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Preface

The techniques of solving inverse problems that arise in the estimation and control of dis­
tributed parameter systems in the face of uncertainty as well as the applications of these to
mathematical modelling for problems of applied system analysis (environmental issues, techno­
logical processes, biomathematical models, mathematical economy and other fields) are among
the major topics of research at the Dynamic Systems Project of the System and Decision Sciences
(SDS) Program at nASA, the International Institute for Applied Systems Analysis.

In July 1989 the SDS Program was a coorganizer of a regular IFIP (WG 7.2) conference on
Modelling and Inverse Problems of Control for Distributed Parameter Systems that was held
at nASA (Laxenburg, Austria), and was attended by a number of prominent theorists and
practitioners. One of the main purposes of this meeting was to review recent developments and
perspectives in this field. The proceedings are presented in this volume.

We believe that this conference has also achieved one of the goals of nASA which is to
promote and encourage cooperation between the scientists of East a.nd West.

We wish to thank the Directorate and the Staff of nASA for their contribution to the
organization and the success of the conference. Our thanks goes particularly to Dr. A. Khapalov
for his efforts in preparing this volume for publication.

Alexander D. Kurzha,nski
System and Decisioll Sciences l'rogralll

International Illstitute for Applied Systems Analysis
Laxenburg, Austria

Irena Lasiecka
Department of Applied Mathematics

University of Virginia
Charlottesville, Virginia, USA
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Tracking Property: a Viability Approach
Jean-Pierre Aubin

CEREMADE, UNlVEIlSITE DE PAIUS-DAUI'IIINE

F-75775, Paris cx(lG) France &
IIASA, INTEltNATIONAL INSTITUTE FOlt ApPLmD SYSTEMS ANALYSIS

Abstract

This paper is devoted to the characterization of the tracking propcrty connecting solutions to
two differential inclusions or control systems through an observation ml1p derived fr0111 t.he viabilit.y
theorem. The tra.cking propert.y holds true if and only if the dynamics of the two systems l1nl!
the contingent derivative of the observation map satisfy a generalized oartial differential equat.ion,
called the contingent differential inclnsion. This contingent differential inclusion is then used ill
several ways. For instance, knowing the dynamics of the two syst.ems, construct the observation
map or, knowing the dynamics of one system and the observat.ion map, derive dynamics of the
ot.her system (trackers) which are solutions to the contingent differcntial inclusion.

It. is also shown that the tracking problem provides a natural framework to treat issues such as
tIle zcro dynamics, decentralization, and hierarchical decomposition.

Introduction
Consider two finit.e dimensionnl vector-spaces X and Y, two set-va.!ucd maps F: X x Y,,-, X,

G : X x y "-' Y and t.he .• ystem of diJJerenl.ial incln.,ions

{
x'(t) E F(x(t),y(t))
y'(t) E G(x(t),y(t))

\Ve further int.roduce a scl.-va.lued map H : X "-' Y, regarded as l1n obser1!o.tion mo.p.
\Ve devote this paper to many issues related to the following l.md:in!J property: for every

:1:0 E Dom(ll) niH.! every Yo E H(xo), there exist solutions (x('), y(-)) to t.he system of difFerential
inclusions such tlmt

V t ~ 0, y(t) E Il(x(t))

The answer to this qucstion is a solution to a viability problem, since we actually look for a
solution (x(-), y(-)) which remains viable in the gra.ph of the observation lllap H. So, if t.he set­
valued maps F and G arc Peanol maps aud if the graph of H is closed, the Viability Theorcm
states that. the tracking property is c'J1liva.!ent to the fact that the graph of H is a viability domain
of (x,y) "-' F(.r,y) x G(x,y).

Recalling that the graph of the contingent deriva.tive Dll(:I:, y) of H l1t a point (.T, y) of it.s
graph is the contingent cone2 to the gr11.ph of II at (x, V), thc tracking propP!"ty is t.hen c<[uivaknt
to the contingent differential incln.,ion

V (J:, y) E Graph(H), G(.'I:, y) n DH(x, y)(F(.T, V)) =I- 0

I A set-yalued m"p is called Peano if it.s graph is nonelllpty and closed. jt.s valll~s arc convex alld its growt.h lino.,.
2The cont.ingent cone 'Ij.; (x) to a subset l\ at :r: E 1\ is the closed coile of direet.ions v E X sllch that limh_o+ <iJ,(J: +

I"'l/ll = O. It is equal to X whell :r: belollgs to the illterior of l\. coincides with the taJlg~nt space whell l\ is smooth
alld to the tangent cone of COllYex analysis when l\ is COllYex. We say that 1\ if .,Ieek at x is y ~ TJ{ (y) is lower
sCllliconl.illllous at x. In this eascl the contingcnt conc 7K(Z:) is convex. Convcx subsets are sleek.

If (;r.y) belongs to the graph of a set-yalued map II; X ~ Y, the eonti"ge"t derivative DII(x.y) of II at. (x.y) is
the sel-Yailled lIlap frolll .Y to Y dcfilled by

Gral'lo(DII (:r:. y)) ;= TGraph(JI)(x. y)
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We observc that when F and G are single-valued maps f and 9 and H is a differentiahle
single-valucd map h, the contingent differcntial inclusion boils down to thc more familiar JyJtem
of jirJt-order partial differential equationJ3

Vj=l, ... ,m, ~~~~f;(x,h(x))-gj(x,h(X))= 0

Since the contingent differential inclusion links the thrce data F, G and H, wc can use it in
three different ways:

1. - Knowing F and H, find G or selections 9 of G such that the tracking property holds
(observation problem)

2. - Knowing G (regarded as an ex03y3tem, following Dyrnes-Isidori's terminology) and H,
find F or selections of f of F such that the tracking property holds (tracking problem)

3. - Knowing F and G, find observation maps H satisfying the tracking property, i.e., solve
the above contingent differential inclusion.

Furthermore, we can address other questions such as:
a) - Find the largest solution to the contingent differentia.l inclusion (which then, contains

all the other ones if any)
b) - Find single-valued solutions h to the contingent differential inclusion which then

becomes
v x E 1\, 0 E Dh(x)(F(x,h(x))) - G(x,h(:c))

In this case, the tracking property states that there exists a solution to the "reduced" differential
incluJ ion

X'(t) E F(x(t),h(.'C(t)))

so that (x(·), y(.) := h(x(.))) is a solution to the initial systelll of differential inclusions starting at
(xo, h(xo)). Knowing h allows to divide the system by half, so to speak.

The observation and the tracking problems are the two sides of the same coin because the
set-valued map H and its inverse play the sanle roles whenever we regard a single-valued Illap as
a set-valued map characterized by its graph.

Consider thcn the observation problem: the idea is to observe solutions of a system x' E F(:!:, y)
by a system y' E G(x,y) where G : Y "-t Y describes simpler dynamics: equilibria, unifol'lu
movement, exponential growth, periodic solutions, etc. This would allow to observe complex
systems1 x' E F(x) in high dimensional spaces X by simpler systems y' E G(y) or even better,
y' = g(y), in low dimension spaces. We can think of H as an observation map, made of a small
number of 3en30r3 taking into account uncertainty or lack of precision.

For instance, when G == 0, we obtain constant observations. Observation maps H such that
F(x) n DH(x, y)-l (0) of- 0 for all y E H(x) provide solutions satisfying

V t ~ 0, x(t) E H-1(yo) where Yo E H(J:o)

III other words, inverse images H-1(yo) are closed viability doma.inss of F. Viewed through Juch
an ob3ervation map, the 3yJtem appear3 in equilibrium.

'For special types of systems of differential equations, the graph of such a map h (satisfying additional properties)
is called a center mBllifold. Theorems providing the existence of local center manifolds have been widely used for the
study of stability near an equilibrium and in control theory.

'\Ve can lise this tracking property as a mathematical metaphor to model the concept of .... metaphors in
epistemology. The simpler system (the model) 11 E G(y) is designed to provide explanations of the evolution of the
unknown system >:' E F(>:) and the tracking property means that the metaphor /I is valid (non falsifiable). Evolution
of knowledge amounts to "increase" the observation space Y and to modify the system G (replace the model) al1l1/or
the observation map /I (obtain more experimental data), checking that the tracking property (the validil.y or the
consistency of the metaphor) is maintained.

sWhen Y := 11, such maps can be called "prime integrals" (or "energy functions") of F, because when both F := f
and /I := h are single-valued, we find the usual condition h'(>:) . f(>:) = O.
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More generally, if there exists a linear operator A E .c(Y, Y) such that

VyE Im(H), VxEH-l(y), F(x)nDH(x,yt 1 (Ay) I- 0

then wc obtain solutions x(·) satisfying the time-dependent viability condition

V t ~ 0, x(t) E H- 1(e A1 yo) where Yo E H(xo)

so that we can use the exhaustive knowledge of linear differential equations to derive behavioral
properties of the solutions to the original system.

Dut instead of checking whether such or such dynamics G satisfy the tracking property, we
can look for systematic ways of finding them. For that purpose, it is natural to appeal to the
selection procedures studied in [8, Chapter 6]. For instance, the most attractive idea is to choose
the minimal selection (x, y) >--+ gO( x, y) of the set-valued map

(x,y) ...... DH(x,y)(F(x,y))

which, by construction, satisfies the contingent differential inclusion. We shall prove that under
adequate assumptions, the system

{
i) x'(t) E F(x(t), y(t))
ii) y'(t) = gO(x(t),y(t))

has solutions (satisfying automatically the tracking property) even though the minimal selection
[/ is not necessarily continuous (see [15,4] for the use of minimal selections).

The drawback of the minimal selection and the other ones of the same family is that gO depends
upon x. \Ve would like to obtain single-valued dynamics g indcpenclcnt of x. Thcy arc selcctions
of the set-valucd map Gil defined by

GII(y):= n DH(x, y)(F(x, y))
rEII-I(y)

\Vc must appeal to Michael's Continuous Selection Theorem to find continuolls selections g of this
map, so that the system

{
i) x'(t) E F(x(t),y(t))
ii) y'(t) = g(y(t))

has solutions satisfying the tracking property.
The size of the set-valued map Gil measures in some sense a degree of inadequacy of the

observation of the ,'ystem x' E F(x) through H, because the larger the images of Gil, the more
dynamics g tracking an evolution of the differential inclusion.

Tracking problems are intimately relatcd to thc observation problem: Here, the system y' E
G(y), called the exosystem, is given, and so are their solutions whcn the initial states are fixed.
The problem is to regulate the system x'(t) E F( x(t), y( t)) for finding solutions x(.) that match the
solution" to tlte exosystem y'(t) E G(y(t)) in the sense that y(t) E H(x(t)), or, more to thc point,
x(t) E H-l(y(t)).

DecentraliuLtion of control systems and deeoupling properties are instanccs of this problem.
An instance of decentralization can be described as follows: We take X := Y", F(x) :=

0;'=\ Fi(.Ti), and the viability subset is given in the form

"
[{:= {(Xl, ... ,Xn) I LXi EM}

i=l

so that wc obscrvc thc individnal cvolutions x:(t) E Fj(.r;(t)) through thcir sum y(t) := Lf=l Xi(t).
Dccent.mlizing thc systcm mcans solving
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first a differential inclusion y'(t) E G(y(t)) providing a solution y(-) viable iu the viabilit.y
subset AI C Y, and

second, find solutions to the differentia.l inclusions xi( t) E Fi(:I:i( t)) satisfyiug t.he (time­
dependent) viability condition

n

L Xi(t) = y(t)
i=l

condition which docs not dcpcnd anymorc on M.
Hicrarchical dccomposition happens whenever the observation map is a composition product

of several maps determining the succcssivc Icvels of thc hicrarchy. The evolution at each level is
linked to the state of the lower level and is regulated by controls depending upon the evolution of
the state-control of the lower level.

1 The Tracking Property

1.1 Characterization of the Thacking Property

Consider two fiuite dimensional vector-spaces X and Y, two set-valued maps F X x Y -v> X,
G: X x Y -v> Y ami a set-valued map II : X -v> Y, called the obscrvation map:

Definition 1.1 Wc shall .'ay that F, G and H satisfy thc tracking property if for any initial
.,tate (.1'0, Yo) E Graph(II), thcrc cxists at Icast onc solution (.1:(·),y(·)) to thc system of differential
inclusious

{ x'(t) E F(.1:(t),y(t))(1 )
y'(t) E G(x(t),y(t))

.• ali··fying
V t 2 0, y(t) E H(.r(t))

Wc .• ha.1I .'lay that a "d-valucd map II : X -v> Y is a solution to thc contingent different.ial
inclusion '1 its gTIJ.ph is a closed sub.'ct of Dom(F) n Dom(G) and if

(2) V (.1:, y) E Grnph(lI), G(:r, y) n DII(J:, lI)(F(.r, V))

\Ve ,!educe at. once from t.he viabilit.y t.heorems of [8, Chapt.er 3] t.he following:

Theorem 1.2 Let us assumc that F: X x Y -v> X, G : X x Y -v> Y a.rc Pea.no ma.lM a.nd tha.t thc
gTIJ.ph of thc set-valucd ma.p H is a closcd .mbset of Dom(F) n Dom(G).

1. Thc triplc (F, G, H) enjoys the tracking propcrty if and only if If is a solution to thc
cont.ingent. different.ial inclnsion (2).

2. Thcrc exi.,t., IL largest .'olntion II. to lhc couliuqcnt dijfercntial inclll..,ion (2) conta.ined
in II. It cnjoys thc following propcrty: whcncvcr a.n initial "la.lc y" E II(.I:o) doc., not be/ong to
II.(;l'o), thcn all.'olutions (.1:(·),y(·)) to thc .'ystcm of diffcrcutial inc/n.,ion., (1) .'ati.'fY

(3)
f i)

1ii)

V t 2 0,

:JT>O

y(t) ~ H.(x(t))

wch that y(T) ~ II(.1·(T))

.1. If thc sct-valncd maps Hn C II arc .lOlntion., to thc contingcnl diffcrcntial incilLsion
(2), .<0 i., thcir fjTIJ.phicaluppcr lirnitG•

"The graphical "pper limil or a sequence or set-v"lueu lll"pS II .. is the sd.-va/lled map whose gr;lJlh is t.he (Kura­
t.owski) upper limit. or t.he graphs or t.he 1I,,'s.
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We shall be interestcd in particular by single-valucd solutions h to thc partial contingcnt dif­
fcrcntial inclusion

v x E K, 0 E Dh(x)(F(x, h(x))) - G(x, h(x))

In this casc, the stability propcrty implies the following statcment: Let us considcr an equieon­
tinuous scquenee of continuous solutions hn to the contingent differential inclusion converging
pointwise to a function h. Then h is still a solution to the contingent differential inclusion.

First, a pointwisc limit h of single-valucd maps hn is a selection of the graphical uppcr limit of
thc hn . The lattcr is cqual to h whcn hn remain in an cquicontinuous subset: Indccd, in this casc,
any limit of elcments (xn> h,,(xn )) being of the form (x, h(x)) belongs to the graph of h.

Remark - We could also introduce two other kinds of contingent differcntial inclusions:

V(x,y) E Graph(H), DH(x,y)(F(x,y)) C G(x,y)

and
V(:r,y) E Graph(H), G(x,y) C n DH(x,y)(u)

uEF(x,y)

The first inclusion implies obviously that any solution (.1:(-), y(.)) to thc viability problem

x'(t) E F(x(t),y(t)) & x(t) E H-1(y(t))

parametrized by the absolutely continuous function y(-) is a solution to the differential inclusion

y'(t) E G(x(t),y(t))

The second inclusion states that the graph of H is an invariance domain of the set-valucd map
F x G. Assume that F and G nre Lipschitz with compact values on a neighborhood of the graph
of F. By the Invariance Theorem of [8, Theorem S.4.S], the second inclusion is equivalent to the
following strong tracking property:

For ilny initial state (:ro, Yo) E Grnph( II), evcry solution (J:('), y(.)) to the system of differential
inclusions (1) starting at (xo, Yo) satisfies y(t) E H(x(t)) for all t:::: o. 0

We shall address now the problem of constructing trackers, which are selections of the set-valued
map <I>

(x,y) "-> <I>(x,y) := DH(x,y)(F(x,y))

For that purpose, we recall what we mean by selection procedure of a set-valued map F from
a metric space X to a normed space Y.

1.2 Selection Procedures

Definition 1.3 (Selection Pl'ocedure) Let X be a metric space, Y be IL normcd ,IIJILce a.nd F
be a set-valucd ma.!' from X to Y. A selection procedure of a set-valued map F : X "-> Y i.1 a
,Ict-valued map SF: X"-> Y .wti4ying

{
i) V:r E Dom(F), S(F(x));= SF(:r) n F(x) -I- 0
ii) thc graph of SF is closcd

Thc set-valucd m.ap S(F) ::r "-' S(F(:r)) is called thc selection of F.

The set-valued map defined by

(4) sy..(x,y) := {v E Y Illvll ~ d(O,F(x,y))}

is natmally a selection procedure of a set-valued map with closed convex values which provides
the minimal selection.

We can easily provide more examples of selection procedures through optimization thanks to
the Maximum Thcorem.
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Proposition 1.4 Let U3 a33umc that a 3et-valucd map F : X "" Y i3 lowcr 3cmicontinuou3 with
com]Jact valuc3. Let V : Graph(F) I-> R bc continuou3. Thcn thc 3et-valncd map SF dcfincd by:

SF(X):= {y E Y I V(.T,y) S; inf q.T,y')}
Y'EF(r)

i3 a selection procedure of F which yicld3 3elcctioll S( F) cqual to:

S(F(x)) = {y E F(x) IV(x,y) S; in.f V(x,y'))}
Y'Ef(r}

Proof - Since F is lower semicontinuous, the function

(x,y) I-> V(x,y) + sup (-V(x,y'))
Y'EF(r)

is lower semicontinuous thanks to the Maximum Theorem. Our proposition follows from:

Graph(SF) =
{(x,y) IV(x,y) +suPY'EF(x)(-V(x,y')) S; O} 0

Most selection procedures through game theoretical models or eqnilibria are instances of this
general selection procedure based on Ky Fan's Inequality (see [3, Theorem G.3.5] for instance).

Proposition 1.5 Let 1L.1 a.'3umc that a 3et-valucd map F : X "" Y i3 lowcr ,.cmicontinuou.• with
convcx C01T!]HLct valuc3. Let <p : X x Y x Y I-> H. 3ati.<jy

{

i)
" ");;i)

<p(x, y, y') is lower semicontinuous
V(x,y) E X x Y, y'l-> <p(x,y,y') is concave
V(x,y) E X x Y, <p(x,y,y) S; 0

Thcn thc map SF a"30ciatcd with <p by thc relation

SF(.T):= {y E Y I Slip <p(x,y,y') S; O}
Y'EF(x)

i3 a 3elcction proccdurc of F yielding thc 3elcction map x I-> S(F(x)) dcfincd by

SF(x):= {y E F(x) I sup <p(x,y,y') S; O}
Y'EF(x)

Proof - Ky Fan's inequality states that the subsets SF(X) are not empty since the subsets
F(x) are convex and compact. The graph of SF is closed thanks to the assumptions and the
Maximum Theorem because it is equal to the lower section of a lower semicontinuous function:

Graph(SF) = {(x,Y)1 sup <p(x,y,y')S;O} 0
Y'EF(x)

Proposition 1.6 A33nmc that Y = YI X Y2, that a 3et-valncd ma.p F: X "" Y i3 lowcr 3cmicon­
tin1LOU•• with convcx compact valuc3 and that a : X x Y1 X 1'2 -+ R 3al.i.•fiC3

{

i)
"")::i)

a i3 continuou3
V(x, Y2) E X x Yi, YI I-> a(.T, yl, Y2) i3 convcx
V(x,Yd E X x YI , Y2 I-> a(x,YI,Y2) 13 concavc

Thcn thc 3et-valucd map SF a330ciating to any x E X thc 3ub3et

SF(2:) := ((YI,Y2) E Yj x Y2 •• nch tho.t
V(ZI,Z2) E F(x), a(x,YI,Z2) S; a(:r,zl,Y2)}

i .• a 3elcction proccdurc of F (with convcx valuc3). Thc 3elcction map S( F(·)) a330ciatc3 with any
x E X thc 31Lb3et

S(F)(x) := {(Yl! Y2) E F(x) 3uch that
V(ZI,Z2) E F(x), a(.T,YI,Z2) S; a(x,YI,Y2) S; a(.T,zl'Y2)}

Of saddle-points ofa(x,·,·) in F(x).
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Proof - We take

lp(X,(Yl,Y2),(Y;,y;)) := a(X,YhY;) - a(x,V;,V2)

and we apply the above theorem. 0

1.3 Construction of trackers

AllY selection of the map 4> defined by

v (x, V) E Graph(H), 4>(x, y) := DH(x, V)(F(x, V))

provides dynamics that satisfy the tracking property, provided that the system has solutions.
Naturally, we can obtain such selections by using selections procedures G := 54> of 4> (see

Definition 1.3) that have convex values and linear growth, since the solutions to the system

{
i) x'(t) E F(x(t),y(t))
ii) V'(t) E 54>(x(t), V(t))

satisfying the tracking property (which exist by Theorem 1.2) are solntions to the system

{
i) £'(t) E F(.T(t),y(t))
ii) V'(t) E 5(4))(.T(t), V(t)) := 4>(x(t), y(t)) n 54>(.r(t), V(t))

Let ns mention only the case of the minimal selection gO of 4> defiucd by

{
i) gO(x, V) E DH(.T, V)(F(.T, V))
ii) IlgO(x, y)11 = infvEDll (r,yj(F(r,y)) Ilvll

Theorem 1.7 A33ume that the Peano map F i3 continU01L3 and that H i3 a 3lcek cl03cd 3et-valned
map 3ati3jying, for 30me con3tant c > 0,

v (x, y) E Graph(H), IIDH(.T, v)11 :s c

where IIDH(x, v)1I := sUPllull$1 infvEDll (r,y)(u) Ilvil denote3 the norm of the cl03ed convex proce33
DH(.T, y). Then the 3Y3tem ob3erved by the minimal 3cleetion g" of DH(·, ·)(F(., .))

{
i) .T'(t) E F(:r(t),v(t))
ii) y'(t) = gO(x(t),V(t))

ha3 30lution3 enjoying the tracking property.

Proof- Dy [6, Theorem 3.1.1] ,the set-valued map (.T,y,ll) "-' DH(.T,V)(U) is lower semi­
continuous. We deduce then from the lower semicontinuity of F that the set-valued map 4> is also
lower semicontinuous. Since DH(x,y) is a convex process, it maps the convex subset F(x,y) to
the convex subset 4>(x, V). Therefore, 4> being lower semicontinuous wit.h closed convex images, its
minimal selection 5~ defined by (4) is closed with convex values. Furthermore,

IlgO(.T, y)1I :s cllF(x, y)1I :s c'(lIxll +IIvll +1)

since IIDH(.T., v)1I :s c and the growth of F is linear. Then the system

{
.)

: i)

x'(t) E F(x(t), V(t))

y'(t) E 5$(x(t), y(t)) n c'(II.T.(t)11 + Ilv(t)11 + l)ll

has solutions enjoying the tracking property by Theorem 1.2. Therefore for almost all t 2 0,

v'(t) E 4>(x(t),y(t)) n 5;(x(t),y(t)) = gO(x(t),y(t)) 0
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1.4 The Observation Problem

We consider the important case when G : Y "-" Y does not depend upon x. Hence the contingent
differential inclusion becomes

v x E Dom(H), "lyE H(:r;), G(y) n DH(x, y)(F(.L, V»~ 'I 0

Example Let us consider the case o[ descriptor systems

Ex'( I) =' Ax( I) +Du(t)

which we want to observe through 1I E L:(X, Y) by the linear equation

y'( I) =' Gy( I)

where G E £(Y, Y). We introduce the matrices (A,GII) [rom X to X X Y and

(~ ~) [rom X x Z to X X I'

We observe that the system enjoys the tracking property i[ and only if

Im(A,GIl) elm (E D)
II 0

In this case, the velocities x'(t) and the controls 11(1) arc supplied by the linear system

f Ex'(t) - DII(t)

llIx'(t)

which can be solved by linear algebraic formulas. 0

== A:r,(t)

=' GIIx(t)

Example: Energy Maps (or Zero Dynanl.ics) The simplest dynamics is obtained when
G == 0: in this case, each subset H- 1(y) is a viability domain of F(·, y), because, for any y E hn(H)
and Xo E H-1(y), there exists a solution x(·) such that x(t) E H-1(yo) for all t 2: O.

This viability property becomes:

"lyE Im(H), V x E H- 1(y), F(x, y) n DH(.L, yt1(0) 'I 0

When F is a Peano map, we deduce that it is also equivalent to condition

Vy E Im(H), V x E H-1(y), F(x, y) n T//-,(y)(x) 'I 0

We shall say that such a set-valued map H is an energy m.ap of F.
In the general case, the evolution with respect to a parameter y of the viability kernels of the

closed subsets H-1(y) under the set-valued map F(·,y) is described by the inverse of the largest
solution H*:

Corollary 1.8 Let F : X "-" X be a Peano m.ap. Then for any finite dimen.,ional veetor·,.paee Y,
there exists a largest closed energy map H* : X "-" Y of F, a solution to the inclu.,ion

"Ix E Dom(H), Vy E H(x), DH(.L,y)(F(.7:,y» 3 0

The inverse images H;l(y) are the viability kernels of the subsets H-1(y) under the map.' F(-, y):

ViabF(.,y)(H-1(y» = ll;l(y)

The gro.Jlhieal upper limit of energy maps is still an energy map,
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Then the graph of the map y"" Viabn,y)(H-I(y)) is closcd, and thus uppcr scmicontinuous whcn­
ever the domain of H is bounded.

When the observation map H is a single-valued map h, the contingent differential inclusion
becomes

vx, :3 U E F(x, y) such that 0 E Dh(x)(u)

When h is differentiable and F := f is single-valued, we find the classical characterization

n oh
< h'(x),j(x) > = EOX; (x)fi(x) = 0

of energy functions or prime integrals7 of the differential equation x' = f( x).
The largest closed energy map contained in h is necessarily the restriction of h to a closed

subset of the domain of h, which is the viability kernel of h-I(O). The restriction of the differential
inclusion to the viability kernel of h-I(O) is (almost) what Byrnes and Isidori call the zero dynamics
of F (in the framework of smooth nonlinear control systems).

Remark - The Equilibrium Map. We associate with each parameter y the set

E(y) := {x E H-I(y) 10 E F(x,y)}

of the equilibria of F(-,y) viable in H-I(y). We say that E: y"" X is the equilibrium ma.p.
We can derive some information on this equilibrium map from its derivative, which we can

compute easily:

Theorem 1.0 Assume that both H : X"" Y and F : X x y"" X arc clo.• ed and sleek and that

{
V(x,y) E Graph(H), V(ll,V,w) E X x Y x X,
:3 VI E DH(x,y)(ul) such that wE DF(:r,y,O)(u + UI,V + vd

Then the contingent derivative of the equilibrium map is the equilibrium ma.p of the dcrivative:

u E DE(y,x)(v) {==? u E DH(x,y)-I(V) & 0 E DF(x,y,O)(ll,v)

Proof - We observe that by setting 1I"(x, y) := (x, y, 0), the graph of E- 1 can be written:

Graph(E- I
) := Graph(H) n 11"-1 (Graph(F))

and we apply [G, Theorem 4.3.3], which states that if the transversality condition: for all (x,y) E
Graph(E- 1),

11" (TGraph(II)(X,y)) - TGraph(F)(1I"(x,y)) = X x y x X

holds true, then

TGraph(s-')(x, y) := TGraph(II)(x, y) n 11"-1 (TGraph(F) (11"(.');, V)))

n,ecalling that the contingent cone to the graph of a set-valued map is the graph of its contingent
derivative, the assumption of our proposition implies the transversalit.y condition. We then observe
that the latter equality yields the conclusion of the proposition. D

Using the inverse function and the localization theorems presented in [G, section 5.4], we can
derive the same kind of informations as the ones provided by [G, Proposition 5.4.7.].

For instance, set

Q(y,x) := tI E DH(x,ytl(O) I 0 E DF(x,y,O)(u,O)

'When f is real-valued, this is the "contingent version" of the Hamilton-Jacobi ef]lIation, Sec the the papers alld the
forthcoming monograph by Frankowska (16] for an exhaustive study and the connediolls with the viscosity solutions.
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Then, for any equilibrium x E E(y) and any closed cone P sat.isfying P n Q(y, x) = {OJ, there
exists e > 0 such that

E(y)n(x+e(pnll)) = {x}

where 11 denotes the unit ball. In particular, an equilibrium x E E(y) i3 locally unique whenever
o E DH(x, y)-I (0) i3 the unique equilibrium of DF(x, v, 0)(·,0).

Furthermore, if the set E(y) of equilibria is convex, then

E(y) C x + Q(y, x) 0

More generally, the behavior of observations of some solutions to the differential inclusion
x' E F(x, V) may be given as the prescribed behavior of solutions to differential equations V' = g(V),
where 9 is a selection of

g(v) E n DH(x,V)(DF(x,y))
xEII-1 (y)

In the case when the differential equation V' = g(V) has a unique solution r(t)vo staring from Yo,
the solution x(·) satisfies the condition

V t 2 0, x(t) E H-1(r(t)v(0)), x(O) E H-1(v(0))

When 9 is a linear operator G E £(Y, Y), it can be written

V t 2 0, x(t) E H-1(eG'y(0)), x(O) E H-1(v(0))

When H == h is a single-valued differentiable map, then the map Gil C<ln be written

GII(v):= n h'(x)F(x,V)
h(x)=y

ami a single-valued map 9 is a selection of Gil if and only if

v x E Dom(H), 0 E h'(x)F(x, V) - y(h(.l:))

The problem arises to construct such maps g.

1.5 Construction of Observers

These ma.ps 9 are selections of the map Gil : Y"-'+ Y defined by

GII(v):= n (DH(x,V)(F(x,V)))
xEII-1(y)

(The set-valued map GJI mea3ure3 30 to 3peak a degree of di30rder of the 3Y3tem x' E F(x, V),
because the larger the images of Gil, the more observed dynamics y tracking an evolution of the
di/Terential incl usion.)

Dy using Michael's Continuous Selection Theorem, we obtain the following

Theorem 1.10 A33ume that the 3et-valued map F i3 continnon3 with convex compn.et ima.ge., and
linear growth, that H i3 a 3leek cl03ed 3et-valued map the domain of which i3 boundcd and that
there exi3t3 a eon3tant c > 0 3ueh that

v (x, V) E Graph(H), IIDH(;z;, y)11 :s: c

A.'.'um.e al.w that there exi.,t eon3tant3 b > 0 and, > 0 31Lch that, for any rnn.p x ...... e(x) E ,11,

blln n (DH(x,V)(F(x,y))-e(x)) i- 0
xEII-1(y)
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Then there exists a continuous map g such that the solutions of

{
i) x'(t) E F(x(t), y(t))
ii) y'(t) = g(y(t))

enjoy the tracking property for any initial state (xo, Yo) E Graph(H).

Proof - The proof of the above theorem showed that the set-valued map <I> is lower semicontin­
uous with compact convex images. Furthermore, the set-valued map H- 1 is upper semicontinuous
with compact images since we assumed the domain of H bounded. Then the lower semicontinuity
criterion [6, Theorem 1.5.3] implies that the set-valued map GIf is also lower semicontinuous with
compact convex images. Then there exists a continuous selection g of Gil, so that the above system
does have solutions viable in the graph of H. 0

2 The Tracking ProblelTI

2.1 Tracking Control Systems

Let. 11 : X '"'-' Y be an observation map. We consider two control systems

(5) {
i) for almost all t 2: 0, x'(t) = f(x(t),lI(t))
ii) where ll(t) E U(x(t))

awl
(6) {i) for almost all t 2: 0, y'(t) = g(y(t), v(t))

ii) where v(t) E V(y(t))

on the state and observation spaces respectively, where U : X '"'-' Zx and V : Y'"'-' Zx map X and
Y to the control spaces Zx and Zy and where f : Graph(U) f-t X and g : Graph(V) f-t Y.

We introduce the set-valued maps R/I(x, y) : ZI' '"'-' Zx defined by

R (
.) _ { {II E U(x)lf(·1',Il) E DH(x,ytl(g(y,v))} if v E V(y)

II X,y,v- 0 ifvr/:.V(y)

Corollary 2.1 Assumc that the sci-valued maps U and V arc Peano map.' and that the map.' f
and g arc continuous, affine with resJlect to the controls and with linear growth. The twa control
systems enjoy the tracking property if and only if

V(x,y) E Graph(H), Graph(RI/(x,y)) 1= 0

TheIL the system is regulated by the regulation laui

for almost all t 2: 0, ll(t) E RIf(x(t), y(i); v(t))

When H == h is single-valued and differentiable and when we set f(.1',11.) := c(x) + g(;r)1£ and
g(y, v) := d(y) + c(y)v where g(x)· and e(y)· are linear operators, we obtain the formula

Rh(xj v) := U(x) n (h'(x)g(xW1(d(h(x)) - h'(X)C(.l:) + c(h(x)v))

2.2 Decentralization of a control system

We assume that the viability set of the control system (5) is defined by constraints of the form
l\ := L n h- I (1I1) where

(7) 1
i)
" ");;i)

LeX and Al c Y are sleel<
h is a CI-map from X to Y
"Ix E ]( := L n h- I (1I1), Y == h'(x)TL(:r) - TAJ(h(x))



12

Vic associate with the two systems (5), (G) the deeoupled viability constraints

(8) j
i)

ii)

ii i)

"It 2: 0, x(t)EL

"It 2: 0, h(x(t)) = yet)

"It 2: 0, yet) E M

It is obvious that the state component xC) of any solution (x(-),y(·)) to the system ((5),(6))
satisfying viability constraints (8) is a solution to the initial control system (5) viable in the set J(

defined by (7).
On the other hand, solutions to the system (5) viable in I{ can be obtained in two steps:

first, find a solution y(.) to the control system (6) viable in AI and then,
second, find a solution x(·) the control system (5) satisfying the via bility constraints

(D) {
i) "It 2: 0, x( t) E L
ii) "It 2: 0, h(x(t)) = yet)

which no longer involve tlte sub.• et !vI C Y of constraints.

