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Abstract. The present paper is concerned with optimizetion
problems in which the data are differentiable functions having
a continuous or locally Lipschitzian gradient mepping. Its
maln purose is to develop second~order sufficient conditions
for a stationary solution to a programm with C1,1 data to be

a strict local minimizer or to be a local minimizer which is
even strongly stable with respect to certain perturbations of
the data. It turns out that some concept of a set~-valued
directional derivative of a Lipschitzian mapping is a suitable
tool to extend well-known results in the case of programs with
twice differentiable data to more general situations. The
local minimizers being under consideratiaon have to satisfy the
Mangaseaerian~Fromovitz CQ. An. application to iterated local
minimization is sketched.
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1. Introduction

Optimality conditions and sensitivity analysis of optimal solu-
tions play an important role in theory and applications of non-
linear optimization problems. Motivations for the study of
sensitivity and stability of optimization problems come from the
development of numerical methods, from the convergence analysis
of solution procedures, from semi-infinite programming and from
the analysis of inexact models. The aim of the present paper is
to give second-order sufficient conditions for optimality and
for strong stability of local minimizers (under data perturba-
tions), where the optimization problems being under considera-
tion include functions for which twice differentiability fails.
Our main tool used in the following is a set-valued directional
derivative of Lipschitz continuous mappings, which was intro-
duced by Kummer [19]. The second-order conditions concern
optimization problems in which the data are differentiable func-
tions having a locally Lipschitzian gradient mapping (so-called
01’1-functions).

Given a metric space T, an open subset Q of R and functions
f;: QxT —> R (i=0,1,.4.,m), we consider the following family
of optimization problems,

P(t): min_ { £ (x,t) / xeM(t)} , ter,

where the multifunction M: T —= R® is defined by
M(t):= {xeR®/ £,(x,8)=0, 1€I,; £5(x,8) £0, Jer, g,
tET ’ I1:= {1,ooo,p} ’ 12== {p+1,ooo,m30

Throughout the paper we shall suppose that for each i€ {0,1,..,m}
and for each t&€T,

fi(-,t) is Fréchet differentiable on Q, end (1.1)
fi end Dxfi("') are continuous on QxT ,

where Dxfi(x,t) denotes the gradient of fi(-,t) at x for fixed t.
Put for (x,u,t)e€ Q=RTxT,

1(x,u,t) = £o(x,t) + S 0, u; £, (x,t) .

Given t€ T, each point x € Q satisfying with some u&R® the



Karush-Kuhn-Tucker system

DX l(x,u,t)=0 ’ fi(x,t)=0, (i=19'°"p) ’ (1.2)

fj(x,t)l—'o 9 uj?-O 9 ujfj(x,t)=0, (j=p+1’coo,m),

is seid to be a stationary solution of P(t), in symbols:

x €S(t). For each (x,t), the set of 8ll vectors u with the prop-
erty that (x,u,t) satisfies (1.2) will be denoted by IM(x,t). A
point x e M(t) is said to be a local minimizer of P(t) if there
is some neighborhood V of x such that fo(x,t) éfo(z,t) for all

2z €M(t)n V holds. A stationary solution x (or a local minimizer
x) of P(t) is called isolated if there is some neighborhood of x
which does not contain any other stationary solution (or local
minimizer) of P(t). An isolated local minimizer of P(t) is also
strict, i.e., fo(x,t)éfo(z,t) for all z €M(t)nV, 2z#x.

In this paper, the notion of a strongly stable stationary so-~
lution plays a central role. Let B(y,r) and g(y,r) denote the
closed and the open r-neighborhood of y, respectively, where we
use the same notation no matter whether yeRn or yeT. Adapting
Kojima's definition [15] to the parametric problem {P(t),te&TS,
we shall say that a stationary solution x° of the problem P(t°)
for fixed t=t° is strongly stable (w.r. to {P(t),te T]) if for
some real number r >0 and each r'e(o,r] , there exists & real
number a=a(r') such that whenever +té€ B(t%,a), B(x%,r') contains
a stationary solution of the problem P(t) which is unique in
B(x%,r). A locel minimizer which is also a strongly stable sta-
tionary solution will briefly be called a strongly stable local
minimizer.

The concept of strong stability has been essentially used in
homotopy methods, multi-level methods and statements on local
convergence in nonlinear optimization, ¢f., for example, Guddat,
Wacker and Zulehner [8], Jongen, Mtbert and Tammer [11], Kojima
{157, Lehmann [20]. It has been introduced and developed by
Kojima [15] for optimization problems with twice differentiable
data. We note that, in this case, strong stability is closely
related to the concept of strong regularity in Robinson's sense
[22], provided that the corresponding stationary solution sat-




isfies the Linear Independence Constraint Qualification, we
refer to [11].

In the case of non-C2 or non-differentiable data there are
several approaches to sensitivity studies in nonlinear progrem-
ming via nonsmooth analysis. These concepts are often based on
implicit function theorems for nomnsmooth functions. Robinson
[25] gives an implicit-function theorem for B-differentiable
functions. Based on these ideas, Newton type methods for non-
smooth functions are developed, cf. Robinson [26] and Pang [21].
An implicit-function theorem for Lipschitzian mappings under the
basic assumption that Clarke's [6] generalized Jacobian matrix
is nonsingular is presented in Jongen, Klatte and Tammer [10J.
It has epplications in the sensitivity analysis of programs
with Cz—data. Generalized Newton methods for various classes of
nonsmooth functions are also given by Kojima and Shindo [16] and
Kummer [18]. Second-order sufficient conditiemns for optimality
and strong stability in 01’1—optimization problems, by using
Clarke's concept of a generalized Jacobian matrix, can be found
in Klatte and Tammer [14] and Klatte [13], second-order necessary
optimality conditions are presented in Hiriart-Urruty, Strodiot
and Nguyen [ 9]. More general results concerning the sensitivity
of local minimzers and stationary solutions in the non-c2 case,
but without aiming at the st rong stebility, are published,
e.g., in Robinson [237, Alt [1], Auslender [27], Klatte [12]
and Kummer (173J.

The paper is organized as follows. In Section 2, we shall de-
rive simple consequences of the strong stability of statiomary
solutions and local minimizers, using only first-order infor-
mation. For motivation and épplication of strong stability we
in particular give a theorem on iterated local minimization,
extending a result of Jongen, Msbert and Tammer [11]. In
Section 3, we present the main results of the paper: second-or-
der sufficient. conditions for a stationary solution to a
program with C1’1 data to be isolated or to be even a strongly
stable local minimizer. Using Kummer's concept [197 of a set-
valued directionel derivative, we extend second-order condi-
tions well-known for programs with twice differentiable data.




We have chosen a unified approach to both optimality and sta-
bility results. Finally, Section 4 discusses some particular
cases of the (rather abstract) conditions given in Section 3.

