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FOREWORD

The authors derive partial differential inclusions of hyperbolic type, the
solutions of which are feedbacks governing the viable (controlled invariant)
solutions of a control system.

They show that the tracking property, another important control prob-
lem, leads to such hyperbolic systems of partial differential inclusions.

They begin by proving the existence of the largest solution of such a
problem, a stability result and provide an explicit solution in the particular
case of decomposable systems.

They then state a variational principle and an existence theorem of a
(single-valued contingent) solution to such an inclusion, that they apply to
assert the existence of a fedback control.

Alexander B. Kurzhanski
Chairman
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Partial Differential Inclusions Governing
Feedback Controls

Jean-Pierre Aubin & Héleéne Frankowska

Introduction

Let X,Y,Z denote finite dimensional vector-spaces. We studied in [12]
the existence of dynamical closed-loop controls regulating smooth state-
control solutions of a control system (U, f):

(1) { i) for almost allt, z'(t) = f(z(t),u(t))

i) u(t) € U(z(t))

where U : X ~ Y is a closed set-valued map and f : Graph(U) — X a
continuous (single-valued) map with linear growth.

Consider a nonnegative continuous function ¢ : Graph(U) — R4 with
linear growth (in the sense that ¢(z,u) < c(||z|| + ||u| + 1)) and set K :=
Dom(U). We address in this paper the problem of finding feedback controls
(or closed-loop) controls r : K — Y satisfying the constraint

Vz e K, r(z) € U(x)

and the regulation property: for any zo € K, there ezists a solution to the
differential equation

(1) = f(a(t),7(2())) & 2(0) = o

such that u(t) := r(z(t)) € U(z(t)) 13 absolutely continuous and fulfils the
growth condition

lu' (DI < e(2(t),u(t))
for almost all t.

We observe that the graphs of such feedback controls are viability domains'
of the system of differential inclusions

1See the appendix for definitions and the main statements of Viability Theory
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1) 2(t) = f(z(t),u(?))

i) wW(t) € o(z(t)ult)B
contained in the graph of U.

Using the Viability Theorem and the fact that the contingent cone to
the graph of a map r at a point (z,7(z)) is the graph of the contingent
derivative? Dr(z) of r at z, we derive that such feedback controls are solu-
tions to the following contingent differential inclusion

(2)

Vze K, 0€ Dr(z)(f(z,r(z))) —p(z,7(z))B
satisfying the constraints
VzeK, r(z) € U(z) D

More generally, we recall that a closed set-valued map R : K ~ Y
i3 a set-valued feedback regulating p-smooth viable solutions to the control
problem if and only if R is a solution to the contingent differential inclusion

Vze K, 0€ DR(z,u)(f(z,u)) —¢(z,u)B
satisfying the constraint
Vz €K, R(z) C U(x)

and that there exists a largest map with closed graph enjoying this property
(See [2,3,12]).

We shall study this partial differential inclusion, provide a variational
principle and an existence theorem.

But first, we observe that the existence of a dynamical closed loop is
a particular case of the tracking problem, which is studied under several

2The contingent derivative DH(z,y) of a set-valued map H : X ~ Y at (z,y) €
Graph(H) is defined by

Gra.ph(DH(z, y)) = TGl‘aph(H)(I’ y)

When H = h is single-valued, we set Dh(z) := Dh(z, h(z)). See [11, Chapter 5] for more
details on differential calculus of set-valued maps.
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names in many fields, and specially, arises in engineering (see for instance
[17]).
Indeed, consider two set-valued maps F: X xY ~» X, G: X xY ~Y

and the system of differential inclusions
Z'(t) € F(z(t),y())
y'(t) € G(z(t),y(1))

We would like to characterize a set-valued map H : X ~ Y, regarded as
an observation map satisfying what we can call the tracking property: for
every zo € Dom(H) and every yo € H(zg), there exists a solution (z(+),y(+))
to this system of differential inclusions starting at (zq,yo) and satisfying

V>0, y(t) € Hz(t))

The answer to this question is a solution to a wiability problem, since
we actually look for (z(-),y(-)) which remains viable in the graph of the
observation map H. So, if the set-valued maps F and G are Peano maps and
if the graph of H is closed, the Viability Theorem states that the tracking
property is equivalent to the fact that the graph of H is a viability domain
of (z,y) ~ F(z,y) x G(z,y), i.e., that H is a solution to the contingent
differential inclusion

V (z,y) € Graph(H), 0 € DH(z,y)(F(z,y)) — G(z,y)

We observe that when F' and G are single-valued maps f and g and
H is a differentiable single-valued map h, the contingent differential inclu-
sion boils down to the quasi-linear hyperbolic system of first-order partial
differential equations®:

Vi=1,...,m, ia’” fi(z, h(z)) - g5(z, h(z)) =

3For several special types of systems of differential equations, the graph of such a map
h (satisfying some additional properties) is called a center manifold. Theorems providing
the existence of local center manifolds have been widely used for the study of stability
near an equilibrium and in control theory. See [8,9,19,22] for instance.
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It may seem strange to accept set-valued maps as solutions to an hyper-
bolic system of partial differential inclusions. But this may offer a way to
describe shock waves by the set-valued character of the solution (which may
happen even for maps with smooth graphs, but whose projection leads to
set-valued maps.) Derivatives in the sense of distributions do not offer the
unique way to describe weak or generalized solutions. Contingent deriva-
tives offer another way to weaken the required properties of a derivative,
loosing the linear character of the differential operator, but allowing a point-
wise definition. It provides a convenient way to treat hyperbolic problems.
This has been already noticed in [13,14,23,24] for conservation laws.

Knowing F' and G, we have to find observation maps H satisfying the
tracking property, i.e., we must solve the above contingent differential in-
clusion.

Furthermore, we can address other questions such as:

a) — Find the largest solution to the contingent differential inclu-
sion contained in a given set-valued map (which then, contains all the other
ones if any)

b) — Find single-valued solutions h to the contingent differential
inclusion which then becomes

(3) Ve K, 0€ Dh(z)(F(z,h(z))) — G(z,h(z))

In this case, the tracking property states that there exists a solution to the
“reduced” differential incluston

'(t) € F(a(t), h(2(1)))

so that (z(-),y(:) := h(z(+))) is a solution to the initial system of differential
inclusions starting at (zo,h(zo)). Knowing h allows to divide the system
by half, so to speak.

This list of problems justifies the study of the contingent inclusion (3).
Let us mention right now that looking for “weak” solutions to this contin-
gent differential inclusion in Sobolev spaces or other spaces of distributions
does not help since we require solutions h to be defined through their graph,
and thus, solutions which are defined everywhere.
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The use of contingent derivatives in some problems (related to the value
function of optimal control problems, in particular) is by no means new (see
[1], [7, Chapter 6], [27,28]). It has been shown in [27] that “contingent so-
lutions” are related by duality to the “viscosity solutions” introduced in
the context of Hamilton-Jacobi equations by Crandall & Lions in [21] (see
also [20] and the literature following these papers). In the context of this
paper (quasi-linear but set-valued hyperbolic differential inclusions), Propo-
sition 3.4 makes explicit the duality relations between contingent solutions
and solutions very closed in spirit to the viscosity solutions in the case when
Y =R.

The variational principle we prove below (Theorem 3.1) states that for
systems of partial differential equations or inclusions, the contingent solu-
tions are adaptations to the vector-valued case of viscosity solutions.