This decentralization problelIl is a particular case of the observation problem for the set-valued
map H defined by

H(x) := {h(X) if x E L & hex) E At
o if not

whORe contingent derivative is e'lual under assumptions (7) to

DH(x)(lI) := {h'(X)lI ~f 11 E Td:r ) & h'(x)lI E TM(h(:r))
o If not

We know that the regulation map of the initial system (5), (6) on the subset I{ tlefined by (7)
is e'llwl to

Rdx) = {1I E U(.r) n T{,(x) I h'(.r)!(;/:,u) E TM(h(;r))}

The regulation lIlap of the projected control system (6) on the suhset AI is defined by

RM(y) = {v E V(y) I g(y,v) E TM(y)}

\Ve introduce now the set-valued map R u which is equal to

RI/(x,Y;v) := {u E U(x) nTdx) I h'(.[;).f(./:,lI)

\Ve observe that

g(y,v)}

"Ix E K, Ru(x, hex); RM(h(x))) C R/Jr)

The regulation map regulating solutions to the system ((5),(6)) satisfying viability conditions (8)
is equal to .'1: 'V+ RI/ (x, h(.'I:); R M(h( x))). Therefore, the regulation law feeding back the controls
frOln the solutions arc given by: for almost all t 2: °

{
i) vet) E RM(y(t))
ii) lI(t) E RI/(x(t); vet))

The first law regulates the solution.• to tlte control sy.• tem (6) viable in AI and tlte second
regulatcs the solutions to the control system (5) satisfying the viability constraints (9).

Remark - The reason why this property is called decentrali,mtion lies in the particular case
when X := yn, when h(:r) := L:;~I.r. and when the control system (5) is

Vi = 1, ... , n, «t) = f;(xi(t), 1I;(t)) where 1I;(t) E U;(:r;(t))
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constrained by

Vi = 1, ... ,n, x;(t) E L i & LXi(t) E M
;=1

We introduce the regulation map Ru defined by

Ru (x I, ... , X n, Yi v)

:= {u E n?:I(Ui(Xi) n TL,(Xi)) I L:i=1 fi(X" u) = g(y, v)}

This system can be decentralized first by solving the viability problem for system (G) in the
viability set M through the regulation law v(t) E RM(y(t)).

This being done, the state-control (y(-), vel) being known, it remains in a second step to study
the evolution of the 11 control systems

through the regulation law

Vi=l, ... ,n, x:(t) f,(Xj, u(t))

u(t) E RH(XI(t), ... ,xn(t),y(t)jv(t)) 0

Economic Interpretation - We can illustrate this problem with an economic inl.crl'retatiou: the
sta.l.e x := (XI,"" x n ) describes an allocatiou of a commodity y E ill alllong n consumers. The subsets Lj
represent the consumptions sets of each consumer and the subset ilf the set of ava.ilahle colllmodities. The
conl.rolu plays the role of the price system of the cousumpl.ious goods aud v the price of the production goods.
Differential equatious xi = !i(Xi, u) represent the behavior of each consumer in terms of the consumption
price a.nd y' = y(y, v) I.he evolution of the production process.

The deceutralization process allows ns to decouple the production problem and the cOllSulllption problem.
Sec more details in [8, Chapter 15J on dynamical economic models. 0

2.3 Hierarchical Decomposition Property

For simplicity, we restrict ourself here to the case when the observation rnal' H == h := h2 0 h I is
the prodlLet of two differentiable single-vallLed maps hI : X ...... l~ and h2 : Y1 ...... Y2•

\Ve address the following issue: Can we observe the evolution of a solution to a control problem
(5) through h2 0 hI by observing it

first through hI hy a control system

(10) {
i) for almost all t 2: 0, y~(t) = YI(YI(t),VI(t))
ii) where VI(t) E VI(YI(t))

and then,
second, observing this system through h2 •

We introduce the maps R,,, R", and R"2 defined respectively by

R,,(:r;v) := {1l E U(.r) I h'(x)f(:r,ll) = g(h(.r),v)
if v E V(h(x))}

R",(.r;vJl = {1l E U(x) I h;(x)f(x,ll) = YI(h l(.1:),VI)
if VI E V(hl(x))}

R"2(XljV) = {VI E V1(XI) I h;(xIlYI(.TI,vI) = y(h 2(.T,),v)
if v E V(h 2(xJl)}

and we see at once that

R",(XjR"2(hl(x)jv)) c R,,(x;v)
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Therefore, if the graph of v "'-+ R h, (Xj R h, (hI (X)i v» is not empty, we can recover from the evolution
of a solution y(.) to the control system (6) a solution YI (.) to the control system (10) by the tracking
law

for almost all t, VI(t) E Rh,(YI(t), v(t»

and then, a solution x(·) to the control system (5) by the tracking law

for almost all t, u(t) E R h, (x(t), VI (t»

Thi3 can illu3tratc hierarchical organization which i3 found in the evolution of 30 many macro­
3Y3teTn3. The decomp03ition of thc ob3ervation map a3 a product of .'evcral map3 determine3 the

3ucce33ive level3 of the hierarchy. The evolution at each level obeY3 the con3traint binding it3 3tate
to the 3tate of the lower level. It i3 regulated by control3 determined (in a 3et-valued way) by the

evolution of the 3tate-control of the lowcr level.
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Extensions and Global Estimates for
Evolutionary Discrete Control Systems
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Program Systems Institute (PSI)
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Abstract

This paper deals with the gencral proccdurc of the extension principle for thc abstract evolutionary
control system (in the time-discrete form) and cstimation of the system's reachable set as an impor­
tant characteristic. This is a new stage of thc dcvelopment of an approach that initially had been
expressed in the well-known Krotov sufficient optimality conditions and proved to be very fruitful in
applications for the lumped-parametcr systems control problems.

1 Introduction

Presently, the class of distributed parameter systems that are studied with mathematical tools ex­

tends vcry far. Difficulties and problcms arise in modeling new complex objects (such as ecological

scenarios) and in choosing thc stratcgy to investigate practical problems and in the methods to in­

terpret the results (openness, uncertainty, impossibility or high cost of thc strict observations and

their discrete nature). As a result the model concept turns to have alternative versions (continuous,

discrete, chamber, lincar, nonlinear, degree of its detailizatioll, etc.).

Therefore adaptive mathematical tools should be dcveloped. From this point of view the methods

of extensions and global estimates that were initially dcveloped within optimal control theory are of

particular interest [Krotov and Gurman (1973) and Krotov (1988)]. In particular, some important

ccological control models with distributed parameters that are singular and nontraditional for math­

cmatical physics and mathematical biology have been successfully studied and interesting optimal

solutions, such as optimal dynamical forest structure and optimal fish population control have been

obtained (Moskalenko, 1983). Current accumulated experience of the application of those tools to a

broad class of lumped-parameter systems [Gurman (1985) and Konstantinov (1983)] gives us hope to

be able to apply thcm to distributed-parameter systems with a possibility of quantitative estimation

of object behavior bounds depending on availablc information and computational recourses.
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This paper gives additional reasons to consider the abstract evolutionary system in the time­

discrete form. This form requires the fewest function-theoretic properties of all the constructions

to be used and allows us to concentrate on the proposed scheme due to its full invariance with

respect to spaces structure and continuity concepts. On the other hand, recent results in infinite­

dimensional differential inclusions theory (Tolstonogov, 1986) allow to use the correct transition from

the time continuous form to the time-discrete form of the same evolutionary system either precisely

or approximately.

2 The Discrete Evolutionary Model and Its Extensions

Let us consider (as an arbitrary evolutionary system model) the following chain relation

x(t + 1) = I( t, x(t), u(t)), t = {ti' t;+ 1, ... ,tJ} ,

x(t) E X(t) C Xo(t;),u(t) E U(t,x(t)) C Uo(t) ,

(1)

where t is a number of the time registration; Xo(t), Uo(t) are basic set spaces of arbitrary nature

(may be different for different (t); X(t), U(t,x(t)) are given subsets of Xo(t), Uo(t); I(t,'): Xo(t) x

Uo(t) -. Xo(t+ 1) is some given operator; and x(t), u(t) stand for the state and the external influence

(or control) description at time t.

Another form of (1) is

x(t + 1) E IT(t,x(t)) (1 a) ,

where IT(t, x(t)) = I(t, x(t), U(t, x(t))).

We introduce an arbitrary family of maps ('P.,(t,') : Xo(t) -. YO(t))a, a E A, and the corre­

sponding family of new evolutionary systems (the derived systems)

Ya(t + 1) = 'Pa(t + 1,/(t,x(t),u(t))),u(t) E U(t,x(t)),x(t) E Q(t,y(t)) = 'P-1(t,y(t)). (2)

Another form of the derived system:

Ya(t + 1) E U 'Pa(t + 1, IT(t, x(t)) .
r(I)Eof>-l(I,~(t»

(2a)

Any of these systems is an extension of the initial system (1) in the sense that any solution to the

initial system is also a solution to the derived system (but not vice-versa in the general case).

The estimates of such important characteristics of the system (1) as optimal regimes, attainability

and controllability sets and related questions, may be obtained this way through the proper choice

of 'Pa.
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3 Estimation of Reachable Set

In the general case some constructive procedures for the estimation of the reachable set XT(t) can

be developed under Yo" = R, 'P,,(ti) : Xo(t) -+ R. The following auxiliary system is considered:

z,,(t + 1) = h,,(t, z(t)) ~ sup 'P,,(t + 1,/(t, x(t), u(t)))
uEU(I,.,(I))

x(t) E A,,(t,z) = n {x(t): 'P,,(t,x(t)) = z,,(t),'P/l(t,x(t)) ~ z/l(t),f3 i- a}nM(t),
/lEA

Z,,(ti) = sUP'P,,(ti,Xi ),

(3)

where M(t) is some a priori external estimate for XT(·), M(t) :J XT(t) in particular, the trivial one,

Xo(t)j z and designates the whole family of z", a E A. Denote

X",(ti,Xi,t) = n {x(t): 'P,,(t,x(t)) ~ z,,(t)} nM(t) ,
"EA

where z,,(t) is the solution to (3).

Theorem 3.1 Any system ('P, h, M) (where 'P, h designate the whole families of 'P", h", a E A)

defines an external estimate of the reachable set of the system for each t E T : X",(t) :J XT(t).

Proof For t = ti we have X(ti) E XT(ti) = Xi. Hence,

X(ti) E X",(t;) = n {X(ti): 'P,,(ti,X(ti)) ~ Z,,(ti)} nM(ti)
"EA

so XT(ti) C X.,(ti). Now let us show that

XT(t) C X",(t) => X",(t + 1) :J XT(t + 1).

The left-hand side of this implication means that for any x(t) E XT(t)

'P,,(t,x(t)) = y,,(t) ~ z,,(t) Va EA.

Then we observe that A,,( t, z) can be represented by

A,,(t,z) = {x(t): 'P,,(t,x(t)) = z,,(t)} nM(t)nX",(t).

(*)

Taking into account this representation, with (*) and (3) we obtain y,,( t + 1) = 'P..(t + 1, x(t + 1)) ~

£,,(t + 1) Va E A when x(t + 1) E XT(t + 1). Hence,

X",(t + 1) = n {x(t): 'P,,(t + l,x(t + 1)) ~ £,,(t + I)} nM(t) 3 x(t + 1) ,
"EA

i.e., XT(t + 1) C X",(t + 1). This is the basis of mathematical induction reasoning that accomplishs

the proof. It is important that this class of estimates contains (under some additional assumptions)

the exact one that coincides with the reachable set. 0
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Theorem 3.2 Let Xi be described by the inequality

Xi = {X(ti): IC(X(ti)) S q,X: XO(ti) ---> R} ,

U.(t,x(t)) = Argsup 'P(t + l,J(t,x(t), u(t))) =1= 0 and a map 'P(t,') : Xo(t) ---> R satisfies the
u(I)EU(I,"'(f))

following conditions

SUPUEU(I,Z(I))('P(t + 1,f(t,x(t),u(t))) = c(t,'P(t,x(t))) ,

'P(ti, x( ti)) = IC( ti, x(td) with an arbitrary continuous monotone function c( t, .) : R ---> R. Then

X.,,(t) ~ {x(t): 'P(t,x(t)) S z(t)} = Xr(t) ,

where z(t) is the solution of the chain

z(t +1) = c(t,z(t)),z(t;) = q.

Proof It is clear that X",(-) :) X r (·). Let us show that X",(') C X(-), considering the subsystem

x(t + 1) E f(t,x(t),U.(t,x(t))) ,

(4)

(5)

(6)

X(ti) E Xi, where the reachable set X; is contained in Xr(·), because of U.(·) C U(·). Any solution

image of this system z(t) = 'P(t,x(t)) satisfies (5) due to condition (4). Take any clement x",(r) E

X",(r), rET as an initial one for (6) and solve this chain from right to left to receive x",(t),

t E {t;, ... , r} and the corresponding image z",( t). Since z",(r) = '1'( r, x",(r)) S z(r) then z",( t) S z(t)

for each t due to the monotonicity of c(t, .). Hence, Z",(ti) S Z(ti) S q, i.e., x",(td E Xi and

x",(r) E Xr(r). This means that X",(·) C X r. 0

Corollary 3.3 If'P satisfies all the conditions of the theorem, excluding Xi = {x( ti) : x( x( t;)) S q}

and 'P(ti,X(ti)) = IC(X(t;)) and if

max'P(t;,Xd = 'P(ti,X.(ti)) = q,

then the set X'" = {'P(t,x(t)) S z(t)} is an external estimate of X r(·) for any t E T and 'P(t,x.(t)) =

z(t), where x.(t), z(t) are solutions of equations (5) and (6). In other words the "bound" of X",(·)

touches Xr(·) at any t E T.

Example 1. Consider the following system in normed linear space

x(t + 1) = AX(t) +u(t), lIuli S 1,x(O) = 0 = {x: IIxll = O},A E R.

Take 'I' = IIxli. Then

y(t +1) = IIAx(t) +u(t)1I

z(t +1) = sup IIAx(t) +u(t)1I = supAllx(t)1I +1 = AZ(t) +1.
U,' Z
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Therefore the map 'P satisfies (4) under c(·) = Az + 1. We will find the solution of the last chain

when 0 < A < 1
1 - At 1

z(t) - -- -+ -­
- 1 - A t_oo 1 - A '

then the reachable set of the initial system

{
I At}

X<p(t) = Xr(t) = x(t): IIxll ~ 1-=- A

corresponds to our intuitive considerations on this symmetric system.

4 Application to the Linear Control System In
the Hilbert Space

Consider a particular case of system (1), assuming that it is linear stationary with respect to x and

acts in a the IIilbert Space H:

x(t + 1) = Lx(t) +b(u(t)),u E U, (7)

where L is a linear self-adjoint operator, b: Uo -+ II, U C Uo , and b(U) is a compact set in II.

We take the family of extending maps, 'P", = (w""x), ex E A with W"" and A to be dclermined,

and identify the corresponding family of extensions:

y",(t +1) = (w"" Lx(t) +b(u(t))) = (x(t), Lw",} + (w"" bu) .

Then we assume that condition (4) is satisfied with

C",(z) = A",z + v", g A",z +sup(w"" bu} ,
uEU

where A", is some arbitrary real number.

To ensure this last condition it is sufficient to take W'" such that Lw", = A", W"" ex = 1,2, ....

We suppose that all eigenvalues of L satisfy the condition IA",I < 1. In this case for each A", we

have a discrete scalar process

z(t + 1) = A",z(t) + v",

which converges to z;; = (1 - A",t1v", when t -+ 00.

Repeat these steps for 'P'" = -(W""x) to receive z;; = (1 + A",tlv;;. After that we can note the

final result:

X<p = n{x: z~ ~ (W""x) ~ z;;}

which is an external estimate of the invariant set of the system (7).

Example 2. 1 Consider the discrcle case of the first initial boundary-value problem

iJ2x(I,O
x(t+l,O=x(t,O+h iJ~2 +u(I,O tET={O,I, ...},O~~~ll", (8)

1 Prepared by D. Roeenraukh, Irkutsk Computer Center, USSR.
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x(t,O) = x(t,Jr) = O,x(O,O = sin~, lIuli ~ 1. (9)

Let the unbounded operator L be defined by the functions from COO(O, Jr) with the property (9) (set

D(L)). Assume that it corresponds to the differential operator (1 +h;(',) on [O,Jr], where x(t,~) is

determined for each t ETas an element from L1 (0, 71") and

r ( a1p
)(Lp, q) = Jo p + h ae qd~ = (p, Lq), '<Ip, q E D(L) ,

Le., L is a self-adjoint operator.

Since ~a = 1 - 0.2h and Wa(~) = sin o.~, 0. = 1,2, ... , are the eigenvalue and eigenvector of the

operator L, respectively, then

¢a = (Wa,x) = J: Wa(TJ)x(t,TJ)dTJ,ya(t) = ¢a(X(t,m

and

x~ = n{x(t,e): z:(t) ~ 1'" Wa(TJ)x(t,TJ)dTJ ~ za.(t)},z:
aEA 0

is determined by

z:(t + 1) = (1 - 0.1h)z:(t) + (Jr/2)~ ,

z:(O) = (Wa,sin~)

and Za. can be found by using ¢a = -(Wa,x).
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CONTROLLING THE DYNAMICS OF SCALAR REACTION DIFFUSION
EQUATIONS BY FINITE DIMENSIONAL CONTROLLEIlS
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Mlynska dolina, 84215 Bratislava, Czechoslovakia

The problem of stabilizing equilibria of steady states of distributed paramctcr sys­
tems by finite dimensional (i.e. having a finite number of inputs and outputs) controllcrs
has bccn widely studied lately. In this paper we address a more general problcm which
contains the stabilization one as its special case. We are interested in finding a finitc
dimcnsional ( in the above sense) feedback control which, if added to a givcn system,
would make the essential dynamics of the resulting system to be equal to a onc prc­
scribed in advance.

In order to formulate our problem precisely we have to specify what we mcan by
"csscntial". To this end we first introduce the class of systems for which it is mca.ningful.

Consider an abstract ordinary differential equation in a Banach spacc X in the
setting of [4]

Ii + Ay = F(y) (1)

whcrc
(a) A is a scctorial (in gencral unbounded) operator [4].
(b) FE C1(X'"X) n LiPL(xa,X), 0:::; Q < 1.

(by LiPL(xa, X) we dcnotc the space of function from xa to X with Lipschitl: <.:onstallt.
L cndowed by the Co topology; for the definition of the fractional spacc xa cf.[4)).

Note that the abstract equation (1) includes reaction diffusion equations

Ut = t:.u + f(x, u, Vu)

on bounded domains with sufficiently smooth boundarics and appropriate boundary
conditions, f satisfying ccrtain regularity and growth conditions, as wcll as certain sys­
t.cms of such equations.

In [4] it is proved that under the conditions (a), (b)
(i) -A generates a strongly continuous semigroup e-At

(ii) The equation (1) generates a Cl-semiflow St on XC< dcfined by St{'!Jo) = yet),
whcre yet) is the solution of (1) satisfying yeO) = Yo.

(iii) The variation of constants formula

St(y) = e-tAy + it e-(t-.)AF(S.(y))ds

holds.
In gencral, the semiflow S in not invertible. However, it has been obscrvcd that in

many cases there is a finite dimensional invariant manifold the restriction of S to which
ca.n be extended to a flow on R and the manifold attracts all thc trajcctorics of S. The
existencc and the properties of such manifolds (called inertial) have bccn cxtcnsively
studied lately (see e. g. [1,2,3)).
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A situation in which such a manifold exists is the presence of a sufficiently large
gap in the spectrum a(A) of A. Assume that a(A) admits a spectral decomposition at
It > 0 with gap 217, i.e.

a(A) = al Ua2

whcre
al = P E a(A): RCA < /.l. - 17}

a2 = {A E a(A) : ReA > It + 1]}.

Denote Pi the spectral projection corresponding to ai, Xi := Range Pi, Ai := APi =
PiA, F i := PiF, Yi := PiF, i := 1,2. Then, Al is bounded and the following estimates
hold:

I e-A,IPI I:S Me-(p-'1)1 for t :S 0,

I e- A21 P 2 I:S Ne-(p+'1)1 for t 2: 0,

I e- A21 P2 Y IO':S N O' C
O' e-(lt+'1)1 IY I for t > 0

The equation (1) can be written as a system of equations

YI +AIYI = FI (YI,Y2),

Y2 + A2Y2 = F2(YI,Y2). (2)

In general, the constants M, N, NO' depend on the place a(A) is paTtitioned. Nev­
erthless, in some important cases (e.g. if A is self-adjoint), lvI, Narc indcpndent. Oil

I/..
The inertial manifold theorem of [2J asserts that if L is small compared to t.he gap 1/

t.1wn S has an invariant manifold M which is a graph of a globally Lipschitz cont.illllOllS
fUllction It E CI(XI,Xf), Xf:= X 2 nxO'. We recall that by "inva.riant" we mean thaI.
for each Yo E M there is a curve Y : R -+ M such that yet + r) = STy(t) for each
t E R and each r 2': O. Another important property of M is exponential tracking: cvcry
trajectory yet) of S has its "shadow" YM in M which is a trajectory of S 1M satisfying

eltl I yet) - YM(t) 1-+ a for t -+ 00.

Now, it is quite on hand, why one can consider the dynamics on J\-1 as essential:
it. is invertible and by attracting all outside trajectories with a high exponcnt.ial rate
governs the entire dynamics.

In case X I is finite dimensional, so is M. This is true if e.g. A has a compact.
resolvent which is the case for reaction diffusion equations (2) with Dirichlet or Neumann
boundary conditions. It is our goal to control the dynamics on M in such a case.

The dynamics of the uncontrolled equation on M is t.he dynamics of thc ordinary
differential equation

YI +AIYI = FI(YI,h(Yd) (3) .

We are interested in finding a feedback U : XI -+ XI which, added to the systcm (1),
would bring the differential equation on the inertial manifold to the form
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YI + Al YI = <I>(VI),

where <I> : XI --> XI has been chosen in advance.
In general, adding a feedback U to F may destroy or alter the inertial manifold.

Therefore, we have to formulate our problem as follows:
Given <I> : XI --> XI find U : XI --> XI :Juch that if Mu := [j1'aph hu is the inertial

manifold for the :JV:Jtem
Y= AV + F(y) + U(VI)

I.hen

FI(YI, hU(YI)) + U(yI) = <I>(vd (<1 )

(S)

for all VI E XI.
To solve this problem let us first outline a method of construction of incrtial llIan­

ifolds [2]. By GI, we denote the Banach space of continuous functions </J : (-00,0] --> X
sa.t.isfying s1tPt~oel'tl</J(t)1 < 00 endowed by the norm

I/</JIII' = sUPt~oel'tl</J(t)la'

\Ve dcfine T : XIX GI , --> GI, by

T(C</J)(t) = c-A,t~ +1t
e-A,(t-s)F1(</J(s))ds + r c- A2 (r-s)F2 (¢{,))d.....

o J-~
One has V = T(C </J) if and only if V( t) is a solution of the linear nonholl!ogcncolls
cquation

Y= AV + F( </J( t))

froll! GI, satisfying PIV(O) = ~. It follows that V(t) is a solution of the nonlinear e(jllation
(1) from GI' satisfying PIV(O) = ~ if and only if V is a fixed point of T(~, .). If

M+N 2-0
11:= L[ + --Na1t-Ij < 1,

1] 1 - 0

then T(~,.) is a contraction uniform in ~ and, therefore, has a uni(juc fixed point 1/(
which is a G I function of ~ with Lipschitz constant /'!.l [21 . Thc lllap 11. : XI --> X 2

given by h(O := P2 y{(O), i.e.,

h(O = [o~ eA2S F2 (V{(s))ds

defines the G I inertial manifold M by

M := graph h.

Notc that M is homeomorphic to Xl.
\Ve now show that under certain assumptions relating the constants lvI, lV, IV" , 1/

and It the problem (4) has a solution. We note that a solution U of (4) is a fixed point.
of the map q, given by

'1J(U)(VI) := <ll(vI) - F I (VI, hu(vd)
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To prove that (4) has a solution we show that 111 is a contraction in an appropriate
Banach space. To this end we include U as a parameter into the map T. We define
T: Xl x Lip[(L(XI,Xd x GJl --+ GI, (K to be determined later) by

T(~, U, </»(t) = e-Alt~ + it eAdt-8)[FI(</>(S)) + U(PI</>(s))]ds

+ [too e-A2(t-8)F2 (</>(s))ds

Let U E LipKLCXI,Xd. Assume that

_ - M + N 2 - a a-I 1
V := L( + --Na17 ) < -, (6)

17 I-a 2

with L := L(1 + KIPI !), the Lipschitz constant of F + UPl' Then, by the unifol'lll
contraction theorem, the fixed point Ye,u of T(~, U,.) is a Lipschitz continuous function
of ~ with constant 2M. Since (YI, hu(Yd) = Ye,u(O), a Lipschitz constant of 'lieU)
with respect to ~ is L(1 + 2M). Thus, if (6) is satified with 1\ := 1 + 2M, 'li maps
Lip"L(XI ,Xl) into itself. Further, a Lipschitz constant of Ye,u(O) with respect to U is

2M from which it follows that 111 is a contraction provided
1'-'1

2ML
--<1
P.-17

(7)

Applying the contraction mapping theorem we obtain the following result:
Let 'I> E LipL(XI,Xt). A331Lme that the inequalities (6), (1) are satisfied with

K := 1 + 2MIPI I. Then, there is a unique U E Lip[(L(XI ,Xl) such that

FI(YI,hU(YI)) + U(YI) = <1>(YI) for all VI in Xl,

z. e. , if the feedback U(yd is added to the system (1) then the reduction of thc
semifiow of the resulting system to the inertial manifold M U is given by the equation

liI +Al YI = <1>( yd·

We now apply this result to the scalar reaction diffusion equation

Yt = Yxx + fey), 0 ~ x ~ 1, t 2: 0

with f E LipL(R, R). For simplicity we consider this equation with Dirichlet boundar),
conditions

y(t,O) = y(t,l) = 0

but t.he result applies to other separated linear boundary conditions as well.
To put this equation into the abstract framework we take X := L2 (0, 1) and define

Ay := -y" for y E H2 n H6, F(y)(x) := f(y(x)) for 0 ~ x ~ 1, CI: := O. Then, A is
sectorial and FE LipL(X l , Xl) .
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We have a(A) = {An : n := 1,2,3, ... } with >'n = nZ1I"z. Choosing p. := t(>'n +>'n+d
we have Xl = span{¢l, ... ,¢n}, X 2 = span{¢n+l, ... } with ¢n(x) = sin n1l"x being the
eigenvalue of >'n; we can take TJ := n. We have

Ie-A,II ~ e- Anl « e-(I'-'1)I) for t ~ 0,

le-A21 1~ e-An+ll « e-(j'+'1)I) for t ~ O.

Since M = N = N ex = 1 independently of n, for any L we can choose n so large
that the estimates (6),(7) are met. Consequently, for fixed L, there exists an n > 0 such
that for Xl := span{¢l, ... , ¢n} our abstract result applies.

Its application does not immediately give a complete freedom of the choice of the
dynamics - the dimension of the inertial manifold depends on the Lipschitz constant of
<1>. Since the Lipschitz constant of Al is equal to >'n and, hcnce, increases with n, this
seems to limit our influence on the dynamics on the inertial manifold considcrably.

Neverthless, employing the dynamics of the uncontrolled equation we can do better.
Choosing <1> E LipL(Rk,Rk) for a fixed k, we can construct an inertial manifold of
dimension k on which the dynamics is given by the equation

Z = <1>( z). (8)

Indeed, choose n such that the estimates (6),(7) hold with L replaccd by L +>'/.:. Denote
Xl := span{¢l""¢n} = Zl Ef) Zz, where

Zl := span{¢l, , ¢J.:},

Zz := span{¢I.:+l, , ¢ll},

fli:= Al!z;,Vi = (ZI,ZZ)' Define.f,: Xl -t Xl, .f,(Vz):= (.f,I(Vz),<I>Z(Vl» by

- 1<1> (Vl);= B l Zl + <1>(ZI),

.f,Z(Vz):=O.

Since the Lipschitz constant of.f, is >'k + L, there exists a fcedback U : Xl -t Xl such
tha.t the dynamics of the controlled system on thc inertial manifold is given by the'
equation

Yl +AIYl = .f,1(Vz)

which is
Zl = <1>( Zl ),

Zz + Bzzz = O.

We have fl z = diag{ >'1.:+1, ... , >'n} . Therefore, Zz decays exponentially with rate >'/.:+1.
This means that in the inertial manifold Mu we have constructed an incrtial submau­
ifold of dimension k on which the dynamics is given by (7).
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ESTIMATION OF CATALYST PELLET ACTIVITY DISTRIBUTION

Alena Brunovska
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Noble metal catalysts, such as platinum, palladium, silver and

others, are widely used in industry for hydrogenation and oxidation

reactions. Mostly they are composed by inert porous support in which

noble metal catalysts are dispersed. The reacting gas has to diffuse

into the interior of the pellet where chemical reaction proceeds. If

the rate of reaction is small compared with the rate of diffusion, the

concentration of reacting gas at the pellet centre is little different

from that on the surface. On the other hand, when the rate of the

reaction is large compared to the rate of diffusion, the concentration

of reactant is depleted by the reaction before it has a chance to

diffuse within the pellet and the catalyst in the interior is not

being used to any extent. The ratio of the actual reaction rate to its

value when there is no diffusion limitation is called effectiveness

factor.

The performance of the catalyst pellets can be significantly

improved through the use of nonuniform noble metal distribution. For

example, for positive order isothermal reactions, diffusional

resistance reduces the reactant concentration and effectiveness factor

the maximal value of which is obtained by concentration of the active

catalyst near the external surface. However, in reactions of negative

order kinetics (or Langmuir - Hinshelwood kineticsl, diffusion

resistance can enhance the effectiveness factor and the best location

of the active catalyst is inside the pellet. Another reason for

nonuniform activity distribution is to increase selectivity and

resistance against deactivation.

The catalyst pellets with nonuniform active catalyst distribution

are prepared by impregnation of support materials by solutions

containing a precursor of the active ingredient and innactive species

which is adsorbed on the support.
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The important components of catalyst design are :

estimation of optimal activity distribution for a given process

estimation of real activity distribution of produced pellets

The first estimation method we need at the beginning, before pellet

preparation. The following step is to develop a method of preparation

for a catalyst· with desired activity distribution. To control this

impregnation procedul'e we need an estimation method of activity

distribution on produced pellets.

The optimal catalyst pellet activi ty distribution for maximizing

the effectiveness factor or global selectivity as well as the global

yield for general reaction networks with arbitrary kinetics and finite

external heat and mass transfer resistances is presented by Io.'u et al.

[1 J. The optimal activi ty distribution for reacting systems which

undergo deactivation is analysed in the paper' [2]. In both papers a

general optimality criterion has been developed, which allows to

conclude that the optimal activity distribution is of the Dirac

delta type.

The estimation method of catalyst pellet activity distribution has

been discussed in the papers [3, 4, 5]. In the papers [3, 4] the

proposed estimation method has been verified on simulated data (in the

paper [3] for a positive order testing reaction, in the paper [4] for

a zero order Lesting reaction). Experimental data have been treated in

the paper [5].

The optimality criterion for optimal activity distribution as well

as the gradient in the case of pellet activity distribution estimation

method have been developed with the help of the adjoint equations. In

both cases the results have been checked by an independent method lin

the first case by testing few examples numerically, in the second case

by experiments). In this paper we summarize our main results.
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Optimal catalyst pellet activity distribution

for deactivating systems

The Optimization Problem

The catalyst which is progressively poisoned with operating time

has to be periodically replaced or regenerated, depending upon whether

the poisoning is irreversible or reversible. The duration of the

operating time and the values of the effectiveness factor as a

function of time depend upon the active catalyst distribution within

the support. In general, by locating the active catalyst inside the

pellet it is possible to increase the duration of the operating time.

On the other hand, at least for positive order reactions, the maximum

value of the effectiveness factor is obtained when the active catalyst

is located at the external surface. This is why we use an economic

criterion

price of the product - cost of the catalyst
profit/time

* operating time,
alJ rJ d, - a Zo

*,
where a l and a Z are weighting coefficients proportional to the

of the product and to the cost of the catalyst, respectively,

the operating time and rJ is the effectiveness factor.

(1)

price
* ., 1S

The aim of this work is to determine the initial pellet activity

distribution a(rp,O) and the operating time ,* for which the maximum

value of the following objective function, proportional to the profit

per time, defined above

:J [a(rp,o),,*]

*,
r J rJ d, - I

o
*,

( Z)

(r = al/aZl is obtained. We optimize over the class of all

possible distributions of the same amount of active catalyst.