Now we introduce some further notation. In what follows each
xERk is considered to be a column vector, xTy is the scalar
product of x,yeRk. If X and Y are subsets of Rk, then conv X
(bd X , ¢c1 X) denote the convex hull (the boundary
resp. the closure ) of X, and, with 8€R, we write BX+Y
to denote the set {8x+y / x€X, er}. For x€ RS and X cR¥ we
often use the symbol x+X instead of {x}+ X. B and gn are
the closed and the open unit ball of R%. The linear space of
(m,n)-matrices is identified with R® ™2,

We use the symbols ¢! (Y), C1(Y,RB), C2(Y) and Cz(Y,Rs) to
denote the classes of functions f: Yc R® —> R or F=(F1,...,Fs)
with F;: Yc R — R (i=1,...,8), respectively, which are once
or twice continuously differentiable on Y. By Df(x), DF(x) and
D2f(x) we symbolize the corresponding first and second deriva-
tives, where DF(x) is considered to be an (s,m)-matrix with the
row vectors DFi(x)T (1=1ye0e98)e If £ is & function of two
variables x and y, we also take the notation f(+,*), and we de-
note by f(.,y) the function x —— f(x,y) for fixed y.

A multifunction F: T =3 R is said to be closed at t° if
lim sup 4 __, 40 F(t) c F(t°), or equivalently, if for any two
sequences {tkjcT and {xKj<Rr", t¥ —t%, x¥ —x° ana
x¥e P(t¥) (Vk) imply that x°€ F(t°). F is said to be locally
bounded at t° if for some neighborhood U of t°, the union of
all sets F(t), te U, is a bounded set. A closed and locally
bounded at t° multifunction is elso upper semicontinuous (u.s.c.)
in Berge's sense, i.e., for each open set QDF(to) there is
some neighborhood U of. t° suoch that P(t)c Q holds for each t € U.
We shall say that F is closed (locally bounded, u.s.c.) on
Toc'l‘ if F hes this property at each element t of To. For a
discussion of semicontinuity of multifunctions we refer, e.g.,
to the book [3], Section 2.2 .




2. Strong stability of stationary solutions under the
Mangasarian-Fromovitz Constraint Qualification

Throughout this section we consider the parametric program
{P(t), te&T} introduced above, and we suppose that the general
assumption (1.1) is satisfied. We note that the analysis of
perturbations via a parametric program elso allows to treat
special classes of perturbations, such as the classes F'(Cz-
perturbations of all data) and £ ¥ (perturbation of the ob-
jective function by a quadratic function and right-hand side
perturbations of the constraints} which appear in Kojime's
peper [15]. This means that our studies of this section and of
the following ones can be applied to many questions arising
in programs with c? data, which are considered in [15],[22 ,
237,171, [111.

In Section 2, we first recall some basic sensitivity re-
sults for stationary solutions and local minimizers. Then we
show that the property of strong stability of stationary solu-
tions persists under small perturbations. Finally we give an
interesting motivation and application of strong stability:
the extension of a result of Jongen, Mobert and Tammer [11]
on local iterated minimization, which is crucial for decompo-
gition methods irn nonconvex optimization. As a common
regularity assumtion in these investigations, we. require that
the Mangasarian-Fromovitz Constraint Qualification holds at
the points of interest.

Given for fixed t=t° the nonlinear program P(to) introduced
in §1, we shall say that x°e€ M(t°) satisfies the Mangasarian-
Fromovitz CQ (w.r. to M(t°®)) if

(a) Dxf1(x°,to),...,Dxfp(xo,to) are linearly independent,
and
(b) there is some h#0 satisfying hTDxfi(xo,t°)=(3,i=1.---,P,
and hTDxfj(xo,to) < 0 for all Je{p+lyess,m ]} with
fj(xo,to) = 0.

It is well-known that if x° is a locel minimizer of P(t°) which
satisfies the Mangasarian-Fromovitz CQ, then x°€ S(t°).




However, this CQ is elso an important stability condition:
Robinson [23, Th. 2.3)] has shown the following basic properties
of feasible points and stationary solutions of P(t°) under
perturbations.

Proposition 2.1: Consider the paremetric progrsm {P(t),te€ T} N
suppose (1.1), let t°e T and x%€ M(t°). Suppose that x° satis-
fies the Mengasarian-Fromovitz CQ w.r. to M(t°).

Then there exist neighborhoods U1 of t° and V1 of x° such thet
for each t €U, and for each xeM(t)n V,, x satisfies the
Mangasarian-Fromovitz CQ w.r. to M(t). Moreover, if x°€ sS(t°)
then there are neighborhoods U2 of t° and V2 of x° such
that the multifunctioms

t ev, B s(t)nV, and (x,t) € V,x U, = LM(x,t)

are closed and locally bounded (and hence u.s.C.) On U2 and
szUQ, respectively.

Further, we recall a result on the stability of strict local
minimizers under perturbations. It is, in fact, an adaptation
of Berge's classical continuity theorems (cf., €e.g., [3],
§4.2) concerning global minimizing sets to the situation of
local minimization. The formulation of the following proposi-
tion is a particular case of Th. 4.3 in Robinson [ 24] and of
Th, 1 in [12]. For XcR™ and t ¢ T, denote the set of all
global minimizing points of f (e,t) subject to the feasible
set M(t)A X by argmin {f (x, t) / xeM(t)n X§.

Proposition 2.2: Consider the parametric program {P(t),te_ i,
assume (1.1), let t% T, and let x° be a strict local minimizer
of P(t°) which satisfies the Mangasarian-Fromovitz CQ w.r. to
M(t°). Then for some ¥ >0 and for each re(0,T] there is some
a=a(r)> 0 such thet for each t€B(t°,a), X(t):= argmin {f (x,tV
x € M(t) n B(x° ,r)} is nonempty, and each element of X(t) is a
locel minimizer of P(t).

Note: By the first part of Proposition 2.1 and by the fact that
under Mangesarian-Fromovitz CQ, a local minimizer is also a sta-
tionary solution, we have X(t)c S(t) for teB(t%,a)if T is small.




Lemma 2.3: Consider {P(t),te T}, assume (1.1), let t°e T and
x°€ s(t°). suppose that x° satisfies the Mangasarian-Fromovitz
cQ w.r. to M(t°). Then x° is strongly stable w.r. to {P(t),tET}
if and only if there are real numbers ro>0 and ao>0 and a
mapping x(°): B(to,ao) — B(xo,ro) which is continuous on
B(to,ao)? end which fulfils

x(t°) =x° end S(t)r\B(xo,ro)={x(t)} (VtéB(to,ao)). (2.1)

Proof: The "if"-direction of the proof is trivial. Now let U2
and V2 be as in Proposition 2.1, and let T, be small enough
such that B(xo,ro) cV,e If x° is strongly stable w.r. to
{P(t),te T}, then there exists some a(ro) and some mapping x(.)
with x(t°)=x° and

B(z%,r )ns(t) ={x(+)] (VteB(t°alr))).