We shall characterize the tracking property in Section 1 and give an
explicit formula for a closed solution in the case of decomposable systems of
differential inclusions. We then devote section 2 to the study of the trans-
pose of contingent derivatives, and in particular, a series of new convergence
results.

The wariational principle is the topic of section 3 and the existence of
solutions the object of section 4. These results are applied to characterize
and find feedback controls regulating viable solutions in section 5.

1 The Tracking Property

1.1 Characterization of the Tracking Property

Consider two finite dimensional vector-spaces X and Y, two set-valued
maps F: X xY ~» X, G: X xY ~ Y and aset-valued map H : X ~ Y,

regarded as (and often called) the observation map:

Definition 1.1 We shall say that F, G and H satisfy the tracking property
if for any initial state (zo,yo0) € Graph(H), there ezists at least one solution
(z(+),y(+)) to the system of differential inclusions

#'(t) € F(z(t),y(1))

y'(t) € G(z(2),y(t)

(4)
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starting at (zo,Y0), defined on [0, 00 and satisfying
Vi20, y(t) € H(z(t))

We now consider the contingent differential inclusion

(5) V(z,y) € Graph(H), 0€ DH(z,y)(F(z,y)) — G(z,y)

Definition 1.2 We shall say that a set-valued map H : X ~ Y satisfying
(5) i3 a solution to the contingent differential inclusion if its graph is a
closed subset of Dom(F') N Dom(G).

When H = h : Dom(h) — Y 1s a single-valued map with closed graph
contained in Dom(F)NDom(G), the partial contingent differential inclusion
(5) becomes

(6) Y z € Dom(k), 0 € Dh(z)(F(z,h(z))) — G(z,h(z))
We deduce at once from the viability theorems? the following:

Theorem 1.3 Let us assume that F : X XY ~ X, G: X xY ~ Y are
Peano maps® and that the graph of the set-valued map H is a closed subset
of Dom(F) N Dom(G).

1. — The triple (F,G, H) enjoys the tracking property if and only if
H 1is a solution to the contingent differential inclusion (5).
2. — There ezists a largest solution H, to the contingent differential

inclusion (5) contained in H. It enjoys the following property: whenever
an initial state yo € H(zg) does not belong to H.(zo), then all solutions
(z(+),y(+)) to the system of differential inclusions (4) satisfy

{ 1) V120, y(t) ¢ Hz(t))

1) 3T >0  such that y(T) ¢ H(z(T))

(7)

We now state a useful Stability Theorem®. We recall that the graph of
the graphical upper limit H" of a sequence of set-valued maps H, : X ~ Y
is by definition the graph of the upper limit of the graphs of the maps H,.
(See [11, Chapter 7].)

4See the Appendix.
5See the Appendix.
6See the Appendix



Theorem 1.4 (Stability) Let us consider a sequence of Peano maps F,, :
XxY ~ X, G, : X xY ~ Y with uniform linear growth” and their
graphical upper limit F* and G*.

Consider also a sequence of set-valued map H, : X ~ Y, solutions to
the contingent differential inclusions

(8)  V(z,y) € Graph(H.), 0€ DHu(z,y)(Fa(z,y)) — Gn(z,y)
Then the graphical upper limit HY of the solutions H, is a solution to
(9) ¥(z,y) € Graph(H"), 0 € DH!z,y)(coF(z,y)) - T0(GH(z,y))

In particular, if the set-valued maps F, and G,, converge graphically to maps
F and G respectively, then the graphical upper limit HY of the solutions H,
i3 a solution of (5).

We recall that graphical convergence of single-valued maps is weaker
than pointwise convergence. This is why graphical limits of single-valued
maps which are converging pointwise may well be set-valued.

Therefore, for single-valued solutions, the stability property implies the
following statement: Let h, be single-valued solutions to the contingent
partial differential inclusion (8). Then their graphical upper limit h* is a
(possibly set-valued) solution to (9).

Although set-valued solutions to hyperbolic systems make sense to de-
scribe shock waves and other phenomena, we may still need sufficient con-
ditions for an upper graphical limit of single-valued maps to be still single-
valued. (This is the case when a sequence of continuous solutions h, to the
contingent differential inclusion (8) is equicontinuous and converges point-
wise to a function h. Then® h is a single-valued solution to (9).

“In the sense when there exists a constant ¢ > ( such that

sup max ([|Fn(z, )l [[Ga (2, )Il) < elllzll +lvll +1)

8Indeed, a pointwise limit h of single-valued maps h, is a selection of the graphical
upper limit of the h,. The latter is equal to h when h,, remain in an equicontinuous
subset.



1.2 Decomposable Case
Let KCX,®: K~ X and ¥ : K ~ Y be set-valued maps. Consider the

decomposable system of differential inclusions
{ '(t) € &(z(t))

y'(t) € Ay(t) + ¥(=(2))

which extends to the set-valued case the characteristic system of linear
hyperbolic systems.

We denote by Sg(z, -) the set of solutions z(+) to the differential inclusion
z'(t) € ®(z(t)) starting at z and viable in K.

(10)

Theorem 1.5 Assume that ® : K ~ X and ¥ : K ~ Y are Peano maps
and that K 1s a viability domain of ®. The set-valued map H, : K ~ Y
defined by

(11) Vze K, HJ(z) := — /:o e MU (Se(z,t))dt
verifies
(12) V(z,y) € Graph(H,), Ay € DH,(z,y)(®(z)) — ¥(z)

When A 13 large enough (and when A > 0 if U i3 bounded), 1ts graph 1s closed
and H, 1s a solution to the contingent inclusion (5) with F(z,y) := ®(z)
and G(z,y) := Ay + ¥(x).

Proof

1. — We prove first that the graph of H, satisfies contingent
inclusion (12).

Indeed, choose an element y in H,(z). By definition of the integral of
a set-valued map (see [11, Chapter 8] for instance), this means that there
exist a solution z(-) € Se¢(z,-) to the differential inclusion z'(¢) € ®(z(t))
starting at z and 2(t) € ¥(z(t)) such that

y = —/Ooo e Mz(t)dt € H,(z)

We check that for every h > 0
00 1 h
——/ e z(t + h)dt € H.(z(h)) = H, (x+h (—/ x’(t)dt))
0 h Jo
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By observing that
{ 2 e (2(t) — 2(t + h)) dt

= —o=b [ e M (t)dt + G [t e M2(t)dt

we deduce that

yth(—52 o e Ma(t)dt + 5 [ e Me(t)dt)

€ H, (c+h(}g(t)dt))

Since @ is upper semicontinuous, we know that for any ¢ > 0 and ¢ small
enough, ®(z(t)) C ®(z)+eB, so that z'(t) € ®(z)+eB for almost all small
t. Therefore, ®(z) being closed and convex, we infer that for A > 0 small
enough, J& 2/(t)dt € ®(z)+ eB thanks to the Mean-Value Theorem. This
latter set being compact, there exists a sequence of h, > 0 converging to 0
such that 3= Jim 2/(t)dt converges to some u € ®(z).

In the same way, ¥ being upper semicontinuous, ¥(z(t)) C ¥(z) + B
for any ¢ > 0 and t small enough, so that 2(t) € ¥(z) + B for almost all
small t. The Mean-Value Theorem implies that

AeMn rhn

. -
Vn>0, Zn = m A e tz(t)dt € ‘I/(I)+€B

since this set is compact and convex. Furthermore, there exists a subse-
quence of z, converges to some zo € ¥(z). We thus infer that

Ay + 20 € DH,(z,y)(u)
so that \y € DH,(z,y)(®(z)) — ¥(z).

