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Foreword 

This Research Report represents the culmination of an extensive analysi s 
of the uncertainties in the relationships between emissions in one part of 
Europe and acidic depostion in another, as estimated by the Regional Acid
ification INformation and Simulation (RAINS) model developed at IIASA. 
These source-receptor relationships, as they are called, are derived from the 
calculations of the EMEP model of the Norwegian Meteorological Institute 
under the aegis of the UN-ECE Convention on Long-Range Transbounday 
Air Pollution. Both models form an important part of the scientific basis 
for developing new protocols for sulphur and nitrogen emission reductions 
in Europe to reduce further damage to the environment from acidic depo
sition. In this regard, it is essential to know what effect the uncertainty in 
source-receptor relationships will have upon developing and assessing new 
emission reduction strategies. For this reason, this analysis is an extremely 
important part of IIASA's support of the UN-ECE activities. 
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Abstract- This paper investigates the composite uncertainty of a Jong range transport model of sulfur in 
Europe. This composite uncertainty includes the effect on model output of uncertain transport wind, 
meteorological forcing functions, parameters, and spatial distribution of emissions. Other sources of 
uncertainty are omitted in the analysis. Stochastic simulation is used for computations. The combined effect 
of these uncertainties on total annual sulfur deposition at three receptors ranged from about 10 to 20% 
(coefficient of variation). In comparing the effects of different uncertainties on annual model output, 
meteorological forcing functions were found to be the least important because of their frequent temporal 
variation in the model. 

The stochastic procedure was also used to compute the uncertainty of transfer coefficients for 30 
source-receptor combinations; their relative uncertainty ranged from about 10 to 30% and was not 
correlated with distance. However, their absolute uncertainty (standard deviation) was strongly correlated 
with distance and was found to be proportional to the values of the transfer coefficients themselves. This 
insight was used to develop a simple method for estimating the uncertainty of sulfur deposition calculated 
with a transfer matrix. This method was then used to evaluate the 'reliability' of emission reduction scenarios 
in reducing deposition. 

Key word index: Error analysis, long range transport, model evaluation, source-receptor relationships, 
sulfur deposition, uncertainty. 

l. INTRODUCTION 

As atmospheric models have become more frequently 
used in scientific research and policy analysis, more 
attention has also been given to their uncertainty. 
Progress has been made recently in quantifying this 
uncertainty. These efforts have taken two separate 
paths-one approach is to identify the discrepancy 
between model output and measurements. Effort has 
been devoted to improving statistical techniques of 
these comparisons (see, e.g. Dennis, 1985; Munn et al., 
1987). This approach can be used to quantify un
certainty of model results of past or present conditions 
when measurements are available, but it cannot be 
used to estimate the uncertainty of future conditions 
when emission scenarios are changed. 

In the second approach, mathematical and numeri
cal techniques are used to compute the uncertainty of 
model calculations (e.g. Derwent, 1987; Alcamo and 
Bartnicki, 1987). In this approach model inputs are 
first assigned uncertainties in the form of frequency 
distributions or variances; these uncertainties are pro
pagated through model equations and produce output 
uncertainties also in the form of frequency distribu
tions or variance estimates. Using this approach, we 
can estimate uncertainty of specific source-receptor 
relationships and subsequently can also evaluate the 
uncertainty of model calculations for future emission 

*On leave from the Institute of Meteorology and Water 
Management in Warsaw. 

scenarios. This second approach has been used much 
more extensively in water research than in the atmo
spheric sciences (e.g. Beck, 1988). In this paper we 
focus on the second approach, though it is important 
to note at this point that this approach is only 
worthwhile if the first approach has already been 
applied to verify the model, i.e. comparing model 
output to measurements should always precede math
ematical uncertainty analysis. 

To this point investigators using the second ap
proach have mostly focused on particular types of 
uncertainty, such as parameter (e.g. Alcamo and Bar
tnicki, 1987), or interannual meteorology (e.g. Streets 
et al., 1986; Niemann, 1988). While these studies have 
improved our understanding of the relative import
ance of different uncertainties, they have not tried to 
comprehensively estimate model output uncertainty. 
Furthermore, they have not extended their work to 
include the use of uncertainty information in routine, 
policy-oriented calculations. The objectives of this 
paper are, first, to quantify composit~ uncertainty, i.e. 
the combined effect of several types of model un
certainty including parameters, emissions, and met
eorology and, second, to derive a method for using this 
information in routine calculations of S deposition. 

The framework for this analysis was presented by 
the authors in Alcamo and Bartnicki (1987). This 
framework was used to outline an uncertainty analysis 
for the EMEP I model of sulfur long range transport 
(LRT) in Europe, and to quantify parameter un
certainty in that model. Readers are referred to that 
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publication for discussion of our general approach to 
uncertainty analysis. In the current study, we build on 
our previous work to more comprehensively quantify 
uncertainty in the EMEP II model. This model was 
developed by A. Eliassen and J. Saltbones at the 
Institute of Meteorology in Oslo under the auspices of 
the European Monitoring and Evaluation Program 
(EMEP) of the U.N. Economic Commission for Eu
rope Convention on Transboundary Air Pollution. 
An early version of the model is described in OECD 
(1979) and Eliassen and Saltbones (1983). The most 
recent documentation of model equations is given in 
Eliassen et al. (1988), and we summarize model equa
tions in Appendix A. 

Our study concentrates on the uncertainty of using 
a source-receptor transfer matrix derived from a LRT 
model for analyzing the effect of country emissions on 
deposition at different locations in Europe. Therefore, 
the spatial scales of interest are countries as S02 

sources and grid elements as sulfur receptors. 
We begin the paper by briefly describing the method 

of analysis and proceed to quantify the effect of specific 
uncertainties (parameter, wind, etc.) on various 
source- receptor combinations. Next we examine the 
composite effect of these uncertainties on the same 
source- receptor combinations. Following that, we 
look at the effect of several countries, and composite 
uncertainties, on particular ree;eptors. From these 
model experiments we derive a method to routinely 
calculate uncertainty in a source- receptor transfer 
matrix covering all Europe. In the last part of the 
paper we use this method to investigate the reliability 
of different emission scenarios in reducing deposition. 

2. ANALYZING INDIVIDUAL UNCERTAINTIES 

2.1. Method 

In the first part of our analysis, we focus on the 
source- receptor combinations noted in Table 1. These 
were selected because they provide a good range of 
geographic and meteorological conditions and can be 
compared with earlier studies of the authors. 

In Alcamo and Bartnicki (1987) we presented a 
taxonomy of uncertainties of the EMEP I model to 
assist in organizing sources of uncertainty. Because of 
the similarity of the models, we believe this taxonomy 
applies as well to the EMEP II model. Using this 
taxonomy as a guide we now briefly review our 
considerations for omitting certain sources of un
certainty. 

Errors that relate to model structure are among the 
most difficult to analyze because for every model there 
is a large number of reasonable alternative formula
tions of model equations. The authors examined the 
effect of adding a non-linear wet deposition formula
tion to the EMEP I model, as an example of a model 
structure investigation, but in this paper we will not 
deal with this subject. 