The Basic Equations

Let us consider a catalyst pellet in which an irreversible reaction

is taking place together with irreversible adsorption of catalyst
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poison. Since the rate of the poison adsorption is usually

considerably lower than that of the catalytic reaction (the form of

which may otherwise be arbitrary) the quasi-steady-state approximation

can be safely adopted. In addition, we assume negligible external

resistances to mass and heat transport. The catalyst activity

distribution is a function of location and time and is defined as the

ratio between the local concentration of available catalytically

active sites and its volume averaged initial value

a(~,") = O(~,")/a (3)
1

where 0 = (n + 1) J o(~,O) ~n dIp (4)
o

Under these conditions, the model equations in dimensionless form are

as follows:

Mass balance of the reactant

v
2

y = cIl 2R (5 )

Mass balance of the poison

v 2y = cIl 2 R (6 )
p p p

Energy balance

v
2

u = - {J cIl
2

R (7 )

with boundary conditions

The deactivation reaction

(8 )

oay/a~ = ay /a~ = au/a~
p

y = y = u = 1
p

is accounted for by a balance of the active

o~

~

sites, which in terms of the activity distribution function reduces to

aa
a"

- R
p

(9 )

with initial condition

a = a(~,O) at "= 0 ( 10)

where the initial activity distribution has to satisfy the constraint

which arise from its definition (3) and Eq.(4)

1
(n + 1) J a(~,O) ~n d~ = 1

o
( 11 )

The rates of the reaction and the poisoning processes have the

following general form

( 12 )R = R(y,y ,a,U) ; R = R (Y,Y ,a,u)p p p p

The effectiveness factor ij is normalized with respect to the initial
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value of the reaction rate computed at surface conditions and to the

initial activity distribution

111
D = J ~nR d~/ J a(~,O) ~nd~ = (n t 1) J ~nR d~
000

and is equal to the mean reaction rate.

General Condition for Optimal Activity Distribution

R ( 13 )

Consider the general deactivation process described above [eqs (5)

- (7) anJ (9)] in a symmetric domain with boundary conditions (8) and

initial condition (10). The goal is to find the initial distribution

a(~,O) subject to the constraints

1
(n t 1) J ~n a(~,O) d~

o
1 and a(~,O) ~ 0 ( 14 )

and the time r > 0, such that for r* r and a(lp, 0) a(~,O) the

objective function (2) is maximized

In the paper [2J the following optimality criterion has been

JevelopeJ :If a(~,O), is optimal, then, for any given initial

distribution a(~,O), one has

1 1
J ~n o/(~,O) a(~,O) d~ ~ J ~ no/(~,O) a(~,O) d~
o 0

( 15 )

where o/(rp,r) is obtained as a solution of the sJ'stell/ of adjoint

equations

2 oR 2 2 oR 2
~ P t oY (1 - p~ t sP~ ) - -p( q~ t 0/) = 0 ( 16 )oY p

2 oR 2 2 oR 2
~ q t ay (1 - p~ t sP~ ) - clyp(qel> t '1') = 0 (l7 )

p p P

2 oR 2 2 oR 2
~ s t a- (1 - pel> t sPeI> ) - a-P(qel> t 0/) = 0 ( 18)u u p

00/ aR 2 2 aR 2
ar t aa (1 - pel> t sPeI> ) - -p(q~ t 0/) = 0 ( 19 )oa p

\"ith the boundary and terminal conditions
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1: E <0,1:>

'1'('1',0) = 01: 1:

f{J

rp

o Bp/Bf{J = Bq/Bf{J = Bs/Bf{J

p = q = s = 0

B'I'/Bf{J o

(20 )

(21 )

(22 )

with coefficients depending on a(f{J,O).

The optimality criterion (15) practically excludes any initial

distribution a(f{J,O) which is not of the Dirac-delta type. In fact for

any given distribution it is possible to construct a suitable

Dirac-delta distribution which improves the objective functional (2).

The maximal value of the integral criterion (15) is obtained when all

active catalyst is concentrated at the point where the function 'I'(f{J,O)

is maximal. In addition the criterion (15) may exclude some delta

distributions as well and indicate in which direction to move the

activity location point to find the optimal one.

Example

For illustration let us consider the case of an isothermal first

order reaction with dimensionless rate equation

R = a Y (23 )

which occurs together with independent chemisorption of catalyst

poison, leading to the following rate expression for the deactivation

process

R = a Y (24)
p p

We will consider two type of activity distributions

Dirac-delta activity distribution located at the point f{J1' i.e.

a(f{J,1:) a(f{J,O) /1(1:)
0(f{J -

(n+1)

f{J 1 )

n
f{J1

/1(1:) (25 )

- Step function activity distribution (i.e. uniformly active region

between the points f{J1 and f{J2)

f{J E <0, '/1 1 ) and f{J E (f{J2' 1> : a(f{J,1:) = 0 (26)

n+1 n+1
'/1 E <f{J1, IP 2> : a('P,1:) = /1(1:)/('P 2 - 'PI )

where /1(0) = 1. The system of the adjoint equations is
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v2p + a(l _ p t 2 ) = 0 ( 27)

V2q _ q t 2a - ~ a = 0 (28 )p

a~/a" + Y(l -p t 2 ) - q t
2 Y - ~ Y = 0 (29)p p p

with boundary and terminal conditions (20) - (22) •

In the case of a Dirac-delta activity distribution the solution of

the model equations as well as the expression of the objective

function can be obtained in a closed form [2]. The objective function

(2) becomes a function of two parameters: the active point location

~1 and the operating time "*. The model equations for a step function

activity distribution have to be solved numerically. The objective

*function is a function of three parameters : ~1' ~2 and ". The

adjoint variable profiles ~(~.O) have been obtained by solving

numerically the system of adjoint equations. One example for parameter

values; a = 10, 1 = 5, t 2 = 1, n = 1 is exhibited in Figs. 1 and 2 .

0.8

1.
0

1 7 b: Ij ; ,

ljJ 141,01 1~ v.v., 7 I _

0.5

1.0 i I

ljJI41,OI~)"""""--
(0.05; 0.95> ~
=---------"
(0.2; 0.8)

(411;412) =(0.4;0.6)

0.6

oI I I I

o 0.5 'P 1.0 o 0.5 41 1.0

Fig.1 Dirac-delta activity

distributions

Fig.2 Step function activity

distributions

The optimal Dirac-delta distribution, obtained by a standard

optimization method, is located at ~1= 0.67 (as indicated by the solid

vertical line). It is rather surprising thaL for all considered

step-size distributions, even the widest one <0.05, 0.95>, the maximum

of the 'I'(~,O) curves is very close to the location of the optimal

Dirac-del ta distribution. This provides a useful initial information

[or the optimum search. In Fig. the adjoint profiles ~(~,O) are

shown relative to Dirac delta distributions centered at various

locations ~1' It appears that using the criterion (15) it is possible
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to exclude the locations ~1= 0.1, 0.3 and 0.5, since the corresponding

adjoint functions exhibit their maximum values at other locations. In

addition, the function ~(~,O) indicates in all cases, that the optimal

location should be to the right (i. e. larger values ~1) since the

value of the integral in the right hand side of condition (15)

increases when moving the Dirac delta location in this direction. On

the other hand, the criterion (15) is not fine enough to exclude the

location points to the right of the optimal one (i.e., 0.8 and 0.9).

The only way to exclude such points is in fact by comparing the

corresponding values of the objective function.

Estimation of the catalyst pellet activity distribution

from kinetic data

The

pellet

estimation

is useful

of

for

the activity distribution inside

several reasons. One reason is to

the catalyst

control the

impregnation procedure, another one is to obLain some information

about the mechanism of deactivation.

INPUT

CAD' Ceo'....
Vo

fig. 3 Kinetic measurenments

+
CATALYS T

PELLET

OUTPUT
•

CA .C e·····

The goal of the presented method is to estimate the activity

distribution from kinetic data. The kinetic data have been obtained by

measuring the stirred tank reactor outlet concentration of a fixed

testing reaction for various feed rates (Fig. 3). The form of the

Lesting reaction rate expression has been assumed to be known and the

value of the reaction rate constants can be evaluated from

measurements in the kinetic region on the crushed pellet. Also the
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values of the diffusion coefficients have to be estimated by a

different method. For most of the testing reacLions, the estimation of

iLs value along wiLh the activity distribuLion appears to be an

ill-posed problem. In any case it is helpful to have some more

information about the activity, e.g. which part of the pellet is

active, or whether the distribution has increasing or decreasing

Lendency, etc.

Further assumption is that the system response is sensitive enough

Lo the activity distribution. IL depends on the testing reaction

choice and on the experimental conditions. This can be Lested by

computer simulation of the pellet behaviour.

The proposed method has been tested on experimenLal data. The

investigated pellet (l-alumina impregnated with Pt) had a narrow

region activity distribution. As the testing reaction hydrogenation of

ethylene (Langmuir - Hinshelwood reaction rate expression) has been

chased. The estimaLed activity profile has been compared with the

distribution of Pt obtained by the scanning electron microscope

combined with energy - dispersive analyser of X-rays. The experiment

and caLalysL pellet preparation is described in deLail in the paper

[5] •

OpLimization Problem

Let us consider a catalyst pellet in a continuous stirred reactor

in which the testing reacLion

A + B ~ products

takes place. The dependence of the reactor outlet composition on feed

raLe under steady state condiLions is measured.

The problem is Lo estimate the pellet acLivity distribution Lo

obtain the best fit of the measured and the computed reacLor outleL

concentrations. As Lhe objective function

F[a{f/J) 1
I 2
\' (Y - Y. )
L. Ai Al,exp
i=1

min (30 )

has been used, where YAi is Lhe dimensionless reac tor outlet
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concentration corresponding to the activity distribution a(~), YAo1,exp
is the experimental dimensionless concentration and I is the number of

measurements.

The activity distribution has been considered as a piecewise linear

function given by the values a(~k) in equidistant mesh points dividing

the interval <0,1>.

The Basic Eguation

Let us assume perfect gas-to-solid mass transfer, constant

temperature in the active layer and constant diffusion coefficients.

Then the model dimensionless equations are as follows :

Pellet mass balances

VZy = <jlZR
A

'JZy = e5 <jlZR
B

( 31 )

(3Z)

~oundary conditions

~

~

Reactor mass balances

o
1

dYA/df/l = dYB/d~

YA = YA(l)

YB = YB(l)

o ( 33 )

(34 )

Reaction rate equation

- YA(l)

- YB(l)

ZRAR

ZRBR

(35 )

(36 )

R
Z WZYAY Ba

(1 + x 1YA + XZYB)Z

Mean reaction rate expression

aZl;(YA,y
B

) (37)

1
R = (n + 1) J R ~nd~

o
From Eqs (31) - (36) and (38) we obtain the boundary conditions

<liZ

(38 )

~ dYA/d~ z ( [l-Y(RA n + 1 ) AI)]
( 39)
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<!J2 {)

Z RB (n + 1) [1 - YB( 1 ) J
(40 )

and the following relation between concentrations of components A and

B

Yn Y
B
(l) - {) [Y

A
(l) - YAJ (41 )

Using Eq. (41) we can reduce the system of model equations by

cons ide ring the equations fo r the component A onl y. The system 0 f

model equations has been solved numerically.

Optimization Technique

The problem is to minimize the objective function (30) under the

constraints

1
(n + 1) J a('/I) 'Pn

d'P
o

(42 )

and non-negativity of a. The objective function has K parameters

a(f/l1),a('P
2

), ...... a(f/lK). To find the minimum of the function (30) a

gradient type method has been employed. The gradient is the vector

with the components

of

aa (Y'k)

I
L {-2(n + 1)
i=l

II'. +6f/l/2

.p2J l 'I'n(P
Ai

+
f/l.-6f/l/2

l

OPn i) i; i df/l )

k = 1,2, .. ,1\ (43)

and PAt Pn are the adjoint variables, which solve the adjoint

equations

with boundary conditions

2
'9 PA

2
'9 Pn

(P
A

+ op )<!J2 a 2 a~
B aY

A

(P
A

+ OPs)<!J2 a 2 a~aYB

(44 )

(45)

f/l = 0 ; dPA/df/l = dPB/df/l = 0 (46 )

2 (47)II' = 1 ; dPA/df/l = [YA(lJ-YA,exp-PA(l)<!l /ZRA J /(n+1)

2 (48 )dPn/df/l = [-PB (l) ~ /ZRB J /(n+1)
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The derivation of the gradient components and the system of the

adjoint equations is similar as for the n-th order reaction (see

Appendix of the paper [3]).

Because of the constraint (42) and the

projected gradient method has been used.

non-negativity

The (m+l)-th

of a('P
k

)

iteration

the

has

been computed from the

a('P k )

where

m-th one by the scheme
m m

a('P k ) - A Yk

1
J m m n

(n+l) O(a('P k ) -A Yk)'P dIp

(49 )

Yk [ :F/0"'k l for a('Pk»E or for a('Pk)S E and

aF/aa('Pk)SO

for a('Pk)SE and aF/aa('Pk»O

(50 )

and the step length Am has been determined by a one-parameter

optimization procedure in the gradient direction (the method of

steepest descent). As the first approximation of the activity

distribution the parabolic function has been chosen.

Results

The estimated activity distribution is in Fig. 4. In this figure

the resulting activity distribuLion is compared with the normalized Pt

disLribuLion (ratio of Pt amount and toLal PL amounL in Lhe pelleL)

from the scanning electron microscope. We note, that this two profiles

8 I i I I

2
a

4
o

o

1.04l0.6
a L Y I , , ,

0.4

Fig. 4 Comparison of estimated activity distribution

and Pt distribution (0).
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we can compare just qualitatively, because there is not simple and

known relation between activity distribution and active catalyst

distribution which depends on several physical properties. The

deacrease of the objective function during the iterative procedure

indicate that the system is sensitive enough on the pellet activity

distribution and that the choice of the testing reaction and

experimental conditions appers to be suitable. The proposed gradient

type estimation method works well for simulated [3, 4] as well as for

experimental data.

List of symbols

a activity

a characteristic dimension of catalyst pellet

a p equilibrium poison adsorbed amount

C concentration

D diffusion coefficient

F objective function in problem 2

{-~H) heat of reaction

1 objective function in problem 1

n integer characteristic of pellet geometry (n=O,

cylinder; n=2, sphere)

p adjoint variable

q adjoint variable

r reaction rate

R dimensionless main reaction rate

Rp dimensionless poisoning rate

s adjoint variable

t time

T temperature

to characteristic deactivation time

V volumteric flow rate

W catalyst mass

y = C/C O' dimensionless concentration

ZRA = rOW/(VC AO ) ,dimensionless parameter

ZRB = rOw/(VCBO ), dimensionless parameter

slab; n=l,
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Greek letters

()(

()(l

(J(2

(J

Y

o
II

= ~ 2/~2, ratio of Thiele moduli
p

price of product

cost of catalyst

(-hH)DACAO/(ATOl, dimensionless reaction heat

()(l/()(2' dimensionless parameter

DeACAO/(DeBCBO) , dimensionless parameter

effectiveness factor

Xl = KACAO ' dimensionless parameter

x 2 = KBC BO ' dimensionless parameter

~ concentration term in dimensionless reaction rate

£

11

L

A

A

rp

'"
~

p
'I'

w

1)

17

accuracy

relative activity

= t/tO, dimensionless time

thermal conductuvity

step length in gradient method

dimensionless space coordinate

alro/(DACAO)]l/2, reaction Thiele modulus

ala I(D C otO)]l/2,poison Thiele modulus
p p p

adjoint variable

= 1 + xl + x
2

rate equation parameter

= T/T O' dimensionless temperature

concentration of available catalytically active sites

Subscripts

* terminal conditions

° feed stream conditions

A,D reactants

exp experimental points

p poison

1 ,2 activity location
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Some remarks OIl the periodic linear quadratic regulator problem.

G.Da Prato (1)

Scuola Nonnale Superiore
56126 Pisa, Italy

1 Introduction and notation.

If X is a Hilbert space ,we shall denote by L;(X), the set of all 27t-periodic

mappings u: R~X, locally square integrable, and by CiX), the space of all 27t­

periodic continuous mappings from R into X.

We consider here three Hilbert spaces, H(the state space), U(the control space) and

Y(the observations space), and a dynamical system governed by the state equation:

jy'(t) = A(t)y(t)+B(t)u(t)+f(t)

(1.1)
yeO) = y(27t)

We assume :

(HI) For all tE R, B(t) is a linear bounded operatorfrom U into H. Moreover

B(t+27t) = B(t) and B(·)u is continuous for any UE U.

(H2) For all tE R, A(t): D(A(t»C H~H generates a strongly continuous

semigroup in H. Moreover, A(t+27t) = A(t) and there exists a strongly
continuous mapping GA (-,.): ((t,S)E R2: ~s)~ L(H), such that

a
(ft GA (t,s)x = A(t)GA (t,s)x and GA (s,s)x = x for all XE Hand t>s.

(H3) We have lim GA (t,s)x =GA(t,s)xfor all XE H, uniformly on the
n~oo n

bounded sets of ((t,S)E R2
: t~s },where GAn(t,s) is the evolution 0

operator generated by the Yosida apprOXimations nA(t)(n-A(t)r1of

A(t).

(1) Work partially supported by the Italian National Project M.P.!. 40% " Equazioni di Evoluzione e

Applicazioni Fisico-Matematiche"
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(H4) f E L;(H).

Hypotheses (H2) and (H3) are fulfilled in many problems both parabolic and

hyperbolic ( see for instance [1], [7], [8]).

In (1.1) yet) represents the state and u(t) the control of our system. A mild

solution of (Ll) is a mapping yE C#(H) such that, for all interval [a,b] C R, one has

l

(1.2) yet) = GA(t,a)y(a) + fGA(t,s)[B(s)u(s)+f(s)]ds; tE [a,b]
a

If 1 belongs to the resolvent set p(GA(211:,0» of GA(211:,0), we say that A(t) is nOli

resonant; in this case, as well known, for any UE L;(U) there exists a unique mild

solution of (Ll) given by :

2lt

(1.3) y(t) '" GA(t,0)(l-GA(211:,O)r 1 fGA(211:,s)[B(S)u(s)+f(s)]ds
o

l

+ jGA(t,s)[B(s)u(s)+f(s)]ds

We recall that the non zero eigenvalues of GA(211:,0) are called the Floquet exponents of

A.

We are also interested in the case when A(t) is resonant; in this case, for any

UE L;CU) we set:

(1.4) Au = lyE CiH): y is a mild solution of (Ll»)

If Au is non empty, the control u is said to be admissible. We shall denote by Uad the

set of all admissible controls

(1.5) Uad={UELZ(U);Au7:0)

Our goal is to minimize the cost functional ;

2lt

(1.6) J(u,y) = j{llC(t)y(t)1I2+IIU(t)1I2)dt

defined for all UE Uad and yE Au.We assume:
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(H5) For all tE R, qt) is a linear bounded operatorfrom Y into H. Moreover

qt+2rr) =qt) and q·)x is continuous for any XE H.

If there exist U*E Uad and y*E Au. such that:

J(u* ,y*) $ J(u,y), for all UE Uad and yE Au

we say that u* is an optimal control and y* an optimal state.

In order to show the existence of an optimal control we will proceed as follows:

Step 1. We assume that (A,B) is stabilizable with respect to the observation C, that is

-too

(H6) For all XE H there exists UE L2(O,oo;U) such that J(lIqt)y(t)1I2+lIu(t)1I2 jdt<oo

In [6] was proved that this condition is necessary and sufficient for the existence of a
positive 2rr-periodic solution ~(t) of the Riccati equation

(1.7) Q'+A*Q+QA-QBB*Q+C*C =0

Step 2. We solve, under suitable assumptions, the dual problem:

{

r'(t)+F*(t)r(t)+QN(t)f(t) =0

(1.8)

reO) = r(2rr)

and the closed loop equation

{

y'(l) =F(t)y(t)-B(t)B*(t)r(t)+f(t)

(1.9)
yeO) = y(2rr)

where F(t) =A(t) - B(t)B*(t)~(t) is the feedback operator.

In order to solve problems (1.8) and (1.9) one requires that F(t) is non resonant. As

shown in [5], this happens if (A,C) is detectable ([5]); a more general condition will be

discussed in Section 3.

Step 3.By proceeding as in [5] and [4] , one first proves the identity:
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where

(Lll)
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27t

J(U,y) = J* + j"B*QY+B*r+uI2dt; for all ue Uad and ye Au

27t

J* = j(<r,f>-IIB*rIl2 )dt

and r is the solution of (1.8).

By using (1.10) it is not difficult to prove that there exists an optimal control u* and

that the optimal cost is given by J*.

A kcy point of the above program is to show that F(t) is non resonant. A result in

this direction was given in [4]. In Section 2 we recall some results on Riccati equation

and in Section 3 we will present somc new result on the relation bertween the Floquet

exponents of A and F.

2 Riccati equation.

We first introduce some notation. We set

L(H) = (Se L(H) ; S is hermitian); L+(H) = (Se L(H) ; <Sx,x>~O \7'xe H )

We denote by Cs([O,T];L(H» (resp.C~(L(H») the set of all strongly continuous

mappings F:[O,T]~L(H) (resp. the set of all strongly continuous mappings F:R~L(H)

which are periodic)

Next we assume (Hl)-(H6), fix DO and consider the Cauchy problem:

{
~? I A*Q+QA-QBB*Q+C*C = 0

(2.1)

Q(T) = Po

where Poe L+(H), and the approximating problem:

{

ddQtn I A*Q +Q A -Q BB*Q +C*C = 0
n n n n n n

(2.2)

Qn(T) =Po

where A = nA(n-Ar l is the Yosida approximation of A
n
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We say that Qe Cs([O,T];L(H» is a mild solution of problem (2.1) if

T

(2.3) Q(t)x = e(f-l)A"Poe(f-t)Ax + fe(S-t)A" (C·C-P(s)BB·P(s) }e(s-t)Axds,
l

for all xe H,te [O,T].

The following result can be proved as in [2]

Proposition 2.1. Assume (HI), (H2), (H3) and (H5). Then problem (2.1) has a

unique mild solution Qe Cs([O,T];L(H», such that Q(t)~O for all te [O,Tj.

Moreover, problem (2.2) has a unique solution Q
n

and, for all xe H

(2.4) lim n (t)x = Q(t)x, uniformly in t in [O,Tj.
n--.oo "<n

We consider now Riccati equation

(2.5) Q'+A*Q+QA-QBB*Q+C*C = 0

We say that Qe c:;'(L(H» is a periodic solution of (2.5) if, for any interval [a,bjCR one

has

b

(2.6) Q(t)x = e(b-l)A"Q(a)e(b-l)Ax + fe(S-t)A" (c-C-P(s)BB·P(s) }e(s-l)Axds,
l

for all tE [a,b] and XE H.

The following result can be proved as in [6]

Proposition 2.2. Assume (HI), (H2), (H3),(H5) and (H6). Let Q('t) be the mild

solution to the problem

{

dQ('t) + A*Q('t)+Q('t)A-Q('t)BB*Q('t)+C*C = 0
dt

(2.7)

Q('t)(t) = 0 ,t~t

Then for any te R, Q('t)(t) is increasing in t and there exists the strong limit

(2.8) lim Q('t)(t)x:= Q (t)x ; \lxE H
't-.~ #

Moreover Q# is a periodic solution of (2.5).
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The operator Q/I' defined by (2.8) is the minimal nonnegative periodic solution

of Riccati equation (2.5).

3 Spectral properties of the feedback operator.

We assume here (Hl)-(H6). We denote by Q/# the minimal nonnegative periodic

solution of Riccati equation (2.5). We set

(3.1) Fn(t) =An(t) - B(t)B*(t)Q/I(t), tE R.

where A (t) is the Yosida approximation of A(t), and denote by Gp (t,s) the evolution
n n

operators generated by Fn(t). Recalling hypothesis (H3), it is not difficult to show

that

(3.2) lim GA (t,s)x =GA(t,s)x, for all XE H,
n--+oo n

unifoffilly on the bounded sets of (t,S)E R2
: ~s).

The main result of this paper is the following:

Theorem 3.1. Asswne (Hl)-(H6); then the following statements are equivalent:

(i) There exist AOE C and XOE H, xo~O, such that IAOI~l, Gp(21t,O)xo = AOXO'

Oi) There exist AOE C and XOE H, xo~O, such that IAOI~l, GA(21t,O)xo = AOXOand

C(t)GA(t,O)xo =0 for all ~O.

Moreover, if(j) or (ii) holds then:

(3.1) Gp(t,O)Xo = GA(t,O)xo for all ~O.

Proof. (i)=>(ii). Let AOand Xo such that (i) holds.

Let Q
n

be the mild solution to the problem

{

dQ
"""""":':dtn A*Q +Q A -Q BB*Q +C*C =0n n n n n n

(2.2)

Qn(21t) = QiO)
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and GF (t,s) the evolution operator generated by the Yosida approximations F (t) of
n n

F(t). Since Fn(t) is a continuous bounded perturbation of An(t), it is casy to show,

recalling (H3), that lim GF (t,s)x = GA(t,s)x for all XE H, uniformly in ~s.
n-700 n

By a simple computation we have

~t <~(t)GFn(t,O)xO,GFn(t,O)xo> = -IIB*Qn(t)GFn(t,O)xo"2 - lIC(t)GFn(t,O)xoI1
2

from which, integrating from 0 to 21t, and letting n tend to infinity

2n

(IAi-l)<Qit)xo'xo> + f(IB*QI/(t)GF(t,O)xoI2+IIC(t)GF(t,O)xo"2jdt = 0
o

which yelds

(3.2) B*QI/(t)GF(t,O)xo= 0 for all ~O.

(3.3) C(t)GF(t,O)xo = 0 for all ~O.

By (3.2) F(t)GF(t,O)xo = A(t)GF(t,O)xo' this implies (3.1) and that GA(21t,O)xo =

Aoxo ; taking into account (3.3) the conclusion (ii) follows.

(ii)=>(i). Let 1..0 and Xo such that (ii) holds.

Let Q('t) and ej't) be the solutions of the Riccati equation:
n

{

dQ('t) + A*Q('t)+Q('t)A_Q('t)BB*Q('t)+C*C = 0
dt

(3.4)

Q('t)(t) = 0 ,t:5t

{

dej't)
_n_+ A*Q ('t)+Q('t)AJ"i't)BB*Q('t)+C*C = 0

dt n n ~ n
(3.5)

Q~)(t) = 0 ,t:5t

We recall that, by Propositions 2.l.and 2.2 we have:

(3.6) lim Q('t)(t)x:= QI/(t)x ;'t___ lim Q('t)(t)x:= Q('t)x ; 'r;JXE H
n-+oo n
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unifonn1y in t on bounded sets. Next we compute the derivative

~t <Q~'t)(t)GA"(t,O)XO,GAn (t,O)XO> = 11B*~'t)(t)GAn(t,0)xOIl2 - IIC(t)GAn(t,0)xOIl 2

from which, integrating from 0 to 't, and letting n tend to infinity

't

<Q('t)(t)xo'xo> + JIIB*Q('t)(t)GA (t,0)xoIl2 dt = 0

which implies

B*Q('t)(t)GA (t,O)xo = 0, \it$'t.

Finally, as 't~oo we find

F(t)GA (t,O)xo = A(t)GA (t,O)xo'

so that GF(21t,0)xo = AOXO and (i) holds. I

Remark 3.2.

Assume (H1)-(H6) and that GF(21t,0) has only a point spectrum. By Theorem 3.1 it

follows that F(t) is non resonant if one of the following conditions is fulfilled

(1) A(t) in non resonant.

(ii) A(t) is resonant but the following implication holds:

(3.7) XOE H, xo1:O, GA(21t,O)xo = Xo => C(t)GA (t,O)xo = 0 for at least one ~O.

Thus if either (i) or (ii) holds, then there exists an optimal control; otherwise an optimal

control does not exists in general.

Take in fact, H=R2, U = Y = R, A(YI'Y2) = Y2' C(Yt'Y2) = Y2' Bu = (O,u), f(t) =

(1,1). Then (H1)-(H6) hold and the state equation reduces to :

{

Yt'(t)=l

y~(t) = u(t)+l

so that no admissible control exists.
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Abstract. We study optimal control problems for distributed
parameter systems with control and state constraints by using the
theory of infinite dimensional nonlinear programming problems.

1. Introduction.

Optimal control problems for systems described by partial differential equations
including not only control constraints but state con~traints have been studied
by numerous authors; see for instance [LAI], [MAl], [TRI], [ROI], [WHI]. We
propose in this paper a treatment of these problems as nonlinear programming
problems for functions defined in metric spaces, the constraint function taking
values in a Banach space. This program has been already carried out for systems
without state constraints in Hilbert spaces [FAI], [FF2], [FFI]. One attractive
feature of this treatment is that (unlike, say, separation theorems) it applies to
nonlinear equations and requires no convexity assumptions; other is that it is
relatively simple, involving the generalization of results on the abstract
nonlinear programming problem from Hilbert space valued functions to the
Banach space setting, which has been done in [FR2]. Finally, the method applies
as well to systems described by equations other than differential, for instance
functional differential equations, with state constraints induded. Details will be
published elsewhere.

2. An abstract nonlinear programming problem.

Let V be a metric space, E a Banach space, Y a subset of E. Given
functions fo : V~ R = [real numbers} and f: V ~ E we consider the abstract
nonlinear programming problem



(2.1)

(2.2)
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minimize fo(u)

subject to f(u) E Y .

Necessary conditions of Kuhn - Tucker type for solutions u of this problem,

have been obtained in [FR2] (Theorem 2.1 below). We denote by B(x, r) the ball

of center x and radius r ~ 0 in an arbitrary metric space. Let u E V and let
(C(u); u E B(u,o)} be a family of subsets of E. We denote by lim supu ~ u C(u)
(resp. lim infu ~ u C(u)) the set of all y such that lim infu ~ u dist(y, C(u)) = 0
(resp. limu ~ u dist(y, C(u» = O.

Let Y be a subset of E, y E E. The contingent cone Ky(y) to Y at y

consists of all w in E such that there exists a sequence (hk} c R+ = (positive

real numbers} with hk -7 0 and a sequence (Yk} c Y with Yk -7 Y such that

Yk - Y -7 W as k -7 00 .

hk

Let g be a function from V into E, u E V. The vector I; E E is a (first

order) variation of g at u if and only if there exists a sequence (hk} c R+ with

hk -7 0 and a sequence (Uk} c V with d(Uk, u) $ hk and such that

g(Uk) - g(u) -71; as k -700.

hk

We denote by dg(u) (the variation set of g at u) the set of all such 1;. Finally,

f1 is the canonical projection of R x E into E, (fo, f): V -7 R x E is the

function (fo, f)(u) = (fo(u), f(u», and we call a set Y sleek at y E Y if there exists

£ > 0 such that for every y E Y, Iy - y I $ £ we have

Ky(y') = lim infy' ~ y Ky(y') .

In particular, convex sets and CI manifolds are sleek (see [FR2])

Theorem 2.1 Let u be a solution of the nonlinear programming problem
(2.1) - (2.2). Assume that (a) the metric space V is complete, (b) the functions
f and fo are locally Lipschitz continuous, (c) the target set Y is closed, (d) the

target set Y is sleek near y = f(u), (e) there exist constants £, p > 0 and a

compact set Q !:: E such that for each u E B(u, £) there exists a convex, closed
set C(u) k d(fo, f)(u), containing zerowith
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(2.3) B(O, p) ~ n(C(u» - Ky(y) + Q (u E B(u, e), y E B(y, €)nK ) .

Then there exists (zo, z) E R x E* (E* the dual of E) such that

(2.4)

(2.5)

Zo ~ 0, Z E Ny(y), (zo, z) "# 0,

Zo11 + (z,~) ~ 0,

for all (11, ~) E lim infu -7 U C(u).

See [FR2] for a proof. In the second statement (2.4), Ny(y) ~ E* is the
normal cone to Y at y. Condition (e) is a combined "fullness" condition on
the variation sets and the target set. It is redundant in finite dimensional spaces
(take Q = B(O, p». The Hilbert space version of Theorem 2.1 can be proved
under much weaker hypotheses on the functions fo, f [FF1] [FF2]. An ancestor
of this Hilbert space version (where the setup and the hypotheses are less
general) was proved in [FA3]; the case where E is finite dimensional is
essentially contained in the results of [EK1].

We sketch below how Theorem 2.1 can be applied to optimal control
problem that include state constraints.

3. Distributed parameter systems described by elliptic differential equations.

Let n be a bounded domain of class Cm in Rnl with boundary r, and let A
be a uniformly elliptic partial differential operator of class C(2),

AY = f f -,0. (ajk(x) -,dy) + I bj(x) ~. + c(x)y
j=l k=l ox) OXk j=l ox)

wi th a boundary condition P on r. This boundary condition is either of
Dirichlet type or of variational type Dy = y(x)y (0 the conormal derivative).
The operator A and the boundary condition p generate a strongly continuous
semigroup S(t, A, P) in the space C(K) of continuous functions in K = closure
of n, the space C(K) endowed with the supremum norm (for the Dirichlet
boundary condition the space C(K) is replaced by its subspace Co(K) consisting
of all functions vanishing on r).