Choose a, < a(ro) such that B(to,ao) CU,. Hence, by Proposi-
tion 2.1, x(°*) is continuous on B(to,ao), and so the "only if"-

direction of the lemma is shown. //

The very simple fact stated im Lemma 2.3 (i.e.,continuity of

x(.) at t° implies continuity of x(+) in some neighborhood of

t°) turns out to be useful in meny situations, such as in the
proof of the following two theorems. The next theorem says

that the strong stability property persists under small perturba-
tions, provided that the Mangasarian-Fromovitz CQ holds. This
fact has been already observed in the case of programs with
twice differentiable data, cf. Robinson [22, Th. 2.4] and

Kojima [15, Corollary 7.8]. However, our arguments use only
first-order information.

Theorem 2.4: Consider {P(t),te T}, assume (1.1), let t°€ T and
x%e 5(t°). Suppose that x° is strongly stable w.r. to {P(t),te T}
end satisfies the Mangasarien-Fromovitz CQ. Then there exist
real numbers r,>0 end a,> 0 and a continuous mapping x(.)

from T to R® with x(1°) = x° such that for each t'e B(t%,r,),
x(t') is a stationary solution of P(t') which is strongly

stable w.r. to {P(t),te T4 too.




Proof: By Lemma 2.3, there are numbers T, >0, 8, >0 end a
continuous mepping x(e) from B(t° 18, ) to B(x Ty ) satisfying
(2.1). Choose a, in such a way that for tEB(to,a ), x(t)
satisfies the Mangasarian-Fromovitz CQ w.r. to M(t), this can
be done because of Proposition 2.1. Let r1:=% r . By the con~

)
tinuity of x(.) there is some O <a % a, such that

x(t) € S(t)n B(x%,r,) for all te€B(t°,2a,).

Let t' e B(t° )84 ) and x':= x(t'), hence x'€B(x°,r1). Then
for each t¢ B(t',a1), one also has x(t)e S(t)nB(x° » T ), and
therefore x(t)é& S(t)n B(x',2r,). On the other hand, since
B(x! 2r1)CB(x T, ) holds,

s(t) nB(x',2r;) = {=(t)] (VteB(t',a,))

follows. Using the "if"-part of Lemma 2.3 with x' instead of
x° and with 2:r'1 and a, instead of r, and 8,y WE obtain the de-
sired result. //

In order to motivate the study of strong stability and,
moreover, to show the applicability of the results which will
be presented in the following sections, now we give a theorem
on a general principle of iterated local minimizetion. It ex-
tends Th. 3.1 in [11]. We note that Theorem 2.5 does not remain
true, when strong stability of x° fails. An example illustra-
ting this fact can be found in [11], §1 ; there the data are
polynomial functions in two variabdles.

Given the functions fo, f1,...,fm as above, we consider the
optimization problem

fi(x,t) =0, 3i=1,.00e,p
(P): min (x,t) fo(x,t) fj(x,t)éo, J=p+l4eee,m
t €T

which is intended to be solved by & two-phases method, and
where we look for local minimizers of (P). Further, let P(t°)
and {P(t),téTa be given as in Section 1, and suppose that
the general assumption (1.1) is satisfied.

We emphasize that the following theorem holds without
additional assumptions on T.



Theorem 2,5: Let t° T, and let x° be a local minimizer of
P(t°)., Suppose that x° is & stationary solution of P(t°) being
strangly stable w.r, to {P(t),te T] and satisfying the
Mangasarian-Fromovitz CQ. Further, let U be a neighborhood of
t°, and let X(+): U —> R™ be a vector functiom which is con-
tinuous at t° and which fulfils X(t)€ S(t) for t€U and

(%) = x°,

Then (x°,t°) ie a local minimizer of (F) if t° is a local
minimizer of the problem (%) : fo(i(t),t) —rmin s.t. teT.

Proof: By the assumptions on x° and by Lemma 2.3 there are

real numbers a,>0 and r >0 and a continuous mapping X(+) from
B(to,ao) to B(x%,r) such that

x(t%)=x° and S(t)n B(x°,r )={x(t)3 (VteB(t°,a M. (2.2)

We may assume that U is a subset of B(to,a ), without loss of
generality let U= B(t° 18, ). Hence, X(.) and x(*) coincide on
B(to,a ). Taking Proposition 2.1 and the continuity of x()

into account we may further assume thet a, and r, are small
enough to ensure thet both the property (2.2) holds and for
each teB(to,aO) and for each xeM(t)n B(x°,ro), the Mangasarian-
Fromovitz CQ is satisfied &t x w.r. to N(t).

In particular, it follows that x° is a strict local minimizer
of P(t%). Moreover, the continuity of x(.), Proposition 2.2

and the note following Proposition 2.2 provide that there exists
some a=a(r0)éao such that for all te B(t%,a),

# X(t) 1= ergmin _ {fo(x,t) /xeM(t) A B(x%,r )} < S(%).
Thus, we obtain from (2.2)
X(t) = {x(t)} for all t e B(t%,a),

and hence,
£ (x(3),%) < £ (x,t) for all t e B(t%,a) and xeM(t)n B(xo,ro).

Since t° is a local minimizer of (i;), there is some neighborhood
U, of t,, U, B(t%,2), such that

fo(x(to),t°)é—fo(x(t),t)
for all t€ Uo’ and so we heve for all ter and for all x with
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xesM(t)r\B(xo,ro), i.e., for all feasible points (x,t) of (P)
which belong to the neighborhood U0<:B(x°,ro) of (x°,t°),

£ (x%,1%) = £_(x(+%),t°) £ £ _(x(t),t) < T (x,t). (2.3)
This completes the proof. //

By (2.3), we have that, under the assumptions of Theorem 2.5,
(x°,t°) is even a strict local minimizer of (P). A careful
inspection of the proof shows that the differentiability assump-
tions on fi(-,t) could be omitted, if we would require that for
each t near t°, x(t) is a local minimizer of P(t) being
isolated in some neighborhood of x° (independent of t). In
order to remain within the framework of this paper, we have
preferred the formulation used above.

3. Second-order sufficient conditions for optimality and
strong stability

The main purpose of this section is to give a second-order
sufficient condition for strong stability of local minimizers
to nonlinear optimization problems, avoiding the assumption of
twice differentiability of the problem data. Before presenting
this result, we shall study the related question of second-
order sufficient optimality conditions. Using a concept of =
set-valued directional derivative for Lipschitzian mappings
(cf. [19]) and assuming generalized second-order conditions,
we extend existence and stability results which are known from
the case of nonlinear programs with twice differentieble data,
cf., e.g., Fiacco and McCormick [ 7] , Robinson [22, 23],
Kojima [15]) to C1’1-optimization problems. Concerning 01’1-
programs our approach allows to modify and to generalize the
results in {13] and [14]. Similar to Section 2, we again use
the Mangasarian-Fromovitz CQ as first-order regularity
condition if necessary.