Table I. Source countries and recepto rs 
used for uncertainty analysis 

Source country Receptor 

G .D.R. Illmitz, Austria 
U.K. Rorvik , Sweden 
The Netherlands Tange, Denmark 

Initial state errors relate to initial condition and 
boundary conditions. We tested the effect of initial 
conditions by computing annual average S02 air 
concentration and annual wet and dry S deposition at 
Illmitz, Austria, (only accounting for emissions from 
the G.D.R.) with and without initial conditions at 
the beginning of each 96 h trajectory. The effect of 
including initial conditions was to increase S02 and S 
deposition by 0.2% and 0.4%, respectively. We con
clude that the uncertainty of initial conditions is not 
significant in the EMEP II model when applied to 
sulfur transport in central Europe. Other examples of 
'initial state' uncertainty are the boundary conditions 
of the model. These include horizontal boundary 
conditions-<::oncentrations of sulfur in trajectories at 
the edge of the model study area; and vertical bound
ary conditions- flux of S from the free troposphere 
into the assumed mixing layer. (See the model equa
tions in Appendix A for a more detailed explanation of 
these boundaries.) A study of these uncertainties is 
outside the scope of this paper even though they may 
be an important source of model uncertainty in areas 
remote from major sources. 

One type of forcing function uncertainty which 
receives attention in the literature (e.g. Streets et al., 
1985; Niemann, 1988) is the effect of interannual 
meteorological variability. In studying the EMEP I 
model, Alcamo and Posch (1986) found that this 
variability caused a 13% average relative deviation in 
computed S deposition (when all emission sources 
were taken into account). This was found to be 
roughly the same or smaller in magnitude than other 
uncertainties (Alcamo, 1988). Since the EMEP II 
model has a better treatment of meteorological inputs, 
we expect this uncertainty to be still smaller. In this 
paper we will focus on uncertainties for a particular 
meteorological year and therefore will not deal with 
interannual meteorological variability. However, this 
subject should be addressed in future studies. 

'Model operation' errors in the EMEP II can arise 
from the solution of model equations, and other 
sources. From model experiments, the authors have 
found that numerically solving the EMEP II equa
tions creates only a small amount of artificial disper
sion because of the linearity of the equations. These 
and other sources of model operation errors are not 
considered important sources of error in the EMEP II 
model. 

After the preceding considerations, we are still left 
with the large list of uncertainties we deal with in this 
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paper: transport wind, meteorological forcing func
tions (mixing height, wind speed, and so on), para
meters and emissions. We now describe our method 
for analyzing each of these uncertainties. 

Transport wind uncertainty. One of the critical assu
mptions in computing the trajectory of an air pollu
tion in a single vertical layer model (such as EMEP II) 
is the assumed elevation of the mean transport wind, 
i.e. the representative level at which pollutants are 
transported away from pollutant sources. In the 
EMEP II model, this is assumed to be 850 hPa which 
is at approximately 1500 m--close to the maximum 
mixing height rather than the average transport level. 
(A new version of this model will use 925 hPa.) We 
estimate the effect of this very uncertain estimate by 
dividing the boundary layer into IO equal vertical 
levels from the 850 hPa level to the 50 m surface layer. 
We term these different levels 'wind classes'. For each 
of these ten wind classes we recompute a new set of 
annual trajectories, and then compute a new depos
ition at each receptor. We compute the uncertainty of 
deposition by assigning a probability of occurrence to 
each of these wind classes. This probability is ex
pressed in the form of a frequency distribution which is 
presented and explained in Appendix B. 

Meteorological forcing functions . To assess the un
certainty caused by uncertain meteorological forcing 
functions (other than transport wind) we use a 
stochastic simulation method. We first assign fre
quency distributions to each of these meteorological 
inputs which reflect their uncertainty. These distribu
tions are based on information about their measure
ment error, and are presented in Appendix B. We 
select a new set of values from these distributions every 
6- 12 h along each trajectory (precipitation, surface 
wind, 850 hPa wind, every 6 h; mixing height, every 
12 h). After selecting these inputs for every trajectory, 
we solve model equations and compute annual sulfur 
deposition and concentration at different receptors. 
This procedure is repeated for several annual runs and 
the variance of annual model output is then computed. 

Parameter uncertainties. Our approach to para
meter uncertainty is similar to that used to assess 
uncertainty due to meteorological forcing functions. 
Each parameter is assigned a frequency distribution, 
and stochastic simulation is used to produce output 
uncertainties. The assigned input frequency distribu
tions are presented in Appendix B. In comparison to 
the forcing functions, which are sampled every 6-
12 h, new parameter values are selected only at the 
beginning of each 1-year simulation. This is consistent 
with the usage of parameters in the model. In Alea mo 
and Bartnicki (1987), the authors used simple Monte 
Carlo sampling to select parameter values, but this 
required from 400 to 1500 computer runs. In the 
current study, however, we limited the required num
ber of runs to 20 based on the Latin Hypercube 
Sampling method (McKay et al., 1979; Derwent and 
Hov, 1987). 

Emissions uncertainty. The uncertainty due to emis-

sions . can be divided into two parts-{ 1) uncertain 
country emissions, and (2) uncertain spatial distribu
tion of emissions in a grid within each country. Since 
deposition is linearly related to emissions in the 
EMEP II model, we know, for example, that a 30% 
error in country emissions will result in a 30% error in 
deposition at a receptor only affected by these emis
sions. Consequently, further evaluation of (I) is not 
required and we will focus on (2) which has a less 
obvious effect on model uncertainty. To investigate 
the effect of uncertain spatial distribution of emissions 
we compiled three different grid emission inventories 
(Amble, 1981 ; Dov land and Salt bones, 1978, 1986). 
These are assumed to represent the variation of grid 
emissions estimates owing to different assumptions 
about population, location of emission sources, and so 
on. To compute output uncertainty, we simply com
pute S deposition at each receptor due to each of the 
three emission inventories while keeping country to
tals constant. We then compute the variance of these 
depositions by assuming that these outcomes have an 
equal probability. 

Alcamo (1988) presented an analytical solution for 
computing uncertainty due to the uncertainty of spa
tial distribution of emissions which requires only an 
estimate of transfer coefficients and the error of emis
sions. Although this analytical solution is simpler than 
the stochastic method described above, we will use the 
stochastic method in this paper because it allows us to 
link emission uncertainties with other types of un
certainties, as we describe later in this paper. 

