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Preface 

In 1988 the new IIASA project on System Immunology was inaugurated. The new activity fo- 
cusses theoretical and experimental research in immunology and system mathematics to experi- 
mental planning and prediction for relevant disease applications and systematic understanding of 
immunology. IIASA analysis and simulation should lead to  an effective plan of successive exper- 
iments to  identify and to  quantify particularly sensitive parameters in this most complex system 
of information processing, decision and control. The integration of such diverse disciplines is 
extremely difficult but some basis has already been established. 

For several years IIASA has sponsored international workshops dealing with dynamical sys- 
tems and their applications to  biology. These include: (1) The conference on "Dynamics of 
Macrosystems", Laxenburg, Austria, 1984, (2) The Working Conference on "Theoretical Im- 
munology", Mogilany, Poland, 1985, (3) The Workshop on "Selected Topics in Biomathemat- 
ics", Laxenburg, Austria, 1987. The proceedings of the last meeting are published by Kluwer 
as a special issue of the Journal Acta Applicandae Mathematicae ("Evolution and Control in 
Biological Systems", vol. 14, no. 1 & 2, January/February 1989). 

The present volume contains the proceedings of the latest Workshop "Mathematical Mod- 
elling in Immunology and Medicine", held at  Kiev, USSR in September 1989. 

Part 1 deals with the mathematical models of autoimmune, infectious diseases and AIDS. 
The models are studied with the intent to  establish a basis for more effective treatment. In Part 
2, questions of computer simulation and data analysis in cancer research are analyzed. Part 
3 is devoted to the models for antibody binding, immunoassay dynamics and immunogenetic 
systems. The problems of system analysis and medical decision making are discussed in Part 
4. This volume has been edited by Dr. Alexander Asachenkov, System and Decision Sciences 
Program of the International Institute for Applied Systems Analysis, Laxenburg, Austria, and 
Ron Mohler, Oregon State University, Corvallis, USA. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
International Institute for Applied Systems Analysis 

Laxenburg, Austria 
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Models of Disease 





Chapter 1 

Mat hemat ical Modeling of 
Autoimmune Disease and its 
Therapy 

Jacek Waniewski 
Institute of Biocybernetics and Biomedical Engineering 
Warsaw, Poland 

Daniela Piikrylovi 
Institute of Microbiology 
Prague, Czechoslovakia 

1.1 Introduction 

There can be two main aims of mathematical modeling in biology and medicine: 1) quantitative 
description of particular experiments and 2) formalization and refinement of the hypotheses 
about structure and internal and external regulation mechanisms of a modeled system [l-21. 
Such general "model-theories" may be particularly useful if the system is a complicated part of 
the living organism. Then, usually only a few direct quantitative data  about the entire system 
are available, but a lot of partial knowledge can be obtained from experiments related t o  a part 
of the systems or experiments in vitro. 

In this situation one can try to  formulate general hypotheses concerning the system and ask 
if the applied assumptions are able to  explain the collected partial data. A mathematical model 
can help in 1) examination of the consistency of the hypotheses, 2) evaluation of the values of 
those parameters that  are not known or are variable in different individuals or species or under 
different conditions, 3) qualitative analysis of the behavior of the system under various influences, 
external conditions or in different individual and generic representations of the system, 4) studies 
of the role of a part of the system in the behavior of the whole system, 5) looking for the ways 
of system control, 6) interpretation of experimental data, 7) design of new experiments, 8) 
formulation of new hypotheses if the model yields incorrect predictions and 9) explanation and 
teaching of the ideas. 

The consequence of mathematical models can be studied analytically or they can be eval- 
uated in the course of numerical simulations. However, i t  should not be forgotten that  these 
consequences are related t o  general hypotheses, particular details taken into account in the 
model, values of the unknown or uncertain parameters and mathematical approximations used. 

An example of this approach t o  mathematical modeling is the model of the humoral immune 
response and i ts  regulation by interleukins designed by Piikrylovi [3-61. In the present paper a 
new version of this model including memory helper cells is presented. The field of the applications 
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of the model is also extended to include clinical problems related to autoimmune disorders and 
their therapy [7-81. 

1.2 Model 

The model describes kinetics of different cell populations and soluble factors produced during 
the immune response after antigenic stimulus [3-61. The populations differ in their functional 
properties and the kind of receptors expressed on the surface of cells. Binding of the respective 
soluble factors to  their receptors can become a signal for a cell to transform their properties, 
that means to  turn from one population into another. The rate of the transformation depends 
on the amount of the signal particles per one cell-only after binding of a threshold amount of 
particles the cell can start to  transform. However, the further increase of the signal intensity 
does not lead to a higher transformation rate-a saturation phenomenon can be observed. 

In principle, the rate of transformation could be described by a step function, but for practical 
reasons it is approximated in the model by the following function: 

signal intensity 

amount of cells ( 1 . 2 )  

) ( susceptable to  signal 

After many simulations of the immune response with various values of n used, the value n = 2  
was chosen (Pfikrylovd, not published). For n > 2  no significant changes were found in the 
simulated course of the immune response and n = 1  was also acceptable. Therefore, it can be 
stated that a switch of the transformation rate from zero t o  its maximal value when T approaches 
1  is important in the model, but not a particular shape of the function f .  

The schematic representation of cell transformations after an antigenic stimulus as well 
as humoral factors that stimulate the respective transformation are shown in Figure 1 .  The 
differential equations describing the kinetics of cell populations and soluble factors are as follows 
(compare [3-61): 

I L l l  = 
H; = 
H,: = 
H i  = 
H: = 
H:, = 
IL2I = 
B; = 
B; = 
B: = 
B:, = 
Ab' = 
Agl  = 

1 t f s  - ( f i H a  + m 1 ) I L l  
 HZ - ( f t  + m x ) H X  
f zHx - ( f a  + m a ) H a  
f s faHa + ( l y f p  - l z ( 1  - f p ) ) H y  
( 1  - fg)faHa + f y ( l  - f p ) l z H y  + fmHm - m z H z  
' ~ ( 1  - f p )  ( 1  - f y )  H y  + ( l y f p  - fm - m m ) H m  
12Hz - [k2h(Ha + H y  + Y + Hm + M )  + m 2 ] I L 2  
1 ~ ~  - ( f x  + mx)Bx 
f x B x  + f p f m B m  + ( l y f p  - I 2 ( 1  - f p ) ) B y  
( 1  - f p )  ( l z f y B y  + f m B m )  - mzBz 
' ~ ( 1  - f p )  ( 1  - fy)By - ( f m  + m m ) B m  
l a b B z  - (mab + kabagAg)Ab 
l a g  - (mag + kkabagAb)Ag 

The rate functions f  are chosen according to  (1) with n = 2  for the following T :  
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The values of the parameters in the differential equations were chosen according t o  the 
literature [3-81: 

generation rates: lB, = l ~ ,  = 0.001, lAb = 0.002, llLl = 0.09, llL2 = 0.1 ; 
death of cells and catabolic rates of solutes: m, = 0.001, m, = 0.02, m, = 0.0002, 

mlLl = mIL2 = 0.007, m ~ b  = 0.005, mAg = 0.05 ; 
proliferation rate: 1, = 0.05 ; 
binding coefficients: klKl = klL2 = 0.07, kAbAg = 0.9, k = 2. 

The sensitivity parameters in the switching functions were determined during many simula- 
tions to  get a good qualitative course of primary and secondary responses under various initial 
conditions and the values of kinetic parameters of the system. As the result of this procedure 
the following parameters were chosen [3-81: 

The model was used t o  simulate primary and secondary responses for antigen considered as a 
chemical compound (IAg = 0) and as a proliferating species (IAg = i A g ~ g ,  mAg = 0). The 
results were analogous to  those presented in [3-81. 

1.3 Autotolerance and Autoimmunity 

Autoantigens are usually persistent because they can be produced by the body even if the pro- 
duced quantities are quickly destroyed or inactivated. Fortunately, autoantigens are as a rule 
well tolerated by the immune syst,em. The first theory of this phenomenon stated that autore- 
active clones are deleted from the total repertoire of immunocompetent cells (clonal deletion 
theory [9]). Later investigations proved that  T cells can be made tolerant much easier than B 
cells (partial clonal deletion theory [lo]). 

Therefore, to  simulate autotolerance the rate of the supply of helper T cells was diminished 
(Figure 2). At the beginning there was an antigen but T and B cells were absent. They started 
to  come into being (as in ontogeny), but the rate of the input of helper precursors was assumed 
as being 20 times less than for non-autoreactive clones. The steady state of autotolerance raised 
with the level of the antigen slightly decreased, a few plasma cells, no T cells and almost no free 
antibody, because all the produced antibody was bound to  the antigen. This phenomenon was 
referred t o  in the literature as a "tread mill" effect [ l l ] .  

Sometimes a spontaneous breaking up of autotolerance can occur and then an autoimmune 
disease can develop. Autoimmune disorders are very difficult t o  treat and are often fatal. The 
suggested reasons for the termination of autotolerance are both genetic and environmental [ll]. 
In our simulations we described the rise of autoimmunity as the  increase of the  supply rate of 
helper T cells (diminished in the autotolerant state) t o  its normal value (Figure 2). The immune 
system switched from the state of autotolerance t o  the state of developed autoimmunity with 
the high levels of autoantibody, plasma cells and memory cells. However, the amount of helper 
cells was less than the amount of B cells (Figure 2). 

In fact, autoimmune diseases are very difficult to  treat and total remissions are rare. To keep 
patients alive two main treatments are usually performed. 

The autoimmune response can be weakened by immunosuppression. Most of the immuno- 
suppressive drugs are cytotoxic or cytostatic [12]. Therefore in our simulations we described 
immunosuppression as a diminished rate of the proliferation of cells [7-81. However, some- 
times immunosuppression does not yield the total remission of the disease, but only transient 
and partial improvement of the patient's state. In Figure 3 an impact of immunosuppression 
on the antibody level for three different values of the diminished proliferation rate is shown. 
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The removal of autoantibodies results in the increase of the level of autoantigen. I t  can 
be done in several ways: exchange of whole plasma or a fraction of plasma, lymph removal 
or specific immunosorption performed in an extracorporeal circuit [13]. The simulation of 
extracorporeal antibody removal showed the same mechanism of quick rebound of antibody 
level to  its previous value as i t  was described previously: the diminished amount of antibodies 
led t o  the increase of the autoantigen level followed by the rise of autoantigen stimulated 
memory cells which turned into plasma cells and started t o  produce the antibody in large 
amounts [7-81. But in the version of the model presented in this study memory helper cells 
were also stimulated t o  produce IL2 .  Therefore more cells proliferated and thus the amount 
of plasma cells was higher. This yielded a much quicker rebound of antibody (and even a 
slight overshoot of its initial level) than in the version of the model without memory T cells 
(Figure 4). 

The further comparisons of the two versions of the model showed that the system including 
helper memory cells is more resistant to  immunosuppression than the system without these 
cells. For example, the 2.5 times diminished proliferation rate yielded only partial improvement 
(Figure 3) while in the previous simulations this same decreased proliferation rate resulted in 
the state of tolerance [7-81. 

A significant difference between the two versions of the model can be demonstrated if the 
supply of B and T precursors is stopped during the autoimmune response. Then, if memory 
helper cells are not taken into account the model predicts the cease of the response. In contrast, 
the model with memory helper cells proves that the steady state of autoimmunity would not be 
changed in any significant way (Figure 5 ) .  

1.4 Discussion 

The topic of steady states of the immune system is a more general problem than the states 
of autotolerance and autoimmunity discussed in this paper. Namely, the stabilization of the 
immune response can also be observed (and mathematically described) in chronic infectious 
diseases [14] and in cancer development [15] .  Medical therapies in these cases are aimed a t  
the strengthening of the immune system and the elimination of antigenic factors. In contrast, 
therapeutic treatments of autoimmune disorders try to  stop or weaken the immune response 
and keep the amount of autoantigens high enough for the normal function of the body. Similar 
problems arise also in the prevention of graft rejections. 

Medical therapies of autoimmune disorders perturb the immune system: either the extracor- 
poreal antibody removal or the immunosuppression. However, the immune system seems to  be 
largely resistant to  these perturbations: the effects last as long as the treatment is performed. 
Total remissions of the disease are rare. 

A widely discussed problem is the possible role of suppressor cells anti-idiotypic interac- 
tions in autoimmune disorders. It has been argued that those factors cannot be decisive in 
the maintenance of autotolerance and therefore also in the loss of its control [16] .  Even the 
existence of suppressor cells as an independent population has been questioned [17] .  On the 
other hand, anti-idiotypic antibodies specific to  self-reacting anti-acetylcholine receptor anti- 
bodies were found in myasthenia gravis [18] .  In our model, antigen is the main regulatory factor 
of the immune response and no additional cell populations are needed t o  control the system: if 
antigen is eliminated, then the response ends. In particular, a steady state can be reached by the 
system during autoimmune response. However, because of the long lasting high autoantibody 
level a significant anti-idiotypic response can develop or putative suppressors can originate. The 
impact of those possible factors on the effects of therapy needs an independent study. 

The mathematical model presented in this paper proved itself to  be able to  describe the 
phenomena of autotolerance and autoimmunity according to  the current knowledge about their 
origin [19] .  Moreover, i t  revealed the strong resistance to  perturbations that can be interpreted 
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as medical treatments. Such resistance is in agreement with the observed effects of the therapy of 
autoimmune disorders. Unfortunately up to  now, no experimental data are available that could 
help to choose between the new version of the model (with helper memory cells) and the previous 
one [3-81. Nevertheless, the model seems to  be useful for the discussion of the modifications of 
the system (new cell population) as well as of a new range of phenomena which had not been 
taken into account during the model's formulation (autotolerance and autoimmunity). This 
supports a view that the model is a "model-theoryn correctly describing the basic structures 
and features of the modeled system. 
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Figure 1.1. Scheme of helper cells (a) and B cells (b) development after antigenic stimulation. 
H-helper T cells, B-B cells, M f-macrophages, Ag-antigen, Ab-antibody, IL1-interleukin 1, IL2- 
interleukin 2. Indices: x-precursors, a-activated cells, y-proliferating cells, z-producers, m- 
memory cells. + - cell transformation, - secretion, - - influence of signal particles on 
cell transformation, . - > - proliferation. 

IL2 Hy 1 4 Hz Hrn 

Figure 1.2. Autotolerance (0-20 days) and autoimmunity (20-120 days). Initial values: Ag = 1, 
other variables = 0. Parameters: lAg - 0.05, lH, = 0.00005 for 0 5 t 5 20 and l ~ ,  = 0.001 for 
20 5 t 5 120, other parameters as described in Chapter 2. 
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Figure 1.3. The impact of immunosuppression on antibody level. The initial values are the 
final values from Figure 2. Parameters: (1) 1, = 0, (2) 1, = 0.01, (3) 1, = 0.02, other parameters 
as in Figure 2. 

Figure 1.4. The impact of extracorporeal antibody removal on antibody level. The inital 
values are the final values from Figure 2. (+) - the model with memory helper cells (Chapter 
2), (-) - the model without memory helper cells [7]. 
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Figure 1.5. The impact of the stopping of T and B precursors supply on the autoimmune 
response. The inital values are the final values from Figure 2. At t = 1 18, and 1~~ were 
changes to  0. (+) - the model with memory helper cells (Chapter 2), (-) - the model with 
memory helper cells [7]. 
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2.1 Introduction 

The experimental basis of our mathematical model of immunological tolerance [I] were findings 
on the mechanisms of tolerance induced by human serum albumin in hatched chickens. Sup- 
pressor cells were not found t o  play a significant role in this experimental model. Therefore, 
the elimination or irreversible functional inactivation of lymphocytes by the tolerance inducing 
antigen seems to  be the mechailism underlying inhibition of immune response in tolerant birds. 
The affected clones of lymphocytes are those reacting with the tolerated antigen. 

Tolerance t o  heterogeneous proteins was observed to  be temporary and followed by gradual 
recovery of immune reactivity. Because the duration of tolerance t o  protein can be prolonged by 
additional administration of tolerated antigen, it was assumed that  the escape from tolerance is 
caused by differentiation of new lymphocytes when the concentration of the tolerated antigen 
drops by non-immune elimination below the level necessary for induction of tolerance in these 
newly differentiating cells. New lymphocytes mature continually by an antigen-independent pro- 
cess from precursors which do not possess antigen specificity. When they encounter their specific 
antigen during maturation they are eliminated or functionally inactivated, i.e. tolerance is in- 
duced. The dose of antigen necessary for antigen induction is lower in the case of differentiating 
cells than the mature ones. 

The mathematical model of tolerance was based on the above experimental conclusions. 
Originally, i t  was formulated for B cell tolerance and i t  was extended later t o  T cell tolerance. 
Essentially, i t  can be applied to  recovery of any deletion of some lymphocyte population, where 
the deleting stimulus ceases t o  act. Thus it was used to  model the dynamics of idiotype or 
isotype suppression caused in neonatal mice by antibodies t o  the respective immunoglobulin 
markers, and polyclonal tolerance induced by mitogen stimulation followed by application of 
cyclophosphamide. Depletion of C D 4 +  lymphocytes in HIV infection seems to  be effected by 
viral products. Because the dynamics of concentration of these products are inverse t o  those 
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of non-replicating antigen inducing tolerance, the model could be alternatively used to  describe 
the dynamics of CD4+ lymphocyte depletion in HIV infected persons. 

This paper presents analysis of this class of models, which is based on the representation 
of a solution of the corresponding nonautonomous system of linear differential equations. Al- 
ternatively, if the  amount of antigen is assumed t o  be an input, the so-called bilinear system is 
obtained and the existing methodology is also applicable. The aim is to  investigate both qual- 
itatively and quantitatively the available range of applications of such a model, especially its 
limits. Analytic representation of the recovery solution curves are derived, and the limit cases of 
model parameters (antigen elimination rate, lifespans of lymphocytes) are discussed. Also the 
recently introduced feedback mechanism is analyzed in detail and i t  is shown that  the originally 
nonlinear form of this mechanism is fully approximated by the classical linear feedback, which in 
fact, substantially simplifies analysis of this model and is also of considerable biological impact. 
Such analysis contributes to  further understanding of the model, mainly from the point of view 
of its further applications. 

2.2 Mathematical Models of Recovery from Inhibition 

Let us briefly survey the development of the original simple mathematical model of immunolog- 
ical tolerance t o  its present form and its various modifications. The leading motivation there 
was the aim to  have a satisfactory description of the recovery from the inhibition phenomenon 
in immunology representing the qualitative form of the immune response, i.e. restoration of the 
immune system responsiveness. According to  the available experimental da ta  concerning the 
immunological tolerance to  human serum albumin in chickens, the first version of the model was 
suggested [I] assuming only B cell tolerance. 

The model is based on two assumptions: (i) antigen induces tolerance by irreversible inacti- 
vation of B lymphocytes specifically reactive t o  it; (ii) the escape from tolerance is effected by 
differentiation of lymphocytes reactive t o  the tolerated antigen after its disappearance from the 
organism. Two developmental compartments of B lymphocytes (see Figure 1) are anticipated 
in the model: the immature cell compartment - P cells; the mature cell compartment - P 
cells. The immature antigen-reactive lymphocytes P arise by an antigen-independent differenti- 
ation process from their precursors, and they mature, independently of antigen, too, into mature 
antigen-reactive lymphocytes P. The immature P cells arise from their precursors with the rate 
fpPE (index E denotes steady-state values). 

Sizes of P and P cell compartments are described by the following differential equations with 
the given initial values: 

-- dP(t) - rp[pE - ~ ( t ) ]  - ~p a ( t ) ~ ( t ) ,  ~ ( 0 )  = Po, 
dt 

-- dP(t) - rpP( t )  - rpP( t )  - cp a(t)P(t) ,  P(0)  = Po, 
dt (2) 

where P( t )  and ~ ( t )  are the numbers of P and P cells a t  time t,  7p and ~p are the rates (all 
rates are in days-') of maturation of P cells into P cells death of P cells respectively. The 
quantity Epa(t) is the rate of irreversible inactivation of P cells by the tolerizing dose of antigen, 
and analogously, cpa(t) that  of P cells. It  is assumed that  E p  > c p  > 0 reflecting the fact that 
immature cells are assumed t o  be more susceptible to  the tolerance induction in comparison 
with the mature ones; the effect of antigen a(t) = a0 exp (-P(t - t l )) ,  where a0 depends on 
the amount of antigen injected, p is the rate of its nonimmune elimination, and tl is the day 
of antigen administration. From the steady-state considerations in the absence of antibody, i.e. 
a(t)  r 0, i t  simply follows that  i t  must hold fPPE = rpPE. Clearly, fpPE is the influx of the 
immature cell precursors. 
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Denote Pc(t) the number of P cells in the controls a t  time t ,  which is equal t o  the solution 
of the model equations (1) - (2) with a(t)  = 0. Then the value 

is the percent measure of P cell recovery from tolerance (responsiveness). 
Applications details of such a model t o  study the tolerance in chickens can be found in [I]. 

In (21 this model was also tested on experimental data  reported by other authors dealing with B 
cell tolerance in mice. As T helper cell tolerance plays an  important role in tolerance t o  proteins, 
the model was appropriately modified [3]. It  was assumed that  T helper lymphocytes undergo 
the same inhibition process as B cells, i.e. after denoting Q and Q the respective numbers of 
immature and mature T helper lymphocytes, the analogical system of equations t o  (1) - (2) is 
obtained 

dQ(t) = iQ[QE - Q(t)] - ZQ a(t)Q(t), Q(o) = Qo, 
dt (4) 

dQ(t) = iQQ(t)  - rqQ(t) - CQ a(t)Q(t), Q(0) = Qo, 
dt (5) 

where the meaning of the introduced symbols is fully analogical as above. As a rule, the lifespan 
of TQ of mature T helper cells is substantially longer, the superposition of their recovery with 
that  of B cells contributed t o  more exact simulation results (31 using as a measure of recovery 
from tolerance the value 

where the meaning of Q, is the same as in (3). From hypothetical reason also the possibil- 
ity of necessary cooperation of two T helper lymphocyte populations, denoted Q and R,  was 
investigated [3] for the value 

Another attempt was performed in [4], where always two populations (short-lived and long-lived) 
of B and T helper lymphocytes were assumed, each of them described by the respective system of 
equations of the type (1) - (2) and recovery function of the type (3). Various combinations of the 
respective recovery functions provide working alternatives used t o  explain tolerance phenomenon 

PI. 
Because of the analogous mechanism of B cell tolerance and idiotype and isotype suppression 

of short duration caused by the respective antibodies, the original model was applied also to 
the recovery from this inhibition phenomenon [5]. Model equations (1) - (3) were used together 
with the  effect of antibodies assumed in the form 

where a0 depends on the amount of monoclonal antibody injected, /3 is the rate of its non- 
immune elimination, t1 is the day of monoclonal antibody administration (the day of birth), 
and t2 is the day when the antibody concentration starts to  decrease below the full suppression 
level ao. In fact, the time course of a( t )  for t1 5 t 5 t2 does not influence the recovery from 
suppression, as long as a(t)  _> ao. It serves only t o  simulate the retarded recovery from the 
suppression, and the sake of simplicity a constant value a(t)  = ao, t l  < t < 22, was chosen for 
simulation runs. Based on the extensive comparison with experimental data  the hypothesis of 
the virtual age-dependent antibody elimination rate /3 was postulated [5]. 

During experimentation with the model the following fundamental observation was made. 
Namely, for /3 substantially smaller than Tp and rp, i.e. much faster antigen elimination with 
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respect to  the lifespans of B lymphocytes, the recovery curve ro is determined almost fully by the 
values of these lifespans. In fact this means that  system (1) - (2) without antigen returns freely 
t o  its steady-state from the state Po = 0, Po = 0, where it was brought by the tolerizing dose 
of antigen. On the other hand, when /I is substantially larger than fp and rp, i.e. the antigen 
persists for a long time in the organism, the recovery curve is fully dependent on the current 
/I value as the fast system dynamics cause the quasi-steady-state a t  each time instant. This 
rough analysis can be supported by the respective analytic solution of system (1) - (2) for the 
assumed exponential input. Such straightforward computations would confirm this conclusion 
as the mentioned rates appear in the solution as negative exponents of exponential function 
multiples, which fact i t  is was not very difficult t o  envisage. Then i t  is possible t o  determine the 
model bounds taking into account the realistic range of the involved rates. The corresponding 
explicit solution formulas for these cases are included in the next section - see (16) - (17) for 
slow antigen elimination and (181) - (19) for fast antigen elimination. 

When an attempt was made t o  apply this model t o  the phenomenon of polyclonal tolerance 
[6], the just mentioned contradictory situation became more apparent. There did not exist any 
immunologically acceptable combination of the respective rate constants t o  fit the experimental 
data collected on mice after the treatment with bacterial lypopolysaccharide followed by the 
application of cyclophosphamide [7]. Otherwise speaking, the model was too slow t o  fit this 
phenomenon. Therefore, a feedback mechanism from mature B cell compartment was suggested 
[6] to  amplify the influx of immature B cells, when the number of mature B cells decreases. The 
following modification of the original equations was used 

where time varying influx rpPE of immature P cells depends on the relative deficit of mature P 
cells, i.e. on . Exponent v is a parmeter of fine tuning of the recovery as used also by other R 
authors. With this modification it was possible t o  adjust the model t o  fit the experimental data  

PI.  
The growing importance of AIDS etiopathology investigation resulted in the exploitation 

of the previous experience with the mathematical model of immunological tolerance to  HIV 
infection being also a kind of very dangerous inhibition phenomenon. To recapitulate, the 
original model assumes that  lymphocytes reacting with the tolerated antigen are eliminated or 
irreversibly inactivated by the tolerogenic dose of antigen. The CD4+ lymphocyte depletion 
in individuals infected with HIV seems to  be also effected by HIV products, although by a 
mechanism which differs from that of tolerance induction. As the dynamics of these products 
are inverse t o  those of tolerance inducing antigen, the existing mathematical model is capable 
of describing the CD4+ lymphocyte depletion. 

Preliminary results of this respect can be found in [8] assuming ad hoc HIV products increase 
in time. More appropriate simulation results are obtained when limitation of HIV growth by 
specific cytotoxic cells, which receive the helper effect of mature CD4+ cells in the form of certain 
feedback, is included in the model [9]. Then the model is able t o  manifest all three major phases 
of the CD4+ lymphocyte depletion: (i) rapid initial decline, (ii) stabilized intermediate level; 
(iii) final accelerated decline. As the substantial decrease of CD4+ lymphocytes during HIV 
infection could activate a feedback mechanism, in order to  increase their production, several 
ways of incorporation of such a feedback mechanism in the model were investigated further [ l C I ] .  
Promising simulation results were achieved provided that the nonlinear feedback mechanism 
was activated by the decrease in the total number of T cells. Such a feedback mechanism then 
increases not only the production of CD4+ lymphocytes, but also of CD8+ lymphocytes. Under 
such an assumption i t  is possible t o  simulate simultaneously both CD4+ lymphocyte depletion 
and the observed increase CD8+ lymphocytes in HIV infection. 
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2.3 Model with Linear Feedback 

As concluded above, the simple original model of immunological tolerance (1) - (2) is not always 
capable t o  explain some available experimental or clinical data. One way t o  overcome this 
difficulty w e  the introduction of a generally nonlinear feedback influence of the number of 
mature cells on the influx of the immature ones. Although the indicated decrease reciprocal 
amplification can be one of the available alternatives (signal transmission), i t  unfortunately 
substantially complicates the original model by the added nonlinear term . Moreover, this 6% 
term tends t o  infinity when the number of mature cells tends t o  zero, result~ng in a somewhat 
paradox limit situation with the missing immunological interpretation. 

Therefore the alternative possibility of linear feedback was investigated. Recall that  all above 
introduced feedback mechanisms should compensate a fairly steep phase of the restoration of 
number of mature cells P, for which purpose the above singularity was a possible tool. The 
linear feedback can provide a faster return t o  the steady-state value of mature cell number. 
As the subsequent analysis will show, these two ideas, seemingly near the same a t  first glance, 
possess fairly different interpretations. 

Preserving the above notation, the linear feedback in (9) - (10) has the following form 

dP(t )  - - -- 
dt 

- rpP( t )  - ~ p P ( t )  - cp a(t)P(t) ,  P(0)  = Po, (12) 

where f denotes the feedback coefficient (amplification). Observe that in this case additive influx 
amplification is obtained in comparison with the multiplicative one in (9) - (10). In comparison 
with the original simple model (1) - (2) the additional feedback term 

F(P( t ) )  = f [PE - P(t)l ,  

i.e. this additional influx is proportional to  the difference between the steady-state and current 
values of mature cells P. Coefficient f is analogously as v in (9) a free parameter and can be 
used t o  obtain better coincidence the experimental data. 

Let us compare the models (11) - (12) and (9) - (10). The influx in (9) can be written as 

Straightforward computations reveal that 

where 

o(PE - P(t)  + 0 for (PE - P ( t ) J  + 0. 
IPE - p(t)I 

This implies that as long as P ( t )  is near to  PE, the nonlinear feedback with parameter v is nearly 
the same as the linear one with parameter vrp. In spite of the fact that the linear feedback 
model was constructed independently, it was shown that this model is the linearization of the 
former nonlinear feedback model in the steady-state of the pertinent system. 

To simplify further presented analysis of certain qualitative properties of the model (11) - 

(12), let us introduce the more convenient coordinate system. Denote z = (XI ,  ~ 2 ) ~  and let 
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z2(t)  = P ( t )  - PE, z2(0) = 2; = PO - PE- 

Then the system (11) - (12) is equivalent t o  the following one 

5 = Az + ( B z  + C)U, 

where 

Such a system is usually denoted as a bilinear one from the point of view of control theory 
with antigen being the input. The principal difficulty in analysis of system (13) is the product 
term Bz(t)u(t).  That  the reason why i t  is not a simple task t o  find the exact explicit formula for 
the solution z( t )  of (13) for general u(t) and to  analyze the character of dependence of response 
z( t )  on the input u(t) - see [ l l ]  and [12]. To obtain some simple representation of z(t) ,  some 
additional assumptions concerning the system (13) are necessary, e.g. that  both A and B are 
upper (or lower) triangular matrices (this is the case if f = 0.) 

The model (1) - (2) will have the form (13) for f = 0. Therefore the principal advantage 
of considering the model (1) - (2) is the existence of an explicit formula for the solution z ( t )  of 
(13) with an arbitrary input u(t) and initial s tate z(0) = zO. 
T h e o r e m  1. Consider the system (13) with f = 0. Then its solution z ( t )  has the form 

where w(t) = Ji u(a)da .  Validity of these formulas can be checked by a direct differentiation 
with respect to  t. 
Coro l l a ry  1. Let u(t) - u0 for any t 2 0 and z l (0)  = zy , z2(0) = 2;. Then 

+e- (+~+E~w) t7p  xy-21 (uo) 
rp+cpug-tp-~puo + i 2 ( ~ 0 ) ,  if TP # 7 ~ 7  

where ( i l(uO),  i2(u0))T is the steady-state for u(t) = uo 

E ~ P E  UO 
i l ( . ~ o )  = - - and i2(u0)  = - 

rp + Epu) 

One can see, that  if ?p and rp are large enough, after a short time period i t  approximately 
holds that  z l ( t )  = i l (uo) ,  z2(t)  = i2(u0) .  If the elimination of antigen is so small that  changes 
of its concentration are negligible during this time period, the approximate solution for such 
antigen u(t), t E [0, TI is written as 
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Corollary 2. Let u(t) = 0 for any t 2 0 and 

Then 

Solutions (18) - (19) describe the hypothetic situation when the numbers of both, immature 
and mature cells are zero and no antigen is present. Such a solution represents, in fact, the fastest 
possible recovery from suppression. However, there exist experimental data, e.g. concerning the 
polyclonal suppression [6], which relate to  the still faster recovery than (18) - (19) can produce. 
Therefore, some kind of feedback has to  be admitted. Moreover, some cases of recovery with 
P values above PE were observed. Also this phenomenon can be explained applying the linear 
feedback. Unfortunately in this case (f # 0) there is no possibility for simple and explicit 
representation of solution (13) for some nonconstant input and other methods are to  be used to  
investigate such a model. 
Proposition 1. Let us consider a model with the linear feedback (11) - (12) and let f = v ~ p ,  
v # 0, and x2(0) < 0. If 

then there exist some values of time t*, t**, t* < t**, such that for t* < t < t** i t  holds 

Moreover, if (20) does not hold, then for each t 2 0 one has 

Proof. Let us consider system (13) with f = v ~ p  and let x2(0) < 0. To prove the second part 
of this proposition let us neglect the antigen u(t) in (13). Then x2(t) can be only increased, 
i.e. i t  is sufficient t o  prove this second part only for the case u(t) = 0. From (13) resulting 
homogeneous system has clearly the following eigenvalues. 