2. — Let us prove now that the graph of H, is closed when A is large
enough. Consider for that purpose a sequence of elements (z,,y,) of the
graph of H, converging to (z,y). There exist solutions z,(-) € S¢(zn,") to
the differential inclusion 2’ € ®(z) starting at z, and measurable selections

2,(t) € ¥(z,(t)) such that

Yn = —/oo e Mz, (t)dt € H,(z,)
0



The growth of & being linear, there exist p, ¢ > 0 such that the solutions
z,(-) obey the estimate

lza(t)ll < pe** & |2y (bl < ple”

By the compactness of the graph of the solution map (which follows from
the Convergence Theorem [11, Theorem 7.2.2] and [5]), we know that there
exists a subsequence (again denoted by) z,(-) converging uniformly on com-
pact intervals to a solution z(-) € S¢(z, ).

The growth of ¥ being also linear, we deduce that ||2,(t)|| < pye (with
¢ = 0 when ¥ is bounded).

When A > c, setting u,(t) := e~**2,(¢), Dunford-Pettis’ Theorem im-
plies that a subsequence (again denoted by) u,(-) converges weakly to some
function u(:) in L'(0,00;Y). This means that z,(-) converges weakly to
some function 2(-) in L!(0,00;Y; e *'dt). The Convergence Theorem states
that z(t) € ¥(z(t)) for almost every t. Since the integrals y, converge to
— [$° e~ *2z(t)dt, we have proved that

y = —/ e Mz(t)dt € H,(z) O
0
Remark — When ¢ = ¢ and ¥ = 3 are smooth single-valued maps,
this formula yields the classical formula
(13) h(z) = —/ e (S, (z,1))dt
0

of the solution to the linear system of partial differential equations
Ah(z) = R'(z)p(z) — ¢(z)
It was also proved in [8,9] that the map h defined by (13) is a solution when
w and 3 are Lipschitz and ¢ is bounded. 0O
1.3 Energy Maps (or Zero Dynamics)

The simplest dynamics are obtained when G = 0. Therefore, when F is a
Peano map, H enjoys the tracking property if and only if it is a solution to

(14) V(z,y) € Graph(H), 0 € DH(z,y)(F(z,y))

10



Since the tracking property of H amounts to saying that each subset H~!(y)
enjoys the viability property for F(-,y), we observe that this condition is
also equivalent to condition

Vyelm(H), Vo€ H ' (y), F(z,y)NTy-1(y(z) # 0

We may say that such a set-valued map H is an energy map of F. O

In the general case, the evolution with respect to a parameter y of the
viability kernels of the closed subsets H~!(y) under the set-valued map
F(-,y) is described in terms of H,:

Proposition 1.6 Let F': X xY ~» X be a Peano map and H : X ~'Y be
a closed set-valued map. Then there exists a largest solution H, : X ~ Y
contained in H to (14).

The inverse images H:'(y) are the viability kernels of the subsets H™!(y)
under the maps F(-,y):

Viabr()(H™'(y)) = H'(y)
The graphical upper limit of energy maps is still an energy map.

Then the graph of the map y ~» Viabp(.,)(H ' (y)) is closed, and thus upper
semicontinuous whenever the domain of H 1s bounded.

When the observation map H is a single-valued map h, the contingent
differential inclusion becomes®

Vz, du € F(x,h(z)) suchthat 0 € Dh(z)(u)

The largest closed energy map h, contained in h is necessarily the re-
striction of h to a closed subset K, of the domain of h. Therefore, for
all y € Im(h), K. N h71(y) is the viability kernel of h~'(y). The restric-
tion of the differential inclusion z'(¢) € F(z(t),y) to the viability kernel
of h™!(y) is (almost) what Byrnes and Isidori call zero dynamics of F (in
the framework of smooth nonlinear control systems). See [9,16,17,18] for
instance.

*When F(z) := f(z,U(z)) is derived from a control problem, it is the “contingent
version” of the Hamilton-Jacobi equation. See [26,27,28] the forthcoming monograph [29]
for its exhaustive study and the connections with the viscosity solutions.
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2 Codifferentials

A set-valued map whose graph is a closed cone is called a closed process. It
is a closed convex process if its graph is furthermore convex. Closed convex
processes enjoy most of the properties of continuous linear operators, as it
is shown in [11, Chapter 2]. The transpose of a closed process A : X ~ Y
is the closed convex process A* : Y* ~» X™* defined by

p € A*(q) if and only if V¥ (z,y) € Graph(4), (p,z) < (q,¥)

We define in a symmetric way the bitranspose A™ : X ~» Y of A, the graph
of which is the closed convex cone spanned by the graph of A:

Graph(A) = (Graph(A4))” ~

Definition 2.1 Let H : X ~ Y be a set-valued map and (z,y) belong to
1ts graph. We shall say that the transpose DH(z,y)* : Y ~ X~ of the
contingent derivative DH(x,y) 1s the codifferential of H at (z,y). When
H := h i3 single-valued, we set Dh(x)* := Dh(z, h(z))".

Before proceeding further, we need more informations about transposes
of the contingent derivatives of set-valued and single-valued maps which
are involved in the formulation of the variational principle and the proof of
the existence theorem.

We recall that whenever h is Lipschitz around z, Dh(z)(u) # 0 for every
u € X (See [11, Proposition 5.1.4]).

Lemma 2.2 Let X and Z be finite dimensional vector-spaces, K C X
and h : K — Z be a single-valued map Lipschitz around ¢ € K. Then
p € Dh(z)*(q) if and only if for any ¢ > 0, there exists § > 0 such that

(15)Vy e B(z,§) N K, <py—z>—<q,h(y)—h(z)>< ¢ljz -y

Proof — The sufficient condition being straightforward, let us prove
the necessary one. Assume the contrary: there exists ¢ > 0 and a sequence
of elements z,, € K converging to z such that

<Ppxn—z>—<qh(z,)—h(z) >> ¢z — x|

12



We set e, := ||z, — z|| which converges to 0 and u, := (zn, — z)/e,,
a subsequence of which converges to some u of the unit sphere. Since h
is Lipschitz around z, there exists a cluster point v € Dh(z)(u) of the
sequence

(h(z + equn) — h(z))/en
We thus deduce that both

<pu>—-<qguv>< 0& <pu>-<gqv>2c¢

hold true, i.e., a contradiction. O
We recall the the contingent epiderivative of an extended function V :
X — RU {+00} at a point z of its domain is defined by

DiV(z)(u) = , liminf V(z + hu') - V()

— 0+, u'—u h,

so that its epigraph coincides with the contingent cone to the epigraph of
V at (z,V(z)). (See [11, Chapter 6] for more details on this topic).