2.2. Comparison of results for individual uncertainties 

Figure 1 shows the relative* uncertainty of com
puted total (wet+ dry) sulfur deposition as it is affected 
by different types of uncertainty. The effect of para
meter uncertainty is about the same for all receptors, 
resulting in an uncertainty of 6.6-8.2% in computed 
total sulfur deposition. This was a much smaller effect 
on deposition than parameters had in an earlier study 
of the EMEP I model (Alcamo and Bartnicki, 1987). 
This is despite the fact that input parameter un
certainties were of roughly the same magnitude (in this 
study, input parameter c.v. = 10-40%, in the earlier 
study c.v. = 20%). One possibility is that the better 
defined, and less aggregated, description of atmo
spheric processes in the EMEP II model reduces its 
output uncertainty. Also, accounting for covariance 
between parameters may increase or decrease depos
ition uncertainty (Alcamo and Bartnicki, 1987). 
Meteorological forcing functions as defined above 
had a small effect on all receptors (c.v. of 1.8- 2.4%). 
This is because these inputs are prescribed at relatively 

*In rhis paper we refer to absolute and relative un
certainty. Absolute uncertainty is the standard deviation (a). 
Relative uncertainty is the coefficient of variation in %, i.e. 

a 
C.V.=-X 100%. 

x 
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short intervals (every 6 or 12 h); their errors average 
out over a 1-year simulation period. The effect of 
uncertain spatial distribution of emissions on output 
uncertainty ranged from minor (1.0%) to moderate 
(5.1 % ). The spatial distribution of emissions were also 
found to have much smaller effect on computed S 
deposition than in an earlier study of the EMEP I 
model (Alcamo, 1987). However, the previous study 
did not account for covariance between grid emis
sions, which may explain the larger error estimates. 
The effect of wind had by far the largest variability 
between receptors, ranging from 2.5 to 19.1 %. This is 
because of the complicated, non-linear interaction of 
various factors: (1) the size of the source country, (2) 
the distance between source and receptor, and (3) the 
number of trajectories arriving at a receptor from the 
source country. 

In general, Fig. 1 points out that by improving 
individual model inputs such as parameters, forcing 
functions, and so on, we would not uniformly reduce 
the error of deposition calculations at all European 
locations. 

3. COMPOSITE UNCERTAINTY ANALYSIS 

3.1. Method 

After reviewing the effect of separate types of un
certainty for different source-receptor combinations, 
we now look at the combined effect of these different 
uncertainties on the same source- receptor combina
tions. Our algorithm for doing so is outlined in Fig. 2. 
At the beginning of each 1-year model run we select a 
'wind class', as explained above, to represent the mean 
transport wind. We also choose a set of parameters, 
and one out of the three possible emission inventories. 
At each 6-h or 12-h computational interval along each 
trajectory, we select a set of meteorological forcing 
functions as described above. We repeat the entire 
procedure 60 times, i.e. 60 1-year runs are performed. 
This is in order to obtain a statistically significant 
sample of the input distributions of wind uncertainty. 
We derive '60' from the following 'stratified sampling' 
considerations: the input distribution of wind un
certainty is divided into 10 classes (Appendix B) and at 
least one run must be performed for the class with the 
lowest probability; the number of runs for other 
classes is proportional to their probabilities. Follow
ing these guidelines, the required number of runs for 
the wind uncertainty analysis is 60. We explained 
previously that only 20 computer runs are required for 
parameter uncertainty, and three for emissions. (Other 
meteorological forcing functions are sampled at 6- or 
12-h intervals within an annual period and thus are 
not relevant to this discussion.) Therefore, to obtain a 
statistically significant sample of all inputs (wind, 
parameters, emissions) we must repeat our model 
experiments for the limiting number of times-60. 

In our analysis we did not account for covariance 
between input parameters, forcing functions or other 

inputs because it was outside the scope of the current 
study. However, as noted above, covariance between 
inputs could affect the results of the uncertainty 
analysis. 

3.2. Results of composite uncertainty on selected 
source- receptor combinations 

Effect on total deposition. The composite effect of 
uncertain parameters, transport wind, spatial distribu
tion of emissions and meteorological forcing functions 
on computed total (wet plus dry) sulfur deposition is 
presented as the top bars in Figs 1 (a}-{c). Note that the 
computed composite uncertainty is always smaller 
than the sum of the individual uncertainties, which is 
to be expected since covariance between input dis
tributions was not taken into account. Composite 
uncertainty of total deposition (relative uncertainty) 
ranges from 10.4 to 19.6 % for the three receptors. In 
Fig. 3 we present their frequency distributions. (These 
distributions were computed with 200 rather than 60 
runs because 60 runs were sufficient to accurately 
estimate the first two moments of the distribution but 
not its shape.) 

To appreciate the magnitude of this uncertainty-a 
computed total sulfur deposition of 1.0 gm - 2 yr - 1 

would have a 95% confidence interval of about 
0.7-1.3 gm - 2 yr- 1 (assuming normality). 

Effect on other model output. In Fig. 4 we compare 
the composite uncertainty of a number of different 
model outputs. Again there is no distinct pattern 
between receptors. Dry deposition has the largest 
uncertainty at Illmitz, Austria, sulfate air concentra
tion at Rorvik, Sweden, and wet deposition at Tange, 
Denmark. The uncertainty of total deposition, how
ever, is always lower than the average of wet and dry 
deposition, indicating a compensation in errors be
tween these two components. 

4. ROUTINE CALCULATIONS-COMPOSITE 

UNCERTAINTY OF MULTIPLE SOURCES 

4.1. Method 

To this point we have examined the effect of differ
ent types of uncertainty (parameter, wind, etc.) on 
computed concentration and deposition for three 
different source-receptor combinations. We then 
looked at the composite effect of several sources of 
uncertainty on the same source-receptor combina
tions ('composite uncertainty'). We now continue our 
analysis of composite un(;ertainty, but rather than 
focusing on single source-receptor combinations, we 
add up the effect of all important source countries on 
particular receptors. In other words, we now concen
trate on the practical problem of estimating the un~ 
certainty of sulfur deposition computed with a 
source-receptor transfer matrix. Our ultimate objec
tive is to find a method to routinely calculate this 
uncertainty. 
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Fig. I. Relative uncertainty of computed total sulfur deposition due to different 
input uncertainties, (a) Illmitz, Austria, due to emissions from the German 
Democratic Republic, (b) at Rorvik, Sweden, due to emissions from the U.K., (c) at 

Tange, Denmark, due to emissions from The Netherlands. 
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for mix ing height and deposition calculations. 

Fig. 2. Algorithm for composite uncertainty analysis. 

In using a transfer matrix, deposition at any loca
tion j, is computed by 

N 

di= L Siaii+bi (1) 
i=l 

where di is the total (wet plus dry) sulfur deposition, Si 
is the emissions of country i, aii is the transfer coeffic
ient of deposition at receptor j per unit emissions from 
country i, and bi is the background deposition at 
receptor j. 

Since Equation (I) is a linear combination of Si and 
aii• the variance of the deposition can be simply 
calculated from the Gaussian error equati0n as: 

N N 

uJ1 = L S[u;u+2 L S,,,S.cov(a,,,i, a.i). (2) 
i= 1 '"·"= 1 

"'"" 
In this equation we neglect the uncertainty of 

background deposition, bi, because it is outside the 
scope of this paper. The authors point out, however, 
that background uncertainty can be quite important 

in locations distant from dense industrial areas, as in 
Scandinavia. 