It can be easily shown, that  if (20) is not true, both X1 and X2 are the real roots implying that 
x2(t), t 2 0 must be a monotonous function. This proves the second part of the proposition. 
When proving the first part, realize that  because u(t) tends t o  zero, one can for some f > 0 
approximately assume that  u(t) = 0 for t > f. Now if (20) holds, then (22) implies that  XI  
and X2 are the conjugate complex roots with a negative real part. Then xz(t)  is a product of 
exponential and trigonometric function, and this is the reason why (21) is valid. 

Condition (20) shows that if ~p and 7p are sufficiently close t o  each other and the feed- 
back parameter v (or f = v7p) is large enough, the case (21) occurs, i.e. the recovery is not 
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monotonous, but exhibits dampened oscillations about the steady-state value. For the sake of il- 
lustration let us consider the discussed case of polyclonal tolerance simulation [6], which resulted 
in such behaviour. Various parameters of (9) - (10) were selected as follows: Tp = r p  = 0.2, 
Ep = cp = 1.0, Po = PE = 100.0, Po = PE = 100.0. Antigen was assumed in the form of (8) 
with a0 = 0.9, p = 3.0, tl = 2.0, t2 = 15.0, v = 0.65 t o  duplicate the case of [6] on Figure 2 
- dashed line. For the case with linear feedback (11) - (12) the only change was t o  select the 
initial dose a0 = 0.62 for the same lowest level of ro(t) and t o  adjust f = 0.31 t o  produce the 
solid line in Figure 2. This confirms the fact that the suggested linear feedback produce a t  least 
the same effect as the originally used nonlinear one. 

2.4 Conclusions 

The growing number of modifications and applications of the original mathematical model of 
tolerance demanded a deeper theoretical analysis of the involved system of differential equations. 
The provided analysis confirmed the importance of inclusion of feedback mechanisms in math- 
ematical models for simulation of recovery from various inhibition phenomena in immunology. 
It was shown that in the suggested class of mathematical models the linear feedback mecha- 
nism is fully sufficient, which in fact, considerably simplifies the pertinent investigations. The 
augmented flexibility of the model can be used t o  study and simulate other related phenomena 
exhibiting also oscillatory character. 
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Figure 2.1. Block diagram of the compartmental model. 

Figure 2.2. Comparison of nonlinear feedback (dashed line) and linear feedback (solid line) 
recovery simulation with experimental data (a).  
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3.1 Introduction 

The dominant immunologic abnormality in AIDS patients is the depletion of C D 4 +  lymphocytes 
[I-31. This depletion is probably not due to  the cytopathogenic effect of HIV on this subset of 
lymphocytes, because the number of cells in peripheral blood and lymph nodes, that  express 
HIV, is too low t o  explain the observed decrease of CD4+ lymphocytes. Depletion of these 
cells in HIV infected individuals seems t o  be caused by HIV products either directly or by an 
immune reaction induced by them [l-21. The increasing concentration of HIV products during 
the progression of the infection can be assumed t o  increase the C D ;  lymphocyte depletion. 

The increase of HIV products during infection is inverse t o  the decreasing concentration of 
non-reproducing antigen used for the induction of immunological tolerance. If it is anticipated 
that  tolerance is due t o  deletion or irreversible functional inactivation of the specific lymphocytes 
by antigen, the dynamics of the reappearance of lymphocytes reacting with the tolerated antigen 
during the recovery from tolerance are necessarily inverse to  the depletion of C D 4 +  lymphocytes 
in HIV infection. This observation led us to  the suggestion that  our mathematical model of 
immunological tolerance [4,5], which is based on the assumption mentioned above, is applicable 
t o  C D ~  lymphocyte depletion in HIV infected individuals [6]. However, i t  does not imply that  
the same mechanism is operative in both cases. 

According t o  clinical findings [7,8], there exists a substantial decrease in C D 4 +  lymphocytes 
during the first year, and especially during the first six months, after seroconversion. However, 
after this initial drop of the T cell subset, the level of CD4+ lymphocytes remains fairly sta- 
tionary during the following period. When CD4+ lymphocyte depletion was simulated under 
assumption of unrestricted HIV reproduction, the simulated CD4+ lymphocyte depletion did 
not agree well with the clinical data  [6]. The arrest of further depletion of CD4+ lymphocytes 
in the initial stage of infection is probably caused by an immune reaction t o  the HIV. As it was 
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suggested that  cytotoxic T cells could be the respective immunological mechanism retarding the 
progression of HIV infection [ I ,  91, we included this inactivation of HIV by specific cytotoxic 
T cells in our mathematical model [lo]. By such modification of the model i t  was possible t o  
simulate the observed three major phases of CD4+ lymphocyte depletion: 

(i) Initial rapid decline. 
(ii) Stationary intermediate level. 
(iii)Final accelerated decline. 

In our model of immunological tolerance [4, 51 we assumed a constant influx of new B or 
T lymphocytes from stem cells. Assumption of this kind is justified, as even if the mechanism 
effecting tolerance is the deletion of clones reacting with the tolerated antigen, the total number 
of lymphocytes in the organism remains unaffected, because only a small fraction of lymphocytes 
is deleted. 

A different situation was encountered in [ll] dealing with the simulation of dynamics of poly- 
clonal B cell tolerance induced in mice by treatment with bacterial lipopolychaccharide followed 
by application of cyclophosphamide [12]. The resulting suppression of antibody production is 
very probably caused by a substantial deletion of B cells. To obtain satisfactory simulation of 
the recovery from this type of tolerance, i t  was necessary t o  assume that  the  exhibited substan- 
tial decrease of B cells activates a feedback mechanism that  increases, in turn, the influx of new 
B cells from stem cells. With such mechanism included in the mathematical model (111, the 
simulation results agreed well with the experimental data  in [12]. 

It has t o  be expected that  the depletion of CD4+ lymphocytes even in the early stages of 
HIV infection is sufficient t o  activate a feedback mechanism increasing the influx of these cells. 
This paper presents several alternatives how feedback mechanisms of different structure affect 
the simulation of CD4+ lymphocyte depletion in HIV infected individuals. 

3.2 Mathematical Model 

Two developmental compartments of CD4+ lymphocytes are considered in the model: 

(i) The immature cell compartment - P cells. 
(ii) The mature cell compartment - P cells. 

Sizes of P and P cell compartments are described by the following differential equations with 
the given initial values: 

where P ( t )  and P ( t )  are the numbers of P and P cells a t  time t ,  I p  is the influx of P cells, 
i.e. the rate (all rates are in days-') of differentiation of P cells from stem cells, Fp(t) is the 
later specified feedback effect of P cells on the influx of P cells with intensity p a t  time t ,  T p  

is the rate of maturation of P cells into P cells, and rp is the rate of natural death of P cells. 
The quantity Epa(t) is the rate of elimination of P cells due t o  HIV products, and analogously, 
cpa(t) that  of P cells, where parameter a(t)  corresponds t o  the amount of HIV products a t  time 
T. 

The dynamics of HIV products during the infection are described by the differential equation: 
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where a0 is the function of the infectious dose of HIV and 8 characterizes the growth rate of 
HIV. C(t)  denotes the number of cytotoxic T cell specific for HIV (C cells) a t  time t and 7 the 
rate of inactivation of HIV products due t o  the killing capacity of these cells. 

The size of C cell compartment is described by the following equation: 

The maturation of C cells from their precursors is assumed t o  be dependent of the encounter with 
HIV products and the effect of HIV specific helper T cells. Ic is the inflw of C cell precursors, 
E their maturation rate, a the proliferation rate of C cells, and TC their natural death rate. It 
is assumed that  the decrease of the number of HIV specific helper T cells is proportional to 
the total number of CD4+ lymphocytes in HIV infected persons. In consequence, the helper T 
cell effect on maturation and proliferation of C cells can be expressed be the ratio P(t) /Po; the 
coefficient Y is introduced t o  characterize the intensity of this helper effect. 

In simulation runs, the various parameters were set as follows: 7p = 0.2, ~p = 0.01, TC = 
0.01, Ip = 1.0, IC = 0.5, Po = 5.0, Po = 100.0, Co = 0.0, a0 = 0.0005,8 = 0 . 0 2 , ~  = 0.7, a = 0.1. 
Note that for a required value of Po the corresponding value of Po is determined from the steady- 
state considerations in absence of HIV products (a(t) = 0) and feedback mechanism ( p  = 0.0), 
i.e. 7pP0 = rPPO - see [4, 51. The remaining parameter E was adjusted in each considered case 
t o  obtain satisfactory fit with clinical evidence. Insignificant differences in simulation results 
were observed when HIV products were assumed to  affect both immature and mature CD4+ 
lymphocytes (P and P cells) or the mature ones ( P  cells) only. Therefore, simulation results 
are presented, where only mature P cells are sensitive to  HIV products, i.e. ep = 0.0. If not 
explicitly mentioned, the value cp  = 1.0 was used throughout the  simulation. 

3.3 Results 

Now let us consider several different structures of inclusion of the feedback mechanism in the 
above described model illustrated by results of the respective simulation runs. 

3.4 Model Without Feedback Effect 

For the sake of comparison let us include an example of simulation results (Fig. 1) obtained 
without taking into account the activation of a feedback mechanism increasing the inflw of P 
cells ( p  = 0.0). With v = 1.0, a constant decreased level of CD4+ lymphocytes was obtained 
after the initial drop, and the curve did not exhibit the final decrease in a wide range of E and 
also cr parameters. The curve a was obtained for the values v = 2.0 and E = 0.205. I t  manifested 
the three phases of the P cell dynamics, but the initial drop is somewhat higher than the clinical 
observed one. The curve b for v = 3.0 and E = 0.35 gives then a very good approximation to  
the clinical observations. The value v = 3.0 was therefore used in subsequent analysis. 

3.5 Feedback Mechanism Affecting the Influx into P Compart- 
ment 

In this modification it was assumed that  the decreased level of CD4+ lymphocytes activates a 
feedback mechanism which increases the influx of Ip into the P cell compartment. For such case 
the value 

Figure 2 depicts the simulated dynamics of CD4+ lymphocyte depletion for p = 1.0 and 
E = 0.135. The value p = 1.0 was used also in the remaining investigated cases. 
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Figure 3.1. CD4+ lymphocyte depletion curves without feedback effect; curve a for v = 2.0, 
curve b for v = 3.0. 

Figure 3.2. CD4+ lymphocyte depletion curve with feedback mechanism according to  Eq. 5. 
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3.6 Feedback Mechanism Affecting the Common Precursor of 
CD4+ and CD8+ Lymphocytes 

Our attention was turned to the possibility that the feedback mechanism is activated by the 
decrease of the total number of T cells and acts on a common precursor of CD4+ and CD8+ 
lymphocytes by L.M. Adleman (Univ. of Southern California; manuscript). He based this hy- 
pothesis among other findings on the dynamics of CD4+ and CD8+ lymphocytes in individuals 
infected with HIV. Such a mechanism would increase the production of both types of T cells, 
even if only one of them is depleted. There are two possible ways, how the feedback mechanism 
is activated: 

(i) By the decrease of the total number of T lymphocytes, i.e. the sum of CD4+ and CD8+ 
lymphocytes. 

(ii) The change in the cell numbers of each T cell subset (CD4+ or CD8+) activates a separate 
feedback mechanism, but both of these mechanisms act on the same precursor. 

For incorporation of the mechanism in the model, it was necessary to add the following dif- 
ferential equations describing the sized of immature (R) and mature (R) CD8+ lymphocyte 
compartments: 

-- dR(t) - IR(FR(t))' - iRR(t), R(0) = RQ, 
dt (3.6) 

Here R(t) and ~ ( t )  are the numbers of R and R cells a t  time t ,  IR is the influx of R cells, FR(t) 
is the feedback effect of R cells on the influx of R cells with intensity p at time t ,  TR is the rate 
of maturation of R cells into R cells, and r~ is the rate of natural death of R cells. The used 
notation is fully analogical to that used in the earlier relations. 

In simulations runs the following values were used: TR = Tp = 0.2, TR = ~p = 0.01, 
IR = 0.666, Ro = 3.33, Ro = 66.6. These parameters correspond to  those of CD4+ lymphocytes 
and Ro was selected in accordance with existing ratio of CD4+ and CD8+ lymphocytes in 
common pool. The Ro was again determined from the steady-state consideration as in Eqs. (1)- 
(2). 

In the case (i) with feedback mechanism triggered by the total number of T lymphocytes, 
the effect is described as follows: 

One of the acceptable simulation cases is depicted in Figure 3 for E = 0.238. The curve a gives 
the number of CD4+ lymphocytes, the curve b that of CD8+ ones, and the curve c of their sum. 
The simulated total number of T lymphocytes is only slightly lower than the observed clinical 
values [7], otherwise a considerably good coincidence was achieved. 

If the case (ii) having the feedback mechanism triggered separately by the respective numbers 
of CD4+ and CD8+ lymphocytes, is considered, then 

This case is not documented here as the simulation results exhibit only insignificant differences 
with respect to those applying the feedback mechanism (8). Instead, Figure 4 depicts the 
simulated dynamics of the different T cell populations under the assumption that only immature 
CD4+ lymphocytes (P cells) are affected by HIV products (Ep = 1.0, cp = 0.0) for parameter 
E = 0.0045. The general character of the curves remains the same as in the preceeding situation, 
where only mature P cells were affected. The major difference is the later onset of CD4+ 
lymphocyte depletion and somewhat larger increase in CD8+ lymphocyte number. 
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Figure 3.3. CD4+ and CD8+ lymphocytes development curves with feedback mechanism 
according to Eq. 8. 

Figure 3.4. CD4+ and CD8+ lymphocytes development curves with feedback mechanism 
according to Eq. 9 with Ep = 1.0 and c p  = 0.0. 
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3.7 Discussion 

Satisfactory simulation of dynamics of CD4+ lymphocyte depletion in HIV infection can be 
provided by the suggested model, if i t  is postulated that  HIV reproduction is limited by the 
action of cytotoxic T cells [6]. These cytotoxic cells are assumed t o  mature and proliferate after 
contact with antigen under influence of specific helper T cells. This helper activity declines 
when the number of CD4+ lymphocytes decreases during HIV infection. If i t  is assumed that  
the helper activity decreases linearly with the number of CD4+ lymphocytes (v = 0.0), the 
simulated number of CD4+ lymphocytes stabilizes a t  a lower level and does not exhibit the 
final decline. For the simulation of this terminal phase i t  is necessary to  postulate that  the 
depletion of CD4+ lymphocytes causes a faster than linear decrease of the helper activity. Such 
an assumption is acceptable, because i t  was observed that  the activity of CD4+ lymphocytes in 
HIV infected individuals decreases faster than their numbers [I-31. 

This model does not take into account that  the decrease of CD4+ lymphocytes will most 
probably activate a feedback mechanism effecting their increased production. The inclusion of 
such a mechanism regulating the influx into P cell compartment led to  not fully satisfactory 
results. However, when the feedback mechanism was accepted t o  be activated by the decrease 
in the total number of T cells resulting in the increased production of both CD4+ and CD8+ 
lymphocytes, the simulation results were in good agreement with available clinical data. As 
double positive (CD4+ and CD8+) thymocytes are the precursors of the single positive, more 
mature, ones [13], this mechanism can be expected t o  exist. 

It  is worth mentioning that  two modifications of the model - one assuming the feedback 
mechanism activated by the total number of T cells, the other by each T cell subset (CD4+ 
and CD8+) separately - allowed fully acceptable simulation analysis. The achieved coincidence 
was not only in CD4+ lymphocyte depletion, but also in CD8+ lymphocyte increase in HIV 
infected persons, as reported in [7, 81. The simulated numbers of CD8+ lymphocytes increased 
even more in the final stage of the disease in contrast to  the decrease observed in AIDS patients 
[8]. The mathematical model can simulate satisfactorily the dynamics of CD4+ lymphocytes 
during the whole course of the HIV infection. As far as the CD8+ lymphocyte dynamics are 
concerned, it would be necessary to  postulate that  some additional mechanism starts to  act a t  
the final stage of disease. 

It was suggested that  the depletion of CD4+ lymphocytes in HIV infected individuals could 
be due to  the infection of their precursors leading to  impaired production of mature cells (2). The 
model without feedback gave satisfactory results (6), when i t  was assumed that  both immature 
and mature, or immature CD4+ lymphocytes alone, are depleted by HIV products. With 
the model including feedback mechanism the approximation of clinical data  was good, when 
simultaneous depletion of immature and mature CD4+ lymphocytes by HIV was postulated. 
On the other hand, less acceptable fit was obtained when only immature CD4+ lymphocytes were 
assumed t o  be depleted by HIV products. Eventual depletion of common precursors of CD4+ 
and CD8+ lymphocytes by HIV products should result in depletion of both T cell subsets, but 
this would contradict the clinical findings. 

3.8 Conclusions 

The CD4+ lymphocyte depletion in HIV infected persons seems t o  be effected by HIV products. 
As the dynamics of the concentration of HIV products are inverse to  those of non-replicating 
antigen used for tolerance induction, the mathematical model of immunological tolerance can 
be used to  describe the dynamics of CD4+ lymphocyte depletion. To simulate the clinically 
observed dynamics, i t  is necessary t o  include the limitation of HIV growth by the corresponding 
cytotoxic T cells and their dependence on the helper effect of CD4+ lymphocytes. 

The substantial decrease of CD4+ lymphocytes in HIV infection can possible activate a 
feedback mechanism increasing their production. Several ways of incorporation of such feedback 
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mechanisms in the model are investigated. Very good simulation results are achieved provided 
that the nonlinear feedback mechanism is activated by the decrease in the total number of T 
cells. Under such assumption it  is possible to  simulate simultaneously both CD4+ lymphocyte 
depletion and the observed increase of CD8+ lymphocytes during the course of the HIV infection. 
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4.1 Introduction 

There is a possibility t o  verify some hypotheses on the functioning of the physiological regulation 
system of the normal blood sugar level as well as pathologic, ensuing in the development of 
diabetes mellitus and hyperinsulinism with the help of mathematical modeling. It is most 
important t o  take into account the oscillatory nature of the considered physiological volume, 
appearing as a consequence of time delay in the blood sugar system, equal t o  the duration of 
production of insulin on /3-cells of the pancreas. The simplest model of the blood sugar level 
regulation is constructed and investigated below with the help of a system of four nonlinear 
difference-differentia1 equations. An extension of this model is also developed, namely, taking 
into account the fraction of proinsulin, of the functional connection of hormones of a-, /3-, and 
6-cells of the Islets of Langerhans. Furthermore, dietary regimen are taken into account. The 
problem of controlling the dynamics of the blood sugar level is investigated. 

4.2 High-frequency and Low-frequency Oscillation 
of the Blood Sugar Level 

Let us isolate by some trains two groups of studying the dynamics of the blood sugar level. 
The works of the first group combine those whose authors defined the blood sugar level in a 

short time, within the scope of minutes. For example, Aleksentseva [I], studying the problem on 
dogs, took blood from the artery every three minutes and detected rather rhythmical oscillations 
in the blood sugar level with periodicities of 9 minutes. The presence of such oscillations which 
will be called high-frequency (h f) ones, were also confirmed by other researchers (see [2, 31). 
From [2] i t  follows that  apart from high-frequency (h f) oscillations in the blood sugar level with 
periodicities of N 400 - 500 seconds, there are oscillations of still higher frequencies a t  N 30 - 40 
second intervals. I t  may be taken for certain [4] that  the regulation, whose consequences are 
h f oscillations in the blood sugar level, is realized with the help of the central nervous system 
involved and, obviously, by neurohumoral means along the hypothalamus-hypophysis. 

To the second group belong those works in which the blood sugar level was defined a t  different 
hours of day and night, and blood was taken several times during the day (and night) (see, for 
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example, [5, 61). The level of immunoreactive insulin ( I R )  in blood plasma was measured in 
parallels. Analysis of the curves from [5, 61 shows the presence of diurnal oscillations in blood 
sugar and I R I  levels with periodicities equal t o  24 hours. Such oscillations will be called low 
frequency (If) ones. There is no doubt that  low-frequency (If)  oscillations in the blood sugar 
levels reflect the dynamics of the liver glycogenic function controlled by the endocrine system 

[41- 

4.3 A Survey of Some Mathematical Models 

The amount of works on mathematical modeling of the blood sugar level regulation, necessary 
for a better understanding of the problem on the whole, and perhaps, for the explanation of the 
functioning mechanism of the physiological system considered, is not great. Let us discuss some 
of these investigations. 

The models of Bolie [7], Ackerman et al. [8], and Norwich [9], differ mainly by the amount 
of linear differential equations selected for modeling separate organs of the control system of 
the blood sugar level. Note that  the above authors are interested not in the functioning of 
the dynamic system in normal physiological conditions, but in i ts  behavior under the effect of 
extremal loading with glucose or insulin, i.e. the so-called transient process. The approach t o  
the problem considered initiated in [7, 91 is considerably extended in [lo]. Furthermore, the 
model in [ l l ]  describes in detail the interaction of numerous components of the physiological 
system under consideration. Its complexity, however, is presented t o  take nonlinearity in to  
account. The authors of paper [12] point t o  the nonlinear nature of the pancreas and, what is not 
important, they introduce and confirm the idea that  the activity of the pancreas must depend 
on the prehistory of the given pancreas. Davis [13] interprets the problem on self-regulation 
of the blood sugar level a t  intercorrelations of the "predator-prey" type, where insulin is a 
predator and sugar is the prey. Paper [14] ought t o  be noted too, which described and realized 
a mathematical model of the functioning of the Islets of Langerhans as a system of a-, P-, and 
6-cells by computer. Analysis of the model showed the presence of oscillatory conditions. The 
investigation results in [15] clinically confirmed the assumption that  oscillatory conditions add 
to  the efficiency of hormone secretion. It was shown that pulsative conditions of intravenous 
injection of insulin t o  the sick with diabetes mellitus has a greater hypoglycemic effect than 
continuous infusion of insulin a t  a constant rate. 

4.4 The Simplest Mathematical Model of the Blood Sugar 
Level Regulation 

As was already noted above, high-frequency (h f )  oscillations are a consequence of neurohumoral 
regulation, and low-frequency (If)  oscillations in the blood sugar level are a consequence of 
humoral or local regulation and they are quickly and slowly transient processes. Selection of the 
slow range is stimulated by the following reasons. First, the mechanism of the neurohumoral 
blood sugar level regulation is not quite clear; second, contemporary medicine is not yet capable 
of "working" within the scope of minutes; third, the known disorder in the blood sugar level 
regulation becomes apparent as slowly transient processes within the scope of hours and days. 
It does not mean that  the neural regulation is neglected. It is only averaged. While modeling it 
is displayed by that instead of h f oscillations in the blood sugar levels their average values will 
be taken. 

Let I ( t )  and IA(t )  be the levels of joint and active insulin in plasma, correspondingly, a t  the 
same moment t,  IiI and KIA be their means, whereas h is the time, necessary for the production 
of insulin in P-cells of the pancreas. Furthermore, let G(t)  be the level of blood sugar and K G  
be its mean. Following the general scheme of the blood level regulation, the interactions in the 
physiological system considered may be interpreted as in the problem "predator-predator-prey", 
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where I ( t )  and IA(t )  are uthe predatorsn and G(t) is Ua preyn. Thus, (see (16, 171) we obtain a 
system of difference-differential equations. 

where the positive variable z~ characterizes the linear rate of insulin production, positive vari- 
ables t .1~ and z c  show the linear growth of concentrations of active insulin and the blood sugar, 
respectively, and with the help of parameters a ,  b and c, a feedback is realized. Parameter a 
controls the rate of insulin production, parameter b regulates the level of active insulin in the 
blood and parameter c regulates the blood sugar level. These parameters play the main role in 
the regulation of the system (1)-(3), and moreover they are positive in their biological sense. 

The model (1)-(3) I ( t )  denotes not only the fraction of connected insulin in blood plasma 
but all the insulin produced in /?-cells. This inaccuracy does not play an important role in the 
analysis of functioning of the physiological system in normal and pathological cases. However 
i t  appears, as it turned out, in the analysis of the mechanism of elementary glycemia, i.e. 
the mechanism of the blood sugar level increase, connected with meals. Correction of model 
(1)-(3) by means of excretion of joint insulin Is(t) fraction in blood plasma separately is also 
important for practical purposes. At present there exist only the methods of determination of 
immunoreactive insulin ( I R I )  in blood plasma. An I R I  fraction contains Is and IA. Thus, to  
the system of equations (1)-(3), should be added 

where Is(t) is the level of joint insulin in blood plasma a t  the instant of time t, KIs is its mean, 
21s is the linear rate of growth in joint insulin concentration in the blood, and d is a parameter 
of feedback. 

4.5 Investigation of the Simplest Mat hemat ical Model 

It is obvious that  the solutions of the system of equations (1)-(3) also determines the dynamics 
of Is(t). While investigating system (1)-(4) we shall assume that [16, 171 

21 Z l A  ZC 21s - = c 1 ,  -- - c c ,  -- 
liI - C I A ,  - - 

KG K1S 
- C I S ,  zc (1  + c) = z;;, 

KIAP 

where the variables CI, CIA, cc ,  CIS are positive constants and ZE is a Malthus coefficient of 
linear growth. The system of nonlinear differential equations (1)-(3) has five equilibrium states 
with non-negative coordinates, from which for ac  < 1 and ab < 1, stable may be only the inner 
state of equilibrium 

I ( t )  G KI, IA(t )  KIA, G(t) KG. (4.6) 

Let us consider further the stability of the state of equilibrium (6). In the initial system (1)-(3) 
let us substitute 

As a result we shall obtain the system of differential equations, whose characteristic quasi- 
polynomial of the linear part is the function 
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where a = a + c + ac, y = 1 + c + bc. The investigation of root location on a complex plane of 
a quasi-polynomial in a general case is a rather complicated problem (see [16]), therefore let us 
make some biological considerations. 

A CASE O F  DIABETES M ELLITUS.  In this case z~ >> %]A, z1. (3) and the well-known Tichonov 
theorem yield the approximate equality 

With respect t o  (9), after substitutions (7), i t  follows that  

~ ( t )  + % I A [ ~ Z ( ~ )  + ry(t)]  [ I  + y(t)l = 0. (4.11) 

In a case of diabetes mellitus the normal regulation of the blood sugar level is disturbed, which 
leads t o  the reduction of feedback of the physiological system. Therefore, in this case we shall 
consider the parameters a and c t o  be small. 

Consider the characteristic quasi-polynomial 

P( A) = [A + 21 exp (-Ah)] (A + r z r ~ )  - z r z r ~ a b  (4.12) 

of the linear part (10)-(11). It is easy t o  prove that  when 

quasi-polynomial (12) has simple roots r ( a )  f iG(&) satisfying the conditions Go = G(0) = $, 
~ ( 0 ' 1  = 0. 

whereas its remaining roots are the left open complex halfplane. Hence and from [18] it follows 
Theorem 1. Under the conditions (13) in a sufficiently small neighborhood of zero the 

system of differential equations (10)-(11) has a unique (accurate to  time shifts) stable periodic 
solution, for which the presentation 

z( t )  = ( cos GOT + 0(t2),  (4.16) 

y(t) = ( ( A r s  sin GOT + AIC cos GOT) + 0(t2), (4.17) 

is valid, where 

and co and do are defined by the formulas 

Thus, in a case of diabetes mellitus, the system of differential equations (1)-(4) has the stable 
periodic solution, which may be defined by the approximate formulas (7)-(9), and (13)-(20) and 

I s ( t )  = K ~ s [ l  + ((BIs sin Gor + BIS cos [ GOT) + o( (~) ] ,  
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where 

The approximate formulas obtained together with equalities (5) will help us, with respect t o  the 
experimental da ta  from [4, 191 t o  select the values of parameters of model (1)-(4). In a case of 
diabetes mellitus: h = 4 (hours), ZI = 0.38, ZIA = 0.6, ZG = 21.6, 21s = 0 . 3 5 , ~  = 0.3, b = 1.18, 
c = 0.34, d = 0.05, KI  = 17.5, KIA = 2.8, Kc = 168, Kls = 17.5. Hence, we obtain in addition 
that 

CI = 0.0217, CIA = 0.2143, CG = 0.129, CIS = 0.02, zz  = 30. (4.24) 

The numerical solution Is(t) + IA(t ) ,  G(t) of system (1-4) in the above selected values of 
parameters is presented in Figure 1. 

NORMAL CASE. Ln this case the parameter z c  is considerably smaller but the equality 
zc(l + c) = z z  remains. The parameter c is considerably larger, whereas parameters a and b 
are significantly smaller and close to  zero. Following the experimental data  from [4, 191 and 
taking into consideration (24-25), say in a case of normal regulation: h = 5 (hours), z1 = 0.325, 
ZIA = 1.5, ZG = 12, ZIS = 0.3, a = 0.1, b = 0.3, d = 0.4, KI  = 15, KG = 93, KIS = 15. In 
Figure 2 the numerical solution Is(t) + IA(t) ,  G(t)  of model (1-4) is presented. 

HYPERINSULINISM CASE. The equality zc(l + c) = z z  is preserved, but the parameter z c  is 
even smaller. The regulation with the help of parameters a and b remains, i.e. a and b, in fact, 
are the same, though the parameter c is considerably larger. At a relatively normal regulation 
the sensitivity of organism t o  insulin considerably increases [19]. Following the experimental 
data  from [4, 191 and taking into consideration (24) and (25), let us assume: h = 5 (hours), 
21 = 0.325, ZIA = 0.8, ZG = 5.88,zls = 0 . 5 5 , a =  0.1, b =  0 . 2 2 , ~ =  4 .1 ,d  = 0.15, KI  = 15, 
KIA = 3.73, Kc  = 4.6, ILIS = 27.5. In Figure 3 the numerical solution Is(t) + IA(t ) ,  G(t)  of 
model (1)-(4) is presented for a case of hyperinsulinism. 

4.6 The Functional Relation of Hormones of the Islets of Lan- 
gerhans 

At present, there are a lot of proofs that  endocrinic cells of the Islets of Langerhans function 
as a unit, regulating the utilization of nutritive matters by issues and their accumulation and 
preservation. Three types of endocrinic cells are part of the Islets of Langerhans, respoilsible 
for the deposition and preservation processes and mobilization of energy in organism: a-cells 
secrete glucagon, @-cells - insulin, and &cells - somatostatin [4]. A considerable increase of 
the glucagon level in blood plasma is observed among the people with hypoglycemia caused by 
insulin. On the contrary the level of glucagon decreases and the contents of insulin increases 
as a result of taking carbohydrate foods. An inverse dependence in respect t o  the contents of 
glucagon and the blood sugar level is also established in the tests with perfusion of the pancreas 
[4]. Thus, there exists a mechanism of insulin and glucagon interaction in an antiphase, when 
an increase of the level of one hormone corresponds t o  a decrease of the level of another. Note, 
that glucagon stimulates the production of insulin, while insulin suppresses the production of 
glucagon [4]. 

Somatostatin secreted in &cells is a peculiar regulator of the activity of a-cells and @-cells, 
i.e. i t  decreases glucagon and insulin secretion [4]. In its turn the somatostatin secretion is 
stimulated by an increase of the glucagon level in the blood [4]. Glucose also has a stimulating 
influence on somatostatin secretion [4]. 

Based on the above experimental data  with respect to  the functioning of the Islets of Langer- 
hans endocrinic cells as a unit and on the simplest mathematical model of the system of blood 
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sugar (1)-(4), let us compose a mathematical model of the blood sugar system with regard t o  a 
functional relation of a-, @- and &-cells hormones. 

