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FOREWORD 

The authors derive partial differential inclusions of hyperbolic type, the 
solutions of which are feedbacks governing the  viable (control led i nvar ian t )  
solut ions of a control system. 

They show that the tracking property, another important control prob- 
lem, leads to such hyperbolic systems of partial differential inclusions. 

They begin by proving the existence of the largest solution of such a 
problem, a stability result and provide an explicit solution in the particular 
case of decomposable systems. 

They then state a variational principle and an existence theorem of a 
(single-valued contingent) solution to such an inclusion, that they apply to 
assert the existence of a fedback control. 
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Partial Differential Inclusions Governing 
Feedback Controls 

Jean-Pierre Aubin & HQlkne F'rankowska 

Introduction 
Let X, Y, Z denote finite dimensional vector-spaces. We studied in [12] 

the existence of dynamical closed-loop controls regulating smooth state- 
control solutions of a control system (U, f ) :  

(1) 
for almost all t ,  xl(t) = f (x(t), u(t)) { ir, u,,, , u,x,t,, 

where U : X -..t Y is a closed set-valued map and f : Graph(U) ++ X a 
continuous (single-valued) map with linear growth. 

Consider a nonnegative continuous function q : Graph(U) I+ R+ with 
linear growth (in the sense that q (x ,u )  5 c(llxII + llull + 1)) and set hr := 
Dom(U). We address in this paper the problem of finding feedback controls 
(or closed-loop) controls r : K I+ Y satisfying the constraint 

and the regulation property: for any xo E K, there ezists a solution to the 
diflerential equation 

such that u(t) := r(x(t)) E U(x(t)) is absolutely continuous and fulfils the 
growth condition 

Ilu'(t)ll 5 v(x(t>, ~ ( t ) )  

for almost all t .  
We observe that the graphs of such feedback controls are viability domains1 

of the system of diflerential inclusions 

'See the appendix for definitions and the main statements of Viability Theory 



2 )  x l ( t )  = f ( x ( t ) , u ( t > >  
( 2 )  

i i )  u l ( t )  E v ( x ( t ) , u ( t ) ) B  

contained in the graph of U. 
Using the Viability Theorem and the fact that the contingent cone to 

the graph of a map r at a point ( x ,  r ( x ) )  is the graph of the contingent 
derivativeZ D r ( x )  of r at x ,  we derive that such feedback controls are solu- 
t ions to  the following contingent daflerential znclusaon 

satisfying the constraints 

More generally, we recall that a closed set-valued map  R : Ir' -+ E' 
is a set-valued feedback regulating q - smooth  viable solutions t o  the control 
problem if and only if R is a solution t o  the contingent differential inclusion 

V x E K ,  0 E D R ( x ,  u ) ( f  (x, u ) )  - ~ ( x ,  u ) B  

satisfying the constraint 

and that there exists a largest map with closed graph enjoying this property 
(See [2,3,12]). 

We shall study this partial differential inclusion, provide a variational 
principle and an existence theorem. 

But first, we observe that the existence of a dynamical closed loop is 
a particular case of the tracking problem, which is studied under several 

2 ~ h e  contingent derivative DH(x,  y) of a set-valued map H : X Y at ( x , ~ )  E 
Graph(H) is defined by 

When H = h is single-valued, we set Dh(z) := Dh(z, h(z)). See [ l l ,  Chapter 51 for more 
details on differential calculus of set-valued maps. 



names in many fields, and specially, arises in engineering (see for instance 

~ 7 1 ) .  
Indeed, consider two set-valued maps F : X x Y - X, G : X x Y  -A Y 

and the s y s t e m  of differential inclusions 

We would like to characterize a set-valued map H : X Y ,  regarded as 
an observat ion m a p  satisfying what we can call the tracking property: for 
every xo E Dom(H) and every yo E H(xo), there exists a solution (x(.), y(.)) 
to this system of differential inclusions starting at (so, yo) and satisfying 

The answer to this question is a solution to a viability problem, since 
we actually look for (x(.), y(.)) which remains viable in the graph of the 
observation map H .  So, if the set-valued maps F and G are Peano maps and 
if the graph of H is closed, the Viability Theorem states that the tracking 
property is equivalent to the fact that the graph of H is a viability domain 
of (x, y) -A F(x ,  y) x G(x, y), i.e., that H is a solution to the cont ingent  
differential inc lus ion  

We observe that when F and G are single-valued maps f and g and 
H is a differentiable single-valued map h, the contingent differential inclu- 
sion boils down to the quasi-linear hyperbolic s y s t e m  of first-order partial 
differentdal equations3: 

3For several special types of systems of differential equations, the graph of such a map 
h (satisfying some additional properties) is called a center manifold. Theorems providing 
the existence of local center manifolds have been widely used for the study of stability 
near an equilibrium and in control theory. See [8,9,19,22] for instance. 



It m a y  s e e m  strange t o  accept set-valued m a p s  as solut ions t o  a n  hyper-  
bolic s y s t e m  of partial differential inclusions.  But th i s  m a y  of fer  a w a y  t o  
describe shock waves  by  t he  set-valued character  of t h e  so lu t ion  (which may 
happen even for maps with smooth graphs, but whose projection leads to 
set-valued maps.) Derivatives in the sense of distributions do not offer the 
unique way to describe weak or generalized solutions. Contingent deriva- 
tives offer another way to weaken the required properties of a derivative, 
loosing the linear character of the differential operator, but allowing a point- 
wise definition. It provides a convenient way to treat hyperbolic problems. 
This has been already noticed in [13,14,23,24] for conservation laws. 

Knowing F and G, we have to find observation maps H satisfying the 
tracking property, i.e., we must solve the above contingent differential in- 
clusion. 

Furthermore, we can address other questions such as: 

a)  - Find the largest solution to the contingent differential inclu- 
sion contained in a given set-valued map (which then, contains all the other 
ones if any) 

b) - Find single-valued solutions h to the contingent differential 
inclusion which then becomes 

In this case, the tracking property states that there exists a solution to the 
"reduced" differential inc lus ion  

so that (x(.), y(.) := h(x(.))) is a solution to the initial system of differential 
inclusions starting at (so, h(xo)). Knowing h allows to divide the system 
by half, so to speak. 

This list of problems justifies the study of the contingent inclusion (3). 
Let us mention right now that looking for "weak" solutions to this contin- 
gent differential inclusion in Sobolev spaces or other spaces of distributions 
does not help since we require solut ions h t o  be defined through the i r  graph, 
and t hus ,  solut ions which  are defined everywhere.  