In practice, Equation (1) is used to analyze control 
strategies, i.e. to compute a new deposition at any or 
all grid locations j, as individual country emissions 
increase or decrease (e.g. Shaw, 1986; Hordijk, 1986). 
We propose that Equation (2) can be used at the same 
time to compute the error uJ

1 
of this deposition 

estimate. Note in Equation (2) that this error de
pends only on the emissions from each country, 
(Si), the variance of the transfer coefficients (u;.) 
and the covariance between transfer coefficients 
[cov(a,,,i,a•i)]. Since the emissions from different 
countries are externally input to the deposition calcu
lation, we are left with finding the variance and 
covariance of the transfer coefficients. Consequently 
we devote the remainder of this paper to this estima
tion of these statistics with the aim to use Equation (2) 
for routine calculations of deposition uncertainty. We 
concentrate on deposition rather than air concen
tration, because of deposition's greater importance in 
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the evaluation of international sulfur control strat
egies. Our approach will be to first compute the 
uncertainty of several transfer coefficients from model 
experiments, and then to use these as a 'raw data' to 
derive a general formula for calculating the uncer
tainty of all coefficients in the transfer matrix. Of 
course we could simply compute the uncertainty of 
each transfer coefficient using the method in section 3, 
but this would be a daunting computational task 
requiring 60 annual computer runs for each of about 
19,000 transfer coefficients. 

Estimating uncertainty of transfer coefficients. In 
section 3.1 above we described a method to compute 
the composite uncertainty of deposition. This method 
can also be used to compute the uncertainty of transfer 
coefficients because the relative uncertainty of depos
ition is equal to the relative uncertainty of transfer 
coefficients.* Also, absolute uncertainty of transfer 
coefficients is simply a0 ;

1
=adj S;. We now proceed to 

calculate the uncertainty of transfer coefficients be
tween three receptors and I 0 countries that contribute 
the most deposition to each receptor.t As a result we 
obtain a total of 30 estimates for a0 ;

1 
and c.v .• ,, . These 

are 'raw data' for our analysis. We now try to identify a 
relationship between the uncertainty of these transfer 
coefficients and a distance parameter (representing 
distance between source countries and receptor grid 
elements). Such a relationship would allow us to 
generalize results from 30 transfer coefficients to all 
transfer coefficients in the transfer matrix once we 
know the distance between sources and receptors. 

4.2. Results 

Relative uncertainty vs distance. We begin by exam
ining the relative uncertainty of the transfer coefficient 
vs (1) geographic distance (emission-weighted) and (2) 
number of trajectories arriving at a receptor (Figs 5a 
and b). We use the number of trajectories arriving at a 
receptor as a surrogate of distance because it takes 
into account both geographic distance as well as 
whether a source is upwind or downwind of a receptor, 
i.e. we expect that the closer and more upwind a source 
is to a receptor, the larger the number of trajectories 
arriving at a receptor from that source. These figures 
show that relative uncertainty is not related to dis
tance. On the one hand we expect uncertainty to 
increase with distance downwind from a source as 
errors (e.g. in parameters and wind trajectories) accu
mulate in the long range transport calculations. On 
the other hand we might also expect uncertainty to 
increase close to sources because the model is not 
designed to simulate short-range transport, i.e. its key 
assumptions (single vertical layer, complete mixing, 
isobaric transport) do not hold well for short travel 
distances. Because of this, uncertain spatial distribu
tion of emissions and the uncertain local deposition 

•Since 

and 

then 

tThese 10 countries are determined by the RAINS model 
(Alcamo et al., 1987) based on a 4-year average EMEP matrix 
from 1978, 1979, 1982, 1983. Ten countries are usually 
sufficient for accounting for over 90% of the deposition to 
each receptor (not including background). 
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Fig. 5. Relative uncertainty of transfer coefficients: (a) vs distance between 
sources and receptors, (b) vs number of trajectories arriving at receptors from 

source countries. 

coefficient (see Appendix B) can cause a large un
certainty in computed deposition close to sources. 
One interpretation of Figs 5a and b is that we see a 
combination of these effects, and the model performs 
roughly the same between 100 and 2000 km, with a 
relative uncertainty between 10 and 30%. 

A plot of absolute uncertainty vs distance of sources 
to receptors (Fig. 6a) shows a clear exponential de
crease of this uncertainty. A log-log plot (Fig. 6b) 
magnifies the distribution oflow values in the arithme
tic plot of Fig. 6a. A linear regression of log a .lj vs log 
distance shows a significant correlation (r2 = 0.82) with 
the best fit: 

log a . lj = 1.814 7 - 2.3678 log xift (3) 

where xii is the emission-weighted distance between 
the source country and receptor. 

Equation (3) can be used to generate the a.,
1 

matrix 
needed for Equation (2) once the distance from each 
source to each receptor is known. Although we can use 
Equation (3) to calculate a;,

1 
in Equation (2), the 

exponential decrease of a .lj with distance suggests that 
a

0 11 
may be related to the transfer coefficients themsel

ves. If this is true, then the uncertainty calculations in 
Equation (2) can be greatly simplified, as will be shown 
shortly. Figure 7a shows that transfer coefficients 
decrease the same way with distance as absolute 
uncertainty. The log-log plot of aii vs distance (Fig. 
7b) is as convincing as the log- log plot of absolute 
uncertainty vs distance (Fig. 6b). Here we have a clear 
expression of the intuition that unit deposition contri
butions from countries to receptors drop off more or 
less consistently with distance. The regularity of this 
drop-off is surprising, however, because we expected a 
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Fig. 6. Absolute uncertainty of transfer coefficients vs distance between sources and 
receptors: (a) arithmetic plot, (b) logarithmic plot. 

country's contribution to a receptor also to be a 
function of whether the country is, on the average, 
upwind or downwind from the receptor. But as Fig. 5b 
showed, there was no relation between relative un
certainty and number of trajectories arriving at a 
receptor from a country. 

With both aii and its absolute uncertainty correla
ting to distance, the obvious next step is to examine 
aa

11 
.vs aii. A log-log plot depicts more clearly the 

smaller values of these variables (Fig. 8) and confirms 
their close relationship. To determine the best-fit line, 
we conducted a two-stage least square analysis of aaij 
vs aii (note, arithmetic not logarithmic), and used 
distance as an instrumental variable. This type of 
analysis accounts for the correlation of both aa,, and 
aiJ to distance. The computed regression line had an r2 

of 0.96. (To ensure that this significant correlation did 
not only depend on the four largest points in Fig. 8, the 
analysis was repeated after eliminating these points. 
An r2 of 0.92 was still computed.) 

By forcing the constant in the regression equation to 
zero we obtain 

aa,,=0.227aij. (4) 

The fit of this regression is similarly good (r2 =0.95) 
and it has the advantage that the factor 0.227 can 
be thought of as a 'characteristic' coefficient of vari
ation of aiJ. (We note that the factor 0.227 is close to 

the average of the 30 points in Fig. 7c cv.,,=0.201). 
The aa

11 
can now be easily computed from the matrix 

of transfer coefficients and we do not need to compute 
and store a large aa

11 
matrix by Equation (3). 