Let a ( t )  and 6(t) be the levels of glucagon and somatostatin in blood plasms, respectively, a t  
the time t, Ka and K 6  be their mean levels. Furthermore, let za and 26 reflect the linear growth 
of glucagon and somatostatin levels in the blood, respectively. Then in order t o  describe the 
functioning of the blood sugar system we may apply (see [17]) the system of difference-differential 
equations (2)-(4) and 

In system (2)-(4), and in (25)-(27), additional feedbacks are realized by means of parameters 
aaa, ql, qa and A. While investigating it,  we shall assume equalities (5) and 

za - z6 = c,, - = ca, z,(l + ql + qa) = z:, 
K a  Ka 

satisfied, where c,, cs are positive constants and z: is a Malthus coefficient of linear growth. 
The investigation has been made numerically in the neighborhood of the equilibrium state 

The functional relation of hormones of the Islets of Langerhans in mathematical model allows 
us, the same as in [lo], t o  make a conclusion that  in a case of diabetes mellitus a tendency to  
hyperproduction of glucagon is observed. 

4.7 The Insulin "Age Structure" 

From the general scheme of the blood sugar level regulation, described in [16], i t  follows that 
there exists a certain "age structure" of insulin, where "younger" proinsulin by its activity yields 
considerably to  "older" insulin. It is possible to  calculate insulin uage structuren in mathematical 
model (1)-(4) by replacing differential equation (1) with the following: 

i ( t )  = zl 
pI( t  - h,) + (1  - p)I(t  - h) 

(4.29) 
K G  KIA K I  

In (29) h, is the time necessary for proinsulin biosynthesis and the parameter p 2 0 reflects a 
contribution of proinsulin fractions into a total amount of insulin produced in @-cells. 

4.8 The Dietary Regime 

It is known that  glucose usually gets into organisms together with food. The mechanism of the 
blood sugar level increase connected with meals, i.e. the mechanism of elementary hyperglycemia, 
is not explained up t o  now. Furthermore, i t  is known that  dietary regimen may synchronize the 
dynamics of the blood sugar level [17], thus concealing an individual biorhythm of the blood 
sugar level. An elementary hyperglycemia is a clearly sufficient expressed processes, appearing 
as an effect on the blood sugar system of some periodic external force. Therefore, taking into 
account the dietary regime in the blood sugar system is simply indispensable. 

Let the function g(t)  - g(t + 24) reflect in some way the dietary regime and 7; (i = 1,2 ,4)  
be some parameters. Assume that  in order t o  take into account the dietary regime in the 
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mathematical model (29), and (2)-(4), i t  is necessary to  modify equations (2)-(4) in the following 
way: 

Figure 4 illustrates the graph of the selected, by us, "mealsn function g ( t ) .  
The investigation of model (29)-(32) was carried out numerically which h = 5, h, = 3, 

zz = 0.237, Z Z A  = 1.5, ZG = 11.58, zzs = 0.3, a = 0.1, b = 0.67, c = 1.5, d = 0.4, K z  = 15, 
K I A  = 5, KG = 88, t i  = 8, t: = 12, t! = 18, Kzs = 5, h1 = 0.6, h2 = 0.64, h3 = 0.82, 71 = 0.35, 

I 73 = 1, 7 4  = 5, t i l  = t i  + 1, t i 2  = t l  + 1.5, t',, = t', + 5, the solution G(t )  of model (29)-(32) 
corresponds to the experimental data  from [22] rather well. 

4.9 Control of the Blood Sugar Level 

A necessity to  develop the control methods of the blood sugar level in patients with diabetes 
mellitus is indisputable. Let i ( t )  be a function, reflecting in some sense the effect injected insulin 
on the dynamics of the blood sugar level. It  is proposed t o  introduce the control into the model 
in the following way: 

The numerical investigation of model (29), 30)-(32) has been made. The investigation of model 
(29), (30), (32), (33) was carried out numerically in which zz = 0.495, b = 1.82, d = 0.05, 
Iiz = 25, K I A  = 2, KG = 400, IizS = 5.8, yl = 0 . 4 , ~ ~  = 1, 73 = 1, hi = 0.3 ( i  = m), ti  = 8, - 
t: = 14, t; = 20, t i  = 2, ys = 1, 2 j l  = t i  + 1, t i z  = t i  = 1.5, t j3  - t', + 6 ( i  = 1,4, the solution 
G(t) in Figure 6 model (29), (30), (32) corresponds to  the experiment points of the 3rd patient 
from [23], who a t  8 o'clock in the morning received 44 units of NPH insulin. Figure 7 illustrates 
the graph of the function i ( t )  selected by us. 
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Figure 4.1. Normal Case - Time (clock hour) 

Figure 4.2. Diabetes mellitus - Time (clock hour) 
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Figure 4.3. Time (clock hour) 

Figure 4.4. Text of caption. 
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Figure 4.5. Time (clock hour) 

Figure 4.6. Time (clock hour) 



Figure 4.7. Time (clock hour) 

Shvitra and Janchys 



Chapter 5 

Model for Analysis of Drug Action 
During Experimental Influenza 

R.Ya. Poljak, L.K. Chetverikova, T.Ya. Dubrovina 
A.I. Dukhin, D.V. Kaljaev, T.A. Kramskaya 
I.A. Ivanova, G .F. Leontieva, V.P. Lozitsky 
L.F. Meringova, N.K. Shidlovskaya, B.L. Voitsechovsky 
R.N. Usmanov, I.V. Yakovleva 
Institute o j  Experimental 
Medicine AMS USSR, Leningrad 
The Department o j  the Computative 
Mathematics AS USSR, Moscow 
Mechnicov Institute o j  Virology 
and Epidemiology, Odessa 

Introduction 

The analysis of main mechanisms of viral infection pathogenesis is important for the solution 
of the problems of fundamental science and practical health service. In order to  interfere in the 
pathological process, it is necessary to  have clear ideas of the strategy and tactics of drug use. 

The aim of the present work uses the experimental and mathematical model of influenza 
[6, 11, 151 for the analysis of the drug action. The mechanisms of antiviral effects of chemical 
preparations in development of a prophylactic or therapeutic effects are studied. 

The experimental influenza model aided to  study prophylactic and therapeutic schemes of 
the use of the proteolysis inhibitor (E-aminocapronic acid - E-ACA) and the antioxydant ionol. 
The proteolysis inhibitors as antiviral means have been studied in detail in experiments [7, 8,  
261 and widely used in clinical practices [2, 3, 71. Natural or synthetic antioxydants have been 
extensively studied as antistress agents (see [18] and as correctors of interferon formation (9). 
Study of ionol enabled B.A. Frolov et al. [18] to  reveal its new properties as a prophylactic drug 
in lethal forms of the influenza. One of its possible sites of action is the prophylaxis of lesion of 
the tissue barriers permeability. [13, 17, 191 

Materials and Methods 

Experimental infection of mongrel or F1 line mice (CBA x C57 Black) was intranasal adminis- 
tration of lo3 -lo4 embryonal infectious doses (EIDSo) of influenza A/PR8/34 virus (HlNl ) .  For 
control groups consisted of either intact animals or the mice who were given preparations E-ACA 
according to  prophylactic or therapeutic scheme and ionol according to  prophylactic scheme (see 
details in text). 
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interferon or antibodies of IgG and IgM classes in the serum, the cytotoxic lysis induced with the 
spleen's natural killers (NK) in respect t o  the K-562 cells, and the complement- and antibody- 
dependent lysis (ADDC) in respect t o  the target-cells infected with the homologous virus within 
the "splenocyte against splenocyte" system. The modifications of used techniques of the im- 
munoassay, or virological analysis as well as the mathematical techniques of their evaluation 
have been described elsewhere [4, 12, 15, 20, 211. 

The general appearance of used mathematical model (11) represents an equation 

dX/dt = @(X, a),X(O) = XO, t E [0, TI (5.1) 

where X E Rn - is a vector of state variables; a E RI - R is a vector of coefficients. 
The mathematical model describing the experimental influenza has the following (6, 11, 15): 

~p = ~ p o ( t  - t*) + a l l L p [ l -  ezp(-alzV)I (5.3) 

where Va; - the number of infectious virus particles in population; t - the time after infecting 
in days; Lp - is a number of lymphocytes-precursors of a corresponding specificity; Le(T) - is a 
number of specific lymphocytes-effectors; F - is the amount of specific immunoglobulins. 

For the description of lymphocytes proliferation and differentiation processes the next scheme 
was used [15, 23-25]. The specific lympocytes were divided into precursors (Lp) and effectors 
(Le). We have supposed that  the B-cells are the constant part of Lp and Le populations and 
the other part of these populations are T-cells (it is impossible t o  describe the relations of these 
parts of different groups of animals using the known methods). The nonactive precursors (Lpo) 
corresponds to  the pools of specific cells which can be activated by the antigen and became the 
proliferating cell-effectors (Le). We had supposed that the numeric parameters of this process 
can be described by equations (3) and (4). So, in our model the variables Lp and Le are the 
main ones, they are including all the mechanisms of cellular defence of infected organism (NK, 
CTL, ADDC). The complete agrumentation of the accepted system has been given by Marchuk 
G.I. et al. (1988) [ll]. 

Results and Discussions 

On the model of influenza lethal infection with the A/PR8 virus (the infecting dose EIDso 
), it has been found that  prophylactic subcutaneous administration of E-ACA in the dose of 30 
mg per mouse 2 days prior t o  infecting, or the therapeutic scheme of the E-ACA adminstration 
during 5 days starting from the 1st day after infecting (the total dose 450 mg per mouse), or 
prophylactic administration of ionol daily intraperitoneally during 3 days prior to  infecting (the 
total dose 1.5 mg per mouse) exerted an obvious favourable effect on the survival of the animals, 
having increased i t  by 30-50%. It has been found that ,  against the background of application 
of the preparations, the virus contents was always somewhat lower in the site of infections, 
although the curves were quite comparable. The curves of the interferon contents in serum 
differed from each other insignificantly. The contents of spleen NK and ADDC preserved their 
wave-form alterations. The NK activity was enhanced by the preparations, particularly during 
the second week. The change of the ADDC activity level was the most obvious. An increased 
level of IgM was also noted against the background of ionol application. The curves of the IgG 
contents altered insignificantly. 

The description of the data  obtained in result of a daily analysis of all the parameters 
of the process has revealed no most characteristic sign with i t  would be possible to  associate 
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prophylactic or therapeutic effect. The using of the mathematical model made possible t o  receive 
the additional biological information. 

A mathematical model has been developed on the basis of experimental (Fig.1). 
The graphs of Fig.2 show the solution of the model's equations for prophylactic action of the 

E-ACA and ionol. Table 1 shows the values of the model's coefficients (2)-(5) according to  the 
experimental data. The details of this work were described in papers [6, I:[.]. 

The action of the preparations is most obvious a t  the initial stage of infection when the 
efficiency of tissue lesion a t  the initial moment and in the same dose of administered virus 
decreases by few orders (Fig.2, Ln(V)). The effectiveness of precursor's stimulation (Lp) was 
increased by both preparations, and the activity of effectors (Le) was increased by the action of 
E-ACA. Throughout the process a lower level in virus accumulation preserves in those groups of 
animals who were given the preparations. However, a value of some model coefficients do not 
change. (Table 1). 

Model's Coefficients Identification Using Experimental Data 

Values of Coefficient for infected mice 
Without 

Coefficient Preparation Ion01 E - ACA 
0 1  2.2 2.328 2.581 
0 2  0.0 0.0 4.316. 
03  0.958 0.972 0.950 
0 4  1.8 1.8 1.8 
0 5  0.891 1.51 1 .O 
0 6  1.530. lo4  2.178. lo4 1.411 lo3 
0 7  2.190 - 2.190. lo-' 2.190. 
0 8  0.0 1.834 0.0 
0 9  4.730. 2.226. 0.0 
010 7.0 7.0 7.0 
011 0.201 0.332 0.294 
0 1  2 3.870. 1.115. 7.664. 

t(days) 3 3 3 
V(0) 5.037. -1.139 -1.139 
L PO 1 1 1 

For example, 01, 03, 04, 07, 010. On the contrary, the other coefficients undergo considerable 
changes. 

The data obtained can be interpreted as follows: in normal infected mice and in application of 
ionol, the maximum of the virus accumulation and the subsequent inhibition of its proliferation 
are maintained, chiefly, by the action of cytotoxic mechanisms mediated by the lymphocyte 
effectors Le. One more mechanism is added in the group of mice defended by the E-ACA, 
the mechanism being still unidentified. The results of the experiments based on usage of the 
model's equations (2)-(5) have shown that  the main influence on the values of variable V (virus 
in the host organism) had the components (03, V, Le) [2], corresponded t o  cytotoxic effect. The 
variable F had a lower significance. In the case of E-ACA treatment the coefficient 09 = 0. The 
possible reason of this state is the masking of free specific antibody activity by more significant 
cytotoxic mechanisms (03, V, Le) in the equation (2). 

For the group of animals who were given the preparations a12 a few times less than for the 
untreated group. This seems to reflect a lowering of the threshold in the amount of virus at 
which point the processes of proliferation and differentiation start  t o  proceed with the maximal 
intensity. The studies show these changes to  be quite considerable. Desedes, in these groups, 
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the a1 1 increases by 1.5 times which suggest, probably, more intensive processes of proliferation, 
formation of the immunological memory in these groups which is very important, too. Just these 
very changes, probably, cause the antiviral effect of chemical preparations under study observed 
in experiment. 

The data obtained corroborates the possibility of the approach used to investigate the effect 
and points of action of the chemical preparations (as well as other factors) upon the process 
of acute infection in the host organism. Besides, the use of the mathematical model enables 
one to obtain quantitative characteristics of internal processes by the data in vivo. A larger 
experimental material will provide the possibility to determine statistically significantly the 
changes in mechanisms under study induced by the chemical preparations, to single out the most 
important components of defence, i.e. to construct and check up the "scenarios" of development 
of infectious disease in the organism during prophylaxis and treatment. 

Conclusions 

The protective effects of proteolysis inhibitor E-ACA and antioxydant ion01 upon lethal and 
non-lethal forms of influenza infection have been studied in mice. 

Use of experimental and mathematical models has revealed that the anti-influenza action of 
the preparations is actualized through several mechanisms. Three of them have been identified 
by means of the analysis of the model's coefficients: 

a lower efficacy of infecting of the target-organ's cells (with the same infecting dose); 
the threshold of effective antigenic stimulation of the immune response as measured by the 
amount of the necessary virus, is lowered; 
a higher intensity of proliferation of the immune system's cells-precursors. 

This way can be effective addition to the traditional experimental or clinical analysis of 
infection process's characteristics. 
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Introduction 

Cancer is the end of a multistage, multifactorial process. Characteristic features of malignancy 
are (i) uncontrolled proliferation, (ii) invasion in adjacent normal tissue, (iii) formation of metas- 
tases, (iv) the ability to  evade immune survellance. In spite of enormous investments of time 
and money the central question how genes and the growth of normal and malignant cells are 
regulated still remains open. The cancer problem may be studied from different points of view 
(1). In our group we started in 1968 applying methods of systems analysis, control theory, au- 
tomata theory and computer science to  this problem (2). The key idea was to  interpret tumor 
growth as an unstable closed-loop control circuit. Thus, step by step the dynamic behaviour 
of cell-growth control loops has been investigated. Furthermore, we extended this approach by 
modelling the spatial behaviour of tumor growth (3). 

In the present paper we outline some strategies (i) to  substitute in vitro experiments of 
spheroidal tumor growth by computer models, and (ii) to  apply clinical irradiation schemes on 
in-vitro tumor spheroids for testing the result of standard and non-standard fractionations. 

Modelling and simulation of in-vitro tumor growth 

The multiplication of an individual tumor cell innoculated into a three-dimensional nutrient 
medium is described in (4). It  is important to note that  spheroidal growth stops at  a dimeter 
of 3...4 mm, that  means there is a maximum volume of the spheroid beyond which no further 
expansion occurs. Figure 1 illustrates the real growth of a MGH-U 1 tumor spheroid from 
(5). One can clearly recognize the existing steady state between the outside margin of the 
proliferating tumor cells and the inner necrotic center. 

The construction of a model describing in-vitro tumor growth requires: 

a a cytokinetic model (6) describing the division of a tumor cell (Figure 2) 
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experimentally gained da ta  of the cell-cycle phase durations (Table 1) 
cell production and interaction rules describing the cell-to-cell communication. For instance 
some rules of the catalogue may say: 

( I )  The multiplication of a tumor cell is possible only if the distance between a dividing 
tumor cell and the nutrient medium is less than three cell layers. All tumor cells residing 
in a distance of more than three cell layers enter the resting phase GO because of the 
lack of oxygen and nutrient supply. 

(2) If there is no free position around the dividing tumor cell, it divides into the direction 
which has the shortest distance between the tumor cell and the nutrient medium. If 
there are equal minimum distances in various directions, a pseudo-random number 
generator determines the direction in which the tumor cell will divide. 

Computergraphics software packages for representation of 2-D and 3-D simulation results. 

After transforming these statements, rules and equation into algorithms computer program 
were written in FORTRAN IV. The input data  to  the simulation model are the cell-cycle phase 
durations (see Table 1) of a specific tumor cell. In comparison t o  Figure 1 the simulation result 
of a spheroidal tumor growth is demonstrated in Figure 3. A good agreement between the sim- 
ulation (Figure 3) and the results obtained from experiments (Figure 1) has been achieved. The 
number of tumor cells as a function of time is represented in Figure 4. The study of the simulated 
tumor spheroid a t  T = 300 units of time will be chosen to  be the starting point for computer 
experiments performed to  clarify the influence of standard and non-standard irradiation. 

Modelling and simulation of different irradiation schedules 

In addition to  our simulation model of tumor growth developed so far, the simulation of irradi- 
ation treatment schedules (7, 8, 9, 10) requires numerous supplement algorithms and programs. 

( I )  To construct a model describing radiation treatment it is necessary t o  know the number of 
tumor cells hit by radiation. In this case we have made use of the survival function S ( D )  
via the "Linear Quadratic Model" (11) 

S ( D )  = (exp - a D )  x (exp - ,OD~).  

D stands for doses and a and ,O are parameters depending on the kind of radiation and the 
kind of cells. Thus, it is possible to  calculate the number of the hit proliferating and hypoxic 
tumor cells as a function of the dose (see Table 2). 

(2) A cell is able t o  repair cell injuries within a limited scope. In this paper the assumption is 
made that  30will be repaired in a mean time of 15 hours. 

(3) Furthermore, it is assumed that  a lethally hit tumor cell which is not repairable needs about 
5 days for lysis. Then the cell space is free again for being filled with proliferating tumor 
cells. 

(4) After lysis of the lethally hit tumor cells in the outmost margin of the spheroid there is a 
better nutrient supply of the hypoxic cells which can now be recruited into the cell cycle. 

The input da ta  of the computer (VAX 730 machine) are: cell-cycle phase durations, irradi- 
ation parameters and treatment schedules. The time needed t o  simulate a clinical irradiation 
scheme of 40 days takes about 40 hours. 

While Figure 5 shows a 2-D cross-sectional image through an irradiated tumor spheroid in 
the Figures 6 and 7 clinical treatment schedules were applied t o  in-vitro tumor spheroids under 
different assumptions to  answer the  question: UStandard or non-standard irradiation?" 

It is surprising that  in both cases (Figure 6 and Figure 7) with nearly the same overall dose 
after 5 weeks the number of tumor cells has decreased to  about the same level. Thus, i t  is 
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tempting t o  speculate that  the choice of a multifractionated irradiation or of an irradiation with 
a high single dose will depend on the radiation response of normal cells including side-effects. 

From this we may conclude that  much simulation work remains t o  be done (variation of the 
cell cycle time, changing of the dose rates and of the breaks between treatment sessions etc.) 
for finding the optimal treatment schemes. 



Figure 1. Real growth of a MGH-U1 tumor spheroid from ( 5 ) .  
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Figure 4. Number of tumor cells as a function of time (Simulation result). 



Table 2. Percentage of number of specific tumor cells hit by X-rays as a 
function of dose. In this case a and B are parameters of the 
adenocarcinoma of the mouse. 

'a 0.25 1/Gy; B = 0.07 (1/Gy) 2 

'a = 0.1 1/~y; B = 0.01 (1/~y) 
2 

Figure 5. 2-D cross-section image through an irradiated tumor spheroid 
(simulation result). 
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Figure 6. Simulation of a multifractionated irradiation of a tumor spheroid: 
5x3x0.7 Gy per week; overall dose: 63 Gy; 30% of the hit cells will 
be repaired after 15 h; lysis duration of the lethally hit cells: 
5 days; cell-cycle phase durations see Table 1; irradiation para- 
meters see Table 2. 
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Figure 7. Simulation of an irradiation of a tumor spheroid with a high single 
dose: 1x6 Gy per week; overall dose: 60 Gy; 30% of the hit cells 
will be repaired after 15 h; lysis durations of the lethally hit 
cells: 5 days; cell-cycle phase durations see Table 1; irradiation 
parameters see Table 2. 
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7.1 Introduction 

Let us suggest that  the state of the organism is characterized by vector X = ( z l , . .  . , z n )  each 
component of which is an  indicator measured in the clinic. The disorders in normal functioning 
of main homeostatic systems of the organism, caused by the disease, lead t o  a deviation of these 
indicators from the values corresponding to  a healthy organism. Values and a character of these 
deviations are an important source of information on the disease [4]. We shall consider the 
dynamics of immunological indicators after the radical surgery of patients with a solid tumor. 
Let a t  time t~ a tumor cell arise in the organism. Denote a number of cancer cells z(t) E R1. 
According to  the clinical practice a detected tumor is removed by surgery. Let us denote the 
operation time as to = 0. After surgery the treatment of patients will continue and if necessary 
the additional one can be used (chemotherapy, immune stimulation, etc.) As known, in response 
on tumor growth the immune system reacts by the production of specific cells and molecules, 
which can distinguish and destroy cancer cells. Denote z( t )  E Rn as a vector of immunological 
tests measured in the clinic. The tumor growth leads t o  deviations of these indicators from 
their homeostatic values. After successful surgery the convergency of immunological indicators 
t o  their homeostatic values is observed (Fig. 1). 

Formally the model describing a relationship between tumor cells number z(t) and immune 
system indicators z( t )  could be expressed as follows 

The radical surgery can be simulated through changing the initial values a t  t = to, %(to) = 
to > 0, z(to) = zo > 0. If zo = 0, then dynamics of immunological indicators after surgery might 
be described as a solution of the following equation 
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Figure 7.1. 

Figure 7.2. Principal characteristics of the oncological disease 

z(tO) = zo > 0, t E [to, TI. 
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Unfortunately the remaining tumor mass can increase and give metastatic spreading. More- 
over, if we consider the trajectory of z( t )  in a group of patients we observe the broken tenden- 
cies. The instants of such breaks have some stable distribution depending on the stage of illness, 
method of treatment etc. That is why we have an additional population characteristic of cancer 
as a survival function s(t). 

The connection between the basic characteristics of cancer could be formally presented by 
the following graph (Fig. 2). 

In this paper we investigate the interrelationships between the dynamics of the observed 
variables and mortality dynamics which is a fundamental characteristic of a tumor. In [1,2,3] 
such an approach was used for the analysis of immunological da ta  for the stomach cancer. 
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Figure 7.3. Examples of individual trajectories of the immunological data  dynamics from the 
group of patients with the best clinical form of disease 

7.2 Individual Characteristic of Cancer 

As known, i t  is difficult t o  separate a group of cancer patients who have complete functional re- 
covery systems and organs. Nevertheless, we can separate a group of patients with the favorable 
clinical history when the life span after the beginning of treatment is not shorter than 5 years. 

Reference trajectory 

Let the average dynamics of immunological indicators for a group of patients with favorable 
clinical history be described by the equation 

where xt E Rn,  a E R'-is a vector of unknown coefficients. 
Definition The solution of equation (3) x(t, ao )  for the average dynamics of immunological 

indicators in the group of patients with favorable clinical history we will define as a support 
solution or a reference trajectory. The vector a = ao-a reference or support vector. 

Denote X1 = { i i ;  , t E Bt, j = 1 , .  . . , ml)- trajectories set of indicators measured a t  the 
time B j  = {t;, t i ,  . . . , t i . ) ,  where ml is a number of patients in a group. If the values of indicators 
a t  t E Bj, j = 1 , .  . . , ml are connected by straight line, then we will have trajectories bunch. (A 
Typical situation is given in Fig. 3.) It is clear that i i  doesn't belong t o  a solution set of the 
equation (3). 

Tra~jectory  deviations of the observed data from x(t, ao) are explained by influence on the 
process of uncontrollable factors. The main role belongs t o  a remainder tumor growth process. 
From the medical point of view it  is not necesary to  make distinctions between these trajectories 
because all these ones belong to  a group of patients with favorable clinical history. The math- 
ematical model for describing such deviations will consist of O.D.E. with random perturbance 
in the coefficients by some stochastic processes which reflect nonregular diffusion influence of 
different factors on the organism. Assume that for each trajectory {xt(w), w E 0, t E [O,T]) 
a function a t (w)  = a0 + &(w) exists, where &(w) is a fast non-regular perturbation. In this 
case, the individual trajectories of immunological indicators may be considered as realizations 



of a stochastic process which satisfies the equation 

dz:/dt = f (z:, a. + J~&:/dt) 

zo > 0, t E [to, TI, E > 0 is a small parameter, 
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(7.4) 

Deviation Model 

The solution of the equation (4) can be written as 

where zi l)  satisfies the stochastic differential 

(1) and yt = 2: - ziO) z JEzt , may be approximated by 

When E - 0 the process wf weakly converges to a Gaussian process wt on the interval [O,T] 
with Ewt = 0 and covariance matrix Gt  [3,7], 

where GU = lim LT LT ~ { d ~ : ) d t d ~ .  
T+a,  

Therefore, the dynamic of the deviations yt = z t  -z t (ao)  is approximated by the linear stochastic 
differential 

dyt = a(t)ytdt + rlb(t)&t, (7.6) 

7.3 Population Characteristic of Cancer 

Denote T > 0 a random variable having a continuous distribution function F( t )  = P{T < 
t ) ,  t > 0. Let T be a patient termination time. Group mortality dynamics is described by the 
survival function 

s(t)  = f (")du, (7.7) 

where f ( t )  is a probability density function. The hazard function X(t) is 

Integral intensity for the interval [0, t] is 

We will interpret A(t) as a load on the organism due to  disease. 
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As a rule available experimental data  are the sample from a heterogeneous group of patients. 
Heterogeneity is manifested in the individual dynamic of measured variables. Let y(t,w) E 
Rn denote a vector of indicators for the individual with index w E 52, where 52 is a set of 
indicators. The w characterizes homogeneity with respect t o  the life span group of patients. 
The individual evolution in the time {y(t, w)) can be considered as a realization of a stochastic 
process {y(t,w), t E [O,T], w E 52). In this case [5], if the conditional survival function 
s(t,  w) may be represented in the form 

then the individual hazard function p(t,w) will be given by 

p(t,w) = P{t I T I t + dt ( T > t ,  (y(u,w),O I u 5 t)). (7.11) 

Therefore [5] the group mortality dynamics in terms of observation can be written as 

and a convenient hazard function for a group is given by [5] 

Parameterization of the individual hazard function 

Analysis of the clinical da ta  for the patients with stomach cancer [1,2] shows that  the character 
of deviations y(t) has a close correlation with life span. Taking this into account, we can 
parameterize an individual hazard function in the form 

where Q is an unknown symmetrical, nonnegative definite matrix, Ao(t) is a hazard function 
which is not related t o  the tumor growth process (it may be the function of sex, age, etc.) 

Relationships Between Individual and Population Characteristics of Cancer 

Assume that  the deviations are approximated by the equation (6) and the hazard function has 
.the form (14). Now we can define a system of O.D.E. which relates individual and population 
characteristics of cancer. 
Proposition [6] Let a stochastic process {y(t,w), t 2 , w  E 52) satisfy the equation (6) and the 
conditional survival function has the form (14). Then the mortality dynamics for a group of 
patients is described by O.D.E. 

where 
At = -logs(t), mt  = ~ { y ~ l  > t), yt = E { ( ~ ~  - m t ) ( ~ t  - m t ) T ~ ~  > t). 
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Figure 7.4. Individual estimations M for two groups of patients: a)  T 2 40 months, b) T < 40 
months 

7.4 Individual Estimation for Intensity of the Tumor Growth 
Process 

Let the functions a(t) and b(t) be known. We may estimate matrices Q,  rl by individual dynam- 
ics of immunological indicators and observable function X(t). In [2,7] methods for the estimation 
of coefficients of the O.D.E. system and some results for patients with stomach cancer are dis- 
cussed. 

Now for the individual estimation of the remaining tumor growth process we can use the 
index 

In Figure 4 we can see M;, j = 1,. . . , ml for two groups of patients differing in life span 
after surgery. The dynamics of the estimation differ in the groups with different life span. 
Using (16), we can watch the individual intensity of the tumor growth process and formulate 
the optimal treatment problem. 

7.5 Optimal Treatment Problem 

Let Al, A2, Al n A2 = 0 be groups of patients with different methods of treatment. The patients 
from group A1 have only had a surgery, and those from group A2 have had a surgery and a 
treatment (chemotherapy, immune stimulation) additionally. Each group is characterized by 

X2 = {fj(t) : t  E O j ,  j = 1, ..., m2} 

trajectories sets of indicators measured a t  the time Oj  = {4, t i , .  . . , t j  } and sl(t), s2(t), sl( t)  # 
k, ' 

sz(t) survival functions. The reference trajectory is described by the equation (3) with cr = cro. 
For the second group the control set U = {u(T) ,T~ < 72 < . . . < TN, 0 5 U(T) I u,,,} is 
known. First of all we have to estimate the influence of the treatment on the dynamics of the 
observe indicators. 
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The Equations with Control 

The trajectories of immunological indicators with control may be described in the following form 

where the function u(t) is known and P is an unknown vector. In this case the dynamics of the 
deviations yt = xt - xt(ao)  are approximated by the linear S.D.E. 

dyt =a( t ,u )y td t+r ,b ( t ,u )dWt ,  t E [O,T], 

Now we rewrite (15) using (18) 

where At = -logs(t),mt = E{ytlT > t ) , ~ ~  = E{yt - mt)(Yt - mt)T1T > t). 
Let Q = Q. We can estimate I',, p by U, s2(t) ,  x2. 

Statement of the Optimal Treatment Problem 

Let u(t) be a known function, for example, 

uk = const for t E [ T ~ ,  T~ + A], k = 1,2 , .  . . , N. u(t) = 
for t $ [ ~ k ,  ~k + A] 

71 > A ,  71 + ( N  + l ) A  < T,  A = const, U E  U. 

The optimal treatment problem may be formulated in the following form 

under the conditions 

dyt = a( t ,  u)ytdt + I',b(t, u)dwt, t E [O, TI. (7.21) 

In other words we are going t o  choose dose, time ~k and number of injections N t o  minimize 

J('LL). 
If u(t) is an unknown function, we deal with the linear quadratic regulator problem. This 

statement of the optimal treatment problem has some defects. First, the individual character- 
istics of patients are not considered. The second one is related t o  the toxicity problem. 

Individual Treatment. Stochastic Problem. 
Consider the scalar case n = 1 and X(t) = 0. Divide the interval [O,T] on two [O.to), [to,T] 

and rewrite (7.20) 

Let yi(u, t )  be a known individual realization on [0, to). 
Consequently, we can calculate 
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In this case we can consider the following optimal treatment problem 

i i ( u ,  T - to) = E {loT Q y 2 ( ~ ,  s)d8] + min % (7.23) 

under 
dy(t, 21) = a(t, u)y(t, u)dt + rub(t ,  u)dwt, 

Here, the individual disease history is taken into consideration by means of the initial condition 
in (7.24). 

Deterministic Problem. Notice, that  

Using this fact we can consider the following deterministic problem 

J i (u ,  T - to) = Q?;(t, u)dt + min 
0 

under 
d 
-7i(t7 dt u)  = -2a(t, u)yi(t, u)  + (r,b(t, u ) ) ~ ,  

Toxicity problem. Toxicity is a major problem with anticancer drugs. A number of 
clinicians suggest that  toxic effects may be characterized by 

toxicity a R(u(s))ds, IT (7.27) 

where R(-)  is a known function. 
Taking into consideration (7.27) we can write the performance index for the problem (7.25) 

in the following form 
T 

J ( u , T  - to) = lo [Q7i(3, u) + R(u(3))]d3. (7.28) 
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8.1 Introduction 

The aim of all forms of cancer therapy is t o  remove or t o  destroy the tumor without seriously 
damaging the host. Often, this can be achieved by surgery, radiotherapy, chemotherapy, or 
immunotherapy, or by its combination. Compared to  chemotherapy, radiotherapy, and surgery, 
immunotherapy is the most efficient therapy because immune effector cells kill the target cells 
without destroying normal neighborhood cells. 