The use of contingent derivatives in some problems (related to the value 
function of optimal control problems, in particular) is by no means new (see 
[I], [7, Chapter 61, [27,28]). It has been shown in [27] that "contingent so- 
lutions" are related by duality to the "viscosity solutions" introduced in 
the context of Hamilton-Jacobi equations by Crandall & Lions in [21] (see 
also [20] and the literature following these papers). In the context of this 
paper (quasi-linear but set-valued hyperbolic differential inclusions), Propo- 
sition 3.4 makes explicit the duality relations between contingent solutions 
and solutions very closed in spirit to the viscosity solutions in the case when 
Y = R. 

The variational principle we prove below (Theorem 3.1) states that for 
systems of partial differential equations or inclusions, the contingent solu- 
tions are adaptations to the vector-valued case of viscosity solutions. 

We shall characterize the tracking property in Section 1 and give an 
explicit formula for a closed solution in the case of decomposable systems of 
differential inclusions. We then devote section 2 to the study of the trans- 
pose of contingent derivatives, and in particular, a series of new convergence 
results. 

The variational principle is the topic of section 3 and the existence of 
solutions the object of section 4. These results are applied to characterize 
and find feedback controls regulating viable solutions in section 5. 

1 The Tracking Property 

1.1 Characterization of the Tracking Property 

Consider two finite dimensional vector-spaces X and Y, two set-valued 
maps F : X x Y - X, G : X x Y - Y and a set-valued map H : - Y, 
regarded as (and often called) the observation map: 

Definition 1.1 We shall say that F, G and H satisfy the tracking property 
if for any initial state (so, yo) E Graph(H), there exists at least one solution 
(x(-), y(.)) to the system of differential inclusions 

xl(t) E F(x(t), ~ ( t ) )  
(4) 

y1(t) E G(x(t), ~ ( t ) )  



start ing at  (so,  yo), defined o n  [0, m[ and satisfying 

We now consider the contingent  daflerential inc lus ion  

Definition 1.2 W e  shall say  tha t  a set-valued m a p  H : X -+ Y satis fying 
(5 )  is a solut ion t o  the  contingent differential inclusion if i ts  graph i s  a 
closed subset of Dom(F) n Dom(G). 

W h e n  H = h : Dom(h) I+ Y i s  a single-valued m a p  w i th  closed graph 
contained in Dom(F)nDom(G), the  partial contingent  diflerential inc lus ion  
( 5 )  becomes 

We deduce at once from the viability theorems4 the following: 

Theorem 1.3 Let  u s  a s sume  tha t  F : X x Y -+ X, G : X x Y -+ Y are 
Peano maps5  and tha t  the  graph of the  set-valued m a p  H i s  a closed subset 
of Dom(F) n Dom(G). 

1. - T h e  triple (F,  G, H) enjoys the  tracking property if and only  if 
H i s  a solut ion t o  the  contingent differential inclusion (5) .  

2. - There  exis ts  a largest solut ion H, t o  the  cont ingent  diflerential 
inc lus ion  (5)  contained in H. It enjoys t he  following property: whenever  
a n  ini t ial  s tate  yo f H(xo) does n o t  belong t o  H,(xo), t h e n  all solut ions 
(.(a), y ( - ) )  t o  t he  s y s t e m  of diflerential inclusions ( 4 )  sat is fy  

2 )  v t L 07 Y(t> $! H*(x(t)) 
(7) 

ii) 3 T > 0 such  that  y ( T )  $! H(s(T)) 

We now state a useful Stability Theorem6. We recall that the graph of 
the graphical upper l imi t  Hu of a sequence of set-valued maps Hn : X -+ Y 
is by definition the graph of the upper limit of the graphs of the maps Hn. 
(See [ll, Chapter 71.) 

4See the Appendix. 
5See the Appendix. 
'See the Appendix 



Theorem 1.4 (Stability) Let u s  consider a sequence of Peano m a p s  F, : 

X x Y w X ,  G ,  : X x Y - Y with u n i f o r m  linear growth7 and their  
graphical upper l im i t  Fh and Gh. 

Cons ider  also a sequence of set-valued m a p  H, : X w Y ,  solut ions t o  
the  contingent  differential inclusions 

T h e n  the  graphical upper l imi t  Hu of the  solut ions Hn i s  a so lu t ion  t o  

I n  particular, if t he  set-valued m a p s  F, and Gn converge graphically t o  m a p s  
F and G respectively, t h e n  the  graphical upper l imi t  Hi of the  solut ions H, 
i s  a solut ion of (5). 

We recall that graphical convergence of single-valued maps is weaker 
than pointwise convergence. This is why graphical limits of single-valued 
maps which are converging pointwise may well be set-valued. 

Therefore, for single-valued solutions, the stability property implies the 
following statement: Let h ,  be single-valued solut ions t o  the  cont ingent  
partial differential inc lus ion  (8) .  T h e n  the ir  graphical upper l imi t  hm is  a 
(possibly set-valued) solution t o  (9) .  

Although set-valued solutions to hyperbolic systems make sense to de- 
scribe shock waves and other phenomena, we may still need sufficient con- 
ditions for an upper graphical limit of single-valued maps to be still single- 
valued. (This is the case when a sequence of continuous solut ions h, t o  the 
contingent  differential inc lus ion  ( 8 )  i s  equicontinuous and  converges point- 
wise t o  a func t ion  h.  Then8  h i s  a single-valued solut ion t o  (9) .  

71n the sense when there exists a constant c > 0 such that 

'Indeed, a pointwise limit h of single-valued maps h, is a selection of the graphical 
upper limit of the h,. The latter is equal to h when h,  remain in an equicontinuous 
subset. 



1.2 Decomposable Case 

Let h' c X, @ : h' -+ X and Q : K -+ 1' be set-valued maps. Consider the 
decomposable system of differential inclusions 

which extends to the set-valued case the characteristic system of linear 
hyperbolic systems. 

We denote by S o ( x ,  .) the set of solutions x ( . )  to the differential inclusion 
x l ( t )  E @ ( x ( t ) )  starting at x and viable in I(. 

Theorem 1.5 Assume that @ : K -+ X and Q : I< -+ Y are Peano maps 
and that K is a viability domain of @. The set-valued map H,  : K -+ Y 
defined by 

(11 )  v z  E K ,  H,(x) := - Lm ~ - " Q ( S ~ ( X ,  t ) ) d t  

verifies 

When X is large enough (and when X > 0 if Q is bounded), its graph is closed 
and H,  is a solution to the contingent inclusion (5 )  with F ( x ,  y )  := @ ( z )  
and G ( z ,  y )  := Xy + Q ( z ) .  