Given an open set Yc:Rq, C1’1(Y) will denote the class of
all functions f: Y —> R which are differentiable on Y and
whose gradient mapping Df(+) is locally Lipschitzian on Y.
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Throughout this section we consider the parametric program
{P(t),te:T ]introduced in Section 1, and we suppose that (1.1)
holds and that the following assumption is additiemnally
satisfied:

Q is convex end f,(+,t)€C'*1(Q) (Vie{0,1, e, mjVteT). (3.1)

The convexity of the open set Q is reqwired in view of the

use of some second-order Taylor expansion. It is easy to veri-
fy that, under (3.1), for all te T the lagrange function
1(-,+,t) belongs to C1’1(Q"Rm). In order to analyze the sta-
bility of the Karush-Kuhn-Tucker system of P(t) under (1.1) and
(3.1), we need some concept of generalized derivative of vector
functians. In this context, Clarke's concept [6] of a genera-
lized Jacobian matrix was used in [9], [13] and]14]: Given

some open set YcR? and a mapping F: Y —>» R~ which is locally
Lipschitzian on Y (i.e., for each x€¢ Y there is some neighbor-
hood Vx of x and some modulus L(x) > 0 such that for all x',x"
in V, I} F(x*")-F(x")ll £L(x) lix'-x"]| ), the set of (d,q)-matrices

I F(x°) := conv {M: Ix* — x° with x*€ Eg (Vk), DF(x") — M}
is called the generalized Jacobian matrix of F at xoe'Y (in
Clarke's sense), where EF<:Y denotes the set of all points x
for which the usual Jacobian DF(x) exists. The idea and the
justification of this concept is given by Rademacher's theorem
which ensures that a locally Lipschitzian mapping is almost
everywhere differentiable on its domain. We note that JClF(xo)
is a nonempty compact convex subset of Rd"q s, the multi-
function JClF(-)fis closed and locally bounded at x°, and if
F is continuously differentiable at x° then JClF(x°)=={DF(x°)3,
cf. Clarke [6 , §2.6).

Recently, in [19], the following notion of a set-valued
(generalized) directional derivative of a continuous function

F: RY ——9>Rd was introduced. The set

Iz — x° 3 A, — +0 with
2R ) - B — 2

F(x%h)1={ z:
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is called the directional derivative of F at x° in direction h.
For simplicity, we use the notation

vTA F(x;h) := {sz / 2 € AF(x;h)}

if (x,h,v) e RY xRY de, and we also write VTAF(x;h) Zc
(with c € R) to symbolize that viz>c for all z¢c AF(x3h)
holds.

In the following we summarize several properties of this
directional derivative, the proofs can be found in [19]. Let
c®1(y,R%) denote the set of all functions F: Yx R —s R
which are locally Lipschitzian on Y. Given F,G£C°’1(Y,Rd)',
Y c R4 open, X¢¥Y, h eRq, the following properties hold:

(P1) AF(x;B8h) = BAF(x;h) for B20,
D (F+G)(x;h) € AF(x;h) +AG(x3h) ;

(P 2) AF(x;h) is nonempty and compact,
AF(e3+) is closed and locally bounded at (x,h);

(P 3) if Gec® (y,rY), F(x,u) := uld(x) (V(x,u) eY=xr?),
if (%,0)e¥~RY , (n,0)€RIxRY, then Fec® (¥ xr%,R)
and A(F(+,0)) (X3h) = A (F(+,¢)) ( (X,0);(h,0) ) ;

(P 4) AF(x;-h) = -AF(x;h);
(P5) AF(x3h) € (Jg;F(x))h := {Mh/ Me T F(x)Y
(P 6) if Fec'(Y,R%), then  F(xsh) = {DF(x) h7;

(P 7) 4if F has a (local) Lipschitz modulus L(x) to some neigh-
borhood V of x, then AF(x;h')< AF(x;h") +L(x) fh'-h"IBy
holds for all h',h"eRd,

Based on a mean-value theorem for C°’1-mappings, a second-order

Taylor expansion for C1’1-functions holds, namely

Lemma 3.1 ( [19, Proposition 5.1J): Let Y be any open subset
of R, let £€C'*'(Y) and let conv{x,x+hjcY., Then there is
some O € (0,1) such that

f(x+h) € f(x) + Df(x) b + -12 hTADf(x+eh;h).

Now we pass over to the presentation of second-order conditions.
Considering the paremetric optimization problem {P(t),teTJ,
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we put for (x,u,t) € QxR%x T,
Iz(x,t) $= {je_{p+1,...,m}/ fj(x,t) =O} R

I(x,t) = {1,..,pf U I(x,1),
12+(u) s= {j € {p+1,...,m}/ u.j >O},
I (w) = {1,...,p} U 12+(u),

WH(x,u,t) 1= {heR®/HTD £, (x,t)=0, 1ieI*(w],
W(x,u,t) 1= {hew’“(x,u,t)/hTDxfj(x,t)-’.—o,jeIz(x,t)\Ie‘*(u)}.

Now we formulate two types of second-order sufficient condi-
tions for optimelity or strong stability, respectively. The
first condition is an immediate extension of the usual second-
order sufficient optimality condition for 02 data, cf., e.g.,
Fiacco and McCormick [7], Robinson [23].

Let 1(+,u®,t°) denote the function =xe€Q +— 1(x,u’,t°) for
fixed (u®,t%) e R®x T,

Condition 3.2: Given P(1°) for t%°c T, x%°€ 5(t°) and
u® e 1(x°,t%), we shall say that (x°,u®) satisfies
Condition 3.2 with modulus ¢ >0 if for each vector h with
hewW(x®,u%,t°), one has

hT A(D 1(+,u%t%))(x%h) 2 ¢ IhIZ.

The condition introduced next is & uniform strong second-order
regularity condition which is, in the case of 02 data, related
to the corresponding conditions of Robinson [22] and Kojima
(15 , Condition 7.3].

Condition 3.3: Given {P(t),t€T], t°¢ T and x°¢ 5(t°), we shall
say that Condition 3.3 holds on {xo?)x I¥(x°,t°) with modulus
¢ >0 if there exist a neighborhood U of t°, & neighborhood V
of x° and open sets N > IM(x°,t°) and W:W"’(xo,uo,to)nden
such that one has

nT A (D 1(e,u,t))(x;h) 2 ¢ for all (x,u,t,h) €V xN xUxW.

Obviously, if Condition 3.3 holds on {x°}x IM(x°,t°), then for
eech u® ¢ IM(x%,t°), (x°,u°) setisfies Condition 3.2.
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The following technical lemma allows a unified approach to
derive the second-order existence and stability results of
this section. The proof is modeled after an idea used by

Robinson [ 23, Theorems 2.2 and 2.4] in the case of c? data.