The potential methods of tumor immunotherapy can be classified into two broad categories: 
active, those that  attempt to  induce in the host a state of immune responsiveness to  tumor; and 
passsive (adoptive), those that  transfer directly t o  the host immunologically active reagents that 
mediate an anti tumor response themselves [I]. 

Since late 70's, some mathematical models for the interaction between tumor cells and the 
immune system are proposed. Rescigno and Delisi [2], Grossman and Berke [3], presented a 
simple model for the interaction of tumor cells and cytotoxic. (killer) T-lymphocytes. Lefever 
and Garay [4] analyzed the cell-mediated cytotoxic reactions against transformed cells and its 
negative regulation by blocking factors. Merrill [5] proposed and analyzed a model of immune 
surveillance mediated by NK cells. It  is well known that  the immune response t o  a tumor 
involves several effector cells, e.g., T-lymphocytes, B-lymphocytes, Macrophages, etc.. Simple 
kinetic model of the anti-tumor immune response describes only one aspect of the complex 
phenomena. Therefore, the model proposed above are not sufficient t o  explain the very complex 
immune response against a tumor. 

Recently, DeBoer, Hogeweg, and their associates [6,7] presented a model of the macrophage 
T lymphocyte interactions that  generate an antitumor immune response. However, they didn't 
mention tumor escape mechanisms and natural killer activity. Therefore, tha t  model is not 
sufficient to  explain the complex immune system. 

In this paper, we present a mathematical model of the effector mechanism in which the 
immune system attacks tumor cells-called cell-mediated immunity (CMI). We formulate a 
detailed, knowledge-based mathematical model of the immune system. We also consider control 
the dynamics of immune surveillance, which is a final goal of tumor immunology. 
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8.2 Mat hematical Model 

A. Model Description 

The concept of immunity against established tumors and the related concept of "immunologic 
surveillancen against emerging new clones of malignant cells are based on two important hy- 
potheses, namely that  

( i)  tumor cells differ antigenically from normal cells. 
(ii) host defense mechanisms are capable of recognizing and exploiting these differences. 

In order t o  be successful for immunotherapy, i t  appears that  a tumor must be antigenic. This 
means that  i t  can stimulate an immune response inferred t o  be relevant for tumor rejection. If 
the antigenicity of the tumor is low, immunotherapy will have less effect. A weakly antigenic 
tumor evokes a weak immune response, and the tumor load has become too large t o  control by 
the time a sufficient number of effector cells are generated. 

The debris of these tumor cells is phagocytosed by antigen presenting cells (APC), that 
subsequently present antigens in an Ia-restricted fashion t o  T cells t o  initiate cell mediated 
immunity. 

Although several types of phagocytic cells may be instrumental in the degradation of anti- 
gens, only cells of the mononuclear system can be considered antigen-presenting cells (APC) but 
only macrophages with the I-A or I-E protein on their surface can cooperate with Th cells in the 
immune response. The dendritic cell is also capable of antigen presentation. The stimulation of 
T lymphocytes by antigen has often described as requiring a t  least two signals: 

a. F i r s t  signal: binding by the compound receptor of a T-cell t o  the Ia-antigen complex on 
the accessory cell constitutes the first signal for the activation of T cell, 

b. Second signal: to  complete this process of activation, the accessory cell must deliver a 
second signal in the form of the lymphokine interleukin 1 (IL-1). 

Although macrophages and dendritic cells are important sources of IL-1, keratinocytes and 
other cells may produce IL-1 [lo]. 

After triggering, and concomitant with with proliferation, Th cells release an array of lym- 
phokines with a variety of functions. 

a. Macrophage Chemotactic Factor (MCF); 
b. Migration Inhibition Factor (MIF); 
c. Macrophage Activating Factor (MAF) [ l l ] ;  
d .  Lymphotoxin (LT) [12]; 
e. Interleukin-2 (IL-2). 

A major function of IL-2 is as follows [13], [15] 

(1) induces the lymphokine production by T cells, 
(2) induces the growth of activated T cells, thymocytes, 
(3) induces cytotoxic T lymphocyte activity, 
(4) increases natural killer cell activity, 
(5) increases lymphokine-activated killer cell activity, 
(6) increases monocyte cytotoxicity. 

Effector cells on tumor immunity 

Humoral and cellular immune effector mechanisms capable of destroying tumor cells are sum- 
marized in Table 1 [14]. 

a. Large Granular Lymphocytes (LGL)  cell 
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Table  8.1. Humoral and Cellular Effector Immune Mechanisms in Tumor Destruction. 

Humoral Mechanisms 

( I )  Lysis by Ab and Complement 
(2) Ab and/or Complement-mediated opsonization 
(3) Ab-mediated loss of tumor cell adhesion 

Cellular Mechanisms 

(1) Destruction by cytotoxic T cells 
(2) Ab-dependent, Cell-mediated Cytotoxcity (ADCC) 
(3) Destruction by activated macrophages 
(4) Destruction by NK cells 

F igure  8.1. Schematic representation of C M I  response 

LGL's probably include cells formerly known as NK cells. 
b. Antibody Dependent Cell-mediated Cytotozicity ( A  DCC) 
ADCC involves the binding of tumor-specific Ab to the surface of tumor. The Ab is usually 

an IgG and may be of any subclass. The effector cell must have surface receptors for the F c  
portion of IgG;  

(i) M4 granulocytes (especially neutrophils) have these receptors 
(ii) Platelets and B cells do not participate even though they have Fc receptors. 
(iii) Null cells (= K cells). 

The importance of this mechanism in the destruction of tumor cells in vivo is still not clear. 
c. Macrophage (M,hi) 
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Macrophages are indirectly derived from bone marrow promonocytes. After differentiation 
of the promonocytes to  blood monocytes they settle in the tissues and mature into macrophages. 
Here they constitute the reticulo-endothelial system. Macrophages may become highly cytotoxic 
when they become activated by MAF [16]. 

d. Cytotozic T cell (T,) 
The T-cells can be divided into 3 different subsets: Tc,Th, and T,. A viral infection can 

stimulate a population of killer T-cells (T,) which are specifically cytotoxic for virus infected 
host cells tha t  bear viral antigen. Regulation of C M I  response is a complex biological process 
governed by a series of positive and negative signals. T-helper cells (Th) are capable of providing 
necessary signals which enhance T-cytotoxic cell proliferation. T-suppressor cells are character- 
ized by an ability t o  inhibit the helper function. The network of T, cells is involved in the 
regulation of the Th cell. Suppressor T cells produce soluble factors that  mediate suppressive 
activity. Each T, subset produces i ts  own type of suppressive factor [17], [18]. 

B. Mathematical Equation 

The humoral responses t o  tumor in vivo are still unknown. We assume that  humoral mechanisms 
have no role in the tumor destruction. Therefore, we exclude antibody (Ab) from the model. 
The block diagram of the whole CMI mechanisms is shown in Fig. 1. 

Based on our knowledge of tumor immunology, we can make a mathematical model of the 
anti-tumor immune response due to  cell kinetics. These cellular kinetics are quite well defined 
from conservation equations and chemical mass-action principles [19-201. In general, the cellular 
population (or concentration), z;, of the ith class may be described by: 

where v;(t): source term (from bone marrow via blood), T;: death time constant, pi(.), pji(.)pik(-): 
appropriate growth coefficients (including, probabilities of stimulation and differentiation, from 
one class t o  the other). 

These coefficients or probabilities represent parametric feedback control in the immune sys- 
tem of a very complex nature. Indeed, i t  is these terms upon which much of immunological 
research is currently focused, i.e., what manner is cell production activated and controlled by 
mainly molecular regulated substances. Consequently, p;(.),pj;(.),p;k(-) are functions of pri- 
marily molecular concentrations. They may be deterministic functions or random processes 
depending on the approximations used. 

1. Cell-mediated Immune (CMI) Response Model 

A widely used general deterministic tumor growth model is of the form (Gompertz growth law) 

[211 

where N (t): the measure of tumor size, i.e., the number of tumor cells, k: the maximum tumor 
size, lib: the length of time required for the specific growth rate, t o  decrease by a factor of l / e  
the e-folding time. 

Similar to  cellular concentration model, a perturbed tumor cell population takes a following 
form: 
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k 
dNdt = bNln(-) - kill ( - ) N  

N (2.3) 

where kill (-), the parametric control, is a function of concentrations of T,, Ma, and LGL, etc. 
The typical cytotoxicity against TNF/LT concentration takes the form of sigmoidal dose- 

response curves [12]. We assume that  the TNF/LT concentration is proportional to the popu- 
lation of each cell. Then, the sigmoidal relation takes the following equation [22]: 

where CTX: Cytotoxicity, CTXo: (CTXh +CTX1)/2, CTXh: max. cytotoxicity, CTXl : min. 
cytotoxicity, a,: (CTXh - CTX1)/2, x: cytotoxin concentration, a,@,: slope a t  xo, xo: x value 
corresponding to  CTXo, 

Tumor debris of concentration xd might be generated to  enhance tumor recognition by the 
immune mechanisms. This would be modelled by the latter term in Eq. (2-3) with removal time 
constant r d  so that  

dxd x d - = kill (.)N - -. 
dl r d  

The antigen presentation by activated macrophages against antigen concentration follows 
Michaelis-Menten dynamics [23]. It might be approximated by 

where 2,: concentration of Ma,  z,: APC saturation, xdo: antigen value corresponding to  z,/2. 

One of the major activities of interleukin-1 is to  induce the synthesis and secretion of the 
T cell-derived mitogenic lymphokine, interleukin-2 (IL-2). This link between IL-1 and IL-2 is 
an essential element in the T cell activation sequence because i t  involves the conversion of a 
primary macrophage-derived maturational signal into a secondary T-cell derived proliferative 
signal that  results in the amplification of specific immune reponse. 

As mentioned earlier, IL-2 production by Th cells requires two signals i.e., antigen and IL-1. 
Mizel [24] examined that  the production of IL-2 is dependent on IL-1 and IL-2 is not produced 
in response t o  antigen only. The experimental data  show the IL-2 synthesis when stimulated 
with IL-1 and mitogen. It takes the form of sigmoidal relation. We can formulate the relations 
between IL-1 and IL-2 as follows: 

FTH = T h  

Thsat + Th 

where F(.): IL-2 concentration, z: concentration of IL-1, aF: min. IL-2 concentration, dF: max. 
IL-2 concentration, kF: slope parameter, c ~ :  concentration of IL-1 giving 50maximal response, 
Thsal: T-helper cell saturation. 

Activated T lymphocytes proliferate in response to  interleukin 2 (IL-2) produced by T helper 
cells. When an activated T cell divides, i t  may remain activated or i t  may return t o  the resting 
state. It may depend on the IL-2 receptor expression on the daughter cells. Milanese [25] 
suggests that  it remain activated state and in the absence of additional antigenic stimulation, 
i t  returns to  the resting state. The growth response of T lymphocytes to  IL-2 is accurately 
described by a four-parameter logistic function [26]. 
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where y ~ :  proliferative response, z: concentration of IL-2, aT: min. response, dT: max. re- 
sponse, kT: slope parameter, c ~ :  concentration of IL-2 giving 50 

In healthy state (normal steady state), a constant number of lymphocyte precursors cells are 
produced each day. However, the influx of precursors is increased due t o  inflammatory reaction 
in cancerous state. Consequently, cell influx is described by: 

v;(t) = v;(l + po;) (2.9) 

where v;: cell birth rate a t  normal state, poi: inflammation rate. 
The differentiation of cytotoxic T cell precursors depends on the contact with tumors and 

IL-2. T suppressor effector cells may inhibit the generation of each precursor cells. 
The activity of LGL cells can be augmented by lymphokines such as interferons (IFN) 

and interleukin-2 (IL-2). Macrophages (M*) may become activated by y-interferon (= MAF, 
Macrophage Activating Factor). Several recent studies have suggested that  interleukin-2 regu- 
lates the generation of y-interferon (y-IFN) [13,27-281. The kinetics of y-IFN production by Th 
cells stimulated with IL-2 take the same form of sigmoidal relations. Therefore, the relationships 
between y-IFN and IL-2 can be expressed by a four-parameter logistic function. 

The differential equations of the model which are considered above are given in Table 2. 
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Table 2: Differential Equations of the Model 

a. 2; ; State of each cell a t  a certain time instant. The subscripts are as follows: 

1. Thp 6 .  Th 
2. T,P 7. Tc 
3. T,P 8. Ts 
4 .  LGLP 9 .  L G L  
5. M 10. Ma 
11. T u  12. T u  debris 

b. v ; ( t )  = v i ( l  + Poi) ,  i = 1 ,  ... 5 : Cell influx 
Poi = Pid + (Pis - P;d ) / ( l  + ( F / c ; ) ~ ~ )  : Inflammation rate 
F ( . )  = ( d ~  + ( a ~  - d ~ ) / ( l  + Z / C F ) )  * ( z 6 / ~ ~ s a t  + 2 6 ) )  : Differentiation rate 
2 = FD(')z10 
F D ( ' )  = ( 2 s  212/(zd0 + 2 1 2  

7 - I F N  = ~ I F N  + ( ~ I F N  - ~ I F N / [ ~  + ( F / C I F N ) ~ I F N ]  : 7 - I F N  
P16 = PI : Differentiation rate 

P27 = P2 : Differentiation rate 

pi7 = P ~ F ( . )  : Differentiation rate 

P38 = ~ 3 ( 1  + F ( ' ) )  : Differentiation rate 

P49 = &dl + F ( . ) )  : Differentiation rate 

pig = p i 7  - I F N  : Differentiation rate 

P ~ , I O  = 1-47 - I F N  : Differentiation rate 

pa1 = pa2 = pa3 = T 3 F  = . : Differentiation rate 

~ T S F  + ( ~ T S F  - ~ T S F ) / ( ~  + ( ~ ~ / ~ T s F ) ~ T S F )  
p6 = p7 = p8 = 
d~ + ( a ~  - d T ) / ( l  + ( z / c T ) ) $  : Proliferation rate 
P6 = bln(k /211)  : Tumor growth rate 
p7,ii = p9,ii = ~ 1 0 , i i  = C T X  : Killing rate 
C T X  = C T X o  + a,tanh[P,(z - z o ) ]  : Cytotoxity 

c. I assume that  the inflammation rates for all immune effector cells are identically the same. 
d. Initial conditions: 

z l ( 0 )  = 1.05 x lo8,  z 2 ( 0 )  = 2.2 x lo7,  z s ( 0 )  = 2.2 x lo7,  z 4 ( 0 )  = 1.3 x l o7 ,  ~ ~ ( 0 )  = 1.3 x lo7,  
~ ~ ( 0 )  = 5.25 x lo6,  ~ ~ ( 0 )  = 1.1 x lo6,  ~ ~ ( 0 )  = 1.1 x lo6,  ~ ~ ( 0 )  = 1.56 x lo6,  %lo = 6.5 X lo4 ,  
Z ] l  = 1,  x12 = 0.001 
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2. Parameter values 

The data  which fit the model behavior should have been obtained from the same conditions, 
e.g., same material and same tumor, etc. It is very difficult to  obtain consistent data. Here, the 
parameter values are obtained from many literatures, which is often not so consistent among 
different experiments. Several parameters are, however, still unknown. Therefore, the parameter 
values were chosen somewhat arbitrary. 

A typical thymus contains about 200 millions cells. The thymic cortex is producing about 
50 million cells each day, most of which will disappear within three days, i.e., 7; = 3(i = 1,2,3) 
[day]. It is assumed that 30% of these cells to  be Tc/s and 70% to  be Th [29]. Activated T 
lymphocytes are considered to  be long living cells. The turn over time of T cells is assumed t o  
be 50 days [3]. 

It is shown that  bone marrow is required for proBferation/differentiation of natural killer 
(NK) cells and that NK cells have a life span of a few weeks. In human peripheral blood, cells 
with NK cell phenotype represent an average of 15variations [30]. The total number of T cells 
in the blood is of the order of 10' cells. The influx of NK cells is, therefore, 750.000 cells per 
day. 

Blood monocytes originate in the bone marrow from dividing precursor cells. They then 
enter the peripheral blood, in which they circulate until they leave it to  become macrophages in 
the tissues. The normal macrophages in the tissues consist of 1.5 x lo7 cells [31]. This is almost 
consistent with the macrophage concentrations of one per 10 or 100 T cells in vitro [32]. The 
calculated mean turnover time of macrophages is about 20 days. The influx of macrophages is, 
therefore, 750.000 cells per day. The turnover time of activated macrophages is assumed to  be 
short, 1 day [6], 

During the inflammatory reaction, the influx of immune effector cells is assumed to  increase 
10 times. 

The parameter values for the simulation are shown in Table 3. 

Table 3: Parameter values of the model. 

[day 1 : Lymphocyte death time constant 

[day 1 : LGLP death time constant 

[day] : macrophage death time constant 

[day] : T cell death time constant 

[day 1 : LGL death time constant 

[day 1 : Angry macrophage death time constant 

1 : Tumor death time constant 

[day] : Tumor debris removal time constant 
[cell/day] : Activation rate (i = 1, ..., 5) 
[cell/day] : Lymphocyte birth rate 
[cell/day] : Lymphocyte birth rate 
[cell/day] : Lymphocyte birth rate 
[cell/day] : LGL birth rate 
[cell/day] : Macrophage birth rate 

: e-folding time 
[cells] : Max. tumor size 

: Max. cytotoxicity 
: Min. cytotoxicity 
: Slope a t  20 

: APC saturation constant 
: T, corresponding to  CTXo 
: LGL corresponding to  CTXo 



Lee and Mohler 

~ I F N  = 1 
Pjd = 10 
Pia = 0 
kj = 1 
cj = 10 

: Ma corresponding t o  CTXo 
: Antigen value corresponding t o  2,/2 
: Max. IL-2 concentration 
: Min. IL-2 concentration 
: slope parameter 
: I t  varies according t o  antigenicity 
: Max. IFN concentration 
: Min. IFN concentration 
: Concentration of IL-2 giving 
: 50% of the maximal response 
: slope parameter 
: Max. response (i = 1, ..., 5,13) 
: Min. response (i = 1, ..., 5,13) 
: slope factor (i = 1, ..., 5,13) 
: Concentration of IL-2 giving 
: 50% of the maximal response 
: min. response 
: max. response 
: slope parameter 
: concentration of IL-2 giving 
: 50% of the maximal response 
: min. response 
: max. response 
: slope parameter 
: concentration of T, giving 
: 50% of the maximal response 
: Th cell saturation 

8.3 Simulation and Results 

Experimentation shows the multiplicative (or parametric) control of the tumor by means of 
individual immune mechanisms results in the death rate of the tumor being increased by immune 
effector cells. The slope of the tumor death rate is so steep that  we can't solve effectively a 
differential equation of this immune model using conventional numerical integration methods 
(e.g., explicit Runge-Kutta method). It is called a 'stiff' differential equation and the general 
solution has an exponential term such as clebx, b > 0. 

Numerous methods have been developed for the solution of initial value ordinary differential 
equations. The model is stiff and this infers an  excessively small step size requiring enormous 
computing time t o  solve the system equations. Thus one must choose a reliable model solver. 
As a means of solving general stiff systems, the most commonly used methods are semi-implicit 
Runge-Kutta and Gear method [33]. In the present paper the IMSL routine DGEAR it  used to  
integrate the ODE'S. 

At first, I have investigated the effects of antigenicity of tumors. As mentioned earlier, higher 
antigenic tumors stimulate the Th cells, that  produce enough IL-2 t o  make necessary effector 
cells t o  remove target cells. Fig. 2a shows that  a tumor which has one cell a t  initial time grows 
exponentially until sufficient effector cells appear and regress rapidly. Then, immune effector 
cells do not have any reason t o  retain so many cells. They, therefore, decrease according t o  the 
decrease of the size of tumors. In case of lower antigenicity, there is not sufficient IL-2 and the 
concentrations of effector cells are the same as the healthy state. The tumors could no longer 
be rejected and Fig. 2b shows a breakthrough phenomenon. IFN is also very important in 
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removing the tumor cells. Fig. 2c shows that the tumor grows progressively when no IFN is 
produced. The population of Ma decreases exponentially in this case. 

In tumor immunology, the final goal is a control of tumor. Among several methods of 
immunotherapy, exacerbation theory is good for treating tumor. Fig. 2d shows the tumor 
regression due to increase of effector cells at  first. During the decrease of effector cells, the tumor 
was reoccurred and reached the equilibrium state. At 66 days, lo3 tumor cells are injected for 
2 weeks. This higher tumor concentration evokes the stimulation of effector cells and tumor is 
destroyed completely (Fig. 2e). 

Recent reports have demonstrated that the antitumor activity was observed on treatment 
with either a high dose of IL-2 alone or a lower dose of IL-2, due to the toxicity of the IL-2, 
in combination with lymphokine (IL-2) - activated killer (LAK) cells [34, 351. They have also 
shown that administration of IL-2 and IFN produces a substantial synergistic therapeutic effect 
and that their effect is synergistic with that of tumor-infiltrating lymphocytes (TIL). 

Fig. 3a shows that the administration of a high dose of IL-2 against weakly antigenic tumor 
at 10-15 day can mediate tumor regression. 

The antitumor activity of combination therapy with low dose IL-2 and antitumor effector cells 
such as lymphokine - activate killer cells or tumor infiltrating lymphocytes is simulated against 
weakly antigenic tumor. Fig. 3c demonstrates the synergistic antitumor effects of combination 
therapy with IL-2 and T, cells after 10 days (compare with Fig. 3b). 

Likewise, the combined administration of IL-2 and IFN can be designed to  increase thera- 
peutic potency (Fig. 3e, compare with Fig. 3d). 

Satisfactory demonstration runs of the model indicate that it could represent a useful tool in 
verifying the results of experimental and clinical immunotherapy courses and planning treatment 
strategies. 
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9.1 Introduction 

Simple timecourse models can be developed for the response of the immune system to killed 
vaccines. If relatively few parameters are specified, in a model that  can still adequately describe 
measurable responses t o  vaccination, useful predictions can be made for routine animal experi- 
ments. In a previous report [I] I presented a model based on a partial differential equation for 
the evolution of antibody concentration with a particular affinity, to  be used in conjunction with 
an initially specified distribution of affinities (affinity density). The model allows for prediction 
over time of various quantities like total antibody concentration and mean affinity. Immunoassay 
measures that  can themselves be modelled in terms of such quantities, such as ELISA, can also 
be predicted over time. 

In this paper I consider the implications of various ways that  a class of models of this type 
can be specified. I have previously considered data from Foot and Mouth Disease immunoassays 
on sera from vaccinated cattle, but i t  is possible that many experimental systems could be 
analyzed with an appropriate choice of conditions. The main variations t o  be considered include 
the metric of affinity on which the model is to  be specified, the functional form of the initial 
affinity density, the functional form of the subsidiary immunoassay model, and the initial values 
taken by the various parameters. 

The timecourse model can be written in the form of the following partial differential equation. 

where y(t, K)  is the concentration of antibody produced from the single clone with affinity K 
at time t ,  c is a constant of proportionality, A is a constant background production/excretion 
rate, and also is the removal rate of antigen from the animal. 

z ( t )  is the concentration of antigen in the animal a t  time t,  usually assumed to  decline 
exponentially with rate A. 
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In this form the metric t o  be used is that of the thermodynamic equilibrium constant K for 
the binding of antibody t o  antigen [2]. Thus, in an idealized system a t  equilibrium, assuming 
monovalent antibody and antigen, we have 

Where z ,  y(t, K )  is the concentration of antibody-antigen complex. 
The affinity density a t  time t in this metric is given by 

Where y(t) is the total concentration of antibody in the animal a t  time t. 
Equation 1 defines a timecourse model in which the affinity metric (i.e. metric of K )  is 

bounded a t  K = 0. Models can be defined on other metrics by replacing K in equation 1 with 
appropriate alternative measures. Two such possibilities will be considered below. Solution of 
equation 1 gives the following expression for y(t, K )  

y(t, K )  = [(A It exp [Ir (A - Kcz(s))ds d r )  + l . 
to to I I 

where to is the time of vaccination. 
This equation can be used to  obtain the affinity density P ( t ,  K ) ,  and total antibody concen- 

tration y(t), at any time t. If the "affinity density" is set up as a discontinuous distribution at 
a small number of Ii values, then P( t ,  K )  can be completely determined [3]. If the density is 
continuous the process can be sampled a t  various representative values of K ,  and the form of 
P( t ,  K )  can then be determined t o  any desired degree of accuracy by averaging over regions of 
K [4]. The average affinity a t  time t, p(t ,  K) ,  is an important quantity which can be obtained 
from the affinity density. In models of this sort the mean affinity p(t ,  K )  remains a t  high levels 
longer than the total antibody concentration y(t). The persistence of p(t ,  K )  suggests that  it 
might be used t o  represent immune memory for antigen [5]. 

The immunoassay model forms the important link between the timecourse model and mea- 
sured data. Assume that  an immunoassay is used in which measured response represents the 
saturation of serum antibody with various concentrations of applied antigen (e.g. ELISA [6] 
or radioimmunoassay [7]). The data  are most usefully represented in the form of of a sigmoid 
saturation curve (Figure I) ,  so that  they are amenable t o  statistical analysis without the esti- 
mation bias that  commonly occurs with linearizing transformations like the Scatchard plot [8]. 
When immunoassay data  are collected, a direct attempt can be made to  delineate the underly- 
ing affinity density [9]. However, for practical application i t  is often more useful if a predefined 
function can be fitted t o  the data. 

Assuming monovalent interaction of antigen and antibody, and following Sips [lo] and Bruni 
et al. [l 11, the saturation data  can be modelled as follows (assuming a continuous affinity density 
for convenience). 

where w(t, z )  is the immunoassay response a t  time t, P ( t ,  K )  is the affinity density a t  time t,  z 
is the log antigen concentration applied in the test, v(t) is a constant of proportionality, showing 
the maximum value of w(t, z )  obtained if serum antibody is fully saturated a t  time t. 

Et[. . .] indicates expectation over the affinity density a t  time t. 
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Figure 9.1. Logistic saturation curve w(t ,z)  generated by Sips density. ~ ( t )  = -1, a(t)  = 0.5 
(Equation 17). 

Equivalents to  Equation 5 can be obtained when affinity is expressed on some other metric, 
but the resulting quantity w(t, z )  should be the same whichever metric is chosen (see Equations 
14 and 15). It can be seen that the form of the function w(t ,z)  depends upon P ( t ,  K ) ,  which 
itself is modified through time under the influence of the timecourse model. 

9.2 Continuous Models and Thresholds 

An initial negative exponential density can be written 

With this kind of unbounded initial affinity density, problems can arise if excessive antigenic 
stimulation leads to infinite total antibody concentration y(t). This causes degeneration of the 
affinity density P ( t ,  I<)  because of the  unboundedness of the integral in Equation 3. In reality 
the clonal distribution of affinity must be bounded a t  some maximum value K = KmX. Other 
authors [4] have developed models with censored affinity densities and, although it is difficult to 
define KmX in the absence of experimental data, the problems of boundedness disappear with 
censoring a t  any finite level. 

As the immune response develops i t  is of interest to  consider the existence of turning points 
in the profile to  y(t, K )  vs. A'. From Equation 4 it can be shown [5] that  a turning point will 
exist a t  K = K d  if 

where 



A=O 

r T 
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Figure 9.2. Evolution of the antibody profile y(t, K )  vs. K ,  when the initial affinity density 
is a negative exponential. Stage 1: No turning points before t = t. (Equation 11). Stage 2: 
Turning point exists if Equation 12 is satisfied and A > 0. Stage 3: No turning points when t 
is too large. 

and 

@(t, Kd) is independent of y(to, K )  but depends on the timecourse parameters (t,x(to), A,  
A, c). A(Kd) depends on y(to, K )  but is independent of the timecourse parameters. When 
the timecourse parameters are fixed, @(t, Kd)  is a negative function of Kd ,  which increases 
monotonically from some negative value towards 0 as Kd  -+ oo. Equation 7 shows that  the 
condition for a turning point depends upon one factor specified by the form of the initial affinity 
density, and another factor specified by the timecourse parameters. 

In the case of the initial negative exponential function, Equation 8 gives 

No turning points exist initially, but a single minimum exists when a threshold, a t  time 
t = t., is crossed and y(t, Ii') becomes unbounded. 

When t > t,, a minimum is defined by Equation 7. 
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As t increases further the turning point disappears. Figure 2 shows various shapes that 
y(t, K )  can take as time progresses. When A = 0 no turning points ever exist and y(t, K )  
remains exponential in form. The system only passes from one stage to  another if z(to) is big 
enough for a particular set of model parameters. Although P(t ,  K )  is degenerate in all stages 
beyond t = t., the methodology could be used to investigate the shapes of y(t, K )  and P(t ,  K )  
for initially censored exponential distributions. The general form of Equation 7 can be used for 
any initially specified continuous distribution. 

9.3 The Affinity Metric 

The timecourse model (Equation 1) and the immunoassay model (Equation 5) have both been 
specified in the metric of K.  In this section two other affinity metrics will be presented. The 
affinity density for a new metric can be obtained from the original density (on the K metric) by 
use of a suitable determinant [12]. The metric of Q = LogK is useful because there is a symmetry 
between affinity densities and saturation curves, and from the thermodynamic perspective the 
free energy of interaction between antigen and antibody is proportional to  Log K (see Ref. [2]). 

Another metric with useful properties is that of a variable R(z,), conditional on a fixed 
value z = 2,. 

Equation 5 for the saturation curve w(t, 2) can be recast as an expected value on the metrics 
of Q or R(z,). 

THE Q METRIC: 
The kernel of Equation 14 is a simplified form of the Langmuir Equation for localised ab- 

sorption at  a constant temperature [lo]. Shifts in the location of the affinity density P( t ,Q)  
result in equivalent shifts in the location of the saturation curve w(t, 2). Equivalently, if P( t ,  Q)  
can be presented in such a way that one of the parameters measures location and has no effect 
on the shape of the density, then this parameter will also measure location of the correspond- 
ing saturation curve w(t, 2). It is also possible to show that a symmetric density P ( t ,Q)  will 
generate a rotationally symmetric curve w(t, 2) [5]. 

A commonly used expression for the saturation curve is the logistic [6]. 

Although K(t) is a measure of average affinity, it is not the expected value of affinity on the 
K metric. It is more useful to  parameterise the logistic on the Q metric as 

where ~ ( t )  = Log l?(t). 
The equivalent affinity density is known as the "Sips density" [lo]. 
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Figure 9.3. Sips affinity densities P( t ,  Q ) ,  y ( t )  = -1. Various values of a( t )  (Equation 18). 

This density is continuous, symmetric and unimodal when 0 < a ( t )  5 1. The mean and 
model are located a t  Et[Q] = y ( t ) .  

The parameter a( t )  indicates the spread of the of the density. When a ( t )  = 1 the density 
degenerates t o  a discontinuous spike with infinite value a t  the mean. As the value of a( t )  
decreases towards 0 the density becomes more spread; until a t  a( t )  = 0 i t  becomes infinitely 
spread, with vanishingly low probability density a t  all values of Q  (Figure 3). As the degree of 
dispersion in the distribution is described by a( t ) ,  the value of this parameter is often used as 
an index of antibody heterogeneity [13]. The variance of the Sips density is given [lo] by 

THE R(z,) METRIC: 
Consider the transformed variable R(z,) defined in Equation 13. P( t ,  R(z,)  is the affinity 

density for R(z,) .  The effect of the transformation t o  the new metric is t o  produce an affinity 
density that  is bounded between 0 and 1. The density function depends upon K and 2,. This 
seems inconvenient but Equation 15 establishes that  the value of the saturation curve w( t ,  z,) 
a t  a given applied log antigen concentration z ,  is equal simply t o  the expected value of the 
affinity density. The variance a t  z  = z ,  is given [5] by 

It is only necessary t o  measure v ( t ) ,  and the value and slope of the saturation curve w( t ,  2,) 

a t  a particular z, value, t o  obtain the mean and variance of P ( t ,  R(z,)) .  This can be done even 
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Figure 9.4. Sips affinity densities P ( t ,  R(z,)), with z, = --y(t). Various values of a(t)  
(Equation 21). 

if the parametric form of the affinity density is not known. It is possible t o  show that a location 
shift in w(t, z,) makes no change t o  P ( t ,  R(z,)), provided that  the value of z, is shifted by 
the same amount. 