The control system is described by the semilinear initial value problem in
the space E = C(K),



(3.1)

(3.2)
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y'(t) =A(/3)y(t) + <I>(t, y(t), u(t» ,

y(O) = Yo,

where A(/3) is the infinitesimal generator of S(t, A, /3). Controls u(t) take
values a. e. in a closed, bounded subset U (called the control set) of a Banach

space F. The nonlinear term <I>(t, y, u) is defined, continuous and locally
bounded in [0, T] x C(K) x U and takes values in Loo(O); we assume that it

possesses a Frechet derivative dy<l>(t, y, u) with respect to y which is strongly
continuous and locally bounded. Admissible controls are assumed to be in a
space of F - valued measurable functions, where the notion of measurability

must be such that t ~ <I>(t, y(t), u(t» is (0(0), Loo(O» - weakly measurable for

every admissible control. For instance, if F = Loo(O) and <I>(t, y, u) = 'l'(t, y) + u,

the space of admissible controls consists of all (0(0), Loo(O» - weakly
measurable Loo(O) - valued functions u( .) such that u(t) E U a. e. The
treatment of (3.1) - (3.2) under these measurability assumptions is slightly
nonstandard (see [FA2] for the linear case) but existence and uniqueness of
C(K) - valued solutions y(t) = y(t, u) in intervals 0:0; t :0; T', is proved by
successive approximations in the usual way. We note that in general T' < T,
that is, solutions may blow up somewhere in the interval 0:0; t :0; T.

We use a cost functional of the form

Yo(', ul = fa' ~(s, yes, ul. u(s»ds

where the assumptions on <1>0 are similar to those on <1>; <l>o(t, y, u) is defined,

continuous and locally bounded in [0, T] x C(K) x U and possesses a Frechet

derivative Vy<l>o(t, y, u) with respect to y which is continuous and locally

bounded as a P - valued function. Finally, we assume that t ~ <l>o(t, y(t), u(t» is
measurable for every admissible control. The problem is

(3.3)

(3.4)

minimize yo(t, u)

subject to y(t, u) E Y, y(t, u) E X(t) (0:0; t :0; t) .

The target set Y and the variable constraint set X(t) are subsets of C(K).
Assuming that the endpoint t of the control interval 0:0; t :0; t is fixed we can
simply replace X(t) by X(t) n Y and reduce the target condition and the state
constraints to the unique state constraint
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yet, u) E X(t) (0 s t s t).

However, it is more convenient to keep the target condition and the state
constraint separated as in (3.4).

We can mold the problem (3.3) - (3.4) into a nonlinear programming
problem (2.1) - (2.2) as follows. The space V is the space of all admissible
controls with the distance

(3.5) d(u, v) = meas(t; u(t) i' vet)} .

(or rather a ball B(u, 8) c V, see Lemma 3.1 below). The space E is the

Cartesian product C(K) x C([O, t]; C(K» = C(K) x C«[O, t] x K) endowed with its
usual supremum norm. Assuming that t is fixed, the functions fo(u) and f(u)
are defined by

(3.6)

(3.7)

fo(u) = yo(t, u) ,

f(u) = (y(t, u), y( . , u» ,

where yet, u) is the solution of (3.1) corresponding to the control u E V. Since
yet, u) may not exist in the whole control interval 0 S t S t, we may either
impose conditions on global existence or use the following result:

Lemma 3.1 Let u E V be a control such that yet, u) exists in 0 S t s t. Then
there exists 8 > 0 such that, if d(u, u) s 8 (d the distance (3.5» then yet, u)

exists in 0 S t Stand the map u ---j yet, u) is Lipschitz continuous in B(u, 8)
uniformly in 0 S t S t.

Lemma 3.1 is applied to the optimal control u, assumed to exist; by
definition it produces a global trajectory, thus trajectories corresponding to
neighboring controls will be global as well.

The target set Y for the nonlinear programming problem under
construction is

(3.8) Y = (y, y( . » E C(K) x C([O, t]; C(K»; y E Y, yet) E X(t) (0 s t S t)} =

= Y x (ye- ) E C([O, t]; C(K»; yet) E X(t) (0 s t s t)} = Y x z.

We compute variations of the function (3.7) at an arbitrary control u E V
using an extension of Theorem 4 in [LYl].
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Lemma 3.2 Let u(·), v( .) be admissible controls, a < p :s;; 1. Then there

exists a measurable set ep &: [0, t] with meas(ep) :s;; p and such that if up is
the control defined by

up(t) = v(t) (t E ep), up(t) = u(t) (t Ii!E ep),

then the solution ~(t) of the linearized initial value problem

(3.9)

(3.10)

~'(t) = (A(P) + dy$(t, y(t, u), u(t»}~(t) +

+ ($(s, y(s, u), v(s» - $(s, y(s, u), u(s»} (O:S;; t:s;; t) ,

~(O) =a

satisfies the asymptotic relation

y(t, up) = y(t, u) + p~(t) + o(p) as p -; a+ ,

It follows from this result that (~(t), ~( . » E df(u). The variations of fo are
similarly computed; we have

yo(t, up) = yo(t, u) + p~o(t) + o(p) as p -; a+

where the function ~o(t) is given by

(3.11) So(t) ~ J.' [.o(s, y(s, u), v(s» - o.,(s, y(s, u), u(s») ds +

+ J.' (o,4>o(s, y(s, u), u(s», «s») ds ,

and ~(t) is the solution of (3.8) - (3.9).

Taking limits, we deduce that any vector of the form (~o(t), ~(t), ~( .» in the
space R x C(K) x C([O, t]; C(K», where ~(.) is the uniform limit of solutions of
the initial value problem (3.9) - (3.10) and ~o(t) is the uniform limit of (3.11)
belongs to d(fo, f)(u). It follows then from [FR1] (or from extension of the results
in [FAl], since the equation is linear) that a(fo, f)(u) contains any vector of the
form (~o(t), ~(t), ~( . » where ~(.) is the solution of the initial value problem



(3.12) ~'(t) = (A(P) + ay<1>(t, y(t, u), u(t))}~(t) + v(t) (0 ~ t ~ t)

(3.13) ~(O) = 0

and ~o(t) is given by

",(t) = fv,(,)ds + f(.y"(" Y(', ul, u(,)), S('l)d',

with (vo(t), v(t») E conv(<1>o, <1»(t, y(t, u), U) - (<1>0' <1»(t, y(t, u), u(t»} a. e. (conv
means closed convex hull).

We apply Theorem 2.1. The dual space E* = (C(K) X CUO, tl x K»* can be

identified with the space L(K) x L([O, t] x K» of all pairs (A(dx), jl(dtdx», where

A(dx) is a finite regular Borel measure in K and /.L(dtdx) is a finite regular

Borel measure in [0, t] x K; this space is endowed with the total variation norm

1(;., "ll = LIMdxl! + fLI"(dxdtll .

The key point is the verification of (2.3) for the target set Y. Denote by C(u) the

sct of variations (~o(t), ~(t), ~( . ») constructed above, and consider the set
Il(C(u)) = (~(t), ~(. ))}. In general, (~(.)} cannot contain an interior point in
C([O, t]; C(K)), for this would mean that every function in a neighborhood in
C([O, tJ; C(K) could be impersonated by a trajectory of the system, which
contradicts smoothing properties of parabolic equations. The same properties

imply that the set (s(t)} cannot contain interior points in C(K). Now, since Y is

sleek, for any (y, y(.)) E C(K) X C«[O, t] x K) we have

Ky(y, y( . )) = Ky(y) x Kz(y( . )) .

Thus, we can insure (2.3) by assuming that the X(t) are, say, convex and
contain a common open set, and requiring that the target set Y satisfy: there
exists p > 0 and a compact set Q such that

(3.14) B(O, p) ~ Ky(y) + Q (y E B(y, E») .



59

This (and the sleekness condition) is satisfied, for instance, if Y is convex with
interior points or if Y is a Cl manifold of finite codimension.

Replacing C(u) by its closure, the Kuhn - Tucker inequality (2.4) for (zo, z) =

(zo, A(dx), Il(dtdx» '" a is

z,,1;.,(I) + L1;(1, x)l.(dx) + fL1;(t, x)~(dtdx) > 0,

to be satisfied for all (11, s) E lim infu -) u C(u). The variations (So(t), S(t), S( . »
giyen by (3.9), (3.10) and (3.11) depend continuously on the admissible control

u( .) in the distance of V, thus the vectors (So(t), S(t), S( .» corresponding to
u = u belong to lim infu -) u C(u). We exploit the arbitrariness of v( .) by using
in its place spike perturbations ur,s,v(') of u(·),

Ur,s,v(t) =v (s - r :5: t :5: s), ur,s,v(t) =u(t) elsewhere,

where v is an arbitrary element of the control set U (see [FA3]) and then

letting r ~ a + . This produces the limit functions

s(t) =a (0:5: t < s) ,

s(t) =S(t, s; u)(<1>(s, y(s, u), v) - <1>(s, y(s, u), u(s»} (s:5: t:5: t) ,

where the operator S(t, s; u) is the solution operator of the linear equation

s'(t) = (A(~) + dy<1>(t, y(t, u), u(t)}S(t)

and

So(t) =a (0:5: t < s) ,

So(t) = <1>o(s, y(s, u), v) - <1>o(s, y(s, u), u(s» +

+ f (dy<1>o(cr, y(cr, u), u(cr», s(cr») dcr (s:5: t:5: t) .

Manipulations similar to those in [FA3] produce then the maximum (or,
rather, minimum) principle
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zo<1>o(t, y(t, u), u(t» + (z(t), <1>(t, y(t, u), u(t») ::;

::; zo<1>o(t, y(t, u), v) + (z(t), <1>(t, y(t, u), v» (v E U)

a.e. in the control interval 0::; t ::; t, where z(t) is the solution of the backwards
initial value (or "final value") problem

(3.16) dz(t) == - (A(P) + ay<1>(t, y(t, u), u(t»}*z(t)dt-

- ay<1>o(t, y(t, u), u(t»dt - Jl(dt) (0::; t ::; t)

(3.17) z(t) == A.

in the space 1:(Q), where Jl(dt) is the measure Jl(dtdx) considered as a 1:(Q) ­
valued measure.

We note that the case where the equation is linear, the constraint set X(t) is
convex and has a nonempty interior and Y is an arbitrary convex closed set
(possibly without interior points) can be treated using the separation theorem
for convex sets in Banach spaces along the lines of [FA2].

4. Distributed parameter systems described by hyperbolic differential equations.

The abstract nonlinear programming formulation in §2 apply as well to
systems described by semilinear hyperbolic initial value problems

(4.1)

(4.2)

y"(t) == A(P) + <1>(t, y(t), u(t» ,

y(O) == yo , y'(O) == yl ,

where now A(P) is the (cosine function generator) corresponding to A and

the boundary condition P in the space L2(Q). The treatment can handle, for
instance, constraints of the form

(4.3) E(y(t»::; C (O::;t::;t),

where E(y(t» is the energy of the solution at time t. (its norm in the space H
below). The equation (4.1) is reduced to a first order system for the function

(y('), y'('» in the energy space H == Hl(Q) x L2(Q). (Hl'o(Q) in the case of the
Dirichlet boundary condition; see [FA4] for details). The problem is
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(4.4) minimize yo(t, u)

(4.5) subject to (y(t, u), y'(t, u» E Y, (y(t, u). y'(t, u») E X(t) (0 S t s t) ,

where yo(t, u) is a suitable cost functional and the X(t) are sets in the energy
space H. The space V is defined in the same way as in §3. The space E is the
Cartesian product H x Cw([O, tl ; H), where Cw([O, tl ; H) is the space of all
weakly continuous H - valued functions defined in Os t s t endowed with the
supremum norm. The dual of this space can be expressed in terms of a
complete orthonormal system {en} in H; Cw([O, tl ; H)* is the space Lw([O, tl ; H)
of all sequences {Iln} of measures Iln E L([O, t]) such that

~ t
~ Jo (en, f(s») Iln(ds) sci f I

for f E Cw([O, tl ; H). The functions fo(u) and Hu) are defined by

(4.6)

(4.7)

fo(u) = yo(t, u)

feu) = (y(t, u), y'(t, u), y( . , u), y'( . , u»

where t is the endpoint of the control interval °s t stand yet, u) is the
solution of (4.1) - (4.2) corresponding to the control u E V. The considerations
in §3 about global existence apply. The target set Y is

{(yO, yl, YO('), yl(.)) E H x Cw([O, tl; H); (yo, yl) E Y, (yo(t), yl(t» E X(t) (0 s t s t)} .

The rest of the treatment is similar to that of the parabolic problem in §3. We
note that, due to the favorable controllability properties of the hyperbolic
equation (4.1) (see [FA2]) it is possible to handle point targets Y = {yO, yl}.

We note another important difference between the treatment of parabolic
problems and that of hyperbolic problems; in the former, pointwise constraints
can be handled (this is implicit in the C(K) setting) whereas in the latter, the
results are restricted to constraints like (4.3) of integral type on the state
variables: pointwise constrains such as those in [WH11 are not included.

We point out that the abstract nonlinear programming setting applies to
many other different situations. For instance, other parameters in the initial
value problems (3.1) - (3.2) or (4.1) - (4.2) (for instance, the initial conditions)
can be considered as controls. Also, we may treat optimal control problems for
functional differential equations with target conditions of functional type,
including state constraints: all that needs to be done is to compute the
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variations of the maps f(u), fo(u) corresponding to the equation and to the cost
functional. This computation was carried out in a particular case in [FA3].

The work of the first author was supported in part by the National Science Foundation under
grant DMS - 8701877
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APPROXIMATE AND NUMERICAL METHODS OF THE OPTIMAL CONTROL
SYNTHESIS FOR STOCHASTIC SYSTEMS

Vladimir B. Kolmanovskii and Gennadii Yeo Kolosov
Moscow Institute of Electronie Machinery

109028, Moscow, USSR

This paper is a survey of some results connected with the numerical
and approximate synthesis of the optimal control for stochastic dynami­
cal systems with concentrated or distributed parameters. Approximate
methods of the solution of optimal control stochastic problems have
double interest. First it's well known that exact analytical solution
of such problems may be obtained only in the exclusive cases. So usual­
ly approximate methods give the possibility to obtain the efficient way
of determining the control algorithm close to the optimal one. On the
other hand according to the dynamic programming method many optimal
control problems may be reduced to the solution of some special nonlin­
ear equations with partial or flUlctional derivatives (the Bellman equ­
ations) . Thus for the problem (1.1), (1.2) considered below the correspon­
ding equation (1.3) is a nonlinear equation of parabolic type. The solu­
tion of the latter equation may be of interest for the theory of the
appropriate systems with distributed parameters. In this case the meth­
ods and ideas of the optimal control approximate synthesis may be useful
for the approximate solutions construction and qualitative theory
of the equations like (1.3).

The algorithms considered below are fOlUlded either on some small
parameters in the system equations or on successive approximations
procedure for the Bellman equation solution. Numerical methods which
are effective as a rule for the systems of small dimension are illust­
rated for some concrete examples.

Bibliography does not pretend on the fullness. It contains only
the sources which were essentially used in this survey, but at the
same time which contain further extensive information on the problems
lUlder consideration.

1.Approximate synthesis of the optimal control for the systems with
small parameters. First let us set forth formally the methods of
approximate synthesis for dynamical systems described by a vector-valued
stochastic differential equation of the Ito type

clx ( 1.) = f ( t , x, u) dt + a ( t , x, u) d~ ( t ), 0 ~ t ~ T, x (0 ) xo • (1 .1 )
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Here x E R
n

is phase vector, u E U C ~ is a control,€(t)ER
1

denotes a
standard Wiener process and R is an Euelidean space of dimension n.

n
The matrices f and a of the corresponding dimensions, the time moment
T, the vector Xo and the set U al'e given. The performance index sUbject
to minimization is defined by the expression

T

I(u) = M [F
1

(x(T)) + JF
2

(t,x(t),u)dt]--. inf (1.2)
UEU

o

where F
1

, F
2

are given scalar penalty functions. M is the expectation.
Under the assumption that the eurrent values of the vector x(t) can be
exaetly measured it is required to find the optimal eontrol Uo in the
.form of synthesis uo=uo(t,x(t)). Let us denote by V(t,x), ° ~ t ~ T,
x E Rn the Bellman function of the stated problem. Then I(uo)=V(O,xo )'
Under some assumptions according to dynamic programming method function
V is a solution of the following Cauehy problem

inuf [LuV(t,x) + F2 (t,x,u)] = 0, V(T,x) = F1 (x), (1.3)
UE

a a 1 a2

L = ---- + f' (t,x,u)---- + ---Tr10 1 (t,x,u) ----2' 0 1= 00',
u at ax 2 ax

where prime denotes transposition and Tr is the matrix trace.
It should be stressed that the greatest lower bound in equation

(1.3) must by calculated with respect to the vector parameter UEU.

Therefore the dynamic programming method leads to the following algo­
ritlun of the solution of the optimal control problem: first of all it is
neeeSGary to find the function V(t,x) by solving the problem (1.3) and
after that to obtain the optimal eontrol Uo by solving the finite
dimensional optimization problem

LuV(t,x) + F2 (t,x,u) --. inf
~U

(1 .4)

The obtained function uo=uo(t,x), depends on (t,x) and consequently
is the control synthesis. However, exact analytical solutions for the
Eqs. of. (1 .3) type can be found only in exceptional oases, for instance
in linear-square and some scalar problems.

That is why different approximate and nwnerical methods of solving
Eli. (1.3) (henee the synthesis problem) acquire ereat practical import­
anee. The efficieney of approximate synthesis methods, as a rule, is
brought about by the presenee of a small parameter in the problem (1.1),
(1.2). Suppose that functions f, 0, F1,F2 in (1.1), (1.2) depend on
parameter S

f=f(t,x,u,S), o=o(t,x,u,S), F2=F2 (t,x,u,S), F1=F1 (x,S) (1 .5)
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Represent V(t,x) in fOl~

v = V 0 ( 1. , x) + 8V1 (1., x) + ••• (1 .6)

Then substitute (1.6) in (1.}) and expand the left-hand side of (1.})
and the function F1 into a series of powers of 8. Then equating to
zero the expressions for different powers of e we obtain a system of
equations for functions Vi(t,x) in (1.6). Suppose that for some value
of j the indicated equations are solved for all i=0,1, ... ,j and
the functions Vi (1., x), i ~ j are found. Then to detel~ine the j-th
approximation to optimal control it is necessary to solve the problem
(1.4) whose left-hand side is expanded in 8 taking into consideration
(1.5),(1.6) and expansion terms up to the order j. The control being
obtained in such a way will be denoted by vj(t,x). In some situations
it is possible to prove that

j

V ( 1. , x) - ~ .5 i V i (1. , x) = 0 ( 8 j t 1 )

i=O (1.7)
I(uo ) - I(v j ) = 0(.5 jt1 ).

There are two ways for the proof of the rela 1. ions (1.7). In the
first place using (1.}) and the equations for Vi one estimates the

j
differen,~es

V - L ciVi
1=0

and I(v
j

) -

j

Leivi'
i=O

The different way is founded on the direct analysis of the equations
(1.1) and the cost functional (1.2). Consider some ooncrete cases in
detail.

1. I. Small stochastic disturbances. Let the functions f, F
1

and Fz
don't depend on c and the matrix a be equal to ~ 0(1., x) . The problem
(1 .3) talces the form

c
F 1 (x),V(T,x)0,V

t
+ H(t,x,V ) + --- Tr 01V

x 2 xx
av av (1.8)

H(t,x,Vx ) = inf [ f' (t,x,u)Vx + F2 (t,x,u) ], V
t
= ---, Vx=

liEU at ax

The solution of the problem (1.8) will be found in the form (1.6). Sub­
stitute (1.6) in (1.8) and equate to zero the coefficients for the same
degrees of e. Then we get the relations that define functions Vi' Acco­
rding to this soheme equation of the i-th approximation turns out to
be linear in Vi for i~1. In partieular we get for i=O, 1

V
Ot

+ H(t,x,VOx ) = 0, V (T,x) = F1 (x), (1 .9)



av
x

V,t +

cJH(t,x,VOx )
v +1x 2
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Tr o,VOxx = 0, V, (T,x) = O. (1.10)

The control of the i-th approximation vi(t,x)according to (1.4) is
defined by the equality

a
inf[f' (t,x,u)-(Vo+ ... +,siVi ) + F2 (t,x,u)]
ueU cJx iJ

=f' (t,x,vi)--(VO+ .. ·+ciVi ) + F
2

(t,x,vi ).
ax

It's obvious from here and (1.9) that Vo is a Bellman function and
V o is optimal control in the determined problem (1.1), (1 ,2) with 0=0.
The consequent approximations Vi(t,x) are determined by quadrature
from a some function of the preceding approximations along the trajec­
tories of the system (1.1) with ° = 0 and control u = vo ' For example
by virtue of (1.10) under some conditions

T
1

V, (t,x) = 2 JTr 0, (~,y(~))VOxx(~,Y(~))d~

t
Here y(~) is a solution of Eq. (1.1) for ° == 0, u == V o on the segment
t s ~ s T with initial condition y(t) = x. The proof of the relation
(1.7) for the case of small distUl'bances under consideration is
oontained in the papers [20,24].

1.2. Qua3t I (near systems. Let the problem (1.1), (1 .2) has the form

dx(t)=(B(t)u + Ax + cf(t,x))dt + O(t)d€(t), ostsT, x(O)=xO
T

J(u)=M[x' (T)N
3

x(T) + J(X' (t)N, (t)x(t) + u'N
2
u)dt

t

(1.11)

T

It's assumed that U=R , matrioes N. are bounded nonnegative definite
r 1

and N2 is positive definite. l"undion Vo(t.x) in the representation
(1.6) equals

Vo = x'P(t)x + JTr O,P(s)ds.

t
Here matrix P(t) is defined by the relations

(1.12)

-,P(t) + A'P + PA - PB,P + N, = 0, P(T) = N3 , B, = BN2 B'. (1.13)
The approximations Vj ' j~1 satisfy to the linear equations

1 1 j

Vjt + -- Tr o,V jxx + f'V(j_,)x - -- 2V~XB,V(j_i)X = 0,
2 4 i=O (1 .1 4 )

Vj(T,x) = o.
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According to (1.4),(1.6),(1.11) the control of j-th approximation
v (t,x) is given by the formula

1
vj(t,x) = - -;- N~lB' (Vox+ ... +cjVjx)

The solution of equation (1.14) has the form

Vj(t,x)

T

MJ[f' (s,x)V(j_l lX(s,x)

t

1 j-l

- 4ifl Vix (S,y)B 1 (s)V(j_ilx(s,y)]dS

(1.16)
Where y = y(s) is the solution of the equation (1.11) with € = 0,

u = Vo and initial condition y(t) = x.
The proof of the estimations (1.7) for quasi linear systems was

given in (4, 23-25,29J.
1.3. Adaptive systems with smaIl a priori uncertainty. Consider

the problem (1.11) for f = 0, 0
1

= 00 I > 0 where elements of a constan t
matrix A are a priori unknown and represent some Gaussian veGtor from
R z with expectation mo E R zand co variance matrix €Do of dimension

n n

n2
x n2 .1n this case for the desoription of the controlled system

dynamics it's neoessary to add to equation (1.11) with f = 0 the Kalman
filtering equations for vedor m(t) and. matrix D(t) which oharaderize
the a posteriori density of the conditional probability distribution

of the matrix A elements. These equations have the form

dm(t) = DR'O~l [cL.'{(t) - (A(m)x + BU)dt], m(O) = rna,
• -1
D = -DR 1D, D(O) = €Do ' R1 = R'Ol R.

Here matrix A(m) is obtained from A by the change of the unknown ele­
ments of A by their aposteriori mean value m. The matrix R(x) of
dimension n ><n2 equals

R(x) ~ [

Xl . .. xn 0 ... 0 ... .,. 0 .•. 0 ]
0 0 x

1
••• xn '" 0 ... 0 .

. .. ... ... ... ... . ..
o 0 0... 0 .,. •.. xl'" xn

Bellman function V(t,x,m,D) satisfies to the relations

V
t

+ x'A' (m)Vx + inf(u'B'Vx + u'N2 u) + x'N 1x
1 uERr (1 • 17 )

+ --- Tr[ DR1D(V - 2VD) + 2DR'V + 0lV ] = 0, V(T,x,m,D) = N?., rnm xm xx ~

c.

Let us find the solution of problem (1.17) like (1.6) in the form
V(t , x , m, D) = V0 ( t , x , m) + €V1(t, x , m, D) +... (1 . 18 )

The Gontrol of the j-th approximation v.(t,m,x,D) is given by (1.15).
. J

Note that in (1.18) function Vo does not depend on D and is defined by
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(1.12), (1 .13).A in (1.13) being replaced by matrix A(m) with the fixed

value of m (just the same as in the left side (1.18). Functions Vj ,

j ~ 1 in (1.18) satisfy to the relations
1

Vjt+ x' (A(m)-PB 1 )V jx+ -;-Tl~1VjXX+ aj(t,x,m,D) =O,Vj(T,x,m,D) =0. (1 .19)

(1 .20)

(1 .21 )

1
aj(t,x,m,D) = -;- Tr[DR1D(V(j_Zlmm- 2V(j_1 lD + 2DR'V(j_1 lxm]

1 j-1

- --4-- 2VixB1V(j_ilx' j~2, a 1= Tr[DR' (X)Voxm(t,x,m)].
1=1

The problem (1.19) solution may be represented in the form
T

Vj(T,x,m,D) = Jaj(s,y,m,D)ds.
t

Here

Where y = y(s) is UnO) solution of the equation

dy(G) = [A(m) - B1 (S)]y(s) + O(s)dUs), 1, ~ sST, y(t) = x. (1.22)

Remarl~ that x,m and D in formulae (1.21), (1 .22) must be considered as
constant. The error estimate of tile described method of approximate
[>ynthesis was established in [8] .Adaptive hereditary systems with small
a priori wlcertainty were investigated in [7].
Rerna.rl~ I. The methods of approximate synthesis stated above were devot­
ed to the regular disturbed systems. In singUlar distw.'bed systems the
phase vector has two group of components - fast y(t) and slow z(t) which
are described by the equations

clz. ( t) = f 1 (t, Z ,y , u) d 1, + 0
1

(1" Z ,y , u) d~ 1 (1, )

Sdy(t) = L,(t,z,y,u)dt -1 ~ O.,,(t,z,y.u)d€z(t)
c c

Here €i are standard Wiener processes. Besides singUlar perturbed prob­
lems arise in systems with "cheap" control. As examples we may indicate
the linear-quadratic problem (1.10) with f=O, N2 = SN2 and problem
of the optimal estimation with small noises in the observation channel
[2]. The approximate synthesis problems of optimal control for singular
perturbed stochastic systems were investigated in [26,27,33-35,38].
The method of integral manifolds was applied in [18] for the investiga­
tlon of singtl.lar pertw.'bed Riccatti equations.This gives the possibili­
ty to calculate a fast component of the solution only with the aid of

alGebraic operations.
Remark 2. The above considered methods were devoted only to approximate
synthc[;is of the optimal control. But if the phase vector cannot be me-
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asured then the same problems statements are valid for the open-loop
optimal control. Quasioptimal open-loop control was derived in [32] for
linear systems with small stochastic disturbances by reduction a
stochastic problem to determined one. Stochastic maximum principle was
used in [3] for the approximation of the optimal open-loop control of
quasi linear systems.
Remark 3. The principle of the generalized work [12] is effective for
the construction of approximate optimal control in some systems.

2.Successive approximations.Successive approximations method is
founded on the approximation of the Bellman equation solution by a
r;equence of solutions of some linear equations.

2.1. Bellman method of successive approximation [/) for the problem
(/.3). Talw an arbitrary admissible control Vo and substitute it in the
(1.3) left side instead of u. After that find the solution Va of the

corresponding linear problem.Substitute Va in (1.4) and determine a
control u1 that minimizes the (1.4) left side. Continue this procedure.
As a resuH we get the sequences Vi(t,x) and vi(t,x) such that

Lv V. + F2 (t,x,v.) = 0, V. (T,x) = F1 (x),
ill l

inf [I,uVi + F2 (t , x , u )] = L. V. + F2 ( t , x , vi+1 )
UEU v l +1 l

It's proved that under some conditions [21,24,31] sequence Vi converges
to the solution of the problem (1.3) and sequence vi(t,x) converges to
the optimal control. In particular for linear-quadl-atic problem (1.11)
with f = 0, Vo = ° procedure (2.1) leads to approximation of the solu­
tion of the Riccatti equation (1.13) by the sequence Pi satisfying to
linear equations

Pi + A'P i +P i A - Pi B1Pi - 1 - Pi - 1B1Pi + Pi-1B1Pi-1+ N1 = 0,

Pi(T) = N3 , i > 0, P-1 = 0.

By virtue of (2.1) a control of the j-th approximation v. for V.= x'p.x
is given by the formula v j = -N21B'P j _1X and in additio~ the J J

differences P - Pi and I(uO) - I(Vi ) are values of 1/(i+1)! order.
2.2. Method Of successive approximations for systems with small

parumeLer.Assume that the relations (1.3) may be represented in the form

inf [IJ
u

VH'2(t,x,U)+E¢(t,x,V)]=O, V(T,x)=Jo'1 (x) (2.2)
UEU

I,et Vo be a solution of the problem (2.2) with E=O. Define approxima­
tions V., i 2: 1 in the following way

J.

inf [LuVi +F2 (t,x,u)] = -E¢(t,x,Vi _1 ), Vi (T,x)
UEU

F1 (x) • (2.3)
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The i-th approximation control vi is obtained as a solution of the pro­
blem (1.4) with Vi instead of V in the left side. Eqs. (1.8) are an
example of the Eqs. (2.2) corresponding to tlle control system with small
disturbances. In this case equations of successive approximations have
the form

Vit + H(t,x,Vit ) = -~ Tro1V(i_1 lxx'
(2.4)

Vi (T,x) = F1 (x).

Note that Eqs. (2.4) with the equation of zero approximation correspond
to the deterministic problems of optimal control.

2.3. Sman control. Let in the problem (1.1), (1.2) be

f = a(t,x) + cq(t)u, F2
Then Eq. (1.3) has a form (2.2) with

1
L V = L V = V + a'V + ---Tr 0 Vu 0 t x 2 1 xx

= a(t,x).

, ¢ = ¢(t,V) = inf [v~qu].
ueU

Suecessive approximations Vi are determined by the relations

LaV0 + a ( t , x) = 0, V0 (T , x) = F1 (x) ,

LoV i + a(t,x) = -8¢(t,Vi _1 ), Vi(t,x) = F1 (x), i e: 1.
(2.5)

by the value

In some cases Eqs. (2.5) may be solved analytically [8,10].On calculating
Vi the quasi optimal synthesis of the i-th approximation vi(t,x) is
derived from the condition

i~uf [Vixqu ] = Vixqvi· (2.6)
u<=

Quality of the i-th approximation vi(t,x) is given by I(vi ). Accuraey
of the approximate synthesis (2.5), (2.6) for small c is characterized

i+1I(vi ) - I(uO) = 0(8 ).
In some cases procedure (2.5), (2.6) ensures the convergence of Vi un­
der i--. co to the exact solution V of Bellman equation (2.2) for arbit­
rary (finite) value c and also the convergence I(v i ) to I(uO).

3. Numerical and apprOXimate methods of control synthesis in conc­
rete problems. Nwnerical methods may be divided into two groups. The
methods of the first group are founded as a rule on finite difference
sehemes for partial differential equation that are applied either dire­
ctly to a Bellman equation or to relations approximating this equation.
The relations (1.9), (1.10), (1.14), (1.19), (2.1), (2.3) are an example
of such approximation. The special features of the Bellman equation
numerical solution and some results for mechanical systems al'e given in



71

[13,23,24,36]. The methods of the second group consist of preliminary
approximation of the initial continuous control problem by a problem
witll discrete time and finite numbers of states and control and
consequent application of nwnerical procedures [13-15,28,30]. In [16]
it's proposed to approximate the optimal cost function value by local
solutions of a Bellman equation defined in some domain of a phase
space. In addition if this domain is sufficiently large and the system
starts from its depth then the probability of leaving the domain will
be small. Below some results of nwnerical and approximate solutions of
concrete optimal control problems are given.

3.1. ControL of osciLLations under stochastic disturbances.Consider
the control that maximizes the probability of a system to be in a given
region So on the given time interval [O,T]. The applied finite differe­
nce scheme of the corresponding Bellman equation solution is effective
also for another problems. The equations of a system have a form

x = y, y = -a2 x + bu + o~ , 0 5 t 5 T. (J.1 )

JIel'e a,b,O,T are given and Gontrol u is a SUGh that lui 5 1.Tlw initial
I.~ondition for the system (J.1) is (x,y) E So for 1. = O.Denote by
y(t,x,y) the Bellman function of this problem that equals to the maxi­
mwn of probability of system (J.1) to be in So on the interval [t,T]
undel' Gondition that (x(t),y(t)) = (x,y) E So.Go over to new variables
aeGording to the formulae

t ~ 02 t /(2b2 ), x~ 04x/(4b3 ), y~oZy/2b, ~.bu, a2~4b4a2/o4, T~02T/(2b2).

Assume that in new variables domain So is a square with the orIgIn as a
center and with the sides parallel to the coordinate axes. There are
bOlllldary condition y(t,x,y) = 0, ~t5T on the regular part of the bOllll­

dary of So and initial condition y(T,x,y) = 1,(x,y) ESO' Optimal control
Uo equals uo(t,x,y) = signYy(t,x,y). Bellman equation has a form

Yt + yY - a2xY + IY I + Y = O.x y y yy

Nwnerical solution of this equation was obtained in [17] by the frac­
tional step method that leads to the following scheme. Let h 1 , hz, 1:
are approximation steps in x,y,t. Integer-valued indexes i,j,k vary
within the limits - N 5 i, j5 N, K ~ k > 0 and Y~j is a value of the
fundion Y(t,x,y) for x = ih1, Y = jh2 , 1. = k1:. The difference equations
for Y~j following from Bellman equation have the form (q = q(j) = 0
for j~O and q(j) = -1 for j<O)

1:- 1 (yk _ yk- O.S ) + °h h- 1 (yk-O.5
ij ij J 2 1 it1tq,j

yk-005 )
itq. j

0,
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~-1 (Vk-O.5 _ yk-1) + h-2(yk-1 _ 2yk-1 + yk-1 )
ij ij 2 i,j+1 i,j i,j-1

( )-1 ( 2 .)( k-1 k-1+ 2h2 Uij - a h1l Yi,j+1 - Yi,j-1) = o.