The following result characterizes the transpose of the contingent deriva-
tive of a map H in terms of the contingent epiderivatives of its support
function:

Proposition 2.3 Assume that H : X ~ Y has compact convez values. We
associate with any q € Y™ the functions Hg : X — R, and Hg : X — Ry
defined by

Vee X, H(z) = (g,y) & Hi(z) := sup (q,y)

inf
yEH(2) yEH(z)

Let y) € H(z) satisfy (q,y) = H!(z) and y! € H(z) satisfy (q,y) = Hl(z).
Then

{peX*|YueX, (pu) < DiHy(z)(u) } C DH(z,y,)(q)

If H is Lipschitz at = (in the sense that there exists | > 0 such that H(z) C
H(y) + ||z — y||B for every y in a neighborhood of x), then

DH(z,y)"(¢) € {pe X*|Yu€eX, (pu) < DiHYz)(u) }

Consequently, when H = h is single-valued and Lipschitz at z, we set
ki(z) := (g, h(z)) = hl(z) = hi(z) and we obtain the equality

Dh(z)*(q) = {p€ X" |[Yu € X, (p,u) < Diky(z)(u) }

13



Proof — Assume first that p € X* satisfies
Vue X, (p,u) < DiH)(z)(u)
We prove that for every v € DH (m,yg) (u),
Dy H!(z)(v) < (g,)

Indeed, by definition of the contingent derivative, there exist sequences
t, >0, u, € X and v, € Y converging to 0, u and v respectively such that

Yn>0, y+t,w, € H(z +t,u,)

Therefore,
DiHy(z)(u)

Hi(z+tnun)-H}(z)
tn

< lminf,

< liminf,_ o (g,v.) = (g,v)

Consequently, (p,u) < (g,v) for every (u,v) € Graph(DH(x,y:)), so that
p € DH(z,y))*(q).

Conversely, assume that H is Lipschitz at =, p € DH (x, yg) (¢) and fix
u € X. By definition of the contingent epiderivative, there exist sequences
t, > 0 and u, converging to 0 and u such that

— HY(r
D;H!(z)(u) = lim Hy(z + tntn) — Hy(3)

n—oo tn

Since H is Lipschitz at z, there exists | > 0 such that, for n large
enough, y! belongs to H(z 4 t,u,) + lt,||u.||B, so that it can be written
Y} = y, — thv, where y, € H(z + tou,) and ||va|| < f|lus|l. Therefore a
subsequence (again denoted by) v, converges to some v, which belongs to
DH(z,y!)(u). Since (¢,y) < Hi(z + tnu,) and <q,y2> = H}(z), we infer
that

DiH(z)(u) 2 (g,v) > (p,u)

because v € DH(x,yg)(u) and p € DH(z, yS)*(Q)-

14



Remark — Furthermore, when 4 is real-valued, we need only to know
the values of Dh(z)* at the points 0, +1 and —1 to reconstruct the whole
set-valued map Dh(z)*.

We observe that for ¢ = +1, Dihj(z)(u) = Djh(z)(v) and that for
g = —1, Dih}(z)(u) = Di(—h)(z)(u) and that for ¢ = 0, Dh(z)*(0) =
(Dom(Dh(z)))".

We recall (see [11, Definition 6.4.7] and (11, Proposition 6.4.8]) that:

{pe X*|VueX, (pu) < Dih(z)(u)} = I-h(z)
is the local subdifferential

and

{peX*|VueX, (pu) < Di(=h)=)(u)} = —8;h(z)
is the local superdifferential

The above characterization then becomes

Proposition 2.4 Let h : X — R be a function continuous at . Then

Dh(z)*(+1) = 8_h(z) & Dh(z) (1) = —d,h(z)

Proof — We already know that
0_h(z) C Dh(z)*(+1)

Assume now that p € Dh(z)*(+1). We have to show that for every u €
X, (pu) < Dyh(z)(x).

There is nothing to prove if Dih(z)(u) = +o00.

If D1h(z)(u) is finite, then v := D;h(z)(u) belongs to Dh(z)(u) by [11,
Proposition 6.1.5], so that (p,u) < Dyh(z)(u).

We finally claim that the continuity of h at z implies that Dih(z)(u) >
—oo for any u € X, which is equivalent to D;h(z)(0) = O thanks to [11,
Propositions 6.1.3].

If not, by [11, Propositions 6.1.4 and Lemma 6.1.1], the pair (0,—1)
belongs to the contingent cone to the epigraph of h at (z,h(z)). Then
there exist sequences t, > 0 converging to 0, u, converging to 0 and a
sequence of v, > 0 going to 1 such that

Vn>0, h(z+tu,) < h(z) —tyv,
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On the other hand, h being continuous at z, the continuous function ¢
defined by ¢(t) := h(z + tu,) satisfies

P(tn) < h(z) —tavn < ¢(0)

and therefore, there exists s, € [0,t,] such that ¢(s,) = h{z)—t,v,. Setting
Uy = {%un, which also converges to 0, we observe that h(z + t,t,) =
h(z) — t,v,. This means that

(0,-1) € Dh(z)(0)
But p € Dh(z)*(1), and thus, we then obtain the contradiction

0= (p0) < (1,-1) = -1 O

Remark — The above proposition allows to reformulate the notion
of viscosity solution of a scalar Hamilton-Jacobi equation ¥(z,h'(z)) = 0
in the following way: h is a viscosity solution if and only if

{ i) Vpé€ Dh(z)*(+1), ¥(z,p) > 0

(16) ir) Vpe Dh(z)*(-1), ¥(z,—p) < 0 O

The variational principle of section 3 is based on the following conver-
gence result:

Proposition 2.5 Let X, Y be finite dimensional vector-spaces and K C X
be a closed subset. Assume that h is the pointwise limit of an equicontinuous
family of maps h, : K — Y. Let £ € K and p € Dh(x)*(q) be fized. Then
there ezist subsequences of elements z,, € K converging to z, gn, converging
to q and p,, € Dhn,(2,,)"(gn,) converging to p.

If the functions h, are differentiable, we deduce that there ezist subse-
quences of elements r,, € K converging to = and g,, converging to q such
that h;, (s, )*(gn,) converges to p.

Proof — We can reformulate the statement in the following way: we
observe that p € Dh(z)*(g) if and only if

(P.—9) € (Tgraphm(@ h(2)))”
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so that we have to prove that there exist subsequences z,, € K and

(pnk’_an) € (TGraph(hnk)(Inmhﬂk(znk)))

converging to z and (p, —q) respectively. Therefore the proposition follows
from the

Theorem 2.6 Let us consider a sequence of closed subsets K, and an ele-
ment z € Liminf, ., K, (assumed to be nonempty). Set K' := Limsup, _, K.
Then, for any p € (Txi(x))™, there ezist subsequences of elements x,, €

K, and p,, € (Th'n,,(xnk ))_ converging to p and x respectively:

(TK'(‘T))— - Limsupn—mo, Tn—K, T (T]\’"(In))_

Proof — First, it is sufficient to consider the case when z belongs to
the intersection 72, A, of the subsets K,,. If not, we set fx: =RK,+zr—u,
where u, € K, converges to z. We observe that z € N3, fx:n and that
T; (zn) = Tk (Tn — T + Un).

Let p € (Tx1(z))” be given with norm 1. We associate with any positive
A the projection z of z + Ap onto K,:

(17) |z + 20 -2 = min |z +2p — .
and set \
v) = xn;z & p)i=p-v) € (T;‘-n(z,’:))—

because z + Ap — z} = A(p — v}) belongs to the polar cone (Txn(z;}))— to
the contingent cone Tk, ().
Let us fix for the time A > 0. By taking z, = z € KA, in (17), we

infer that ||v}|| < 2. Therefore, the sequences z} and v} being bounded,

:cA—z:

some subsequences z.), and v}, converge to elements z* € K* and v* = 5
respectively.

Furthermore, there exists a sequence A\ — 0+ such that v** converge
to some v € Tk1(z) because ||v*|| < 2 and because for every A,

= z4+ M € K!

