62 = Sg/(T ~ K) and St = Z?:K+1 w?. The null hypothesis Hy is rejected at level
aif ¢ = maxg y1<r<T |W,| > ¢4, Where
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W, = i
" {VT-K+2[(r- K)/VT - K|}

and ¢, depends on the level of the test (cg.01 = 1.143, ¢cgo5 = 0.948, cg.10 = 0.850). In other
words, Hy is rejected if the graph of W, crosses either one of two straight lines determined
by the level of the test. The t-test is based on the standard Student’s t-statistic to test
the hypothesis that the recursive residuals have zero mean against a systematic tendency
to over- or underpredict. It is based on the statistic

(25.17)

=X 25.18
- (2519)
where
T T —\2
_ wy 2 (w; — @)
w= Yy , o= Y (25.19)
t:K+1T—K t:K+1T_K—1

under the null hypothesis, ¢ follows a Student’s t-distribution with ' — K — 1 degrees of
freedom. The Wilcoxon signed-rank test is based on the statistic

T
S= Y u(w)R} (25.20)
t=K+41

where

£
—

N
~—

I

1, ifz>0
0, ifz<0

T
> ulwe] = fwi]) (25.21)

i=K+1

&
~+
il

We may view it as a robust alternative to the t-test; its distribution (for T < 50) has
been extensively tabulated by Wilcoxon et al. (1973, pp. 171-259). For T > 50, one can
use the standardized form X' = [S — E(S)]/a(S), where E(S) = n(n + 1)/4, o(S) =
[n(n+ 1)(2n + 1)/24]117 and n = T — K. Under Hy, S’ is approximately N(0,1).

An intuitively attractive way of looking at the sequence of the recursive residuals con-
sists of observing runs of overpredictions (or underpredictions), as defined by the sequence
u(wy),t = K +1,...,T. Two simple tests are then obtained by considering the number
of runs R in this sequence or by observing the length of the longest run in the sequence.
The distribution of the number of runs R is obtained by noting that # — 1 follows a bi-
nominal distribution Bi(7'— K — 1, %), a small number of runs suggests that the model has
a tendency to overpredict or underpredict. Besides, an especially long run of negative or
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positive errors of prediction suggests the presence of a shift. The probability of getting at
least one run of a given length or greater may be computed from formulas (135) to (138)
in Dufour (1982).

In a large number of cases, structural change leads to situations where the means of
the cross products Zy: = wyweyk,t = K +1,...,7 —k (where 1 < k£ < T — K — 1) differ
from zero [see Dufour (1982, pp. 52-55)]. This suggests testing whether Z; has mean
zero: we can do this by using “serial dependence tests” not corrected for the mean (for
such tests are more accurately viewed in this context as location tests rather than serial
dependence tests). We will consider two types of statistics for doing this: the modified
von Neumann ratio

(n— 1) ' Clg 1 (Wi — w)?

T 2
nTh Y K1 Wi

VR = (25.22)

where n = T — K, and rank Wilcoxon-type serial dependence tests based on statistics of
the form
T—k
Se= Y, uw(Zm) R, k=1.2,... (25.23)
t=K+1

where R}, = E?:__,?H U(|Zrt| — |Zyi|). VR provides an exact parametric test of the null
hypothesis E(wiwe41) = 0,¢t = K+1,...,T -1, for a table, see Theil (1971, pp. 728-729).
Each statistic Sy is distributed like the Wilcoxon signed-rank statistic to test the zero
median hypothesis; it gives an exact test of the null hypothesis E(wiw;4x) = 0, t =
K+1,...,T—k, where k > 1 [see Dufour (1981)]. Further, under Hy, E(Sk) = ng(ne+1)/4,
and o(Sk) = [nk(nk + 1)(2n) + 1)/24]*/2, where n, =T — K — k.

The CUSUM of squares test is based on considering the statistic
_ Xi=K+1 w?

L, r=K+1,..,T (25.24)

Se = I
Ej:K+l wy

The null hypothesis is rejected at level a if

S = ISk1;— ﬁf > dy (25.25)

max
1<i<T-K~1
where d,, is obtained by entering Table 1 of Durbin (1969) at a/2 and n = (3)(T - K) -1
if T — K is even, or by interpolating linearly between n = (})(T — K) — (3/2) and
n=(3)(T-K)—(})if T— K is odd. We do not use heteroscedasticity tests in this paper
and so do not need to define them here.

Whenever possible we will report the marginal significance level (p-value) of each statis-
tic. Of course, a test significant at a very low level provides stronger evidence against the
null hypothesis. Note also that any of the tests suggested above can be applied to a
subset of the one-step recursive residuals, provided this subset is suggested by a prior:
considerations (e.g., dates of policy changes).
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25.4 Recursive Stability Analysis of Investment Demand

As indicated in Section 25.2, the first experiment consists of estimating equation (25.5) re-
cursively by ordinary least squares (1956/1-1972/IV) [5]. The recursive estimates obtained
are listed in Table 25.1 and graphed in Figure 25.1(a-d); the corresponding recursive resid-
uals (1, 2, 3, 4, and 8 steps ahead) are listed in Table 25.2, with a number of test statistics
in Table 25.3, and they are graphed in Figure 25.2(a-d) [6].

When we look at the recursive estimates, we distinguish four main phases:

1. The first phase (beginning to 1961/I) is characterized by relatively large fluctuations
(including some “weird” values, especially at the very beginning, which is not sur-
prising for, at the beginning, the estimations are based on few observations) and by
a rough trend (upward for a and a;, downward for § and a,).

2. The second phase (1961/I11-1963/III) is one of relative stability exhibiting no clear
trend, expect for § which increases after 1962/IV.

3. The third phase (1963/IV-1966/IV) displays well-defined trends (downward for o
and ay, upward for § and a;) during which all coeflicients change sign.

4. Finally, during the fourth phase (1967/1-1972/IV), a; and a; move in directions
opposite to the ones they followed in the previous phase, while a and é seem stable.

Thus, the fourth quarters of 1963 and 1966 appear to be breakpoints.

When we examine one-step-ahead recursive residuals, we find no systematic tendency
to over- or underpredict over the full period (as indicated by the global location tests
in Table 25.3). However, we can observe a run of 13 consecutive underpredictions from
1963/IV to 1966/IV, a very surprising outcome if the model is correct: under the null
hypothesis of stability, the probability of getting at least one run of this length or more
is 0.0065. The total number of runs of either over- or underpredictions (16) is extremely
small in relation to the sample size, and there is strong evidence of serial dependence
(at least up to a distance of 3 quarters). Indeed, the trajectory of the one-step recursive
residuals has several striking features. The first period (beginning to 1963/III) exhibits
a tendency to overpredict (negative residuals). This phenomenon is also indicated by
the CUSUM test [see Figure 25.2(f)]. Note also that the CUSUM of squares test is not
significant (at level 0.05). Next, we note a long run of 13 consecutive underpredictions
(1963/IV-1966/IV), a “breakpoint” between 1966/IV and 1967/I, another run of 9 under-
predictions (1967/I1V-1969/IV), while the sequel of the series looks relatively “random”.
We can also observe that two-, three-, and four-steps-ahead recursive residuals display
basically the same pattern. The form of the pattern is in fact clearer from the latter than
from the one-step residuals.