Here

u = sign(yk-O.5 _ yk-O.5
ij i.j+1 i,j-1)·

Initial and boundary conditions lead to equalities

Yk _yk _yk -y -0 K>k>O
-N j - N j - i -N - i N - , - -'1 . 2 1. 1 '

y~j = 1, -N < i, j < N, -N:; i
1

:; N, -N:; j1< 0,0 < j2 5 N.

These equations for y~j are solved numerically. Some results are
given in Figure 1 where in the right are switching curves of the
optimal control for t = 0.6, a2 = 0,1,2,3 and level curves of Bellman
function y(t,x,y) for a2 = 1, t = 0.5 (in the left). Besides y(t,x,y)
= y(t,-x,-y) and uo(t,x,y) = -uo(t,-x,-y) that gives the possibility

to define Y and Uo in another parts of the square SO'

Y
1 .2 Figure 2:

Ut)l
y(t) N T)(t)l

~~ i -t' x ~1 H ~~1,1>.2' j 0 r
Figure 1:

-1 ,2

3.2. Optimal tracking servo-system. Let us consider the tracking
servo-systeln shown in Figure 2. The input y(t) is a symmetrical two­
state Markov proGess (y(t) = ±1 ).Its a priori probabilities pt(±1) =
P(y(t) = ±1) satisfy Eqs.

pt(1) = -pt(-1) = -!J.pt(1) + !J.pt(-1)

The observed process y(t) = yet) + ~(t) is a mixture of an input pro­
cess y(t) and Gaussian white lloise of intensity ~/8. The control plant
o is a servo-motor with constrained velocity disturbed by Gaussian
white noise of intensity 8'V. The behaviour of the plant 0 is described
by a scalar equation.

x = u + T)(t), lui s 1. MT)(t) 0, MT)(t)T)(t-~) E'Vl) (~). (3.2)
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The synthesis problem oonsists in finding a struoture of the oontrol
device which on the basis of infol~ation about processes {Y(s). x(s):
o s s ~ t} for each moment t must form the control signal u(t) providing
an optimal tracking of output coordinate x(t) after the input prOI~ess

y(t) in the sense of the minimum of functional
T

I(u) = M[J(y(t) - x(t))2dtJ (3.3)

o
Let us denote by w;= P(y(t) = 1 IY~). w~= P(y(t) = -1 IY~) the a posteri-
ori probabilities of the states of the input process y(t) = ±1 in the

-t -presenoe of the observation Yo = {y(s) :O~s~t}. According to [8J the
difference z(t) = w:- w~ satisfies the stocllastic differential equation

z = -2~z + E(1 - z2)y(t)/~. (3.4)

The pair (x(t).z(t)) forms the vector of "phase coordinates" for the
synthesis problem under consideration. From (J.2) - (3.4) it follows
that the Bellman equation for this problem has the form

Vt + min(uV ) - 2~zV + EVV /2 + E(1-z2 )2V /2~ + x2 _ 2zx+1 = O.
I 1

<1 x Z xx zz
u- (3.5)

Os t <T, -1<x,z<+1, Vx (t.±1,z)=O. IV
z

(t.x.±1)<oo. V(T.x.z) = o.

The diffusion terms of this equation contain a small parameter. There­
fore for approximate solving (3.3) one can use the following soheme for
oaloulating the successive approximations (j = 0,1 •...• V_ 1 = 0)

Vjt- jVjXI - 2~zVjz + x2
- 2zx + 1 = -E(V j _1xx/2

v j = - signV jx '

+ (1 - z2)2V . 1 /2~)
J- ZZ

By using oorresponding caloulations of the first two approximations for
the stationary tracking problem (when the final time of tracldng T ~ (0)

the structural circuit of suboptilnal tracking servo-system shown in

Ut)

y(t)~{J~1fl Z(t)~I'~

3: J~ ~~. @}fu 2~ -1

Figure

y( t)
------>

figure 3 was oonstructed in [8J •where HIT denotes tlle nonlinear converter
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z = x + 2c~x[(1 - X2 )2 + ~]/(1 - 4~2X2)~.

The quality of system shown in Figure 3 was estimated by numerically
solving the Bellman equation (3.5) and the linear equation for perfor­
mance index Q(t,x,z) of the system in Figure 3

Q
t

+ v(t,x,z)Q - 2~zQ + cvQ /2 + E(1 - z2)2Q /2~ +
x z xx zz

+ x2 - 2zx + 1 = 0, ost<T, -1 <x,z<+1, Q (t,:!:1 ,z) = 0,
x

IQz ( t , x, :;: 1 ) I < 00 , Q (T , x , z) = 0,

v(t,x,z) = siqn{x- z + 2E~X[(1 - x2 )2 + ~]/(1 - 4~2x2)~}.

Some results of the calculations carried out for E = V = 1, ~ = 0.45,
~ = 5, t = T-4 are shown in Figw.'es 4,5 where continuous lines
correspond to function V and dotted lines to Q. From the analysis of

the curves in Figvu'e 4,5 it follows that the circuit in Figure 3 in­
sures the relative error of minimized functional

BI = [Q(t,x,z) - V(t,x,z)]/V(t,x,z) < 0.02.

-- ---
4.8

4.2

-4.4

F,Q

-- - - ---""",---

Figure 5:F,Q

~---

-4.8

.---

Fip;ure 4:

Z
! I I I I I I I I I 1

0-1.0 a 1.

x=O ~ >
z=O <:

I ! I I I I J I I I ,,{~
-1.0 a 1.0

(J.7 )

3.3. OptimaL damping Of random 03ciLLation3. Let us oonsider a
linear spring-mass system with viscous damping eontrolled by a constra­
ined force and disturbed by a random signal ~(t) of a white noise type

x + ~~ + x = U + (B~ (t), Iu I S E, ~ < 2, 0 s t s T

The optimality criterion is taken in the form (1.2) with penalty fun­
dions F2 (t,x,u) = x2 + a:~2, F1 (x) = O. Using the dynamic programming
algorithm (1.3), (1.4) we find optimal control

u.(t,x,y) = -EsignV (t,x,y), (J.6)
,j y

Where the Bellman function V(t,x,y) (y = x) satisfies tho equation

V
t

+ yV - (x + ~y)V + (B/2)V = _x2 - ay2 + EIV I,
x y yy y

-00 < x,y < +00, 0 s t < T, V(T,x,y) = O.

This equation was solved numerically by using standard procedure of the
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net method [17]. The calculating scheme for Eq. (3.7) and some results
of numerical solution of Eq. (J.7) were stated in detail in [11,37]. If

a range of admissible control is small then the quantity E in (J. 7) is
small parameter and for solving Eq. (3.7) it is possible to use succe­
ssive approximations procedure (2.5). According to (2.5), (3.7)
equations of zero and first approximation have the form

Vat + yVOx - (x + ~y)VOY + (B/2)V
OYY

= _x2 - ay2, Vo(T,x,y) = 0, (].8)

2 2V1t + yV 1x - (x + ~y)V1Y+ (B/2)V1yy= -x -ay + €jVayl, V1 (T,x,y)=0.(].9)

For constructing corresponding suboptimal control algorithms it is ne­
cessary to solve Eqs. (3.8), (].9) and to substitute the obtained solu­
tions Va' V1 into (J.6) instead of V. Eqs. (J.8), (J.']) and consequently
the suboptimal control synthesis problem for zero and first approxima­
tions were solved in [8,10] in analytical form.

It is interesting to eompare the optimal quantity V(t,x,y) of eonsi­
dered criterion with the value Q(t,x,y) of the same eriterion when eont­
1'01 v (t,x,y) is used. The function Q(t,x,y) is defined by relations

Q
t

+ yQ - (x +~y - vo)Q + (B/2)Q = _x2 - ay2, Q(T,x,y) = 0 (3.10)
x y YY

'rhe solutions of Eqs. (3.7), (J.1 0) were ob tained numerieally for a=~=B=1 ,
£=0.5. The results are represented in Figure 6 where V is shown by the
continuous line, Q by the dotted line and 'I=T-t is stated.

'l:" =1

't"=0.5

1:" =1 .5

V("t, x, 0) ,II (<t, x, 0)
3

I I~I IX
-2 -1~ 1 2

Figure ,,:

3.4. Optimal control by stochastic plant with unknown parameter.
Let us eonsider a first-order aperiodie plant with an unlmown inertia
factor disturbed by Gaussian white noise ~. Eq (1.1) in this case is a
scalar one and has the form

x = -Ox + bu + r:;; U 1, ) (3.11)

where 13 is an unknown parameter, b,V are given positive numbers. The
control purpose consists in minimizing the funGtional (1.2) with penal-
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ty functions 1",= 0, F2= gx2+ 1m2 , where g,h are given positive nwnbers.
Let 0 be a random value of Gaussian type with the mean 9

0
and variance

SDo ' Let us write the optimal filtering equations for tl1is case

dm(t) = -(D(t)x(t)/v)[dx(t) + (m(t)x(t) - bu(t))dt)

D(t) = -D2 (t)x2 (t)/v, m(O) = 9
0

, D(O) = SDo

(3.12)

(3.1J)

The totality of scalar Eqs. (3.11 )-(3.1J) plays a part of a "dynamics"
Eq.(1.1) for the synthesis problem under consideration. Let us do the
substitution D~SD. Then using (3.11 )-(3.13) one can write the Bellman
Eq. (1 .17) for this problem and obtain the optimal control in the form

uo(t,x,m,D) = -bVx (t,x,m,D)/2h (3.14)

Here V = V(t,x,m,D) is a solution of the following Cauchi problem

(3.15)
-V t = -mxV - b2 (V )2/4h + gx2 + vV 12x x xx

-S[DxV + D2X2V
D
IV - SD2x2V 12v), V(T,x,m,D) = O.rnx ~n

If parameter S has a small value then for solving Eq. (3.15) (and there­
fore according to (J.14) the synthesis problem) one can use small para­
metm' method according to scheme (1.18)-(1.21). When 8=0 Eq. (3.15) has
an exact solution

2Vo(t,x,m) = fo(t,m)x + ro(L,m) (3.16)

, 1=(m2+b2g/h)1/2g[1-exp(~21(T-t»)

L(t,m)
u l'+m+ (l'-m) exp [-21' (T-t ) )

gV(T-t) Vh 1 21
l' (t,m)= __ n -----------

o l+m b2 1+m+(1-m)exp[-21(T-t»)
(3.14), (3,16) follows the zero approximation controlFrom

vo(t,x,m) = -bfo(t,m)x/h. (3.17)

The equation for the function V1 from (1.18) has the form

2-V 1t = -mxV 1X- b f o (t,m)xV 1x Ih + VV 1xx 12 - DxVornx ' V1(T,x,m,D) = O.

This equation has the following solution (8)
2V1 (t,x,m,D)=f 1 (t,m,D)x +1'1 (t,m,D),

T 2
f 1(t,m,D)= - 2Dexp{-2I(m + b fo(T-s,m)/h)ds}
TOT 0

xI~om(T - s,m)exP{2I~m + bf~(T - s1,m)/h)ds 1}ds,

(3.18)
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T
.1'1 (t,m,D)=vJ f 1 (s,m,D)ds

t
From (3.14),(3.16),(3.18) it follows that first approximation control

is given by the formula

v1 (t,x,m,D) = -bh- 1[fo(t,m) + Ef 1 (t,m,D)]x.

With the help of nwnerical methods a comparison was made between minimwn
value V(t,x,m,D) of the considered performance index (obtained by

solving Eq. (3.15)) and the values Qo(t,x,m,D) and Q1 (t,x,m,D) of the
same performance index for control Vo and "1 1 obtained by solving
corresponding linear Eqs.

-Qit= (-rnx + vib) Qix+ hvi+ gX
2

+ VQixx 12 - Dx (Qirnx+ DxQiDlv- DXQ irm/2V),

Q (T,x,m,D) = 0, i = 0,1.

In .l<'igure 7 the continuous lines correspond to V, dotted lines to Qo
when problem parameters are g=h=b=v=m=1 and '1: = T - t = 3. In Figure 8

Gontinuous lines correspond to V, dot-dash lines to Qo' and dotted lines
to Q

1
when g = h = 1, b = 0.1, V = 5, '1: = 2.5.

Fi,q;JIT8 7:
4f('1:,x,m,D)

Figure 8:
V,QO,Q1
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/'
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~. ~~ ~}m=-o.G
..........-"'-' ....-:: .H .....,-= ~ ."-/,,.:::. D:::0.6

m=1 ..-:: .~ /.""
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3.5. Optimal control by substance diffusion. In [8] the successive
approximations scheme (2.5), (3.8), (3.9) was used for approximate syn­
thesis of conLrols for some stochastic systems with distributed parame­

ters. Let the object of control be a cylinder filled by a homogeneous
porous mediwn,of length 1 and of base radius 1'«1 (that allows to ignore
tIle radial changing of substance strength G and consider it depending
only on (t,x),O ~ x ~l). Suppose that at one side (x = 1) cylinder is
closed and at the other side (x = 0) the Substllilce flow is set. Ohanging

the flow one can influence substance strength G(t,x). Suppose that along
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whole cylinder length random disturbance Ut,x) influences the substance
strength G(t,x). Let e(t,x) be a Gaussian white noise correlated in
space variable. Then mathematical model of control plant has the form

Gt = a2G + e(t,x), ° < x < 1, a2 = BIO, (3.19)xx
o (t,O) = u, G (t,l) = 0, (3.20)

x x

MUt,x) = 0, MUt,x)U1:,y) = K(x,y)lS(t-1:). (3.21)

Here Band C are diffusion and porous factors, K(x,y) is given symnetri­
cal positive defined function-kernel. For the object (3.19)-(3.21) it
is necessary to synthesize control u=uo(t,G(t,x)) minimizing the
functional

TIl ]

I = M [ J J J 8(x,y)G(t,x)G(t,y)dxdydt

000

when control action u is constrained by its absolute value lui ~ E.
Using dynamic programming method to the problem (3.19)-(3.21) leads

to the optimal oontrol operator

uo = Uo ( t ,G (t ,x )) = E sign [[ a v ] ]
aG(x,t) x=o

where loss functional V(t,G(t,x)) satisfies the Bellman equation with
functional derivatives

II 1 [ ]
a V . 0 2 av

- ----- = J J 8(x,y)G(t,x)G(t,y)dxdy + a2JO(t,X)-z-- dx
o t 0 x aG (t, x)

o 0 0

Z[ a [ a V]] ~ [ 0 [ a V ]]+ a G(t,x) --- - a L G(t,x) ---
ax aG(t,x) x=o ax OG(t,x) x=l

1 1

1JJ a
2

v I[ a V ] I+ - K(t,x,y) dxdy - Ea2
2 aG(t,x) aG(t,y) ISG(t,x) x=O

o 0
(3.24 )

V(T,G(x,T)) = o.
If the range of substance flow changing is small then E in (3.24) is a
sma1.1 parameter and for approximate solving of (J. 24) one ean use
suoeessive approximations seheme (2.5), (3.8), (J.9). In this case as is
esLablished in [8] the funetionals Vo (t,O(t,x)),V

1
(t,G(t,x)), ... are

ealculated in the quadrature form. Suboptimal control operators
Vi (t,G(t,x)) are obtained by means of substitution Vi in (3.23) in-
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stead of V. In partioular oontrol operator of zero approximation

vo(t,G(t,x)) has the form
T 111

vo(t,G(t,x)) = C sign[ Jd1JHs(x,y)r('C,x,t,0)r('C,y,t'Y)G(t,Y)ctYdxdy],

t 000

where 2 [1 00 [[ '1th ]2 ] 7\;n '1th]
r('C,x,t,y)= --1- -;- +n~1 exp - ---1- a

2
('C-t) cos ---1- x cos---

l
- Y

is the Green function for boundary problem (3.19), (3.20).

Conclusion. Approximate synthesis methods make it possible to obtain
control algorithms in analytical form that is important for practical
using of stochastic optimal control methods in concrete problems. Besi­
des the results of numerical analysis carried out for concrete optimal
control problems show a high efficiency of the small parameter and
successful approximations methods in the cases when par~neter C has the
same value order as another parameters of the synthesis problem.Moreover
the calculation results represented in Figures 6,7 show that it is
possible wllen even zero approximation control insures a control quality
close to the optimal one. In other cases a zero approximation control
is insufficient and for high quality control it is necessary to use
next (higher-order) approximations which is illustrated by results
'r-epresented in Figures 4, 5, 8
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Convergence Rates for Regularized Nonlinear Illposed Problems·
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Abstract. Convergence and rate of convergence are studied for nonlinear illposed inverse problems that are

stabilized by means of Tikhonov regul ..rization while the p..rameLer space as well ... the p..rameter-to-ouLpuL

lIlnpping are discreLized. The theoretical results are illusLrated by means of numerical examples.

1. INTRODUCTION

In this contribution we focus on nonlinear illposed inverse problems of the type

(1.1) F(x) = Yo,

where F : D(F) eX -+ Y is a nonlinear operator between Hilbert spaces X and Y. The
problem consists in inverting F at Yo in a stable manner without making assumptions
on the continuous invertibility of F at Yo and while allowing errors in the "data" Yo. To
address this problem the regularized least squares formulation

(1.2) minlF(x)-Y61~+Q'lx-x·l~ over D(F)

is used. Here Y6 denotes the noisy data which are assumed to satisfy an a-priori estimate
of the type

(1.3) Iyo - Y61 ~ 0,

and x· stands for an estimate to a solution of (1.1). The problem of an adequate choice
of Q' in terms of 8 such that the solutions x~ of (1.2) converge and also converge with
a certain rate as °-+ 0 was extensively studied for the case when F is linear (see e.g.
[G,M] and the references given there) and has recently been investigated for nonlinear
F for instance in [EKN,N]. If the domain and the range of F are infinite dimensional,
then the optimization problems (1.2) are infinite dimensional as well, and any numerical
approach to solve (1.2) will require a discretization of D(F) as well as of the mapping
F. In this note we address the problem of convergence and of rate of convergence of the
solutions of the fully discretized version of (1.2) as 0, Q' -+ 0 and as the discretization
indices tend to infinity. The case when only D(F) is discretized was already treated in
[NJ. Moreover we give selected numerical results for parameter estimation in a two point
boundary value problem. Such problems are wellknown to be nonlinear illposed inverse
problems. We shall illustrate that the theoretical results on the rate of convergence can
be observed numerically and we shall illustrate the necessity of the hypotheses that are
made. Many additional numerical results can be found in [Ge,GK]. The techniques that
are required for the proof of the rate of convergence are strongly related to those in
[EKN,N].

·Supported in part by the Fonds zur Forderung del' wissenschaftlichen Forschung, Aust­
ria, under S3206.
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2. CONVERGENCE AND RATE OF CONVERGENCE

The following specifications will be necessary:

X, Y are Hilbert spaces,
F: D(F) eX -t Y, with D(F) closed and convex,
F is continuous and weakly sequentially closed, i.e. for any sequence {x n } in D( F),
X n ~ x and F(x n) ~ Y imply x E D(F) and F(x) = y,
Yo E R(F),
{Xn}~=l is a squence of finite dimensional subspaces of X,
Pn : X -t X n are the orthogonal projections, which satisfy Pnx -t X for all x EX,
Cn ;= D(F) n X n , Pen: X -t Cn is the metric projection,
FN ; D(F) -t Yare continuous operators for N = 1,2, ....

Here and below we denote by '-t' strong and by ,~, weak convergence in a Hilbert
space and D(F) and R(F) stand for the domain and the range of F. Due to the
assumption that Yo E R(F), the existence of a solution to F(x) = Yo is trivially satisfied.
Henceforth the focus will be on solutions to (1.1) which are closest to the estimator x·.
We define Xo to be an x·-minimum norm solution (x·-MNS) of (1.1) if

F(xo) = Yo

and
Ixo - x·1 = min{lx - x·1 : F(x) = Yo}.

The existence of an x· -MNS is a consequence of the weak sequential closedness assump­
tion. The motivation for the concept of x·-MNS to (1.1) will follow from Proposition 1
below.

To solve (1.1) numerically with possibly noisy data Y6 we introduce the regularized
finite dimensional problems

(P) minIFN(x)-Y612+alx-Pnx·12 over xECn=D(F)nXni

where we tacitely assume that the range of FN is finite dimensional, although this is not
further necessary within this section. In (P) we did not introduce additional notation
for discretization of Y6. Rather the data Y6 can be considered to be elements of fini te
dimensional spaces, converging to Yo as 8 -t O. Due to the assumptions on FN and
D(F), it is simple to see that (P) has a solution for any a > 0, N, n and x·. In
our a.nalysis we shall not insist on exact solutions to (P) but rather we analyze the
convergence of elements x~~ N which satisfyU1,n,

(2.1) IFN(X~'~ N) - Y6!2 + alx~: N - Pnx·12 ::; IFN(x) - Y61 2 + alx - Pnx·1 2 + 77
I I , ,

for all x E Cn, where 7] > O. Asymptotic expressions involving a, 8,7], n, N will always
be understood in the sense that a, 8, 7] -t 0 and n, N -t 00. It will be shown next that
weak cluster points of x~J} N are strong cluster points and that they are x·-MNS..... ,n ,
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PIlOPOSITION 1. Let Xo be an x·-MNS of (1.1) and let a = a(n,N,5,7]) be such that
a -+ 0, 7]/a -+ 0, 52 /a -+ 0 and IFN(Pcnxo) - yol 2 /a -+ 0 as 5,7] -+ 0 and N,n -+

00. Assume further that F N ~ F uniformly on bounded subsets of D(F) and that
Pc Xo -+ Xo· Then every sequence {x~·'ry· N } (with 5k, 7]k -+ 0; Nk, nk -+ 00 forn ........ ,nll:, Ie

k -+ 00, ak := a(nk, Nk, 5k,7]k) and x:· '':: N satisfying (2.1)), has a strongly convergent
11:, Ie, Ie

subsequence and the limit of every convergent subsequence of X~~I,N is an x"-MNS of
F(x) = Yo.

The proof can be given with standard arguments. We refer to [N] and the discussion
given there. Concerning the hypotheses of the proposition we refer to [Mo, Lemma 1.2
and 1.5] where conditions on X n are given that imply limn-+oo PCnxo = Xo. With
respect to existence of values for a satisfying jFN (Pc n xo) - Yo 12 / a -+ 0, one observes
that

1 N 2 2 N 2 2 2
-IF (PCnxo) - Yo/ ~ -IF (PCnxo) - F(Pcnxo)1 + -1F(Pcnxo) - Yol .
a a a

For appropriate choice of a the middle term converges to zero, if limN-+ooIFN(x)­
F(x)1 = 0 uniformly on bounded subsets of X and the last term converges to zero due
to continuity of F and limn-+ oo PCnxo = Xo.

We proceed with a result on the rate of convergence of X~,;',N as 5, a, 7] -+ 0, and
N, n -+ 00. Some hypotheses are summarized first. They involve an x" -MNS Xo.

(HI) F is Frechet differentiable,
(H2) there exists L > 0 such that 1IF'(xo) - F'(x)11 ~ Llxo - xl, for all x E Bp(xo) n

D(F), where p > 21xo - x"1,
(H3) there exists wE Y such that Xo - x" = F'(xo)*w,
(H4) L[wl < 1,
(H5) Ixo - Pnxol = O(i'n) with limi'n = 0,
(H6) /F(x) - FN(:z:)1 = O(cN) for all x E Bp(xo) n D(F), p > 21xo - x"1, with

limN-+oocN = O.

Here B p ( xo) = {x : Ix - Xo I < p} and F' (xo)* stands for the adjoint of the Frechet
derivative of F at Xo. Furthermore we put

'Yn := 1IF'(xo)(I - Pn)ll,

and observe that limn-+oo'Yn = 0 if F'(xo) is a compact operator. In the following
theorem it will be implicitly assumed that the interior of D(F), int D(F), is nonempty.

TIlEOIlEM 2. Assume that Xo is an x"-MNS of F(x) = Yo, that (Hl) - (H6) are satisfied
with Xo E int D(F) and that F'(xo) is compact. If in addition 7] = O(P + 'Y~i'~) and
a rv max(5,i'~,i'n,'Yn,cN),tIlen

IX~~"N - xol = O(vb + i'n + Vi'n'Yn + "fiN).
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PROOF: The first objective is to derive estimates on IF(PnXO)-Y6!, IF N(PNXO )-Y61 and
to show that z := x~~ N E B p(xo) for all n, N sufficiently large and ex, 6, TJ sufficiently
small. Since Xo E int D(F), (H5) implies that

(2.2) PnXo E en

(2.3)

(2.4)

for all n sufficiently large. Let us define

r n := F(Pnxo) - F(xo) - F'(xo)(Pnxo - xo),

where here and below it is assumed that n is sufficiently large so that (2.2) holds and
that IPnl: O - Xo I < p with p as in (H2). Then by (H2) one finds

L 2Irnl:::; Zlxo - Pnxol .

By (2.3) and due to F(xo) = Yo it follows that

IF(Pnxo) - Y6! = Irn + F'(xo)(Pn - I)xo + F(xo) - Y6!

L 2::; Zlxo - Pnxol + Inlxo - Pnxol + 6

= O(-y~ + In'Yn + 6),

where for the last estimate we used (H5). Moreover, by (H5), (H6) and (2.4)

(2.5) IFN(P"xo) - Y6 ::; O( 'Y~ + In'Yn + 6 + eN)

holds for all n sufficiently large. Due to (2.1), (2.2), (2.5) and the assumption on TJ one
obtains

(2.6)

and hence

IF N(z) - Y61 2 + exlz - P"x* 1
2 :::; IF N(Pnxo) - Y61 2 + exlPnxo - PnX* 1

2 + 1]

< O( - 4 2- 2 ,2 2 ) I * 12_ In + In In + U + eN + ex Xo - X ,

Iz-xol::; Iz-Pnx*I+IPnx*-xol:::; Ja0('Y~+ln'Yn+6+eN)+IPnx*-x*I+2Ixo-x*l.

Since ex ~ max(6,'Y~"n'Yn,eN) it follows that z E Bp(xo) for all n,N sufficiently large
and 6 sufficiently small.

These estimates conclude the verification of the claim at the beginning of the proof.
Using the fact that lal 2 - IW = 2(a, a - b) - la - W for all a, b E X one deduces from
(2.6) that

(2.7)
IFN(z) - Y61 2 + exlPnxo - zl2 ::; O('Y~ + 'Y~,~ + 62 + e7v)

+ 2ex(Pnxo - Pnx*, Pnxo - z),
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which further implies the estimate

(2.8)

IFN(z) - Y61 2 + alz - xol 2 ~ O(-:Y~ + i~"Y~ + 62 + e7v) + alPnxo - Xol 2

+ 2a(xo - x', Pnxo - z)

= O(p) + 2a(xo - x', Pnxo - z),

with p = i~ + "Y~i~ + 62 +d" + ai~· For the next estimate one employs (H3):

(2.9)
IFN(z) - Y61 2 + alz - xol 2 ~ O(p) + 2a(w,F'(xo)*(PnXo - Xo + Xo - z))

= O(p) + 2alwl"Ynin + 2a(w, F'(xo)*(xo - z)).

Due to (H2) and the fact that z E Bp(xo) for all n,N sufficiently large, one can use
Taylor's theorem to obtain Pr satisfying

F(z) = F(xo) + F'(xo)(z - xo) + pz

with
1

IPrl ~ 2"L 1z - xol 2
,

and hence from (2.9)

(2.10)
IF N(z) - v61 2 + alz - Xo 1

2 ~ O(p) + 2alwl"Ynin + 2a(w, F(xo) - F(z) + pz)

= O(p) + 2alwhnin + 2alwl6 + 2alwllV6 - F(z)1 + aLlwllz - xol 2
,

from which it follows that

(2.11)

IFN(z) - Y61 2 +a(l - Llwl)lz - xol 2

~ O(p + a"Y"in + (6) + 2alwllV6 - F N(z)j + 2alwieN

=O(p +a"Ynin + a6 + aeN) + 2ajwllFN (z) - Y61·

From (H4) and (2.11) with the second term on the left hand side eliminated one obtains

(2.12) IF N(z) - vd ~ O(h + Ja"Ynin + ,,;;g + JaeN) + 2alwl,

and (2.11) together with (2.12) and (H4) imply

Iz - xol 2 ~ O( £ + "Ynin + 6 + en) +O(h + Ja"Ynin + ,,;;g + JaeN + a)
a

= O(i~ + "Ynin + 6 + eN).

This gives the desired estimate.

REMARKS:

(i) In applications, in in (H5) will converge to zero with a certain rate if a-priori
smoothness properties of Xo are known [KW]. (H5) can be replaced by a requirement
on the estimator x'. In fact, assume that

(H5') Ix' - Pnx'l = O(in)
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and that (H3) holds. Then the following estimate can be used to replace (H5) [N]:

Ixo - Pnxol = Ix* - Pnx* + (I - Pn)F'(xo)*wl :S 0Crn) + OCrn)'

(ii) If it is known from other considerations as for instance from Proposition 1 that
X~~"N --+ Xo, then (H2) and (H6) need only to hold in some neighborhood of Xo.

(iii) As a consequence of Theorem 2 it follows that if Xo is not unique as an x*-MNS of
(1.1), that there can only exist one such x*-MNS which satisfies the hypotheses of
this theorem.

(iv) If F is twice continuously differentiable then (H2) and (H4) can be replaced by

1

(H4') 2(w,J(1 - t)F"[xo + t(z - xo)](z - xo)2dt) :S plz - Xo 1
2, with P< 1.

o

The hypotheses (H2) and (H4) where used twice in the proof of Theorem 2. To estimate
7'n one uses a version of the mean value theorem to establish the existence of Tn E [0,1]
such that

r n :S ~IF"(xo + Tn(PnXO - xo))(PnXo - xo)21·

Since limn_oo Fnxo = Xo and since F" is bounded in a neighborhood of Xo there exists
L such that r n :S Llxo - Fnxol2. Secondly, due to (H4') the term 2(w,pz) in (2.10) can
be bounded by plz - xol 2 and in the remaining estimates £Iwl < 1 is replaced by p < 1.

3. NUMERICAL EXAMPLES

We shall illustrate Theorem 2 by considering the illposed problem of estimating the
diffusion coefficient a E Hl(O, I), a ~ v > 0 in

(3.1 )
-(aux)x + cu = f in (0,1),

u(O) = u(l) = 0

from noisy data Y6 E £2(0,1) here it is assumed that f E £2(0,1) and c E £2(0,1),
c ~ 0 a.e. It is assumed that the unperturbed measurement Yo is attainable, i.e. that
there exists a E H 1(O,l), a ~ v such that u(a) = Yo. To realize this parameter
estimation problem as a special case of the general theory one defines the operator F
by F: D(F) = {a E H1(0, 1): a ~ v} --+ £2(0, I), with

F(a) = u(a),

where u(a) denotes the solution of (3.1) and puts X = H 1(0,1) and Y = £2(0,1).
It is not hard to argue that F is continuous, weakly sequentially closed and twice
continuously differentiable. (See [EKN ,N] for details and references). Henceforth we fix
an estimator a* and an a*-MNS ao with ao > v so that ao E int D(F). To discuss (H3)
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one introduces the Neumann operator B : D(B) = {cp E H2 (O,1) : cp/(O) = cp/(1) =
O} -t £2(0,1) defined by Bcp = -CPu +cpo Condition (H3) takes the form

ao - a' = -B-I(u",(ao)(A(ao)-lw)",),

for some w E £2(0,1), where for a E D(F), A(a) : HJ n H 2 -t £2 is given by A(a)u =
-(au",)", + cu. Such an element w exists if ao - a* E H 3 n D(B) and B(a* - ao) =
u",(ao)(A(ao)-lw)", or equivalently

- J' B(a* - ao) 2 I
w:= () (s)dSEH nHo,

u'" ao
o

and it is given by

(3.3) w = A(ao)w.

(3.4)

As described at the end of the previous section (H2), (H4) can be replaced by (H4'). In
[EKN] it was shown that (H4') is satisfied provided that

25, I IZ/A(ao)- Ic(L2,H2nHtl)lw!£2lu(ao)IH2 < 1.

Finally it is simple to check that F'(ao) is compact. Thus all hypotheses that do not
involve discretization are satisfied if (3.2) - (3.4) hold. To turn to the discretization
of this infinite dimensional nonlinear inverse problem let Sn = {* }i=o be a sequence
of uniform grids on [0,1], with n = 1,2, .... We shall discretize the coefficient- and
the statespace of (3.1) over the same grid and we shall use n = N. Let X n CHI and
Yn C HJ n H 2 denote the canonical spaces of linear- respectively cubic B-splines with
respect to the grid Sn [BK, Appendix], where the cubic B-splines are modified so as to
satisfy the boundary conditions. For a E D(F) let Fn(a) = un(a) denote the Galerkin
approximation to (3.1), i.e.

