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PREFACE

The aim of the Environment Frogram is to provide the knowledge
required for the development of policies aimed at ensuring
environmental security. We recognize that the environmental
issues cannot be treated in isolation if we are to achieve our
goal. Environmental issues are closely linked with global
concerns regarding increasing population, political and military
security, technological and economic change, and humanitarian and
social questions. Activities in the Frogram are therefore
focussed on environmental problem areas which possess urgent needs
for concise and realistic policy actions aimed at both reducing
the stresses on the environment and implementing adjustment
strategies. One of two themes in the Program is derived from
erxpected global climate change caused by increasing atmospheric
concentration of radiatively active gases, and its consequences
for managed and natural ecosystems, with particular emphasis on
agriculture, forestry and water resources.

The following paper is aimed directly at the guestions concerring
ow major source of information on future climate change, that is,
climate described by general circulation models (GCMs) of the
atmosphere. Each of the present suite of GCMs, used in exploring
climate response, 1s designed to correctly characterize different
aspects of atmospheric dynamics, and hence, none of them will
produce the same estimated daily temperature or precipitation
patterns. Ferhaps more important, none of the GCMs were developed
to assess climate response to radiatively—active gases. Hence,
none of them are more than coincidentally suited for the task, and
all have very serious deficiencies for the purpose. For these
reasons, Dr. Harrison’s discussion of the most prominant GCMs used
in climate change assessment, and her comparison of their output
characteristics is a critical document for our progress on climate
impacts research in the Environment Program. Harrison's paper
fills a void in the literature, allowing the biologists,
hydrologists, land planners, and agronomists involved in this
research to understand the nature, strengths and weaknesses of
predictions of climate response to increasing greenhouse gas
concentrations.

Frof. Bo R. Doos, Leader
Environment Frogram



AN INTRODUCTION TO GENERAL CIRCULATION MODELLING
EXPERIMENTS WITH RAISED CO,

Sandy P. Harrison
INTRODUCTION

The possible effects of raised CO, and other greenhouse
gases on climate have been investigated using general
circulation models (GCMs) by several modelling groups
including the UK Meteorological Office (UKMO), the US
National Center for Atmospheric Research at Boulder
(NCAR), the Goddard Institute for Space Studies, New York
(GISS), the Geophysical Fluid Dynamic Laboratory of NOAA,
at Princeton (GFDL), and Oregon State University, at
Corvallis (OSU). The results of these model experiments
are increasingly being used by specialists in other
disciplines to assess the potential impacts of the
greenhouse effect on other earth systems, including
natural vegetation, crops and water resources.

Although the various GCMs share many common
characteristics, they also differ in many ways, and the
differences quite substantially affect the results of
"greenhouse" simulations. Furthermore, the models are
continually being updated and refined in key areas of
uncertainty such as the representation of the ocean and
land surface, and of clouds. It is therefore important
that scientists concerned with impact assessments are
aware of the variety of model formulations and the kinds
of effects that different formulations will have on the
reliability of model experiments.

The aim of this paper is to describe the basic structure
of existing GCMs, the processes they simulate and how
these are represented, with emphasis on differences
between models that may be important for simulations of
the greenhouse effect. Tables 1 and 2 summarise the
characteristics of each model at the time of each set of
raised CO, experiments. The paper does not attempt to
describe the results of the simulations, which have been
reviewed by Manabe (1983), Schlesinger (1984),
Schlesinger and Mitchell (1985), Schlesinger and Mitchell
(1987), Mitchell (1988), Schlesinger (1988), Mitchell
(1989) and Schlesinger (1989).

GENERAL CIRCULATION MODELS

General circulation models (GCMs) are numerical
simulation models that represent the physics of the
atmospheric circulation mathematically. They simulate the
dynamics of the three-dimensional structure of the
atmosphere, coupled with the surface water and energy
balances (e.g. Henderson-Sellers and McGuffie, 1987;
Washington and Parkinson, 1986).

There are two basic types of GCM: grid-point and spectral
models. These two types differ in the techniques they use



to represent the horizontal structure of model variables
(Simmons and Bengtsson, 1984). In grid-point or finite-
difference models, variables are represented at a large
number of grid points obtained by dividing the Earth’s
surface into a regular rectangular grid. Several
different types of grid are used, the primary difference
being whether the grid is regular in longitude or
physical distance. The resolution of grid-point models is
generally in the range of 2-5° of latitude and longitude.
In spectral models, the variables are represented in
terms of truncated expansions of spherical harmonics. The
spatial resolution of spectral models is determined by
the level and type of truncation (Gordon and Stern, 1972;
Henderson-Sellers and McGuffie, 1987). Spectral models
have certain advantages over grid-point models: they are
less subject to numerical instability; they place fewer
limitations on the length of the time step; and, in
general, they are computationally more efficient (Manabe
et al., 1979b; Girard and Jarraud, 1982).

GCMs differ in the way they treat terrestrial geography.
The earliest models (sectorial models) had a 1limited
computational domain, corresponding to a sector of the
globe, and used an idealised distribution of 1land and
sea. Such models are useful exploratory tools but cannot
be used to simulate regional climatic changes. Later
models (global models) have a global computational domain
and incorporate so-called realistic geography: that is,
the distribution of land and sea corresponds to the real
world distribution. In practice, the distribution of
land, ice and sea in most models is made on a gridbox
basis, that is each gridbox is assigned to the category
which covers the 1largest area of the gridbox. The
resulting distribution of 1land, ice and water is
therefore simplified. For example, in many of the models
the Mediterranean and the Baltic are isolated bodies of
water with no outlet to the Atlantic, and islands such as
New Zealand are omitted because they are too small. The
GISS model 1is the only one which assigns fractional
values of land, ice and water to an individual gridbox.
Climatic variables (e.g. temperature) are calculated
separately for each category of surface type and an area-
weighted average value is then calculated for the entire
gridbox.

In sectorial models with idealised geography, the 1land
area was assumed to be flat. The global models with
realistic geography incorporate surface topography at a
scale appropriate to the model resolution. Since
elevation is represented as the average over a whole
gridbox, the resulting topography is highly smoothed. To
illustrate this: the highest model elevations in the
western United States are typically about 1800m in
comparison with actual maximum elevations of ca. 3660m.
Relatively small mountain systems such as the Alps may
not appear.



The models are driven (or forced) by incoming solar

radiation (insolation). In the simplest formulations,
annual average solar radiation is used. A slightly more
advanced method, allowing the effects of seasonal

differences in insolation to be approximated, is to force
the model with a monthly or seasonal average. For
example, some of the simulations made with the NCAR CCM
were forced by mean January and mean July values for
solar radiation.

The average intensity of solar radiation as it enters the
top of the atmosphere is known as the solar constant.
According to satellite measurements, the solar constant
is 1366-1367 W/m2. Different models use different values
of the solar constant. In some cases this is because they
use a pre-satellite estimate_(e.g. OSU which uses the old
"best" estimate of 1354 W/m“), in other cases the solar
constant is altered as a simple way to tune the model to
give a good simulation of the prssent climate (e.g. GFDL
uses a high value of 1443.7 W/m“ in some runs for this
purpose) . Such differences between models are
unimportant, provided inter-model comparisons are made on
simulated anomalies, i.e. differences between climatic
variables as simulated under perturbed (e.g. high CO,)
and normal (control) conditions.

The intensity of solar radiation is least when the earth
is furthest away from the sun (aphelion) in July and is
nearly 7% greater when the earth is closest to the sun
(perihelion) in January. Models with a true seasonal
cycle (e.g. UKMO, NCAR M88a, GISS Model II, GFDL G15, OSU
2ILM) vary the intensity of solar radiation through the
year in a realistic fashion. The most advanced models
incorporate not only the seasonal variations but also the
diurnal variations in solar radiation (e.g. UKMO, GISS
Model II).

CLIMATE FEEDBACKS

The response of the climate to changes in external
forcing (boundary conditions) is affected by a number of
positive and negative feedbacks. The most important
feedbacks are related to the behaviour of the ocean,
clouds, sea 1ice, and surface hydrology. The various
models, and indeed versions of individual models, deal
with the processes related to each of these feedback
mechanisms in substantially different ways. The processes
are sufficiently complex that a full physical simulation
is impossible; 1instead, the processes have to be
parametrised - represented approximately by simplified
equations. The parametrisation of surface processes and
clouds remains one of the key areas of uncertainty in
climate modelling.

Ocean Treatment

Oceans are wet (and therefore act as an unlimited source
of moisture for the hydrological cycle), they store heat,



they advect heat from the near-surface layers down to the
deep ocean, and they also advect heat (through e.qg.
currents) horizontally. The earliest attempt to
incorporate oceans into GCM experiments was by
prescribing SSTs from modern climatological data. These
prescribed swamp ocean models act as a moisture source,
but cannot respond to atmospheric temperature changes.
Energy-balance swamp ocean models calculate SSTs using an
energy-balance approach. Swamp oceans are wet, a
characteristic which affects both surface temperatures
and means that they act as a moisture source, but they do
not store or advect heat. They are run with an
atmospheric model forced by some kind of average value
for solar radiation.