It is interesting to compare the trajectory of the one-step recursive residuals with the
movement of the effective investment tax credit [7]. The long run of underpredictions starts
in 1963/IV, which roughly coincides with the repeal of the Long Amendment (1964/1),
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Table 25.1: Gordon-Jorgenson model: forward recursive estimates (OLSQ):
1956/1-1972/IV.

Quarter ¢ a '] a; az
56.04 -326.102 1.6091 -0.0183925 0.0018862
57.01 -355.362 1.7910 -0.0199375 0.0020607
57.02 -200.678 0.9335 -0.0113759 0.0011276
57.03 -258.690 1.2004 -0.0145302 0.0014536
57.04 103.7298 -0.2716 0.0044718 -0.0004420
58.01 51.225 -0.3009 0.0038135 -0.0004790
58.02 -201.634 0.5238 -0.0078796 0.0006041
58.03 -213.437 0.5234 -0.0076991 0.0005612
58.04 -133.600 0.1898 .0.0028328 0.0000649
59.01 -121.596 0.1442 -0.0021972 0.0000024
59.02 -127.719 0.1655 -0.0024678 0.0000277
59.03 -86.004 0.0339 -0.0010597 -0.0000916
59.04 -57.819 -0.0476 -0.0005529 -0.0001204
60.01 -40.011 -0.0949 -0.0004649 -0.0001113
60.02 -39.388 -0.0965 -0.0004630 -0.0001109
6G.03 -27.361 -0.1262 -0.0004526 -0.0000987
60.04 -12.912 -0.1608 -0.0005411 -0.0000723
61.01 7.845 .0.2074 -0.0007922 -0.0000198
61.02 20.961 -0.2326 -0.0011519 0.0000372
61.03 27.251 -0.2398 .0.0011481 0.0000465
61.04 29.245 -0.2407 .0.0011379 0.0000489
62.01 29.312 -0.2407 -0.0011375 0.0000489
62.02 28.384 -0.2413 -0.0011478 0.0000481
62.03 28.268 -0.2420 -0.0011981 0.0000533
62.04 28.814 -0.2319 -0.0007962 0.0000129
63.01 30.011 -0.2123  -0.0007552 0.0000171
63.02 31.475 -0.1941 -0 0011388 0.0000686
63.03 31.800 -0.1914 -0.0012565 0.0000832
63.04 31.227 -0.1943 -0.0010485 0.0000580
64.01 30.255 -0.1965 -0.0007345 0.0000205
64.02 28.943 -0.1961 -0.0004098 -0.0000180
64.03 27.405 -0.1945 -0.0001861 -0.0000452
64.04 26.252 -0.1911 -0.0000746 -0.0000586
65.01 23.723 -0.1807 0.0002025 -0.0000908
65.02 21.435 -0.1694 0.0004589 -0.0001199
65.03 17.259 -0.1464 0.0008914 -0.0001683
65.04 12.713 -0.1186 0.0013065 -0.0002138
66.01 7.462 -0.0837 0.0016886 -0.0002547
66.02 2.236 -0.0461 0.0019594 -0.0002822
66.03 -2.754 -0.0090 0.0022482 -0.0003115
66.04 -6.225 0.0172 0.0025062 -0.0003381
67.01 -3.042 -0.0074 0.0022301 -0.0003095
67.02 -2.278 -0.0128 0.0020597 -0.0002909
67.03 -1.595 -0.0184 0.0019768 -0.0002822
67.04 -2.542 -0.0093 0.0019180 -0.0002744
68.01 -5.921 0.0244 0.0015286 -0.0002263
68.02 -6.344 0.0287 0.0014691 -0.0002190
68.03 -7.195 0.0375 0.0013446 -0.0002039
68.04 -7.587 0.0415 0.0012932 -0.0001976
69.01 -8.738 0.0531 0.0011811 -0.0001834
69.02 -8.968 0.0554 0.0011641 -0.0001812
69.03 -9.197 0.0578 0.0011459 -0.0001788
69.04 -9.346 0.0592 0.0011719 -0.0001815
70.01 -8.954 0.0553 0.0010426 -0.0001677
70.02 -8.798 0.0536 0.0009942 -0.0001625
70.03 -9.123 0.0576 0.0009975 -0.0001622
70.04 -7.915 0.0421 0.0012129 -0.0001890
71.01 -7.838 0.0410 0.0012349 -0.0001916
71.02 -8.278 0.0469 0.0010713  -0.0001723
71.03 -8.479 0.0495 0.0009754 -0.0001612
71.04 -9.088 0.0572 0.0006227 -0.0001205
72.01 -9.427 0.0612 0.0004061 -0.0000956
72.02 -9.405 0.0609 0.0004209 -0.0000973
72.03 -9.213 0.0593 0.0005416 -0.0001110
72.04 -9.204 0.0593 0.0005455 -0.0001114

?End-of-sample quarter. All samples start in 56.01 (1956/1).
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Table 25.2: Gordon-Jorgenson model: forward recursive residuals (OLSQ):
1956/1-1972/TV