Proof 
1. - We prove first that the graph of H, satisfies contingent 

inclusion (12) .  
Indeed, choose an element y in H,(x).  By definition of the integral of 

a set-valued map (see (11, Chapter 81 for instance), this means that there 
exist a solution x( . )  E S o ( x ; )  to the differential inclusion x l ( t )  E @ ( z ( t ) )  
starting at x and z ( t )  E Q ( x ( t ) )  such that 

We check that for every h > 0 



By observing that 

J" e-" ( z ( t )  - z ( t  + h ) )  d t  I h O  
we deduce that 

Since Q  is upper semicontinuous, we know that for any E > 0 and t  small 
enough, @ ( x ( t ) )  c Q ( x )  + E B, SO that x l ( t )  E Q ( x )  + E B for almost all small 
t .  Therefore, Q ( x )  being closed and convex, we infer that for h  > 0 small 
enough, J," x l ( t ) d t  E Q ( x )  + EB thanks to the Mean-Value Theorem. This 
latter set being compact, there exists a sequence of h ,  > 0 converging to 0 
such that J,"" x l ( t ) d t  converges to some u E 0 ( x ) .  

In the same way, Q  being upper semicontinuous, Q ( x ( t ) )  C Q ( x )  + EB 
for any E > 0 and t  small enough, so that z ( t )  E Q ( x )  + EB for almost all 
small t .  The Mean-Value Theorem implies that 

since this set is compact and convex. Furthermore, there exists a subse- 
quence of z ,  converges to some zo E Q ( x ) .  We thus infer that 

so that Xy E D H , ( x ,  y ) ( Q ( x ) )  - Q ( x ) .  

2. - Let us prove now that the graph of H ,  is closed when X is large 
enough. Consider for that purpose a sequence of elements ( x ,  , y, ) of the 
graph of H ,  converging to ( x ,  y). There exist solutions x , ( . )  E S + ( x , ,  .) to 
the differential inclusion x1 E Q ( x )  starting at x ,  and measurable selections 
z n ( t )  E Q ( x n ( t ) )  such that 



The growth of @ being linear, there exist p, c > 0 such that the solutions 
x,(-) obey the estimate 

By the compactness of the graph of the solution map (which follows from 
the Convergence Theorem [ll,  Theorem 7.2.21 and [5]), we know that there 
exists a subsequence (again denoted by) xn(.) converging uniformly on com- 
pact intervals to a solution x(.) E S@(x, -). 

The growth of \k being also linear, we deduce that I(zn(t)JJ 5 plect (with 
c = 0 when \k is bounded). 

When A > c, setting tin(t) := e-"z,(t), Dunford-Pettis' Theorem im- 
plies that a subsequence (again denoted by) tin(.) converges weakly to some 
function ti(.) in L1(O, oo; Y). This means that tn ( . )  converges weakly to 
some function t ( . )  in L1(O, oo; 1'; e-xtdt). The Convergence Theorem states 
that z(t) E \k(x(t)) for almost every t. Since the integrals y, converge to 
- J,03 e-"z(t)dt, we have proved that 

Reinark - When @ = p and \k = $ are smooth single-valued maps, 
this formula yields the classical formula 

of the solution to the linear system of partial differential equations 

It was also proved in [8,9] that the map h defined by (13) is a solution when 
cp and $ are Lipschitz and $ is bounded. 

1.3 Energy Maps (or Zero Dynamics) 

The simplest dynamics are obtained when G r 0. Therefore, when F is a 
Peano map, H enjoys the tracking property if and only if it is a solution to 



Since the tracking property of H amounts to saying that each subset H-'(y) 
enjoys the viability property for F( . ,  y), we observe that this condition is 
also equivalent to condition 

We may say that such a set-valued map H is an energy m a p  of F .  

In the general case, the evolution with respect to a parameter y of the 
viability kernels of the closed subsets H-'(y) under the set-valued map 
F(.,  y) is described in terms of H,: 

Propos i t ion  1.6 Let F : X x Y - X be a Peano m a p  and H : X - Y be 
a closed set-valued m a p .  T h e n  there exists a largest solut ion H, : X - Y 
contained in H t o  (14). 

T h e  inverse  images  H T ' ( ~ )  are the  viability kernels  of the  subsets  H-'(y) 
u n d e r  the  m a p s  F ( . ,  y): 

T h e  graphical upper l imi t  of energy m a p s  is stil l  a n  energy m a p .  

Then the  graph of the  m a p  y - ViabF(.,,)(H-'(y)) is closed, and  t h u s  upper 
semicont inuous  whenever  t he  d o m a i n  of H is bounded. 

When the observation map H is a single-valued map h, the contingent 
differential inclusion becomesg 

V x,  3 u E F(x ,  h(x)) such that 0 E Dh(x)(u) 

The largest closed energy map h, contained in h is necessarily the re- 
striction of h to a closed subset h', of the domain of h. Therefore, for 
all y E Im(h), I-* n h-'(y) is the  viability kernel  of h-'(y). The restric- 
tion of the differential inclusion x'(t) E F(x(t) ,  y) to the viability kernel 
of h-'(y) is (almost) what Byrnes and Isidori call zero dynamics  of F (in 
the framework of smooth nonlinear control systems). See [9,16,17,18] for 
instance. 

'When F ( x )  := f(x, U(x)) is derived from a control problem, it is the "contingent 
version" of the Hamilton-Jacobi equation. See [26,27,28] the forthcoming monograph [29] 
for its exhaustive study and the connections with the viscosity solutions. 



2 Codifferent ials 

A set-valued map whose graph is a closed cone is called a closed process. It 
is a closed convex  process if its graph is furthermore convex. Closed convex 
processes enjoy most of the properties of continuous linear operators, as it 
is shown in (11, Chapter 21. The transpose of a closed process A : X --t Y 
is the closed convex process A* : Y* --t X* defined by 

p E A*(q) if and only if V (x, y )  E Graph(A), (p, x) I (q, y )  

We define in a symmetric way the bilranspose A* : X --t Y of A, the graph 
of which is the closed convex cone spanned by the graph of A: 

Definition 2.1 Let H : X --t Y be a set-valued m a p  and (x ,  y) belong t o  
i t s  graph. W e  shal l  say  t ha t  the  transpose DH(x,  y)* : Y* --t X *  o f  t he  
cont ingent  derivat ive DH(x, y )  is t he  codifferential of H at (x, y). W h e n  
H := h is single-valued, w e  set  Dh(x)* := Dh(x, h(x))*. 

Before proceeding further, we need more informations about transpos es 
of t he  cont ingent  derivat ives  of set-valued and single-valued maps which 
are involved in the formulation of the variational principle and the proof of 
the existence theorem. 

We recall that whenever h is Lipschitz around x, Dh(x)(u) # 0 for every 
u E X (See [ll, Proposition 5.1.41). 