The formula for the Sips density is, (writing z = t,, R = R(z,) and ignoring t ) ,  

When z, = -7, this density is symmetric. Figure 4 shows the effect of the  parameter 
a(t)  on the shape of such a density. This figure is comparable t o  Figure 3, which showed the 
same densities for P ( t ,Q) .  As before a( t )  = 1 gives a discontinuous spike indicating total 
homogeneity. As a( t )  decreases towards 0 the central peak becomes reduced and disappears. 
The density becomes more and more trough like until, a t  a(t)  = 0, i t  becomes vanishingly small 
a t  all values of R(z,) except 0 and 1, a t  which i t  is undefined. 

The variance is 

OTHER A F F I N I T Y  DENSITIES:  

Other affinity densities can be expressed on the metrics K, Q or R(z,). For example consider 
the negative exponential density on the Ii metric, defined above a t  Equation 6. The equivalent 
density on the Q metric is 
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where d = Log p(to, K). 
The equivalent density on the R(z,) metric is (using the same conventions as in Equation 

21) 

9.4 Alterations to the Timecourse Model 

The timecourse model, defined a t  Equation 1, operates on the assumption of antibody increasing 
a t  a rate essentially proportional to  the affinity of interaction K, antigen concentration z(t), and 
clonal antibody concentration y(t, K) .  However, the model could be respecified on other metrics 
like those described in the previous section. Counterparts t o  Equation 1 exist, and the useful 
effect of persistence of the mean affinity will hold on other metrics also. 

As an example, consider respecification on the metric Q = Log K 

where y(t, Q) is concentration of clonal antibody with affinity Q. 
Other terms are defined as in Equation 1. 
As Q can in theory take negative values, Equation 25 suggests tha  tthe introduction of 

antigen would lead t o  the destruction of antibody with negative affinity. This seems t o  be 
against the spirit of the clonal selection theory, and raises the possibility of the absurdity of 
negative values of y(t, Q )  evolving over time. In order to avoid this, constraints on Q ,  y(t, K )  
or P( t ,Q)  would need to be introduced. 

Respecification of the model in Equation 1 on the metric R(z,) gives 

where y(t, R(z,)) is the concentration of antibody with affinity R(z,) a t  time t. 
R(z,) is bounded in the range (0 , l )  but, since this encapsulates the whole spectrum of Q, it 

does not cause a practical problem. No negative values of y(t, R(z,)) can evolve under Equation 
26. 

Consider the case where the initial saturation curve w(to, z) is of the logistic form (Equation 
17) with ~ ( t )  = ~ ( t ~ ) .  In the special case of Equation 26 with A = 0, it  can be shown that the 
saturation curve remains logistic for all t. 

The parameter a remains constant for all t ,  while ~ ( t )  is given by 

This model shows that the behaviour of an affinity density defined on the Q metric can 
sometimes be predicted from a timecourse model specified on the R(z,) metric. 

Figure 5 shows an example of the evolution of ~ ( t )  for various possible values of a. The fact 
that  a logistic saturation curve can be maintained under the timecourse model, albeit in the 
special case A = 0, gives some theoretical foundation t o  the empirical use of logistics. The model 
may be of practical use in delineating the early phase of an immune response, before antibody 
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Figure 9.5. Evolution of mean affinity ~ ( t )  under the invariant logistic model (Equations 27, 
and 28). Vaccination a t  0 days. X = 0.4, a = 0.2,0.5 and 0.8. A = 0. -y(to) = -1. c = 0.01. 
x(0) = 30. 

levels start to  decline from their peaks. It would be interesting to see whether this result could 
be generalised in some way to the case A > 0. 

9.5 Conclusions 

The R(t,) metric described above could be very useful for experimenters, because parameters 
of an underlying affinity density can be estimated directly from saturation curve da ta  without 
specification of the functional form of the density. The argument leading t o  Equation 28 has 
also shown that  timecourse models specified on this metric may have intersting properties. 

It has been shown that  the  basic model described in Equation 1 can be modified to  give 
classes of models that might be applicable to  many kinds of immune timecourse data. The chief 
attraction of such models is the simplicity of the formulation, and hence the relative ease with 
which definitive results can be obtained. The true immune system is of course more complicated 
than the system I have described, but the approach could be used to provide Null Hypotheses 
against which da ta  could be tested statistically. Such test would establish whether or not more 
complicated models were necessary. 

The assumption of monovalent interaction between antibody and antigen is clearly an over- 
simplification, but the methods can be modified to take this into account [5]. Another practical 
problem arises where saturation da ta  are available only a t  applied antigen concentrations, rather 
than free antigen concentrations a t  equilibrium. Again modifications t o  the methods can be sug- 
gested (e.g. see Meinert and McHugh [14]). 
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Introduction 

In order to  base the principles of immunopathological state prognosis and methods for their 
correction i t  is necessary to model the state of immune net nodes and their interaction [l, 2, 
31. One of the serious problems on t,he way of elaborating such a system is the inability of 
direct experimental studying of the humoral specific immunity. The mathematical model which 
allows to  derive the antibody affinity distribution that is a quantitative characteristic of specific 
immunoglobulins functional activity [4]. 

The present study is an attempt to  describe in terms of experimental-mathematical modelling 
the specific humoral immune response upon viral infection. 

Methods of anti-influenza antibodies experimental analysis 

The  virological part of this work containing the infection of mice F1 (CBA x C57/B1) by 
sublethal influenza virus doses and control of influenza virus A/PR8 (HlN1) reproduction was 
performed in accordance with [5]. The rate of specific immunoglobulins IgG in sera was assayed 
by second antibody method ELISA in accordance with [6]. Experimental da ta  for binding plots 
were obtained by ELISA method of successive saturation in accordance with [7]. Modifications 
of above mentioned methods for the case of use of native viral particles as antigens are reported 
in [8]. 

Conditions of each experiment (initial concentrations of antigens and antibodies) were chosen 
in such a way that  by the known method sensitiveness the maximal number of significant points 
on binding plot was provided. 
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Methods of experimental verification of mathematical modelling 
results 

The physical separation of serum immunoglobulin compounds was carried out by method of high- 
effective gel-penetrating fluid chromatography in accordance with [9]. Analysis of influenza virus 
specific antibodies being synthesized directly by antibody-producing cells (APC) was performed 
by ELISPOT method in accordance with [lo]. Nitrocellulose filters after ELISPOT were filtered 
by two-probes method [ l l ]  t o  obtain the experimental function of parameter distribution that  
correlates with affinity of antibodies being investigated. Then APC frequently distributions vs. 
concentration and affinity of produced antibodies were derived by commonly used statistical 
methods. 

Mat hematical model 

The affinity distribution of antibodies was carried out on the basis of experimental binding plots. 
The model of the one-stage binding reaction of pseudo-first order between N-valent antigen 
and heterogeneous antibody receptor population was chosen [12]. The ratio of filled antibody 
receptors sites Sb to  their total amount St can be expressed in accordance with this model as 
follows: 

where H is the free antigen concentration, p (K)  - the probability density distribution of receptors 
vs. affinity K (i.e. fraction of receptors with affinities between K 1 and K2 is J"," p(K)dK).  

The model of one-stage binding reaction between bivalent antibody IgG and N-valent anti- 
gent was chosen because for the influenza virus the bivalent binding of antibody is little probable 
[13]. In this case we may assume all N virus antigenic receptors being independent and take 
N*H in equation (1). 

Experimental binding plots reflect the dependence of R on H .  So the needed distribution 
p (K)  can be obtained by conversion of integral equation (1) that  is Stieltjes transform of p(k) 
with parameter 1 / H .  Then if the analytical form of R ( H )  is present the  distribution p (K)  can 
be calculated by well-known conversion formula. However we cannot define the  function R ( H )  
analytically from experimental data. The form of R ( H )  proposed in [12, 141 as a generalization 
of Sips formula [15] and used there for calculations in hapten-univalent antibody system proved 
t o  be unsuccessful for the case of virus-specific IgG reaction. Therefore we used the numerical 
techniques to  solve eq. (1) as in [16, 171. The distribution p (K)  was written as a weighed sum 
of special functions with following determination of weights by general curve-fitting methods. 

As a base function for development of p(I<) in series the Gaussian log-normal distribution 
has been chosen: 

The available experimental data  show that  the antibody affinity distribution is a multimodel 
[la]. Then the distribution p(h7) can be defined by the following sum 

L 
p(K)  = C Aif ( K ;  InKu,), 

moreover from the I," p(I<)dI< = 1 follows ~ f = ~  A, = 1. 
Parameters A; in IirO', i = I , .  . . , L were estimated by minimization of the function a: 



Voitsechovsky et al. 97 

where A4 is experimental points number, Rj-experimental values of antibody bound receptor 
fraction for antigen concentration Hj ,  dj-experimental error for Rj. Search of minimum of (3) 
was realized by the Nelder-Mead method (nonlinear simplex). 

The stochastic variable Z = (R - R mod )/d will be normally distributed with zero mean and 
dispersion = 1. Then function @ = ~ g ,  Z j  will be distributed as x2. Therefore the coincidence 
of @-value with xz-value for given freedom degrees number and significance level can serve as a 
validity criterium for the chosen model. Modes number L and antigen valence N were selected 
also from the condition of minimum xZ. 

The reliability, reproductability and sensitivity of the proposed method on the set of gener- 
ated ideal da ta  was examined. Details of these computational simulations will be published. All 
computations were performed on IBM-PC-AT using program package "Immunoassay Software 
Libraryn written on Turbo-Pascal 5.0. 

Mathematical modelling results and their experimental verifi- 
cat ion 

Affinity distribution in noninfected animals sera. 
The choice of this investigation object was caused by well-known fact about the existence of 

natural antibodies to  influenza virus in sera of noninfected animals. Affinity distribution analysis 
has shown that  such sera contains two antibody subpopulations with mean binding constants 
Kb near lo4  and lo6 l /mol related one t o  another as 2:l (Figure 1). 

It should be emphasized that  in all these the value XZ was abnormally large (> 100) what 
points t o  unsufficiency of accepted model to  real binding data. It practically did not decrease 
after change of any initial conditions (modes number, initial values of Kb, valence). This fact 
can be considered as evidence of nonspecific character of binding. To find out the nature of 
these proteins the physical separation of sera being investigated was executed. The experimental 
results allowed t o  determine that  noninfected animal sera contain 2 fractions of immunoglobulin- 
like proteins able t o  bind the influenza virus: (A) proteins with molecular mass (MM) of 40-80 
K D a  and with K b  near lo4 l /mol and B )  proteins with MM of 100-200 K D a  and Kb lo6 
l/mol. A-fraction proteins did not react with protein A St. Aureus and could not be totally 
eliminated from IgG-containing B-fraction by gel-penetrating chromatography. This way the 
results of physical separation of material being studied have confirmed those obtained using 
mathematical modeling, and namely that  noninfected animal sera contain 2 subpopulation of 
proteins related immunochemically t o  IgG and capable t o  unspecific low-affinity binding with 
influenza virus surface antigens. The structure and origin of these "naturaln antiviral antibodies 
will be investigated further, however basing on data  reported here one can suggest that these 
substances differ from IgG appearing during immune response upon infection. They could be 
both immuno-competent cell products (antigen-recognizing receptors of IgG-restricted T- or 
B-cells [19]) and products of nonlimphoid-type cells like R-proteins [20]. 

IgG affinity distribution in sera of infected animals 

Our mathematical model was used t o  describe the virions binding by specific IgG during infection 
process. Minimal values of consistency criterium (XZ < 10) were achieved for antigen valence 
of 5 and mode number L = 1,. . . ,3.  During the observation period (21 days) three antibody 
subpopulations different by their binding constant were discovered in sera of infected animals. 
Their mean values were in intervals of (A) lo4  - lo5, (B) lo6- 10' and (C)  10"'- 10" l/mol. An 
example of three-model affinity distribution of serum IgG, registered on 9th day after infection 
is shown in Figure 2. These data  were verified by the results of experimental determination of 
subpopulational structure of antibodies produced by APC during the first 2 hours after their 
extraction from animal spleen. 
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The method being used here consists of multiparameter estimation of each spot formed by in- 
dividual APC and following determination of appearance frequency distribution vs. parameters 
that  correlate with antibody affinity. (The details are described in [21].) 

APC frequency distribution vs. affinity is given in Figure 3. Comparison of Figures 2 and 3 
shows that  discovered in this experiment serum antibody subpopulations were formed by nearly 
10 APC clons which could be combined in 3 groups. Consideration of analogous da ta  being 
obtained on other days after infection has delivered comparable results: unimodel antibody 
distribution corresponds t o  1-2 clon groups in APC preparations, bimodel one - t o  2-4 groups. 
The total number of active clons never exceeded 20, and one group consisted of 1-5 clons. 

These results have confirmed the efficiency of the used method for describing affinity distri- 
butions in heterogeneous populations of virus-specific IgG. 

Serum antibody affinity distribution in the course of infection 
process 

The analysis of serum antibody distribution (tests were picked daily for 21 days from the in- 
fection) has shown that  during the infection period successive substitution of initial antibody 
subpopulations by subpopulations with higher affinity occurs. The total dynamics of this process 
was as follows (Figure 4): beginning on 6-7th day after infection (first reliable registration of 
specific IgG) the increase of subpopulation B and decrease of subpopulation A (immunoglobulin- 
like proteins with MM near 60 K D a )  occurred. On 9-10th day after infection appeared for the 
first time on the 13th day became statistically significant a new subpopulation of high-affinity 
antibodies (C). Maximal amount of these antibodies was registered on 14-15th day, from the 
17th day their reliable decrease was observed. 

This way i t  was determined that in mice sera in the course of 21 days after infection with 
influenza virus 3 subpopulations of antigen-binding proteins belonging by their immunochemical 
properties t o  superfamily of immunoglobulins [22] can be distinguished. Proteins that  belong to  
the first of these populations seem not to  be the "true" immunoglobulins, they have low affinities 
and MM in the range of 40-80 K D a  and are present also in sera of noninfected animals. The 
second subpopulation belongs t o  the true IgG fraction, i t  has moderate affinity values and 
occurs in different amounts both in noninfected and in infected animals during the period of 
observation. The third one appears on the top of humoral immune response and contains proteins 
with Kb near the maximum possible value. Antibodies similar by their affinity properties to  
those from the third subpopulation were found in sera of rabbits which were immunized by 
washed splenocytes from infected mice. This fact can serve as an indirect indication of antibody 
specificy to  the viral antigens related t o  the immunocompetent cell membranes [5]. 

Discussion 

Dynamics of humoral immunity upon viral infection is a complex cyclic process [23] includ- 
ing both synthesis of different by affinity antibody subpopulations and their elimination during 
interaction with antigens [8]. In this situation the standard statistical approach seems t o  be 
unsufficient t o  obtain the objective immune state evaluations. To solve this problem the study 
of functional structure of heterogeneous population of humoral effectors is needed. The math- 
ematical modelling of affinity distribution using experimental binding plots is a real possibility 
t o  obtain the solution because the direct experimental measure of affinity runs into great diffi- 
culties. The proposed method was adapted specially t o  the influenza virus - antiviral antibodies 
system. Data obtained on each stage of the investigation were verified by means of alternative 
physiochemical and immunochemical methods. Results of this study allowed t o  reveal the new 
important features of the humoral immune response upon influenza infection. 
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The humoral immune response phenomena upon viral infection found out in this investigation 
can be explained in terms of recent clonal selection and immune network theories [21.]. So, for 
example, two "natural antibodyn subpopulations in noninfected animals can be considered as 
initial antigen-recognizing immune net components determining the "virgin state of the immune 
systemn (by Hofmann, [24]). We can propose here the following mechanism of replacing of active 
subpopulations. Antibody affinity to  viral antigens is an activity regulator for APC clons group, 
which synthesize these antibodies [25]. After increase of affinity level (in consequence of clons 
selection inside the group) up to  some maximal value being a physiological limit for the given 
group it stops its production according to  clonal-deletional tolerence model [26]. A new APC 
clon with significantly higher initial affinity level t o  stimulus antigens becomes involved into 
immune reponse. "Stepn of affinity value by such a replace of active groups was according to  
our data near lo2 l/mol. Thus the results being presented in this work can be regarded as an 
evidence of humoral immunity with discrete structure. Bernett considered clon as an elementary 
unit of immune system, however, taking into account the modern ideas about clonal activation 
mechanism one can assume that such an elementary unit will be a family of clons carrying 
the regulative idiotops [27]. Data about antibody subpopulations structure being presented on 
Figures 3 and 4 confirm this assumption. It should be noted that in immune response caused 
by such a complex antigen with M M  > lOOMDa (influenza virus) only a small number of APC 
clon work. Virus itself demonstrates a rather low valence value N = 5. However these data were 
experimentally confirmed in [28, 13, 291 having shown that independently of antigen structure 
complexity (hapten, protein, bacterium) the number of specific to the given antigen antibody 
subpopulations is in vivo always not large and doesn't exceed some units or some tens. As a 
mechanism providing such a minimization of antibody spectrum one can consider the well-known 
phenomenon of supression of idiotype selection by mature APC [30]. 

The assumptions being presented here need of course the additional experimental control, 
but already now they can serve as a base for system analysis of humoral immune response under 
viral infection. 
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11.1 Introduction 

I t  is well known, that ,  in native proteins, some antigenic determinants depend critically on the 
tertiary and/or quaternary structure, rather than on the primary protein sequence (see, for in- 
stance, the studies on lysozyme [I ,2], myoglobin [3,4], P-galactosidase [5 ] ) .  These "conformation- 
dependentn epitopes appear t o  consist of adjacent in space aminoacid residues which are far in 
linear sequence, or belong to  distinct protomers in a multimeric complex. 

The possible reversibility of the processes (intramolecular rearrangement or bimolecular as- 
sociation) which lead to the  existence of a conformation- dependent epitope, and the affinity 
(low, though often still measurable) of the antibody binding site toward the isolated constituents 
of such a complex antigenic determinant, introduce other thermodynamic and kinetic parame- 
ters in the usual description of the interaction between paratope and epitope. This interaction, 
on the other hand, can be expected to  influence the structure of the antigen, by inducing or 
increasing the stability of the conformation which carries the epitope with the highest reactivity. 

Since the factors controlling the existence of a given conformation in a single polypeptide 
chain would require a rather detailed model, in this paper we restricted our attention t o  the 
interaction of antibodies (or receptors) with complex epitopes arising upon association of two 
protomers into a dimeric structure. The general description that  we devised can adequately 
be adapted t o  a variety of cases. In particular, we considered: a )  the  control exerted by spe- 
cific antibodies on the association of dimeric, enzymatically inactive, P-galactosidase into ac- 
tive tetramers; b)  the  binding t o  T-cell receptors of immunogenic peptides that  combine, on 
the surface of Antigen-Presenting cells, with major histocompatibility complex (MHC) type I1 
molecules. 

11.2 General model 

Let us consider a system of two associating protomers X and H, in which association generates 
a new epitope bringing a certain region on the X molecule adjacent t o  another one on the H 
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molecule. We want to investigate the interaction of this conformational epitope with the binding 
of a specific antibody (or receptor) R (see Fig. la).  We will distinguish, within the binding site, 
two distinct subsites epecific for the two constituents of the conformational epitope, and we will 
assume that the interactions of isolated protomers with the corresponding subsites cannot be 
disregarded. We will assume, moreover, reversibility and, for simplicity, independency of bond 
formation. As the only exception to  independency, there will be, anyhow, eteric impairment to 
the full association between protomers which are both bound to  separate binding sites. Fig. l b  
rnmmarizes the reactions taking place in the system. In this scheme the different complexes are 
represented by vectors, and the presence or absence, within a given complex, of bonds between 
X and H, X and R, or H and R, is indicated by rymbols 1 or 0, reapectively, in the f i s t ,  second 
or third component of the vector. 

Let K1 be the imolecular association conrtant between protomers X and H; K2 and Kg be 
the bimolecular association constants of X and H with their respective rabdtes on the binding 
rite; Ki, Ki and Ki  be the dimensionless equilibrium constants regulating, within the ternary 
X - H - R complex, the monomolecular bond formation between X and 8, X and R, and H 
and R respectively. F'rom mass action law, a t  equilibrium, we have: 

where Cijk denotes the concentration of complex ( t j k ) ,  and X ,  H and R denote the concen- 
trations of free X molecules, free H molecules and free binding sites, respectively. As it is 
apparent from (7), detailed equilibrium implies some relations among parameters, so that only 4 
parameters are independent. We introduce the parameter A", which represents the association 
constant of the conformational epitope with the binding site, defined by 

Thus we will write 
Clll = K'KiXHR, 

and the parameters of the system will be, therefore, K1, K2, Kg and K*. 
Let us denote by Xt,  Ht and Rt the total concentrations of X protomers, H protomers and 

binding sites, respectively. F'rom mass conservation, i t  follows that 

By solving eqs. (8-10) in the variables X,  H and R, and taking into account eqs. (1-7), a 
complete description of the system can be achieved. Without solving eqs. (8- lo), however, some 
properties of the system can be established. 

An increase, starting from zero, in the concentration of binding sites is obvious paralleled 
by a decrease in the concentration of free conformationd epitopes, and by an increase in the 
concentration of bound epitopes. There is however, if the value of h" is sufficiently large, 
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also an inerrease in the concentration of associated protomers (i.e. in the total concentration 
of conformational epitopes), since the combining site can cross-link the protomers and thus 
stabilize the X - H complex. Formally, by defining C' = Cleo + Cllo + Crol + Clll , and taking 
into account that, from eq. (lo), dR/dRt > 0, i t  can be shown, by computing (dXH/dR)R,o 
from eqs. (8) and (9), that 

if and only if 

K* > K2K3 
-1 + 4- 

Kl 
where 

a = 1 + Kl(Xt + Ht). 

When instead Rt -, oo, since from eqs. (8) and (9) i t  follows that X and H are both 0(1/R) s 
R -, oo, we have 

limR,,,C = 0. (11.15) 

In a large excess of binding sites, indeed, isolated protomers will be bound and the association 
between protomers will then be prevented. Note that, if the steric impairment on the association 
of bound protomers was not complete, we would have limR,,,Ct > 0. 

We can also analyze how, at  fixed concentrations of the protomers, the level of occupancy of 
binding sites depends on the overall site concentration. Let us consider the ratio Rb/R, where 
Rb = Rt - R denotes the concentration of occupied binding sites. From eqs. (8-10) it can be 
easily derived that for Rt -, 0 it is 

where a is given by (13). Focussing our attention on the dependence of this limit value, nvo, 
on the value of K1 in the simple case of Xt = Ht = nt , we can see that 

and 
lim~,,ovo = (K2 + K3 + K0)nt .  

Thus limKl,,nuo > l i m ~ ~ , ~ n u ~  > limKl,onuo if and only if K' > K2K3nt. Only under this 
condition, therefore, higher K l  values favor occupancy of binding sites in the zone of protomers 
excess (see Fig. 2, where Rb/R is plotted vs. Rb/2nt). For Rt  -, oo, instead, Rb tends to 
Xt  + at and the ratio Rb/R tends, obviously, to zero. 

11.3 Antibody-mediated activation of a defective 
P-galactosidase 

It has been shown in 1968, by Rotman and Celada [6], that antibodies directed against bacterial- 
galactosidase are able to induce a striking recovery of the enzymatic activity of defective (quasi- 
inactive) enzyme produced by mutant bacterial strains. While the active enzyme is a tetramer 
consisting of four identical protomers, the defective macromolecule is unstable at room temper- 
ature and tends to dissociate into dimers [7]. Monoclonal antibodies endowed with activating 
capacity have also been described [8,9] and their affinity for the tetrarner, when measured, has 
been found substantially higher than for the dimer [9]. The activating effect exerted by the 
antibody could therefore be mediated by an association of the dimeric species into tetramers, 
occurring presumably through the binding of a specific antibody site to an epitope depending on 
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the tetrameric conformation [lo]-actual cross-linking of dimers by d i d e n t  antibodies excluded 
by the activating effect of monodent  Fab fragments [ll]. 

According to this working hypothesis, the activation phenomenon can be analyzed by a 
suitable adaptation of the previously described model, assuming that: i) two dimeric beta- 
galactosidase molecules can (weakly) associate and, upon association, generate a complex epi- 
tope constitued of two identical protomers, the defective macromolecule is undstable a t  room 
temperature and tends t o  dissociate into dimers [7]. Monoclonal antibodies endowed with acti- 
vating capacity have also been described [8,9] and their affinity for the tetramer, when measured, 
has been found substantially higher than for the dimer [9]. The activating effect exerted by the 
antibody could therefore be mediated by an association of the dimeric species into tetramers, 
occurring presumably through the binding of a specific antibody site to  an epitope depending 
on the tetrameric conformation [lo]-actual cross-linking of dimera by d i d e n t  antibodies being 
excluded by the activating effect of monodent  Fab fragments [ll]. 

According to  this working hypothesis, the activation phenomenon can be analyzed by a 
suitable adaptation of the previously described model, aasuming that: i) two dimeric beta- 
galactosidase molecules can (weakly) associate, upon association, generate a complex epitope 
constitued of two identical subepitopes; ii) the binding sites of the activating antibodies carry 
two identical subsites, each capable of binding a subepitope; iii) the level of enzyme activity 
is proportional to  the actual concentration of tetrameric molecules. Let K1 be the association 
constant between dimers; li be the intrinsic association constant between subepitopes and 
subsites; K' be the equilibrium constant among free tetramers, free binding sites and tetramers 
bound to both the subsites of a binding site. Still assuming the hypothesis of independency of 
bond formation as stated in Section 2, the concentration C' of tetramers, a t  equilibrium, will 
be given by 

C' = [1+ (4K + K ' ) R ] K ~ x ~ ,  (11.17) 

where X and R denote now the concentrations of free dimers and of free activating binding sites, 
respectively. These concentrations satisfy the following conservations equations: 

where Xt and Rt are the total concentrations of dimers and of activating binding sites, respec- 
tively. 

As expected from properties (11) and (14) of the general model, C* first will increase with 
Rt,  provided that K' have suitable values, and then, for increasing large d u e s  of Rt, will tend 
to zero. Fig. 3 shows how the ratio between tetramer and total dimer concentrations varies as 
a function of the overall concentration of antibody sites. The curves were computed according 
to  eqs. (16-la), with values of parameters reasonably chosen with respect t o  the experimental 
knowledge. A several-fold activation of the enzyme can therefore be accounted for, followed by 
an inhibiting effect of antibody excess. Note that the shape of the activation curve depends also 
on the concentration of defective enzyme: such a dependence could be useful for an experimental 
d ida t ion  of this model. For a qualitative comparison, in Fig. 3 are reported two experimental 
activation curves obtained using different antisera. It is possible to observe in one case (mouse 
antiserum) an activity decrease a t  high antibody concentrations, as predicted by the model; in 
the other case (rabbit antiserum), such a decrease cannot be excluded a t  antibody concentrations 
higher than the maximal d u e  used in the experiment. 

11.4 Recognition of pept ide-MHC molecule complex by T-cell 
receptors 

Several studies indicate that, in T-cell-mediated humoral immune response, the antigen is not 
capable by itself of triggering T-helper cells: relatively small peptides must be generated by 
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intracellular processing of the antigen [12, 131, and can stimulate T-cells upon presentation on 
the surface of Antigen-Presenting cells (AP-cells) in association with type I1 MHC molecules 
[14, 151. The role of the MHC molecule is not that  of a mere presentation of the peptide, specific 
MHC baminoacid residues being actively involved in the interaction with the T-cell receptors 
[16]. The receptor sites on the surface of a given T-cell subset recognize indeed a complex 
epitope, resulting from an adequate spatial arrangement of some residues of the peptide and 
some other residues of the MHC molecule [17, 181. 

The binding of T-cell receptors t o  this new epitope, if the association between peptides 
and MHC molecules occurs on the AP-cell surface, could therefore be analyzed by our model 
of a ternary interacting system. Since however such a binding occurs in the contact region 
between T-cells and AP-cells, and the resulting bonds lead t o  links between the cells, our model 
must be inserted in a description of cell-to cell adhesion. Bell e t  al. [19] have studied, by a 
thermodynamic approach, how formation of reversible bonds between one pair of complementary 
molecules compete with repulsion between cells, assuming that  free and bound species behave 
as ideal solutes on the membrane, and that  the repulsive force is due to  cornpenetration and 
compression of cellular glycocalices. We will refer t o  this simple model; we therefore have not 
considered the possible lateral mobility of the molecules responsible for the repulsive forces [20], 
nor have we taken into account the mechanical work that  must be done t o  deform the cells [21, 
221. 

Let X be an immunogenic peptide, H the M H C  molecule able t o  associate with X ,  and 
R the T-cell receptor; X and H be mobile on the AP-cell surface and R be mobile on the 
T-cell surface. When a T-cell is in contact with an AP-cell, the interactions among X ,  H and 
R can be described according t o  the scheme of Fig. l b ,  taking into account that formation 
of the peptide-MHC molecule complex takes places on the whole AP-cell surface, while the 
interactions with T-cell receptors occur in the (two dimensional) contact region. Let us assume 
that  all complexes involving R be effective links between T and AP-cells and that  only these 
molecular bridges cause cell adhesion. Since bridges must be stretched to  exert the adhesion 
forces, and since different types of molecular bridges can be present, with possibly different 
elastic properties and different unstressed lengths, a general description of the equilibrium state 
is rather complicated. As a first though rather crude approximation, let us suppose that  all 
bridges have the same elastic constant K and unstressed length L. Let us assume that ,  in the 
unstressed state, there still be independency of bond formation. The free energy function for 
the closed system containing two adhering cells, taking into account the energy of molecular 
stress and the energy of cell repulsion, can then be written as in [19]. Since the free energy a t  
equilibrium attains a local minimum, the following equation can be derived for the equilibrium 
state: 

A l ( l +  K1 H ) X  + A[Rb - v(S)K3HR] = Nz (11.20) 

where 
Rb = v(S)[K2X + K3H + K 2 K 3 X H  + (K2  + K g  + K * ) K I X H ] R  (11.25) 

In the above equations, K is the Boltzmann constant and T the absolute temperature; N x  and 
N H  are the total numbers of X and H molecules on the AP-cell surface; N R  is the total number 
of receptor on the T-cell surface; X ,  H and R are the surface concentrations of free X ,  H and 
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R molecules; A1 and A2 are the areas of the AP-cell and T-cell surface, respectively; A is the 
area of the contact region; S is the separation distance between cells; K1, Kz, Ks and K* are 
the equilibrium constants, as defined in Sect. 2, for bond formation in the unstressed state (i.e. 
when S = L). r ( S )  denotes the potential energy (per unit area of contact) of cell repulsion, 
at  a separation distance S. A suitable expression for r, depending on glycocalix parameters, is 
given in [19]. Equations (19-21) express maxx conservation; equation (22) represents the balance 
between the pressures, on the boundary of the contact region, due to cell repulsion and to the 
concentration of bridging bonds; equation (23) expresses the balance of forces. The factor v(S) 
takes into account the decrease of bond stability due to the stretching of the complexes. 

The above equations, in the variables, S, A, X ,  H and R, describe the interaction between T- 
cell and AP-cell when no constraint is imposed on the size of the contact region. The separation 
distance can be computed from eqs. (22) and (23) and its value, denoted by S, depends only 
on n, L and on the parameters of r. (19-22), instead, can lack in some cases any solution with 
A > 0. From eqs. (19-21) and (24) it follows that, when A > 0, Rb < limA,oRb, so that there 
is an admissible solution if and only if 

Denoting by Xt ,  Ht and Rt,  now, the Nx/AI, NH/Al and NR/A2 ratios respectively, adhesion 
between T-cells and AP-cells can occur if and only if 

where 

1<2 I{~ a - Jm + A'*) 
2 K1 

+ K2Xt + K3Ht Rt , I (1 1.28) 

and 
a = 1 + Kl(Xt + Ht). 

It can be noted that, when cell adhesion occurs, eq. (22) causes the local concentration of bound 
T receptors to be independent of Xt ,  Ht and Rt,  and of the values of the association constants. 