(au~,v~) + (cun(a),v n) = (f,v n) for all vn E Yn,

where (".) denotes the inner product in £2. Finally let Pn : HI(O, 1) -t X n denote
the orthogonal projections. From wellknown approximation properties of X n and Yn it
follows that lim,,_oo Pna = a for all a E HI (0,1) and that In = O( ~). It is simple to
check that a -t F N(a) = uN(a) is continuous for a E D(F). Moreover for ao E H 2 (0, 1)
or a* E H 2 (0,1) as will be assumed henceforth we have in = O(~). With standard
Galerkin techniques one can show that en = O( ';2)' Hence (H5), respectively (H5') and
(H6) are satisfied. Thus the best rate that we can obtain with our estimates is O( ~), if
TJ = O( ,;.) and a '" b = O( ';2)' For the numerical results to be presented below X n and
Yn are chosen as explained above. If Yn was replaced by linear splines on the same grid
then the overall convergence would again be O( ~) if a'" b = O( ,;, ) and TJ = O( ,:.).

As a specific numerical example we considered the estimation of a in (3.1) where

ao = 1 + sinrrx, u(ao) = sin2rrx, c = 1,

f = -(aou(ao)",)", + u(ao) = 2rr2(2(1 + sin rrx) sin 2rrx - cos rrx cos 2rrx) + sin 2rrx.
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For this choice of f and u(ao), ao is the unique element in Hl(O, 1) satisfying u(a) =
u(ao). One can show that a function w satisfying (3.2), (3.3) exists, provided that the
estimator a* has the form

(3.5 )
a*(A, k) = ao + AW, where A E Rand

cos((2 - k)7fX cos((2 + k)7fX)
W = 2(1 + (27r - h)2) + 2(1 + (27r + h)2)

The perturbed data where generated in the following manner

n

z6 = pnu(ao) + e5 LTiBi,
i=O

where e5 characterizes the error level, Ti are uniformly distributed random numbers in
[-1,1], Bi are the basis functions for Yn and pn denotes the orthogonal projection
of L 2(0, 1) onto Yn in L 2 (0, 1). The finite dimensional problems were solved with the
Levenberg-Marquardt al~orithm that is available in the IMSL-library, and the solutions
arc denoted by an = a

6
((n) . We did not attempt to estimate the numerical error 1)(n)

0' n In

involved in solving (P). In all plots except for the last one, the abscissa gives the values
for In n and the ordina.te those for In lao - an 11[1. Thus in the case where one expects
O( ~) respectively O( ..In) convergence, the values for In lao -an I should lie approximately

on a line with slope -1 respectively - t. Due to the fact that different random numbers
are involved in defining the perturbed observations Y6(n), one cannot expect that the
values for In lao - an I1[1 lie on a perfectly straight line. The finite dimensional problems
were solved for the values n = 6,8, ... ,36.

In Plots 1 and 2 we give the results for a(n) = 1010n with e5 = 0 and e5 = lOa
respectively. In each case the estimator was chosen according to (3.5) with A = -50,
k = 3, so that in particular (H3) is satisfied. The expected and observed error rate is
O( In) in either case. In Plot 3 the results are given for a(n) = 1010n and e5 = lOa, with
the estimator a* now changed to be the function with constant value 1.5. The error
rate is now much lower than O( In).

For Plot 4 we took a(n) = 50~n2' e5 = 100a, and the estimator was chosen according
to (3.5) with A = -50, k = 3. The expected and observed rate is O( ~). If the estimator
is replaced by a* = 2 - x, while the other specifications remain fixed, then the rate
of convergence is much lower than O( In), see Plot 5. For Plot 6 we repeated this

calculation with a(n) = 50~n2' e5 = 100a, and used iterative estimator improvement, i.e.
starting with the estimator a* = 2 - x for n = 6, we used as estimator for n = 8,10, ...
the result a n -2 obtained in the previous step. For this procedure the convergence rate
is again O( ~). In the last plot the solid line shows ao and the dotted line gives the
result al6 with the other specifications corresponding to those of Plot 4.
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ON INVERSE PROBLEMS FOR EVOLUTIONARY SYSTEMS:

GUARANTEED ESTIMATES AND REGULARIZED SOLUTIONS

A.B. Kurzhanski

International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

I.F. Sivergina

Institute of Mathematics and Mechanics of the Ural Scientific Center

Academy of Sciences of the USSR, Sverdlovsk, USSR

This paper deals with the selection of an initial distribution in the first boundary-value

problem for the heat equation in a given domain [0,1/] x 0, 1/ < 00 with zero values on its

boundary S so that the deviation of the respective solution from a given distribution would

not exceed a preassigned value '"1 > 0. The result is formulated here in terms of the "theory of

guaranteed estimation" for noninvertible evolutionary systems. It also allows an interpreta­

tion in terms of regularization methods for ill-posed inverse problems and in particular, in

terms of the quasiinvertibility techniques of J.-L. Lions and R. Lattes.

1. The Problem.

Assume 0 to be a compact domain in R n with a smooth boundary S; 0 > 0, "I > °to be

given numbers, functions y(t,x), z(x)(R x R n --+ R I ), (R n --+ R I ) to be given and such that

y(.,.) E L2 ([0,01 x 0), z(.) E L2(0).

Denote u = u(t,x; w(.)) to be the solution to the boundary value problem

auat - Llu = 0, °~ t ~ 0,

ul,o,OjxS = °,
Ult=o = w(.) ,

Also denote

o
J(w(.)) = a f f (u(t,x; w(.)) - y(t,x))2dxdt +

o 0

(1)

(2)
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+ {3 J (u(O,x; w(·» - z(x»2dx
o

with a ~ 0, (3 ~ O.

Consider the following problem: among the possible initial distributions w(')EL2(0)

specify a distribution woO that ensures

J(WO(.» ~ / . (3)

The latter is an inverse problem [11. With a = 0 it was studied by J.-L. Lions and R.

Lattes within the framework of the method of "quasiinvertibilitr" [2]. Numerical stability

was ensured in this approach.

Let us now transform the previous problem into the following; among the distributions

w(·) E L2(0) determine the set W'(.) = {w'(.)} 0/ all those distributions w'o that yield the

inequalitll

J(w'(.» ~ /.

Assuming that the problem is solvable (W'(.) :/4» we may describe its solution in terms

of the theory of "guaranteed observation" [31. Namely, assume lI(t,x), z(x) to be the available

measurements of the process (1), so that

lI(/,x) = U(/,x; w(·» + ~(t,x)

z(x) = u(O,x; w(·» + u(x)

o ~ t ~ 0, x E 0

(4)

where ~(t,x), u(x) stand for the measurement noise which is unknown in advance but bounded

by the restriction

8

a JJ e(t,x) dxdt + (3 J u2(x)dx ~ / .
00 0

(5)

Then W'(.) will be precisely the set 0/ all initial states of system (1) consistent with

measurements lI(t,X), z(x) (4) and with restriction (5).

The aim of this paper will be to describe some stable schemes of calculating the sets

W'O and their specific elements. (A direct calculation of these may obviously lead to

unstable numerical procedures.)
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2. The Regularizing Problem (A General Solution)

Consider a rather general problem. ABsume the values E, U J w to be unknown in advance

while satisfying a joint quadratic constraint

q

(w(.), N(e)w(.» + a J (E(t,'), M(e)E(t,.»dt
o

+ P(u(.), K(e)u(.» ::; "( + he J he> °J

(6)

Here N(e), M(e), K(e) are nonnegative self-adjoint operators from l2(0) into itself

(with N(e) invertible) and such that each of them depends on a small parameter e>O. The

symbol ('J') denotes a scalar product in L2(0).

An informational set WA·) of distributions w(·) consistent with measurements y and z

will be defined as the variety of those and only those functions w(.) E L2(0) for each of which

there exists such a pair E("') E l2([O,O] x 0) and u(.) E l2(0) that equalities (1), (4) would

be fulfilled together with the inequality (6).

Lemma 2.1. The informational set We(-) consists of all those functions w(.) E l2(0) that

satisfy the inequality

(w(·) - w~(-), D(e)(w(·) - w~(-») ::; "( + he - Ie;
where

D(e) = N(e) + U' M(e) U + U;K(e) Uq ,

w~(-) = D-1(e)( U' M(e)y(·,·) + U;K(e)z(.» ,

q

Ie; = (z(·), K(e)z('» + J ( y(t,'), M(e)y(t,.»dt J

o

(Uw(·»(t,x) = u(t,x; w(.» , (Uqw(.»(x) = u(O,x; w(.» ;

U: l2(0) ---> l2([O,O] x 0); Uq : l2(0) ---> l2(0)

and where U' stands for the respective adjoint operator.

It is further assumed that he is such that We(·) is nonvoid.

If there exists an eo ~ °such that

J(wn» ---> inf {J(w(.» I w(·) E l2(0)}

(7)
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with E -> EO

then the problem of estimating the distributions w(·) due to the system (1), (4), (6) will be

further referred to as the regularizing problem for problem (1), (3).

3. Qua8iinvertibility

With Q = °in equation (2) we arrive at the problem investigated in [2] by means of the

quasiinllertibility techniques. Following the latter consider an auxiliary boundary-value prob­

lem

av€ 2 _
-at - A V€ - EA V€ - 0, °~ t ~ 0, (00)

V€I[O,8I XS = A V€I[O,8jxS =°
V€II=8 = z(o) .

Then taking

we come to

w€(·) = V€(o,o)

J(w€(o)) -> ° (E -> 0) .

(8)

The following question does arise: is it possible to select the operators N(E), M(E), K(E)

that define the quadratic constraint (6) in such a way that the center w~(-) of the informa­

tional ellipsoid W€(o) would coincide with the solution V€(o,·) of Lions and Lattes?

Assume °~ Ai ~ A2 ~ 000 ~ Aj 000 to be the eigenvalues and {'Pi(·)} to be the respec­

tive complete system of orthonormal eigenfunctions in the first boundary-value problem for

the operator A = -A in the domain O.

Assume

00 €A18
(N(E)W)(o) = .E (1 - e I )Wj'Pi(o)

j=i

(K(E)O')(.) = f; e-(€A? - 2A j )80'j'Pi(·)
j=i

(9)

with Wi (respectively O'j, Zj) being the Fourier coefficients for the expansion of functions w(.)

(respectively 0'(0), z(o)) in a series along the system of functions {'Pl)}.
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Theorem S.l. Assume 0: =° and operators N(e), M(e), K(e) of inequality (6) to be

defined as in (9) with M(e) = 00 Then for all e > °the center wo(.) of the ellipsoid WeO (7)

will coincide with the «Lions - Lattes" solution we(·) (8). Namely

w~(-) = weO = VAO,-)

and w~O will be represented as

o() _ ~ (-e~t+~i)9 ()we 0 - LJ e z,'P, - .
j=1

The next theorem indicates that an appropriate selection of the operators N(e), K( e) in

(6) (with M(e) = 0) would allow to approximate the set

W"O = {w"(o)ll(w"(o)) ::; ')'}

with respective informational sets WeO.

Theorem S.2. Assume 0: = 0, fJ = 1, e > 0, 1/ > °and the operators N(e), M(e), K(e)

of inequality (6) to be defined as

(N(e)w)(.) = (Ne,vw)(o) =

~ (-2(l+v~i)-I~i9 - (e~?+2~i)9) ( )
LJ e - e Wj'Pj' ,
j=1

00 -e~19
(K(e)u)(o) = (Keu)(o) = E e • Uj'Pj(o) ,

j=1

M(e) = 0.

Then with he =°there exists a pair eo > 0, I/o > °such that with e ::; eo! 1/ ::; I/o the respective

informational ellipsoidal set WeO = We,v(-) i.p. Its centers w~,v converge:

lim w~ v = weO (1/--+0).
and

lim We vO = W"O (e --+ 0, 1/ --+ 0),

in the sense of Kuratowski /4/
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4. Extremality and the General Regularization Schem.e

Consider the minimization process for the functional (2). With ex = 0 a numerically

stable scheme for calculating inf J is ensured by the quasiinvertibility method discussed above.

We will now proceed with the construction of a respective algorithm for the general case, par­

ticularly for fJ ~ O.

Theorem r1. The lJalue

8 00

inf J = ex f lIy(t)112 dt + fJllz(')1I 2 - E lJi(exPi + fJ e->';8 Zi)2 ,
",(.) 0 i=1

where

lJi = 2>'+>'ifJ e-2>';8 + ex(1 - e-2>.;8) 1-1
2>' ..

Yi(t), Pi are the Fourier coefficients for y(t,.), p('),

8

p(x) = f u(t,X;II(t,x))dt
o

y(t) = {Yl(t), ... ,Yt(t), ... } ,

is a sequence in £2' The sequence

(
~ (_£>._ _(£>.J+>'_)8 ) (w£ .) = L..J lJi ex e • Pi + fJ e I • zi 'Pi .)
i=1

minimizes J( w(·)) with e -+ O.

Theorem ~ .2. Suppose fJ = O. Then for w£(.) of (10) we will halJe

00

w£(x) = -2(Llu(e,x;p(·)) + E Llu(28k,x;p(.)))
bool

and consequently

J(w£(-)) -+ inf J(w(.)) with e -+ O.
w(-)

Remark rl. Once there exists a distribution w(.) E L2(0) that ensures the equalities

y(t,x) == u(t,x;w(·))

z(x) == u(O,x;w(·))

(10)
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the value

inf J(w(.)) = o ...(.)

The next question is whether the functions we(-} of (10) could serve as centers of some

"informational ellipsoids" We that would correspond to an appropriate selection of operators

N(e), M(e), K(e) in the restriction (6). The answer is affirmative and is given by the follow­

ing theorem.

Theorem i.3. Suppose the restriction (6) is defined through the operators

(M(e)~)(t,x) = 2 }5 e -e)..j '\.(1 - e -2>. jll)-l ~;(t)'P;(x)
;=1

(11)

with N(e), K(e) being the same as in (9). Then the center w~(-) of the respectille informational

domain We for equation (1) under restriction (6), (9), (11) will coincide with the distribution

gillen by formula (10): w~(-} = wA')'

Remark i.2. Define a minmax estimate wO for a bounded convex set W as its Chebyshell

center:

sup{llwO - will wE W} = min sup {liz - will wE W} .
zEW

Then once W is an ellipsoid its Chebyshev center wo will coincide with its formal center. For

an arbitrary bounded informational set that may appear in nonlinear nonconvex problems its

Chebyshev center may be taken as a natural "guaranteed estimate" for the unknown parame­

ter w.

5. Other Regularizing Procedures

Consider 0 = O. (a) Another regularizing procedure may be designed through the solu­

tion lIe(t,x) to the following problem:

aai(lIe -e6I1e)-6I1e =0,0:-:;t:-:;O

11£ l[o,lI]xS = 0, 11£ 1,=11 = z(·)

so that

w£(·) = 11£(0.. ) . (12)
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The system (12) was introduced in paper [51. The function w€O = tJ€(O,') will be the

center of the respective informational ellipsoid consistent with measurement z(.) if we assume

(N(e)w)(.) = Ee-~ig(1 - e-€(1 + di)-l~:g)WiPiO
i=1

00 (1+€~.)-I~.g
(K(e)u)(.) = ~ e • I u,PiO, M(e) = 0 .

i=1

Here the center of the ellipsoid is defined in a formal way, through formula (7). The ellipsoid

itself is however unbounded.

(b) With z(.) given, assume that there exists a solution to equation

Ugw(.) = z(.)

Consider the constraint (6) with

(N(e)w)(·) = n€w(.), (K(e)u)(') = k€u(.) , M(e) = 0

where n€ > 0, k€ > 0 are real numbers.

Then with n€ = e2
, k€ = 1 the center w~O of the respective ellipsoid W€(.) will coincide

with the quasisolution (in the sense of V.K. Ivanov [6]) to the equation

Ugw(.) = z(.) ,

on the set

M = {w(·) Illw(')11 ::; Ilw~OII} ,i. e.

w~(-) = arg min II Ugw(.) - z(')11 , w(·) EM.

(c) Assuming n€ = I, k€ = e-2 the function w~(-) will be an approximate solution to the

equation

Ugw(·) = z(·)

by the "bias method" with bias

d( Ugw(.),z(.)) = l(w(·)) .

So that

w~0 would solve the problem
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min {llw(')11 : d( Uow('), z(.)) :<:; J(w~O)}

In both cases (b), (c) we observe that J( w~(.)) ---+ °with E: ---+ 0.

6. A Continuity TheoreUl

Taking the solution (10) present it as a linear maping

w€(.) = F€(y(.,),z(.))

from L2([0,OjxO) x L2(0) into L2(0).

Suppose

Y6(t,X) = u(t,Xj w'(.)) + ~6(t,x)

z6(x) = u(O,x; w'(.)) + u6(x)

where

11~6("')11 :<:; 6"1' Il u 601l:<:; 6"2; 6"1,6"2> °.
Theorem 6.1. The mapping F€ is uniformly continuous in L2([0,OlxO) x L2(0). The fol­

lowing estimate is true

[
< 0] [ JI /2, 'VI c - , 00 *2 c>.~o

IIFc(Y6(-,'), z60) - w 011:<:; R(E:,w (.)) + -J€ + 6"2 e4c , R(E:,w (.)) = i~lwi (l-e- ,)2

o
With E: ---+ 0, (6"I/"V'€)---+ 0, (52 e 4c ) ---+ 0,

Fc(Y6(-,'), z6(')) ---+ w'(.).

there 18 a strong convergence
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EXPONENTIAL STABILIZATION, VIA RICCATI OPERATOR, OF HYPERBOLIC SYSTEMS
WITH UNCONTROLLED, UNBOUNDED PERTURBATIONS
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I. Introduction

Let A be a generator of a s.c. semigroup eAt on a Hilbert space H with domain D(A). Let

[D(A)]' denote the dual (pivotal) space to D(A) with respect to the H-inner product. D(A) is

equipped, as usual, with a graph norm topology and [D(A)]' is equipped with a norm given by

I u I , = I [Ao - '-ort u I where Ao E P (Ao). Without loss of generality, we shall assume
[D(A)] H

Ao =0.

We shall introduce the following operators:

(1.1) The linear (generally unbounded on H) operators

B j E L(Ui ~ [D(Ao)]'); i = 1,2 where Ui denote another Hilbert space. The operators Bi are
required to satisfy

(11-1) (i) For some T > 0 there exists constant CT such that
T

f IB;eA"tx I2 dt~CTlxI2;xED(Ao).
o U2 H

(ii) D(B;) c D(B;) .

(1.2) The nonlinear, continuously Frechet differentiable operator

G: H ~ Ut such that

(11.2) G(O) =0; G' (0) =0

where G' (y) stands for the Frechet derivative of G(y).

(1.3) The linear densely defined operator

F: H ~ U2 such that D(A) c D(F) .

Consider the following abstract model

(')Researeh paniaUy supponcd by the NSF G",nt DMS-830t668 and by the AFOSR Grant AFOSR 89-0511.
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{

Yl = Ay + BI G(y) + B2Fy on [D(A·)]'

(1.4) y(O) = Yo E H.

The main goal of this paper can be fomlUlated as follows: given the operators A, Dj, find the

operator F such that the system described by (1.4) is locally exponentially stable for all nonlinear

perturbations G subject to the condition (H-2). More precisely, we seek a stabilizing feedback F

(depending only on A and B) such that the solutions y(t) of (1.4) corresponding to the initial data

Yo E B(O, R) (where D(O, R) denotes a ball in H with a radius R) decay exponentially to zero for all

perturbations G taken from the class described by (H-2).

It should be noted that the main technical difficulties of this problem stem from the fact that

the operators Bj are generally unbounded from H -+ UI, Indeed, in the case of ordinary differential

equations or more generally, abstract differential equations with input operators Bj bounded (from

H -+ U I ), it is well known that~ operator F stabilizing the linear part of the system, will produce

local exponential stability of the nonlinearly perturbed system. This is not the case when the input

operators Dj arc unbounded and A is a generator at an arbitrary Co semigroup. In fact, it is known

[sec [L-T.l], [T.l] that the presence of unbounded perturbation DI G(y) (even if G is linear) may

destroy the generation of the feedback semigroup, let-alone the exponential stability. ll1Us, the

addition of unbounded nonlinear perturbation B I G(y) to the wellposed, stable system may, in gen­

eral, destroy the desirable properties of the dynamics. In order to obtain the sought after stability

results, special care must be given to the selection of the operator F. In this paper, we shall prove

that under some additional restrictions placed on the system, the sought after stabilizing feedback F

can be constructed via the solution to the Algebraic Riccati Equation. We shall establish that for

this class of systems, the lincar feedbacks givcn by the Riccati operator produce a robust stabiliza­

tion in presence of uncontrolled nonlinear and unbounded perturbations.

We remark that our abstract model (1.4) incorporating nonlinear unbounded perturbation is

motivated by several applications, (described in section 4) arising in control problems for the plate

and wave equations with nonlinearly perturbed boundary conditions. Here, the effect of uncon­

trolled nonlinearities on the boundary is inherently unbounded and must be described by the

unbounded operators Bj.

The outline of the paper is as follows. In section 2, we first recall some recent pertinent results

on solvability of Riccati Equations with unbounded coefficients and then we shall formulate our

main abstract theorem. The proof of the Main Theorem is relegated to section 3. Section 4 is

devoted to concrete applications of our abstract results. As an example, we prove local exponential

stabilizability of a Kirchhoff plate with nonlinear perturbations on the boundary.

2. Stalement of the results

In order to formulate our results we need to introduce the following Algebraic Riccati Equation
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(ARE) (PAx, y) + (A· Px, y) + (x, y) = (B; Px, B; Py) ; x, y E D(A)
H H H U

If Bz E L(Uz, H) and the pair (A, Bz) is controllable or stabilizable, then the standard result [sce

[B-1] )is that there exists positive selfadjoint solutions to (ARE). Recently, the above result has

been extended to the case when the operator Bz is unbounded, but subject to the hypothesis (H-l).

In fact, the following result is available.

Theorem 1.1 [F-L-T]

Assume that the operator Bz satisfies (H-l)(i). Assume moreover that the following "Finite

Cost Condition" is satisfied

(F.C.q
For any Yo E H, 3 u E Lz [0, 00 ; U] such that

J(u, y) E JIyet) I z + Iu(t) I Z dt < 00

o H U

where y(u) satisfies

Yt =Ay + Bzu; yeO) =Yo E H.

Then:

(i) There exists solution P E £ (H) to (ARE) such that P ~ 0; P = p.. Moreover P enjoys the fol­

lowing regularity properties

(1.5) P E £(D(A), D(A;)) where

Ap E A - Bz B; P is a generator at a s.c.semigroup eApt on H.

(1.6) P E L(D(Ap), D(A.)) n £ (D(A), D(A;))

(1.7) B; P E £ (D(A), Uz) n £ (D(Ap); Uz) .

(ii) the solution P is unique within the class of linear operators P E £ (H) such that

B; P E £ (D(Ap); Uz) n £ (D(A); Uz)

(iii) eApt is exponentially stable on H i.e:

IeApl I :5; Ce-~t for some Olo > 0 .
L(H)

Remark:

Notice that the above th~orem, while it provides t'Ie existence of a bounded Riccati operator P,

does not state that the gain operator B; P is bounded (in contrast with the classical results). This is

a distinctive feature of the problem under study. We shall see later that, in general, when the opera­

lor 13z is unbounded, the gain operator must remain unbounded.
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Before we fonnulate our result we recall the following definitions.

Definition 2.1 the pair (A,B) is stabilizable on a Hilbert space H iff: there exist an operator F: H ~

U, with D(F) :::> D(A) such that AF == A + BF generates a s.c and exponentially stable semigroup on

H i.e: there exist constant C > 0; (J) > 0 such that

1e
AFt I :s; C e-Clll . t > 0 .

l(H) ,

Definition 2.2 the pair (A, B) is exactly controllable on a Hilbert space H for some To > 0 iff for any
T

XT E H there exists u E ~ (0,T; U) such that f eA(f-<) B u(t) dt = xT. The necessary and
o

sufficient condition is that the following inequality holds:

To
fiB· eA't x 12 dt ~ CTo 1x 12

•
o U H

Definition 2.3

System (1.4) is locally exponentially stable iff: given A, Band F subject to (H-l), (1.3), there exist

constants C> 0; (J) > 0 such that solutions y of (1.4) with I! Yo I!H :s; R and with any perturbation G

subject to the condition (H-2) satisfy

I!y(t) I! :s; Ce--{j)lllYoll ;t>O
H H

Now we are ready to formulate the main result of the paper.

Main Theorem

With reference to the system (1.4) assume that the hypothesis (H-l) and (H-2) are satisfied.

Assume moreover that the pair

(1.8) (A, B2 ) is either stabilizable or exactly controllable for some To> O.

(1.9) (A·, I) is exactly controllable on H for some To > O.

Then the solutions y of (1.4) with the feedback operator, F given by

Fy =- B; Py

(where P is the solution to (ARE», are locally exponentially stable on H •

Since in the case of a unitary group, the condition (1.9) is automatically satisfied we obtain

Collorary:

Assume that A generates an unitary group, the hypothesis (H-l) and (H-2) are satisfied and that

(1.8) hold. Then the assertion of the Main Theorem holds true.
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3. Proof of Main Theorem

The following two results will be crucially used in the proof of the Main Theorem.

Theorem 31. [L.I)

With reference to the system (1.4) we assume that the hypothesis (H-I), (1.3) and (H-2) are in

force. Moreover we assume that

(A-I) A + D2F generates an exponentially stable semigroup on H.

(A-2) (A+D2 F)-I B1 E L(UI; H)

(A-3) There exist T > 0; CT > 0 such that

T

f ID~ e(A+B2 F)1 xl 2 dt~CT Ixl 2 .
o VI H

Then the semilinear system (1.4) is locally exponentially stable on H.

Theorem 3.2 [F-L-T]

Assume the hypothesis of Theorem 1.1. In addition, assume that

(3.1) the pair (A' ,I) is controllable for some To > O.

Then the solution P to (ARE) is an isomorphism and p- t
E L(H).

Remark 3.1 Notice that (3.1) holds whenever eAI is a group.

Remark 3.2 If p-l E L(H) then the gain operator B;P E L(H) iff D2 E L(U2; H). Thus, in the case

of a group, the gain operator B;P must be unbounded if B2 is unbounded. This fact should be con­

trasted with the case when eAI generates an analytic semigroup and the resulting gain operator D'P

is boundcd even ifD is unbounded (see [L-T.I, [F. I)).

Going back to the proof of our result, we notice first that by virtue of (1.8), the (F.c.C) condi­

tions is automatically satisficd. Thus Theorem 1.1 yields the cxistence and uniqueness of the Ric­

cati operator P. By (1.7) of Theorem 1.1 we also have: D;P E L (D(A); U2), hence the fcedback

operator F defined by

(3.2) Fy == -B;P y

is densely defined on H, so (1.3) is verified. ll1erefore, the conclusion of our Main Theorem will

follow from Theorem 3.1 once we establish validity of thc assumptions (A. I) - (A.3). As for

assumption (A.I) this, again, is a consequence of Theorem 1.1 part (iii). Indeed, by (3.2)

AF == A + B2F = A - B2 D;P = Ap .
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In order to establish (A.2) and (A.3) we shall need several supporting Lemmas and Proposi­

tions.

Let P be the solution of (ARE). Define

(3.3) D =Range PI
D(A)

By the assumption (1.9) and by Theorem 3.2 we have

(3.4) P: H ~ H is an isomorphism.

Now by density of D(A), we conclude that D is dense in H, and by (1.6) in Theorem l.l that D

c D(A;). We shall prove that D is dense in the topology of D(A;).

Proposition 3.1

(3.5) D is dense in D(A;)

(3.6) p-I satisfies the following "Dual Riccati Equation".

(DRE) (A p- I x, y) + (A'x, p-I y) + (P-Ix, p-I y) = (B;x, B;y) for x, y cDc D(A;).
H H H

Proof:

(i) proof of (3.5)

Let Z E D( A;) be such that

(3.7) (d, z) "= 0 for all d E D.
D(Ap)

We need to show that Z =O. (3.7) can be rewritten as (d, Ap A; z)H =0 and since dE D,

(3.7') (Px, AI' AI'" z)H = 0 for all x E D(A).

Now, by (1.6) in Theorem l.l and by duality

P E .L (D(A;)'; D(A)'), hence

P AI' A~, Z E D(A)' and

P AI' A; Z E D(A)' and

(3.8) A*-i P AI' A; Z E H;

From (3.7')

(3.9) (Ax, A*-i P AI' A; z)H = 0 for all x E D(A).

Since the Range of A is dense in H, by combining (3.8) and (3.9) we conclude

A'-lpAI' A; z=O
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or equivalently

P AI' A~ z = O.

ny (3.4) we know that P is injective on H. We shall show that P is also injective on a larger space;

[D(A~»J'. Indeed) it is enough to show that with any XE H

(3.10) PApx=O ~ x=O.

nut from the explicit representation fOffilUla for the Riccati operator (see [F-L-TJ) we obtain

" •• A (1) • " "
PApx=J eA1 [I+2wP]e p Apxd't=-A Px-(I+2wP)x onD(A)'; xED(Ap )

o

where A = A - wI; AI' == AI' - wI and w is selected such that IeAt I $ C e-t.
L{H)

Thus

P Apx = -A" P x - (I + 2wP)x on[D(A)]'

and P Apx = 0 implies that

(3.11) A" Px=-x-2wPx; and XE D(A"P).

Rewriting (ARE) as

(AI' x, Py) + (x, y) = - (A" Px, y)

and recalling that p-1 E L (H) we obtain

IApxl $C[lxl +IA"Pxl j;xED(A"P).
H H H

The above inequality shows that D(A"P) c D(Ap). Combining with (3.11) we conclude the follow­

ing implication: x E Hand P Apx = 0 ~ X E D(Ap). Thus if P AI' x = 0 then AI' x = 0 follows from

the injcctivity of P on H. Since e
Apt

is an exponentially stable semigroup, 0 Ii! 0' (Ap), x must be

zero, proving (3.10). Thus P AI' A~z = 0 implies that A~ z = 0 and by invertibility at A;, z = 0 as

desired.

Proof of (3.6)

Let x == p-l X and y == p-1 where x) y E D. Then x, yE D(A) and applying (ARE) with above x, y
yields

(A p-1 x, P p-l y) + (A" P p-1x, p-ly) + (P-1x, p-ly) = <n; x, n; y>u x, y E Dc 1J(A;).
H H H 2

this yields (3.6).
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Next result asserts that Dual Riccati Equation holds on a larger space, namely 'D(A;).

Lemma 3.1

The Dual Riceati Equation (DRE) is satisfied for aH x, y E D (A;),

proof of Lemma 31. will foHow through a sequence of Propositions.

Proposition 3.2

p-l E £CD(A;); D(A».

proof

We shaH use (DRE) with x, y E D. Since D E D (A;) we can write

(A p-l x, y) + ([A" - P B2 B;]x, p-l y) + (p-l X, p-l y) = 0
11 II II

or cquivalently

(3.12) (A p-1x, y) + (A;x, p-ly) + (P-1x, p-ly) =0
11 II II

lly the result (3.5) of Proposition 3.1, for any xED (A;) we can take Xn E D and Xn ~ XE D(A~»

where the convergence is in D(A~» lIoml. Applying (3.12) with x = Xn yields

(AP-1xn,y) ~IIA;xnll Ilyll +Cllxnll lid ~Cllxnll • lIyll ;YE H.
11 II II II II D(AI') 11

where we have used (3.4). Thus

(3.13) IIA p-
1

Xn 11
11
~ Cllxn IID(A;)

Since A p-l is closed on H by (3.13) and by weak closedness of A p-l (see [K.l]) we infer

(3.14) A p-l Xn ~ A p-1x weakly in H for XED (A;).

l-Ience A p-l x E H and by the Closed Graph Theorem

p-l E L ('D(A;); D(A» •

Proposition 3.3

n; E L (D(A;); U2)



110

proof:

Setting x = yEO in (ORE) yields

IIB;xIl 2 :5;IIAP-1xll IIxll +1Ip-t x Il2
Vz H H H

by Proposition 3.2 and by 3.4

:5; C 1I1 x II • II x II H + II X liz], XED.
D(Ap) H

Now the above inequality can be extended by density (recall Proposition 3.1) to all D(A~).

This completes the proof of the Proposition 3.3.

Proof of Lemma 3.1. The result of Lemma 3.1 follows now from (3.6) in Proposition 3.1 combined

with the results of Propositions 3.2 and Proposition 3.3.

Now, we are in a position to verify the assumptions (A.2) and (A.3) of Main Theorem.

Verification of (A.2)

From Proposition 3.3 we obtain

B; (A;rt E L(H; U2 )

!-Iellce by the duality

(3.15) Apt Bz E.L(U2;H)

and (A.2) follows after noticing that with F given by (3.2)

(3.16) A + Bz F = A - B2 B; P == AI"

Verifie~\lion of (A.3)

In view of (I-Ll) (ii) and of (3.16) it is enough to prove

Lemma 3.2

B; eA
;(') E .L (H; L2 (0, T; U2» .

proof of Lemma 3.2

Notice first that by the result of Proposition 3.3 B; e
Apt

; H -7 Lz«O,T); U2) is densely defined (as
• • A;(')

O(AI') c D(B2 e ).

Next, we shall prove that this operator is closed. Indeed, let us introduce the operator

J: Lz [0, T; Uz]-7 H given by
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T

(3.17) Ju == Je
Apt

B2 u(t) dt .
o

By (3.15) and by standard results (see [K.l]) J is closed. Moreover, J is also densely defined. To

see this, we take u E HI [0, T; U2] c C rOT; U2] and we compute

T T
(3.18) J(u) = J...! eAp t ApI B2 u(t) dt = eAp

T ApI B2 u(T) - ApI B2 u(O) - JeApl ApI B2 U (t) dt .
o dt 0

All the terms on the RHS of (3.18) are bounded in H with u E HI rOT; U]. Thus HI rOT; U2] c D(J)

and the density of D(J) follows from the density of HI rOT; U2] in L2[OT; U2]. Hence the operator

J defined by (3.17) is closed and densely defined. On the other hand it is immediate to verify that

J. =B; eA~(·). Hence B; eA~('): H ~ L2 (OT; U2» is closed and densely (on D (A~» defined, as

desired.