Lemina 2.2 Let  X and  Z be finite d imens ional  vector-spaces, K c X 
and h : Ir' H Z be a single-valued m a p  Lipschi tz  around x E I<. T h e n  
p E Dh(x)*(q) if and  on l y  if for a n y  E > 0 ,  there exis ts  6 > 0 such  tha t  

Proof  - The sufficient condition being straightforward, let us prove 
the necessary one. Assume the contrary: there exists E > 0 and a sequence 
of elements x, E I< converging to x such that 



We set E, := ))xn - x) )  which converges to 0 and u, := (x, - x)/E,, 
a subsequence of which converges to some u of the unit sphere. Since h 
is Lipschitz around x, there exists a cluster point v E Dh(x)(u) of the 
sequence 

(h(x + &nun) - h ( ~ ) ) / ~ n  

We thus deduce that both 

hold true, i.e., a contradiction. 
We recall the the contingent  epiderivative of an extended function V : 

X H R U {+m) at a point x of its domain is defined by 

V(x + hut) - V(x) 
DTV(X)(U) := liminf 

h-o+, ul+u h 

so that its epigraph coincides with the contingent cone to the epigraph of 
V at (x, V(x)). (See [ l l ,  Chapter 61 for more details on this topic). 

The following result characterizes the transpose of t he  cont ingent  deriva- 
t ive  of a map H in terms of the contingent epiderivatives of its support 
function: 

Proposition 2.3 A s s u m e  that  H : X --, Y has compact  convex values. W e  
associate wi th  a n y  q E Y* the  funct ions H,b : X H R+ and HI : X H R+ 
defined by 

V X E X ,  H,~(x)  := i n  ( q )  & H Z )  := sup ( q , y )  
YEH(X) YEH(X) 

Let  y: E H(x)  sat is fy  ( q ,  y)  = H,~(x)  and y! E H(x)  satisfy ( q ,  Y )  = H;(X). 
T h e n  

If H i s  Lipschi tz  at  x (in the  sense tha t  there exists 1 > 0 such  tha t  H(x)  c 
H(y) + 111s - y J ( B  for every y in a neighborhood of x), t h e n  

Consequently ,  w h e n  H = h is single-valued and Lipschi tz  a t  x, we  se t  
h:(x) := (p, h(x)) = h:(x) = h:(x) and w e  obta in  t he  equality 



Proof - Assume first that p E X* satisfies 

We prove that for every v E DH (x, y;) (u), 

Indeed, by definition of the contingent derivative, there exist sequences 
t, > 0, un E X and vn E Y converging to 0, u and v respectively such that 

Therefore, 

( DlH,b(x)(.) 

Consequently, (p, u) 5 (q, v) for every (u,  v) E Graph(DH(x, y:)), so that 

P E DH(x,  y:)*(q). 
Conversely, assume that H is Lipschitz at x, p E DH (x, y:)* (q) and fix 

u E X. By definition of the contingent epiderivative, there exist sequences 
tn > 0 and u, converging to 0 and u such that 

H:(x + tnun) - H:(x) 
D~H:(X)(U) = lim 

71-00 t n 

Since H is Lipschitz at x, there exists 1 > 0 such that, for n large 
enough, yff belongs to H(x  + tnun) + ltnllun((B, so that it can be written 
y! = y, - tnvn where yn E H(x  + tnun) and IIvnll 5 lllunl). Therefore a 
subsequence (again denoted by) v, converges to some v, which belongs to 

DH(x,  y:)(u). Since (q, yn) 5 H!(x + tnun) and (q, y!) = H,"(x), we infer 
that 

~ rH: (x ) (u )  t ( 9 4 )  2 ( ~ 7 4  

because v E DH(x,  y:)(u) and p E DH(x, y:)*(q). 



Remark - Furthermore, when h is real-valued, we need only to know 
the values of Dh(x)* a t  the points 0, +1 and -1 to reconstruct the whole 
set-valued map Dh(x)*. 

We observe that for q = +1, DTh;(x)(u) = Dth(x)(u) and that for 

q = -1, D T h t ( ~ ) ( ~ )  = Dl(-h)(x)(u) and that for q = 0, Dh(x)*(O) = 
(Dom(Dh(x)))- . 

We recall (see (11, Definition 6.4.71 and (11, Proposition 6.4.81) that: 

{ p E X* I V u E X ,  (p, U )  5 D T h ( x ) ( ~ )  ) = a-h(x) 
is the local subdiflerential 

and 

{ P E x* 1 V 21 E X,  (p, u) < D l ( - h ) ( x ) ( ~ )  ) = -a+h(x) 
is the local superdifferential 

The above characterization then becomes 

Proposition 2.4 Let h : X H R be a function continuous at x. Then 

Proof - We already know that 

Assume now that p E Dh(x)*(+l) .  We have to show that for every u E 
x ,  ( P Y ~ )  5 Dfh(x)(u).  

There is nothing to prove if DTh(x)(u) = +m. 
If DTh(x)(u) is finite, then v := DTh(x)(u) belongs to Dh(x)(u) by [ l l ,  

Proposition 6.1.51, so that (p, u) 5 Dl h(x)(u). 
We finally claim that the continuity of h at x implies that DTh(x)(u) > 

-m for any u E X ,  which is equivalent to DTh(x)(0) = 0 thanks to [ l l ,  
Propositions 6.1.31. 

If not, by [ l l ,  Propositions 6.1.4 and Lemma 6.1.11, the pair (0, -1) 
belongs to the contingent cone to the epigraph of h a t  (x, h(x)). Then 
there exist sequences t ,  > 0 converging to 0, u ,  converging to 0 and a 
sequence of v, > 0 going to 1 such that 



On the other hand, h being continuous at x ,  the continuous function 9 
defined by ~ ( t )  := h(x  + t u n )  satisfies 

and therefore, there exists s, E [0, t,] such that ~ ( s , )  = h(x)-t,v,. Setting 
21, := *u,, which also converges to 0, we observe that h ( x  + tn21,) = 

1, 
h ( x )  - t,v,. This means that 

But p E Dh(x )* ( l ) ,  and thus, we then obtain the contradiction 

Remark - The above proposition allows to reformulate the notion 
of viscosity solution of a scalar Hamilton-Jacobi equation Q ( x ,  h1 (x ) )  = 0 
in the following way: h is a viscosity solution if and only if 

The variational principle of section 3 is based on the following conver- 
gence result: 

Proposition 2.5 Let X, Y be finite dimensional vector-spaces and h' C X 
be a closed subset. Assume that h is the pointwise limit of an equicontinuous 
family of maps h ,  : K H Y .  Let x E K and p E Dh(x)*(q)  be fized. Then 
there ezist subsequences of elements x,, E h' converging to x ,  q,, converging 
to q and p,, E Dh,, (x,,)*(q,,) converging to p. 

If the functions h ,  are differentiable, we deduce that there ezist subse- 
quences of elements x,, E h' converging to x and q,, converging to q such 
that hkk (x,, )*(qnk ) converges to p. 

Proof - We can reformulate the statement in the following way: we 
observe that p E Dh(x)*(q)  if and only if 



so that we have to prove that there exist subsequences x,, E Ii' and 

converging to x and (p, - 9 )  respectively. Therefore the proposition follows 
from the 

Theorem 2.6 Let  u s  consider a sequence of closed subsets K, and a n  ele- 
m e n t  x E Liminf,,,K, (assumed to  be nonempty ) .  Se t  Ku := Limsup,,,K,. 