Lemma 3.4: Conslider the parametric program {P(t),t eT}. assume
(1.1) and (3.1). Given t°€ T, x°€ s(t°) and u®e IM(x°,t°), let
{tk}cT, {xk‘ﬂ, {yk}CQ and {uk}cRm be any sequences such that

=e stk , uFem(xX,t¥) anda y¥e M(t¥) for all k

hold, and such that

k k gky

(x¥, k o

—_— (x°,u°,t°) and y — X

are fulfilled. Moreover, suppose that for some positive real
number ¢ and for eall k the following holds:

£ (¥, t5) - £ (K, e85 < §yK -2,
Then the sequence {hk} with B¥:= [|y¥-xK[ "7 (yk-xk) has an
accumulation point he W (x%,u®,t°), and for all k,

there are real numbers ek>o and vectors zke R® such that

25 € A (D 1(+,u,t5)) (= + 6, 0*;0")

Further, if tkE t° and xkExo, then {hk} even has an

accumulation point in W(x°,u°,t°).

T
end hE zkég. (3.2)

Proof: First we show that {hk} has an accumulation point h
belonging to wH(x°,u°,t%). Since {hk}c bd B, we may assume,
without loss of generality, that {hk} converges to some
hebd B . By the continuity of the functionms f,,...,f_, the
a k ¥k .k o .0 .0 1 o

assumption (x",u ,t°) — (x",u”,t") implies that

1% c I"'(uk)c I(xk,tk)CI(xo,to) for k large. (3.3)
For jc I+(u°) and for sufficiently large k, we thus obtain

£y, = F-xOTD £, 4 oY ). (3.0)

Since bY — h and y¥e M(t¥) (Vk), the contimuity of
D f;(*,+)s 1=1,..,m, then yields that
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. T .
b'D_f,(x°,3°) =0, i=1,.00,p ; h D,£(x°,1%) £0, jeI (u%)

(3.5).
As (x%,u°) € 5(t°) x 1M(x°,t°), thus we have, with J:=I*(u°),
T o .0
h™D_f _(x",t")
T o .0 T
hD_f_(x°,t°) + ZdeJ h
= b™D_1(x°,u°,t°)

v

D_f (x°,t°)

= 0 .
Further, by hypothesis, we know that for all k,

$ 7550 2> £ (35,850~ (25,85 = (552 TD_£ (=5, %) + o (Uy"-xE1)

which implies
' £ (x°,t%) £ 0,
where h™ —h , yk-xk —> 0 and the continuity of Dxfo(',')

were taken into account. Hence,
o,T 0 40y _
> jed Yy thfj(x,t)-O,
and so, by (3.5) and in view of uj°>0 for j€I2+(u°),
(xo,to) =0 ’ .'jEJ .

k

T
h™D fy

Thus, we have shown heW'(x%,u®,t°) with hebd B .
At this place, we note that in the case (xk,tk) = (x°,t9)

one has for all ;jeIz(x°,t°)\ 12+(u°),
02 £,(y,t%) = (5 - 27D, £,(x%,%) + o(N¥*-x°U)  (Vi),
which implies, by arguments similar to those used above,

b’ D_ fj(xo,to).é 0, JeI,(x°t)\ I, .

This means that in our speclal case heW(xo,uo,to) holds.

Now we show (3.2). By hypothesis, conv {xk,ykﬁ <Q (Vk).
Let k be fixed. For simplicity, we put 1, 1= 1(+,u¥,t¥), and
we denote by H(x;ﬁ) the set A(le) (x;?l) of directional deriva-
tives of le at x in direction Ifl. Assumption (3.1) then allows
a second-order Taylor expansion of 1k at xk according to
Lemma 3.1. By hypothesis and taking yke M(tk), e S(tk) and
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uke LM(xk,tk) into account, Lemma 3.1 hence implies the exist-
ence of some 8, € (0,1) and of some 'Eke H(xk+ek(yk-xk);yk-xk)
such that

K
$H ¥ - 112 > 2 (55,9 - £ (25,5

> 1,5 -1,GE9
= 112 (yk- xk)T .

Setting 6, := élk Il yk-xkll, we obtain, by property (P 1) of
directional derivatives,

H(x¥+8, (y5-x5) 5 y5-x) = Il y*-x"| H(x*+0, h*

and so, with 2X 1= || yk-xk =1 '\ék, the relations

3hk)9

T
2Xe H(’xk+ 8, nk ; k) and nk " K« %
follow. Obviously, (yk-xk) —> 0 implies that €, —> +0, hence
(3.2) is shown. //

In the following theorem, Condition 3.2 turms out to be a
second-order sufficient optimality condition for C1’1-optimi-
zation problem. This theorem modifies a result in [14] and
generalizes known results in the 02 case which is discussed

in Section 4 below.

Theorem 3.,5: Consider for fixed t%°e T the nonlinear program
P(t%) introduced in Section 1. Suppose that the functions
£,(+,t°): Q —> R (1=0,1,...,m) belong to the class C'*'(Q),
where Q is some open convex subset of RE,

If (xo,uo)e Qx B® satisfies both the Karush-Kuhn-Tucker
conditions (1.2) with t=t° and Condition 3.2 with some
modulus c > 0, then there exists a resl number » O such that

£.(x,t%) - 2,(x°,t%) = §1 x-2°) 2 (VxzeM(t®)nB(x°,r)) (3.6)

holds, i.e., x° is a strict local minimizer with order 2 of
P(t°).
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Proof: If (3.6) is not true, then we have the situation of

Lemma 3.4 in the case (xk,uk,tk)s (x°,u°,t°) with some
sequence {y } satisfying y eM(to) for all k and yk — x°,
Hence, the sequence {h¥}] with nE:= | y¥ x°||'1(yk-x°) has an

accumulation point h € W(x°,u%,t )/\ bd B, and there exist
sequences {ek {cR and {zk?l cR® such that €, — +0 and such that
for-all k

Tk c

Ky ana Bf z <5 .

2X€ A (D 1(+,u°,1°)) (x%+0,0%;n
By property (P 2) of directional derivatives, {zk3 has an
accumulation point 2z in A(Dxl(-,uo,to))(xo;h), and hence

hTzé-E < ¢

holds, and the theorem now follows by contraposition. //

However, Theorem 3.5 does not give an answer to the question
whether the strict local minimizer x° is also an isolated one.
In general, the assumptions of Theorem 3.5 are not sufficient
to ensure that there is some neighborhood of x° in which no
other local minimizer of P(t°) exists: Robinson's counter-
example [23 , P+206 ] presented in the case of programs with 02-
data also applies to our problem. As in the C2 case one has to
add a constraint qualification and to require that Condition 3.2

is setisfied on {x°3 x IM(x°,t°).