17



Therefore (p,v) < 0 since p € (Tki(z))".
On the other hand, we deduce from (17) the inequalities

2
= llplI® + lval* = 2(p, v < lIpll®

A
I~

which imply, by passing to the limit, that ||v]|> < 2(p,v) < 0.
We have proved that a subsequence v** converges to 0, and thus, that
a subsequence vy* = p — pp* converges also to 0. The lemma ensues. O

We shall need stronger convergence results, where in the conclusion of
Proposition 2.5 we require that ¢, and/or z, remain constant. We have
to pay some price for that: stronger convergence assumptions and the use
of graphical derivatives Dsh(x) contained in the graph of Dh(z) which are
closed conver processes. For instance, the circatangent derivative Ch(z),
defined in the following way from the Clarke tangent cone:

Graph(Ch(z)) := CGraph(h)(x,h(:c))

i1s a closed convex process contained in the contingent derivative Dh(z).
They coincide whenever h is sleek at z. We can also use the asymptotic
derivative Do h(z), whose graph is the asymptotic cone to the graph of h
at (z,h(z)). (See [11, Chapters 4,5] for further details.)

We prove for instance the following

Proposition 2.7 Let X be a finite dimensional vector-space and K C X
be a closed subset. Assume that h 1s Lipschitz around z on K and consider
a sequence of continuous maps h, converging to h uniformly on compact
subsets of K. Let r € K and p € Dh(z)*(q) be fized. Then there ezist a
sequence of elements z, € K converging to = and a sequence of elements
Pn € Dshy(z2,)"(q) converging to p.

If the functions h, are differentiable, we infer that there ezists a sequence
of elements z, € K converging to « such that h!(z,)*(q) converges to p.

Proof — Let ¢ > 0, L := K N B(z,u) be a compact neighbourhood
of z on which the maps h, converge uniformly to k. We apply Ekeland’s
Theorem to the functions y —< ¢,h.(y) > — < p,y > defined on this
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subset. Fix € €]0, u[. Then there exists z, € L satisfying

1) < @ ha(zn) > —<pyzp > +e||zn —z|| £< g ha(z)>—<p,z>
1) Vye L, <q,hu(zn)>—<p,z, >
<< g ha(y) > = <p,y > +elly — zal|

The first inequality implies that

ellz — zn|| £ < g, ha(z) — h(z) > + < q,h(z,) — ho(zn) >
+ < pyTp —T > — < g,h(z,) — h(z) >
< 2|lg||[[hn — k|4 < p,zn — T > — < ¢, h(z4) — h(z) >

By Lemma 2.2, there exists 0 < § < p such that
Vy € Bl\'(za&)a <PhZTn—T>—<4g, h‘(zn) - h(.’l:) > < EHIn - I”/z

Hence, ||z, — z|| £ 4]|q||||hn — h||/e < ¢ for n large enough.

On the other hand, consider any v € Dh,(z,)(u): There exist ¢, >
0 converging to 0, u, converging to u and v, converging to v such that
ho(zn +epuy) = hn(z,)+ €pv, for all p. Taking y = z, + €,u, € KN B(z,p)
for p large enough in the second inequality, we infer that

0 < (g,vp) = (P, up) + elluy|
and thus, by letting u, and v, converge to u and v,
Y (u,v) € Graph(Dha(2)), 0 < (q,0) = (p,u) + <]

In particular, taking the restriction to Graph(Dsh,(z,)) and noticing that
||| = sup,ep, (u,€)), this inequality can be written in the form:

0 < inf sup((g,v) — (p,u) + &(e, u))
(u,v)eGraph(Dsha(z)) e€B.

Since B, is convex compact and since the graph of Dsh,(z) is convex, the
lop-sided minimax theorem (see for instance [10]) implies the existence of
eo € B, such that

0 < inf ({g,v) = (p,u) + (eo, 1))
(u,v)eGraph(Dshna(z))
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Consequently, (p — €eg, —g) belongs to the polar cone to Graph(Dsh,(z,)),
so that p, := p — eeo € Dshn(z,)*(¢). Summarizing, for any € > 0 and
for any n such that ||h, — k|| < €?/4||q||, we have proved the existence of
z, € K and p, € Dsh,(z,)*(¢) such that

lzn —z|| <e & |lpn—pl| <e O

Let K C X be a closed subset and C5(K, Z) denote the space of Lips-
chitz (single-valued) bounded maps from K to a finite dimensional vector-
space Z,

”h”A := sup ”h(l‘) - h(y)“
zxy le =yl

denote the Lipschitz semi-norm and the sup-norm. Set
IRl = IRlla + [[R]l«

It denotes the norm of the Banach space Co( R, Z).
We observe the following continuous properties of the contingent deriva-
tive:

Lemma 2.8 Let z € K be fized. Then the map
(h’u) € CA(K»Y) X X ~ Dh(x)(u)

& ||hlleo := sup [|h(z)]|
€K

18 Lipschitz:
Vh,g €Cr(R,Y), Dh(z)(u) C Dg(z)(v) + [[h— gllallull + llgllallu — o
Proof — The proof is straightforward from the inequality

“ h(z +tu) = h(z)  g(z +to) - g(z)
i 14

< [tk = gllallull + {lgllalle — ]| O

We shall need the following stronger statement than Proposition 2.7:

Proposition 2.9 Let X be a finite dimensional vector-space and K C X be
a closed subset. Assume that h 1s Lipschitz and consider a sequence of Lip-
schitz maps h, converging to h in Co(K,Y ). Let z € K and p € Dh(z)*(q)
be fized. Then there ezists a sequence of elements p, € Dsh,(z)*(q) con-
verging to p.

In particular, if the maps h, are differentiable, we infer that hl(z)*q
converges to p.
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Proof — Set €, := 2||q||||hn — h||a. By Lemma 2.2, there exist u >0
such that

<py—c>— <gh(y) - h(z) >< enlly - z||/2
whenever y € K N B(z, ). Therefore
<py—r>-< Q3hn(y)_hn(‘r) >

< enlly — 2ll/2 + llgllli(hn — R)(y) = (hn — A)(@)]

< (en/2 4 llgllllhn — Alla)lly — 2]l < enlly — =

On the other hand, consider any v € Dh,(z)(u): There exist t, > 0
converging to 0, u, converging to u and v, converging to v such that
ho(z 4 tyup) = hu(z) + tyv, for all p. Taking y = z + t,up, € K N B(x,u)
for n large enough and observing that h,(y) = hn(z) + tpv, in the second
inequality, we infer that

0 << g,vp> = <pup> Feqluy|
and thus, by letting u, and v, converge to u and v,
V (u,v) € Graph(Dh,(z)), 0 < < q,v > — < p,u > +&q||ul

In particular, taking the restriction to Graph(Dsh,(z)) which is convex,
the lop-sided minimax theorem implies that inequality

0< inf sup(< q,v > — < p,u > +e, < e,u >)
(uv)eGraph(D,h,(z)) e€B.

provides the existence of e, € B, such that (p — e,e,, —q) belongs to the
negative polar cone to Graph(D;sh,(z)), i.e., such that

DPni=p—cne, € Dsh,(z)"(qg) O

3 The Variational Principle

We characterize in this section solutions to the contingent differential in-
clusion (6) through a variational principle. For that purpose, we denote
by
o(M,p) :== sup<p,z> & o'(M,p) := inf < p,z>
2eM 2€M

21



the support functions of M C X and by B, the unit ball of Y.
Consider a closed subset K C X. We introduce the nonnegative func-
tional ® defined on the space C(K,Y") of continuous maps by

®(h) := supsup sup (o*(F(z,h(z)),p) — o(G(z, h(z)),q))
9€B, €K pe Dh(z)*(q)

Theorem 3.1 (Variational Principle) Assume that the set-valued maps
F and G are upper semicontinuous with conver and compact values. Let
c¢> 0. Then a single-valued map h: K — Y 13 a solution to the contingent
differential inclusion

Vz e K, 0€ Dh(z)(F(z,h(z))) — G(z,h(z)) + cB
if and only if ®(h) <c.
Consequently, h i3 a solution to the contingent differential inclusion (6)

if and only if ®(h) = 0.