Simple slab or mixed-layer oceans (e.g. UKMO 11ILM,)
represent an improvement in the treatment of ocean
behaviour because, in addition to acting as a moisture
source, they store heat. Slab oceans may have a fixed or
a seasonally-varying depth, prescribed from
climatological data to correspond to the isothermal
mixed-layer of the upper part of the ocean. Slab ocean
models can usefully be run with a full seasonal cycle and
thus simulate the effects of heat storage on the cycle of
sea-surface temperatures through the year. In the
simplest slab ocean formulations there is no attempt to
incorporate either horizontal heat advection or heat
advection into the deep ocean, with the result that
simulated SSTs are generally too high in equatorial
latitudes and too low towards the poles. More advanced
slab ocean models (e.qg. UKMO 111M,.) attempt to
parametrise the 2-dimensional dynamical behaviour of the
ocean (e.g. currents) through prescribed heat convergence
(or divergence). In other words, a pattern of heat
transport is included that more closely simulates the
present-day pattern of sea-surface temperatures.

Finally, there are fully computed ocean models (OGCMs)
which can be coupled to atmospheric GCMs (e.g. NCAR WM89,
GFDL COAM, OSU CGCM). OGCMs incorporate both heat storage
and 3-dimensional dynamics (Bryan, 1989). The simplest
method of linking OGCMs with atmospheric GCMs is to run
them simultaneously such that there is a continuous two-
way feedback between the atmosphere and the ocean
(Washington and Chervin, 1980). Such models (e.g. NCAR
WM89, OSU CGCM) are said to be synchronously coupled.
However, synchronously coupled atmosphere-ocean models
are very demanding of computer time. Capitalising on the
fact that the ocean responds much more slowly than the
atmosphere, various more complicated methods of linking
the ocean and atmospheric components have been developed
in order to reduce computing time (e.g. Manabe and Bryan,
1969; Bryan and Lewis, 1979; Manabe et al., 1979a).
Asynchronously-coupled ocean-atmosphere models (e.g. GFDL
COAM) are run sequentially, with the time-averaged output
of one component used to force the other component.
Asynchronous coupling is appropriate for model
experiments concerned with the long-term average response



to changes in CO, concentration, but investigations of
the evolution of climate through time can only be made
using synchronously coupled models (Washington and
Chervin, 1980).

Cloud treatment

Clouds affect how much of the incoming solar radiation
actually reaches the earth’s surface. Low clouds (within
2 km of the earth’s surface, cf. Slingo, 1990) reflect
back incoming radiation, and thus have a cooling effect
on surface temperatures. High clouds also reflect back
incoming solar radiation, but they reflect less than the
ground surface or low clouds in the infrared part of the
spectrum. Their net effect is therefore to raise surface
temperatures. The climate response to raised CO is
likely to be particularly sensitive to the treatment of
high cloud.

Early versions of the various models used a prescribed
cloud distribution, using climatological data on the
zonal and vertical distribution of clouds. Different
models used somewhat different climatological data for
prescribing cloud distribution. The same prescribed
distribution was used both for the control and raised co,
simulations. The raised CO, simulations therefore make no
attempt to incorporate the effects that might occur
because of changes in the distribution of clouds in a
warmer world.

The development of schemes to predict cloud distribution
made it possible to incorporate the effects of cloud
feedbacks (interactive clouds). In the simplest
predictive schemes, cloud cover is a function of relative
humidity (e.g. UKMO 111LM,, GISS model II, GFDL VC). A
number of more complex formulations, including an
explicit cloud water variable, have been developed by the
UKMO group. It 1is clear that climate sensitivity to
raised CO, varies according to the cloud predictive
scheme used (Mitchell et al., 1989), but the processes
involved are complex and it is not clear what is the best
way to predict cloud behaviour.

Sea-ice treatment

The role of sea ice in the climate system is discussed by
e.g. Hibler (1984), Semtner (1984), van Ypersele (1989).
Sea ice has a higher albedo than sea water (0.6-0.7 for
bare ice, and up to 0.9 for snow-covered ice) and thus
increases the amount of solar energy reflected back into
space. Sea ice formation can also lead to a marked
reduction in surface temperatures because sea ice is
relatively isolated from the ocean heat reservoir. Sea
ice acts as a barrier to exchanges between the atmosphere
and ocean (e.g. of sensible heat, momentum, water vapour,
CO,). Finally, the expulsion of salt during sea ice
formation increases the density of the sea water beneath



the ice, destabilises the water column, and is thought to
play an important role in deep ocean circulation.

Sea ice formation and melting are governed by heat fluxes
between the atmosphere, the ice and the ocean. In the
earliest model experiments the extent of sea ice was
prescribed from climatological data. In model experiments
with a energy-balance swamp ocean, sea ice exists
whenever the SST is below the value at which sea water
freezes. In experiments with a slab ocean, the existence
and thickness of sea ice 1is determined by an energy
budget scheme which includes accumulation through
snowfall and sea water freezing, and destruction through
ice melting and sublimation.

The NCAR and GFDL coupled atmosphere-ocean models
incorporate a simple thermodynamic sea-ice model, based
on Semtner (1976), which predicts sea ice formation and
extent. The OSU CGCM uses a slightly more advanced
thermodynamic model (Parkinson and Washington, 1979)
which allows for the horizontal inhomogeneities of sea
ice (e.g. the presence of open water areas or leads).

Sea ice moves in response to winds and currents, and
since it is not a rigid material may also deform under
pressure. This dynamic behaviour controls ice
distribution and thickness, and can thus affect the heat
exchange between the atmosphere and the ocean. Although
dynamic sea-ice models are being developed that
incorporate these complexities (e.g. Hibler, 1979, 1988;
Semtner, 1987), they have not been incorporated into
coupled atmosphere-ocean models.

80il moisture treatment

The storage of moisture in the soil affects heat and
moisture fluxes. Moist soil loses energy through latent
heat flux and remains cool, but dry ground warms until it
is hot enough for energy to be lost through sensible heat
flux. As a result, surface temperatures are considerably
higher over dry ground. The soil also acts as a source of
moisture for precipitation: rainfall is increased locally
in areas with high soil moisture stores (Manabe, 1975;
Charney et al., 1977; Shukla and Mintz, 1982; Rind,
1982). Changes 1in soil moisture storage are therefore
likely to have important feedback effects on climate.

The treatment of soil moisture storage in most GCMs is
relatively simple: the so0il is represented as a bucket
with a fixed water-holding capacity, most commonly the
equivalent of 15 cm of water. The simulated moisture
content of the soil is increased by rainfall,
condensation and snowmelt, and decreased by evaporation.
When the bucket is full, that is when the soil is
saturated, additional moisture inputs are 1lost to the
system as runoff. This use of the term runoff is not
equivalent to its standard use in hydrology, since there
is no mechanism to transport excess moisture horizontally



over the land surface. Evaporation is assumed to occur at
potential rate when the amount of water in the soil
bucket reaches a specified level, which varies between
33-75% of maximum water-holding capacity in different
models. The ratio of evaporation to potential evaporation
is generally treated as a 1linear function of soil
moisture content up to this specified level.

In the real world, runoff is also generated when the rate
of moisture delivery is greater than the rate at which
the soil can absorb it (the infiltration rate). The
infiltration rate is partly dependent on soil type. Some
models (e.g. the UKMO 11LM_ model) parametrise this
process by increasing runoff non-linearly as a function
of precipitation rate, and by assigning different rates
of increase to different soil types. Moisture can also be
lost from the soil through gravitational drainage out of
the root zone. The rate of gravitational drainage is
again dependent on soil type. Gravitational drainage is
included in some model representations of the soil, and
is parametrised as a non-linear function of soil moisture
content and soil type.

In reality, soil water-holding capacity varies with soil
type, structure, layering and depth. Furthermore, the
distribution of moisture within the soil is an important
determinant of the ease with which water can be removed,
either through evaporation from the surface or by
gravitational drainage. The treatment of surface
hydrology in GISS Model II attempts to include these
complexities. In the GISS model, the soil is treated as a
two~-layer bucket in which each layer can have a different
water-holding capacity and water-holding capacity is
varied geographically. The moisture content of the top
layer is increased by rainfall, condensation, snowmelt
and upward diffusion from the lower layer, and decreased
by evaporation and gravitational drainage into the lower
layer. The moisture content of the 1lower layer is
increased by gravitational drainage from above and
decreased by upward diffusion into the upper layer.
Unfortunately, in the implementation of this soil model
many of the advantages of the advanced conceptualisation
of so0il processes are lost. The treatment of soil
moisture storage and surface hydrology remains one of the
weaker parts of current climate models.

Considerably more complex and realistic treatments of
fluxes between the land surface and atmosphere, including
water vapour flux, are included in such models as the
Simple Biosphere (SiB) model (Sellers et al., 1986, 1988)
and the Dbiosphere-atmosphere transfer scheme (BATS)
(Dickinson et al., 1986; Wilson et al., 1987). These
models are designed for incorporation into GCMs and for
investigating the effects of land-surface characteristics
(such as vegetation structure) on the atmosphere.
However, these more complex models are not included in
any of the raised CO, simulations discussed here.



EQUILIBRIUM AND TRANSIENT GCM EXPERIMENTS

When a system is perturbed, changes occur until the
system is once more in equilibrium with the external
conditions (forcing). Most GCM simulations of the effects
of raised CO, have simulated this equilibrium response to
an instantaneous or step-function increase in CO,. 1In
general, the models have simulated the response to a
large increase in CO, (e.g. a doubling or quadrupling) in
order to optimise the chance of distinguishing the
effects of the CO, increase from the natural day-to-day
and year-to-year variability that is a feature of both
the real atmosphere and of GCM simulations.