T h e n ,  for  a n y  p E (TK1(x))-, there exist subsequences of e l emen t s  x,, E 

K k  and  pnk E (TK,, (x,,)) - converging t o  p and x respectively: 

Proof - First, it is sufficient to consider the case when x belongs to 
the intersection nT=, & of the subsets K,. If not, we set K,  := &+x-u,  
where u, E I{, converges to x. We observe that x E ngl h', and that 
TZn(xn) = TK,(x, - x + u,). 

Let p E (TKl(x))- be given with norm 1. We associate with any positive 
X the projection x i  of x + Xp onto Ii,: 

X IIx+Xp-x,ll = min Ilx+Xp-x,ll 
xnEKn 

and set 

because x + Xp - x i  = X(p - v:) belongs to the polar cone (TK,(X~))- to 

the contingent cone TKn(xi). 
Let us fix for the time X > 0. By taking x, = x E Ii, in (17), we 

infer that Ilv:JJ 5 2. Therefore, the sequences x i  and v i  being bounded, 
some subsequences xi, and vi, converge to elements x" En and v X  = 
respectively. 

Furthermore, there exists a sequence Xk + O+ such that vXk converge 
to some v E TKI(x) because JJvXII 5 2 and because for every A ,  



Therefore (p, v )  5 0 since p E (TKg(x))-. 
On the other hand, we deduce from (17) the inequalities 

which imply, by passing to the limit, that J J v ( J 2  5 2(p, v )  5 0. 
We have proved that a subsequence vAk converges to 0, and thus, that 

a subsequence vi: = p - p:: converges also to 0. The lemma ensues. 

We shall need stronger convergence results, where in the conclusion of 
Proposition 2.5 we require that q, and/or x, remain constant. We have 
to pay some price for that: stronger convergence assumptions and the use 
of graphical derivatives Dah(x) contained in the graph of Dh(x) w h i c h  are 
closed c o n v e x  processes. For instance, the c i rca tangent  der iva t ive  Ch(z),  
defined in the following way from the Clarke tangent cone: 

is a closed convex process contained in the contingent derivative Dh(x). 
They coincide whenever h is sleek at x. We can also use the a s y m p t o t i c  
der iva t ive  D,h(x), whose graph is the a s y m p t o t i c  cone  to the graph of h 
at (x, h(x)). (See [ll, Chapters 4,5] for further details.) 

We prove for instance the following 

Proposition 2.7 Let  X be a f in i te  d i m e n s i o n a l  vector-space a n d  K c X 
be a closed subse t .  A s s u m e  t h a t  h i s  L ipsch i t z  around x o n  h' a n d  cons ider  
a sequence of c o n t i n u o u s  m a p s  h, converging t o  h u n i f o r m l y  o n  c o m p a c t  
subse t s  of K .  L e t  x E K a n d  p E Dh(x)*(q) be fixed. T h e n  there  ex i s t  a 
sequence of e l e m e n t s  x, E K converging t o  x a n d  a sequence of e l e m e n t s  
p, E Ds h,(x,)*(q) converging t o  p. 

If  t h e  f u n c t i o n s  h, are di f ferent iable ,  w e  i n f e r  t h a t  there  e z i s t s  a sequence 
of e l e m e n t s  x, E K converging t o  x s u c h  t h a t  h;(x,)*(q) converges  t o  p. 

Proof - Let p > 0, L := K n B(x, p )  be a compact neighbourhood 
of x on which the maps h, converge uniformly to h. We apply Ekeland's 
Theorem to the functions y I-+< q ,  h,(y) > - < p, y > defined on this 



subset. Fix E €10, p[. Then there exists x, E L satisfying 

The first inequality implies that 

By Lemma 2.2, there exists 0 < 6 5 p such that 

Hence, Ilx, - X I (  < 411q11)1hn - h)I/€ < p for n large enough. 
On the other hand, consider any v E Dh,(x,)(u): There exist E, > 

0 converging to 0, up converging to u and up converging to v such that 
hn(xn + = hn(xn) + for all p. Taking y = x, + €,up E A' n B(x,  p )  
for p large enough in the second inequality, we infer that 

and thus, by letting up and up converge to u and v, 

In particular, taking the restriction to Graph(Dshn(xn)) and noticing that 
(lu 1 1  = supecB* (u, e)), this inequality can be written in the form: 

Since B, is convex compact and since the graph of Dshn(x) is convex, the 
lop-sided minimax theorem (see for instance [lo]) implies the existence of 
eo E B, such that 

0 < inf ( ( ~ 7 4  - (p7 U )  + ~ ( e o ,  4) 
(~,v)~Graph(~,h, (x))  



Consequently, (p - Eeo, -9) belongs to the polar cone to Graph(Dshn(xn)), 
so that p, := p - Eeo E D6hn(xn)*(q). Summarizing, for any E > 0 and 
for any n such that llh, - hll 5 ~~/411q11, we have proved the existence of 
x, E K and p, f Dsh,(x,)*(q) such that 

Let K C X be a closed subset and CA(K, 2 )  denote the space of Lips- 
chitz (single-valued) bounded maps from K to a finite dimensional vector- 
space 2 ,  

denote the Lipschitz semi-norm and the sup-norm. Set 

llhlll = l lh l lh+ llhllm 

It denot,es the norm of the Banach space CA(K, 2 ) .  
We observe the following continuous properties of the contingent deriva- 

tive: 

Lemma 2.8 Let x f Ir' be fixed. T h e n  the  m a p  

(h, U )  E CA(K, Y) x .Y D ~ ( x ) ( u )  

i s  Lipschitz: 

v h, g E C A ( I ~ , ~ ) ,  Dh(x)(u)  C Dg(x)(v) + ( I h  - gll~11~11 + llgllhllu - ~ 1 1  
Proof - The proof is straightforward from the inequality 

We shall need the following stronger statement than Proposition 2.7: 

Proposition 2.9 Let  X be a f i n i t e  d imens ional  vector-space and K C X be 
a closed subset.  A s s u m e  that  h i s  Lipschi tz  and consider a sequence of L ip-  
schi tz  m a p s  h, converging t o  h in CA(K, Y). Let  x E K and p E Dh(x)*(q) 
be fized. T h e n  there exists a sequence of e lements  p, E Dahn(x)*(q) con- 
verging t o  p. 

In particular, if the  m a p s  h, are differentiable, we in f e r  t ha t  h',(x)*q 
converges t o  p. 