Covariance between transfer coefficients. Although 
the relationship in Equation (4) provides an easy way 
to compute 11;,, in Equation (2), we must still decide 
how to deal with the covariance terms, i.e. we must 
now address the effect of covariance between transfer 
coefficients. This is far from a trivial problem since 
there are about 105 potential covariances in a transfer 
matrix with about 700 receptors and 27 countries. 
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Table 2. Correlation between transfer coefficients to Illmitz. (a) Variance-covariance matrix, (b) 
correlation coefficients 

CZE AUS HUN GDR POL YUG /TA FRG TRA ROM 

(•) Veriettce-eoHri .. ee m.tris 
CZE o.eallot--08 
AUS 0.1144>--07 O.!Me--06 
HUN 0.305.--08 0.2-.-07 0 .4tne--08 
GDR 0.:189.-09 --0.467...-08 --0.2-.-09 0 .187.--0ll 
POL 0.885e-OG --0 .~ --0.783e-Oll 0.1511e-IO 0.-..-0ll 
YUG --O.llle--08 --O.lllle-07 --0.19"--09 --0.249.-09 0.-10 0.137...-08 
ITA --0.401.--0ll --0.51!ht--08 --0.7!Mle--Oll --O.!Nllle-10 --0.146.--0ll --0.8lle--10 0.17Se--Oll 
FRG 0.4lrle--09 --O.lls.--08 0.291.--0ll 0.73le--10 0.145e--09 --0.154e--09 --0.3-..10 O. l:zae..-Oll 
FRA --O.S82e--09 --0.:181...-08 --0.537e--O!I 0.57S.-10 --0.806e--10 --0.1870-10 --0.llOe--O!I --0.1111e-10 0 .8270-IO 
ROM --0.82Se-10 --0.154e--08 --O.SSOe--10 0.284..-10 --0.-.-11 --0.2SSe--10 0.295e-10 --O.llSOe--12 0 .210....10 O.l«e-10 

(•) c~clalio• coc//ic1c•t 
CZE 1.00 
AUS 0.23 1.00 
HUN 0.52 0.82 
GDR 0.36 --0.81 
POL 0.43 0.08 
YUG --0.36 0.54 
ITA --0.37 --0.88 
FRG o." --0.17 
FRA --0.51 --0.70 
ROM --0.20 --0.88 
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Fig. 9. Correlation (p) between transfer coefficient of France 
and other countries. Receptor: lllmitz, Austria. 

We begin by exammmg the variance-covariance 
matrix for one of the receptors (Illmitz) (Table 2a)*. 
This table was derived from results of the composite 
uncertainty analysis described in section 3. Note that 
the covariance of transfer coefficients between two 
different countries may be either negative or positive, 
which suggests that they may compensate if we sum 
the contributions of several countries together. The 
corresponding correlation coefficients between coun-

•This is actually only a part of the total var--<:ov matrix 
because transfer coefficients going to different receptors can 
also co-vary with one another. 

1.00 
--0.17 1.00 
--0.37 --0.22 1.00 
--0.08 0.09 --0.11 1.00 
--0.17 0 .59 --0.02 0.81 1.00 

tries contributing to Illmitz are also rather low (Table 
2b). Exceptions are the relationships between 
Italy-Hungary and France-Hungary (p = -0.85 and 
-0.84, respectively) and France- Italy (p =0.92). Sim
ilar results are found for the receptors Rorvik and 
Tange. No simple relation for covariance can be seen 
in these tables. In Fig. 9 we try a visual plot of 
covariance, and depict the correlation coefficient of 
France to nine other countries that contribute to 
deposition at Illmitz. On one hand there is the ex
pected close correlation between France and adjacent 
Italy (p = 0.92); but between France and another adja
cent country, F.R.G., there is virtually no correlation 
(p=0.11). We might expect a negative correlation 
between France, which is upwind of Illmitz, and 
countries downwind. This is observed for certain 
countries, e.g. Hungary and Czechoslovakia, but not 
for Romania. Other visual plots give similarly ambig
uous pictures. 

In short, the variance-covariance matrices of three 
receptors do not reveal a simple method for gen
eralizing covariance, though further analysis may 
reveal the sought after explanation. But at this point 
we change our tactics and ask, what do we lose by 
simply neglecting covariance? To address this ques
tion we compare estimates of ad

1 
with, and without, 

covariance. For each receptor we first compute ad . due 
to the two largest contributing countries. We thed add 
the next largest contributor, and so on, until we have 
computed the ad

1 
for the 10 largest contributing 

countries. We express our results in Fig. 10 as a ratio. 

ad (computed with covariance) 
0= j • 

ad
1 

(computed without covariance) 

For Illmitz, 0 is initially 1.1, i.e. the error estimate of 
deposition would be 10% larger if covariance is taken 
into account rather than neglected. Note that after 
about five to seven countries are added together, this 
ratio smooths out. A similar trend is found for the 
other receptors. From this diagram, we conclude the 
following. 
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(1) A reasonable estimate of the effect of covariance 
on the error estimate of deposition can be accomp
lished by accounting for emissions from the 10 
largest contributing countries. 

(4) into Equation (2), we obtain: 

6 

2181 

(5) 

(2) For the three receptors, 0 is relatively small, from 
1.090 to 1.225. 

Routine estimates of uncertainty. Based on the pre
ceding analysis, we now propose a method to compute 
the error of deposition. To account for covariance, we 
propose a pragmatic and tentative solution, i.e. to 
scale up the estimated error without covariance 
(Equation (2)) by the ratio 02

, where we assign 0= 1.2. 
With this assumption, and by substituting Equation 

We can now use Equation (1) to calculate depos
ition, and Equation (5) to calculate the error of this 
deposition. Figures 11 and 12 show two ways to 
express this uncertainty. Both of these calculations 
assume that the frequency distribution of deposition is 
normally distributed. [For contributions of single 
countries to a receptor, frequency distributions ap
proach normality (Fig. 3). When several countries 
contribute to a receptor we expect the distribution to 
be even closer to normal.] 
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In Fig. 11 we depict the computed 95% confidence 
interval around deposition at several locations. Two 
scenarios are compared-a reference case of 1980 
emissions and an emission reduction scenario in which 
emissions are reduced according to currently stated 
policy in each country (Table 3). Because reduction 
vary from 0 to 70%, the European emission pattern of 
the Current Reduction Plans scenario is very different 
from the 1980 pattern. Note that the magnitude of 
uncertainty is both location and scenario-dependent. 

Figure 12 portrays another way to express un
certainty, this time as confidence intervals around 
computed deposition isolines. Again the spatial de
pendence of the uncertainty can be observed. 

Figures 11 and 12 provide an opportunity to assess 
the reliability of emission reduction scenarios in ac
complishing deposition reductions while taking into 
account the uncertainty of atmospheric models. Since 
there is no overlap in the confidence intervals at 
locations in F.R.G., Finland and Poland in Fig. 11, 
nor in the northern or central part of Europe in Fig. 
12, we are confident that the Current Reduction Plans 
will show a decrease in deposition at these locations. 
However, in areas where confidence intervals overlap 
(e.g. Adony, Hungary, in Fig. 11), we are less confident 
that the Current Reduction Plans will reduce depos-

7 1Z' 

55 

50 

(a) 

,f ., 

ition; if the uncertainty estimates of the two scenarios 
are uncorrelated then there will be only a small 
difference between their results, but if they are corre
lated there will be a significant difference between their 
results. This idea of correlated uncertainties is illustra
ted in Fig. 13, which depicts a theoretical cross-section 
of the overlapping isolines is Fig. 12. Assume that 
Scenario A has a deposition error of A', to the right of 
the mean A. If errors between Scenarios A and B are 
correlated, then Scenario B will also have a deposition 
error to the right of the mean (B~); if they are 
uncorrelated Scenario B can have an error anywhere 
between B~ and B'1 . In other words, if the uncertainty 
of two scenarios are correlated then a reduction 
scenario will show an improvement everywhere even if 
the confidence intervals of the two scenarios overlap. 
An example of this is a uniform 30% reduction in 
emissions relative to 1980 in every European country. 
Even though confidence intervals of deposition over
lap in this case, our intuition tells us that deposition 
improvement will be observed everywhere (excluding 
the effect of interannual meteorological variability). 
However, for the case of the two scenarios illustrated 
in Figs 11 and 12, we have found their errors to be 
uncorrelated by comparing the residuals of their de
position computations (Fig. 14). Consequently, we are 

35 4 \2! 