Proof — The first inclusion is easy: let u € F(z, h(x)), v € G(z, h(z))
and e € c¢B be such that v — e € Dh(z)(u). Then, for any ¢ € B, and
p € Dh(z)*(g), we know that

<pu>—<qguv—e><0
so that
o*(F(z,h(z)),p) — 0(G(z,h(z)),q) < <pu>—<gqgv><<ge>< c

By taking the supremum with respect z € K, ¢ € B, and p € Dh(z)*(q),
we infer that ®(h) < c.

Conversely, we can write inequality ®(k) < ¢ in the form of the minimax
inequality: for any z € K, ¢ € Y,

sup inf inf <pu>-<gqv>)<c
peDh(z)*(q) u€F(z,h(z)) uEG(:,h(x))( p 7 ) ”q”

Noticing that c||q|]| = 0(cB,¢) and setting
B(p,q;u,v,€e) :=<pu>—<gqv—e>
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this inequality can be written in the form: for every z € K,

sup B(p,q;u,v,e) <0

inf
(p,—q)EGI‘aph(Dh(r))" (u,v,e)€F(z,h(z))xG(z,h(z))xcB

Since the set F(z,h(z)) x G(z,h(z)) x cB is convex compact and since the
negative polar cone to the graph of Dh(z) is convex, the lop-sided minimax
theorem (see for instance [10]) implies the existence of ug € F(z,h(z)),
vo € G(z,h(z)) and e € ¢B such that

Sup(P.—q)EGraph(Dh(z))—(< pP,Uo > — < ¢,9 — € >) =
Sup(p,—q)EGI‘aph(Dh(a:))— inf(u,u.e)eF(z,h(z))xG(z,h(z))XCB ﬂ(P,Q; u,v, e) <0

This means that (ug,vg — €g) belongs to the bipolar of the graph of
Dh(z), i.e., its closed convex hull ¢o(Graph(Dh(z))). In other words, we
have proved that

(F(z,h(z)) x (G(z, h(z)) + cB)) N (TGraphw (@, h(z))) # 0
But by Proposition 6.1 of the Appendix, this is equivalent to the condition
(F(z,h(z)) x (G(z,h(z)) +cB))N TGraph(h)(x’ h(z)) # 0
i.e., h is a solution to the contingent differential inclusion. O

Remark — Since
Graph(Dh(z))™~ = Graph(Dh(z)*™)

the graph of the bipolar cone of Graph(Dh(z)) is the graph of the bitrans-
pose Dh(z)*, we have actually proved that A is a solution to the contingent
differential inclusion if and only if it is a solution to the “relaxed” contingent
differential inclusion

0 € Dh(z)™(F(z,h(z))) — G(z,h(z)) + ¢B O
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Theorem 3.2 Assume that the set-valued maps F and G are upper semi-
continuous with nonempty convez compact images. Let H C C(K,Y) be a
compact subset for the compact convergence topology.

Assume that ¢ := infren ®(h) < 4+0o. Then there ezists a solution
h € H to the contingent differential inclusion

0 € Dh(z)(F(z, h(z))) - G(z, h(z)) + cB

Since H is a compact subset for the compact convergence topology, it
is sufficient to prove that the fonctional ® is lower semicontinuous on the
space C(K,Y) for this topology: If it is proper (i.e., different from the
constant +00), it achieves its minimum at some h € H, which is a solution
to the above contingent differential inclusion thanks to Theorem 3.1.

Proposition 3.3 Assume that the set-valued maps F and G are upper
semicontinuous with nonempty convez compact images. Then the functional
® is lower semicontinuous on equicontinuous subsets of the space C(K,Y)
for the compact convergence topology.

Proof — Assume that ® is proper. Let h,, be a sequence of ® satisfy-
ing for any n, ®(h,) < ¢ and converging to some map h. We have to check
that ®(h) < ¢. Indeed, fix z € K, ¢ € B, and p € Dh(z)*(q). By Propo-
sition 2.5, there exist subsequences (again denoted by) z, € K converging
to z, ¢, converging to ¢ and p, € Dh,(z,)*(¢,) converging to p such that
h.(z,) converges to h(z).

We can always assume that ||g,|| < 1. If not, we replace ¢, by ¢, :=

nl!]%}hQn and Pn by

- q s~
B 1= ””q‘:lpn € Dho(zn)' (@)

Since F and G are upper semicontinuous with compact values, we know
that for any (p,q) and € > 0, we have

{ o’ (F(z, h(2)),p) — 0(G(z, h(z)), q)
< 0" (F(2n, ha(2a)),Pn) = 0(G(2n, hn(24)),q) + € < B(ha) +€

for n large enough. Hence, by letting n go to oo, we infer that for any
e >0,
o' (F(z,h(z)),p) — o(G(z, h(z)),q) S c+e¢
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Letting ¢ converge to 0 and taking the supremum on ¢ € B,, z € K and
p € Dh(z)*(q), we infer that ®(h) <ec. O

Remark — In the case when Y = R, the contingent solutions are
very closed in spirit to the viscosity solutions:

Proposition 3.4 Assume thatY = R and that the values of the set-valued
maps F and G are convez and compact. Then a continuous function h :
K — R 1s a solution if and only if for every z € K,

i) SuPpes_n(e) (0"(F(z,h(2)),p) — sup(G(z, h()))) < 0
ii)  infpea,nce) (0(F(z,h(z)), p) — inf(G(z, h(z)))) > 0

i11) F(z,h(z)) N (Dom(Dh(z)))~~ # 0

Remark — When A is locally Lipschitz, then the domain fo the
contingent derivative Dh(z) is the whole space anf the third condition is
automatically satisfied. D

Proof — Indeed, in the case when ¥ = R, the functional ¢ can be
written in the form

®(h) = :2};\) max (Po(h,z),P4(h,z),®_(h,z))

where

( ®4(h,z) = sup,epnapa) (°(F(z, h(z)),p) = 0(G(z, h(z)), +1))

{ @_(h,7) = Sup,eprer-r) (°(F(z, h(@)),p) - 0(G(z, h(z)), -1))

[ Po(h,z) = SUPyeDh(x)*(0) (Ub(F(z,h(z))ap))

The two first properties follow from Proposition 2.4 and Theorem 3.1 with
¢ = 0. The last one can be derived from

suPpepi(zy=0) (7' (F(2 h(2)),P)) = P, Domonen)- infoeriesen(p,v)
= SuPpE(DOHl(Dh(r)))-(Fa vo) <0
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for some vy € F(z,h(z)) thanks to the lop-sided Minimax Theorem. O

Remark — We can relate solutions to the contingent differential
inclusion (6) to viscosity solutions when the set-valued map F : X ~ X
does not depend on y and when G is equal to 0. The above proposition
implies that both h and —h are viscosity subsolutions to the Hamilton-
Jacobi equation

—o(F(z),h'(z)) = 0

The apparent discrepency comes from the fact that solutions h of the con-
tingent partial differential inclusion are energy functions and not the value
function of an optimal control problem. O

4 Single-Valued Solutions to Contingent Dif-
ferential Inclusions

We shall look for solutions in a compact convex subset H of the space

CA(K,Y) of Lipschitz maps from K to Y.