Quarter ¢ 1 step 2 steps 3 steps 4 steps 8 steps
57.01 0.0352 - - - -
57.02 -0.3443  -0.0826 - - -
57.03 0.1202 -0.2410 -0.0586 - -
57.04 -0.9358 -0.3520 -0.4835 .0.1767 -
58.01 -2.0437 -1.9434 -0.7658 -0.6970 -
58.02 -0.9692 -1.6723 -1.4633 -1.1100 -
58.03 -0.7965 -1.2545 -2.1070 -2.3049 -
58.04 -0.8318 -1.0136 -0.6006 -1.4623 -0.2768
58.01 -0.1621 -0.7309 -0.8453 0.0888 -0.5647
59.02 0.1215 -0.0394 -0.6529 -0.7163 -0.3496
59.03 -1.0660 -0.6810 -0.5661 -0.9969 -0.6585
59.04 -1.1178 -1.5424 -1.0406 -0.8184 0.2308
60.01 -0.9078 -1.3542 -1.7216 -1.1940  0.2001
60.02 -0.0415 -0.4826 -1.0236 -1.4752 -1.1135
60.03 -1.0657 -0.9519 -1.2886 -1.6988 -1.3356
60.04 -1.6579 -1.9499 -1.7102 -1.9269 -1.2509
61.01 -3.0500 -3.4503 -3.5545 -3.0674 -2.0987
61.02 -2.4494 -3.3145 -3.6992 -3.7670 -3.0522
61.03 -1.5073 -2.1589 -3.1013 -3.5108 -3.0344
61.04 -0.5886 -1.0080 -1.7293 -2.7538 -.2.7488
62.01 -0.0238 -0.1942 -0.6676 -1.4533 -2.5886
62.02 0.3981 0.3744  0.1668 -0.3661 -3.0006
62.03 0.1264  0.2424  0.2210 -0.0026 -3.0570
62.04 -1.2763 -1.0963 -0.8944 -0.8431 -3.4240
63.01 -1.8985 .2.2543 -1.9576 -1.6653 -2.9185
63.02 -1.6525 -2.1554 -2.4872 -2.1761 -2.2537
63.03 -0.2502 -0.8525 -1.5101 -1.8747 -1.3751
63.04 0.3969 0.2401 -0.4329 -1.1003 -0.9530
64.01 0.6896 0.7948 0.5781 -0.1357 -0.7935
64.02 0.9716 1.1661 1.2154 0.9388 -0.7791
64.03 1.6153 1.8299 1.9545 1.9152 -0.5585
64.04 1.0617 1.4188  1.6490 1.7873 -0.2733
65.01 1.8532 2.0483 2.3979 2.5852 1.0665
65.02 1.3797 1.7851 1.9928  2.3620 1.9435
65.03 2.3894 2.6599  3.0484  3.2200  3.2393
65.04 2.3603 2.8922 3.1595 3.5466  3.9159
66.01 2.5607 3.0896 3.6277 3.8720 4.6526
66.02 2.3817 2.9778 3.5237  4.0661 5.0238
66.03 2.2171 2.8001 3.4335 3.9931 5.1704
66.04 1.5839 2.2018 2.8415 3.5181 5.1804
67.01 -1.5789 .0.9150 -0.0800 0.7362  3.2344
67.02 -0.5451 -1.1402 -0.4052 0.4580 3.4158
67.03 -0.5047 -0.7066 -1.3239 -0.5287 2.7265
67.04 0.4544 0.2537 0.0078 -0.6620 2.5274
68.01 1.6167 1.6684 1.4435 1.1773 2.5613
68.02 0.2516  0.9135 1.0190 0.8428  1.4060
68.03 0.6852  0.7289 1.3712 1.4368  0.9470
68.04 0.4210 0.6192  0.6681 1.3293 0.2713
69.01 1.6063 1.6606 1.7926 1.7423 1.6934
69.02 0.3751 0.7129  0.7986  0.8801 1.4135
69.03 0.4108 0.4787 0.8364 0.9210 1.7631
69.04 0.3736  0.4438 0.5115  0.8600 1.7502
70.01 -1.2635 -1.1376 -1.0360 -0.9323 -0.0573
70.02 -0.5683 -0.8777 -0.7516 -0.6496 0.2055
70.03 0.9227  0.7655 0.4169  0.5001 1.1474
70.04 -2.7727 -2.5033 -2.5670 -2.7944 -1.6355
71.01 -0.1711 -0.8527 -0.6282 -0.7284 -0.5813
71.02 1.0118 0.9240 0.1605 0.3545 0.2081
71.03 0.4975 0.7913 0.7025 -0.0633 -0.0538
71.04 1.8427  1.8979 2.1286 1.9701 1.1664
72.01 1.3878 1.9639 2.0065 2.2322 1.39989
72.02 -0.1190 0.3230 0.9883 1.1032 0.6790
72.03 -1.3400 -1.3280 -0.8496 -0.1343 -0.3332
72.04 -0.0745 -0.2912 -0.3096 0.0560 0.9355

*Scaled recursive residuals are not reported: the standard error of the transformed regression is
& = 1.015 (based on the sample 1956/1-1972/IV).
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Table 25.3: Gordon-Jorgenson model: test statistics (OLSQ), based on the 64 one--
step-ahead recursive residuals.

Type Indicator Result p-values ¢
Global location t-test 0.619 0.9506
tests Number of positive residuals 32 1.0000
Wilcoxon test 1053 0.9307
Runs tests © Number of runs 16 0.000019
Length of longest run 13 0.0065
Serial correlation Modified von Neumann ratio 0.6779 < 0.002
tests ¢ Rank tests
k Signed-rank tests Sign tests
Sk S p-value St S, p-value
1 1735 4.977 0.00000065 48 4.158 0.000038
2 1421 3.116 0.0018 41 2.540 0.0151
3 1284 2.431 0.0150 37 1.664 0.1237
4 1091 1.296 0.1951 33 0.7746 0.5190
5 1041 1.177 0.2390 33 0.9113 0.4350
6 1095 1.854 0.0637 35 1.576 0.1480
7 1058 1.839 0.0659 35 1.722 0.1112
8 983 1.509 0.1313 32 1.069 0.3497
9 1015 2.053 0.0401 33 1.483 0.1770
10 958 1.856 0.0635 32 1.361 0.2203
11 877 1.430 0.1528 31 1.236 0.2717
12 807 1.075 0.2825 30 1.109 0.3317

*Marginal significance levels.

*See Dufour (1982, Section 4.3). The tests are two-sided.

°See Dufour (1982, Section 4.5). The tests are one-sided: P[R < 16] = 0.000019 and P[L > 16] =
0.0065, where R = number of runs (of + ’s or -’s) and L = length of the longest run.

45, is a rank statistic for testing serial dependence [see Dufour (1982, Section 4.6)], k being the lag
used; test; S, = (Sk — Eo(Sk))/ Stdo(Sk). We consider here two-sided tests (against positive or negative
serial dependence). For a more complete theory of these tests, see Dufour (1981).
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Figure 25.2: Gordon-Jorgenson model (OLSQ): recursive residuals and CUSUM tests.
Significance boundaries in (e) and (f) correspond to tests of level 0.05.
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Table 25.4: t-statistics for subperiods (OLSQ).

Pertod @ t p-value
1962/1—1966/111 2.553 0.0200
1964 /1-1966 /111 8.834 0.00000251

1967/11-1969/1 1.724 0.128
1971/11-1972/IV  1.127 0.303
Remainder ? —3.790  0.000705

“1962/1-1966 /III corresponds to the first application of the tax credit; 1964/I-1966/III is the
same period after the repeal of the Long Amendment; 1967/11-1969/1 corresponds to the second
application and 1971/11-1972/IV to the third one.

v1957/1-1961/1V, 1966,/TV-1967/1, 1969/11-1971/1.

and lasts as long as the effective tax credit is nonzero (up to 1966/IV). The suspension
of the tax credit (1967/I) is associated with a discontinuity in the same series, while the
following run of underpredictions (1967/IV-1969/IV) can be related to the reimposition
of the tax credit (1967/11-1969/T).