Focussing our attention on the dependence of the threshold value y on Xt ,  it can be seen 
from eq. (27) that, for Xt -, 0, y -, Ii3Ht Rt and 

whereas, for Xt -, w, 

The initial slope of y vs. Xt  thus increases as K1 increases if K*  > K2K3Ht, and it decreases if 
K g  < K2 K3Ht. We have moreover: 

and 
[ ( K *  + K2)Xt + K3Ht]Rt ifXt < HI 

"mK~+ooy(Xt) = [K2Xt + (K* + K3)Ht] Rt ifXt > . 
Therefore, as illustrated in Fig. 4, if K* > K2K3Ht an increase of the peptide-MHC molecule 
association constant K1 will enhance the value of Y,  and thus favor cell adhesion, only if Xt is 
relatively small (the upper value of Xt being approximately given by K*/K2K3). If instead K* 
is smaller than K2K3Ht, the peptide-MHC association will have, irrespectively of the peptide 
concentration, an unfavorable effect on the interaction between the T-cell and the AP-cell. 
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11.5 Concluding Remarks 

The model presented in this paper appears to be useful in the assessment of a variety of situations 
in which antibodies, or more in general receptors, interact with complex epitopes. Its application 
to the antibody-mediated activation of defective /3-galactosidase was successful in predicting the 
qualitative aspects of the phenomenon. A more rigorous validation of the model should, however, 
involve curve-fitting of experimental activation curves obtained at  different values of enzyme 
concentration. Our study of the binding between T-cell receptors and peptide-MHC molecule 
complexes, allows to  visualize how the surface concentrations of peptides, M H C  molecules and 
T-cell receptors, and the association constants between the various molecular species, modulate 
the T-cell-AP-cell interaction. By the present approach, a rather simple description of a very 
complex system was achieved. It should however be noted that, in addition to the stated 
simplifying assumptions about the mechanical properties of cell membrane and of molecular 
bridges as well as about cell repulsion, the possibility of a shedding of the antigenic peptide from 
the cell surface was neglected. Moreover, our treatment does not take into consideration the 
kinetics of the various processes. The consequences of these limitations are yet t o  be evaluated. 
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Fig. 1 A) Association of X and H protomers to form a complex interacting 

with a receptor binding site R. B) Scheme of the reactions occurring in the 

system. Bimolecular and monomolecular reversible reactions are represented, 

respectively, by continuous and dotted arrows. Symbols are defined in the text. 



Fig. 2 Plot of Rb/R vs. Rb/(Xt + Ht), for different values of K 1  and K g :  
K 1  = 0 ( K *  is not defined), curve (a); K1 = 10' M-I and K' = 0, curve (b); 
K 1  = 10' M-' and K* = 1.75 x 10' M - l ,  curve (c). The other parameter 

values are: K 2  = K s  = 7 x 10' M", Xt = Ht = lo-' M. 
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Fig. 3 Computed normalized concentration of the ktrameric form of defective 

8-galactosidase as a function of the total concentration of activating antibody 

sites. In curve (a) and (b), Xt = lo-' M  and Xt = M, respectively; in 
both curves, K  = 5 x 10' M-I, K' = 2 x 10'' M". Io curve (c), Xt = 
M, K = 5 x lo7 M-' and K* = 2 x 10" M". In all curvcs, K1 = 10' M - l .  
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Fig. 4 Dependence of the activity of a defective p-galactosidase (extracted 

from E. Coli strain W6101) on the concentration of mouae (A) or rabbit (B) 
antisera elicited against the fully active, tetrameric enzyme. Unpublished ex- 

perimental data by Strom and Celada. 

Fig. 5 Upper bound of the valucs of ~ ( S ) / ( C T & )  that allow adhesion of 
T-cells to AP-cells, M a function of the overall rurfscc concentration of an 

immunogenic peptide. In curves (a), (b) and (c), K1 equal to  lo", lo-" and 

lo-" cm2/molecule, rapectively; K' = 10'" cm2/molecule. In curvw (d) 

and (e), K1 equal to  10'" and lo-" cm2/molecule, respectively; K' = 2 x 

10-lo cm2/molecule. In all curves, K:, = 10-lo cm2/molecule, Ks = 5 x 10'" 

crn2/molecule and Ht = lo9 rnolecules/cm2. 
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12.1 Introduction 

The diversity of the pre-immune antibody repertoire, as expressed by the surface immunoglobulin 
(sIg) on mature, unstimulated B cells, arises from (1) combinatorial rearrangements of the 
germ-line variable (V),  diversity ( D )  and joining ( J )  segments, (2) variations in joining a t  the 
V - D - J junctions, and (3) combinatorial associations of the variable light (VL) and heavy 
(VH) chains. Preferential selection from the repertoire of those B cells with the highest affinity 
for the antigen has long been recognized a t  the cornerstone of the humoral immune response 
(Siskind and Benacerraf, 1969). Although the initial repertoire that  confronts an antigen is 
quite large, i t  can be expanded after exposure to  antigen by the process of somatic mutation 
(Weigert et al., 1970; Bernard et al., 1978). These mutations are generally focused in the region 
of the antibody that  forms the antigen-binding site (the V region), and can often result in a 
radical change (increase or decrease) in the binding characteristics of the antibody (Allen et al., 
1988; Griffiths et al., 1984; Rudikoff et al., 1982). Thus, i t  has been suggested that  somatic 
mutation provides a basis for generating additional antibody specificities which can interact 
with the antigen. Preferential selection of those variants with a high affinity for the antigen can 
then lead t o  a progressive increase in average affinity over time, as well as provide the basis for 
a heightened secondary response. 

Informal models of the humoral immune response that  include somatic mutation have been 
presented by several authors, among them Berek et al. (1987), Manser et al. (1987) and 
Rajewsky et al. (1987). Their models are descriptive in nature, and are derived from an 
analysis of nucleotide sequencing data  obtained from experiments with immunized mice. These 
models are particularly important in that  they clearly illustrate and emphasize the dynamic and 
stochastic nature of a continuously expanding and contracting repertoire of antibody specificities. 
Many important questions remain t o  be answered however. The rate of somatic mutation has 
been estimated t o  be on the order of per V region base pair per generation (Clark et al., 
1985; McKean et al., 1984; Sablitzky et al., 1985). Based on a V region of about 700 base pairs, 
this translates roughly into one point mutation per cell division. How are antibodies able t o  
withstand such an onslaught of random mutations and improve their affinity for the antigen? 
Also, random mutations clearly create the possibility of generating antibodies that  are harmful 
t o  self. How is this risk controlled or minimized? 
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Our overall objective is to provide answers to these and other important questions through 
the use of a computer model. A fundamental requirement for such a model is that it must 
represent individual antibody specificities at  a level that permits us to  randomly mutate an 
antibody and calculate the affinity of the mutant antibody for the antigen. This requirement 
poses a number of difficult problems. Antibodies are proteins made up of a linear sequence of 
amino acids that take on a three-dimensional conformation as a result of the process of protein 
folding. The antigen-binding properties of the antibody, in turn, are determined in a large 
part by the resulting conformation as well as the nature of the specific residues that constitute 
the binding site. Our knowledge of the specific mechanisms, processes and forces involved in 
protein folding and antibody-antigen binding is still quite limited, however. Although a great 
deal of progress has been made in recent years, we are not yet able to accurately predict how the 
substitution of a single amino acid in an antibody will affect its affinity for an antigen. Equally 
restrictive from a modeling standpoint is that the computational resources required for even 
a modestly realistic representation of these processes is well beyond the capacity of currently 
available equipment. 

On the other hand, a great deal of information is available regarding: (a) the general mech- 
anisms by which diversity is generated in the antibody repertoire, and (b) the general charac- 
teristics of antigens, antibodies and their interactions. Our approach, then is to devise discrete 
artificial antibody and antigen repertoires that utilize these mechanisms, exhibit these known 
characteristics, permit us to make the required calculations of affinity changes resulting from mu- 
tations, and remain within the bounds of computational feasibility. We implement this approach 
in the following steps: 

(1) Define a set of behavioral characteristics that capture the essential nature of the interactions 
between antigen and antibodies. 

(2) Devise a simplified three-dimensional representation of antibody-antigen binding that per- 
mits the calculation of affinity changes resulting from mutations. 

(3) Using the above representation, create a number of artificial antibodylantigen repertoires 
and test their performance against the required behavioral characteristics. 

(4) Imbed the artificial repertoires in a dynamical system model of the humoral immune response. 

Step 4 is beyond the scope of this paper and will be pursued in a future work. We do, however, 
include here an analysis of some of the behavioral characteristics of the model repertoires when 
subjected to random somatic mutation. 

12.2 Design of the Model Repertoire 

12.2.1 Behavioral Characteristics of AntibodyIAntigen Interactions 

We assume that the following set of behavioral characteristics are representative of the major 
interactions between antibodies and antigens, and consider them to be essential requirements of 
the model repertoires: 

(1) Most antigens react with B cells of more than one specifity, thereby initiating a response 
that is heterogeneous with regard to the affinity of antibodies produced. 

(2) There are more B cell specificities that have a low affinity for an antigen than there are those 
that have a high affinity for the antigen. 

(3) The substitution of a single base pair in the DNA sequence that codes for the antigen-binding 
site can have a wide range of effects on the binding properties of the antibody. The affinity 
can be either increased or decreased greatly, minimally or not at all (Griffiths et al., 1984; 
Rudikoff et al., 1982). 

(4) The binding strength and specificity of an antibody generally exhibit an inverse relationship, 
i.e., antibodies with high average binding strengths are generally less specific than antibodies 
with low average binding strengths (Karush, 1978; Ninio, 1986). 
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Figure 12.1. Configuration of amino acids A and H. 

12.2.2 Representation of Model AntibodyIAntigen Repertoires 

The primary assumption behind our model repertoire is that  the binding strength between an 
antibody and an antigen is a function of the complementarity of their molecular surfaces in terms 
of (a)  size, (b) shape, and (c) functionality. Molecular size and shape determine the proximity 
of the functional sites, and their functional complementarity determines the magnitude of the 
bond (Amit et  al., 1986; Chothia and Janin, 1975; Geysen et  al., 1987; Rebek, 1987; Sela, 1969). 
This structural assumption is incorporated directly into our representation of the antibody and 
antigen repertoires. 

2.2.1 Physical Representation. The basic units of our model antibodies are amino acids, 
which are translated from nucleotide triplets (codons) according to  a genetic code. We use a 
slightly modified version of the genetic code that  maps the 64 possible codons onto 16 amino 
acids instead of 20 (Appendix I). Each amino acid is composed of a number of 3-dimensional 
units arranged in a variety of shapes. Two examples of such amino acids are shown in Figure 1. 

Each amino acid shape has a common base four units in length. Attached t o  each of the base 
units are side extensions, each of which can vary in length from 0 t o  3 units. This construction 
permits the formation of 256 (44) possible amino acid configurations, any 16 of which define an 
antibody repertoire (Appendix 11). 

The antigen-binding site of an antibody is represented as a 3-dimensional cavity one unit 
deep formed by the apposition of 4 amino acids (Figure 2). 

The four amino acids are oriented on an 8 x 10 unit grid, with their bases aligned a t  the 
outer edges. This representation defines an antibody repertoire of size 65,536 (16~) .  We will 
refer t o  a particular antibody in the repertoire by an ordered list of four letters, taken from the 
model genetic code, that  identifies its amino acid constituents. The antibody in Figure 2, for 
example, will be referred t o  as antibody [AHLR]. 

Antigenic epitopes are constructed of units similar t o  those of the antibodies, and are rep- 
resented as projections from the surface of the antigen. Since there are many more possible 
antigens than antibodies (Inman, 1978, has estimated that  there are a t  least 1016 distinguish- 
able families of antigen structures) we allow an antigen t o  consist of any possible combination of 
units within an 8-unit by 8-unit shape. The number of possible antigens that  can be represented 
in this fashion is on the order of lo2'. 

2.2.2 Calculation of Binding Strength. The bond between an antigenic epitope and an 
antibody (expressed as an affinity constant) is the result of complex interactions between chem- 
ical functional groups on the surface of the antigen and amino acid side groups in the binding 
site of the antibody. The types of forces involved include hydrogen bonds, electrostatic inter- 
actions, van der Waals interactions and hydrophobic associations, and complementarity of size, 
shape and functional groups is critical in forming and determining the strength of the bond. We 



Weinand 

Figure 12.2. Antigen-binding site formed by amino acids, A, H, L, and R. 

make no attempt t o  mimic the real structures and forces involved in antigen-antibody binding, 
but utilize a much simplified representation that we think captures the essential features of the 
process. We also assume that  for the purpose of calculating an affinity constant, antibody and 
antigen configurations can e treated as though they are rigid and do not undergo conformational 
change upon binding (Alzari et al., 1988; Rebek, 1987). 

Each unit surface that  forms a portion of the floor or walls of the cavity is an accessible 
contact surface for an antigen, and is assigned one of five functional types. These functional types 
are somewhat arbitrary in the sense that  they do not correspond directly with real functional 
types, but they provide a means for representing molecular functionaality as an important 
parameter in antibody-antigen interactions. The binding strength between an antibody and an 
antigen is calculated as a function of the number and type of functional surfaces that  make 
contact with each other, according to  the following rules: 

(1) An epitope must 'fit' completely within the cavity t o  form a bond. 
(2) A force is exerted only where two unit surfaces come into full contact. 
(3) The force exerted a t  each contact location is determined by the functional types of the two 

contacting surfaces. 
(4) The total bond between an antigen and an antibody is defined by some function of the 

individual forces. 
(5) The binding force is considered to  the 'best fit' force, considering all possible unit translations 

and 90' rotations of the two shapes. 

The binding force between any two types of functional units that  make contact is defined 
by a matrix, an example, of which is shown in Table 1. Each value in the body of Table 1 
represents the units of binding force exerted between a pair of functional types on the antibody 
and antigen surfaces that  make contact. For example, if a unit surface of functional type c on 
an antibody makes contact with a unit surface of functional type b on an antigen, the strength 
of that  particular bond would be 6. A major feature of this representation is that  i t  permits 
us to  easily vary the relative importance of the three major binding strength parameters; size, 
shape and functionality. The binding characteristics of the repertoire can be varied by assigning 
different functional types t o  each of the units that  make up the amino acid and antigenic surfaces, 
and by assigning various values to  the weights in the function matrix. 
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Table 12.1. Binding Force Matrix 

I Functional type of contacting surface 1 

The affinity constant for an antibody-antigen combination is calculated by first summing 
the individual bonds for each of the unit surfaces making contact. This produces a total bond 
expressed as a number of arbitrary bond units, generally falling in the range from 0 to  100. 
The total bond units are then mapped onto a physiologically relevant range of affinity constants 
by the function given in Equation 1. 

antibody 

B8, Kij = c1 c2 , (1) 

where Kij = affinity constant for antibody i, antigen j; Bij = total bond units for antibody i, 
antigen j; cl = scaling factor, and c2 = slope factor. 

This function permits us to  control the number and distribution of antibody affinities that  
will be triggered by an antigen by varying the threshold affinity and the values of cl and cz. 
Throughout the remainder of this paper we will use the terms 'affinity' and 'bond strength' 
interchangeably. 

antigen 

a I b I c I d I e 

12.3 Performance of the Model Repertoires 

Four complete antibody repertoires of 65,536 antibodies each (Repertoires A,  B ,  C and D), 
were generated along with a random sample of 100 antigen configurations. In this section we 
analyze the binding characteristics of these repertoires and compare them with the requirements 
formulated previously in Section 2.1. 

12.3.1 Repertoire A 

The characteristics of the generated antibodylantigen repertoires with regard to  the require- 
ments for (1) heterogeneity of affinity, and (2) distribution of affinities can be seen in Figure 
3. Figure 3 is a binding distribution for antigen # 84, an 'average' antigen from the sample of 
100. Antigen # 84 has a bond strength > 0 for 4,098 (6.25%) of the antibody configurations 
in the repertoire. The distribution of bond strengths is approximately normal, ranging from a 
low of 2 t o  a high of 82. If we consider a bond strength of 65 (K, x 1.0 x 105M-') t o  be the 
minimum required for triggering an immunogenic response, then 90 of the antibodies (0.137 % 
of the complete repertoire) would be triggemble. The proportion of triggerable antibodies is also 
seen t o  be a generally decreasing function of affinity, i.e., there are many more antibodies of low 
affinity than high affinity. These characteristics satisfy the first two requirements. 

The third requirement of the model repertoire is that  the substitution of a single amino 
acid should be capable of producing a wide range of effects on the affinity of the antibody. We 
evaluated this property of the model repertoire by deriving the set of all possible antibodies 
that  could be generated by the substitution of a single amino acid for each of the 90 triggerable 
antibodies. As an example, antibody [EPIH] can generate 27 other antibodies as shown in Table 
2. 



Weinand 

20 40 60 80 
Binding Strength (units)  

Figure 12.3. Histogram showing the distribution of binding strengths of antibody repertoire 
A vs. antigen # 84. The number of antibody specificities (ordinate) is plotted against binding 
strength units (abcissa). 

Table 12.2. Possible mutations of antibody [EPIH:] 

Unchanged amino acids are indicated by a '-' Productive mutations are indicated by an 't' 

There are 6 permitted substitutions for amino acid E in position 1, 7 for amino acid P in 
position 2, 8 for amino acid I in position 3, and 6 for amino acid H in position 4. Four of 
these mutant antibodies are productive, i.e., they have a bond strength at  least as great as 
the triggering threshold of 65 bond units. Antibody [KPIH] has the same bond strength of 70 
as antibody [EPIH], antibodies [EPIP] and [DPIH] have higher bond strengths of 71 and 79 
respectively, and antibody [VPIH] has a lower bond strength of 65. We also note that amino 
acids P and I in positions 2 and 3 respectively are absolutely essential to the formation of a 
productive bond. All substitutions of either of these amino acids are non-productive. At the 
other extreme, amino acid E in position 1 is productively replaceable 50% of the time. 

Many of the other triggerable antibodies are similar to antibody [EPIH] in that they can 
tolerate many mutations, some which have a higher affinity and some of which have the same 
or lower affinity. There are also several other antibodies, such as [IIPD], that cannot tolerate 
even a single amino acid substitution without losing their ability to  be triggered by antigen #84. 

1 Position 1 
Antibody Bond 

[ A  - - -1 
[V - --I* 
[G - --I 
[N - --I 
[D---I* 
[K---I* 

Position 2 

54 
65 

0 
0 

79 
70 

Antibody 
[-A--1 
[- L - -1 
[-S - -1 
[-T - -1 
[ -N--1 
[-R--1 
[-H--1 

Position 3 
Bond 

0 
51 

0 
0 
0 
0 

41 

Antibody 
[- - V-] 
[- - L-] 
[ - - M - ]  
[- -S-] 
[- - T-] 
[- -C-] 
[ - - K - ]  
[- - R-] 

Position 4 
Bond 

0 
0 
0 
0 
0 

33 
0 
0 

Antibody 
[---L]  
[- - -PI* 
[ - - - N ]  
[- - -C] 
[---Dl 
[ - - -R]  

Bond 
57 
71 
0 
0 
0 
0 
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Figure 12.4. Plot of the relation between affinity and specificity. Each da ta  point represents 
the average bond strength (ordinate) of all antibody specificities that  bind a specific number 
(abcissa) of different antigens. 

Maser et  al. (1985) discusses this property of an  antibody to  withstand mutations. The authors 
refer to  this as the 'adaptability' component of 'fitness', and discuss its importance relative to  
clonal expansion. This is a critical concept, and one which we will return t o  later on when we 
analyze the dynamics of clonal development in more detail. 

The fourth requirement concerns the relationship between specificity and affinity. Antibodies 
vary greatly in the number of antigens that  they can bind as well as in the strengths of their 
bonds. Using a random sample of 61 antigens, we calculated the  average binding strength of 
each antibody in the repertoire to  each of the antigens. These average binding strengths were 
grouped into categories based on the number of antigens bound, and the results are displayed 
in Figure 4. These da ta  clearly exhibit the inverse relationship between specificity and affinity. 
Antibodies with a high average bond strength (affinity) are seen to  be generally less specific 
(bind more different antigens) than antibodies with a low average affinity. It must be pointed 
out, however, that  this is a general relationship. Exceptions where an  antibody has both high 
affinity and high specificity do occasionally occur in the model repertoire. 

12.3.2 Repertoires B, C and D 

Repertoires (B,  C and D )  were evaluated t o  test the generality of the results presented above. 
Repertoire B was created by randomly selecting a different set of amino acids as its base, leaving 
the values in the function matrix unchanged. Repertoires C and D were then created by using 
the amino acids of Repertoires A and B,  and modifying the values in the function matrix to  
give less weight to the functionality parameter. The behavioral characteristics of Repertoires B ,  
C and D are found t o  be essentially the same as those of Repertoire A. The major differences 
in the four repertoires are in the range and variability of their binding strength distributions. 
Repertoires A and B ,  which have high values assigned t o  functionality, generate distributions 
that  cover a wide range of affinities and have a modest degree of variability within that  range. 
Repertoires C and D ,  on the other hand, produce binding strength distributions that  are much 
narrower and less variable than that  of Repertoire A. 
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12.3.3 Limitations of the Model Antibody Repertoire 

X-ray crystallographic studies have shown that  the binding site of an antibody appears as an ir- 
regularly shaped cavity or pocket formed by the amino acids that  constitute the complementarity- 
determining regions (CDRs) of the variable heavy (VH) and light (VL) chains (Alzari et al., 1988; 
Amit et al., 1986). Although the CDRs consist of about 60 amino acids, the limited size of the 
binding site (Kabat, 1976) permits only a portion of them t o  make direct contact with the 
antigen. One example of the number of amino acids that participate directly in an antibody- 
antigen bond is given in the study by Alzari et al. (1988), where seventeen amino acids from the 
antibody are shown to  make contact with the antigenic epitope. Fifteen of the amino acids are 
in the CDRs and two are in the framework regions. This type of structure permits gradual as 
well as drastic changes in shape and function t o  result from the substitution of a single amino 
acid. Substitutions of amino acids that form the surface of the binding site are most likely 
t o  produce large increases or decreases in affinity, whereas substitutions of other amino acids 
are more likely t o  produce more subtle effects by inducing slight conformational changes in the 
binding sites. Our model antibodies do not have this important property of gradualism that is 
essential in evolutionary systems (Conrad, 1983). They consist of V regions that  have only four 
amino acids (all of which directly form the antigen binding site), and no framework or constant 
regions. All amino acid substitutions, therefore, are likely t o  produce significant changes in the 
binding strength because one-fourth of the binding surface is changed. Including the gradualism 
feature would vastly expand the computational requirements of the model since it requires the 
inclusion of many additional amino acids in the representation of an antibody. We will see later, 
however, that experiments with the model make it possible to  form conclusions about the likely 
significance of such additional amino acids. 

12.3.4 Suitability of the Repertoires 

The results presented in this section do not represent a complete and systematic exploration of 
all the characteristics of the model repertoires. Our primary objective is t o  investigate somatic 
mutation, and our intention here is simply to  ensure that  the model repertoires are suitable 
for that purpose. Based on the information presented above we conclude that the behavioral 
characteristics of each of the four model repertoires satisfy the established requirements. 

12.4 The Effect of Somatic Mutation on the Antibody Reper- 
toire 

We mentioned earlier that  it is beyond the scope of this initial investigation t o  test the antibody 
repertoire model in a dynamical system model of the immune response. We do, however, extend 
our analysis of the model antibody repertoire by considering some behavioral aspects of the 
effects of somatic mutation. 

The process by which somatic mutation generates antibodies with increased affinity for an 
antigen has been demonstrated t o  occur in a step-wise fashion (Clarke et al., 1985; Sablitzky 
et al., 1985). New antibody specificities are generated primarily by single point mutations, 
and those mutants with a sufficiently high affinity for the antigen are selected for continued 
proliferation and mutation. Mutant antibodies with low affinity for the antigen, on the other 
hand, are excluded from further participation. An important consequence of this process is that  
high-affinity antibodies can be generated only by mutations of other high-affinity antibodies 
already present in the system. If the sequential mutation path from one high-affinity antibody 
to  another includes one or more low affinity antibodies, that  path is effectively blocked. Cells 
with low-affinity slg are excluded from the proliferating pool and therefore do not generate 
additional mutations. 
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Figure 12.5. Diagram of the set of antibody specificities derivable from antibody [VIIE] by a 
step-wise sequence of single amino acid substitutions permitted by the genetic code. 

We explored this characteristic of the antibody repertoire further by deriving and analyzing 
the set of all possible antibodies that could arise from antibody [VIIE] as the result of sequential 
single base mutations (Figure 5). Antibody [VIIE] is seen to  be a member of a connected set 
of eight antibodies. Any antibody in the set can be reached from any other antibody in the set 
by either a single mutation or a sequence of mutations because each of the antibodies in the set 
has a sufficiently high affinity for the antigen. Mutations to  antibodies not contained in this set 
do occur, but lead to an immediate dead end because they are not of sufficiently high affinity to 
remain in the proliferating pool. By direct interference, then, we can conclude that (a) none of 
the other 82 high-affinity antibodies in the repertoire can be reached from any of the antibodies 
in this set, and (b) mutations into this set from antibodies outside the set are not possible. 

By definition, antibodies that are directly mutable into each other can only differ by one 
amino acid. From this it naturally follows that the antibodies in a mutation set are likely to  
have a great deal of structural similarity. In principle, though, two antibodies that are separated 
by four mutations could have completely different amino acids and be very different structurally. 
This has not occurred in this mutation set, however, as evidenced by each antibody having the 
same amino acids I and E in positions 3 and 4. The amino acids in these two positions are 
therefore essential. Any change in either of them reduces the affinity of the antibody below the 
triggering threshold. 

The mutation set of another triggerable antibody [VPIH] is depicted in Figure 10. This 
mutation set has 19 antibodies, and has characteristics similar to  those of the set previously 
described. The antibodies in this set also have a great deal of structural similarity. Each 
antibody has the same amino acids (P and I )  in positions 2 and 3, 11 of the antibodies have 
amino acid P in position 4, and the other 8 have amino acid H in that position. 

The complete set of 90 high-affinity antibodies were analyzed in the same fashion, and is 
summarized in Appendix 111. 
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12.5 Findings, Conclusions and Summary 

12.5.1 The Concept of Mutation Sets 

An important finding of our investigation of the characteristics of the model antibody repertoire 
is that  somatic mutation, although random, provides a controlled mechanism for expanding the 
pre-immune repertoire into a limited segment of the potential repertoire a s  follows: 

(a) The genetic code and the structure of the antibody repertoire, in combination with thresh- 
old affinity-based selection by antigen, dynamically partitions all triggerable clones in the 
potential repertoire into a number of mutation sets. 

(b) A limited number of mutation sets are activated when the system is challenged by an antigen, 
i.e., those mutation sets containing one or more antibodies that  are pmsent and triggemble 
by the antigen. 

( c )  The complete set of antibody specifications in the potential repertoire that  are triggerable 
by the antigen and that  can be reached by somatic mutation is defined by and limited t o  
those antibodies belonging t o  the activated mutation sets. 

Although this conclusion was derived from the analysis of data  produced by experiments 
with an  artificial antibody repertoire, we believe i t  can be generalized t o  the real system as 
well. The concept of mutation sets can be logically derived for the real system from a few 
basic assumptions, independent of our simulation model. The size of mutation sets in the real 
system may very well be much larger (or even smaller) than in our model system, but we expect 
that  even very large size differences would not change the nature of the results obtained. Their 
significance, however, may be altered. 

12.5.2 Implications for Autoimmune Disease 

We can summarize the findings of our model by examining i ts  implications for autoimmune 
disease. The first point to  note is that  from the practical point of view, a mutation set structure 
is valuable for maintaining tolerance. Suppose that  the commonly made assumption that  self- 
tolerance arises through clonal deletion is basically correct. If the mutation sets were identical 
to  the potential repertoire, the delected clones would inevitably reappear in response t o  a wide 
variety of antigen challenges. If the mutation sets are like isolated pools with respect to  a wide 
variety of antigens (as in the model repertoire), the likelihood of reappearance is greatly reduced. 
The likelihood of reappearance is also less if the mutation sets are smaller. But in this case the 
organism's ability to  mount a defense against a wide variety of antigens is reduced. Thus, two 
pressures act on mutation sets. Large size is an advantage relative to  external antigens, whereas 
small size is an advantage from the point of view of self-tolerance. 

The second point is that  the available mutation sets will in practice vary from individual 
t o  individual. The exact structure depends in part on the antigenic challenge and other milieu 
factors that  affect affinity, and that  therefore determine which sequences can be reached in a 
single step fashion. Factors intrinsic to  the immunoglobulin molecule also play a role. In our 
model we have only mutated variable regions. The mutation set that  can arise through a series 
of single step mutations will be influenced by the sequence of amino acids in the constant region 
as well. This may vary from individual t o  individual. It  is reasonable to  expect the mutation 
set structures t o  be broadly similar over all individuals in a given species, but t o  show slight 
variations depending of differences in the constant regions. This is important, since i t  explains 
why certain patterns of autoimmunity are commonplace, but not universal. If the mutation sets 
were a universal feature of a species i t  is clear that  all individuals would be equally susceptible 
t o  the same antigens, which is clearly not the case. 

The third point is that  if the mutation sets are too small they would be ineffective for 
surveillance of malignant cells, whereas (as pointed out above) they would be dangerous from the 
point of view of autoimmunity if they are too large. This is another pressure which undoubtedly 
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influences the size of the mutation sets. We hasten to  add that  we cannot claim that  the size 
of mutation sets is fine tuned by phylogenetic evolution t o  optimize the balance among all of 
these factors. Evolutionary selection undoubtedly acts here, since organisms must have working 
immune systems. But whether the evolved immune system is near or far from achieving an 
optimum balance is an open question a t  this time. 

The above conclusions make i t  possible t o  make some projections about what would happen 
if we increased the number of amino acids in the representation of an antibody. If the addition 
of amino acids increased the gradualism of affinity changes resulting from single mutations in 
the variable region, the mutation sets would become larger. This would increase the fraction of 
productive mutations and would therefore increase the overall rate of expansion of the prolif- 
erating pool. It would also increase the ability of the organism t o  deal with a large repertoire 
of antigens. Since most of the variant antibodies produced would be very similar, i t  would not 
adversely affect tolerance and the possibility of autoimmune problems as long as i t  does not 
open up new pathways t o  undesireable antibodies. The frequency of such pathway openings 
would depend on the detailed structure of the antibodies, and would therefore be difficult to  
project in a specific way without actually enlarging the model. 
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12.7 Appendix 

I. Model Genetic Code (16 amino acids) 

Standard Model 
Codes Codes 

(Hydrophobic) 
A ala A 
v val v 
L leu L 
I ile I 
P Pro P 
M met M 
F phe M 
W trp M 
(Hydrophilic) 
G g l ~  G 
S ser S 
T thr T 
N asn N 
C CYS C 
Y try C 

Q gin c 
(Negatively Charged) 

D asp D 
E glu E 
(Positively Charged) 

K 1~ s K 
R arg R 
H his H 

Terminal 

Nucleotide No. of 
Triplets Triplets 

GC* 
GU* 
CU*, UU {A, G) 
AU {U, C, A) 
CC* 
AUG 
uu {U, C I  
UGG 

GG* 4 
UC*, AG {U, C) 6 
AC* 4 
AA {U, C) 2 
UG {U, C I  2 
UA {U, C) 2 
CA {A, G I  2 

AA {A, G I  2 
CG*, AG {A, G) 6 
CA {U, C I  2 
UA {A, G), UGA 3 

Tot a1 64 

11. Amino Acid Shapes 

(Repertoire A) 
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Set 
No. 