Theorem 4.1 Let X and Y be two finite dimensional vector-spaces, F :
XXxY~ X, G: X XY ~Y be two upper semicontinuous set-valued maps
with compact convez values and K be a closed subset of X.

Let H be a compact convez subset of CA(K,Y). When h € H, we de-
note by Tn(h(:)) C C(R,Y) the tangent cone to H at h for the pointwise
convergence topology.

Assume that for every h € H, there ezist v, w € C(K,Y) such that
Vz e K,

w(z) € Dsh(z)(F(z,h(2))), v(z) € G(z, h(z)) & w(-) — v(-) € Tu(h(-))
Then there ezists a solutton h € H to the contingent differential inclu-
ston:

Vze K, 0€ Dh(z)(F(z,h(z))) — G(z, h(z))

Proof —  We assume that there is no solution to the contingent
differential inclusion and we shall derive a contradiction.
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Indeed, thanks to Proposition 6.1, this amounts to assume that for any
h € H, there exists z € K such that

0 ¢ o (TGraph(h)(:c,h(x))) — F(z,h(z)) x G(z, h(z))

Since the images of F and G are compact and convex, the Separation
Theorem implies that there exists also (p, —q) € X* x Y™ such that

0 < o'(F(z,h(z)),p) — a(G(z,h(z)),q) & p € Dh(z)*(q)

Set

a(h;z,q):= sup o'(F(z,h(2)),p) - o(G(z,h(z)).q)
pE€Dsh(z)*(q)

Since Dh(z)*(q) C Dsh(z)*(g), we observe that
0 < a(h;z,q)

On the other hand, the function (y,p) — o’(F(z,y),p)—0(G(z,y), q) being
lower semicontinuous (because F' and G are upper semicontinuous with
compact values), there exist neighborhoods N;(h(z)) and N3(p) such that

Vy € Ni(h(z)), VP € No(p), 0 < o’(F(z,y),p') — o(G(z,y),9)

By Proposition 2.9, there exists n(z) > 0 such that whenever ||l — ||y <
n(z), there exists p’ € Dsl(z)*(q) satisfying I(z) € Ny(h(z)) and p’ € Na(p).
Hence

0 < o'(F(z,1(z)),p') - 0(G(z,1(z)),q) < a(l;z,q)
Consequently, k belongs to the subset N(z,q) defined by

N(z,q) = {l€CA(K,)Y)|0 < a(l;z,9)}

which is open in C5(K,Y) by Proposition 2.9.

Summing up, we just have proved that if there is no solution to the
contingent differential inclusion, then H can be covered by the open sub-
sets N(z,q). Being compact, it can be covered by a finite number m of
such neighborhoods N(z;,¢;). Let a;(-) be a continuous partition of unity
associated with this covering.
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We introduce now the function ¢ : H x H +— R defined by
e(h,1) = Y ai(h){gi, I(z:) — h(z:))
=1

It is continuous with respect to h on Co(K,Y) (because the a;’s are so and
h —< ¢, h(z;) > are continuous for the pointwise topology), affine with
respect to I and satisfies ¢(I,1) = 0. Hence, H being convex and compact,
Ky Fan Inequality (see [11, Theorem 3.1.1]) implies the existence of h € H
such that for every I € H, ¢(k,1) < 0. This means that the discrete measure
7, ai(h)g: ® 8(z;) belongs to the normal cone to H at h since for every
leH,

m

(- ailh)as © 8z~ F) = 3 ailR) g 1z) - h(z) < 0

1=1

We then deduce from the assumption that
> ai(h)a(h;ziq:) < 0
1=1

Indeed, there exist continuous functions v(-) and w(-) such that
VzekK, v(z) € Gz, h(z)) & w(z) € Dsh(z)(F(z,h(z)))

and w(-) — v(-) € Tn(h(-)). Consequently, whenever a;(h) > 0, then h
belongs to N(zi,q:). Therefore, for any p; € Dsh(z;)*(¢:), there exists
u; € F(z;, h(z;)) such that

{ o' (F(zy, h(z:)), pi) — 0(G(zi, h(2:)), 45)

< (piui > — < giyv(ei)) < (g, w(z:) - v(z))

so that, by taking the supremum on p; € Dsh(z;)*(g;), we obtain
a(h;zi,q:) < < gi,w(z;) —v(z;) >

Multiplying by a;(k) > 0 and summing from ¢ = 1 to m, we obtain

m
1=

ao(B)a(hi ziyqs) < <ia,~(f‘z>q.-®5<z,->,w<->—v(-)> <o

1 i=1
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because w(-) — v(-) belongs to the tangent cone to H at h and
> ai(h)gi ® 8(z:)
1=1

belongs to the normal cone to H at k.
Now, we claim that

0 < Y ai(h)a(h;zi,q)
=1
Indeed, whenever a;(h) > 0, then h belongs to N(z;,¢:), which implies that
0< a(l—z, z;,¢i). We have therefore obtained a contradiction. O

Lemma 4.2 Let H: K ~ Y be a set-valued map and let H be a subset of
continuous selections of H. Then

Tu(h(1)) C {veC(K,Y) | Vz € K, v(z) € Th(z(h(z))}
Assume that for any finite sequence (z;,y;) € Graph(H) (: =1,...,m) such
that z; # z; whenever ¢ & j, there ezists a selection s € ‘H interpolating it:

YVi=1,...,m, s(z;) =y
Then equality holds true:
T(h(-)) = {veC(K\Y) | Vz € K, v(z) € Thz)(h(z))}

Proof — Indeed, let v € C(K,Y") such that v(z) € Ty, (h(zx)) for all
r € K. Then there exists £y(x) converging to 0 with A for the pointwise
topology such that h(z) + Av(z) + Aex(z) € H(z). Let us consider any
neighbourhood of 0 for the pointwise topology

V:={leC(K,Y) | sup |l(z:)]| <¢}
i=1,...n

associated with a finite subset {z,,...,z,} and X small enough for e,(-)
to belong to it. Since by the interpolation assumption there exists Iy € H
such that

Vo, L(z:) = h(z)+ do(z:) + Aex(z;) € H(zy)

then the continuous function uy := (I — h)/X is such that A+ Au, € H and
belongs to the neighbourhood v + V of v for the topology of the pointwise
convergence. In other words, v belongs to the tangent cone to H at h for
the pointwise topology. O
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5 Feedback Controls Regulating Smooth Evo-
lutions

Consider a control system (U, f):

{i) for almost all ¢, z'(t) = f(z(t),u(t))

(18) i1) where u(t) € U(z(t))

Let (z,u) — ¢(z,u) be a non negative continuous function with linear
growth.