Corollary 3.6: Assume the hypotheses of Theorem 3.5, and
further suppose that x° satisfies the Mangaesarian-Fromovitz CQ.
If for each u° e IM(x°,t°), (x°,u°) satisfies Candition 3.2
with some modulus c(xo,u°)> 0, then x° is an isolated stationary
solution of P(t°).

Note: Since the Mangasarian-Fromovitz CQ is satisfied at x°,
by Proposition 2.1, then x° is also an isoleted local minimizer
of P(t°).

Proof: By contreposition. Suppose there is some sequence
{;Eﬁcs(to) with vk#xo for all k and vE —> x°, Since x° is a
strict local minimizer of P(t°) because of Theorem 3.5, then
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there is some index k' such that
£ (v5,8°%) > £ (x°,t%) for all k2k'.

For each k, let uf ve a Lagrange multiplier vector of P(t°)
associated with vX. Since the mapping x = LM(x,t°) is
closed and locally bounded at x° (Proposition 2.1), then by
passing to a subsequence if necessary we have

uwf —u° e 1M(x°,t%).

Now we can apply Lemma 3.4 (put there c=c(x°,u°), tks t°,

xk==vk, yk-E x° for all k2k'), and we obtain that the se-
quence {hk} with n¥s= || x°=v® | "1 (x°-v*) has an accumulation
point. h € WH(x°,u%,t%) A bd B, and there are sequences {ek}CR
end {z]cR® such that ©, — +0 and such that for k suffi-
ciently large

kI

k.'150))(Vk+ekhk;hk) and h zkég

2X€ A (D 1(+,u
hold. Hence, the properties (P 2) and (P 3) of directional de-
rivatives ensure the existence of some
z € A(D1(+,u%1%))(x%h) with n'z£§ .
By property (P 4),
-2 € 8(D1(+,u%,t%)) (x%-h) with (-h)T(-2) % § (3.7)
holds. Obviously, we have -hew+(x°,u°,t°). Moreover, taking
02 fj(vk,to) = (vk-xo)TDxfj('xo,to) +o( 1 vE=x°1l )
(for all k end ell j € I(x°,t°)) into account and passing to
the 1imit, we obtain thet
(-n)"D_£.(x°,t°)£0  for all jeI(x°,t°)
is fulfilled. Hence,
-h € W(x°,u%,t%n bd B.
Putting this end (3.7) together, we find a contradiction to
Condition 3.2 and thereby complete the proof. //

We note that Corollary 3.6 is a modification and extension of
Theorem 2 in [14],
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Now we prove the main result of the paper: the strong
stability of local minimizers of C1’1-programs under the
Mangasarian-Fromovitz CQ and under Condition 3.3. However,
Condition 3.3 looks rather strong and hardly practicable,
but we had to by-pass the difficulty that the "partial
directional Hessian" A»(Dxl(-,u,t))(x;h) is not in general
UeBeCe Wer. to all variables (x,u,t,h). The discussion in
Section 4 will provide several specializations and simplifi-
cations which make more plausible and better usueble this
second-order conditionm.

Theorem 3.,7: Consider the parasmetric program {P(t),te‘ﬂ,
and suppose (1.1) and (3.1). Given t°e T, let x° be a
stationary solution of P(t°). Suppose that x° satisfies the
Mangasarian-Fromovitz CQ w.r. to M(t°) and that Condition 3.3
holds on {xoﬂx IM(x°,t°) with some modulus c,> 0.

Then

(1) =x° ie strongly stable w.r. to {P(t),té‘l‘ﬁ ’

and there exist real numbers r >0 and a> 0 and & mapping
x(+) from T toc R suck that for each te B(t°,a),
S(t)n B(x%,r) = {x(t)] and

c

(2) £ (x,8) = £ (x(1),t) 2 == || x=x(t)
for all xeM(t)N B(x(t),r),

(3) x(t) is a strongly stable local minimizer of P(t).

2

Proof: By Theorem 3.5, x° is a strict local mintmizer of
P(t°). Consequently, the assumptions of Proposition 2.2 and
of the note following Proposition 2.2 are satisfied. This en-
tails that for some r'>0 and each s ¢ (0,r'] there exists
some a(s)> O such that for teB(t°,a(s)), S(t)n B(x%,s8) is
nonempty. Later on, this fact will be indicated by (+).

To show (1) and (2) it is sufficient to prove that for
some r>0 with r<r' and some a>0 with a 2a(r'), the
inequaelity (3.8) holds:
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fo(x,t)-fo(z,t) 2 (% co) Hx-zll2

for all te& B(t°%,a)
and all z¢ S(t)n B(x°,r) (3.8)
and all xeN(t)n B(x°,2r).

Assume, for the moment, (3.8) is shown. Then for each
t € B(t%,2) and any two points x1(t), xz(t)es(t)n B(x°,r)
with x1(t) # xz(t), we have

£,(x1(8),8) - £,(x2(0),0) 2 (F ) 1x'(8) ~x¥(&) Il 2

and
£,x2(0),8) - £,x"(9),8) 2 (F ) X' (8) -x2(1) 1l 2,

which is impossible. Thus, for each t& B(t°,a), there is some
point x(t) such that

S(t) NB(x%,r) = {.x(t)?, .

Property (+) derived before yields that x(.) ies continuous
at x°, hence (1) is shown. Since x ¢ M(t) N B(x(t),r) for
t € B(t%,2) belongs to M(t) nB(x°,2r), assertion (2) is a
special case of (3.8).

Now we complete the proof of (1) and (2) by demonstrating
(3.8)s If (3.8) is not true, then there exist sequences
{t57 c v, {x*7 end {y*¥] such that x¥e s(t¥) and y¥e u(t¥)
for all k and both {xk} and {yk} converge to x°, and such
that for all k

£,y 5) = £, 45) £ (Fe) Nyk-xtIIZ .
For each k, let ke IM(xk,tk). Due to Proposition 2.1, the
Mangasarian-Fromovitz CQ implies that 1M(.,¢) is closed and
locally bounded at (x°,t°). By using this fact end by passing
to a subsequence if necessary, we have that {uk} converges to
some u®¢ IM(x°%,t°). Put c:= 2 ¢,» then Lemma 3.4 epplies to
our situation. Using the same notation es in the statement of

Lemma 3.4, we have that for sufficiently large k,
x40, b €V, u"e N, t*cU end p¥ew

and property (3.2) hold, where V,N,U and W are taken from
Condition 3.3. However, this provides us with a contradiction
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to Condition 3.3. Hence (3.8) and so (1) and (2) are
shown.
Finally, we note that (3) is an immediate consequence
of (1) and (2), one has to apply Theorem 2.4. This completes
the proof. //

4, A discussion of second-order sufficient conditioms

In this section we discuss how to replace the uniform strong
second-order condition formulated in Condition 3.3 by require-
ments which contain only information teken from the initial
problem P(t°). Purther, we recall a special class of ¢l
optimization problems for which the verification of the
Conditions 3.2 and 3.3 reduces ta checking whether finitely
many matrices are positive definite.