19 
20 

Tot a1 

111. List of All Triggerable Clones in Repertoire A 

(by Mutation Set) 

No. of 
Clones 
in set List of Clones 

[RLPLI-66, [RIPLI-66, [RDPLI-69, [RHPLI-66 
[ADPLI-65, 
[IPPII-71, [SPIII-70, [KPIII-71 
[IIIPI-67, [SIIPI-68, [KIIPI-67, [SIIHI-65 
[IPIPI-82, [PPIPI-74, [GPIPJ-72, [SPIPI-81, 
[TPIPI-72, [NPIPI-72, [DPIPI-73, [EPIPI-71, 
[KPIPI-82, [RPIPI-72, [HPIPI-72, [VPIH]-65, 
[SPIHI-XX, [TPIHI-72, [CPIHI-70, [DPIHI-79, 
[EPIHI-70, [KPIHI-70, [HPIHI-71 
[VMIPI-72, [AMIHI-69, [VMIHI-80, [LMIHI-70, 
[IMIHI-70, [MMIHI-70, [VKIHI-72 
[ 1-65? [ 1-65, [ 1-74, [ 1-66, 
[ 1-73, [ 1-74, [ 1-72 
[DEIPI-65, [DEIMI-71 
[IPDPI-67, [SPDPI-66, [KPDPI-67, [IPEPI-74, 
[PPEPI-73, [SPEPI-73, [KPEPI-74, [SPDHI-65, 
[SPEHI-72 
[DPEPI-62, [DPEHI-71 
[IEEPI-66, [SEEP]-65, [KEEP]-66 
[IIPDI-67 
[IPPDI-67 
[MDPDI-66 
[IEPDI-70 
[IAMDI-67 
[MPIEI-67, [GPIEI-65, [TPIEI-65, [NPIEI-66, 
[DPIEI-66, [KPIEI-68, [RPIEI-66, [HPIEI-67, 
[MLIEI-66, [NLIEI-65, [DLIEI-66, [KLIEI-67, 
[RLIEI-65, [HLIEI-66 
[AIIEI-66, [VIIEI-71, [IIIEI-66, [AMIEI-67, 
[VMIEI-72, [IMIEI-67, [VSIEI-67, [VKIEI-66 
[VM DHJ-65 
IVMLH:]-72 
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The imagined structure of immunogenetic systems is influenced by the convention of using 
the same symbol, for example A l ,  to  denote both a genetic factor and the serological reagent, 
called therefore anti-Al, used to identify the factor. This convention forces a conceptual one- 
t-one correspondence between genetic factors and the antibodies of reagents used t o  recognize 
them. In systems where cross-reactivity cannot be ruled out, this notational convention may 
bias descriptions of the system. The notation oversimplifies things immunologicdy, and, when 
the notation is used to  describe a whole system, the complexity of nature, not t o  be denied, 
may appear as a false, or artifactual, genetic complexity. We will later cite several examples 
of what we consider t o  be instances of such artifactual genetic complexity. These examples 
motivated a new look a t  the HLA class I system in terms of a general symbolism that  assumed 
neither knowledge of chromosomal loci nor a one-t-one correspondence between genetic factors 
and reagents. 

In [ll] a description of HLA class I was sought in terms of general symbols which would not 
smuggle in the biases mentioned above. The standard symbols A1 - A32, B7 - B62, C w l  - Cw8 
were used to  identify reagents only. Genetic factors were t o  be symbolized by a neutral set 
of numbers. The correspondence between reagents A1 - Cw8 and genetic factors was to be 
determined by the symbolic investigation, done by computer [9], and not prejudged t o  be one-to- 
one. Nor were there any assumptions made about chromosomal loci for these factors. The results 
showed that  there existed a natural alternate symbolic description of the HLA class I system. 
The correspondence between reagents (identified by the standard notation) and genetic factors 
(identified by the numbers 171-254) did not turn out to  be one-to-one. This correspondence is 
given in Table 1-taken from Table 8 of [ l l ] .  The genetic factors 171 - 254 were forced, by the 
symbolic description, into two distinct sets which we feel will ultimately be shown t o  correspond 
to  genetic loci. Genetic factors assigned to each of the two hypothetical loci are listed with the 
set of all reagents which recognize them. 
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Table 13.1. Reagents, in standard notation that  recognize the antigens in the alternate class I 
HLA genetic model. 

U l o c u ~  1" "locus 2" 
genetic recognizing genetic recognizing 
factors reagents factors reagents 

171 B44 174 A2 
206 B18 176 A32 
177 B7, Cw7 181 A3 1 
178 B51 173 A25 
193 B35, Cw4 213 A24 
175 B7 185 A3 
186 B15 172 A1 
205 Cw3 254 A24, Cw4 
219 B8 24 1 A2, Cw2 
223 B62, Cw3 
192 B35 
218 B17 
226 B39 
22 1 B49 

From the list of reagents reacting with the genetic factors listed a t  each locus, i t  is clear that  
the computer program has rediscovered the A and B loci. These results have been confirmed 
with a larger data  set [2]. The rediscovery of the A and B loci is, however, now done in a way 
that  makes the C locus unnecesary-at least for the data  available. The  locus assignments were 
made without regard for recombination (family) data. However, in [12] it was shown that  all 
recombination (family) data  affecting these factors is consistent with the  alternate two-locus 
model. 

This new model predicts that  when the HLA genome is unequivocally mapped by molecular 
means, there will be an ultimate cross-reactivity between genetic factors and the reagents cus- 
tomarily used t o  define alleles in standard notation. That  is, i t  will be clearly seen that  these two 
sets are not in a one-to-one correspondence. This will contradict the serologically determined 
notation in which HLA class I is described. 

In fact, molecular studies have recently corroborated one of the predictions in Table 1: 
We note that  according t o  the table, there is a single genetic factor, denoted by 193, which is 
recognized by the two reagents, anti-B35 and anti-Cw4. Recent work by Chertkoff and coworkers 
[I] corroborates his specific prediction. Using DNA from donors typed for HLA B35, Cw4 and 
hybridization with HLA class I supposedly locus specific probes, i t  was reported that  DNA 
digested with EcoRV enzyme gave a 4.6kb band in donors with HLA B35+, Cw4+ typing 
whereas HLA B35+, Cw4- and B35-, Cw4+ donors yielded a different RFLP pattern without 
the band. The band was therefore present for exactly those donors that  would have antigen 
193 in our model. Chertkoff and coworkers conclude that: uThe results suggest that  the 4.6 kb 
fragment contains the B35 genen. Since there is a lOOof the band with gene 193 but not with 
B35+, i t  appears much more apt  t o  conclude that  the fragment contains the gene 193. 

Table 2 reproduces Table 10 of [ l l ]  which compares the two models. 

In Table 2, cells identified by a phenotype number are assigned genetic factors A1-A32, B7- 
Bw63, Cw2-Cw7 according t o  positive reactions with antibody reagents labeled with a single 
such identifier, e.g. anti-Al, anti-B7, etc. Cells and reagents are also assigned numerical labels 
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Table 13.2. A comparison of the standard three-locus serologically defined genetic model for the 
Class I HLA system with a computer suggested two-locus model based on alternate serological 
interpretation. 

phenotype identity phenotype labelling: phenotype labelling: 
number standard 3-locus suggested 2-locus 

locus A locus B locus C locus 2 locus 1 

by the computer program. The labeling of reagents with both standard and computer-generated 
labels is given in Figure 3 (Table 9 from [ l l ] ) .  

Note that  in Table 3 each reagent is given a single label in standard notation but either one 
or two labels in the alternate notation. 

The cross-reactivity seen in Table 1 might be explained in terms of multiple epitopes on 
the proteins coded for by each gene. Thus each reagent might recognize a single epitope (and 
therefore be truly monospecific) and each genetic factor (gene) code for a protein with those 
epitopes indicated by Table 1. I t  is consistent with this model that  each class I protein has 
two or more regions that  act as epitopes. For certain of these proteins, antibodies have been 
found for only one of the  epitopes-for others, antibodies have been found for more than one. 
This creates confusion in interpreting the nucleotide sequence information on a given gene in 
relation t o  its functional or serological identification, and consequently may prevent us from 
understanding the  underlying biological mechanism. 

There is currently no absolute proof for either of the two models suggested in Table 2. 
Parham et  al. [7] report that  "The serologic definition of HLA-C alleles is poor, due t o  low 
expression levels on lymphocyte cell surfaces, and the  number of HLA-C alleles is still small, 
so that  molecular definition cannot yet compensate for the inadequate serology." At this time 
there appears t o  be some evidence on each side. Analysis of HLA Class I genes a t  the molecular 
level is complicated by the approximate and sometimes faulty nature of serologically defined 
antigenic and genetic systems. This is further confounded by the  high degree of polymorphism 
between the  coventionally defined HLA-A, B, and C genes and the high degree of nucleotide 
sequence homology. 
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Table 13.3. Labeling of reagents in the standard class I HLA model and in the alternate 
computer suggested model. 

Standard Alternate 
anti-A1 anti-172 

anti-1741241 
anti-185 
anti-2131254 
anti- 173 
anti-181 
anti-176 
anti-1751177 
anti-219 
anti-186 
anti-218 
anti-206 
anti-192/193 
anti-226 
anti-221 
anti-178 
anti-171 
anti-223 
anti-241 
anti-2051223 
anti-1931254 
anti- 177 

In general, molecular biologists have assumed serological definitions and have attempted to  
find a molecular basis for these. For example, Parham and coworkers report identification of 
locus specific sequences for the HLA A, B, and C loci. These locus specific sequences have 
been determined, however, from cloned genes which have been identified by their serological 
definition. The relative nature of this identification can be seen, in general, from the following 
example. 

Consider the set of all permutations of the letters A, B, and C: 
Grouping this set into loci as in Table 4 gives the indicated "locus specific" part of the 

sequence: 
Claims have been made for the existence of highly locus-specific HLA-A, B, and C sequences 

( [6 ]  and [7] with references). The elementary shuffling of locus assignments seen in Tables 4 
and 5 is meant t o  illustrate that  identifying specific sequences that  correlate with an assumed 
serological definition does not necessarily confirm the serological definition. The situation with 
respect to  the two HLA models is not as simple, however, since one model is not obtained 
from the other by merely shuffling locus assignments. From Table 1 we see that  cloning the 
gene supposedly responsible for Cw4 might result in actually cloning either of the genes 193 or 
254. Since gene 193 is also recognized by anti-B35 we would expect t o  see some sort of "cross- 
reactivityn. In fact studies have also revealed a significant cross-reactivity and hybridization 
between the HLA-C locus DNA and the HLA-B locus specific probes [3]. The question remains 
whether the cross-reactivity seen is due to  an inadequate symbolic representation of the genes 
defined by serological methods. 

The nucleotide distribution in the exons of cloned HLA Class I genes based on the conven- 
tional serological definitions from [7] is given in Table 6. 
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T a b l e  13.4. Number of nucleotides in each of the serologically defined loci. 
Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7 Exon 8 

loci 
HLA-A 73 270 276 276 117' 33 48 5 
HLA-B .73 270 276 276 117' 33 44 - 
HLA-C 73 2 70 276 276 120' 33 4 8 5 

In order t o  maximize homology there are supposed t o  be 9 gaps in HLA-A and B, and 6 gaps 
(in another place in the sequence) for HLA-C. In determining the number of nucleotides per 
exon, if we include gaps also, then the total number of base pairs in Exon 5 will be 126 a t  all 
loci. 

It  is clear that  gene counting arguments will give very different results when counting, on 
the one hand, (traditional) factors believed t o  correspond in a o n e - b o n e  fashion with reagents, 
and, on the other hand, the factors 171 through 254. [lo] shows that  a t  least some of the 
linkage disequilibrium found in HLA, may be accounted for by the redefinition of genetic factors 
according to  the new model. That  is, some of the linkage disequilibrium may be an artifact of 
inappropriate notation. Linkage disequilibrium describes the correlation of the genetic factors 
wit11 each other. Clearly the correlation of genetic factors with disease also depends on the 
definitions of the factors. Correct definitions are needed for correct correlations. 

Hirschfeld and Wohlgemuth [4] showed that  all linkage disequilibrium in the common hu- 
man Ag bloodgroups disappeared when an-alternate symbolization, which allowed for cross- 
reactivity, was used. In [8] it was shown that  the cis-trans effect seen in the Rh blood group 
system with standard notation, did not appear when the system was symbolized with a new 
notation which allowed for cross-reactivity. The new notation described a straightforward sys- 
tem with codominant alleles. Our results on HLA suggest that  the C locus may itself be only a 
symbolic artifact-an apparent genetic complexity produced by the immunological oversimplifi- 
cation involved with standard symbolism [2]. Hoover and Wohlgemuth [5] show, by an example, 
that  what might appear as serological (e.g. blocking) evidence favorable t o  a standard labeling 
scheme, can, infact, be the result of the tacit assumption of a one-t-one correspondence between 
alleles and antigens implicit in the notation. 

There is no reason t o  expect that  when molecular studies reveal factors which are not in 
one-t-one correspondence with traditional reagents, i t  will then be possible t o  find new reagents 
that  are in such a correspondence, and which will therefore salvage the traditional symbolic 
methodology. (Indeed, monoclonal antibodies do exhibit cross-reactivity.) But this is not nec- 
essary. Genetic factors can be unequivocally defined by a certain kind of panel of cross-reacting 
sera. In the past there has been no attempt to  develop such a panel, since i t  was believed t o  be 
possible to  always identify a genetic factor with "its correspondingn antibody. 

The problem of deciding between alternate models is made more difficult by the following 
human tendency observed by Tolstoi: "I know that  most men including those a t  ease with 
problems of the greatest complexity, can seldom accept even the simplest and most obvious 
truth if i t  be such as would oblige them t o  admit the falsity of conclusions which they have 
delighted in explaining t o  colleagues, which they have proudly taught t o  others, and which they 
have woven, thread by thread, into the fabric of their lives. 
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Scientific and technological advances in the last decade have brought dramatic changes in the 
way medical decisions are made. The speed of automated information processing makes possible 
a "war-on-disease" viewpoint which uses C3 (communication-control-command) methodologies 
for strategic planning and the tactical deployment wide range of available resources. It can be 
employed a t  all levels; a t  the bedside [:I.] when dealing with the pathophysiological conditions of 
a single critically-ill patient, when testing medical scientific hypotheses [2], or when deciding on 
the efficacy of medical treatments on the basis of epidemiological studies. 

Such a setting for medical decision making is very complex indeed, Figure 1. It requires 
acquisition and efficient processing of data  from many sources and depends heavily on the use 
of models. The dominant modelling concepts are based traditionally a )  on "homeostasis" and, 
b) on "mathematical dynamics" - such as those encountered in pharmacology, quantitative 
pathophysiology, and more recently in "immunology" [3]. The qualitative reasoning of home- 
ostasis accommodates clinical intuition and empirical associations, which is of great practical 
importance among humans, but very difficult t o  systematize and/or automate. The analytical 
reasoning of mathematical dynamics on the other hand brings to  bear well defined conceptual 
representations (such as differential equations, stochastic process and numerical techniques) but 
it also creates substantial practical difficulties when applied t o  concrete cases involving humans. 
Numerical techniques and the use of likelihood functions offer the potential of overcoming some 
of these difficulties - they are very well presented in a recent concise article [4]. The last two 
decades however brought about also numerous algorithmic representations of 'phenomenologi- 
cal" homeostatic models for computer implementations purposes. Algorithmic representations 
in general tend to  be conceptually very simple, as outlined in Figures 2 and 3. However in order 
for computer implementations of artificial intelligence in medicine [ S ] ,  t o  be problem-specific use- 
ful, require massive software development efforts involving strong collaborations between groups 
of specialists (in this case between clinicians and computer specialists). Two such efforts, the 
MYCIN and CADUCEUS expert systems for modeling the diagnosis and management of certain 
illnesses, produced very impressive results. Nevertyheless they have had limited success because 
these implementations require extensive computer and "knowledge engineering" skills. A major 



difficulty is that  there is a dichotomy in mathematical methodology when dealing with these 
two representation classes (dynamic systems-analytical, artificial intelligence-algorithmic). The 
dichotomy disappears as soon as computer methodology takes over t o  implement these models 
into machine executable programs. 

Here we introduce a novel conceptual scheme based on UDisease-Therapeutic Dynamics" 
which involves computer-aided reasoning from the outset. There are five essential medical ele- 
ments in this conceptualization: 

Pathophysiological Dynamics 
Immunological and Allergic Dynamics 
Pharmacokinetics 
Observations and Measurements 
Iatrogenics 

They are conceptualized by means of analytical (differential equations, random processes, 
etc.) and algorithmic techniques (datastructures, etc.) as well as phenomenological associations 
involving skill and specialized knowledge based on training and experience. These techniques 
and the techniques afforded by automated information processing create connectivity constraints 
between the elements, resulting into the system shown in Figure 4. Intense research and de- 
velopment efforts in intelligent instruments, biosensors, immunogenetics, humoral and cellular 
events make the conceptualization of some of the components subjects t o  rapid change. Provi- 
sions have been made in this scheme to  accommodate them. The key is the introduction of a 
conceptual framework which unifies the representation of the system elements as well as the con- 
nectivity constraints, Figure 5. That is, the framework addresses from the outset the unification 
of analytical and algorithmic methodologies for efficient computer-based implementation. Thus 
unification is achieved through the notions [6] of two unifying vectors partitioned respectfully 
into: 

state, control and feature variables, 
measurements, database and cla.ssification parameters. 

These notions permit characterizations for modeling 1) dynamics in the form of differential 
or difference equations, 2) statics by means of algebraic equations and 3) production rules 
by means of algorithms. Transitions from one characterization modality t o  another as well 
as finding solutions or terminating algorithms involve still another characterization modality: 
cognitive "associations". 

Cognitive associations afford computer implementations in the form of symbolic processing 
that  go beyond numerical techniques. There are several Ucognitive processing" schemes. Promi- 
nent among them are the Artificial Neural Network models, also implementable by means of 
commercial digital computer programs [7]. Mathematically cognitive associations, are ordered- 
pairs and more generally, n-tupples, Figure 6. They are central t o  database design as well as 
t o  phenomenological "classification" and "pattern recognition". Often used in algorithm-based 
artificial intelligence schemes, ( to  create knowledge-bases in expert systems for example) and in 
machine-learning t o  automate useful acquired-experience not amiable to  scientific theory. The 
usual computer implementation mechanism for these schemes are searches and decision trees, 
which in the context of medical setting have not proved very successful for the reasons mentioned 
earlier. However the notion of discriminant, Figure 6, which is in the heart of the approach dis- 
cussed here, is subject to  rigorous mathematical analysis and a t  the same time it accommodates 
very well phenomoenological associations. It forms the cornerstone of our methodology by pro- 
viding needed links among the different models embedded in the system (dynamical systems, 
clustering, classification and pattern recognition techniques and learning algorithms) and their 
input/output data. Moreover discriminants provide a mathematical approach t o  feature gener- 
alization. The mathematical aspects of discriminants are beyond the scope of this presentation. 
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They fall well within the mathematics of nonlinear operator theory and appear t o  offer exciting 
applications including non-supervised machine learning. 

The unified model sketched above, makes possible a computer implementation in the form of a 
microprocessor-based LAN (Local Area Network) that  incorporates the communication-control- 
command setting diagrammatically depicted in Figure 1. Its hallmarks are 1) Adaptive medical 
workstations [9] that  provide very friendly computer environments t o  the healthcare practitioners 
and researchers (by means of interactive graphics and with voice-interactions when they become 
commercially available) and 2) highly reliable network communication paths needed in critical 
medicine [lI:I]. The LAN contains a large number of microcomputers operating under a software 
system architecture that  access all databases through shells integrating information processing 
from all data acquisitions sources, dynamic system models, cognitive models, production rule 
models with database management. The friendly computer interaction with the models and the 
data  is imperative for medical intuition and empirical knowledge are very important in medicine. 
The semistate vector and the parameter vector employed in the Unified Model create a global 
computer environment that  accommodates symbolic asnd numerical equations and algorithms. 
Coefficients appearing in equations and algorithms are a mixture of symbols and numbers, 
which are sorted out through the use of the "featuren variables, "classificationn parameters and 
cognitive "associations" (model-based or phenomenological). These coefficients play key roles 
in the interactive environment and in the automatic selection of an applicable conceptualization 
modality. The result is a hierarchical medical decision making scheme that  is appropriate t o  
the modeling sophistication needed to  support it. For example non-life threatening medical 
problems which do not require dynamic system cosiderations and which can be diagnosed and 
treated on the basis of "physical findings" and "proved drug therapiesn are dealt with only simple 
database management operations. However critical-care cases requiring heart-beat t o  heart- 
beat monitoring, and for which vital systems (circulatory, respiratory, etc.) and immunological 
dynamics as well as pharmacokinetics are very important, involve several distinct mathematical 
models. These models interact continuously with many monitoring and iatrogenic algorithms, 
feature extraction and pattern recognition schemes thereby automatically recognizing and setting 
parameters t o  fit the data, t o  activate alarms and therapeutics and t o  carry out interactive 
communication with the attending clinical personnel. 

The databases required for and internally generated by the automated hierarchical medical 
decision scheme discussed in this paper are massive and throughout of the order of two t o  four 
hundred of MIPS (million instructions per second) and of MFLOPS (millions of floating point 
calculations per second) is needed. Such throughput is only economically feasible by means 
of a Distributed Processing environment that uses the large number of the microcomputers 
and workstations contained in the LAN t o  operate with a high degree of parallelism when 
needed, achieving remarkable performance, Figure 7. Until now the computer power needed to 
implement the unified conceptual model presented here would have required the dedicated use 
of supercomputers making development and operational cost prohibitive. 
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Chapter 15 

System Analysis of Mechanisms of 
Organism's Defensive Functions 
Regulation (MODFR) 

V.S. Mikhalevich, V.M. Janenko, and K.L. Atoev 
V.M. Glushkov Institute of Cybernetics, 
Academy of Sciences of the Ukrainian SSR, 
252207 Kiev, U.S.S. R.  

15.1 Introduction 

This paper treats the problem of mathematical simulation of the immune response control at  
various levels of biosystem organization and represents the further development of the ideas 
stated in [I-31. Hierarchic MODFR models are constructed including the parameters of subcel- 
lular, cellular and tissue levels. A number of questions are discussed which until recently have 
been outside the scope of "mathematical immunology". In particular, the mechanisms consid- 
ered involved in immune response regulation by metabolic factors ( Ca++ , cyclic nucleotides 
(CN), energetic substrates (ES), biologically active substances (BAS) ), adaptive redistribution 
and restorative cells accumulation, restriction of energy consumption for the immune system's 
cells protection from energetic exhaustion and death. Proceeding from the system analysis of 
MODFR, a formalization of the immune status of an organism (ISO) is carried out, and a group 
of parameters which allow for evaluating the balance of separate links of the immune system and 
the efficient influence on the immune response is defined. The results of the system investiga- 
tion make it possible t o  set forth a hypothesis on the existence of several alternative mechanisms 
participating in I S 0  correction: 

(1) synchronization of effector and suppressor lymphocytes populations due to  their simul- 
taneous inhibition, i.e., transfer of the immune system into a state where there exists a 
synergism between effectors and suppressors; 

(2) transfer of the immune system into a state with low level of energy expenditure which 
reduces adaptation possibilities of a system but protects from high amplitudes of an ES 
level drop and high amplitudes of an immune response intensity drop; 

(3) regulation of differentiation and proliferation phases realized by BAS and CN. 

The action of some therapeutic preparations used in clinical practice is analyzed in the 
context of the investigated mechanisms. 
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15.2 MODFR Model 

The main MODFR mechanisms are presented in Figure 1. The following designations are given 
here: M(cl) ,  LTB(c2) are cells of erythro-, mielo- and lymphopiesis; N(c3) is a nervous system; 
E(c4) is an endocrine system; Ag(c5) is an  antigen; S (ml )  is a polypotent hemopoietic trun- 
cal cell (HTC) ;  PM(m3), PL(m4) are cells-predecessors of erythro-, mielo- and lymphopoiesis; 
E,(m5) are erythropoietinsensitive cells; Eb(m6) is erythroblast; Thrb(m7) is thrombopoietin- 
sensitive cells; Er(cs) is erythrocyte; Thrp(m8) is thromobopoietin-sensitive cells; Thr(c7) 
is thrombocyte; Mb(mg) is mieloblast ; pMc(mlo) is promielocyte; Bss(cs), N,s(cg), E,s(clo) 
are relating t o  stable neutrophile and segment nuclear basophils, neutrophils and eosinophils; 
Mb(cll) is monoblast; pM(m12) is promonocyte; Mn(m13) is monocyte; Mp(cll)  is macrophage; 
pB(m14), PT(m15) are predecessors of B and T lymphocytes-blasts; Bb(m16), Tb(mr.r) are B 
and T lymphocyte-blasts; BL(m18), B2(m19) are B-lympnocytes stimulated and non-stimulated 
by T-helpers; P(mzo) are antibody generating cells; IgE, G , . . . ; (c12) are immunoglobulins 
E, G, . . . ; TB(c13)are tissue basophils; BAS(c14) are biologically active substances; G(c15) 
are hystaminase; OM(c16) are tissue cells of an organ-target; pLT(mzl), LT(c17) are cortisone- 
sensitive and cortisone-nonsensitive (or mature) thymocytes; pTk(mil), pT,(m;l), pTc(m$i), 
pT,(m$Y) are predecessors of T-lymphocytes of Tk(c17) killers, T,(c>) helpers, T~(c$) suppres- 
sors, T,(c;) hypersensitivity effectors of retarded type; Lk(c22) are lymphokines; u(ci), v(c[l) 
are poietines and kinetines; st(cjz") are stressors; P,,(c;), PBB(cY), PTT(cY) are Ag leukosis 
cells; E(cl8) are cells of stroma; A l d  - LTB - Ig(c19) are antiidiotypic AId  cells of LTB and 
I g  immune network; MIN(mz2), C(c20) are internal and external factors of an  organism; B M  
is bone marrow; P L O ,  S L O  are primary and secondary lymphoid organs; I L  - 1, I L  - 2 are 
interleukines 1 and 2; FSE(ci3) is a factor stimulating eosinophils; C S F ( c i l )  is a colony stim- 
ulating factor; TRF(c?) is a factor stimulating differentiation of B1-lymphocytes; BCGF(cY:) 
is a factor stimulating B1-lymphocytes proliferation. 

Each of the aforesaid i-th sprouts contains a contour for regulating the processes of cells 
reproduction from the respective subpopulations where cells proliferation mainly occurs. Tran- 
sition of cells from the higher level into the lower one is regulated by mechanisms of their 
differentiation. The relative share of cells participating in proliferation amounts to Y;,, and in 
differentiation - to  1 - Yij; where i is the number of a sprout. The specific rate of cells pro- 
liferation is a;;, and the rate of differentiation and interaction is a;j. The principal moments 
occurring during H R S  cells interaction are as follows: when Ag enters an organism, mechanisms 
of its recognition, detection, formation and failure of defensive reactions are activated. 

Defensive reactions formation can take place in several directions: a)  immune response with 
subsequent Ag destruction and/or its elimination from an organism; b) non-response (tolerance); 
c) allergic reaction manifested by the elements of an injury. 

Cessation of immune reaction is realized by: a)  suppression of idiotypic I D L T B  and I g  
reactions with the help of AIdLTB and AIdIg;  b) suppressive action of factors of a cell's micro 
environment. 

From the analysis of connections represented in Figure 1, i t  follows that  the efficiency of func- 
tioning of defensive reactions of an organism substantially depends on the state of proliferation 
(m)  and differentiation regulation system (c). 

For quantitative a MODFR description we accept the statements formulated in [2] and re- 
sulting in an integrofunctional dynamic model endowed with a number of important regularities. 

Interaction between mi and c; is determined on the basis of the models [ I ,  21. 
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Here a;j , pij are the indices of functioning efficiency along the channels mi - mi , m; - c;, 
respectively; y;j is a relative share of a resource/or the cells of the type mi : ai(t),  bj(t) are 
temporal limits of obsolete cells elimination; Pi is the general quantity of the cells functioning in 
i-th organ; Gi are non-functioning cells in i-th organ; t* is the starting point of functioning; to is 
the beginning of simulation. As shown in [ I ,  21, the system (1) has the unique by m(c) solution 
for the assigned a i j ,  Pij, yij, G(P) ,  C ( M )  and rather general assumptions, and i t  can be found 
with the aid of the efficient numerical methods. To find Y, we use the optimization problem 

I1 = C c(t)dt - max 
Y 

to 

The study of this problem showed that  in the case of sufficiently small [to, T][2], the desired 
maximum is attained when y is minimally possible; and with sufficiently great [to, T]  - when 
y differs substantially from the  minimally possible value a t  the initial, greater part of interval 
[ t o ,  TI, and is minimally possible a t  the end of this interval. Hence, the biological consequence is 
such that  over a short time interval the maximal value of the  external function is attained with 
the maximal utilizatioil of the available resources, and over a large period of remission - through 
restorative accumulation of resources spent on the interval demands. This phenomenon is termed 
as the effect of adaptive redistribution and restorative cells accumulation differentiating in the 
organ [2] and is considered using an example of thymus gland. 

Depending on the intensity of hydrocortisone action, proliferation and differentiation effi- 
ciency of processes occurring in thymus gland, variation of population composition of thymocytes 
in the cortex and medulla of thymus gland lobules take place a t  least in two stages of various 
duration: a )  a stage of adaptive redistribution of thymocytes and products of their destruction, 
and here, intensive destruction, differentiation and thymocytes migration, mainly into a spleen, 
occurs; b) a stage of restorative thymocytes accumulation characterized by an advance restora- 
tive thymocytes reproduction in a cortex of thymus gland lobules due t o  the increased share 
of cells entering proliferation and shortening of their mitotic cycle [t - APL,(t)]; alongside with 
it ,  the rate of cells differentiation and migration in a spleen and lymphatic nodes (CLT) slows 
down. The immunomodulating effect of levamisole consists, in particular, in its influence on the 
process of thymus gland lobule's thymocytes proliferation which ensures the more efficient pLT 
restoration, and hydrocortisone enhances the efficiency of the immune system functioning due 
t o  dose-independent acceleration of T-lymphocytes differentiation. 

A more complex picture is observed when investigating the structural properties of solutions 
of minimax problem arising in the process of studying the interaction of two and more systems 
of the type (I), which is formulated as: 

T T 
cjo(t)dt - C 7j J c,(t)dt = min max 

j=l to { ~ i j  ,aj,bj,u,,uj 1 { ~ i j ~  +j0~ujo tvjo 1 
(3) 

j# jo 

+ with limitations on the functions connected by the model of the type (I), and m: 5 m, 5 mi , 
cJ < cj  5 c:, a; 5 a,j 5 a;, pi; 5 Pij 5 PB, t E [to, TI, y where in the framework of 
hemopoiesis regulation system H R S ,  y;jo, yij is the relative share of cjo antigen reproduction, 
respectively, of different j-th hemopoietic sprouts of the H R S ( j  # jo), n;, c$, m:, c:, a % ,  
a $ ,  /3&, P$ are the assigned limits of variation of the model functions; [t - ai(t)] is an  average 
age of reproduction of the i-th sprout of the H R S .  
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From the properties of the type (I) models, there follows still one more substantially new 
understanding of possibilities of APVN effect utilization. For example, with infectious process 
of bacterial nature, it is possible t o  attain the increase in IS functioning activity be way of 
an interaction of an adequate dose immunocorrectors - levamisole, into a productive phase of 
the immune response. In the given case it allows, perhaps t o  liquidate a contradiction of the 
type "to accumulate-to issue", as soon as the secondary immune defficiency state (IDS) arising 
in an organism after stresses a t  the expense of glucocorticoids and Ag of bacterial nature, is 
sufficiently corrected by the respective levamisole doses and its derivatives. 

15.3 Immune status and the ways of its correction 

Clinic observations show that despite the single-type course of disease, the immunological in- 
dices have significant variations. considerable parameters variation in the immune system with 
patients as well as healthy persons, and also availability of different alternative regulation mech- 
anisms bring about the thought that IS0 estimation should be realized not by a level of separate 
parameters but by the degree of their balancing. 

IS0 formalization with the aid of a mathematical model was carried out in [3]. The main 
regulation mechanisms considered in this model include mainly the parameters which can be 
attributed to  tissue level of regulation; X - antigen, Z - pool of cells-predecessors, Yl - pool of 
cells effectors, Y2-IL-2, Y3 - pool of cells-suppressors, H - herapin level, G - histamine level, Cl, 
C2, C3, are Ca2+ levels in obese cells, effectors and contractile system, respectively; Fl and Fz - 
are the respective shares of activated histamine reservoirs and connected tropomyosin by which 
spasm intensity is evaluated; P - proliferation level, 0 - a degree of edema, C - cortisole, V l  - 
vilosen, T - thymalin. The principal regulation mechanisms are shown in Figure 2b. 

Mathematical problem statement is formulated as follows: to  determine the domains of 
the model {k} parameters, corresponding to  various MODFRs, d j ,  (where j is an index of 
investigated classes of diseases). 

The performed investigation showed that a model appears to  be connected with one caspoidal 
catastrophes. And ther, one of the stationary states is associated with a norm, and the rest are 
characterizing MODFRs corresponding to various types of pathology. 