The speed with which equilibrium is re-established after
a step-function change in external conditions depends on
the magnitude of the change and the response times of the
components of the system. The climate system is complex,
and its various components respond at different rates.
The atmosphere itself responds relatively quickly
(weeks), while the greater heat capacity of the oceans
means that they respond more slowly. It is thought that
the state of the mixed-layer of the ocean may lag
radiation changes by several decades (e.g. Hasselmann,
1979; Thompson and Schneider, 1979; Hoffert et al., 1980)
and the full 3-dimensional system of ocean currents may
have even greater inertia. Finally, large continental ice
sheets take thousands of years to build or melt (Imbrie,
1985).

The time-dependent or transient response of the climate
system on a time-scale of decades to centuries can be
investigated using coupled ocean-atmosphere models. The
transient response to a step-function increase in CO
concentration has been investigated using the NCAR wnss
model, the GFDL COAMy, model, and the OSU CGCM. These
simulations do not allow for |possible ice-sheet
reduction, but they do explicitly include the dynamics of
the ocean circulation which may act to delay the full
effects of the change.

However, CO, is actually increasing continuously. It has
been suggested that the transient and equilibrium
responses to changing CO, concentrations may not be very
different if the change in small and occurs slowly, but
could be significantly different when the change is large
and/or fast (Schneider and Thompson, 1981; Harvey, 1989).
The transient response to a large step-function increase
in CO, concentration may be significantly different from
the transient response to gradually increasing CO,. The
NCAR WM89 model has been used to investigate the
transient response to a continuous increase in CO,
concentration.

Model runs forced by continuously changing €O, and other
greenhouse gases have also been made by the GISS group
(e.g. GISS IId). However, although these experiments were
described as transient runs (because they are subject to



so-called "transient forcing", i.e. a continuous change
in the radiation regime), they were made with a slab
ocean and thus could not simulate the transient response
of the ocean circulation.

RAISED Co, EXPERIMENTS
UKMO model

The first set of raised CO, experiments (Mitchell, 1983)
was made with the 5ILM version of the UKMO grid-point
model, as described by Slingo (1982) and developed from
the original formulation of Corby et al. (1977). The
model has 5 vertical 1layers and a quasi-uniform
horizontal grid with a grid 1length of approximately
330km. The model takes into account both the diurnal and
the seasonal variations 1in solar radiation. Cloud
behaviour is prescribed, using 2zonal mean cloud amounts
derived from seasonal climatological data sets. Sea
surface temperatures (SSTs) and sea-ice extent are
prescribed from climatological data sets. The albedos of
sea, sea ice and permanent snow are fixed, the albedo of
snow-free land varies as a prescribed function of
latitude (following Corby et al., 1977), and the albedo
of snow covered land is a function of snow depth. The
treatment of surface hydrology is relatively simple: the
moisture content of the soil is increased by rainfall,
condensation and snowmelt, and decreased by evaporation.
The maximum amount of soil moisture storage is 20cm, and
"runoff" occurs when the soil is saturated. The ratio of
evaporation to potential evaporation is a linear function
of soil moisture content, such that evaporation occurs at
the potential rate when soil moisture is equal to or
greater than 10cm.

The control experiment (Mitchell, 1983) was run for 1192
days, with "normal" CO, and modern SSTs and sea-ice
extent. The results are averaged over the last 3 years
(1095 days) of the simulation.

The first experiment (2xCO,) was run for Jjust over one
year, with doubled CO and modern SSTs and sea-ice
extents. The results are averaged over the last year (365
days) of the simulation. This experiment estimates the
short term response to an instantaneous increase in CO
in the absence of cloud or ocean feedbacks. Since
vertical mixing between the mixed layer and the deep
ocean could delay the oceanic response, this experiment
provides a useful lower 1limit to possible climatic
changes due to doubling CO,.

The second experiment (C2S2) was initialised from day 153
(late October) values of the 2xCO, experiment, and run
for 855 days with doubled CO, and SSTs increased
everywhere by 2K. The results are averaged over the final
two years. The experiment estimates the possible effects
of oceanic feedbacks on the response to CO, doubling. It
is assumed that the <CO, effect on he ocean is



sufficiently small to be considered as a perturbation of
the basic global circulation. The estimate of 2K is a
plausible value for the temperature increase based on the
range of estimates from single column radiative-
convective equilibrium models.

The third experiment (10xCO,) was run for just over one
year, with decupled CO, and modern SSTs and sea-ice
extents. The results are averaged over the last year of
the simulation. The experiment improves the chance of
detecting local responses raised CO, concentrations by
enhancing the response to relative to the level of the
model’s natural variability. The response to increasing
CO, 1is thought to vary logarithmically with cO

concentration, so the changes in this simulation shoul

be 3.3 times those in the 2xCO, experiment.

Mitchell and Lupton (1984) used the 5LM version of the
UKMO model to examine the response to quadrupled Co,
levels.

This experiment (C4SL) was run for 1134 days from day 148
(22 October) of the control run, with quadrupled CO, and
prescribed SSTs which were changed by different amounts
depending on latitude. The SST increments were chosen, on
the basis of previous experiments, such that there was no
net change in surface heating at each 1latitude. This
constraint requires that the implied zonally-averaged
meridional advection of heat by the ocean is unchanged.
The extent of sea-ice 1is reduced compared to previous
experiments (e.g. C2S2). The results are averaged over
the final 3 years (1095 days) of the simulation.

Note that in order to compare the results from C4SL with
previous experiments, Mitchell and Lupton (1984) refer to
a hypothetical experiment (C4S4). The "results" from this
experiment are simply double those of C2S2.

Wilson and Mitchell (1987a) used the 5LM model to examine
the consequences of raised CO, concentrations for the
climate of Europe. The control run (control,,¢) was the
same as that described in Mitchell (1983), except that it
was extended to 1464 days (4 yr). The results were
averaged over the last 1095 days (3 yr) of the
simulation. The experimental run (C4SL.,,+) was the same
as the 4xCO, experiment of Mitchell aﬁﬁ Lupton (1984),
except that it was extended to 1316 days. The results
were again averaged over the last 3 years (1095 days) of
the simulation.

Mitchell et al. (1987) describe raised CO, experiments
made with an higher resolution version of the UKMO model,
the 11IM version. The model has 11 vertical layers and a
reqular grid of 2.5° latitude by 3.75° longitude. The
model takes into account both the diurnal and the
seasonal variations in solar radiation. Cloud behaviour
is prescribed, using zonal mean cloud amounts derived
from seasonal climatological data sets. Sea surface
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temperatures (SSTs) and sea-ice extent are prescribed
from climatological data sets. The albedos of sea, sea
ice, permanent snow, land and snow-covered land are all
fixed. The treatment of surface hydrology is the same as
in the 5LM version, except that full evaporation takes
place when the soil moisture content is 5cm, and runoff
when it is 15cm.

The 11IM version has been described by Slingo (1985a,
1985b) and a comparison of the two versions, using a
220km quasi-uniform grid, was made by Mitchell and Bolton
(1983). The large-scale responses of the two models are
apparently similar, but there are important differences
at a regional scale (e.g. 1in precipitation). The
climatology of the 11LM version is somewhat more similar
to climatological observations, particularly with regard
to precipitation.

The control experiment (Mitchell et al., 1987) was run
for 8 years starting with real data for 25th July 1979,
with "normal" CO, and modern SSTs and sea-ice extent.
Seasonal values were averaged over the 8 years while
annual mean values were apparently computed from the last
2 years of the run.

The experiment (2C2S) was initialised from 1 March of the
2nd year of the control and run for 3 years, with doubled
CO, and SSTs increased everywhere by 2K. Seasonal values
were averaged over the 3 years while annual mean
quantities were computed from the last 2 years of the
experiment.

Subsequent raised CO, experiments (Wilson and Mitchell,
1987b; Mitchell and Warrilow, 1987; Mitchell et al.,
1989) have been made using slightly modified versions of
the 11LM model, coupled to a simple "slab" ocean with a
50m fixed-depth oceanic mixed layer and an energy-balance
sea-ice model. The 2-dimensional dynamic behaviour of the
ocean (e.g. heat advection by currents) is simulated
through the prescription of oceanic heat convergence.

The version used by Wilson and Mitchell (1987b) has 11
vertical layers and a reqgular grid of 5° latitude by 7.5°
longitude. Cloud behaviour is predicted, using a scheme
where cloud cover is a function of relative humidity (RH
scheme). The albedos of sea, sea ice, and permanent snow
are fixed; land albedo varies geographically according to
vegetation cover and soil type (based on data in Wilson
and Henderson-Sellers, 1985); the albedo of snow-covered
land varies with snow depth.

The control experiment (Wilson and Mitchell, 1987b) was
run for 20 years, with a CO, level of 323 ppmv. The
results are averaged over the 1last 15 years of the
simulation.

The experiment (2xCO,) was started from the end of year 7
of the control simulation and run for 38 years, with
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doubled CO, (646 ppmv). The results are averaged over the
last 15 years of the simulation. Although the control run
had reached equilibrium after 10 years, after 25 years
the experiment had only reached 90% of the final
equilibrium level. This experiment estimates the response
to an instantaneous increase in CO, taking into account
possible cloud and ocean feedbacks.