Fig. 12(a). 
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Table 3. Current Reduction Plans for S02 (compared to 
1980 levels) from Amann (pers. comm.) 
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Fig. 13. Illustration of the idea of correlated and un
correlated uncertainties of two scenarios. 
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Fig. 14. Residuals of deposition at Illmitz for 60 computer 
runs and two scenarios. 

doubtful that there will be a statistically significant 
difference between the two scenarios in the overlap 
areas of Figs 11 and 12. Put in other words, if we take 
into account atmospheric model uncertainty, we are 

not certain that Current Reduction Plan will accom
plish a reduction in deposition in all parts of Europe. 
Of course, since mass is conserved by the model we are 
certain to see an improvement in deposition in Europe 
as a whole. 

5. DISCUSSION 

The foregoing analysis raises the question, how 
accurate are the theoretical uncertainty estimates? 
While it sounds contradictory to inquire about the 
accuracy of 'uncertainty' estimates, it is possible to 
gain insight into this question by comparing 'theoret
ical' uncertainty estimates (computed by the stochastic 
simulation procedure described in this paper) with 
'observed' uncertainty estimates (calculated as the 
difference between measurements and mean model 
calculations). As an example, an estimate of the theor
etical uncertainty of wet deposition (Fig. 4) is 18- 25% 
(coefficient of variation), depending on location. For 
comparison, an estimate of observed uncertainty can 
be obtained from the plot of measured wet S04 de
position vs model calculations presented in Lehmhaus 
et al. (1986). (The model version in Lehmhaus et al. 
(1986) is similar to the version analyzed in this paper.) 
From this plot we computed the mean relative devi
ation of model calculations from measurements, i.e. 
'observed' model uncertainty, to be approximately 
34%. Hence, the observed model uncertainty is some
what higher than theoretical uncertainty estimates, 
though still of the same magnitude. Observed model 
uncertainty was expected to be higher than theoretical 
uncertainty because, as pointed out in section 2.1, 
certain sources of uncertainty are not included in the 
theoretical estimates. Another possible reason why 
theoretical and observed estimates do not agree is that 
theoretical estimates of wet deposition uncertainty are 
only available from three stations, which may or may 
not be representative of other locations. 

The above discussion focused on wet deposition. 
However, one of the authors has also compared 
theoretical and observed uncertainty estimates for 
total (wet plus dry) deposition. Using Equation (5) 
from this paper, Alcamo (1990) computed the mean 
theoretical uncertainty of total deposition at 15 forest 
locations in Europe to be 14.8% (coefficient of varia
tion). He computed the mean observed uncertainty to 
be slightly larger at 21.7% (mean relative deviation) . 

These preliminary comparisons between theoretical 
and observed uncertainty estimates do not provide 
enough evidence to confirm the results of the math
ematical uncertainty analysis. Nevertheless, the order 
of magnitude agreement between these estimates for 
both wet and total deposition indicates that the results 
of mathei;natical uncertainty analysis are consistent 
with current knowledge about the magnitude of model 
error. [It should be pointed out that anonymous 
reviewers of this paper felt that estimates of theoretical 
uncertainty were too low-it can be seen now that 



Atmospheric source- receptor relationships 2185 

theoretical estimates are not very much lower than the 
observed uncertainty.] 

One may ask at this point, if it is possible to 
compute the 'observed' uncertainty as the deviation uf 
model calculations from measurements why bother to 
compute the theoretical uncertainty by mathematical 
uncertainty analysis? Among the most important rea
sons are, first, mathematical uncertainty analysis al
lows us to analyze the relative importance of different 
kinds of uncertainty on model output. Second, as 
pointed out in the beginning of this paper, mathemat
ical uncertainty analysis can also be used to identify 
the uncertainty of individual source- receptor relation
ships (e.g. the uncertainty of transfer coefficients). It 
would be difficult, if not impossible, to obtain this 
information by comparing model output to obser
vations at individual locations. Knowing the un
certainty of source-receptor relationships, we can then 
compute the uncertainty of future deposition scenar
ios under changed levels of emissions- as we did in the 
preceding section of this paper. 

Although the mathematical uncertainty analysis 
described in this paper can provide useful results, it 
has many limitations that should be addressed by 
further research. Among its more important limita
tions is the flexibility allowed in prescribing the input 
distributions that are then used to produce output 
uncertainties. Research should be devoted to reducing 
this arbitrariness. Where possible, these input un
certainties should be scientifically justified as we have 
partly done in Appendix B. Where this is impossible, 
different assumptions for input distributions should be 
tried (see, e.g. Alcamo and Bartnicki, 1987). Ulti
mately, however, prescribing input frequency distribu
tions is no less scientific than the typical way in which 
values are assigned to model parameters based on 
available knowledge. Prescribing input distributions 
rather than discrete input values is simply an admis
sion of the uncertainty of these inputs. 

Another limitation is the use of only three receptors 
to derive the information in this paper. While a greater 
number and variety of receptors would be desirable, it 
is also true that the 10 source countries with three 
receptors gave a rich variety of source-receptor reta
tionships representing many Qifferent geographic and 
meteorological situations in Europe. This adds valid
ity to our generalization of results from 30 
source- receptor combinations to all Europe. Also, 
uncertainty estimates in this paper only refer to 1980 
meteorological conditions, though there is no evid
ence that they should not apply to other meteoro
logical conditions as well. Nevertheless, other 
meteorological years should be studied and the 
effects of interannual meteorological variability 
should be compared with the uncertainties found in 
this paper. 

As a final comment, we should also note that the 
methods outlined in this paper can also be applied to 
the calculation of S02 concentration which can be 

important for some environmental assessment calcu
lations. 

6. CONCLUSIONS 

(1) The relative importance of different sources of 
uncertainties (transport wind, meteorological forcing 
functions, parameters, spatial distribution of emis
sions) varied greatly from receptor to receptor. Never
theless, for all receptors the importance of meteoro
logical forcing functions was small because they are 
input at short intervals compared to the annual
averaging of model output. The composite uncer
tainty of total (wet plus dry) deposition ranged from 10 
to 20%. This was, in all cases, less than the sum of 
individual uncertainties and indicated a compensation 
of errors. 

(2) Of the different state variables, dry deposition, 
air concentration of so~ - and wet deposition had the 
greatest uncertainty. The uncertainty of total (wet plus 
dry deposition) was less than the sum of wet plus dry 
deposition uncertainties, again indicating some com
pensation in errors. 