Proof - Set E, := 211qll 1 1  h, - hllA. By Lemma 2.2, there exist p > 0 
such that 

whenever y E K n B(x, p). Therefore 

I 5 ( ~ n / 2  + IIqIIIIhn - ~ I I * ) I I Y  - 511 5 E ~ I I Y  - x I I  
On the other hand, consider any v E Dh,(x)(u): There exist tp > 0 
converging to 0, up converging to u and up converging to v such that 
hn(x + tpup) = hn(x) + tpvp for all p. Taking y = x + tpu, E Ii' n B(x, p)  
for n large enough and observing that hn(y) = hn(x) + tpvp in the second 
inequality, we infer that 

and thus, by letting up and up converge to u and v, 

V (u,  v) E Graph(Dh,(x)), 0 I < q ,  v > - < p , ~  > + E ~ ~ ~ u I I  
In particular, taking the restriction to Graph(D6hn(x)) which is convex, 
the lop-sided minimax theorem implies that inequality 

provides the existence of en E B, such that (p - Enen, -9) belongs to the 
negative polar cone to Graph(D6hn(x)), i.e., such that 

3 The Variational Principle 

We characterize in this section solutions to the contingent differential in- 
clusion (6) through a variational principle. For that purpose, we denote 

by 
o(M,p)  := sup < p, z > & o b ( ~ , ~ )  := inf < p, z > 

ZE M zEM 



the support functions of M C X and by B,  the unit ball of Y*. 
Consider a closed subset h' C X. We introduce the nonnegative func- 

tional + defined on the space C ( K ,  Y )  of continuous maps by 

Theorem 3.1 (Variational Principle) A s s u m e  tha t  the  set-valued m a p s  
F  and G are upper semicont inuous  w i th  convez  and  compact  values.  Let  
c  > 0. T h e n  a single-valued m a p  h  : K I-+ Y is  a so lu t ion  t o  t h e  cont ingent  
differential inc lus ion  

if and only  i f  + (h )  5 c. 
Consequently ,  h  i s  a solut ion t o  the contingent  differential inc lus ion  (6)  

if and on ly  if @ ( h )  = 0.  

Proof- The first inclusion is easy: let u E F ( x ,  h ( x ) ) ,  v E G ( x ,  h ( x ) )  
and e E c B  be such that v - e E Dh(x ) (u ) .  Then, for any q E B ,  and 
p E Dh(x)*(q) ,  we know that 

so that 

By taking the supremum with respect a: E K ,  q  E B* and p E Dh(x)*(q) ,  
we infer that +(h)  5 c. 

Conversely, we can write inequality +(h)  5 c  in the form of the minimax 
inequality: for any x E K ,  q  E Y*,  

Noticing that cllqll = o ( c B ,  q) and setting 



this inequality can be written in the form: for every x E K ,  

SUP inf P(P, 9; 21, v, e )  5 0 
( p , - q ) ~  Graph(~h(x))- ( U ~ " ~ ~ ) E F ( ~ , ~ ( X ) )  x G ( x , h ( ~ ) )  xcB 

Since the set F (x ,  h(x)) x G(x, h(x)) x cB is convex compact and since the 
negative polar cone to the graph of Dh(x) is convex, the lop-sided minimax 
theorem (see for instance [lo]) implies the existence of uo E F(x,  h(x)), 
vo E G(x, h(x)) and eo E cB  such that 

This means that (uo,vo - eo) belongs to the bipolar of the graph of 
Dh(x), i.e., its closed convex hull ~ ( G r a p h ( D h ( x ) ) ) .  In other words, we 
have proved that 

(F(x7 h(x))  (G(xl h(x))  + cB)) n EG ( ~ G ~ ~ ~ h ( h ) ( ~ ,  h(x))) # 0 

But by Proposition 6.1 of the Appendix, this is equivalent to the condition 

i.e., h is a solution to the contingent differential inclusion. 

Remark - Since 

the graph of the bipolar cone of Graph(Dh(x)) is the graph of the bitrans- 
pose Dh(x)", we have actually proved that h is a solution to the contingent 
differential inclusion if and only if it is a solution to the "relaxed" contingent 
differential inclusion 



Theorem 3.2 A s s u m e  that  t he  set-valued m a p s  F  and G  are upper  s emi -  
continuous wi th  n o n e m p t y  convez compact images .  Let 'H c C ( K ,  Y )  be a 
compact  subset  for t he  compact convergence topology. 

A s s u m e  that  c := infhE3 @ ( h )  < +oo. T h e n  there ezis ts  a solut ion 
h  E 'H t o  t he  contingent  differential inclusion 

Since 3.1 is a compact subset for the compact convergence topology, it 
is sufficient to prove that the fonctional @ is lower semicontinuous on the 
space C(h', 1') for this topology: If it is proper (i.e., different from the 
constant +a), it achieves its minimum at some h  E 'H, which is a solution 
to the above contingent differential inclusion thanks to Theorem 3.1. 

Proposition 3.3 A s s u m e  that  the  set-valued m a p s  F  and G  are upper 
semicont inuous  w i th  n o n e m p t y  convez compact images.  T h e n  the  funct ional  

a3 lower semicont inuous  o n  equacontinuous subsets of the  space C(I<, Y )  
for t he  compact  convergence topology. 

Proof - Assume that @ is proper. Let h,  be a sequence of @ satisfy- 
ing for any n, @(h,) < c and converging to some map h. We have to check 
that @ ( h )  < c. Indeed, fix x  E K,  q  E B, and p  E Dh(x)*(q) .  By Propo- 
sition 2.5, there exist subsequences (again denoted by) x,  E K converging 
to x,  q, converging to q  and p, E Dh,(x,)*(q,) converging to p  such that 
hn(xn )  converges to h ( x ) .  

We can always assume that llqnll 5 1. If not, we replace qn by q^, := 

Mqn IIqnII and pn by 
A 

pn := llqll 
-pn E Dhn(xn)*(&) 
Ilqn I I  

Since F and G are upper semicontinuous with compact values, we know 
that for any (p ,  q )  and E > 0,  we have 

for n large enough. Hence, by letting n go to oo, we infer that for any 
E > 0,  

u b ( ~ ( x l  h ( x ) ) , ~ )  - u ( G ( x l  h ( x ) ) l  9 )  5 + 



Letting e converge to 0 and taking the supremum on q E B*, x E K and 
p E Dh(x)*(q), we infer that @(h) 5 c .  

Remark  - In the case when Y = R, the contingent solutions are 
very closed in spirit to the viscosity solutions: 

Proposi t ion 3.4 Assume that Y = R and that the values of the set-valued 
maps F and G are convez and compact. T h e n  a continuous function h : 
h' H R is a solution if and only if for every x E K ,  

Remark  - When h is locally Lipschitz, then the domain fo the 
contingent derivative Dh(x) is the whole space anf the third condition is 
automatically satisfied. 

Proof  - Indeed, in the case when Y = R, the functional @ can be 
written in the form 

where 

The two first properties follow from Proposition 2.4 and Theorem 3.1 with 
c = 0. The last one can be derived from 



for some vo E F ( x ,  h ( x ) )  thanks to the lop-sided Minimax Theorem. 