On this issue, it is also instructive to compute ¢-statistics to test the null hypothesis of
a zero mean (based on the one-step-ahead recursive residuals) for each of the subperiods
corresponding to the different phases of the tax credit. This is justified by the fact that
the (one-step-ahead) recursive residuals are i.i.d.N(0,02) under the null hypothesis [see
Dufour (1982, Section 4.3)]. The results of these calculations are given in Table 25.4.
From the latter, it is remarkable that each period where the effective tax credit is nonzero
corresponds to a positive t-statistic (indicating a tendency to underpredict), while the
period over which it does not apply yields a negative t-statistic. This effect is especially
strong for the first application of the tax credit after the repeal of the Long Amendment.

Thus, if we estimate recursively equation (25.5) by ordinary least squares, we find sev-
eral clues of instability. In particular, the results point to the presence of a substantial shift
associated with the first imposition of the investment tax credit, especially after the repeal
of the Long Amendment. Furthermore, this shift induced systematic underprediction of
the level of investment expenditures over the corresponding period. On the other hand,
the two other applications of the tax credit are not associated with statistically significant
effects, even though the t-statistics are also positive.

Consider now the results of a similar experiment applied to equation (25.8), i.e., model
(25.5) after correction for autocorrelation (using p = 0.6223). The recursive estimates are
listed in Table 25.5 and graphed in Figures 25.3(a-d); the recursive residuals are listed
in Table 25.6 with a number of test statistics in Table 25.7, and they are graphed in
Figures 25.4(a—d) [8]. When we look at the recursive estimates, we can still observe the
same basic phases: first (1957/I-1961/I), wide fluctuations with rough trends (upward
for a and a;, downward for § and a;); second (1961/I1-1963/IV), a period of relative
stability with no general trend (expect for § which starts to increase near 1961/IV}); third
(1963/IV-1966/IV), well-defined trends for all coefficients (downward for @ and a,, upward
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Table 25.5: Gordon-Jorgenson model: forward recursive estimates (data transformed with
p = 0.6223): 1956/1-1972/IV.

Quarter a 8 ay az

56.04 -363.656 -1.9131 0.0519153 -0.0071130
57.01 -271.063 1.2423 -0.0022213 0.0000800
57.02 -306.483 1.1325 0.0016707  -0.0004430
57.03 -313.996 1.4091 -0.00489850 0.0003493
57.04 255.176 -0.7712 0.0072497 -0.0006241
58.01 -391.011 1.1731 0.0056639  -0.0010445
58.02 -312.985 0.9128 0.0082321 -0.0010437
58.03 -252.689 0.7487 0.0023925 -0.0005666
58.04 -259.607 0.8018 -0.0006244 -0.0002177
69.01 -277.221 0.8733 -0.0013764 -0.0001448
59.02 -273.910 0.8607 -0.0013323 -0.0001475
59.03 -103.182 0.2313 -0.0007210 -0.0000952
59.04 -50.171 0.0343 -0.0014466 0.0000221
60.01 -38.367 -0.0089 -0.0016395 0.0000519
60.02 -563.803 0.0468 -0.00165769 0.0000337
60.03 -23.015 -0.0706 -0.0018095 0.0000797
60.04 -0.459 -0.1658 -0.0021968 0.0001378
61.01 33.432 -0.2782 -0.0028205 0.0002315
61.02 41.104 -0.3030 -0.0031011 0.0002691
61.03 42.370 -0.3038 -0.0030304 0.0002635
61.04 40.573 -0.3014 -0.0030468 0.0002626
62.01 38.703 -0.2985 -0.0030512 0.0002605
62.02 36.644 -0.2961 -0.0030638 0.0002588
62.03 35.078 -0.2750 -0.0023387 0.0001821
62.04 36.499 -0.2411 -0.0019230 0.0001498
63.01 40.351 -0.2223 -0.0024909 0.0002265
63.02 41.286 -0.2195 -0.0026724 0.0002494
63.03 37.019 -0.2210 -0.0018309 0.0001472
63.04 33.500 -0.2135 -0.0012767 0.0000814
64.01 30.380 -0.2017 -0.0009162 0.0000394
64.02 26.5564 -0.1819 -0.0006697 0.0000114
64.03 23.462 -0.1666 -0.0008041 0.0000256
64.04 23.063 -0.1643 -0.0007949 0.0000246
65.01 15.427 -0.1174 -0.0003890 -0.0000193
65.02 13.657 -0.1057 -0.0002985 -0.0000288
65.03 4.147 -0.0414 0.0001009 -0.0000698
65.04 -1.534 -0.0006 0.0003055 -0.0000897
66.01 -8.201 0.0494 0.0004660 -0.0001035
66.02 -12.363 0.0820 0.0005219 -0.0001067
66.03 -16.481 0.1144 0.0006648 -0.0001197
66.04 -17.838 0.1252 0.0007345 -0.0001264
67.01 -5.782 0.0266 0.0000840 -0.0000639
67.02 -8.687 0.0465 0.0008241 -0.0001450
67.03 -7.345 0.0350 0.0008335 -0.0001475
67.04 -7.942 0.0409 0.0007639 -0.0001390
68.01 -11.173 0.0732 0.0003778 -0.0000914
68.02 -8.527 0.0467 0.0006748 -0.0001282
68.03 -9.310 0.0544 0.0006067 -0.0001196
68.04 -9.264 0.0639 0.0006092 -0.0001199
69.01 -10.988 0.0698 0.0006009 -0.0001170
698.02 -10.243 0.0626 0.0006111 -0.0001191
698.03 -10.426 0.0645 0.0006022 -0.0001178
69.04 -10.709 0.0673  0.0006918 -0.0001274
70.01 -9.662 0.0656  0.0004967 -0.0001075
70.02 -9.905 0.0586 0.0005126 -0.0001088
70.03 -11.118 0.0743 0.0003393  -0.0000866
70.04 -7.688 0.0284 0.0011028 -0.0001802
71.01 -8.888 0.0446 0.0007806 -0.0001413
71.02 -8.601 0.0541 0.0005443 -0.0001132
71.03 -9.386 0.0514 0.0008417 -0.0001245
71.04 -10.134 0.0596 0.0002408 -0.0000785
72.01 -10.262 0.0607 0.0001823 -0.0000719
72.02 -9.801 0.0584 0.0003461 -0.0000903
72.03 -9.456 0.0571 0.0004711 -0.0001039

72.04 -9.656 0.0572 0.0004686 -0.0001039
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Table 25.6: Gordon-Jorgenson model: forward recursive residuals (data transformed
with j = 0.6223): 1956/1-1972/IV @