(3) No relationship was found between distance 
and the relative uncertainty (coefficient of variation) of 
transfer coefficients; relative uncertainty neither in
creased nor decreased bc:;tween 100 and 2000 km 
downwind of emission sources. 

·(4) A significant correlation was found between the 
absolute uncertainty (standard deviation) of transfer 
coefficients and distance downwind of receptors. The 
Jog of the absolute error linearly decreases with the log 
of distance. An even more significant correlation was 
found between absolute error of the transfer coefficiets 
and the magnitude of transfer coefficients. Using this 
insight, we derived a simple method for computing the 
standard deviation of deposition which requires only 
estimates of country emissions and transfer coeffic
ients. Transfer matrices can now be used to not only 
compute deposition due to different emission scenar
ios, but also the uncertainty of this computation. 

(5) A general conclusion of research presented in 
this paper, as well as the authors' previous work, is 
that the uncertainty is not large for linear models ifthe 
input errors are not strongly biased and spatial and 
temporal scales are large. This is consistent with the 
view of Geoffrey Chew that in physics 'a high degree of 
complexity ... can end up averaging out in such a 
way that it produces effective simplicity.' 
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APPENDIX A: EMEP SULFUR TRANSPORT MODEL 

The so-called EMEP-11 model is a new version of the 
trajectory model described in Eliassen (1978) and Eliassen 
and Saltbones (1983). In the latter reference, the theoretical 
formulation of the EMEP-II model can be found. More 
technical details about this model are included in Lehmaus et 
al. (1986) and Eliassen et al. (1988). The basic equations, 
integrated along a trajectory, have the following form: 

where: 

Dq (vd ) Q 
-= - -+k,+k., q ·q+Eq+(l-a.-P)
dt h . h 

Ds (wd ) Q 
- = - -+k · s+E +k ·q+p-dt h w,s S I h 

q = S02 concentration at the receptor point 
s =so~ - concentration at the receptor point 

D 
- =total time derivative 
dt 

(A.I) 

(A.2) 

Eq , £,=flux ofS02 and So~ -, respectively, from free tropo
sphere 

Q =sulfur emission per unit area and time. 
Other symbols responsible for different physical processes 
are explained in Table A-1 and in more detail below. 
Backward 96 h trajectories are calculated using the method 
described by Pettersen (1956) and 850hPa wind data up
dated every 6 h. 
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Variable mixing height. In the EMEP-II model, mixing 
height is variable in time and space. Objectively analyzed 
mixing height is taken every 24 h at 1200 GMT. Based on this 
information and on estimated vertical velocity, a new value of 
the mixing height can be computed: 

h(t)=h 1 + f' w(t')dt' (A.3) 

' • 
where w is the vertical velocity at the top of air parcel. 

w=J2
; sin ycosy(1 (A.4) 

where ( 1 is geostrophic vorticity approximated by vorticity of 
850 hPa advection wind, y = 20° is the cross-isobaric angle,f 
=Coriolis parameter, and K is the turbulent diffusivity for 
vertical momentum transport: 

(A.5) 

where u. can be estimated from the observed surface wind: 

u(z3 ) 1 z3 
--=-ln-

u. K Zo 
(A.6) 

where K is the von Karman constant, z 3 = 10 m, z0 is rough
ness parameter. 

Exchange of pollutants between boundary layer and free 
troposphere. This process, described in Equations (A.1), (A.2) 
by terms E• and E,, can be taken into account in the 
following way: knowing the value of the mixing height at time 
t 1 we can compute mixing height 24 h later at time t2 by 
means of Equation (A.3). Denoting this mixing height by 
h(t2) we can compare it with the objectively analyzed value of 
the mixing height h2 • If h(t 2 )>h2 then the sulphur dioxide is 
kept unchanged. If h(t2)<h2, then the concentration due to 
anthropogenic emission q. is diluted in proportion to 
h(t2)/ h2. This results in a new sulphur dioxide concentration: 

(A.7) 

where qb is a background concentration in the free tropo
sphere. The same procedure is applied to so_!- concentra
tion. 

Deposition velocities. The deposition velocity for S02 is 
calculated in two steps. Firstly, deposition velocity at 1 m is 
computed 

1 
ai(r)vd 1(t)+a2 (r) vd2tanG(i - <p)) over land 

vd(lm)= 
Cv,sea over sea 

(A.8) 

where r is the time of the year, t the diurnal time, <p the 
geographical latitude and: 

a 1(r)+a2(r)=1 

Vdt ={ Vdt.d•y-da~ (0400-2200 LT) 

Vdt .ni&ht-mght . 

Second, the deposition velocity at 50 m is calculated: 

(A.9) 

[ 
vd(lm) 10m]- i 

vd(50 m)=vd(l m) 1 + ln50 ·ln--
k2u(10 m) z0 

Deposition velocity for so_! - has a constant value: 

wd=O.l ms - 1• 

(A.10) 

(A.11) 

Transformation rate S02 to so_!- . The transformation rate 
k, is calculated as follows: 

k,(r)=kt0+kt1 sin( 2n~+ 9) (A.12) 

where Tis 1 year and 9 is chosen in such a way that k, reaches 
its maximum at summer solstice. 

Wet deposition rate. The wet deposition rate for S02 is 
given by 

(A.13) 

Table A-1. EMEP-II parameters and variables 

Symbol Definition Value 

vd Deposition velocity for S02 Variable 
Vdt. da y Deposition velocity for S02 over the land 0.008 m s - 1 

during the day 
vdl , nighl Deposition velocity for S02 over the land 0.002 m s - 1 

during the night 
v d ,ua Deposition velocity for S02 over the sea 0.008 ms - 1 

Vd2 Deposition velocity for S02-amplitude 0.008 m s - 1 

of latitude-dependent part 
wd Deposition velocity for SO.!- 0.001 ms - 1 

k, Transformation rate S02- >so_! - Variable 
k,o Transformation rate--constant part 3xl0- 6 s - 1 

k11 Transformation rate- amplitude 2 x l0 - 6 s- 1 

h Mixing height Variable 
Cl Additional local S02 dry deposition 0.15 

in grid square where emission takes place 
fJ Part of sulphur emission assumed to be 

emitted as sulphate 0.05 
w. Scavenging ratio for S02 2 x 105 

w, Scavenging ratio for so_!- 7 x 105 

kw.q Removal rate for S02 during rain Variable 
kw.s Removal rate for so_! - during rain Variable 
qb Background concentration for S02 0.1 µgm - 3 as S 
Sb Background concentration for so_! - 0.2 µgm - 3 as S 
Cb Background concentration for so_! - in precipitation 0.3 µg r 1 as s 
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and for so~ - by: 

W,· P6 
k =--
"·' h 

(A.14) 

where w. and W, are scavenging ratios (Table A.1) and P 6 is 
the objectively analyzed precipitation intensity for the last 
6h. 

APPENDIX B: INPUT DISTRIBUTIONS FOR TRANSPORT 
WIND, PARAMETERS AND METEOROLOGICAL 

FORCING FUNCTIONS 

. In. thi~ sectio.n we describe the selection of frequency 
d1stnbut1ons of mputs to the stochastic simulation exercise. 
The selection of these distributions was based largely on 
technical considerations discussed with scientists listed in the 
Acknowledgements. Because of space limitations we are only 
able to briefly review these considerations in this section. 