To complete the proof of the Lemma it is enough to establish the following inequality

T • •
(3.19) J IB;eAplxl~dt$CIXI~; xED(A p).

o

Indeed, the assessment of the Lemma will follow from (3.19) and standard density argument

(closedness of D; eA~t has been asserted above).

proof of (3.19)

Dy the result of Lemma 3.1 we are in a position to apply (DRE) with x = YE D (A~). This yields

(3.20) 2 Re (A p-I x, x) + Ip-I X12 = ID; x Iu2 ; xED (A~)
H H 2

Consider next

wet) == eA~1 x with x E D(A~) ,

so WI E H and we have

{

WI = A~)w = (A· - P B2 B;) w

(3.21) w(O) =x.

We multiply both sides of equation (3.21) by p-I w, which by the virtue of Proposition 3.2, is in,
D(A).

(WI. P-1w) = «A· - p D2 D;)w, p-l w) = (w, A p-I w) - IB;w 1
2 =

H H U2

(integrating from 0 to T)
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T T
(w(T), 1'1 weT)) - (x, 1'1 x) = 2 Re f (w(t), Ap-I wet)) dt - 2 f 1B;w(t) 12 dt.

H H 0 H 0 U2

Applying (3.20) with x = wet) c D(A;) gives

T

(w(T), P-Iw(T)) _(x,1'I x) =-IP-I xI 2 - f IB;w(t)1 2 dt
H H H 0 u2

and by (3.4)

T

f lB;w(t) I2 ::;C[lxI 2 + IW(T)1 2 ]::;C Ixl 2
o U2 H H H

which implies (3.19).•

To conclude, we have verified all the assumptions of Theorem (3.1) and consequently the con­

clusion of Theorem 3.1 is applicable. This proves the result claimed in Main Theorem. •

4. Applications

Kirchhoff plate with boundary feedback and boundary perturbations.

We consider on any smooth bounded n c R2,

WIt +t:J.2w - P t:J.wu =0 in (0,00) xn"'Q

w(O, . ) = Wo; wt(O, . ) = WI inn

wi =0
L

t:J.w IL = F(w(t), WI (t)) + G(w(t), Wt(t))

with P > 0 and with boundary feedback F.

Here G: L 2(n) x L 2 (n) -t ~ (r) is Nemycki's operator associated with a scalar function g, i.e.:

(4.2) G(YI, Y2) (x) '" g(YI (x) , Y2 (x)); x E (n

where g E Cl (R x R) and it satisfies the following requirements

{

(i) g(O) = 0; g' (0) = 0 ;
(4.3) (ii) g is of a polynomial growth in the second variable.

The main goal of this subsection is to show that the results of Main Theorem are applicable to

the present context. We shall prove that the feedback operator F: ~ (n) x ~ (n) given by

(4.4) F(w, WI) = -l!- t:J. P2 [w] I
all WI r
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where the operator P '" (Pt , P2) solves the appropriate Riccati Equation. provides for the system

(4.1), the sought after local exponential stability subject to an arbitrary perturbation g.

To accomplish our goal we need to put problem (4.1) into the abstract model (1.4).

We introduce the positive self-adjoint operator

JIh=th; 1J(JI)=(hE H4 (0);hl =~hl =0)
1 1

and define the operators; A", (I + PJI'hr l JI

(4.5) A = I o. 61; Bu =[.0 ]
-JI 51 Du

where D: L2 (r) -+ L2 (0) is the appropriate Green map

y=Dv¢=> (~2y=0 inO; y1l=0; ~yll=v).

Now we set

H", [H2 (0)11 Hb (0)] x HO (0); VI = V2 = L2 (r);

B I =B2 ",B

G: H2(0) x HI (0) -+~ (r) is given by (4.2).

We shall first verify the assumptions (1.1), (H-1) and (H-2).

Assumption (1.1)

Assumption (1.1) is equivalent showing

(4.6) A-1B E L(V, H).

From (4.5) we readily obtain

K
I

Bu= I~I -i- I

11~~u I= [~u]

and (4.6) holds true by the elliptic regularity:

DEL (~ (r); H5/2 (0)11 Hb (0» E L (U; H) .

Assumption (H-1)

Part (ii) holds as B I = B2 '" B. As for part (i) one can show (see [F-L-T] Appendix C)
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(4.7) BOeA"t [XI] = a6~(t)
Xz On I r

where ~(t) solves the corresponding homogeneous problem:

j
<l>lt + 6 z

<I> - P 6 <l>lt =0

(4.8) <1>(0) =<1>0 = (I + P JI.'hrl Xz ; <1>1 =- (I + P JI.'hr l JI.'h XI

<I> I:E == aa<l> I = O.
11 :E

Thus, by (4.8), an equivalent formulation of the assumption (H-l) (i) is the inequality

(4.9) J 16<1>IZdL~CTUI<l>oll~J(Q)+II<I>tll~2(Q)]'
:E

It should be noted that inequality (4.9) does not follow from a priori regularity of the solution <1>. It

is an independent regularity result which holds indeed true see ([L-L], [L-T.3]) for any general

smooth n. Thus assumption (H-l) holds true for the problem (4.1).

Assumption (H-2): By Sobolev's Imbeddings: HZ (n) c C (n) and HY.. (1) c LP (f) for any p >

O. Since the trace operator y Ir is bounded from HI (n) into H'h (f), the operator G given by (4.2)

is continuously Frechet differentiable from HZ (n) x HI (n) -t Lz (f).•

We verify next that the assumptions (1.8) and (1.9), leading to the solvability of Riccati Equa­

tion, are satisfied as well.

Assumption (1.8): By the result of [L-T.3], the exact controllability of problem (4.1) holds true for

any T > 0 on the space H = [Hz (n) (J H6 (n)] x H6 (n).

Assumption (1.9) is satisfied automatically since A is a group.

Thus all the assumptions of Main Theorem have been verified and we are in a position to state

the main result.

Theorem ~.l

Consider the system (4.1) with the feedback operator F: HZ (n) x HI (n) -t Lz (1) given by

a
F(w, WI) == - On 6 Pz (w, Wt) Ir
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where P '" (PI, P2) is the solution to (ARE) with A and B as above. Then for any perturbations G

subject to (4.3), system (4.1) is locally exponentially stable in the topology of H2 (0) x HI (0).

Remark

Other dynamics, like wave equations or plate equations with uncontrolled nonlinear perturbations

on the boundary can be treated in a similar manner. Indeed, one can verify that for these systems

(see [F-L-TJ) all abstract assumptions (H-l), (H-2), (A-I) - (A-3) are satisfied. Therefore, the con­

clusion of Main Theorem is applicable to yield the sought after stability results with Riccati feed­

back applied on the boundary.
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SOME TWO-DIMENSIONAL BOUNDARY SHAPE OPTIMIZATION
PROBLEMS fOR DISTRIBUTED PARAMETER SYSTEMS

A.Y. Mednikov. V.A. Troitsky
Poly technical Institute

Polytechnicheskaya. 29. Leningrad. USSR

There are many investigations about boundary-shape optimization problems
(BSOP) and many analytical and numerical methods to solve them (Banichuk,
1970). This report deals with only four two-dimensional boundary-shape optimiza­
tion problems for elastic bodies: namely, the boundary-shape optimization prob­
lems for oscillating membrane, vibrating thin plates, and bending thin plates and
torsional prismatic bars. It is well known that many BSOP have multi-extremal
solutions. For this reason, we attempt to obtain and analyze the second variation.
At the same time we discuss numerical results which were derived by gradient al­
gorithms. Also the FEM and BEM algorithms for solving corresponding problems
are discussed.

Let us denote the boundary to be optimized by r. the inner domain bounded
with contour r by Q and the outer unit normal vector by n as illustrated in
figure 1.

figure 1:

!l

Therefore we can wri te the variation of a double integral wi t h variable
boundary as

0JJf(R)dQ =JHOF +'VF·oRJdQ +JJF o(dQ) =

Q Q Q

=JI[Of + VF'oR]dQ + JIF V'oR dQ =

Q Q
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=JJ6FdQ + JF n'6R dQ = JJ6FdQ + JF 6n dQ.

Q f Q f

In these formulae the operator 'i/ is defined as 'i/ = ial8x + j818y, also we

have denoted n-6R=6n, where 6R is the variation of the boundary f.
Shape optimization problem for oscillating membrane. The optimization

problem is to find the boundary contour that minimizes the first natural

frequency of membrane. The area of membrane is fixed (and equals to S'").

Therefore

s = JIdQ = So.

Q

If we use Reyleigh formula then we can write functional to minimize as

II = t JI('i/W)2dQ.

Q

We suppose the isoperimetric constraint

T = tJIw
2

dQ = 1

Q

to take place. Here II and T are amplitude values of potential and kinetic

energies, w(x,y) - displacement of membrane points.

We are searching for the boundary contour of membrane that corresponds to

minimum of the first natural frequency.

The adjoint functional of this optimality problem is

o= tJI('i/W)2dQ + ~[tJIw2dQ-l] + r[JIdQ - so]
Q Q Q

where ~ and r are the constant Lagrange multipliers. The first variation of

this functional can be transformed to

00 =' - JI ['i/
2
w - ~w]OWdQ+J[r-H~t]6n df.

Q f o
We have used the condition w=O on contour f.

In accordance with the first necessary condition of the calculus of

variations (rule of multipliers) this first variation must be equal to zero.

Theref ore 60=0.
If we carry out usual variational transformations we obtain the equation

'i/2w - I3w=O in Q,

2
r - H~] = 0 on f.
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As can be easily shown the circular boundary contour satisfies this equation.

The second variation of functional at the point of extremum can be

transformed to

~2i\ = IJ [(V~W)2 + 13(~W)2] dO.

o
This formula together with Reyleigh formula show that

~2i\ ~ o.
Therefore circular membrane has minimal first natural frequency of all the

membranes of the same area.

We consider two problems from a variety of boundary optimization problems

for thin plates namely contour optimization for free transverse vibrations,

and boundary shape optimization for bending of a clamped plate.

Contour optimization for free transverse vibrations. The functional in

this problem is the first natural frequency. If we use the Rayleigh formula

again we obtain the functional

n=~JI[(1-V)VVW''VVw + V(l1W)2)dO

o
and isoperimetric constraints

T=~JIW2dO = 1,

o

s = IJdQ = S·.

o
We again assume that the area of the plate is fixed. In these formulas w(x,y)

is the displacement of the middle surface points, v - the Poisson ratio, p ­

the density of material, E - the Young modulus, and 0=Eh3/12(1-v2) is the

rigidity of the plate.
The adjoint functional of this optimality problem is

i:\ =~JI [(1-V)VVW' 'VVw + V(l1w)2)dO + 13 [JIW
2
dO-t]+ r [JIdO -S·]

000

where 13 and r are the constant Lagrange multipliers. The first variation of

this functional can be transformed to ~i:\ = -0II [Mw +~w)~WdO +

o



Ja2w [a 2~ + 2 B2w k] lJn2df .
an 2 an Bn 2

f

bending of a clamped plate. We shall
problem of a thin plate as to minimize
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+DJ[-n' 'V!J.wlJw + n· «l-v)'V'Vw + v!J.wE)· 'VlJw +

f o

+ ~(l-V)('V'Vw .. 'V'Vw)+V(!J.w)2)lJn + b<~w2+r)lJn] df,

where E is the plane unit tensor.
Here the first necessary condition of the calculus of variations lJtI=O leads

to equations

R = Mw +~w = 0 in Q,

T =0 on f.
p

We consider the different boundary conditions now. For clamped boundary
contour we have equalities

w = O. ~ = 0 on f

consequently

aw aw aw a2 w
lJ.w = lJw + an lJn = 0 • lJ.an = lJan + an 2 lJn = 0 .

Here the asterisk marks the full variation. Therefore we have

Bw 0 d '" aw a2
w '" flJw = - "!1"7 lJn = an u an = - --2 unon

un an

and from equality T =0 on f we obtain
p

_ a2
w = L on f.

an2 U

It can be shown that the circular plate is optimal. The second variation in
this case can be written as

lJ2J = D{JJ[(MW)2 + ~lJw)2]dQ­
Q

Boundary shape optimization for
consider the second shape optimization
the functional

E(Q) = J J(W(Q)-Wd)2dO,

D
where Wd E L2 is the given function and the domains D and Q (DeQ) are
illustrated on figure 2.

Figure 2: ~~
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We again assume that the area of the plate is fixed, i.e.

s = JIdO = S"

o
and also we consider that the displacement of the middle surface points W(O)
sat isf ies the equal i ties

!J.2W = f in O.

awW = 0 • ern = 0 on r .
The adjoint functional of this optimality problem is

i) = J J (W(O)-Wd)2do + J J p(!J.2W - f)dO + t3(JJ dO - S") ,

D 0 0

where the function p E H~(O) is the Lagrange multiplier. The first variation
of this functional can be transformed to

oi) = 2J J oW(W(O)-Wd)do + JI!J.2 p oWdO +

D 0

+ J [!J.P§~W - §*p oW + (3Jondr.

r
Taking into account the boundary condition on a clamped edge we can write the

. t· t r ~W §W0 a0 W a2Wvaria IOns on con our as v = - n n, on = - --2
an

Therefore the first variation of the adjoint functional may be obtained as

oi) = 2JJ(!J.2 p + 2XiW(O)-Wd))oWdO _J[!J.pa2~ - a!J.~ aw + t3Jondr,
an an an

o r
where Xd is the characteristic function.

Once again, the first necessary condition of the calculus of variations oi)=O
leads to equation

!J.pa
2w _ §!J. p aw +

an 2 n ern
where p E H~(O) is the

!J.2 p + 2XiW(O)-Wd)

p=O • ~=O

t3 = 0 on f,

solution of the adjoint problem

in 0,

on f.

The second variation in the shape optimization problem that is discussed can
be written as
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problem discussed is based on
of the gradient of minimizing

of

last formulae we
the property

+k6 a2~Jon2dr,
an 2 anII I 2 3 3 2

o2i} =2 X oW2dQ + rQ paw + ~ a w
d lan 2 an 3 an3an2

Q r
where k is the curvature of the boundary. To obtain the
implied the usual double integral transformations and
variations ow that is lJ,2oW= O.

Numerical solution of the optimization
gradient algorithm of order one. The value
functional is represented as

where 13 = -J a2~ a2~ dr / Jdr.
an an

r r

oil = - H6P~~~ + t3Jondr,

r
where W E H~(Q) and p E H~(Q) are functions always introduced. Therefore at
each point we have to transform the designing boundary in the direction of
outer normal with respect to the value

on '" 6 a2
w +13 ,

an 2 an 2

Some numerical results are pictured on figure 3. To simplify the problem
the D-region was considered as a point.

Figure 3:

The left figure presents the case when 6~f {i}/ > 0, i.e. the lower limit of
I

minimizing functional is larger than zero (absolute minimum). In this case
there is only one optimal solution that is the circular boundary. The right
figure represents the case when 6~f {i}/ = 0, i.e. the lower limit of

I

minimizing functional achieves the absolute minimum value that is equal to

zero. In this case the optimality problem has no one solution and each of them

is optimal. There the extra mass is in some way distributed into outer space.
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The model was discretized with only boundary elements. The analysis

(which was made by the authors) of BEM- and fEM- algorithms due to plate

bending problem shows that BEM is more efficient when the edge of plate is

clamped.

Torsion problem. Cross section of prismatic bar is shown in figure 4.

Figure 4:

stresses, IX torsional angle, V

k - unit vector in z direction, Il - shear

f=uf k' k=(f,fj

Contours f k' k=r.n are fixed. Outer contour f o may be changed. Mass of bar

is fixed. Therefore

S = HdQ = S·.

Q

Here S is cross section area and S· - given value.

If we maximize geometrical torsion stiffness of bar, the functional can

be written as

[ = 2 [ H~dQ + f CkS k]
Q k= 1

where ~=eJ>(x,y) is stress function of the torsion problem, Sk- area bounded by

contour f k' Ck - constant value such that

[~]fk = Ck, k=r.n; [~]fo = o.

For stress function eJ> we have equality

T = J.I.lX.'i.eJ> x .h.

Here T=(T. T) is tangent ialx y
two-dimensional operator "nabla",

modulus.

The problem is expressed as finding the shape of outer boundary contour

f o to maximize geometrical rigidity, subject to constraint of fixed area.

Real stress state of bar gives minimum of additional work 11', that is

given by
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n

IJI = ~II [(Vt)2- 4t] dQ - 2I CkSk·
Q k-l

Geometrical rigidity is connected with the additional work by the

eq ual it y

[ = -2m~n IJI.

Using the variation calculus we have to compose the adjoint functional

i) = min IJI + f3 [JJdQ - s·]
Q

Here (3 is Lagrange multiplier. The first variation of these functional may be

obtained as

oi) = + JG(VOt)2 + (3] ondf = ­

f o

JJ[~Ot +

Q

2]otdQ + J~ o~df +

f
o

+ f [ J ~ oCkdf - 2foCkSk +
k=1 f k=l

k

The formulas

J G(VO~)2 + (3]ondf

f
o

o<%> = 84> on
Oil

imply the equality

(Vo~)2 [8~]2Oil on f o '

oi) = -JJ[~04>+2]04>dQ+f rJ[~ -2Sk]OCkdf-J[H~]2_(3]ondf.
Q k=l~ f

k 0

In accordance with the first necessary condition of functional minimum
(multipliers rule) this first variation must be equal to zero. Therefore Ol3=O.

Usual transformations gives us Euler equation

~04> = -2 in Q,

conditions

J
8<t>
l3flkdf = 2Sk ' k=r,Il,

f k

and equality

1[84>]22 Oil - f3 = 0 on f O'
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This equality determines optimal shape of contour fa.

These results are well known. Our way to achieve them is simpler.

If we have simply connected cross section then the last equality is

sa t isf ied on ci rcular boundary. The second variation of our funct ional can be

wri t ten as

b
2
i) = 2II [ev x k)MfdQ.

Q

It is nonnegative. Therefore the geometric rigidity of circular section is

maximal.

For multiconnected section we have to use numerical method for solution

of optimality problem. The gradient of minimizing functional can be written as

bi) = H- [~f + (3]bndf ,

f
o

where function fJ> was already introduced. Therefore like in above section at

each point we have to transform the designing boundary in the direct ion of

outer normal with respect to the value

bn ~ a[[~f- (3).
where a E (0,1]. Constant value of [3 is defined of isoperimetric constraint as

bS"= Jbndf=o, therefore [3= -H~fdf / Jdf = [~]:p
fa fa fa

When the condition

J1bn1df ~ c

f o

is satisfied the optimal problem considered to be solved.

The fJ> function is obtained in a following form

n

<1> = <1>0 + I Ck<1>k'
k=l

where functions <1>., i=(f,l1 are the solution of the problem as
I

~°<1>0 = -2, ~°<1>k = ° in Q, k=l,I1;

<1> = 0
o

<1> = b' kI I

on f k' k={f,I1;

on f k , k=l,I1, i=l,I1.
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The unknown constants Ck (k=r.Jl) can be obtained from the equality

[
n ]8<1> 8<1> .J~ + ~ Cion~ df = 2Sk,

f .-1

that is transformed to the system of linear equations:

n

L BkiC i = Bk,
k-l

where

I
8<1> J8<1> .Bki = on~df. Bk = 2Sk - ~df. k=r.Jl. 1=r.Jl.

f f

We prefer the BEM algorithm because of some disadvantages of FEM: namely

the FEM requirement of mesh regeneration on each optimization step is not
accurate, and it computes slowly the design variables such as 84>/8n at boundary

points.

Discretization of a model was made by constant eleinents~ Our analysis shows

that it is simpler to achieve accuracy by increasing the number of constant elements

rather than by implying the linear elements.
The computation of geometrical stiffness

(5 = II<1>do

Q

by BEM-algorithm may be overcome in the following way. Taking into account the

known formula
n

<1> = 2II<1>·dO + J~ <1>·df - LJ<1>k ~·df in Q.

Q f k= If
k

where <1>. = ~Tr Ini is the fundamental solution of Laplace equation we may write

(5 = II<1>do = JJ[ 2II<1>. do ] do + JJ[ J~ <1>.df] do.

Q Q Q Q f

Having implied the usual double integral transformations we may obtain the

needed formulae as

(5 = 2 [~TrJ[J[Hlnt+2-]~ + 32 [lnt+~] cos(no' r)] cos(n. r)df] df +

f f

+ ~7kSk l
where no denotes the outer normal at current point of the external integral.
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Several numerical results are illustrated in Figure 5. We observe the solution to
the optimal problem depends on the initial form of the designed boundary. The
results for the cross sections with one shaft are in accordance with the the same
results obtained by other authors.

Figure 5:

--- ~"it.iQt ro
- optLnlG t. ro

In conclusion, the analysis of the second variation applied to simple problems
confirms well-known results. At the same time all attempts to obtain and to
analyse the second variation in more complex problems were discharged because
of their hopelessness. Applying BEM to solve BSOPs is a good idea and has only
a few problems. It seems the FEM is, in general, more adequate because it is a
more universal tool of numerical analysis.
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4.

5.

References:

5aHH'lyK H.B. OnTHMH3aUHH cjJOPMbl ynpyrHx TeJl.- M.:HaYKa.1980. 302c.

nypbe A.H. TeopHH ynpyroCTH.- M.:HayKa, 1970, 940c.

TpOHUKHH B.A. OnTHMaJlbHble npoueccbI KOJle6aHHH MeXaHH'leCKHX CHCTeM. - n.:
MawHHocTpoeHHe, 1976,248c.

Haftka RT., Grandhi RV. Structural shape optimization - a survey. ­
Compo Meth. in App!. Mech. and Eng.• 57(1986)91-106.

Soares C.A. Rodrigues H.C. Faria L.M. Optimization of the shape of solid
and hollow shafts using BEM. BE 5, Proc. 5th Int. Conf. Hirosima, nov.
1983.



INVERSE PROBLEM OF DYNAMICS FOR SYSTEMS

DESCRmED BY PARABOLIC INEQUALITY

Yu.S. Osipov

Institute of Mathematics and Mechanics

of the Ural Scientific Center

Academy of Sciences of the USSR, Sverdlovsk

The considered problem is concerned with the following questions.

Let t be the time variable. Consider an evolutional system E on an interval T = [to'!']'

We are interested in some unknown characteristic (l(t), tET of the system (e.g., (1 may be a

collection of some parameters of the system, or of some disturbances acting on the system or

of controls etc.). We are to reconstruct (l(t) on the basis of measurements of some other

characteristic (2(t), tET of the system E. The results of measurements ~(t) are not precise,

the error being estimated by h.

The smaller h is, the more precise should be the reconstruction (in the appropriate

sense). This is the stability property of the reconstruction algorithm D".
We consider two types of reconstruction problems. In the problems of the first type

(which we call problems of program reconstruction) the measurements ~(t) are known for all

tET at once. Hence the input of the reconstruction algorithm is the function ~(t), to ~ t ~ fJ.

The output of D" is a function d")(t), to ~ t ~ fJ close (in a suitable sense) to the characteris­

tic (l(t), to ~ t ~ fJ for h small enough.

In problems of the second type (we call them problems of dynamical reconstruction) the

characteristic (1 is to be restored simultaneously with the process of system motion. Here in

every current moment t the input of the algorithm D" is the previous history

~I = ~I(-) = {~(T), to ~ T < t} of the measurements ~ made prior to the moment t. The output

of D" in the moment t is a function

d~)(-) = {d")(T), to ~ T< t} ,

which approximates (in the proper sense) the characteristic

(l(T), to ~ T~ t , for small h .

Here D" is to satisfy the property of physical realizability [2], [3]: if ~(I)(T), to ~ T~ t1 and
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S-<2) (T), to :-:; T :-:; t2 are such that

~f!) = d:), t, :-:; min {t 1 ,t2} ,

then the functions D1Sf!)(·), DII~(2) are equal on [to,t,).

Below we consider a problem of the second type for a system described by a parabolic

inequality. We develop further the method for dealing with such kind of problems proposed in

[1-3]. The method is based on some ideas of positional control theory [14-17] and ill-posed

problems theory [181.

The present paper is connected with [1-13].

Let V and H be real Hilbert spaces, V' and H' be the spaces dual to V and H respec­

tively. We identify H with H'. It is supposed that V cHis dense in H and is embedded

into H continuously. Denote by (',')n and j·ln ((',')v and 1·lv) the scalar product and the

corresponding norm in H (in V).

Let t be the time variable, tET = [to,O]. Consider on T a control system :E. The state of

the system is y(t)EV. The evolution of the state is given by the following conditions for

almost all tE T the inequality holds ([19,20)):

(y(t), y(t) - w)n + a(y(t), y(t)) + tP(y(t)) - tP(w) :-:; (Bu(t) + f(t), w)n VwEV (1.1)

and

y(to) = Yo' (1.2)

Here a(w1 ,w2) is a continuous on V bilinear symmetrical form satisfying for some c1 > 0 the

condition

a(w,w) ~ cllwltr ; (1.3)

tP:V--+( -00,+00] is a convex proper lower semicontinuous function (or tP:H--+( -00,+00] is a

convex proper lower semicontinuous function satisfying the regularity condition [21,22];

1J : U --+H is a linear continuous operator, U is a uniformly convex real Banach spacej

fEL 2(T;H); u(.) is a control, i.e. measureable on T function for almost all tE T having values

in bounded closed convex set PcUj YoE{wEV: tP(w) < +oo}. Under the above assumptions

in W 1,2(T;H) n L2(T;V) there exists a unique function y(t) = y(tjto,yo,u(.)), tET, satisfying

(1.1), (1.2) (sec [19-22)). We call it a motion of system :E from the initial state Yo correspond­

ing to control u(·).
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Consider the following problem of dynamical reconstruction. Let V = HJ(O) ( or

V = HI(O)), H = L2(O),U = L2(O),B be the identity operator (see notation in [19,20]).

Now in (1.1) we take

y(t) = y(t,') = {y(t,x), XEO} ,

y(t) = ay(t,·)/at, u(t) = u(t,.) .

Let the control u be of the form

u(t) = u(t,x) = XG(t)(x) X uO(t,x) (1.4)

Here G(t) cO is such that the set {(t,x): tET, xEG(t)} is Lebesgue measureable; Xc is the

characteristic function of G; the function uO satisfies the inequality

0< f31 :-:; uO(t,x) :-:; f32, tET, xEO ,

where f31, f32 arc positive numbers.

(1.5)

Let the measurement of the system state y.(t) = y.(t,.) be possible in every current

moment t, the measurement result ~(t) = ~(t,·) satisfying the estimation

I~(t,.) - y.(t,·)IL](o) :-:; h . (1.6)

Suppose that the motion being observed is generated by the unique control of the type (1.4),

(1.5)

u.(t,x) = XG.(t)u?(t,x), tET, xEO .

Consider the problem of dynamical reconstruction with

~l(t) = {u.(t) ; S.(t)} ,

S.(t) = {(r,x) : TE[to,t), xEG.(r)} ;

~2(t) = y(t,.) .

Remark 1.1. Let e.g., (1.1), (1.2) describe the process of diffusion of a substance in a

domain 0 and y(t,') be the concentration of substance in 0 in the moment t. Then we deal

with the reconstruction of intensity of the substance sources and their location (see [12]).

We proceed the following way (see [12, 13]). To the system E we put into correspon­

dence a control system E I (Lhe model) which is a copy of E.

(z(t), z(t) - w)P(O) + a(z(t), z(t)) (1.7)
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- w) + q'>(z(t)) - q'>(w) 5 (lI(t) + f(t),wh 1 (fl) VwEV

z(to) == Yo 0

The control 11(.)EL2( T j L2(0)) in the model is chosen for almost all tE T from convex

bounded closed set P which contains all the L2(0) functions of the form XB09(x) where Be 0

is a measurable set, g(.) is a measurable function, 9 : 0 -> [.81,.82J.
Consider a partition Tj of interval T,

to = TO < Tl < ... < Tm == 0 j

m == m(h), 5(h) == maXj(Tj+l - Tj), 5(h) 5 ch, c == canst> 0 0

Take

II( t) == 11(1·)( t) == IIj, Tj 5 t < Tj+l' i == I, 0 0 o,m

where IIj are (the unique) points of minimum of the functional

tJI(p) == 2(Z(Tj i to, Yo, 11(.)) - f(Tj), ph1(fl) + a(h)lpI11(fl) .

The function a(h) > OJ a(h) ---> 0, h/a(h) -> 0 as h -> 00 Form the set

S.(I·) == [Tj, Tj+l) X {xEO : IIj(X) ~ I-'} ,

where I-' is some positive number .81 5 I-' 5 .820

Denote

m-l
s(lI) == U S,(II) ,

j=O

where d(S.(O), S(II)) is the Lebesgue measure of the symmetric difference of sets S., S(II).

Theorem. If h ---> 0 then the following is valid

111(11) - U.I L1(T;L1(fl)) -> 0

d(S(O), S(II)) -> 0 .

Remark 1.2. Similar to [12] one can obtain an estimate of reconstruction accuracy.

(1.8)
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2. Consider an example. Let,p be a convex continuous function under the assumption of Sec­

tion 1. Then the system (1.1) is equivalent to the equation

.Ex = Ay + u + !(t,z), tET, xEO, ylr = 0at

Here A is an elliptic coercive operator

a ~Ay = az. (ajj(x) ax.) - q(x)y, ajj = ajj ,
J I

a'i E £00(0)' q E £00(0) .

For (2.1) consider a concrete variant of reconstruction problem [12].

Let 0 be a two-dimensional domain

o < xl < £1 , 0 < X2 < ~; ! = 0, q = 0

and

Ay = a2 • a2y/aX[ + 62 • a2y/axi .

(2.1)

(2.2)

For the sake of simplicity we confine the considerations to the case of reconstruction of loca­

tion G( t), tE T. Let it be known a priori that the control being restored satisfying the ine­

quality lu(t")I L1(O) ~ R.

A closed ball in £2(0) of radius R is taken as P. Then

Vj = [1(Tj) - Z(Tj; to,yo,v(.))] / a(h) if

II(Tj) - Z(T, ; to,Yo,v('))I L1(O) ::; R·a(h) ,

Vj = R'!I(Tj) - Z(Tj ; to,yo,v(.))] / II(Tj) - Z(Tj ; to'YO,v('))lp(o) ' if

II(Tj) - Z(Tj ; to,Yo,V('))I L1(O) > R·a(h) .

For the considered variant of the problem the calculations were carried out for the fol­

lowing data

a 2 = 62 = 0.1 , £1 = ~ = 10, to = 0, (J = 1, R = 100 ,

Yo = 0, /31 = /32 = 10, o(h) = h, a(h) = -Jh, h = 0.1 .

The motions of the dynamical system and the auxiliary model were calculated with the help of

an explicit difference scheme with constant time step T = o(h) and constant spatial steps '11

and /2 in Xl and x2 rcspectively.
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The set G(tO) is depicted in Fig. 1 and Figs. 2 and 3 show the results of reconstruction of

the set

G( t) = {(xlIx2) : 0.01 ::; Xl ::; 9.99,X1(t,xd ::; X2 ::; X2( t,Xd} ,

where

Xl (t,xd = 3.S + COS(0.S·X1 - S·t) + 0.3.COS(S·X1 + tlh).sin(3.2.x1 + tl h) ,

X2(t,xd = 6.S + cos(O.Soxl - Sot) + 0.3ocos(IOoxl + tlh)xsin(3.2.x1 + tlh) ,

at the moments t = O.S, t = 0.9 respectively for

"11 = /2 = 10/16 .

The unknown set is reconstructed with the help of rectangles with centres in the mcsh

nodes and sides /1 and /2 parallel to axes Xl' x2 respectively.

The author wishes to express gratitude to A. V. Kryazhimski, A. V. Kim, A.I. Korotki,

V.I. Maksimov for valuable discussions and assistance, and also to A.M. Ustyuzhanin for help

in computer simulation of thc illustrative cxample.
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In t-he present- paper we provide some new result-s on t-he sensit-ivit-y

analysis 01- variat-ional inequalit-ies. We shall consider t-he followinr;

obst-acle problem for shallow shell [K-1J.

Find an element- w=<w,u,v)eKcll such t-hat-

.''!<w,t/> - w) ~ <f,t/> - W:>, "It/>EK <1.1)

where K is a conveX , closed subset- or t-he Sobolev space
2 1 1

11=11
0

<.n);, 11
0

<.11) >:"0 (I/)

stJ{.,.) : IIxll ~ R is a bilinear form, l' E 11'= H- 2 <lnxH-
1

<lnxH-1 <O)

is a r;iYen element- , and 0 is a r;i Yen domain in R
2

.

We shall prove t-hat. t.he solut-ion w of t-he variat-ional inequalit-y is

direct-ionally different-iable in t-he sence of Hadamard wit.h respect- t-o

t-he right- hand side L To t-his end we use t-he concept- of polyhedric

convex set- UIl, [Ml, see Def"init-ion 1 below.

We ref"er t-he reader t-o [R-S-11 for relat-ed result-s in t-he scalar

case including t-he sensit-ivit-y analysis of" t-he Kirchhoff plat-e wit-h

an obst-acle, and st-at.e const-rained opt-imal cont-rol problem [R-S-21 for

ellipt-ic equat-ion. Some applicat-ions t-o t-he sensit-ivit-y analysis of

opt-imizat-ion problems are prOVided in [S-1J

not-at.ion t-hroughout. t.he paper [AI, [L-Ml.