The sensitivity of the response to raised CO, to the
model’s representation of 1land surface hydrology was
investigated by Mitchell and Warrilow (1987). They used
the version of the 111M-slab ocean model described in
Wilson and Mltchell (1987b), with a regular grid of 5°
latitude by 7. 50 longitude, cloud behaviour predicted
according to the RH scheme, and geographically varying
land albedo. However, the surface hydrology was altered
such that "runoff" is generated when the infiltration
capacity of the soil is exceeded as well as when the soil
is saturated, and water can be removed from the soil by
gravitational drainage from the root zone in addition to
evaporation. Runoff increases non-linearly with
precipitation, the rate of increase being more rapid with
convective precipitation, and also increases from coarse
to fine soils. Drainage from the root zone increases non-
linearly with soil moisture content, and decreases from
coarse to fine soils. The root depth, which affects the
partitioning between runoff and evaporation, is set to 1m
(considered typical for woodland vegetation).

Three control simulations and three doubled Co,
experiments were run with this model(controlcl
control .4, controlg etc.), using runoff and dralnage
parameters approprlalt\e to clay, medium and sandy soils
respectively. A further paired set of runs (control
and 2xCO,¢,,) with a medium soil was made in which gﬁe
infiltration capacity of frozen soil was set to zero, so
that runoff occurred immmediately with all rain or snow-
melt events. All the simulations were run for 6 years.
The results are averaged over the last 5 years of each
simulation.

The sensitivity of the response to raised CO, to the
model’s parametrization of cloud processes was
1nvest1gated. by Mitchell et al. (1989). They used the
version of the 11IM-slab ocean model described in
Mitchell and Warrllow (1987), with a regular grld of 5°
latitude by 7.5° longitude, geographically varying 1land
albedo, and the more complex surface hydrology
formulations. However, a series of different schemes were
used to predict cloud behaviour. Cloud treatment was
changed by including an explicit cloud-water variable for
all but deep convective cloud, to incorporate the effects
of changes in the state of cloud water (CW scheme). In
the first version of this scheme, ice-cloud particles
form as a functlon of temperature once the temperature
falls below 0° C and are assumed_to start falling at once
with a fixed fall speed of 1m s *. In a second version of
the scheme (CWH) the ice fall speed is parametrized in
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terms of ice-water content. A third version of the scheme
(CWRP) modifies the CW formulation so that cloud
radiative properties vary with cloud water content.

Control (320 ppmv) and doubled CO, (640 ppmv) simulations
were made with each of these cloud schemes. The results
are averaged over the last 5 years of each simulation.
The results are compared to the runs made using the RH
cloud scheme presented by Mitchell and Warrilow (1987).
Note that there appears to be a slight discrepancy
between the CO, concentrations used in the two sets of
experiments.

NCAR Community Climate Model

The NCAR Community Climate Model (CCM) is a spectral
model with so-called realistic geography that evolved
from the Australian spectral model described by Bourke et
al. (1977) and McAvaney et al. (1978).

The first set of raised CO, experiments (Washington and
Meehl, 1983) were made with a version of the model
described by Pitcher et al. (1983). The model has 9
vertical layers and a horizontal resolution of 4.4°
latitude by 7.5° longitude (i.e. 40 by 48 grid points).
The model is driven by Snnual average solar forcing, with
a value of 1370 W m~ for the solar constant. Cloud
behaviour 1is prescribed, from climatological data sets.
SSTs and sea-ice extent are calculated using a simple
energy-balance swamp ocean. The albedos of sea, sea ice,
permanent snow, desert and non-desert land are fixed.
There is no allowance for the gradual attenuation of snow
or sea-ice cover, so albedo of a grid cell only changes
when the whole cell is free of snow or ice. This
constraint is 1likely to reduce the model sensitivity at
high 1latitudes to increases in CO,. The treatment of
surface hydrology follows Washington and Williamson
(1977): the moisture content of the soil is increased by
rainfall and snowmelt, and decreased by evaporation. The
maximum amount of soil moisture storage is 15cm, and
"runoff" occurs when the soil is saturated. The ratio of
evaporation to potential evaporation is a linear function
of soil moisture, such that evaporation occurs at the
potential rate when soil moisture is equal or greater
than 11.25cm.

The control experiment (Washington and Meehl, 1983) was
run for 600 days, with modern CO, and SSTs and sea-ice
extent. The results are averaged over the last 360 days
of the simulation.

The 2xCO, and 4xCO, experiments were also run for 600
days, with doubled and quadrupled CO, respectively. The
results were averaged over the lasg 360 days of the
simulation.
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A second set of experiments (Washington and Meehl, 1983)
was made with a version of the model with an interactive
cloud scheme, as described by Ramanathan et al. (1983).
In this version, cloud formation occurs when relative
humidity is greater than 80%, and convective clouds are
formed when the vertical gradient of the equivalent
potential temperature is less than zero.

The control experiment (Washington and Meehl, 1983) was
run for 670 days, with modern CO, and SSTs and sea-ice
extent. The results are averaged over the last 360 days
of the simulation.

The 2xCO, and 4xCO, experiments were also run for 670
days, with doubled and quadrupled CO, respectively. The
results were averaged over the lasg 360 days of the
simulation.

Washington and Meehl (1986) used the same version of the
model, with interactive clouds and a simple energy
balance swamp ocean, to investigate the sensitivity of
co, response to sea-ice and snow albedo/melting
parametrization. In the original experiments, described
in Washington and Meehl (1983), sea ice forms at -1.8° ¢
and always has an albedo of 0.7, while the albedo of snow
was set at 0.8 for the shortwave and 0.55 for the
longwave part of the solar spectrum. In the revised
formulation (SSIA), sea ice and snow albedos vary with
temperature, such that the albedo of sea ice is 0.35 if
the surface temperature is > =-10° ¢ and 0.7 if the
temperature is < or equal to -10° ¢, and similarly snow
albedo is set to 0.4 if the surface temperature is > -10°
C gnd 0.8 if the surface temperature is < or equal to -
10~ C.

The effects of ice-albedo feedback on the response to Co,
warming should be greater when the initial conditions are
colder, and there is therefore more snow and sea ice. In
order to test this, Washington and Meehl (1986) ran an
additional set of experiments (SSIA+DSC) in which the
surface temperature of the control run was _lowered by
reducing the solar constant by 2% to 1343 W m™ “.

The SSIA control and doubled CO, runs were all started at
the end of the original 670-day control simulation
described in Washington and Meehl (1983) and run for an
additional 1040 days. The results are averaged of the
last 360 days of the simulations. The SSIA+DSC control
and doubled CO, runs were also started at the end of the
original 670-day control simulation and run for 680 days.
The results are again averaged over the last 360 days of
the simulations.

Washington and Meehl (1984) describe raised co
experiments with the NCAR CCM, coupled to a simple sla
ocean with a 50m fixed-depth oceanic mixed layer. SSTs
are determined by a simple energy balance and seasonal
heat storage. There is thus no attempt to simulate ocean
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heat transport. The initial formation of sea ice depends
on SST, and its subsequent growth and melting on a simple
energy-balance model. The atmospheric model has 9
vertical layers and a horizontal resolution of 4.5°
latitude by 7.5° longitude (i.e. 40 by 48 grid points),
and takes into account seasonal variations in solar
radiation but does not include a diurnal cycle (Meehl and
Washington, 1988). Cloud behaviour is predicted,
according to the scheme of Ramanathan et al. (1983). The
albedos of sea ice, snow-covered surfaces, desert and
non-desert land are fixed; sea albedo varies as a
function of solar zenith angle. The treatment of surface
hydrology follows Washington and Williamson (1977).

The control experiment was started from the end of the
annual mean solar forcing experiment described by
Washington and Meehl (1983), then run through 12 solar
cycles each lasting ca 40.6 days (1st phase), then ¢
solar cycles each lasting ca 121.7 days (2nd phase), and
finally run for 11 solar cycles with the standard 365-day
length. The results are averaged over the last 3 years of
the simulation.

The 2xCO, experiment was started at the beginning of 2nd
phase of the control run, and then run through 4 solar
cycles each lasting 40.6 days and then 11 solar cycles of
the standard 1length. Thus the total 1length of the
experimental run was 15 years. The results are averaged
over the last 3 years of the simulation.

Results from these experiments are also analysed in Meehl
and Washington (1985), Bates and Meehl (1986), Meehl and
Washington (1986), Dickinson et al. (1987) and Meehl and
Washington (1988).

Meehl (1988) describes a series of experiments made with
the atmospheric GCM described by Washington and Meehl
(1984). In the first experiment (SPEC  SST) the
atmospheric GCM is coupled to a swamp ocean and driven by
the annual cycle of observed SSTs. This experiment
differs from earlier runs with a swamp ocean because it
includes a seasonal cycle. The model is run for 5 years,
and results are averaged over the last 3 years of the
simulation. In the second and third experiments (MIX1 and
MIX2), the atmospheric GCM is coupled to a simple mixed-
layer slab ocean as described by Washington and Meehl
(1984). MIX1 is run with modern CO,, and MIX2 with
doubled CO,. Both experiments are run for 12 years,
preceded by 2 phases with accelerated annual cycles.
Results are averaged over the last 3 years of each
simulation. Note that Meehl (1988) describes the MIX1 and
MIX2 runs as though they are equivalent to the control
and doubled CO, runs of Washington and Meehl (1984), but
the length of the final phase with the non-accelerated
annual cycle in the earlier paper is only 11 years.