The results of system investigation were used for nowadays. Within the framework of hy- 
potheses [3], the facts can be explained connected with possible immunocorrecting action of 
cortisone, vilosen and tymalin, showing positive results with a number of I D S  cases. Along 
with inhibition of activity of suppressor and effector cells, they display anti-proliferation and 
anti-epidemic action. Proceeding from the results of simulation, it is possible to  suppose that 
one of the possible mechanisms for IS0 correlation by cortisone is the synchronization of effector 
and suppressor populations due to  their simultaneous inhibition. On the contrary, vilosen and 
tymalin enhance proliferative potential, so their immunocorrecting effect can be combined with 
some other mechanism. This mechanism can be related to  suppression of activity of obese cells 
which eject G and H through Ag-antibody reaction. A decrease in G level prevents edema 
formation and also an increase in blood supply of inflammatory focus. A decrease in the heparin 
level must weaken angiogenesis. 

The paper [3] also suggests the formula for IS0 estimation 

where S is ISO, PEf is a summarized area restricted by the curve of Ef concentration, by an 
abscissa axis, by the limits of commencement to of Ag penetration and moment T,, of maximal 
concentration E f occurrence; Ag is concrete concentration of Ag admitted to an organism; I k  is 
immunocorrector concentration, admitted into a body; k = I, K O  is a serial number of a patient; 
E f - the summary effector function of MODFR; co - const. 
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Define A S  values scattering for a group of patients with the similar I S 0  conditions in the 
following way: 

Here u2  is A S  value disersion. 
On the one hand the functional u 2 [ A S ( ~ ,  t)] allows for compact representation of I S 0  states 

of organisms falling into one of classes of states, since I S 0  parameters standardization is realized: 
for the more mobile MODFR the values of time of attaining Ef max and P E ~  maximum are 
less than the respective intervals and areas characterizing the more inert MODFR. In a number 
cases these variations may appear t o  be proportional. On the other hand, for the given group of 
patients fk k = ( I ,  lie) or for the given patient, in a case of various doses of Ag action, the fol- 
lowing scattering of u2[AS] values is observed; the higher u2[AS], the greater the compensation 
limit, and vice versa. 

15.4 Immunocorrecting action of therapeutic substances on 
cellar and sub cellar levels 

In the previous section we considered the  mechanisms being realized a t  the  tissue level. Now 
consider rapid processes that  preceed the proliferation onset after a mitogen was injected, i.e., 
the processes taking place during the first minutes and hours following a mitogen injection. The 
flow-chart of these processes is shown in Figure 2a. And here: C is C a  level, F is the  level of 
protein phosphorylation, L is the level of phosphatidylcholine, Ak is the  level of archidonic acid, 
PT is the level of prostaglandine, cA - C A M P ,  P is a level of proliferation, cG - cGMP.  

The following assumptions are accepted for a model construction: 1) a mitogen activity re- 
sults in capping of surface lg that  brings along the intensified C a  flow into a cell; 2) Ca++ intake 
results in phospholipase activation and protein phosphorylation; 3) phosphorylation results in 
activation of synthesis of phosphadylcholine and archidonic acid, which in turn serves as a sub- 
strate for prostaglandines; phosphatidylcholine activated c G M P  synthesis and inhibits C A M P  
synthesis; 4) CAMP,  c G M P  and the products of their decomposition from a closed pool; 5) 
phosphodiesterase cA and cC are activated by calcium, besides, c C  activates phosphodiesterase 
cA; 6) cG retards C a  intake, when cA activates it .  Within the framework of the above-mentioned 
assumptions, the mathematical model has the form: 

dcG -- d P  k1,(cG + I )  
dt 

- k17L(1 - CA - cG) - klscG( l+  C) ,  = 
k20 t CA 

- k21P, 

where a , k; , 0 are the model's parameters, and v = (1 - e-k22')e-k23t, (i = m) . 
As i t  is indicated by the results of the model's investigations, cA and cG are changing in an 

antiphase. First of all, cG growth and cA drop takes place, which leads t o  proliferation activation, 
and then as C a  accumulation proceeds, prostaglandines are accumulated and they activate cA 
synthesis, that  leads finally to  reduction of the proliferative potential. Immunocorrecting action 
of thymalin and vilosen is accompanied by enhancement of cA and cG levels and the increased 
proliferation potential [7]. The model (6) reproduces a number of experimental dependencies 
and can be used as a tool of investigation of intracellular targets t o  which the  action of the 
efficient immunocorrectors is directed. 
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15.5 SystemMODFRAnalysis During the Aging Process 

Along with CN system, the important role in intracellular mechanisms regulation is also at- 
tached to  the intensity of synthesis and energy consumption processes in the cells of immune 
system, processes of anaerobicmetabolism activation [4], as well as to  mechanisms preventing 
the cells from energetic exhaustion [5]. Interrelation between C a  and the processes of energy 
synthesis and consumption in a cell is not restricted to  a monodirectional conjugation scheme 
understood as subsequent energy transformation from one form to  another. There are feedback 
connections through which the energetics can regulate Ca flows into the cell and the  intensity 
of A T P  hydrolysis. The essence of this regulation resides in the following. The  cell is capable 
of limiting the  energy consumption before energodeficiency onset, i.e., during still rather a high 
level of ATPase activity. It was shown that  under stress conditions, accompanied by variation 
of a cell's energetic status, inhibition of processes connected with the high level of energy con- 
sumption takes place. It is possible t o  realize the activity control of the mechanism preventing 
energetic exhaustion of a cell by regulation of differentiation and proliferation phases, and vice 
versa, affecting the metabolism, i t  is possible t o  regulate the differentiation and proliferation 
phases. On the basis of the  study carried out in [5], an assumption was set forth that  the 
strategy of biochemical adaptation in ontogenesis is directed towards creation of such metabolic 
conditions which would preserve the cell from high amplitudes of ES and external function levels 
drop. At the same time, realization of the given protective mechanism reduces the  range of cell's 
possibilities and makes i t  vulnerable in the cases when mobilization of adaptational mechanisms 
is needed. Proceeding from these concepts, MODFR analysis was carried out during the pro- 
cesses of aging. Two main generalized regulation systems were distinguished. The  first one is the 
system of an  organism's functional reactions, and the second one is the system of an organism's 
defensive immunologic functions regulation (SODIFR) ensuring control of genetic constancy [6]. 
The simulating influence of energetic link on both SOFIR and SODIFR was investigated by the 
use of the mathematical model. It is shown that  the drop of efficiency of energy consumption 
during aging results in transition to  the more favourable, for a n  organism under these condi- 
tions, low level of metabolism. In this connection, the course of energy-dependent processes, for 
example, proliferation of cells-predecessors, is retarded, the effector function is weakened, etc. 
Moreover, accumulation of various failures leads to  autoimmune reactions, t o  the subsequent 
idiotype-antiidiotypic interactions of the immune system which a t  the end reduce the  immune 
network efficiency. 

During the solution of problems of minimax SOFIR and SODIFR interaction with Ag it 
was shown that  breaking of the uniqueness of the solution is related t o  occurrence of conflicting 
situation in an organism, i.e., the preservation of functional integrity due to  weakening of genetic 
stability. 

15.6 Conclusion 

The  realized system analysis of MODFR made i t  possible t o  consider the immune response 
regulation a t  different levels of structural organization of biosystems as well as a t  various levels 
of temporal hierarchy inherent t o  the immune system. High-speed processes were studied which 
proceeded a t  the  first minutes and hours after the immune response had started and which 
determine the level of proliferation t o  which the cell-predecessors, effectors and suppressors 
amount later on and which substantially influence the balance between separate links of immune 
system a t  the later phases of the immune response. 

The processes were treated which can be termed as medium with respect t o  continuation, 
since they were developing during dozens of days - several years, embracing the  interaction of 
various lymphocytes populations and various links of the immune system, i.e., these processes 
were proceeding at  tissue and system levels. 
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Finally, slow processes were considered, i.e., the dynamics of the immune response and the 
state of the immune system in ontogenesis were investigated. 

Allowances made for such factors as CN,  ES,  BAS, Ca++ metabolism permitted t o  examine 
the laws of MODFR functioning and its interrelation with other systems and to  reveal the new 
axiomatics based on the strategy of an organism's biochemical adaptation in ontogenesis. 
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Figure 1: Flow-chart of the MODFR model. 
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Figure 2: Immunocorrecting influence of therapeutic drugs at the cellular and subcellular 
levels (a) and at the level of the entire immune system (b). 





Chapter 16 

Uniqueness of Limit Cycles in a 
Predator-Prey Model Simulating an 
Immune Response 
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16.1 Introduction 

Since the paper of May (1972 [111]), determining conditions which guarantee uniqueness of limit 
cycles in predator-prey models has become an outstanding problem in mathematical ecology. 
Recently, Kuang and Freedman (1988 [9]), Huang (1987 [ 5 ] ) ,  Huang and Merrill (1989 [7]) 
provided some criteria for uniqueness of limit cycles in predator-prey models. The idea of their 
criteria is based on a uniqueness theorem of limit cycles for a general Lienard equation by Zhang 
[16, 171. Huang also proposed a general Kolmogorov-type model which consists of the above two 
and many other models (Cheng, 1981 [2], for example) as special cases. Huang also discussed 
the existence and uniqueness of limit cycles and the proof of the uniqueness theorem does not 
depend on Zhang's theorem (see Huang, 1989 [8]). 

The general model is 

where x is the prey density, y is the predator density, #(x), $(x) are predator response functions, 
n(y), ~ ( y ) ,  ((y) are predator density functions is the "relative" or "per capitan growth 

function which governs the growth of the prey in the absence of predators, is the death 

rate of the prey due t o  the predator, Q ( ~ ' " ~ ~ ( ~ ~  is the death rate of the predator in the  absence 
of prey. 

The fundamental assumptions on the model (1.1) are 

(HI): 4 ,  $, r ,  e, t ,  c1 [o, 4, F E C1 (O,m), F(O) E (0, ~ 1 ;  NO) = ~ ( 0 )  = e(0) = ((0) = 0, 
4' > 0 for x 2 0, R > 0, el > 0, t1 5 0 for y 2 0; there exist 5 such that  +(z) = 0, $I(%) > 0 
for x # 5,  and Ii > Z such that  F(Ii') = 0, F1(K)  < 0, F ( x )  > 0, for all 0 < x < K .  
Moreover, 4(x) 5 mx for some m > 0 and 0 5 x 5 I<. 

(Hz): The  curves F ( x )  - ~ ( y )  = 0 and $(x) + ((y) = 0 are defined on 0 < x 5 K. 
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(H3): There exist positive M and CM such that ~ ( y )  > Me(y) for y > EM, and also N and CN 
such that e(y) > Ny for y > CN. 
It has been shown that many predator-prey models satisfy these assumptions, and also it is 

possible t o  have F(0) = oo in most cases presented here. In such cases (0,O) is no longer an 
equilibrium point. Also, it is easy to extend domains of 4, +, T, e and [ to  the whole real axis. 

The first predator-prey model in immunology was proposed by Bell in 1973 [I.]. In the 
model, Bell considered the invading replicating antigens such as virus, bacteria, or foreign cells 
as the "foodn of antibodies which are molecules manufactured by the organism to fight the 
antigen invasion. The antibodies specifically bind to  the antigen and hasten its destruction 
and elimination from the organism. This model has been thoroughly discussed by Bell [I] and 
Pimbley [12, 131. 

In 1974, Bell proposed another predator-prey model (see Pimbley, [14, 15]), that added 
one differential equation governing the growth of the B-cell population to  the previous model. 
This equation acts to  change the "environmentn in which the antibody-antigen intersections are 
occurring. The qualitative study of this model can be found in Pimbley [14, 151, and Hii and 
Kazarinnoff [4]. 

The model constructed here is different from the above ones. We assume that the replication 
of antigens requires some kind of nutrient [3], and that antibodies have two states: hungry 
state and saturated state. The hungry state antibody represents the free antibody and the 
saturated antibody the bound antibody (to antigen). Furthermore, we consider the process of 
destruction of bound antibody and production of new antibody as saturated predator returning 
to  the hungry state, because the "food" has been assimilated and digested. In addition, for 
simplicity, we assume that each unit of antigen has only a single site for binding antibody and 
similarly that each antibody can bind at only a single antigen site. (Merrill, [ l l]) .  

16.2 The Model 

Let Ag be the concentration of antigen and Ab the concentration of antibody. We construct a 
mo #i)NWows: 

The rate of capture can be considered as a linear function of both the concentration of 
antigen and the concentration of hungry antibody Abl: 

rate 1 = y AgAbl (2.1) 

The rate of assimilation or the rate of new antibody production, is a linear function of the 
concentration of saturated antibody: 

rate 2 = p2Ab2 (2.2) 

Y and p2 in (2.1) and (2.2) are constants rates for the capture and assimilation processes, 
respectively. One can assume that the two processes will be maintained in a dynamic equilibrium 
and the growth rate of the antibody or the consumption rate of the prey will be equal, i.e. at 
equilibrium 

rate 1 = rate 2 = predation rate. 

Since the total concentration of antibodies 

we have 
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Thus, 

where K = e. 
The value of K expresses the relationship between an antibody's capture of food and the 

elimination of bound antibody or the production of "newn antibody. For example, a small y 
(low binding rate) and a large p2 (high elimination rate) will result in a large K. From the view 
point of the predator's functional response, the parameter K can be considered "efficiency" and 
is expressed in units of antigen concentration. 

The changes in antigen concentration due t o  antibody predation can be represented as 

The change in the antigen concentration due to  growth is described by (Cui et al. [3]) 

where p1 is a velocity parameter for the antigen population increment, 8 the maximum anti- 
gen concentration allowed by a limiting nutrient supply; 8' a parameter, in units of antigen 
concentration, 

The parameter Ii' in (2.7) is the Michaelis-Menten constant, the concentration of nutrient 
necessary for half-maximum concentration of nutrient supply, and a a "transfer" coefficient 
translating nutrient concentration to  antigen population concentration, that  is, 

Combining equations (2.5) and (2.6) will result in an equation that  expresses net change in 
antigen concentration 

Similarly, 

dAb 
- = -p3Ab + pi AgAb 
dt K + A g '  

where pg  is decay rate of antibody concentration in the absence of antigen (Bell, [:I.]) and p2 the 
rate of production of antibody stimulated by the binding of antigen t o  antibody. 

The equation (2.8) constitutes the fundamental model that  describes the behavior of antibody- 
antigen systems based on nutrient kinetics. 
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16.3 Main Theorems 

For the general predator-prey model (1.1), we have 
Theorem 3.1. Let (x*, y*) be an  equilibrium point in the interior of the first quadrant 0. Then 
(x*, y*) is stable if H(x*,  y*) < 0 and unstable if H(x*, y*) > 0, where 

Theorem 3.2. The system (1.1) always has a stable equilibrium or limit cycle which is stable 
from the outside, or both. 
Theorem 3.3. In addition t o  assumptions ( H I )  - (H3), if 

H ( x , Y )  > 0, <'(Y) - 0 or €'(Y) # 0 a-e. on {(x,y)l$J(x) + €(Y) = 01, 
and (+F1)'((+ +)- $J'H 5 0 for 0 < x < K , y  > 0, 

then the system (1.1) has a t  most one limit cycle surrounding (x*, y*), and if i t  exists i t  is stable. 
The proofs of Theorems 3.1 - 3.3 can be found in Huang (1989, [8]). 
Now let x = Ag, y = Ab, and rewrite model (2.8) as 

where the parameters p l ,  p 2 ,  p i ,  p3, 8, 8' and K are all positive and K is the predation 
"efficiency" parameter. 

It is easy to  see that  if 8 < 8', then > 0, for all x > 8'. That  is, the prey isocline 
remains in the interior of the first quadrant for the density of prey is sufficiently large. Therefore, 
the first assumption g(x) < 0 for all x > K in [9] does not satisfy. Hence (3.3) does not belong 
to Kuang-Freedman's model. 

Setting 9 = 2 = 0, we find the equilibrium points (0, O), (8,O) and (xe, ye), where 

To ensure that (x,, y,),is in the interior of the first quadrant, we must assume that  

Clearly, in this case, x, < 8. 
Rewriting the system (3.3) as 

and letting 
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we can see that assumptions (81) - (H3) are satisfied. 
Furthermore, 

Let 

w(z) = 89' - K(8' - 8) - 29'2 + z2. 

If H(z,) < 0, then by Theorem 3.1, the equilibrium point (z,, ye) is stable if H(z,) > 0, it 
is unstable. We note that 

-Qh - ~ 3 ) )  + /4K2), 

whose sign is determined by the quadratic form 

ee'(ph - p3I2 - K(ph - p3)(et(p; + p3) - @(ph - ~ 3 ) )  + p;K2 

with roots 

Let 

KO = O(P; - ~ 3 )  
P3 

It is not difficult to show that 

(i) if 8 = 8', p; > p3, K1 = K2 = KO; 
(ii) i f 8  = 6', pk > p3, K1 < KO < K2. 

We now have, by Theorems 3.2 and 3.3, 
Theorem 3.4. If 8 < 8', p i  > p3, and K1 < KO < K2, then (z,, ye) is stable; if 8 < 8', p i  > p3. 
and 0 < K < K1, (or, K > K2), then (z,, ye) is unstable and the system (3.3) has at least one 
limit cycle which is stable from the outside around (z,, ye). 

Note: The global stability cannot be guaranteed by this theorem. In fact, some solutions of 
the system (3.3) are unbounded. For example, solutions that begin with initial condition in the 
region ((2, y) : 0 5 z 5 8,O < y) stay in that region, and solutions beginning with z > 8 stay 
in that region, too. Thus if p; & - p3 > 0, y(t) grows without bound. 

Now, compute 
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It is easy t o  see that  the condition in Theorem 3.3 is equivalent to  that  G ( z )  is nondecreasing 
for 0 < z < 9. Thus the system (3.3) has a unique stable limit cycle around the unstable 
equilibrium point (z,, ye). For simplicity, we consider only the  case where the  prey are not 
affected very much by nutrient supply, i.e. 9 < 9' but almost equal. 

Since 

If we consider G(z )  as a function of 9, then i t  is continuous for 9 > 0. We, thus, can choose 
an c > 0 such that ,  for 9 E (9' - c, 90,  

Therefore, we have 
0(pf -p3) Theorem 3.5. If 9 E (9' - c, Of), where c is some small positive number, and 0 < K < i3 , 

then the system (3.3) has a unique limit cycle around (z,, ye). 
Acknowledgement. The author wishes t o  thank Professor S.J. Merrill for his useful comments. 
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Chapter 17 

Similarity Correlations in Analysis 
of Immunophysiological Process 

I.B. Pogozhev 
Department of Numerical Mathematics 
USSR Academy of Sciences, Moscow, USSR 

Parameters which describe the interaction intensity of various particles in liquid media of 
an organism are often used in mathematical modelling of immunophysiological processes [I]. T-  
and B-lymphocytes, macrophages, viral particles, antibody molecules, bacteria, some organic 
molecules, etc., which can interact between each other as well as with cells of a subject's organs 
and tissues could act here as interacting particles. In statistical evaluation of values of those 
parameters according to  observation data  [3] one often faces a well-known difficulty due to  
practical impossibility of getting enough measurements for each subject to  identify properly all 
its parameters. 

Let 
i t  = f ( z t , a ) ,  s t ,  i t  E Rn,  a €  RI, t > 0 (17.1) 

as  i t  is in [3], i.e., these are equations which describe changes of phase variables st = x i , .  . . , x? of 
a process in question in fixed parameters a = {a1,  a 2 ,  . . . , an) which are to be evaluated accord- 
ing to observation da ta  for each subject. We would show that  the difficulty could be sometimes 
substantially diminished if parameters a E R' are considered as functionals of interacting par- 
ticles trajectories and similarity correlations proposed here are used for their micromovements. 
In this context it is possible to  link parameters a E R1 of every subject in question with the 
corresponding parameters a E R1 of a specially chosen basal organism by means of a single per- 
sonal parameter HL, which characterizes relative intensity of micro-movements of interacting 
particles in liquid media of a subject in question being compared with a basal organism. 

17.1 Assumption of Micromovement Similarity 

From thorough analysis out in [5] i t  follows that  the general vital functions are approximately 
similar not only in different human organisms but in many mammals as well. According to  [5] 
animal's organisms are much alike: they consist of the cells of approximately equal size, however 
their total number defines an  organism's size. The sizes of inter-cellular space, blood capillaries, 
erythrocytes, lymphocytes, macrophages and other particles interacting in immunophysiological 
processes are also almost the same as well as volume fraction of an organism's liquid media 
like blood plasma, lymph, intra-tissue fluid, their temperature and viscosity, concentration of 
lymphocytes, macrophages, proteins, glucose and other interacting particles. Vital lung volume 
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and heart mass vary with body mass, and about five systoles fall on one breathing cycle in 
humans and many other mammals. 

Analysis of these and modern physiological data allows t o  adopt the following assumption 
of similarity of interacting particle micromovements in liquid media of the organisms to be 
compared: 

where 

q(t) = {ql(t), . . - 9  qn(t)1, ~ ( t )  = {ql(t), . . ,P"(t)l 

are generalized coordinates; 

are generalized velocities of interacting particles in liquid media of an organism in question and 
basal one respectively; Vb,b-are  specific velocities of blood flows (calculated per mass unit); 
T,, L-are average duration of cardiac cycle of an organism in question and basal one respectively; 
S-is a number of degrees of freedom in the system of interacting particles in question. 

Here we consider q(t) and i ( t )  E RS as S-dimensional random stationary and ergodic pro- 
cesses, which satisfy the condition of intensive mixing when the organisms a preserve certain 
physiological state [6]. Symbol 6 in (2) and below is interpreted as stochastic equivalence of 
corresponding random processes [7]. 

According t o  [2] changes of statistical properties of micromovements of interacting particles 
in liquid media of an organism are defined mainly by a change of specific velocity of blood flow 
and average duration of the cardiac cycle. In this context the characteristic time during which 
an organism preserves its physiological state (about an hour) is assumed to  be much longer 
than that  one of mixing (about a minute), during which a marked link between positions of 
interacting particles exists. 

17.2 Similarity correlation for intensity matrices 

Let us consider intensity matrices of micromovements B,  B for an organism in question and 
basal one respectively: 

+w 
B = {B,j = lw E[qi(t + z) - Eqi(t)(qj(t) - Eql(t)] dz,} 

Integrals in (4) are finite and independent of moment of time t > 0 since the processes 
q(t) and q(t) are ergodic and stationary. Having used (2) we obtain the following similarity 
correlation for matrices (3) and (4): 

B = B H L ,  (17.5) 

where 

characterizes relative intensity of micromovements of interacting particles in an organism in 
question being compared with the basal one and is personal parameter of the former; V b , b ,  T,, 5 
are defined in (2). 
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17.3 Similarity correlations for a number of contacts of parti- 
cles 

Let 

vf1t2 ' @[uC(z),tl  < t. < 221, dlt2 = @[gC(z),tl  < z < 221, (17.7) 

are the numbers of contacts of active zones of interacting particles of specified types in time 
interval (21, t2) in liquid media of an organism in question and basal one respectively; 

are centered S-dimensional random processes of micromovements of interacting particles in an  
organism in question and basal one respectively; E = r1/r2 is a small parameter equal to  the 
ratio of the characteristic pulsation time, i.e., ratio of time in which a particle collides with the 
organism's cells and other particles thus changing its trajectory to  the characteristic time of fixing 
location of particles (the latter could not be less than the characteristic duration of interaction: 
for a man 71 - 1 sec., 72  - 10 min, E - It is easy t o  check that  matrices of intensities of 
random processes (8) are independent of parameter E and agree with the corresponding matrices 
B, B. Let us assume that  processes (8) and functional @ (7) provide passing t o  a limit, invariance 
conditions [7] as well as the following properties of processes v f , g  [8]: 

17.3.1 A. Stationarity 

For any t2 > t1 2 0, t = t2 - t l .  

17.3.2 B. Ordinarity 

For small At > 0: 

P { U ~ + ~ ~  - vf = K )  = O(At), P{g+,, - vf = K )  = O(At), K  = 2,3 , .  . . 
where A , A  > 0 are intensities of contact number of specified type particles in an organism in 
question and basal one. 

For these assumptions the main statement is valid: Processes v f , g  (6) provided E -, 0 
converge weakly t o  Poisson processes up, which satisfy similarity correlation: 

where H L is relative intensity of micromovements (5) for an  organism in question which is equal 
for all types of interacting particles. 

In this context for all t > 7 2  > 0 the following equalities are valid: 
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where A ,  > 0 are intensities of particle contacts of concerned types in an organism in question 
and basal one respectively. 

Let us prove this main statement in three stages. 
First, let us adjust weak convergence of centered processes of micromovements (8) to diffusion 

processes uO(z),gO(z) E RS which have zero mathematical expectances and diffusion matrices 
B, B respectively when E + 0. This statement is a particular case of a more general statement 
proved in [6] which is used effectively in [3] in grounding methods of statistical asessment of 
parameters of disease models. 

Then, using (5) let us show that limited diffusion processes uO(z),$(z) thus determined are 
connected by similarity correlation: 

uO(z) A gO(z H L). 

And finally let us assume that processes of contacts of interacting particles 

up = @[u0(z),0 < z < t], = @[tlO(z),O < z < t] 

determined by diffusion processes U ~ ( Z ) , ~ ~ ( Z )  are the processes without consequences [8], and 
with account for (9)-Poisson processes. Correlations (10) and (12) which fix similarity of these 
processes in the organisms to be compared follow from (13). It is allowed for processes (7) and 
functional @ to satisfy general invariance conditions [7] therefore pass to limited processes is 
assumed in (14). 

Thus each physiological state of an organism corresponds to stationary Poisson processes of 
contacts of interacting particles, relative intensities of which being compared with basal organism 
are determined by personal parameter H L (6). It allows to consider all coefficients cr E R1 of the 
model (1) whose values are determined by interaction of corresponding particles as functions of 
H L parameter. In the more simple and typical case when these coefficients correspond to average 
intensities of particle interactions in unit concentrations, the following similarity correlation is 
valid: 

a = g.  H L  (17.15) 

where cr,g E RI are parameters of an organism in question and basal one respectively. 
During a disease which may last for several days an organism changes its states many times. 

It leads to uncontrollable changes of H L  parameter and coefficients of model (1) which can 
be considered as fast random variations as compared with Uslow" change of phase variables of 
model (1). This statement corresponds to a scheme accepted in [3] in statistical assessment of 
parameters of model (1) according to observation data. 

17.4 Comparison with Observation Data 

The similarity correlations (10)-(15) were used in [4] in analysis of various well-known to the 
specialists data of physiological, medical and immunological observations. Below are the main 
results of this analysis where the following groups of data were used: 

A. Depedence of metabolism intensity, blood flow velocity, body mass and average dura- 
tion of cardiac cycle on age [5, 91. Analysis of these data has shown validity of the following 
dependence for the H L parameter (6): 

where T-man's age in years. This correlation corresponds to the known in physiology Claiber 
equation [9]. It is assumed that a case when HL = 1 corresponds to a group of healthy people 
of 20-30 years old. 

B. Change of an organism's reaction to a standard glucose load (Kohn, 1940) with the years 
according to [9]. These data ("sugar curvesn) are shown in Fig. 1, while Figs. 2-5 represent the 
results of their analysis with the aid of similarity correlations. 



C. Change of insulin concentration 1 hour later standard glucose load (Wellborn, 1969) with 
the years according to  [9]. These data  and results of their analysis are given in Fig. 4 

D. Rise of probability of death of cancer within a year, Fig. 7. These data  were calculated 
using average values of mortality rate of cancer for a group of 8 countries in 1967 [12]. 

While analyzing a group of da ta  related t o  carbohydrate metabolism (Figs. 1-5) we have 
transformed Bolier model [4] which describes this process, using similarity correlations t o  a form: 

H L  parameters were assessed here for every age group, while model parameters a , z o  using 
data on all age groups. The estimates were best derived with regard t o  least-squares technique, 
and we were able to  transform all results of observations to  the conditions of general "sugar 
curven (Fig. 2). Agreement of computational results with observation da ta  is shown in Figs. 3, 
4, and correspondence of obtained estimates of HL parameter t o  Claiber equation (16) - Fig. 
5. According t o  these results our conclusions made with the aid of similarity correlations (15) 
do not contradict observation data. With regard for data represented in Fig. 5 values of H L  
parameter corresponding to  age groups of examined subjects (Fig. 4 ,6 ,  7) are determined from 

(16). 
While analyzing data  given in Fig. 6 we used the following correlation [4]: 

where R , R  are probabilities of detecting autoantibodies in an organism in question and basal 
one respectively; P - probability of transformation of B-lymphocyte into plasma cell due to  
contact with organism's cells. 

While deriving (18) we used similarity of distributions of contact number (10-12) as well 
as results of [lo]. The latter allow to  assume when number of contacts with receptors of an 
organism's cells is insufficient, B-lymphocyte may turn out unactivated and become plasma cell 
producing autoantibodies. 

According to Fig. 6 agreement of dependence (18) with observation data is not too bad when 
P = R = 0,0005. - 

When analyzing data  represented in Fig. 7 i t  appeared possible to  use correlation (18) 
according t o  [4] interpreting its values as follows: R,&probability t o  die of cancer within a 
year for an organism in question and basal one respectively; P-probability of that  oncogenes 
shall be activated in a cell of basal organism, and that  this cell shall not be destroyed by immune 
system or nonspecific defence. According t o  Fig. 7 P = lo-',& = 

Results concerned above show that  the proposed similarity correlations (10)-(12), (15) do 
not contradict data  of various observations. 

17.5 HL and "vital heat of organism" 

Properties of H L  parameter outlined when analyzing observation data  (Figs. 1-7) are very im- 
portant. It is difficult t o  assume that  such properties could remain unnoticed in those fields 
of medicine which have a centuries-old experience. Thus, eastern medicine have been using an 
idea of "vital heat of organism" for long, and the physician determines its level by pulse and 
uses i t  in treatment. It is considered that  a man can remain healthy for a long time if "vital 
heat of organism" is a t  a certain level corresponding to  certain place and season. Subject with 
normal level of "vital heat" seldom catches cold, easily endures weather variations, has great 
working capacity. When "vital heat" decreases systematically, there are created conditions for 
the development of diseases of "chilled blood": virus infection, rheumatism, diabetes mellitus, 
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autoimmune diseases, cancer, blood system diseases. On the contrary, when i t  increases ex- 
cessively there is a jeopardy of "hot" diseases like malaria, dysentery, typhoid, schizophrenia, 
etc. 

The above mentioned properties of HL parameter do not contradict these statements if 
we assume its possible interpretation as "vital heat of organism". It is essential that  eastern 
medicine possesses wide experience of regulating the level of "vital heat of organism" with the 
aid of diet, drugs and medical procedures. That  can be used after thorough investigations. 
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Figure 1: Sugar curves for subjects of differ- 
ent age (observation data). G - blood sugar 
(mg%) t hours after glucose load. Age groups 
(years): 1 - up to  10; 2 - 10+20; 3 - 20+30; 
4 - 30+40; 5 - 40+50; 6 - 50+60; 7 - 60+70; 
8 - more than 70. 

Figure 2: Determination of "norm" with 
the aid of similarity relations from the 
sugar curves in Figure 1. 

Figure 3: Comparison of sugar curves plotted with the aid of similarity relations with respect 
to  "norm" (Fig. 2) with the observation data  (Fig. 1). Number of charts and values of HL 
parameter corresponds to  age groups in Fig. 1. 
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Figure 4: Blood insulin (1gI) an hour after standard Figure 4a. Correlation between values of 
glucose load subject t o  age T (years). Circles corre- HL parameter obtained by different meth- 
spond t o  observation data. ods. HL1 - "Boliet" version, HL2 - "Poly- 

nomial". 

Figure 5: HL parameter as a function of 
age T (years). Circles correspond to  sugar 
curves in Fig. 3, continuous curve - to  
Claiber equation. 

Figure 6: Probability of revealing autoan- 
tibodies (R) subject t o  HL parameter. 
Circles correspond to  observation data, for 
different age groups. 
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Figure 7: Mean over group of countries probability to  die of cancer and circulatory system 
disturbances within a year subject to  HL parameter. Circles correspond t o  observation data. 
For comparison the same data are shown in two charts a t  different scales: 1oga.rithmic (1gP) and 
ordinary (R). 