Throughout this section we consider the perametric problem
{P(t),te;T} introduced in Section 1, end we suppose thet (1.1)
and (3.1) are satisfied. Now we gtudy a series of special
cases.,

4.1, We recall that the complicated form of Condition 3.3
is due to the fact that the multifunction which assigns to
each (x,u,t,h) the set ZS(Dxl(-,u,t))(x;h) is not u.s.c., in
general., We can meet this difficulty even in the case that the
mapping D1(*,+,°) is Lipschitz continuous with respect to. the
triple (x,u,t) of variables (and Tc:Rk), cf. an example in
[19]. However, we succeed in by-passing this difficulty and
in formulating a second-order condition in terms of the initial
problem, if, for example, an imbedding of this "bad" multi-
function into a suitable u.s.c. multifunction is possible:

Let t°c T, x°€S(t°) and suppose that for some bounded open
set N> IM(x°,t%), some open set W containing

\J/uoe IM(x°, t°) (W+(x°,u°,t°)r)bd Bn)
and some multifunction

H: QxNxTxW ——= R°
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the following hold:
H is closed and locally bounded on {xo}xm(xo,to)x{to}x bd Bn

(4.1)
and

A(Dxl(-,u,t) )(x;h) < H(x,u,t,h) (V (x,u,t,h) e QxN xTxW).
(4.2)

Condition 3 3' For each u®e IM(x°,t°), for each
h ewt(x%,u°,t°) nbd B, and for each ze H(x°,u%,t%h), one has
hTz>O.

Proposition 4.1: Assume (4.1) and (4.2). Then Condition 3.3!
and Condition 3.3 are equivalent.

Proof: It suffices to show that Condition 3.3' implies Con-
dition 3.3. Indeed, the general assumptions (1.1) and the
boundedness of the set N ensure that IM(x°,t°) is a compact set.
By (3.3), the multifunction W'(x%,+,t%) is closed on INM(x°,t°),
hence

W o= U (wH(x°,u,t%°)n bd B.)
° ue M(x°,t°) o n

is & compact: set. By (4.1), H is closed and locally bounded
on {x®Ix1M(x%,t%x {t°) x W, , thus

H t= U u H(x%,u,t%,h)
° ueM(x®,t°) heW, P
is a compact set too. Consequently, there exist open sets
W1 :JWO and H13H° and some ¢ >0 such that
hTzzc for all heW.] and for all 2 € H;. (4.3)

Since (4.1) includes that H is u.s.c. on {x°} x 1a(x°,t )x{t°3xw
there are neighborhoods V of x° and U of t° and open sets
N1:>I.M(x ,t%) and W,2>W, such that

H(x,u,t,h)CHy  (V(x,u,t,h) ¢ VX By x UxW,),
Hence, (4.3) and (4.2) imply thet
BT A (D 1(+,u,t))(xsh) 2 ¢
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holds for each (x,u,t,h)e (V Q) x (XN nN)xe(w2nW),
i.e., Condition 3.3 is satisfied on {103)( 1M(x%,t%) with
modulus c. //

4.2. Now we consider the case of twice differentiable
data. The given parametric program satisfies, as assumed
above, the requirements (1.1). Additionelly, we suppose that
for each 1€{0,1,...,m},

£f;(,t) is twice differentiable on @ (VteT), (4.4)
Di fi(-,-) is continuous on QxT. (4.5)

By property (P 6) of directional derivatives, then we have
for (x,u,t,h)€ ¥ x R® x T xRY,

hTA(D,1(+,u,t))(x;h) = { BT D21(x,u,t) 0],

which immediately implies that Condition 3.2 reduces to the
well-known second-order.sufficient:optimality conditiom in
the: standard book of Fiacco and McCormick [7].
Moreover, (4.7) and (4.2) are automatically fulfilled with

H(x,u,t,h) := -{h? 2l(x u,t) h § and with any bounded open
set No>1M(x%,u°) (provided that IM(x°,t°) is bounded, which
is equivalent to the assumption that the Mangasarian-Fromovitz
CQ holds at x°) and W=R". Thus, Condition 3.3 passes to a
special version of Condition 3.3' which is also known, cf.
Robinson [22 , §4] and Kojima [15, Conditien 7.37] .

4.3, The previous remarks immediately allow to specify
Condition 3.3 in the case that a C'? '-optimization problem
is perturbed by C2-func.tions. For the given parametric
program, consider the case that for each (x,t)€ QxT and for
each i¢ {0,1y40.,m }, f; has the representation

fi(x,t) = 'g'i(x) + gi(x,t), (4.6)

where g; satisfies the assumptioms 1. 1), (4.4) and (4.5),
end gi: Q — R belongs to the class ¢yl (Q). Then we have,
obviously,
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BT A (D, 1(+,u,t)) (x;h)
= mPA (D 1,(+,w)(x;h) + {BTDZ1,(x,u,%) b},
where for (x,u,t)€ Q xR®x T,

11(X,U.) 1= éo(x) + Z 121 ui éi(X) ’

1,(x,u,t) = g (X,t) + 3_ 1:1 u; g (%,t).

In virtue of the properties (P 2) and (P 3) of generslized
directional derivatives, the multifunction which assigns to
(x,u,h) the set [3(D111(~,u»(x;h) is closed and locally
bounded on Q xR®x R®, and hence, by (4.7) and by the discussion
in §4.2, the multifunction H(x,u,t,h) u:[S(Dxl(~,u,t))(x;h)
patisfies (4.1) and (4.2), and we can again replace
Condition 3.3 by Condition 3.3'.

We note that liiterature on decomposition methods pays e
special attention to optimization problems in which the
objective function is separable w.r. to two groups of varia-
bles (cf., for example Bank, Mandel and Tammer [4] or Beer
[5]), i.€., in (4.6) one has £,(x,%) = éo(x) + g, (t).
Assuming that éi(x)EEO (i=1,4e.,m), we obtain a particular
form of Condition 3.3' with

H(x°,u%,t%h) 1= A (Déo)(xo;h)+ > im1 ui° Digi(xo,to) h.

4.4, The discussion in the previous special cases
suggests to look for general conditions which guarantee
directly the closedness of the multifunction zS(Dxl)(-;-).

To do this, we suppose again (1.1) and (3.1) for the given
parametric program, and we additionally suppose that for some
t°¢ T and some x°¢ S(t°), there are & constant B8 >0 and
neighborhoods Uo of t° and Vo of x° such that for 16(0,1,.n,n&

Il D_f, (x',t)-D £y (x", )| £ 8| x'-x"I| (Vx',x"€ v, Vter) (4.8)

and

lim sup 10 B0 (00 =Dty (4% (xsb) = {0, o
X

t —
X —> (for ell hébd Bn)o
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We note that in the case of 02 deta (4.9) corresponds to
(4.5). In the following proposition we handle special
problems for which the continuity and differentiability
requirements on the data (1.1), the C'*! property (3.1) and

both (4.8) and (4.9) are satisfied.