Quarter 1 step 2 steps § stepa 4 steps 8 steps

57.01 0.8617 - - - -
57.02 -0.2876 0.7745 — - -
57.03 0.5832 0.0882 0.8594 -~ -
57.04 -1.1129 -0.4005 -0.4743 0.7274 -
58.01 -1.9398 -2.1876 -0.9812 -0.7629 -
58.02 0.1588 -1.0499 -0.4120 -0.1960 —
58.03 0.5489 0.5060 -0.7196 -0.6797 -
58.04 0.5562 0.7814 0.7972 0.03186 0.7833
59.01 0.2796 0.5693 0.7879 0.7170  -0.1665
59.02 -0.0302 0.1087 0.4062 0.6159 0.0048
59.03 -1.4740 -1.1866 -0.9079 -0.5339 -0.4487
59.04 -0.6864 -1.4794 -1.2503 -1.0678 0.4201
60.01 -0.2317 -0.5886 -1.4267 -1.2044 -0.6091
60.02 0.4567 0.2821 -0.1955 -1.1810 -0.7522
60.03 -1.1254 -0.8058 -0.8034 -1.0568 -1.1056
60.04 -1.0778 -1.4389 -1.0843 -1.0100 -1.3586
61.01 -2.1211 -2.3610 -2.6153 -2.0790 -1.9059
61.02 -0.6305 -1.1889 -1.4830 -1.8146 -2.0349
61.03 -0.1769 -0.3097 -0.9042 -1.2230 -1.2533
61.04 0.2439 0.1839 0.0216 -0.6485 -0.9146
62.01 0.2705 0.3254 0.2559 0.0762 -0.8703
62.02 0.3446 0.4043 0.4581 03720 -1.4314
62.03 -0.5286 -0.4090 -0.3113 -0.2141 -1.3980
62.04 -1.4905 -1.5515 -1.3492 .1.1775 -1.8167
63.01 -1.0779 -1.5502 -1.6256 -1.3894 -1.1316
63.02 -0.2264 -0.6454 -1.1347 -1.2500 -0.6952
63.03 0.8557 06718 0.1440 -0.3490 -0.0831
63.04 0.6493 0.9670 0.7573 0.2130 -0.0957
64.01 0.5692 0.7803 1.0892 0.8612 -0.1237
64.02 0.6716 0.8141 1.0016 1.2811 -0.1755
64.03 1.0488 1.1659 1.2715 1.4139 0.0405
64.04 0.0779 0.3026 0.4656 0.6190 0.2725
65.01 1.2389 1.2223 1.4180 1.5533 1.6100
65.02 0.2578 0.5865 0.5869 0.8015 1.5434
65.03 1.5437 1.5541 1.8458 1.7981 2.2194
65.04 0.8328 1.2251 1.2443 1.5695 1.9277
66.01 0.9921 1.1828 1.5867 1.5917 2.1479
66.02 0.6097 0.8805 1.1017 1.5327 1.9872
66.03 0.6486 0.8110 1.0981 1.3219 1.9889
66.04 0.2372 0.4550 0.6430 0.9605 1.8735
67.01 -2.4115 -2.1238 -1.6815 -1.3304 0.2121
67.02 1.0585 -0.0779 0.0356 0.3018 1.5654
67.03 -0.2880 0.2444 -0.8673 -0.6599 0.6505
67.04 0.1035 0.0075 0.1772 -0.6717 0.4132
68.01 0.8737 0.8043 0.6673 0.8197 0.5047
68.02 -1.0001 -0.5752 -0.4352 -0.5072 -0.6355
68.03 0.4017 0.0870 0.4180 0.4110 -0.3358
68.04 -0.0358 0.0552  -0.2357 0.1098 -0.7244
69.01 1.3803 1.3484 1.4046 1.0719 1.2657
69.02 -0.6068 -0.3531 -0.3529 -0.2463 -0.1877
69.03 0.1533 0.0395 0.2996 0.2842 0.3840
69.04 0.3481 0.3692 0.2434 0.5176 0.5684
70.01 -1.3268 -1.1676 -1.1161 -1.2200 -1.0088
70.02 0.3041 -0.0354 0.0668 0.0978 0.3577
70.03 1.2032 1.2403 0.9179 0.9743 1.0602
70.04 -3.4415 -3.0240 -2.8938 -3.1034 -2.4678
71.01 1.4386 0.4566 0.7641 0.7997 0.4413
71.02 0.9690 1.3088 0.2586 0.5726 0.4643
71.03 -0.3269 -0.0517 0.3485 -0.6952 -0.4223
71.04 1.4282 1.2599 1.4814 1.8241 0.9441
72.01 0.2908 0.6649 0.5394 0.7795 0.4317
72.02 -1.0287 -0.9480 -0.5379 -0.6084 -0.5938
72.03 -1.4314 -1.5655 -1.4939 -1.1499 -1.4101
72.04 0.6363 0.5052 0.4022 0.4314 0.9185

“Scaled recursive residuals are not reported: the standard error of the transformed regression is
G = 1.015 {based on the sample 1956/I-1972/IV).
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Table 25.7: Gordon-Jorgenson model (p = 0.6223): test statistics. ¢

Type Indicator Result  p-values
Global location t-test —0.1203  0.9042
tests Number of positive residuals 38 0.1686
Wilcoxon test 1126 0.5652

Runs tests Number of runs 29 0.2250
Length of longest run 14 0.0032

Serial correlation Modified von Neuwmann ratio 1.967 > 0.10

tests Rank tests
k Signed-rank tests Sign tests

Sk S p-value Sy S, p-value

1 1161 1.047 0.2949 35 0.8819 0.4500

2 1103  0.8869 0.3751 36 1.270 0.2529

3 1114 1.210 0.2262 36 1.408 0.2000

4 789 —0.9276 0.3536 26 —1.033 0.3663

5 897 0.0906 0.9278 32 0.6509 0.6029

6 1126 2.094 0.0362 36 1.838 0.0869

7 1092 2.109 0.0349 37 2.252 0.0331

8 787 —0.0897 0.9285 30 0.5345 0.6889

9 870 0.8379 0.4021 28 0.1348 1.0000

10 710 —-0.2798 0.7796 26 -0.2720 0.8919

11 578 —1.217 0.2235 24 —0.6868 0.5831

—
[\

696 0.0638 0.9492 25 -0.2774 0.8899

“Number of residuals: 64

Table 25.8: t-statistics for subperiods (p = 0.6223).