Remark - We can relate solutions to the contingent differential 
inclusion ( 6 )  to viscosity solutions when the set-valued map F  : X  ?.t X  
does not depend on y and when G is equal to 0. The above proposition 
implies that both h  and -h are viscosity subsolutions to the Hamilton- 
Jacobi equation 

- a ( F ( x ) ,  h l ( s ) )  = 0 

The apparent discrepency comes from the fact that solutions h  of the con- 
tingent partial differential inclusion are energy functions and not the value 
function of an optimal control problem. 

4 Single-Valued Solutions to Contingent Dif- 
ferent ial Inclusions 

We shall look for solutions in a compact convex subset 'H of the space 
C A ( K ,  Y )  of Lipschitz maps from K to Y. 

Theorem 4.1 Let  X  a n d  Y be t w o  finite d i m e n s i o n a l  vector-spaces ,  F  : 

X  x Y ?.t X ,  G : X  x Y ?.t Y be t w o  u p p e r  s e m i c o n t i n u o u s  set -valued m a p s  
w i t h  compact  c o n v e x  va lues  a n d  h' be a closed subse t  of X .  

L e t  'H be a c o m p a c t  convex  subse t  of C A ( K , Y ) .  W h e n  h  E 'H, w e  de-  
n o t e  b y  Tw(h( . ) )  c C ( K , Y )  t h e  t a n g e n t  cone  t o  'H a t  h  for  t h e  pointwise  
convergence topology. 

A s s u m e  t h a t  for  e v e r y  h  E 'H, there  exis t  v ,  w E C ( K ,  Y )  s u c h  t h a t  
v x  E K ,  

T h e n  there  ez i s t s  a s o l u t i o n  h  E 'H t o  t h e  conts'ngent d i f l e ren t ia l  i n c h -  

Proof - We assume that there is no solution to the contingent 
differential inclusion and we shall derive a contradiction. 



Indeed, thanks to Proposition 6.1, this amounts to assume that for any 
h E 3-1, there exists x E h' such that 

Since the images of F and G are compact and convex, the Separation 
Theorem implies that there exists also (p, -q) E X* x Y* such that 

Set 

a(h; x, q) := sup ub(F(x,  h(x)),p) - ~ ( G ( x ,  h(5)). 9) 
P E D ~ ~ ( z ) * ( ~ )  

Since Dh(x)*(q) C Da h(x)*(q), we observe that 

On the other hand, the function (y,p) H ab (F (x ,  y),p) -a(G(x,  y), q) being 
lower semicontinuous (because F and G are upper semicontinuous with 
compact values), there exist neighborhoods Nl(h(x)) and N2(p) such that 

By Proposition 2.9, there exists q(x) > 0 such that whenever (11 - h l l ~  I 
7 1 ( ~ ) ,  there exists p' E Dsl(x)*(q) satisfying l(x) E Nl(h(x)) and P' E N~(P) .  
Hence 

0 < ub(F(x ,  l(x)), p') - o(G(x, l(x)), q) I a( / ;  X ,  q) 

Consequently, h belongs to the subset N(x, q) defined by 

which is open in CA(K, Y )  by Proposition 2.9. 
Summing up, we just have proved that if there is no solution to the 

contingent differential inclusion, then 3-1 can be covered by the open sub- 
sets N(x,q). Being compact, it can be covered by a finite number m of 
such neighborhoods N(xi, 9;). Let a;(.) be a continuous partition of unity 
associated with this covering. 



We introduce now the function cp : 3-1 x 3-1 H R defined by 

It is continuous with respect to h on CA(K,  Y) (because the ails are so and 
h H< qi, h(xi) > are continuous for the pointwise topology), f i n e  with 
respect to 1 and satisfies ~ ( 1 ,  I) = 0. Hence, 3-1 being convex and compact, 
Ky Fan Inequality (see [ll, Theorem 3.1.11) implies the existence of h E Ft 
such that for every 1 E Ft, V(L,  I) 5 0. This means that the discrete measure 

a,(h)q; 8 6(xi) belongs to the normal cone to Ft at h since for every 
1 E Ft, 

We then deduce from the assumption that 

Indeed, there exist continuous functions v(.) and w(.) such that 

and w(.) - v(.)  E Tw(h(.)). Consequently, whenever a i (h)  > 0, then h 
belongs to N(xi,  9;). Therefore, for any p; E Dhh(~i)*(qi), there exists 
U i  E F(x;, h(x;)) such that 

so that, by taking the supremum on pi E D6h(~i)*(qi) ,  we obtain 

Multiplying by a i (h)  2 0 and summing from i = 1 to m,  we obtain 



because w(.) - v(.) belongs to the tangent cone to 'H at h and 
m 

belongs to the normal cone to 'H at h. 
Now, we claim that 

Indeed, whenever a;(h) > 0, then h belongs to N(x; , qi), which implies that 
0 < a(h,  xi,q;). We have therefore obtained a contradiction. 

Lemma 4.2 Let H : I<-+ Y be a set-valued m a p  and let 'H be a subset of 
cont inuous  selections of H .  T h e n  

A s s u m e  that  for a n y  finite sequence (xi ,  y;) E Graph(H) ( i  = 1 , .  . . , m) such  
that  x, f xj whenever  i f j ,  there exists a selection s E 'H interpolating i t :  

T h e n  equality holds t rue:  

Proof - Indeed, let v E C(Ii,  1') such that v(x) E TH(,)(h(x)) for all 
x E I<. Then there exists ~ x ( s )  converging to 0 with X for the pointwise 
topology such that h(x) + Xv(x) + X E ~ ( X )  E H(x).  Let us consider any 
neighbourhood of 0 for the pointwise topology 

v := {I E C(K, Y) I sup IIl(x;)II 5 E} 
i = l ,  ..., n 

associated with a finite subset {xl ,  . . . , xn} and X small enough for 
to belong to it. Since by the interpolation assumption there exists lx E 'H 
such that 

then the continuous function ux := (IA - h)/X is such that h + Xux E 'H and 
belongs to the neighbourhood v + V of v for the topology of the pointwise 
convergence. In other words, v belongs to the tangent cone to 'H at h for 
the pointwise topology. 



5 Feedback Controls Regulating Smooth Evo- 
lut ions 

Consider a control system ( U ,  f ) :  

(18) 
for almost all t ,  x l ( t )  = f ( x ( t ) ,  u ( t ) )  

i i )  where u ( t )  E U ( x ( t ) )  

Let ( x ,  u )  + ~ ( x ,  u )  be a non negative continuous function with linear 
growth. 