The sensitivity of the climate response to raised CO, to
the model parametrization of cloud processes has been
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investigated using a 12-layer version of the NCAR CCR
(Slingo, 1990), driven by average solar radiation for
January and July, with prescribed sea surface
temperatures. The first version (12LM;) has a horizontal
resolution determined by rhomboidal spectral truncation
at wave 15 (ca. 4.5° latitude by 7.5° longitude), and
clouds predicted using the "standard" scheme. 1In the
second version (12IM,), the horizontal resolution is the
same but the cloud prediction scheme of the ECMWF medium-
range forecast GCM is used. The third version (12LM3) has
a higher horizontal resolution, determined by triangular
spectral truncation at wave 42 (ca. 2.8° latitude by 2.8°
longitude), and uses the ECMWF cloud prediction scheme.
Experiments were run with doubled CO,. The results were
averaged over 500 days of each simulation.

Washington and Meehl (1989) and Washington (1990)
describe raised CO, experiments with the NCAR CCM,
synchronously coupled to a coarse-grid ocean general
circulation model. The atmospheric model is the seasonal-
cycle version of the NCAR CCM described by Washington and
Meehl (1984). The atmospheric model has 9 vertical
levels, a horizontal resolution of 4.5° x 7.5°,
interactive clouds, and a simple soil bucket model. The
albedos of sea ice, snow-covered surfaces, desert and
non-desert 1land are fixed; sea albedo varies as a
function of solar zenith angle. The ocean general
circulation model (OGCM), which was adapted from Semtner
(1974), has been described by Washington et al. (1980)
and Meehl et al. (1982). It has 4 vertical layers and a
horizontal resolution of 5° 1latitude by 5° 1longtitude.
- Sea-ice formation and extent are calculated using a
simple thermodynamic model (Semtner, 1976).

The ocean model was started from the end of an uncoupled
ocean model experiment with observed atmospheric forcing
(Meehl et al., 1982). The atmospheric model was started
from the 15th year of the climate simulation described by
Washington and Meehl (1984). The coupled model was then
run synchronously for 16 years (though with several
changes in ocean diffusion parameters). Three experiments
(control, 2xCO,, and transient CO,) were begun at this
point and each run for a further 30 years.

The control experiment (Washington and Meehl, 1989) was
run with CO, concentration set to 330 ppmv. The doubled
CO, experiment (Washington and Meehl, 1989) was run with
Co, concentration set to 660 ppmv (equivalent to an
instantaneous doubling of CO,). In the transient
experiment (Washington and Meehl, 1989; Washington,
1990), CO, concentration was started at 330 ppmv and
increased 1linearly by 1% a year, such that the co,
concentration was 429 ppmv by the end of the 30 year run.
The results of the various experiments are averaged over
the last 5 years of the simulations.
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GIS8 model

The GISS GCM 1is a grid-point model with so-called
realistic geography. The basic structure and development
of the model are described by Hansen et al. (1983).

The first set of raised CO., experiments (Hansen et al.,
1984) were made with a slightly modified version of Model
II (Hansen et al., 1983). The model has 9 vertical layers
and a horizontal resolution of 8° 1latitude by 10°
longitude. Each grid cell has appropriate fractions of
land, ocean and sea ice. The model takes into account
both the diurnal and the seasonal variations in solar
radiation. The value of the solar constant is taken as
1367 W m “. Cloud cover and height are computed, using a
relative humidity type scheme. In the documented version
of Model II, SSTs ands sea ice extent are prescribed from
climatological data sets. In the modified version used
for the raised CO, experiments, SSTs and sea ice extent
are computed using a simple mixed layer ocean with a
maximum depth of 65m (Hansen et al., 1984). Ocean heat
transport is obtained from the divergence of heat implied
by energy conservation at each ocean grid point, using
mixed layer depths specified from monthly climatological
data. The heat capacity of the mixed 1layer is also
prescribed. Ocean ice cover is computed by a simple
energy-balance model, such that sea ice grows
horizontally until the whole grid cell is covered and
then increases 1in thickness. The temperature of the
oceanic mixed layer is not allowed to exceed 0° C until
all the ice in a grid cell has melted; the excess heat is
used to melt the ice. Sea ice, land ice and sea albedos
are fixed. Land albedo is a function of vegetation type,
with a separate value for each season in both the visible
and the near IR part of the spectrum. The distribution of
the 8 vegetation types (desert, tundra, grass, shrub,
woodland, deciduous, evergreen and rainforest) are
derived from data in Matthews (1983). Snow albedo depends
on snow depth, age, masking by vegetation and the albedo
of the underlying ground. Surface hydrology is
characterised by a spatially-variable two 1layer soil
bucket. The field capacity, or maximum amount of water
storage, of each 1layer is specified according to
vegetation type, such that the field capacity of the
upper layer is 1 cm in desert, 3 cm for tundra,
grassland, shrub, woodland, deciduous and evergreen, and
20 cm for rainforest; the field capacity of the 1lower
layer is 1 cm in desert, 20 cm in tundra and grassland,
30 cm in shrub and woodland, and 45 cm in deciduous,
evergreen and rainforest (Rind, 1984). The field capacity
of each grid cell is determined by area weighting the
values associated with each vegetation type over the
cell. Rain falling onto the surface is divided into
runoff and infiltration. Runoff is proportional to the
fractional wetness of the top soil layer (that is the
actual moisture content divided by field capacity) and
the precipitation rate, such that there is no runoff when
the top layer of the soil is dry, and runoff increases

17



linearly as a function of soil wetness up to a maximum of
half the precipitation rate, except that all the
precipitation runs off when the top layer is saturated.
The soil moisture content of the top layer is reduced by
evaporation (a function of soil moisture content and
potential evaporation, where potential evaporation is
based on a drag law parametrization) and drainage into
the lower soil layer. The rate of downward drainage is
proportional to the field capacity of the top layer and
the difference in soil wetness between the top and bottom
layers. Downward drainage is effectively suppressed
during the ‘"growing season" by the assumption that
upward diffusion is infinitely fast. The growing season
is defined as the whole year between 30°N and 30° s, May-
August north of 30° N, November-February south of 30° s;
there is assumed to be no growing season 1in desert
regions.

The control experiment (Hansen et al., 1984) was run from
January 1lst for 35 years, with a Co, level of 315 ppmv.
The results are averaged over the last 10 years of the
simulation.

The 2xCO, experiment (Hansen et al., 1984; Rind, 1988a,
1988b) was also run from January 1lst for 35 years, with
an instantaneous doubling of CO, to 630 ppmv. The results
are averaged over the last 10 years of the simulation.
Since the ocean heat transport is constrained to be the
same as in the control run, there is no ocean feedback
effect in this simulation.

The control simulation produces ca 15% less sea-ice than
observed. In order to assess the role of sea ice in
climate sensitivity to CO,, a second set of experiments
(Hansen et al., 1984; Rind, 1988) was run with a modified
version of the model in which the constraint that the
ocean mixed layer cannot exceed 0° C until all the sea
ice in a grid cell has melted is removed. The control run
with this version gives 23% greater sea ice than
observed.

The 1length of the alternate control run and alternate
2xCO, run are not specified. Results are averaged over
the iast 5 years of these runs (Rind, 1988a).

Rind (1987, 1988a, 1988b) used the fine-grid version of
GISS model II to examine the impact of changes in the SST
gradient of the climate response to raised CO,. This
version of the model has a vertical resolution of 9
layers, a horizontal resolution of 4° 1latitude by 5°
longitude, and prescribed ocean behaviour. Other features
of the model are as described in Hansen et al. (1983,
1984).

The control simulation (Rind, 1987) was initialised from
a previous simulation of several years length and run for
3.5 years, with 315 ppmv Co, and prescribed SSTs. The
prescribed SSTs were the average SSTs of the last 10
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years of the coarse-grid control simulation (Hansen et
al., 1984). The results are averaged over the last 3
years of the simulation.

The 2C02 experiment was initialised in the same way as
the control simulation and run for 3.5 years, with 630
ppnv CO, and prescribed SSTs. The prescribed SSTs were
the average SSTs from the last 10 years of the coarse-
grid 2xCO, simulation (Hansen et al., 1984).

A second, and otherwise similar, raised CO, experiment
(ALT 2xCO,) was made in which the prescribed SSTs were
selected so as to amplify the high latitude changes and
reduce the low latitude changes. This experiment resulted
in about 5% less sea ice than 2C02. The experiment was
run for 3 years.

Hansen et al. (1987, 1988) describe a series of
experiments designed to investigate the transient climate
response to rising CO, levels. The experiments were made
with a slightly modified version of Model IIa (Hansen et
al., 1983), which differs from the previous version only
in that the maximum mixed layer depth is prescribed from
seasonal observations rather than being fixed at 65m.

Hansen et al. (1987) made two transient runs using
different radiative forcing scenarios (Case A and Case
B), thought to bracket the actual rate of change in
greenhouse forcing. Both runs use documented (in the case
of CO,) or estimated (in the case of CCl CCl,F, CH,,
and N,0) changes in trace gases between 135% and 1984 and
also include documented changes in stratospheric aerosols
for this period (in particular those arising from the
eruptions of Mt. Agung, 1963-1965, and El1 Chichon, 1982-
1985). Case A is based on the assumption that the growth
rates of trace gases will continue to increase, but that
the next few decades will be free of volcanic eruptions
creating large stratospheric effects. Details of the
rates of change of individual trace gases used in this
run are given 1in Table 3. Case B makes similar
assumptions to Case A, except that the increases in
chlorofluorocarbons are multiplied by 1.15, and CH, and
N,O are also increased. The net greenhouse forc1ng is
about 25% more than in Case A. The simulations are run
from 1958 to 2001 (44 years).