Period t p-value
1962/1-1966/II1 2178  0.0429
1964/1-1966/II1  6.066  0.0000812
1967/11-1969/1  1.130 0.256
1971/I1-1972/IV  0.194 0.853
Remainder ¢ —1.839 0.0762

*1957/1-1961/1V, 1966 /TV-1967/1, 1969/11-1971/1.
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Figure 25.4: Gordon-Jorgenson model (4 = 0.6223): recursive residuals and CUSUM tests.
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for § and @) during which all coefficients change sign; fourth (1967/I-1972/IV), a period
during which all coefficients seem to stabilize. On the other hand, the one-step recursive
residuals [Figure 25.{(a)] appear more “random” than without the tranformation [compare
Figures 25.2(a) and 25.{(a)]. Global location tests and serial dependence tests are not
significant at standard levels (say, 0.10). Nevertheless, we can still observe a tendency
to overpredict in the earlier period (up to 1963/II) as well as a run of 14 consecutive
underpredictions from 1963/III to 1966/IV followed by a sudden drop (1967/I) [9]. The
(1967/IV-1969/IV) run of underpredictions disappears. These observations are confirmed
when we look at several-steps-ahead recursive residuals [Figures 25.4(b-d)]. We thus
continue to find signs of instability, especially in association with the first application of
the tax credit (after the repeal of the Long Amendment).

The t-statistics for the separate subperiods corresponding to the different applications
of the tax credit are reported in Table 25.8. As in the first experiment, the ¢-statistic for
periods where the tax credit was in force are positive, while for the rest of the sample the
t-statistic is negative. Moreover, the t-statistic for the first application period is significant
(at level 0.04) and very strongly significant (at level 0.00008) if the period where the Long
Amendment applied is excluded.

Finally, to take into account the fact that K, is a form of lagged dependent variable, let
us consider the result of estimating recursively equation (25.9). The recursive estimates
are listed in Table 25.9 and graphed in Figures 25.5(a~c); the recursive residuals are listed
in Table 25.10, with a number of test statistics in Table 25.11, and they are graphed in Fig-
ures 25.6(a~d). From the recursive estimates, we still observe the same four phases: first
(1956 /IV-1961/I), wide fluctuations with rough trends (upwards for a and a,, downward
for a,); second (1961/11-1963/II), a period of relative stability; third (1963 /II1I-1966/IV),
a clear trend (downward for a and a,, upward for a,); fourth (1967/I1-1972/IV), a period
where all coefficients seem to stabilize. On the basis of the one-step recursive residu-
als [Figure 25.6(a)], we find now that none of the test statistics in Table 25.71 nor the
CUSUM and CUSUM of squares tests [Figures 25.6(¢) and (f)] are significant (at level
0.05). In particular, the longest-run test is not conclusive. [Two residuals in the middle
of the longest run previously observed (1963 /I11-1966/IV) are now below the zero line.]
Nevertheless, several-steps-ahead recursive residuals [ Figures 25.6(b-d)] do not seem to be
affected in the same way and exhibit basically the same pattern as in the previous experi-
ment; in particular, two- and three-steps-ahead recursive residuals contain continuous runs
of underpredictions covering the period 1963/I11-1966/IV. Indeed, the similarity between
Figures 25.4{(a) and 25.6(a) (showing one-step-ahead recursive residuals) is striking: we
still note a tendency to overpredict up to 1963/II and a tendency to underpredict over
the period 1963/111-1966/IV, while the rest looks relatively “random”. If we compute
t-statistics over the seperate subperiods corresponding to the seperate phases of the tax
credit, we find results analogous to the ones obtained before (see Table 25.12). The ¢-
statistic attached to 1962/I-1966/III (first application of the tax credit) is positive and
significant at level 0.04 while, for the period 1964 /I-1966/III (after the repeal of the Long
Amendment), it is significant at level 0.00065. Note again the contrast between the ap-
plication periods of the tax credit (which yield positive ¢-statistics) and the remainder of
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Table 25.9: Gordon-Jorgenson model: forward recursive estimates (data transformed with
p = 0.6223, capital subtracted): 1956/1-1972/IV.

Quarter a a az

56.03 -269.178 0.0255443 -0.0033785
56.04 -533.474 0.0279611 -0.0041437
57.01 44.434 0.0029566 -0.0002796
57.02 -9.307 0.0057092 -0.0006864
57.03 68.847 -0.0004134 0.0001406
57.04 4.559 0.0061368 -0.0007076
58.01 -63.294 0.0073405  -0.0009702
58.02 -81.517 0.0053041 -0.0007791
58.03 -75.324 0.0038777 -0.0006091
58.04 -67.076 0.0003639 -0.0002038
59.01 -65.306 -0.0011968 -0.0000274
59.02 -66.868 -0.0023877  0.0001015
59.03 -60.603 -0.0013351 -0.0000030
59.04 -65.332 -0.0013886 0.0000111
60.01 -51.703 -0.0014485 0.0000271
60.02 -65.690 -0.0015420 0.0000297
60.03 -43.791 -0.0013385 0.0000303
60.04 -31.604 -0.0014409 0.0000654
61.01 -11526 -0.0016787 0.0001307
61.02 -4.316 -0.0020039 0.0001809
61.03 -2.846 -0.0019123 0.0001735
61.04 -3.729 -0.0019261 0.0001733
62.01 -4.591 -0.0019339 0.0001726
62.02 -5.986 -0.0019498 0.0001717
62.03 -5.767 -0.0018010 0.0001555
62.04 -0.979 -0.0014920 0.0001302
63.01 4.346 -0.0020012 0.0001969
63.02 5.020 -0.0020984 0.0002089
63.03 0.472 -0.0012382 0.0001047
63.04 -1.676 -0.0007826 0.0000500
64.01 -2.772 -0.0005481 0.0000218
64.02 -3.606 -0.0004066 0.0000045
64.03 -4.652 -0.0005419 0.0000177
64.04 -4.448 -0.0005549 0.0000195
65.01 -5.903 -0.0002692 -0.0000150
65.02 -5.859 -0.0002796 -0.0000137
65.03 -7.456 0.0000680 -0.0000553
65.04 -8.199 0.0002511 -0.0000771
66.01 -9.084 0.0004542 -0.0001013
66.02 -9.629 0.0005739 -0.0001156
66.03 -10.370 0.0008547 -0.0001482
66.04 -10.814 0.0010835 -0.0001745
67.01 -8.858 -0.0001366 -0.0000350
67.02 -9.637 0.0007289 -0.0001329
67.03 -9.487 0.0005972 -0.0001179
67.04 -98.458 0.0006046 -0.0001187
68.01 -9.734 0.0005181 -0.0001096
68.02 -9.439 0.0005908 -0.0001171
68.03 -9.544 0.0005848 -0.0001167
68.04 -9.523 0.0005818 -0.0001163
69.01 -9.986 0.0007138 -0.0001318
69.02 -9.832 0.0006639 -0.0001260
69.03 -9.892 0.0006779  -0.0001276
69.04 -9.988 0.0008207 -0.0001437
70.01 -9.773 0.0004730 -0.0001046
70.02 -9.808 0.0005361 -0.0001117
70.03 -9.967 0.0006536 -0.0001251
70.04 -9.564 0.0005583 -0.0001137
71.01 -9.678 0.0005456 -0.0001125
71.02 -9.787 0.0004912 -0.0001066
71.03 -9.701 0.0005681 -0.0001150
71.04 -10.012 0.0002613 -0.0000814
72.01 -10.088 0.0002035 -0.0000750
72.02 -9.845 0.0003521 -0.0000912
72.03 -9.461 0.0004706 -0.0001038