Wind uncertainty. As noted in the text, this distribution 
reflects the uncertainty of the vertical level of the mean 
transport wind. In Fig. B-1, we assume that the most 
probable transport level is wind class 4, i.e. approximately 
925 hPa. This is the level used for trajectory calculations by 
Eliassen et al. (1988) and is closer (than 850 hPa) to the 
elevation where maximum vertical S02 concentrations have 
been measured in Europe (OECD, 1979). The distribution in 
Fig. B-1 also assumes that wind class I (850 mb) has a 20% 
smaller probability than the most probable class. We assume 
that from class 4 to class 10 there is a steadily declining 
probability of occurrence, i.e. that there is very small chance 
that the mean transport wind is located near the surface. 
Atmospheric turbulence makes it unlikely that the mean 
transport wind would be very near the surface, though 
ground-based transport occurs intermittently. 

Since there are many other possible assumptions for this 
input distribution, we have compared results using three 
different input distributions: (1) the truncated triangle in Fig. 
B-1 (which is· described above and which we used for 
calculations earlier in this paper), (2) a skewed triangle with a 
median at class 6 (approximately 700 m elevation) and zero 
probability below class I and above class 10 and, (3) a 
uniform distribution. The skewed triangle and uniform dis
tributions give somewhat higher deposition uncertainty esti
mates than the truncated triangle (for deposition at Illmitz, 

the c.v. = ~.52%, 3.18 % and 3.46% for the truncated triangle, 
skewed tnangle and uniform distribution, respectively; and 
for Rorvik deposition, c.v. = 5.18%, 5.92% and 7.92%, re
spectively) . 
. Alth.oug~ the skewed triangle and uniform input distribu

tions give higher uncertainty estimates, we used the truncated 
triangle for our composite uncertainty analysis because we 
believe it is a fairer representation of the wind class un
certainty than the more extreme assumptions reflected in 
other distributions: the skewed triangle distribution assumes 
th.at t~ere is virtually no possibility that the mean transport 
wmd 1s at 850 hPa; and the uniform distribution assumes that 
there is an equal probability that the mean transport wind 
will be at any level. 

Meteorological forcing functions. Assumed input distribu
tio.ns offorci~g functions are given in Table B-1. The mixing 
height 1s estimated from four characteristic points in the 
boundary layer. Uncertainty of mixing height arises from 
measurement and interpolation (spatial and temporal) erro
rs. Based on these considerations we assign the mixing height 
a triangular distribution with ± 50% range. 

The surface wind is used to calculate the dry deposition 
velocity and vertical velocity (see Appendix A). To estimate 
the uncertainty of surface wind we note that Mason and 
Moses (1984) estimate that the error of horizontal wind 
velocity measurements is about 1-10%. If we conservatively 
assume that the standard deviation is 10%, then two stan
dard deviations would be 20%. Consequently, we assign the 
surface wind a triangular distribution with a ±20% range. 

The 850 hPa wind is used to estimate vertical velocity (see 
Appendix A). One might argue that the surface wind estimate 
should be more accurate than the estimate of 850 hPa wind 
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Fig. B-1. Input frequency distribution for transport wind 
uncertainty. 

Table B-1. Input distribution assumptions 

Forcing func-
ti on 
or parameter Type Median Range Units 

Mixing height Triangle Meteorological ±50% m 
data base 

Precipitation Triangle Meteorological ±50% mm 
data base 

850 hPa wind Triangle Meteordlogical ±20% ms - • 
data base 

Surface wind Triangle Meteorological ±20% ms- 1 

data base 
vd 1-night Triangle 0.2 0.1---0.3 ems-• 
vd 1-day Uniform 0.8 0.65---0.95 ems- • 
Vd2 Triangle 0.5 0.25---0.75 ems - • 
vd.su Triangle 0.8 0.1-1.2 ems-• 
w d Triangle 0.1 0.0---0.3 cms - 1 

IX Triangle 0.15 0.0---0.3 fraction 
fJ Triangle 0.05 0.025---0.075 fraction 
kro Triangle 3.0 x 106 1.5 x 106-4.5 x 106 s - 1 

w. Triangle 2.0 x 105 0.05 x 105-2.0 x 105 

w, Triangle 7.0 x 105 3.5 x 105-9.0 x 105 
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because the former is obtained from ground instruments, 
whereas the latter is based on remote rawinsonde measure
ments. On the other hand, rawinsonde are not as affected by 
complex terrain as are ground instruments, and rawinsonde 
instrumentation is also rather advanced. Consequently, we 
assume that the 850 hPa wind has the same uncertainty as 
surface wind. 

The uncertainty of precipitation inputs arises from meas
urement error [in the order of 10-30% (Mason and Moses, 
1984)) and spatial and temporal interpolation of data. We 
represent this uncertainty as a triangular distribution with 
±50% range. 

Parameters. Assumed input distribution for parameters are 
noted in Table B-1. We begin with the parameters used to 
compute dry deposition of S02 in Equations A.8 and A.9. 
Since the parameters vdI.nia•• and vd2 have approximately the 
same uncertainty, we assign them triangular distribution 
with ± 50% ranges. The dry deposition rate during the day, 
vdI.day can vary substantially owing to local topography and 
meteorology. We therefore assign it the same range as the 
other above parameters, but a uniform rather than triangle 
distribution. 

The deposition velocity of S02 over sea, vd·"" is known to 
have great variability (see, e.g. Joffre, 1986). We therefore set 
the range of this distribution rather widely as 0.1-1.2 cm s - 1

, 

with a median at 0.8 (the model value). The distribution 
shape is assumed to be a triangle. 

AE( A) 24:&.Q 

The limits of the deposition velocity of Soi -, wd are also 
assumed to be wide- from zero to three times the model 
value (0.3 cm s- 1

) because this parameter can have a sub
stantial spatial and temporal variability throughout Europe. 

We now turn to a related parameter, the local deposition 
coefficient, et, which expresses the amount of S deposition 
that is deposited in the grid element where emissions origin
ate. Based on estimates by Nordlund (1986) and Hogstrom 
(1979) we assign a triangle distribution with a range of 
±100%. 

The fraction of emissions assumed to be emitted as SOi
rather than S02 , p, is assigned a triangular distribution with 
a ± 50% range. 

From dry deposition we now move to wet deposition 
where two parameters are of concern- the scavenging ratios 
of S02 and SO! - , w0 and w, . We assume that the model 
value of w0 (2 x 10') is the highest practical value for S02 
absorption by precipitation. Therefore we assign it a triangle 
distribution with 0.5 x 105 as the lower limit and 2.0 x 105 as 
the median and upper limit. 

The seasonally constant part of the S02 to Soi - transfer 
rate (k,0 ) varies spatially according to local temperature, 
solar radiation and other conditions. This uncertainty is 
represented by a triangular distribution with a ± 50% range. 
The seasonal applitude of this transfer rate (K11 ) is assumed 
to be two-thirds of K'° . 