Hansen et al. (1988) describe a separate set of transient
experiments. The control simulation (Hansen et al., 1988)
was run for 100 years, with atmospheric composition fixed
at estimated 1958 values (315 ppmv for CO,, 1400ppbv for
CH,, 292.6 ppbv for N,O0, 15.8 pptv for CCl,F and 50.3
pptv for CCl,F,).

Three transient runs (Hansen et al., 1988) were made
using different radiative forcing scenarios (A, B and C).
All the runs use documented (in the case of CO,) or
estimated (in the case of CCl,F,, CCl,F, CH,, and N,O0)
changes in trace gases between 19 58 and 1984 and also
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include documented changes in stratospheric aerosols for
this period (in particular those arising from the
eruptions of Mt. Agung, 1963-1965, and El1 Chichon, 1982-
1985). Scenario A 1is based on the assumption that the
growth rates of trace gases will continue to increase
exponentially, but that the next few decades will be free
of volcanic eruptions creating 1large stratospheric
effects. The potential effects of 05, stratospheric H,0
and minor chlorine and fluorine compounds are
approximated in this scenario by doubling the estimates
for CCl;F and CCl 2° Scenario B (Hansen et al., 1988:
Rind et al., 1989? 1s based on the assumption that the
growth rates of trace gases will decrease, such that the
increase in greenhouse forcing will be linear, but that
the mean stratospheric aerosol optical depth will be
comparable to that in the volcanically active period
1958-1985. Scenario C is based on the assumption that the
growth of trace gases is reduced between 1990-2000, such
that greenhouse forcing ceases to increase after 2000,
but that the mean stratospheric aerosol optical depth
will be comparable to that in the volcanically active
period 1958-1985. Neither Scenario B nor C make any
attempt to include the potential effects of 0,,
stratospheric H,0, and minor chlorine and fluorine
compounds. Details of the trace gas and stratospheric
aerosol changes used in each simulation are given in
Table 4. All three simulations are run from 1958 to 2060
(102 years). Scenario A reaches a climate forcing
equivalent to doubled CO, by 2030, Scenario B by 2060,
but Scenario C never reaches that level.

GFDL model

The first set of raised CO, experiments (Manabe and
Wetherald, 1975) were made with a grid-point model of
limited computational domain with idealized geography, as
described by Manabe (1969). The model (MW75) has 9
vertical layers and a quasi-uniform grid with a
resolution of ca. 500 km. The model is driven by annual
average solar focing, and diurnal variations are
eliminated by wusing the effective mean zenith angle.
Cloud behaviour is prescribed from climatological data,
and is a function of latitude and height only. SSTs of
the swamp ocean are calculated using a simple energy-
balance swamp ocean. Land and sea albedos are a function
of latitude (Manabe, 1969). Snow and sea ice albedos are
fixed: when the surface temperature is below -25° C both
have an albedo of 0.7; when the surface temperature is
above -25° C, snow has an albedo of 0.45 and sea ice an
albedo of 0.35. Surface hydrology is represented by a
simple bucket model where the moisture content of the
soil is increased by rainfall and snowmelt, and decreased
by evaporation. The maximum amount of soil moisture
storage is 15cm, and "runoff" occurs when the soil is
saturated. The ratio of evaporation to potential
evaporation is a linear function of soil moisture, such
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that evaporation occurs at the potential rate when soil
moisture is equal or greater than 11.25cm.

In the initial raised CO, experiments, the computat10nal
domain is a sector with meridional boundaries 120° apart
and extending from 81.7° N to the equator (Manabe and
Wetherald, 1975). Cyclic continuity is assumed at the two
mer1d10nal boundaries, but "free Sllp insulated walls"
are placed at the equator and 81. 7° N. The sector is
d1v1ded into two egqual parts between the equator and
66.5° N: one half being land and the other ocean. The
whole sector between 66.5 and 81.7° N is land.

The control simulation is started from an isothermal,
dry, motionless atmosphere, and run for 800 days. A
second control run, initialised from day 40 of the first
control run, was made. The two runs converged towards a
similar equilibrium. The control results are an average
of the last 100 days of both of these runs. The same
method was used to obtain results for the doubled co,
experiment (2xCO,).

Wetherald and Manabe (1979) and Manabe and Wetherald
(1980) used a modified version of the MW75 model in a
second set of raised CO, experiments. In this version,
the computational domain 1s extended to the pole. This is
made possible by the use of a reqular grid with a
resolution of 4.5° latitude by 5° longltude (Manabe et
al., 1975). Cyclical continuity is assumed at the
meridional boundaries of the sector, and a free-slip
insulated wall is placed at the equator. The geography is
simplified, such that the sector is divided equally into
land and ocean from the equator to the pole. Cloud
behaviour is predicted, using a simple scheme where cloud
is formed whenever condensation of water vapour is
predlcted The temperature at which the values of snow
and sea ice albedos are modified is changed from -25° C
(in Manabe and Wetherald, 1975) to -10° cC. oOther
characteristics of the model as as described in Manabe
(1969) and Manabe and Wetherald (1975).

The control run (Manabe and Wetherald, 1980) is started
from an isothermal, dry, motionless atmosphere and
integrated for 1200 days, with modern CO,. The results
are averaged over the last 500 days of the simulation.

The 2xCO, and 4xCO, experiments were initialised from the
end of ie control simulation and run for 1200 days. The
results are averaged over the 1last 500 days of the
simulations.

Some of the results from these experiments are discussed
in Wetherald and Manabe (1986).

Manabe and Stouffer (1979, 1980) describe raised CO
experiments made with the GFDL spectral genera
circulation model with a global computational domain and
so-called realistic geography. The model (G15) has 9
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vertical layers and a horizontal resolution determined by
spectral truncation at wave number 15 (ca 4.8° latitude
by 8° longitude; Gordon and Stern, 1982). The model is
driven by the seasonal variations in solar radiation; for
simplicity the diurnal variation in insolation is
ignored. Cloud behaviour is prescribed from
climatological data, and is zonally uniform and invarient
through time. Ocean behaviour is modelled as a simple
mixed layer ocean with a uniform thickness of 68m. The
temperature of the mixed 1layer beneath sea ice is
constrained to be equal to -2° c. The model does not
attempt to simulate the 2-dimensional dynamic behaviour
of the ocean. Albedo varies as a function of latitude
over the ocean and geographically over the 1land based
upon Posey and Clapp (1964). The albedo of sea ice and
continental snow varies between 0.6 and 0.7 as a function
of latitude, with reduced values for thin or melting sea
ice and thin snow. Surface hydrology is represented by a
simple bucket model where the moisture content of the
soil is increased by rainfall and snowmelt, and decreased
by evaporation. The maximum amount of soil moisture
storage is 15cm, and "runoff" occurs when the soil is
saturated. The ratio of evaporation to potential
evaporation is a linear function of soil moisture, such
that evaporation occurs at the potential rate when soil
moisture is equal or greater than 11.25cm.

The control experiment (Manabe and Stouffer, 1979) was
run for 12 years, starting from an isothermal, dry,
motionless atmosphere, with 300 ppmv CO,. To save on
computation time the atmospheric part of the model is run
with an accelerated seasonal cycle for the first 7 years,
while the final 5 years are run with a full cycle of 365
days (Manabe and Stouffer, 1980). The results are
averaged over the last 3 years of the simulation.

The quadrupled CO, experiment (4xCO,) was run for 14
years, with 1200 ppmv CO,. To save on computation time
the atmospheric part o the model is run with an
accelerated seasonal cycle for the first 8 years, while
the final 6 years are run with a full cycle of 365 days
(Manabe and Stouffer, 1980). The results are averaged
over the last 3 years of the simulation.

Wetherald and Manabe (1981) used a spectral model similar
to that described by Manabe and Stouffer (1979, 1980) but
with a 1limited computational domain and idealized
geography in order to investigate the influence of
seasonal variations on model sensitivity to raised co,.
The computational domain is a sector with meridional
boundaries 120° apart extending from pole to pole. The
geography is simplified, such that the sector is bisected
into land and ocean. It is assumed that the earth’s
surface is flat. Cyclical continuity is assumed at the
meridional boundaries.

The model (S15a) has 9 vertical layers, a horizontal
resolution determined by spectral truncation at wave
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number 15 (ca. 4.8° latitude by 8° longitude; Gordon and
Stern, 1982), and is driven by seasonal variations in
solar radiation. It differs from the model described by
Manabe and Stouffer (1979, 1980) only with respect to the
computational domain and the treatment of the surface
albedo of ice and snow. In Wetherald and Manabe (1981),
the albedo of sea ice is assumed to be 0.7 when the
surface temperature is below -10° C and 0.35 when it is
above -10° Cc. similarly, the snow albedo is assumed to be
0.70 if the surface temperature is below -10° ¢, and 0.45
when it is above -10° cC.

The control simulation was run for 19 years, with 300
ppmv CO,. The atmospheric part of the model is run with
an accelerated seasonal cycle for the first 8 years,
while the final 11 years are run with a full cycle of 365
days. The results are averaged over the last 4 years of
the simulation.

The quadrupled CO, experiment (4xCO,) was run for 20
Years, with 1200 ppmv CO,. In order %o save computation
time the atmospheric part of the model is run with an
accelerated seasonal cycle for the first 9 years. The
results are averaged over the 1last 4 years of the
simulation.

A second version of the model (S15b) was constructed
which was driven by annual mean insolation. The control
simulation was run with 300 ppmv CO, and the quadrupled
CO, simulation (4xCO,) with 1200 ppmv CO,. In order to
save computation time, a 400-day integration of the
atmospheric part of this model was synchronised with a 26
year integration of the mixed layer ocean model, and then
both models were run together for a further 400 days. The
results are averaged over the last 200 day period of each
integration.