72.04 -9.656 0.0004686 -0.0001039
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Figure 25.5: Gordon-Jorgenson model (4 = 0.6223, capital subtracted): recursive esti-
mates.
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Table 25.10: Gordon-Jorgenson model: forward recursive residuals (data transformed with
p = 0.6223, capital subtracted): 1956/1-1972/IV

Quarter 1 step 2 steps S steps  { steps 8 steps
56.04 -0.4199 - - - -
67.01 0.8541 0.1812 - - -
57.02 -0.2369 0.7132 0.1499 - -
657.03 0.6522 0.1718 0.8687 0.3168 -
67.04 -1.0829 -0.2235 -0.3217 0.6768 -
68.01 -1.9935 -2.2629 .-0.9657 -0.7152 -
68.02 -0.8332 -1.6765 -1.9926 -0.7974 -
58.03 0.1999 0.0907 -0.6741 -1.2200 0.2449
58.04 0.6683 0.6189 0.6749 0.1889 0.7389
659.01 0.6272 0.9089 0.8025 0.89156 0.0266
659.02 0.7184 0.9022 1.1223 0.9815 0.6414
59.03 -0.7680 -0.4986 -0.2149 0.2369 0.0179
69.04 -0.5613 -0.6971 -0.5808 -0.4781 0.1685
60.01 -0.3321 -0.4330 -0.5716 -0.4750 -0.0714
60.02 0.3859 0.3018 0.1742 -0.0535 0.4872
60.03 -1.2749 -1.1330 -1.1798 -1.2770 -0.8328
60.04 -1.4013 -1.6667 -1.5027 -1.5372 -1.4847
61.01 -2.5474 -2.8018 -3.0353 -2.8012 -2.7459
61.02 -1.0226 -1.5398 -1.8255 -2.0898 -2.1254
61.03 -0.2222 -0.4303 -1.0725 -1.4242 -1.6397
61.04 0.1430 0.0745 -0.1657 -0.8660 -1.3921
62.01 0.1549 0.1869 0.1104 -0.1498 -1.3990
62.02 0.2718 0.3031 0.3316 0.2379 -1.6604
62.03 -0.1166 -0.0304 0.0190 0.0664 -1.5225
6204 -1.2664 -1.1632 -0.9974 -0.8782 -1.8958
63.01 -0.9177 -1.3088 -1.2424 -1.0481 -1.0827
63.02 -0.1178 -0.4758 -0.8837 -0.8700 -0.5227
63.03 0.8714 0.7339 0.2743 -0.1395 0.0708
63.04 0.5483 0.8849 0.7324 0.2609 0.0214
64.01 0.3913 0.5752 0.9175 0.7550 -0.0325
64.02 0.4291 0.5246 0.6941 1.0191 -0.1177
64.03 0.9357 1.0010 1.0654 1.1851 0.0794
64.04 -0.1538 0.0407 0.1380 0.2461 0.1134
65.01 0.9715 0.9208 1.0886 1.1629 1.3162
65.02 -0.0314 0.1821 0.1455 0.3315 1.0884
65.03 1.3211 1.2844 1.4728 1.4017 1.7198
65.04 0.6624 0.9118 0.8809 1.0904 1.3294
66.01 0.9107 1.0193 1.2699 1.2271 1.5876
66.02 0.6385 0.7855 0.8994 1.1596 1.4354
66.03 0.7928 0.8899 1.0479 1.1668 1.5086
66.04 0.4721 0.6282 0.7343 0.8060 1.4917
67.01 -2.3454 -2.1507 -1.9133 -1.7587 -0.9133
67.02 1.0167 0.1404 0.2867 0.4837 1.1923
67.03 -0.3686 0.1141 -0.6157 -0.4467 0.2265
67.04 -0.0860 -0.0986 -0.0645 -0.2878 0.1369
68.01 0.8886 0.8772 0.8678 0.8781 09148
68.02 -0.9809 -0.9008 -0.9049 -0.9173 -0.9136
68.03 0.3398 0.2651 0.3357 0.3271 0.1463
68.04 -0.0626 -0.0383 -0.1070 -0.0417 -0.3491
69.01 1.4165 1.4069 1.4279 1.3582 1.5590
69.02 -0.5310 -0.4060 -0.4097 -0.3839 -0.4400
69.03 0.2155 0.1735 0.2808 0.2849 0.2953
69.04 0.4084 0.4258 0.3655 0.5220 0.5205
70.01 -1.2921 -1.1593 -1.1369 -1.1864 -1.0270
70.02 0.3034 0.0739 0.1626 0.1793 0.2792
70.03 1.3505 1.3714 1.2230 1.26884 1.3395
70.04 -3.56859 -3.5319 -3.5113 -3.5892 -3.4442
71.01 1.0081 0.8063 0.9443 0.9528 0.8026
71.02 0.7913 0.8227 0.7326 0.7538 0.7647
71.03 -0.4334 -0.3792 -0.3406 -0.4102 -0.3727
71.04 1.3976 1.3088 1.3699 1.4116 1.4399
72.01 0.3310 0.5957 0.5165 0.5822 0.4998
72.02 -1.0090 -0.9369 -0.6372 -0.7017 -0.6821
7203 -1.4293 -1.5536 -1.4869 -1.2252 -1.2691
72.04 0.6363 0.5065 0.4086 0.4396 0.6492
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Table 25.11: Gordon-Jorgenson model (p = 0.6223, capital subtracted): test statistics. @

Type Indicator Result  p-values
Global location t-test —0.4535 0.6502
tests Number of positive residuals 35 0.6201
Wilcoxon test 1112 0.7962

Runs tests Number of runs 34 0.6460
Length of longest run 7 0.3892

Serial correlation Modified von Neumann ratio 1.974 > 0.10

tests Rank tests
k Signed-rank tests Sign tests

Sk Sp p-value Sy S, p-value

1 1101  0.4079 0.6833 31 —0.2500 0.9007

2 1117 0.7462 0.4556 35 0.8819 0.4500

3 1106  0.9079 0.3639 30 —0.2540 0.8991

4 818 —0.9158 0.3598 25 —1.408 0.2000

5 866 —0.3607 0.7183 25 —1.291 0.2451

6 1100 1.623 0.1046 34 1.172 0.2976

7 1092 1.831 0.0671 36 1.838 0.0868

8 738 —0.7032 0.4820 25 -—0.9272 0.4270

9 973 1.427 0.1534 33 1.336 0.2288

10 748 —0.1843 0.8538 26 —0.4045 0.7877

11 639 —0.8912 0.3728 25 —0.5443 0.6835

=
[

806 0.8012 0.4230 28 -—0.4121 0.7838

“Number of residuals: 64.