We have proved in [12] that there exists a closed regulation map RV c U 
larger than any closed regulation map R : h' - Z contained in U and 
enjoying the following viability property: For any initial state xo E Dom(R) 
and any initial control uo E R ( x o ) ,  there exists a solution ( x ( . ) ,  u ( . ) )  t o  the 
control sys tem (18)  starting at ( x o ,  u o )  such that 

and 
for almost all t 2 0, IIul(t)ll I v ( x ( t ) ,  ~ ( t ) )  

Let I< c Dom(U) be a closed subset. We also recall that a closed set-  
valued m a p  R : h' - Z is a feedback control regulating viable solutions to  
the control problem satisfying the above growth condition if and only if R 
is a solution t o  the contingent differential inclusion 

satisfying the constraint 

In ~ar t icular ,  a closed graph single-valued regulation maps r : h' I-+ Z is 
a solution to the contingent differential inclusion 

satisfying the constraint 



Such solution can be obtained by a variational principle. We introduce 
the functional @ defined by 

Theorem 5.1 Let  R c C(K, Y )  be a n o n e m p t y  compact  subset  of selec- 
t ions  of the  set-valued m a p  U ( f o r  the  compact convergence topology). 

Suppose tha t  t he  func t ions  f and 9 are cont inuous  and  that  

c := inf @ ( r )  < +a 
r ER 

T h e n  there exists a solut ion r ( - )  t o  t he  contingent  differential inc lus ion  

As for the existence of such a feedback, we deduce from Theorem 4.1 
the following consequence: 

Theorem 5.2 Consider  a n o n e m p t y  convex subset  R c CA(h', 2 )  of selec- 
t ions  of t he  set-valued m a p  U which is compact in CA(K, 2).  

Suppose tha t  t he  func t ions  f and 9 are continuous.  
A s s u m e  that  for every r E R, there exist 21, w E C(K, Y )  such  tha t  

V X E ~ ' ,  

T h e n  there exists a solut ion t o  the  contingent  differential inc lus ion  (19). 

6 Appendix: Viability Theorems 

We recall here some definitions and the statement of the Viability Theorem. 
Let F : X -+ X be a set-valued map and h' c Dom(F) be a nonempty 
subset. 

The subset K enjoys the viability property for the differential inclusion 
x' E F ( x )  if for any initial state xo E K ,  there exists a solution starting 
at  s o  which is viable in K (in the sense that x ( t )  E K for all t > 0 . )  The 
viability property is said to be local if for any initial state s o  E K ,  there 



exist T,, > 0 and a solution starting at xo which is viable in K on the 
interval [0, T,,] in the sense that for every t E [0, T,,], x(t) E K .  

We denote by 

v E X I liminf 
d(x + hv; K )  

h = 0) h+O+ 

the contingent cone to K at x E K .  We say that K is a viability d o m a i n  
of F if 

V x E I(, R(x) := F ( x )  n TK(x) # 0 

The Viability Theorem states that if F is upper semicontinuous with 
nonempty compact convex images, then a locally compact set K enjoys the 
local viability property if and only if it is a viability domain. In this case, 
if the growth R := F n TK is linear in the sense that for some c > 0, 

and if Ii' is closed, then K enjoys the viability property. 
For simplicity, we say that a set-valued map G is a Peano m a p  if it 

is upper semicontinuous with nonempty compact convex images and with 
linear growth. 

The global Viability Theorem states that when F is a Peano map, the 
upper limit of closed viability domains K, is still a viability domain, and 
that, for any nonempty closed subset K c Dom(F), there exists a largest 
closed viability domain ViabF(K) contained in K ,  possibly empty, called 
the viability kernel  of K .  If F, is a sequence of Peano maps enjoying a 
uniform linear growth and if K, is a sequence of closed viability domains 
of F,, then the upper limit Km of the Ii7,'s is a viability domain of =(F!), 
where FM denotes the graphical upper limit of the F,'s. (See for instance 
[4,5] and [11, Chapter lo].) 

The following result provides a very useful duality characterization of 
viability domains: 

Proposition 6.1 A s s u m e  that  t he  set-valued m a p  F : K c-, X is  upper 
semicont inuous  wi th  convez  compact  values. T h e n  the  three following prop- 



er t i es  are equivalent:  

ii) V 5 E K, F(x)  n rn (TK(a:)) # 0 

iii) V x E K, V p E (Tjy(a:))- , o(F(a:), -p) > 0 

Proof - The equivalence between ii) and iii) follows obviously from 
the Separation Theorem. The equivalence between i) and ii) has been 
proved in a different context in [25]. We provide here a simpler proof. 

Asume that ii) holds true and fix a: E K .  Let u E F(s) and v E TK(x) 
achieve the distance between F(s) and TK(a:): 

and set w := T. We have to prove that u = v. Assume the contrary. 
Since v is contingent to K at a:, there exist sequences h, > 0 converging 

to 0 and v, converging to v such that a: + h,v, belongs to h' for every n 2 0. 
We also introduce a projection of best approximation 

a:, - 5 
a:, E nK(x  + h,w) of a: + h,w onto K and we set z, := 

hn 

so that, by [ll, Proposition 4.1.21, we know that 

By assumption ii), there exists an element y, E F(s,) n E (TK(a:,)). Con- 
sequently, 

(21) ( W  - zn,yn) I 0 

Since a:, converges to a:, the upper semicontinuity of F at a: implies 
that for any E > 0, there exists N, such that for n > N,, y, belongs to the 
neighborhood F(s) + EB, which is compact. Thus a subsequence (again 
denoted by) y, converges to some element y E F(s ) .  

We shall now prove that z, converges to v. Indeed, inequality 



implies that the sequence z, has a cluster point and that every cluster point 
z of the sequence z, belongs to TK (x), because x + h, z, = x, E K for every 
n 2 0. Furthermore, every such z satisfies Ilw - zll I I I w  - 011. 

We now observe that v i s  t h e  u n i q u e  best a p p r o z i m a t i o n  of w b y  e l e m e n t s  
of TK(x). If not, there would exist p E TK(x) satisfying either Ilw - pll < 
I I w  - v I I  or p # v and llw -pll = I I w  - 011 = llw - 2111. In the latter case, we 
have (u - w, w - P) < llu - wllllw - pII, since the equality holds true only 
for p = v. Each of these conditions together with the estimates 

imply the strict inequality llu - pll < 1121 - v11, which is impossible since v 
is the projection of u onto TA,(x). Hence z = v. 

Consequently, all the cluster points being equal to v, we conclude that 
Z, converges to v. 

Therefore, we can pass to the limit in inequalities (21) and obtain, 
observing that w - v = (u - v)/2, 

Since F (x )  is closed and convex and since u E F(x)  is the projection of 11 

onto F(x) ,  we infer that 

Finally, TK(x) being a cone and v E TK(X) being the projection of u onto 
this cone, and in particular, onto the half-line vR+, we deduce that 

Therefore, properties (22, 23, 24) imply that 

and thus, that u = v. 
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