Manabe et al. (1981) analyse and compare the results of
raised CO, simulations made with three versions of the
GFDL modef (S15a, G15 and G21l). All three models are run
with 300 ppmv CO, (control simulation) and 1200 ppmv CO

(4xCO,). The S15 model was originally used and describeé
by Wetherald and Manabe (1981). According to Manabe et
al. (1981) the time integration of this model was
performed over 20 years, and results are averaged over
the last 4 years of each simulation. In the original
reference the length of the integration is given as 19
years for the control and 20 years for the 4xCO

experiment. The G15 model was originally used an

described by Manabe and Stouffer (1979, 1980). According
to Manabe et al. (1981) the time integration of this
model was performed over 13 years, and the results are
averaged over the last 3 years of each simulation. In the
original references the length of the time integration is
given as 12 years for the control and 14 years for the
4xCO, experiment.
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The G21 model is identical to the G15 model, except that
it has higher horizontal resolution determined by
spectral truncation at wave number 21 (ca 3.4° latitude
by 5.7° longitude; Gordon and Stern, 1982). The runs with
this model were initialised from the final equilibrium
state of the G15 model and run for a further 5 years
(i.e. 13 + 5 years). The results are averaged over the
last 3 years of each simulation.

The sensitivity of the response to raised CO, to the
model’s parametrization of cloud behaviour was
investigated by Manabe and Wetherald (1986, 1987) and
Wetherald and Manabe (1986, 1988), using two different
cloud schemes: one with prescribed (FC) and one with
predicted (VC) clouds.

The FC version of the model is somewhat similar to G15,
with a vertical resolution of 9 layers, a horizontal
resolution determined by truncation at wave number 15 (ca
4.8° latitude by 8° longitude), incorporating a seasonal
cycle of insolation, and coupled to a slab ocean. The
oceanic component of the model differs from G15, however,
because the depth of the mixed layer is less (50m). The
treatment of snow and ice albedos is also modified, with
the albedos fixed at different values above and below -
10° c. The albedo of the ocean varies with latitude and
that of the 1land geographically, as in G15. Although
cloud behaviour 1is prescribed in both G15 and FC, the
prescribed distribution differs between the two models.
Cloud cover differs between the northern and southern
hemispheres in the FC model but is essentially symmetric
in both hemispheres in the earlier G15 version of the
model. This difference in cloud behaviour is responsable
for the more realistic simulation of surface temperature
in the southern hemisphere with the FC version of the
model.

The VC version of the model differs from the FC version
only with respect to cloud behaviour. VC includes a
simple scheme which predicts cloud formation whenever the
relative humidity exceeds 99%.

Three simulations were made using the FC model, with 300
(1X-FC or control), 600 (2X-FC) and 1200 (4X-FC) ppmv
CO,, and a further two runs were made with the VC model,
with 300 (1X-VvC) and 600 (2X-VC) ppmv CO2. Each
simulation was started with an isothermal, dry,
motionless atmosphere and an isothermal mixed 1layer
ocean, and run for approximately 40 years. (The exact
length of each simulation varied slightly depending on
how 1long it took to reach equilibrium.) To reduce
computing time, the atmosphere and ocean were coupled
non-synchronously for the first 10 years of each
simulation, as described by Manabe and Stouffer (1980).
Results are averaged over the last 10 years of each
simulation.
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Bryan et al. (1982) describe preliminary results of
raised CO, experiments with a coupled ocean-atmosphere
model (CO%M). The model has idealized geography with
three identical continents with meridional boundaries 600
apart, separated by 3 oceans of the same width, and with
a condition of mirror symmetry imposed at the equator.
The land surface is flat. The atmospheric part of the
model has been documented by Gordon and Stern (1982). It
has 9 vertical layers, a horizontal resolution determined
by spectral truncation at wave number 15 (ca. 4.80
latitude by 80 longitude; Gordon and Stern, 1982), and is
driven by annual mean solar radiation. Cloudiness is
prescribed from climatological data, and is zonally
uniform. Albedo varies as a function of latitude over the
ocean and the 1land. The albedos of sea 1ice and
continental snow are apparently assigned (Manabe, 1983)
according to the scheme used by Manabe and Stouffer
(1979, 1980). Surface hydrology is represented by a
simple bucket model where the moisture content of the
soil is increased by rainfall and snowmelt, and decreased
by evaporation. The maximum amount of soil moisture
storage is 15cm, and "runoff" occurs when the soil is
saturated. The ratio of evaporation to potential
evaporation is a linear function of soil moisture, such
that evaporation occurs at the potential rate when soil
moisture is equal or greater than 11.25cm. The ocean
model (Bryan et al., 1975) has 12 vertical levels, a
horizontal resolution of approximately 4.50 latitude and
3.80 longitude, and includes a simple sea-ice model.

The atmosphere, upper ocean and deep ocean are coupled
non-synchronously, to allow for the very different time
scales on which they operate, using a method developed by
Manabe and Bryan (1969), Bryan and Lewis (1979) and
Manabe et al. (1979a). One year in the atmospheric model
was taken to correspond to 110 years in the upper ocean
model; one year in the upper ocean model was taken to
correspond to 25 years in the deep ocean. Convergence to
a climatic equilibrium was reached after an integration
equivalent to 6 years in the atmosphere, 650 years in the
upper ocean, and 16,000 years in the deep ocean. The
equilibrium climate is then perturbed by a step-function
quadrupling of CO, and the atmospheric and oceanic
components of the model are run synchronously for a
further 25 years.

Results from these experiments are also analysed by
Manabe (1983), Spelman and Manabe (1984) and Bryan and
Spelman (1985).

Manabe and Bryan (1985) describe a series of experiments
made with the coupled atmosphere-ocean model used by
Bryan et al. (1982) with six different concentrations of
COo,, namely 150 ppmv (X/2), 212 ppmv (X/sqrt(2)), 300
ppmv (1X or control), 600 ppmv (2X), 1200 ppmv (4X) and
2400 ppmv (8X). To speed up the convergence to
equilibrium the ocean and atmosphere are coupled non-
synchronously couple, such that the ocean is integrated
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over a period of 110 years while the atmosphere is
integrated over 1 year. The convergence towards
equilibrium in the deeper ocean is further accelerated by
a device, described by Bryan (1984), which is equivalent
to reducing the heat capacity of the water. For the
control (1X) experiment, convergence occurs after
integrating the atmospheric part of the model for 7.7
years and the ocean for 850 years. For the raised CO2
experiments, the corresponding times are 11.8 years and
1290 years respectively. The results from each simulation
are averaged over the final 600 days of the atmospheric
part of the model and the last 300 years of the oceanic
part of the model.

The results of these experiments are also discussed by
Bryan and Manabe (1988), and the results of the
quadrupled CO, simulation (4X, 1200 ppnmv CO,) by Bryan
and Manabe (1985).

Bryan et al. (1988) describe a series of runs using the
coupled ocean-atmosphere model of Bryan et al. (1982),
with a different idealised geometry (COAM,). The model
has 3 identical continents extending from near the north
pole to about 450 S, and a tri-symmetric southern polar
continent. The ratio of ocean to land at each latitude
corresponds to the Earth’s present geography. The
atmospheric and ocean components of the model were
asynchronously coupled to reduce computation time.

In the control ("normal" CO 2) run, the atmosphere was
.integrated over the equlvalent of 8.2 years, the upper
ocean over the equivalent of 1250 years, and the deep
ocean over 34,000 years. A doubled C02 (2xCO2) experiment
was run in the same way.

The transient response to changes in CO, concentration
was investigated by coupling the atmospheric and oceanic
components of the model with no distortion of the thermal
time scales. The control run was integrated for 110

years. Three doubled CO, runs (A, B and C) were made.
Each run was initialise& from a different stage of the
control simulation and run for 50 years. Ensemble

averages of these 3 runs were used to provide a measure
of the transient response to doubled CO2.

O8U model

The OSU model is a grid-point model that evolved from the
Mintz-Arakawa GCM (Arakawa et al., 1969; Gates et al.,
1971; Gates, 1973, 1975a, 1975b). Simulations of January
and July climates were made with a version of this model,
the RAND two-level atmospheric model (Gates and
Schlesinger, 1977). These model experiments formed the
basis for improvements to the parametrization of various
boundary layer and radiative processes in the 0SU model.
Schlesinger and Gates (1979, 1980) describe simulations
of January and July climates made with the OSU model. A
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simulation driven by seasonal changes in solar forcing is
described by Schlesinger and Gates (1981).

Gates et al. (1981) describe raised CO., experiments made
with the 0SU model, as described in Schlesinger and Gates
(1979, 1980, 1981). The model has 2 vertical layers and a
horizontal grid with a resolution of 4° of latitude by 5°
of longitude. The model takes into account the seasonal
variations in solar radiation. Cloud behaviour is
predicted using a relative humidity scheme such that
large-scale clouds form when the relative humidity
exceeds 90%. SSTs and sea ice extent are prescribed,
based on monthly climatological data from Alexander and
Mobley (1976). The 1land surface is classified into 9
surface types (woodland, grassland and cultivated areas;
forest; steppe and grassland; steppe desert; desert;
tundra, mountains and artic areas; water; land ice; sea-
ice), based on data from Posey and Clapp (1964). The
albedo of the oceans is fixed; other surface types have
an assigned snow~-free albedo; this albedo is
progressively modified as a function of tha amount of
snow, once a critical mass of snow has covered the
surface, to a maximum value for snow-covered surfaces
(Schlesinger and Gates, 1981). Surface hydrology appears
to be treated by means of a simple bucket model.