We have proved in [12] that there exists a closed regulation map RY C U
larger than any closed regulation map R : K ~» Z contained in U and
enjoying the following viability property: For any initial state o € Dom(R)
and any initial control ug € R(zg), there ezists a solution (z(-),u(:)) to the
control system (18) starting at (xq,uo) such that

Vt>0, u(t) € R(z(t))
and

for almost all ¢t >0, ||u'(?)]] < @(z(t),u(t))

Let K C Dom(U) be a closed subset. We also recall that a closed set-
valued map R : K ~ Z 1s a feedback control requlating viable solutions to
the control problem satisfying the above growth condition if and only if R
18 a solution to the contingent differential inclusion

Vze K, 0€ DR(z,u)(f(z,u)) — ¢(z,u)B
satisfying the constraint
Vz e K, R(z) C U(z)

In particular, a closed graph single-valued regulation mapsr : K — Z is
a solution to the contingent differential inclusion

(19) Vze K, 0€ Dr(z)(f(z,r(z))) — p(z,r(z))B
satisfying the constraint

Vze K, r(z) € U(z)
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Such solution can be obtained by a variational principle. We introduce
the functional ¢ defined by

®(r) := supsup sup (< p, f(z,7(z)) > —p(z,r(z))lgl)
q€B. €K peDr(z)*(q)

Theorem 5.1 Let R C C(K,Y) be a nonempty compact subset of selec-
tions of the set-valued map U (for the compact convergence topology).
Suppose that the functions f and ¢ are continuous and that

¢ := inf ¥(r) < 4o
reR

Then there ezists a solution r(-) to the contingent differential inclusion
VzeK, 0€ Dr(z)(f(z,r(2))) - (9(z,7(z)) + c)B

As for the existence of such a feedback, we deduce from Theorem 4.1
the following consequence:

Theorem 5.2 Consider a nonempty convez subset R C Cp(RH, Z) of selec-
tions of the set-valued map U which is compact in Co(K, Z).

Suppose that the functions f and ¢ are continuous.

Assume that for every r € R, there ezist v, w € C(K,Y) such that
VzekK,

w(z) € Dsr(z)(f(z,7(2))), v(z) € p(z,7(2))B & w(:) —v(-) € Tr(r("))

Then there ezists a solution to the contingent differential inclusion (19).

6 Appendix: Viability Theorems

We recall here some definitions and the statement of the Viability Theorem.
Let FF : X ~ X be a set-valued map and A C Dom(F') be a nonempty
subset.

The subset K enjoys the wviability property for the differential inclusion
t’ € F(z) if for any initial state zo € K, there exists a solution starting
at ro which is viable in K (in the sense that z(¢) € K for all t > 0.) The
viability property is said to be local if for any initial state zo € K, there
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exist T, > 0 and a solution starting at zo which is viable in K on the
interval [0, T, ] in the sense that for every t € (0, T}, ], z(t) € K.
We denote by
.. .d(z+ hv;K)
Tk(z) = {UEX | hhrg(l)ilf——h— = 0}

the contingent cone to K at ¢ € K. We say that K is a viability domain
of F if

Vz € K, R(z) := F(r)NTk(z) # B

The Viability Theorem states that if F' is upper semicontinuous with
nonempty compact convex images, then a locally compact set K enjoys the
local viability property if and only if it is a viability domain. In this case,
if the growth R := F N Tk is linear in the sense that for some ¢ > 0,

Vee K |R@)] = inf ] < ezl +1)

and if K is closed, then K enjoys the viability property.

For simplicity, we say that a set-valued map G is a Peano map if it
is upper semicontinuous with nonempty compact convex images and with
linear growth.

The global Viability Theorem states that when F' is a Peano map, the
upper limit of closed viability domains K, is still a viability domain, and
that, for any nonempty closed subset K C Dom(F'), there exists a largest
closed viability domain Viabgp(K') contained in K, possibly empty, called
the viability kernel of K. If F, is a sequence of Peano maps enjoying a
uniform linear growth and if K, is a sequence of closed viability domains
of F,, then the upper limit K* of the K,’s is a viability domain of ¢o(F*),
where F! denotes the graphical upper limit of the F},’s. (See for instance
[4,5] and [11, Chapter 10].)

The following result provides a very useful duality characterization of
viability domains:

Proposition 6.1 Assume that the set-valued map F : K ~ X 1s upper
semicontinuous with convezr compact values. Then the three following prop-
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erties are equivalent:

i) VzeK, Fl)NTk(z) # 0
(20) it) Vze K, F(z)Neo(Tk(z)) # 0
itt) Vz e K, Vpe (Tk(z))”, o(F(z),—p) > 0

Proof — The equivalence between ii) and iii) follows obviously from
the Separation Theorem. The equivalence between i) and ii) has been
proved in a different context in [25]. We provide here a simpler proof.

Asume that ii) holds true and fix ¢ € K. Let u € F(z) and v € Tk(z)
achieve the distance between F(z) and Tk (z):

[u—vl = yep(z)lﬂfe:rx(z) ly — 2|l
and set w := ’%’—’i We have to prove that u = v. Assume the contrary.

Since v is contingent to K at z, there exist sequences h, > 0 converging
to 0 and v, converging to v such that z+ h,v, belongs to K for every n > 0.
We also introduce a projection of best approximation

z, € Og(z+ h,w) of z + h,w onto K and we set z, :=

so that, by [11, Proposition 4.1.2], we know that
w—2n € (Tk(zs))” = (0(Tk(z4)))”

By assumption ii), there exists an element y, € F(z,) Né(Tk(z»)). Con-
sequently,
(21) <’LU — Zn, yn> S 0

Since z, converges to z, the upper semicontinuity of F' at z implies
that for any € > 0, there exists N, such that for n > N, y, belongs to the
neighborhood F(z) 4+ eB, which is compact. Thus a subsequence (again
denoted by) y, converges to some element y € F(z).

We shall now prove that z,, converges to v. Indeed, inequality

L
o

1
[w = zal| = 3= lle +hnw —za]l < o=]lz + haw =z = huva]| = |lw — vall
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implies that the sequence z, has a cluster point and that every cluster point
z of the sequence z, belongs to Tk(z), because z + hp2, = z, € K for every
n > 0. Furthermore, every such z satisfies ||w — z|| < ||w — ||

We now observe that v ts the unique best approzimation of w by elements
of Tk(z). If not, there would exist p € Tk(z) satisfying either ||w — p|| <
lw —v|| or p# v and ||w — p|| = ||lw — v|| = ||w — u]|. In the latter case, we
have (u — w,w — p) < ||lu — w||||w — p||, since the equality holds true only
for p = v. Each of these conditions together with the estimates

{ lu = plI* = flu—w|*+|lw - plI* + 2(x — w,w — p)
< (lu=wll +lw - plD* < Jlu—off?

imply the strict inequality ||lu — p|| < ||u — v||, which is impossible since v
is the projection of u onto Tk (z). Hence z = v.

Consequently, all the cluster points being equal to v, we conclude that
zy converges to v.

Therefore, we can pass to the limit in inequalities (21) and obtain,
observing that w — v = (u — v)/2,

(22) (u—v,y) = 2{w —v,y) < 0 where y € F(z)

Since F(z) is closed and convex and since u € F(z) is the projection of v
onto F(z), we infer that

(23) (u—vyu—y) <0

Finally, Tk(z) being a cone and v € Tx(z) being the projection of u onto
this cone, and in particular, onto the half-line vR,, we deduce that

(24) (u—v,v) =0
Therefore, properties (22, 23, 24) imply that

s = oll? = {5 — v, ) + (= vy = y) + (u — v,3) < O
and thus, that u=v. O
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