Proposition 4.2: Consider {P(t),te Ty, let t°c T, x°c s(t°)
and suppose that (1.1), (3.1), (4.8) and (4.9) hold.
Further, suppose that the Mangasarian-Fromovitz CQ is
satisfied at x° w.r. to M(t°).

Then Condition 3.3' and Condition 3.3 are equivalent.

Proof: By Proposition 4.1, it suffices to show that (4.1) and
(4.,2) are fulfilled. Put

H(x,u,t,h) := A (Dxl(',u,t))(x;h)

for (x,u,t,h) € Qx REx T xR®, which implies that, by property
(P 1) of generalized directional derivatives, the following
inclusions hold:

H(x,u,t,h)

< H(x,u,t°h) + A(D21(e,uyt) =D _1(*,u,t°))(x;h)

c H(x,u,t%h) + > T u, A(D f(e,t) =D f;(+,t°))(x;h)

(4.10),
where u,:= 1. Let U  and V_ be as in (4.8).

By the properties (P 2) and (P 3) of generalized direc-
tional derivatives, the multifunction H(',°,°,t°).is closed
and locally bounded on {x°3><LM(x°,t°)x bd B . As IM(x°,t°)
is bounded (because of the Mangasarian-Fromovitz CQ which is
satisfied at xo), hence there exist an open neighborhood

V,cV, of x°, open bounded sets N1>LM(x°,t°) end W,>bd B,

and a bounded set X cR? such that
H(x,u,t®,h)c X for all (x,u,h)év,lx Ny xW, . (4.11)

Now let 1€{0,1,44.,m}, t €U, x€V, and he W, be fixed.
For simplicity of notation, we put

Fy (%) 1= D f;(x,%) - D £, (x,t°). (4.12)
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By definition of A F, ,(x;h), we then have
9
-1
xKk —x ek

z EAFi t(x;h) if and only if =z =1im z(xk+ekh)
9

with z(x+6,h):= F, ,(x*+6,h) -F; ,(x¥). Hence, (4.8) and
4 R
and (4.12) then imply that

I 2(x*+e.h)l| £ €, 8 Ilhl
and therefore (With d(W,):= sup {Ihll / heW,§ ),
I zi& 8-d(Wy) (V2 €AF; 4(x3h)). (4.13)

Property (P 7) and assumption (4.8) yield that for
any he W1 the inclusion

DF; y(x;h) CAFy 4 (x;h°) + B llb-h° | B, (4.14)

holds. From (4.10), (4.11) and (4.13) then we obtain that

for all (x,u,t,h)€ Vyx Ny xU_x W,, one has the boundedness:

H(x,u,t,h) ¢ X +ﬁd(w1)'(1+m d(N1)) Bn.
To show that for any u°€ IM(x°,t°) and any h°e bvd B, His
also closed at (xo,uo,to,ho), we shall use the closedness
of H(e,*,+,t°) and apply (4.10), (4.9) end (4.14). These
facts imply the inclusions

1lim sup (x,u,t,h) —> (x°,u°,t°,h°) H(x,u,t,h)
C 1lim sup (x,u,h) —> (xo,uo’ho) H(x,u,t%,h)
+ lim sup (4 ;) —s (x°,1°) A Fo’t(x;ho)

m 1,0
+ lim sup (x,u,t) —> (x°,u°,1°) > =1 uiAFi,t(x’h )

= H(x°,u°,t%,1°).
This completes the proof. //

4.5. Now we recall a broad class of C1’1-functions &,

for which a simple representation of Clarke's generalized
Jacobian of Dg is possible, and which is of particular inter-
est in several applications of C1'1-—opt’imiza‘bion, cf, the

discussions in [13], Remark 4 and [14], §4 .
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Given an open set QCR® and functions giECZ(Q), i=1,440,8,
let g be a continuous selection fram {51,...,353 satisefying
the following properties:

(a) For each x€Q there is some 1i(X) ¢ {1,...,53 such that

g(x) = &5 (x) (x),

(b) g is continuous on Q,
(¢c) for each pair 1i,J 6{1‘,...,83 and each xc—QinQ one has
Dg, (x) =Dsj(x), where Q:= {er / g(x) = gi(x)ﬁ

Propogition 4.3 ( [14 , Th, 4]): The function g belongs to the
cless 01’1(Q), and for each xe Q, there exists an index set

J(x) c{ieﬁ,...,sg / &(x) =gi(x)35uch that
Jo1 Dg(x) = conv {ngi(x) / iEJ(x)}.

In what follows, g will be called a C'®'-selection of {q,me 8.0

Returning to the parametric problem {P(t),tve T‘ﬁ , chosing t°e T,
x°¢ S(t°) and essuming that the Mangasarian-Fromovitz CQ holds
at x° w.r. to M(to), we now consider the following special case:

(1) For each 16{0,1,...,m§ » f; is a continuous selection from
{31""’3573 » Where gy: QxT —>R (3=15000,8) are
continuous functions which are twice continuously differ-
entiable with respect to x,

(2) for each ic{0,1,¢es,m} and each teT, £,(*5t) is a
 clrlogelection of {gy(+yt)yeen,g (*,8) 3,
(3) Dygy(+,y+) end D2
(4) with I(£;,%,8)t={Je{1ysee,8) / £;(x,1) =gj(x,t)} and
Hy(x,t,h) 1= conv {szgj(x,t)h / EI(],x,1) 3,
i=0,1,¢¢.,m, set
H(x,u,t,h) 3= H_(x,t,h) + >_ 11‘1’ u; H(x,t,h).

gj(o,-)ﬁf are continuous on QxT (j=1,...,8),

As a direct consequence of the assumptions (1) ... (4) we obtain
that H is closed and locally bounded on {x°§ x IM(x°,t°) x{t%]xbd B_.
Hence, (4.1) holds. Property (4.2) follows from Proposition 4.3,
property (P 5) of directional derivetives and assumption (4). So,
Condition 3.3 mey be replaced by Condition 3.3'.
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Now consider the case p=0, i.e., there are no equality
constraints. In order to verify in Condition 3.2 or Condi-

tion 3.3' that for some (x°,u%,t°), h

Tz.>0 holds for all h

belonging to some set W and for all zegH(xo,uo,to,h), the
following condition would suffice:

Por some i ¢ {O]uI"'(uo) and some jeI(fi, ,t°) and for
each he W, one has h'D7g.(x°,t°)h>0 and

h'D? g (x°,t)h20 1f k € {1,...,83\ 3 .

Thls reduces the expense to the verfification of positive
(semi~)definiteness of finitely many matrices.
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