The control simulation (Schlesinger and Gates, 1981;
Gates et al., 1981) was run for 39 months, with 322 ppmv
CO2 and modern SSTs and sea ice distribution. The initial
conditions for the doubled (2xC02) and quadrupled (4xCO2)
CO2 experiments were taken as the state on November 1st
of the second year of the control integration. Both
raised CO2 experiments (Gates et al., 1981) were run for
9 months, with 644 ppmv (2xCO02) and 1288 ppmv (4xCO2)
respectively, and with modern SSTs and sea ice
distribution. These experiments, then, estimate the
direct radiation effects of increased CO2 in the absence
of ocean feedbacks.

Schlesinger and Zhao (1989) describe raised CO

experiments made with the OSU atmospheric GCM, coupled to
a simple slab ocean. The atmospheric component of the
model 1is a modified version of that described by
Schlesinger and Gates (1979, 1980, 1981) and documented
by Ghan et al. (1982), with 2 vertical 1layers and a
horizontal grid of 4° of latitude by 5° of longitude.
Cloud behaviour is predicted using a modified relative
humidity scheme, such that large-scale clouds form in the
lower vertical layer when the relative humidity exceeds
85% and in the upper vertical layer when relative
humidity exceeds 95%. The land surface is classified into
9 surface types, based on data from Posey and Clapp
(1964), each of which has a characteristic snow-free
albedo. The albedo of land and sea ice is fixed at 0.60,
a higher value than that used in previous simulations
(0.45), while the albedo of snow covered surfaces is
reduced by 0.1 compared to earlier simulations (e.g.
Gates et al., 1981). Surface hydrology appears to be
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treated by means of a simple bucket model. The oceanic
component of the model (Pollard et al., 1983: model
version 1) is a 60-m deep mixed-layer ocean with a simple
thermodynamic sea ice model. Oceanic heat flux _into the

base of the sea ice is prescribedq as 17 W m “ in the
northern hemisphere and 6 Wm™ in the southern
hemisphere.

The control simulation (1 x CO,) was run with a CO
concentration of 326 ppmv. The doubled CO, simulation (%
x CO,) was run with a CO, concentration of 652 ppmv. Both
simulations were started from the same initial
conditions. The state of the atmosphere was taken as
those on November 1st of year 1 of a 10-year integration
that was itself initialised from an earlier model
simulation. The initial ocean mixed-layer temperatures
and sea-ice thicknesses were prescribed from the
climatological observations of Alexander and Mobley
(1976). In order to minimise computational demands, the
model was run with an accelerated seasonal cycle (30.4
days) and a reduced mixed-layer depth (5m) for the first
45 years. Equilibrium was reached by the end of ca 35
vyears; the additional period of accelerated integration
was necessary to allow for re-equilibration after
correction of a coding error. The control simulation was
then run without acceleration for a further 24 years,
while the 2 x CO, experiment was run without acceleration
for a further 16 years. Results are averaged over the
last 10 years of each simulation.d

The effects of ocean feedbacks on the climatic response
to raised CO have been investigated using the O0SU
atmospheric model synchronously coupled to an oceanic GCM
(CGCM: Schlesinger et al., 1985). The atmospheric
component of the coupled model is a modified version of
the model as described by Schlesinger and Gates (1979,
1980, 1981), incorporating both seasonal and diurnal
variations in solar radiation, with interactive clouds
(Ghan et al., 1982). The oceanic component of the coupled
model is a modified version of the OGCM described by Han
(1984a, 1984b, 1988) but including an Arctic Ocean. The
OGCM has 6 vertical layers, a horizontal resolution of 4°
latitude by 5° 1longitude, and realistic bottonm
topography. The model predicts currents water
temperatures, and salinity. However, surface salinity is
constrained to be the same as the observed salinity
field, according to Levitus (1982). Sea-ice formation and
extent are calculated using a simple thermodynamic model,
following Semtner (1976) and Parkinson and Washington
(1979). The performance of the coupled model is analysed
by Gates et al. (1985) and Han et al. (1985).

The control experiment (1 x CO,) was run for 16 years
with CO, concentration set to %26 ppmv (Gates et al.,
1985; gchlesinger et al., 1985). The raised CO
experiment was run for 16 years with CO, concentration
set to 652 ppmv (Schlesinger et al., 1985). Each
simulation was begun from the same initial conditions.
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The state of the atmosphere was taken as that on November
1st of year 1 of a 10-year atmospheric GCM integration
that was itself initialised from an earlier model
simulation. The state of the ocean was taken as that on
November 1st of year 9 of an 11-yr oceanic simulation
with prescribed monthly atmospheric forcing, itself
initialised from an early 40-yr simulation with annually-
averaged forcing. The coupled model was run synchronously
(from 1st November of year 0 through to 31st October of
year 16) for 16 years. The control run had not reached
equilibrium by the end of the 16 years (Gates et al.,
1985) .

Longer runs made with the same coupled atmosphere-ocean
model are described by Schlesinger (1986), Schlesinger
and Jiang (1988), and Schlesinger (1989). The CO,
concentration was set to 326 ppmv in the control run
(1 x CO,) and 652 ppmv in the doubled CO experiment
(2 x CO,). Both simulations were integrated for 20 years.
The results are examined over the whole 20 years of the
simulations.
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Table 3: Radiative forcing scenario used in Case A of
Hansen et al. (1987)

co, 1958-1984 observed values
1980’s delta co, set to 15 ppm
1990’s delta CO, set to 19 ppm
CH, 1960’s increases by 0.5% a year
1970’'s increases by 1% a year
1980s increases by 1.5% a year
1990’s increases by 1.5% a year
N,0 1970’s increases by 0.2% a year
1980’s increases by 0.3% a year
1990’s increases by 0.3% a year
CCl,F, emission rates are taken as constant at the

mean rate for the 1970’s with an atmospheric
lifetime of 75 years.

CCl,F emission rates are taken as constant at the
mean rate for the 1970’s with an atmospheric
lifetime of 150 years

stratospheric aerosol opacities, measured changes between

1958 and 1984 (the two substantial events being Mt Agqung,

1963-1965, and El1 Chichon, 1982-1984)

Notes:

There 1is a discrepancy between the quoted atmospheric
lives of CCl3F and CCl,F, given in this paper and that
quoted in Hansen et al. (1988).



Table 4: Radiative forcing scenarios used in Scenarios A,
B and C of Hansen et al. (1988)

Scenario A

CO, 1958-1981, measured values
1981-2060, 1.5% growth of annual increment per
year

CH, 1.4 ppbv in 1958

1959-1970, increases at 0.6% per year
1970’s, increases at 1% per year
1980-2060, increases at 1.5% per year

N,0 increases by 0.1% year in 1958
increases by 0.2% year in 1980
increases by 0.4% year in 2000
increases by 0.9% year in 2030

CCl4F reported rates, with 3% increased emission per
year in the future, and an atmospheric lifetime
of 75 years

CCl,F, reported rates, with 3% increased emission per
year in the future, and an atmospheric lifetime
of 150 years

Potential effects of other CFCs, O,, stratospheric H,0
etc. approximated by doubling amounts of CCl4F
and CCl,F,.

Stratospheric aerosol opacities: no additional volcanic
aerosols are included after those from E1l
Chichon have decayed to background level.

Scenario B
Co, 1958-1981, measured values
1.5% until 1990,
reduced to 1% year in 1990
reduced to 0.5% year in 2000
reduced to 0 in 2010; thus after 2010 the
annual increment of CO, is 1.9 ppmv per year.
CH, 1.4 ppbv in 1958
1959-1970, increases at 0.6% per year
1970’'s, increases at 1% per year
1980’s, annual growth rate 1.5% year
reduced to 1% year in 1990
reduced to 0.5% in 2000
N,O annual growth 3.5% per year today
reduced to 2.5% per year in 1990
reduced to 1.5% per year in 2000
reduced to 0.5% per year in 2010.
CCl13F 3% year increase today
reduced to 2% in 1990
reduced to 1% in 2000
reduced to 0 in 2010.
CCl,F, 3% year increase today
reduced to 2% in 1990
reduced to 1% in 2000
reduced to 0 in 2010.
Other CFCs, O3, stratospheric H,0 etc. not included.
Stratospheric aerosol opacities: affected by a volcanic
event with properties identical to E1l Chichon
in 1995 and a volcanic event with properties
identical to Mt. Agung in 2015.



Scenario C
Co, 1958-1981, measured values
growth rate 1.5% per year up to 1985
1985-2000, growth increment 1.5 ppmv per year
2000-2060, constant at 368 ppmv
CH, 1.4 ppbv in 1958
1959-1970, increases at 0.6% per year
1970’s, increases at 1% per year
1980-1990, growth rate 1% per year
1990-2000, growth rate 0.5% per year
2000-2060, abundance constant at 1916 ppbv
N,O details not specified in paper
C%l3F abundances are the same as A and B until 1990,
thereafter emissions decrease linearly to zero

in 2000

CC12F2 abundances are the same as A and B until 1990,
thereafter emissions decrease linearly to zero
in 2000

Other CFCs, O,, stratospheric H,0 etc. not included.

Stratospheric aerosol opacities: affected by a volcanic
event with properties identical to El Chichon
in 1995 and a volcanic event with properties
identical to Mt. Agung in 2015.