Table 25.12: t-statistics for subperiods (4 = 0.6223, capital subtracted).

Period t p-value
1962 /1-1966/111 2.197 0.0414
1964/1-1966 /111 4.697  0.000653
1967/11-1969/I  0.957  0.370
1971/11-1972/IV  0.105 0.920
Remainder ¢ —1.944 0.0613

*1956/IV-1961/IV, 1966/IV-1967/I, 1969/11-1971/1.
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Figure 25.6: Gordon-Jorgenson model (4 = 0.6223, capital subtracted): recursive residuals
and CUSUM tests.
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Figure 25.7: Gordon-Jorgenson model (p = 0.6223): generalized least squares residuals.

the sample (which yields a negative ¢-statistic).

Although the evidence is less strong than for the two previous experiments, we continue
to observe a phenomenon of underprediction associated with the first imposition of the
tax credit, and this especially after the repeal of the Long Amendment. For the two
other applications of the tax credit, we do not observe significant effects, although the
corresponding t-statistics are positive and thus indicate a tendency to underpredict.

25.5 Conclusion

The results obtained in this recursive stability analysis are not as clear and definite as
those we got, for example, for the demand for money during the German hyperinfla-
tion [Dufour (1986)]. They are confused, in particular, by the presence of a regressor
(the capital stock) which contains lagged values of the dependent variable. Nevertheless,
one feature remains constant throughout the three experiments performed: there appears
to be a discontinuity associated with the introduction of the first investment tax credit
(1962/1-1966/1II), especially after the repeal of the Long Amendement (1964/1). Further-
more, the discontinuity is a type that leads to underprediction of investment, a behavior
in contrast with the performance of the model before 1962 (where we find a tendency to
overpredict). This phenomenon of underprediction is in agreement with Lucas’s forecast.
There is also some indication of a tendency to overvredict investment over the two other
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Table 25.13: Effective investment tax credit (1961-1972).

Quarter Taz credit Y
61.01 0.0% 0
61.02 0.0% 1]
61.03 0.0% 1]
61.04 0.0% 1]
62.01 3.1% 1
62.02 3.5% 1
62.03 3.9% 1
62.04 4.3% 1
63.01 4.7% 1
63.02 5.1% 1
63.03 5.6% 1
63.04 5.6% 1
64.01 5.6% 1]
64.02 5.6% 1]
64.03 5.6% 0
64.04 5.6% 0
65.01 5.6% 0
65.02 5.6% 0
65.03 5.6% 0
65.04 5.6% 0
66.01 5.6% 0
66.02 5.6% 0
66.03 5.6% 0
66.04 0.0% 0
67.01 0.0% 0
67.02 5.6% 0
67.03 5.6% 0
67.04 5.6% 0
68.01 5.6% 0
68.02 5.6% 0
68.03 5.6% 0
68.04 5.6% 0
69.01 5.6% 0
69.02 0.0% 0
69.03 0.0% 0
69.04 0.0% 0
70.01 0.0% 0
70.02 0.0% 0
70.03 0.0% 0
70.04 0.0% 0
71.01 0.0% 1]
71.02 4.0% 0
71.03 5.0% 0
71.04 5.6% 0
72.01 5.6% 0
72.02 5.6% 0
72.03 5.6% 1]
72.04 5.6% 0
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periods where the tax credit was in force (1967/11-1969/1 and 1971/I1-1972/IV). This is
suggested by the signs of the corresponding ¢-statistics, but the effects appear too small
to be considered significant.

On the whole, the evidence we found is quite consistent with the type of instabilility
suggested by Lucas (1976), even though it appears difficult to qualify this evidence as
being very “strong”. Of course, one could try to explain the instability detected by a
misspecification other than the one pointed out by Lucas (e.g., the Almon lag scheme
used may be wrong). In any event, whatever the “true” problem may be, it is certainly
useful to know about its existence.
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Notes

[1] Lucas (1976) assumes the tax credit follows a Markovian scheme (which includes as
special cases both a permanent credit and a frequently imposed but always transitory
credit) and shows that the impact of the tax credit on investment can be much bigger if
it is viewed as transitory rather than permanent. Indeed, under reasonable values of the
parameters, the ratio of the actual to predicted effect may be in the range of 4 to 7.

[2] The Long Amendment forbade firms to use for depreciation purposes the part of the
cost of a capital asset financed by the tax credit.

[3] Gordon and Jorgenson (1976, p.278). We list in Table 25.13 the “effective tax credit”
(1961-1972) as measured by these authors. The “effective tax credit” could be nonzero
longer than the nominal credit because, even after the credit was suspended, firms could
still use a credit to which they were entitled but did not use when it was in force.

[4] Though scaled recursive residuals are similar to ¢-statistics, one can check easily that
they do not generally follow Student t-distributions. Note also that % tends to overes-
timate o2 when structural change is present [see Dufour (1982, pp. 60-61)]: clearly, this
can make a number of important residuals look “small” and should be discounted when
interpreting the results.

[5] Of course, given that K; is a form of lagged dependent variable and if disturbance are
autocorrelated, least squares coefficient estimates could be inconsistent. Nevertheless, the
appearance of “autocorrelation” may be a symptom of an instability problem and thus
an experiment without such a correction seems indicated. In any case, this will allow us
to illustrate how a misspecification can lead to a parameter instability phenomenon in a
recursive estimation experiment.

[6] Eight-steps-ahead recursive residuals are not graphed. The test statistics in Table 25.3,
as well as those in Tables 25.7 and 25.11, are based on forward one-step-ahead recursive
residuals. We report systematically three categories of tests (general tests, runs tests,
and serial dependence tests) that can be compared and cross-checked [see Dufour (1982,
Section 4)].

[7] For a listing of the variables T'C, (effective tax credit rate) and U; (dummy for Long
Amendment) from 1961/I to 1972/IV, see Table 25.13.

[8] Recursive residuals obtained in this way do not enjoy exactly their convenient theoret-
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ical properties (for the true value of p is unknown). However, if § is consistent estimate of
p, we can still expect it will fall in the neighborhood of the true value of p and thus provide
approximately valid test statistics. But this is not guaranteed. In view of this difficulty, we
performed some sensitivity analysis by considering models transformed by different values
of p inside a grid in the neighborhood of p. In all cases we obtained essentially the same
conclusions. For further discussions of this problem, see Dufour (1982, Section 2.5).

[9] It is interesting to compare the residuals in Figure 25.4(a) (recursive) with the corre-
sponding generalized least squares residuals in Figure 25.7 and to see how more revealing
recursive residuals are.
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