2. DIFFERENTIABILITY OF PROJECTION ONTO K

First- , we int-roduce t-he not-at-ion.

[S-41. We use st-andard
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Convex set. K is derined in t.he rollowinl'; way

K = { ¢> ... (¢>I'¢>Z'¢>3) E H~(IDXH~(Q)XH~(O) I !R¢> ~ Y' in II ) (Z.D

here Y' = Y'(x) , x EO, is t.he obst.acle , and !R is t.he linear mappinf;

where a z= iJY'/iJx
1

simplicit.y t.hat. t.he

Denot.e

!R¢> .. ¢>1 - az¢>z - a 3 ¢>3

a
3

'" iIY'/iJx
2

' here we assume 1'01'

obst.acle is surl-icient.ly smoot.h , hence

!R¢> E H~(0) , 1'01' all ¢> in II

t.he

(z.Z)

sake

(2.3)

or

H~(!R;lD '" { P E H~ (0) I p = !R¢> , 1'01' some ¢> in II ) (Z.4)

t.he imal';e or t.he mappinf; !R in t.he Sobolev space H~(0) .

Let. us consider t.he met.ric project.ion P K in II Gnt.o t.he set. K.

We shall show t.hat. t.he set. K is polyhedric [M] in t.he Sobolev space

Hz HI 1.11= 0 (IDx 0 (O)xHoun equipped wit.h t.he scalar product.

(¢>,<P) '" (¢>,<P)II = 1'( 1!>.¢>1t><P
1

+ 'Il¢>Z·'Il'I'
Z

+ 'Il¢>3·'Il<P
3

)dx (Z.5)
o

and t.hererore t.he met.ric project.ion P K is direct.ionally dirrerent.iable

in t.he sense or Hadamard [M]. In sect.ion 3 we use t.he result. on

direct.ional dirrerent.iabilit.y or project.ion 1'01' t.he sensit.ivit.y

analysis or variat.ional inequalit.y (1.1).

Let. T K(¢» denot.es t.he t.anl';ent. cone t.o K at. ¢> E K . It. is clear t.hat.

T K(¢» is t.he closure in t.he space II or t.he rollowinl'; convex cone

C
K

(¢» = {'I' E II I 3 t. > 0 such t.hat. ¢> + t.<p E K } (Z.6)

1"01' a I>iven element. I'; Ell, such t.hat. ¢> = P K (f;) let. us denne t.he

rollowinl'; convex cone in t.he space II

S = T K (¢»nt>

where

t> = { 'I' E II I (¢>,<p)

= [I'; - P (f;)].L
K

DEPINITION 1

(I> ,'I') }

(Z.7)

(Z.8)

The set. K is polyhedric provided 1'01' any f; E II

S = cl(CK(¢»nt»

here cl st.ands 1'01' t.he closure.

Pirst. we derive t.he rorm or t.anl';ent. cone TK(w) 1'01' any W E K.

THEOREM 1.

•

Tanl';ent. cone TK(w) t.akes t.he rorm

TK(w) = { ¢> = (¢>I'¢>Z'¢>3) E H~<ll)XH~(O)XH~<ll) I !R¢> ~ 0 q.e. on :::: }(Z.9)

where
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E = { x e n !ltW(x) !p(x) } (2.10)

is t-he coincidence set-.

Here q.e. means .. quasi everywhere .. wit-h respect- t-o t-he capacit-y of

t-he space H~(!It;O) equipped wit-h t-he smallest- norm for which t-he

mappinc; !It is cont-inuous . •

PROOF OF THEOREM 1.

We aSSume t-hat- t-he coincidence set- E c 0 is compact-. We denot-e by m
t-he followinc; closed convex cone

m = { .p e H I !It.p ~ 0 , on E } (2.11>

It- is clear t-hat- CK(w) c m hence TK(w) em. Let- V e m be a c;iven

element- and let- .pO denot-e t-he ort-hoc;onal project-ion of Vont-o t-he

convex cone TK(w) , t-hen

(.pO - V,.p) ~ 0 , for all .p e T K (w) (2.12)

(.pO - V,.pO) = 0 (2.13)

We claim

(¢'O - V,.p) = 0 , if ~.p '" 0 (2.14)

Indeed ir ~1' = 0 t-hen ±¢' e eKe,,)~ so t,hat.. <'2.1-1> rollows 1'roll1 <.2.12).

Define on H~(~;O) t-he posit..ive linear map , well derined by (2.14),

Lv '" (.pO - V,.p) , v = ~.p e H~(9t;1»

Then t-here is a posit-ive Radon measure A on n such t-hat-

Lv = f !It.p dA. = f v d7..
I) 0

t-henconcent-rat-ed on E. Indeed if ¢'O e C~(O'-E)

belonc;s t-o CK(w) so t-hat- from {2.12) it- follows

.pO dA = L¢'O = (.pO - V,.p) '" 0

isAt-hat-

±(.po,O,O)

f
I)

in view of (2.13)

claimWe

Finally

clearly ±.p

o ~ (tPO - V,.pO - V) = - (.pO - V,V) '" - f !J\V dA
o

Now A is concent-rat-ed on E, 9tV ~ 0 on E so t-hat- t-he last- quant-it-y is

non- posit-ive. Hence we must- have

.pO = V

Since t-he element- V e TK(w) is arbit-rary it- follows t-hat­

TK(w) = m

•
THEOREM 2.

Let- r; e H be a r;iven element­

condit-ion is sat-isfied

denot-e .p PKr; t-hen t-he followinr;

-LTK(.p)ri.p - PKC;] cl ( CK(.p)ri.p - P KC;]-L)
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condi t-ion is sat-isf"ied
~ . ~

TK<t/»rl.t/> - PKg'l = c1 { CK<t/»rtt/> - PKg'l )

t-herefore t-he convex cone K is polyhedric.

PROOF OF THEOREM 2.

•

We denot-e by ~<t/» t-he coincidence set-

'Z<t/» = { x E 0 I !Rt/><x) = rp<x) }

There exist-s a nonneg'at-ive Radon measure v such t-hat- v<~) = 0,

furt-hermore

[t/> - P Kr;l~= { t/> E H I f ff\.t/> dv = 0 }
II

We have also

TK<t/» = { 'P = <'P1,'P2 ,'P3 ) E "~<O)XH~«l)XH~<O) I !R'P ~ 0 q.e. on 'Z<t/» }
~

We shall show t-hat. for any V ,., <V
1

,V
2

,V
3

) E TK<t/»rtt/> - PKr;J t-he

met-ric project-ion t/>O of V ont.o t.he cone cl<CK<t/»rtt/> - P Kr;l~) coincides

wit-h V Le.,

V = t/>O

Now

<t/>o - V,'P)H ~ 0 , for all 'P E cl<CK<t/»rtt/> - P Kg'l~)

and t-here exist-s a nonnelr;at-ive Radon measure .\ such t-hat-

<¢>o - V,'P)H = f 9\'1' d.\
II

STEP 1

Let- .!;1 E C~<O'F) , F = supp?. , 'Pl~ 0 on 'Z<¢» , t-hen

f;. = (f;.1'0,0) E CK<t/»rtt/> - PKg'l~

hence

<t/>o - V,.!;).. = f .Il<t/>Ol - V1)./l.!;1dx ~ 0

o 2
We can apply t-he same arg'ument- as in t-he case of t-he space H

O
(0)

[R-S-l1 in order t-o show t-hat- t-he lat.t-er inequalit-y implies
2 2

f < <.Il<t/>Oi - V1» + <t/>01 - Vi) )dx = 0
O'-F

t-herefore

t/>01 = V1 ' in H~<O) c C<O)

STEP 2

Measure ?. is concent-rat-ed on 'Z<t/».
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Let. P1 E C~(fl"-Z(-P» be a given element. , denot.e P = (p
1
,0,0) , t.hen

-l.
(-PO - V,P)H = f P 1dA ~ 0 , 1'or P E CK(-p)ri-p - PKg]

fl
since ±p E CK(-p)ri-p - PKg]-l. it. 1'ollows t.hat.

f p 1dA = 0 , 1'or all P 1 E C~(fl"-Z(-P»
fl

STEP 3

Since cl(CK(-p)ri-p - PKg]-l.) is a cone it. 1'ollows t.hat.

(-PO - V'-PO)H = 0

t.here1'ore !R-Po

We have

-P01 - a2-P02 - a3-P03 = 0 , A a.e. t.hus

-P01 = a2-P02 + a3-P03 ' A a.e.

(-PO - V,-pO - V)H

by STEP 1

f[(-p
01

- V
O

)

fl

f !R(-po-V)dA
fl

- a2(-P02-V2) -a3(-P03-V3)]dA =

- f( a
2 -P

02
+ a3-P03)dA + f(a2 V

2
+ a

3
V

3
)dA

Q fl
- f-P

01dA + f(a
2

V
2

+ a
3

V
3

)dA =
fl fl

- ,r(v
O

- 3
Z

V
2

- d
3

V
3

)dA = - J'~hVdA ~ U
fl fl

since ~V ~ 0 on :;;'(-p) , t.here1'ore -PO = v.

3. SENSITIVITY ANALYSIS

•

Let. flcR
2

be a given domain wit.h smoot.h boundary r=<1fl. We shall

consider t.he 1'ollowing variat.ional inequalit.y

1'ind an element. t,P(w,u,v)eKcH such t.hat.

Jt!(<.>,-p - <.» ~ <f',-p - r.i>, V.peK

here we denot.e

(3.1>

(3.2)

where

a > 0

Jt!(<.>,<.»= af(Aw)2dx
fl

"11=<1u/<1x1 + k 1w,

1 > q >0 are given

+ J'[ 2 + 2 +2 ~ (1 ) 2 ]d
"11 "22 Q"11"22 2 -Q "12 x

fl
"22=<1v/iJx2 + k 2 w, "12=<1U/<1x2 + <1v/<1x1 '

const.ant.s ,

<f',-p>= f( 1'1-P1 + l'2-P
2

+ l'3-P3 )dx
fl

(3.3)
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211
(</>1'</>2'</>3) e HO(Q)xHO(O)xHO(Q)

= H- 2 (Q)xH-1nnxH-1nn.

l' (1'1,1'2,1'3) is a I;iven

We denot..e by w = nCr) t..he unique solut..ion or variat..ional inequalit..y

(3.D.

The coincidence set.. ror t..he solut..ion w or variat..ional inequalit..y (3.1)

t..akes t..he rorm

::: = ( x e II I !Rw(x)

Let.. us consider t..he mappinl;

n : II' =- l' ~ w eKe II

'fI(x) )

(3.4)

We shall show t..hat.. t..he mappinl; n is direct..ionally dirrerent..iable in

t..he sence or Hadamard.

THEOREM 3.

For any hell' and ror e ) 0 , e small enoul;h

ncr + eh) = nr + en'h + o(e) (3.5)

where o(e)/e ~ 0 , wit..h e-J.O in t..he norm or II , unirormly wit..h respect..

t..o h on compact.. subset..s or II'. The element.. q = 11'(h) is I;iven by t..he

unique solut..ion or t..he rollowinl; variat..ional inequalit..y

rind an element.. q=(w,u,v)eScll such t..hat..

$/(w,</> - w) ~ <h,</> - <.i>, Vt/>ES

PROOF OF THEOREM 3.

(3.6)

We provide a I;eneral proor which shows t..hat.. ir t..he met..ric project..ion

in t..he Hilbert.. space H is direct..ionally dirrerent..iable t..hen it.. is

dirrerent..iable in any scalar product.. derined by a symmet..ric, coercive

bilinear rorm, provided an auxiliary condit..ion is sat..isried. It.. seems

t..hat.. t..he same arl;ument.. can be used in t..he case or non

convex set...

polyhedric

Let.. 1;<'): [0,6) ~ II be I;iven. Consider t..he ramily or variat..ional

inequalit..ies

w(t..)eK: $/(,.>(t..),</> - w(t..» ~ (I;(t..) .• </> - w(t..», Vt/>EK

t..hen

(3.7)

w(t..) = P K (w(t..)- Aw(t..)+I;(t..» (3.8)

where A e .:e(II~1) is linear bounded mappinl; derined by bilinear rorm $/

$/(w,</» = (Aw,</»

Denot..e
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Z(t.) = w(t.)-Aw(t.)+~(t.)

.1­
S .. TK(w(O»rlW<O) - z(O)]

T K(w(O»(I{ .p I (Aw(O),.p) = (~(O),.p) }

(3.9)

and we have

w(t.) PK(Z(t.» (3.10)

w'(O) = PS(z'(O» (3.11>
+

provided ze) is st.ron~ly dirrerent.iable at. 0 . In such a case ror

t.>0 , t. smal1 enou~h

w(t.) w(O) + t.w'(O) + o(t.) (3.12)

'We should show t.hat. ror any ~iven z'(O) we can select. ~'(O) in such a

way t.hat.

z'(O) = w'(O) - Aw'(O) + ~'(O)

PS(z'(O» - APS(z'(O» + ~'(O)

Let. us denot.e by S· t.he polar cone , t.hen P
S

element. .p e II we have

.p=p.p+p .p,
S S·

(P .p,p .p) = 0
S S·

It. can be shown t.hat. t.he condit.ion

+ P
S·

(3.13)

(3.14)

and ror any

(3.15)

(3.16)

(z'(O)- PS(z'(O» + APS(Z'(O»,.p) (~'(O),.p) o (3.17)

ror all z'(O)eH

implies <p=0. On t.he ot.her hand t.he ima~e ImZ or t.he cont.inuous mappin~

Z: H => z'(O) ~ z'(O)- PS(Z'(O» + APS(z'(O» eH

t.akes t.he rorm

1m;;!: = S· + AS

It. can be shown , see PROPOSITION 1 below , t.hat.

ImZ = H

(3.18)

'We proved t.hat. ror any element. ~'(O) which b ..lon~s t.o t.he ima~e or

mappinc; (3.18) we have

w'(O) = PS(z'(O» = PS(""'(O) - A...,'(O) + ~'(O» (3.19)

t.he derivat.ive is unit"orm wit.h respect. t.o z'(O) on compact. subset.s or

t.he space H.

(3.19) is equivalent. t.o t.he t"ol1owin~ variat.ional inequalit.y

(,)"(O)"S; (w'(O) - (w'(O) - Aw'(O) + {;'(O»,r/> - w'(O» ~ 0,

ror all <I>eS
hence
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<.>'<O)ES: .P1<<.>'(0),? - <.>'(0» ~ <t;;'(0),4' - <.>'(0) , Vt/x=S <3.20)

and we have <3.20) for any rit;;ht- hand side t;;'(0) in H • which

complet-es t-he prooL

PROPOSITiON 1

'We have

1m;?; S· + AS H

PROOF

Let- V E H and ~O denot-es it-s project-ion ont-o S· + AS

• •~O E S + AS: <~O - V,." - "'0) ~ 0, V~ E S + AS

Now if '" E S· + AS t-hen

•." + "'0 E S + AS

so

•<"'0 - V,.,,) ~ 0, V." E S + AS

Take '" E S· t-hen

<"'0 - V,.,,) ~ 0, V", E S·

i.e.

•<0- <V - "'0)'''' -0) ~ 0, V." E S

hence P <V - 4'0) = 0 , t-hus
S·

V - 4'0 E S

<3.21>

(3.22)

There exist-s t-he unique eiement-s

." =o

•Vo E S , Wo E S such t-hat-

V o + W o

Finally , from <3.21>

V~ E S· + AS

From <3.21> it- follows t-hat-

<w
O

'''') + <va - V,.,,) ~ 0, V." E s·

. V •but- Wo E S so <wo'''') S 0, ." E S t-herefore

<va - V,4') ~ 0, V." E s·

which means t-hat- P <V - vO) = 0 • t-hus
s·

V - V o E S

so V = V o + Wo' for some WoE S

o S <"'0 - V,~) = <va + W o - V o - wo'''')
= <w

O
- wo'''') = <0 -<wo- w

O
),." -0)

In part-icular t-he project-ion of <wO- w
O

) on S· + AS is 0 so
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w' -o
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Wo e S

But.

A(W
O

- w
O

) e AS

o ~ (w
O

- wO,A(W
O

- wo»

by coercit.ivit.y of bilinear form JI1<',.)

~ -ex(w
O

- wo,w
o

- w
O

) ~ 0, ex > 0

hence Wo
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A note on an interaction between
penalization and discretization
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Pod vodarenskou vU{ 4, 18208 Praha 8,
Czechoslovakia

The aim of this note is to investigate phenomena appearing when a state-constrained optimal

control (or optimal shape design, etc.) problem governed by some differential equation is handled

numerically. Then we are forced to approximate the problem on finite dimension spaces by some

discretization method like finite diferences or finite elements, and simultaneously to cope with

the state space constraints by some dual method - here we confine ourselves to the simplest

one, namely to the penalty function method, but the augmented Lagrangean method will behave

essentially by the same manner. By author's knowledge, an interaction between discretization

and penalization has not been studied yet, except some investigations in soviet literature collected

in the book by F.P.Vasilev [31 which does not deal directly with the dual treatment of the state

constraints, however. Though the matter is not too complicated, it is perhaps worth mentioning

briefly here because, by author's experience, all possible events are not sometimes realized well

by those who use discretization with penalization simultaneuously.

As most of the phenomena appear already on an abstract level, we may begin with the following

abstract optimization problem

(P) {
minimize /(u) on u E U
subject to g(u) E C

where f: U ---> fl is a cost function, g: U ---> Y a state operator, U a set of admissible controls,

Y a space of states, and C c Y a set of admissible states. From now on, we shall suppose

controlability of (P), that is g(U) n C -I 0. After penalization (with a parameter c > 0) and

discretization (with a parameter h > 0) we get a family of unconstrained optimization problems,

each of which can be written in an abstract form:

(P.h ) minimize f.h(u) = fh +c-1p(gh(u)) on u E uh,

where r: U h ---> fl, gh: U h ---> Yare an approximate cost function and state operator, respectively,

Uh C U is an internal approximation of the set of admissible controls, and p : Y ---> fl is an

appropriate penalty function; for simplicity we suppose that p is so easy to be evaluated that it

need not be approximated by some ph, which is often case, indeed.
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To simplify the problem as much as possible, we will assume the following, quite strong as­

sumptions:

(1) U is compact, its topology being denoted by T,

(2) Y is a metric space, p its metric, C its closed subset,

(3) f,g are continuous, f > -00,

(4) P is continuous, p(C) = 0, p(Y\C) > 0,

(5) Uh is closed in U, fh, yh are continuous in the (relativized) topology T,

(6) Uh, C Uh• for hi ~ h 2 > 0, Uh>o Uh is dense in U, and

(7) r --> f, gh --> 9 uniformly in the sense:

"Ie> 0 3ho > 0 "10 < h ~ ho Vu E Uh : Ir(u) - f(u)1 ~ c, p(gh(u),g(u)) ~ c.

Note that the assumptions (1)-(5) obviously guarantee existence of a minimizer both of (P.h )

and of (P), which is, however, not too much important because all phenomena studied below

appear also in more general setting of the problem where compactness (1) need not be used, cf.

[2].
Though the assumptions (1)-(7) may seem quite powerful on a first look, they cannot ensure

the convergence of the minima of (P.h ) to the minimum of (P) (and a fortiori the convergence of

minimizers, either) if only c, h "\. 0, as shown by the following example.

Example 1. Consider a very simple situation: U = [-1,1], Y = R, flu) = g(u) = u, C =

{+1, -I}, Uh = [-1 + h,l], r =. f, gh =. 9 on Uh, and p = 1 - lui. All the assumptions (1)-(7)
are fulfilled trivially, and clearly min(P) = -1, and Argmin(P) = {-I}. On the other hand,

it is easy to compute that, for c < h/2, min(P.") = 1 and Armin(p.h ) = {I}, which shows that

neither the minimum, nor the minimizer of (P.h) converge respectively to the minimum or the

only minimizer of (P) when c,h "\. 0 and c < h/2, that means when c tends to zero too quickly

in comparison with h.

What the assumptions (1)-(7) can guarantee is only the existence of a stability criterion

"h ~ 1](c)" under which the convergence is ensured:

Theorem 1. Under the assumptions (1)-(7) there exists 1] : R+ --> R+ such that

(8)

(9)

lim min(p.h ) = min(P) , and
.,h\.O,h$'1(')

lim sup Argmin(p.h ) C Argmin(P) ,
',h\.O, h$'1(')

wllCrc "limsup" has the usual meaning, i.e. it contains all T-cluster points of all chosen subnets.
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The proof is, in fact, contained as a part of the proof of Theorem 4.3 in 121 and will be thus

omitted here (however, Theorem 4.3 there itself is stated in terms of so-called minimizing filters

instead of the sets of minimizers, not supposing any compactness).

It should be emphasize that Theorem 1 has a little practical usage because it does not say

anything about the stability criterion "h ~ I](e)" except its mere existence. The following The­

orems 2 and 3 provide us with more information, the former one dealing even with the extreme

situation when no stability criterion is needed:

Theorem 2. If (1)-(7) are fulfilled and moreover

(10) C = clyintyC and g{U) n intyC i- 0 and ,

(11) V uniform neighbourhood B of g-l(intyC) 30> 0: g-I(C6 ) C B

where "ely" and "inty" stand respectively for the closure and the interior in Y and C6 for 0­

neighbourhood of C in tile metric p. Then (8) and (9) hold with I] = 1, that means the

convergence is unconditional.

Again, the proof is essentially contained in [2] as a part of the proof of Theorem 4.4 and will

be omitted here.

Remark 1. The hypothesis (10) is particularly satisfied if Y is a linear metric space, C is

convex with nonempty interior and g( U) n inty C i- 0; then we come to the standard Slater con­

straint qualification. As for (11), it is particularly satisfied if g-l is uniformly continuous, possibly

in the Haussdorff sense provided g-l is multivalued.

Unfortunately, (11) is typically not fulfilled in optimization problems for systems governed by

differential equations where usually Y is a normed linear space with a norm strictly coarser than

the corresponding energetic norm; e.g. Y = £2(.) while the energetic space is some Sobolev space

H k
(.) with k > O. In such case we have to perform the analysis more in detail, introducing also

the auxiliary penalized problem without any discretization:

(P,) minimize 1,(11.) = 1 + e- 1p(g(II.)) on 11. E U.

Theorem 3. Let (1)-(7) be fulfilled and the following discretization error is known:

(12) Vh ~ ho : Imin(P,h) - min(P,) I ~ E(e, ho).

Then every I] : R+ --t R+ such that lim E(e, I](e)) = 0 will guarantee (8) and (9).
,\,o
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The proof of (8) follows from the fact that min(P.) converges for g '" 0 to IDin(P) and from

the obvious estimate:

IIDin(P;) - min(P)1 ::; E(g, ,*)) + Imin(P.) - min(P) I

provided h ::; 71(g). As soon as (8) is proved, (9) is ensured simply by standard compactness

arguments.

Example 2. We outline a rather model situation dealing with an optimal distributed-control

problem for a nonlinear elliptic equation to illustrate how Theorem 3 can be applied. Let n
be a bounded, polyhedral domain in Rn, an its boundary, U = {u E LOO(n);-1 ::; u(x) ::;
1 for a.a. x En}, T is the topology induced on U from JI1(n)' (which obviously guarantees (I),
"", stands for the topological dual space), Y = L2 (n), and g(u) = y E H1(n) is the weak solution

of the nonlinear boundary value problem:

(13)

(14)

\7(a(l\7yl)\7Y) = u on n,

ay
a(l\7yl) av + y == 0 on an

with some nonlinearity a(.) such that the function E f-+ a(EjE is uniformly increasing with a linear

growth, v is the outward unit normal to an. In other words, g(u) = y should fulfil the integral

identity:

Furthermore, let

(15)

1a(l\7yl)\7y \7v dx + ( yv dB = 1uv dx
n Jan n

f(u) = ( g(u) dB,Jan

Vv E H1(n).

C be a closed subset of L 2 (n), and p(y) = inf~Ec Ily - !illi.(o)' In view of the cost function (15)
together with the boundary conditions (14), we can see that, speaking in terms of a heat-transfer

interpretation, we are to choose heat sources distributed around n in order to minimize the heat

flux through the boundary an representing a lost of energy outside the domain n, subject to

some constraints imposed on the heat sources and on the temperature distribution. Hence our

model problem has a quite reasonable practical interpretation.

We discretize the problem (13)-(14) by a standard manner, using the finite element method

(any numerical integration is not needed here). Let {Thh>o be a regular family of triangulations of

n, Uh = {u E U; u is piecewise constant on T h}, V h = {y E H1(n); y is piecewise linear on T h},

r == f on Uh, and gh(u) E Vh is the unique solution of the integral identity:

1a(l\7gh(u)l)\7l(u) \7v dx + ( gh(u)V dB = 1uv dx
n Jan 0

To derive the estimate of the type (12) we employ the following facts:

Vv E v h
•

i) f, g, and p are Lipschitz continuous on their respective sets of admissible arguments.
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ii) The rate-of-error estimates which are uniform with respect to the control are known:

IIg(u) - i(u)II£2(O) ::::; C hQ

If(u) - fh(U)1 ::::; c M}

Vu E U h
, and

Vu E U h
•

If the regularity g(u) E H 2 (0) is valid, by [3] it is well known that a = 1 , and in the linear case

(Le. a == const. > 0) even a = 2. As for fJ, its expected value is ~ (or ~ in the linear case), but

we shall see (cf. Remark 2) that its concrete value has no influence on mere convergence (8) and

(9).

iii) The uniform approximation error estimate is known:

(16) inf Ilu - uhIlHl(o)O ::::; C h'!
uh.EU'"

Vu E U.

Let us outline the proof of (16). For u E LOO(O) denote by uh E U h the function defined

by Ill. uh dx = Ill. U dx for every simplex t::. E T h. It is easy to verify that IIv - vhIIL'(O) ::::;
const.hllvIIHl(O) for every v E H1(0). Realizing that (u - u\vh) = 0 because evidently h(u­

uh) dx = 0 and vh is constant on t::. for every t::. E T h, we obtain the estimate I(u - u\v)1 =

I(u - u\v - vh)l::::; const.(lluIIL'(O) + IluhIIL'(O)) h IlvIIHl(O)' Taking into account that u,uh E U

and the definition of the standard dual norm, we can see that Ilu - uhIIHl(O)O ::::; 2 const.VmeasO h,

and put 'Y = 1 in (16).

Now we will employ the facts i)-iii) to derive the estimate (12). Taking some u E Argmin(P.),

by (16) we can find some uh E Uh with Ilu - uhIIHI(O)O ::::; (c + l)h'!. By i) we can then see that

f.(u h) ::::; min(P.) + (c + l)h'!(L + ~), where L stands for the common Lipschitz constant of f,g,

and p. By ii) we come to

(17)
L 2 cL

min(p.h) ::::; f.h(u h) ::::; min(P.) + (c + I)(L + -)h'! + chI! + -hQ
•

c c

(18)

Conversely, let us take some u E Argmin(p.h). By ii) we get immediately

• • h I! cLmm(P.) ::::; f.(u) ::::; mm(P.) + c h + -hQ
•

c

Joining (17) and (18), we come to the error estimate (12) with

1
E(c, h) = Const.(h'! + hI! + -(h'! + hQl).

c

Then by Theorem 3, for the stability criterion function 7J we can take arbitrary function

7J(c) = cq 1 1
with q>max(-,-).

a 'Y
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Remark 2. Note that f3 has no influence to a freedom of the choice of 77, which is due to

the fact that we investigated only mere convergence of the problem (p.h ) to (P), not any rate of

convergence. Note also that the optimal case is a = I, particularly the case a = 2 has here the

same efficiency as a = 1.

Remark 3. It is known that without the compactness hypothesis (I), the penalized problem (p.)
does not generally approximate the original problem (P), but some extended problem (roughly

speaking, a "relaxed control" problem). In such case, our considerations are also well fitted to

approach relaxed controls by solving numerically the problems (p.h ); d. [2] for a general treat­

ment of this idea.
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PROBLEMS OF MATHEMATICAL MODELLING OF
NONLINEAR PROCESSES
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One of the most important fiel~of modern science involves such
key notions as optimization, control and optimal control. They ref­
lect an aim of research, connected with efficiency, because optimiza­
tion of any process and its control implements ~n a certain sense)
an optimal process. Unfortunately, classical methods employed in the
control theory are efficient only for a narrow range of problems
with elementary mathematical models. These methods prove to be non­
efficient for complex problems described, e.g., by nonlinear partial
differential equations. Meanwhile, it is obvious that optimization
and control should be performed by basing rather on a profound and
confident knowledge of an object under investigation than on its sim­
plified models of the "black box" type. Therefore, to study proper­
ties of the object that we want to control is a first priority task.
This task is generally very difficult since all modern problems un­
der study are growing in complexity and scale, some becoming global
(ecology, climate, etc.). Their study requires a system approach.
For complex systems of any nature we need a forecast of their evo­
lution,a scientific base of decision-making and control. The fore­
cast must contain not only qualitative but quantitative characteris­
tics as well - values of parameters determining a state of the
system.

An extensive introduction of computer simulation greatly has wi­
dened a scope of problems that can be studied with the use of com­
puters. We can talk to-day about computational physics, computatio­
nal mechanics and so on.

Let us note some specific features of mathematical modelling in
physics:

- using complex systems of various nonlinear equations of mathe­
matical physics as physical-mathematical models of real physical

processes;
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-co-existence of several processes with different space-time
scales;

- a hierarchy of models differring in their involvement of physi-
cal effects;

- a large range of variation of physical parameters;
- close connection of physics and engineering;
- a necessity to obtain optimal quantitative characteristics of

processes under investigation with ensured accuracy;
- control of physical experiments;
- a need to know coefficients ("constants") of a nonlinear medium;
- identification of models.
All said above may be referred to other subject fields, charac­

terizing a complexity level of computing simulation. The latest ex­
perience teaches us that in a program of theoretical research prece­
ding the development of new technologies and the design we should
include the study of possible scenarios of emergency situations to
work out the control methods preventing failures.

We need a new methodology and a new technology in science. The
mathematical modelling is such an universal methodology, and the
computer simUlation is the new technology. The point is to replace
an original object or process (under investigation, control and
operation) by its mathematical model and to experiment with it on
a computer by means of computational and logical algorithms. The
computer simulation consists of the following stages: a mathematical
model - a computational algorithm - a respective program complex ­
computations - an analysis of results. This is the whole cycle. If
necessary it is repeated (with a new model or algorithm or program
or input), i.e. the computer simulation has an iterative nature and
it is carried out for solving a class of problems by basing on a
hierarchy of models of different completeness and accuracy.

We may single out two stages of the computer simulation: (1)
choosing and verification of mathematical models, and (2) forecast.
The model quality and, hence, the forecast accuracy depend on an
accuracy of assigning the medium properties, i.e. coefficients in
the equations. The medium properties can be determined by means of
the computer simulation, for example, using a quantum-mechanical mo­
del of atom as it occurs in the plasma physics problems.

The intellectual core of the computer simulation is the triad:
"Model-Algorithm-Program". Therefore, the computer simulation opti­
mization (the increase of adequacy, accuracy, efficiency, etc.) must

be performed for the entire triad and not for its separate elements
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only. It opens great opportunities for improving the program packa­

ges when complex problems are being solved.
This suggets the following goals of the system and applied prog­

ramming.
- The development of technologies for solving problems that should

support the triad "Model-Algorithm-Program".

- The construction of integrated architectures of computer systems
and software oriented to classes of problems, the conceptual unity
of hardware and software, a high level of adaptivity (flexibility of
structures) to specific applications.

- Introduction of automatic programming for generating intellec­
tual packages in major knowledge fields.

- The construction of the programming base relying on the compu­
ter simulation methodology, the development of a unified base for
computer facilities and software.

- The orientation of the programmers' training not only to stu­
dying programming languages but to learning of the mathematical mo­
delling and computer simulation methodology and applications.

The mathematical modelling has great methodological potentialiti­
es and can easily be adapted to solving various problems. Its uni­
versal nature manifests itself in that: (1) the different processes
can be described by the same models (for example, by differential
equations of the same type), and (2) despite a great variety of
problems in any field of science and technology there is a finite
number of main or base problems for which the models can be const­
ructed which belong to a given manifold. Therefore, it is necessary
to concentrate on analysis of the problem classes by distinguishing
the base problems for which respective triads can be constructed to
act as the modules for complex problems of a given class. It is ob­
vious that the mathematical modelling:

- combines the merits of traditional theoretical and experimental
methods;

- allows safety tests of objects in extremal (e.g., emergency)
conditions where the field experiments are either impossible or
dangerous;

- provides integration of the research, development, design, mana­
gement and operation stages within interdisciplinary methodology.

At the present time introducing the new methodology to the fields
such as biology, economy, ecology, sociology and the humanities as
well as many engineering fields is held back by a lack of adequate
models, which requires respective research.
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Incomplete information about an object cannot prevent using an
ideology of the triad. In this case an information model and the si­
mulation are used in combination with expert systems ("soft" simula­
tion). Of great importance here is the problem of developing the mo­
dels of decision-making on the basis of incomplete information with
involvement of mathematical modelling methods and intellectual ex­
pert systems.

Main processes in nature and society are nonlinear. Having arisen
in physics and engineering, the notion "nonlinearity" now claims the
status of a phylosophical category. It is dialectic, has many folds
and represents an intrinsic property of any complex process. Now a
new "nonlinear" thinking and a new technology of knowledge based on
ideas of nonlinear nature are required.

Let us list main properties of nonlinear systems. They are:
- absence of the superposition principle (knowledege of the beha­

viour of fragments does not determine the behaviour of the whole);
- absense of the scale similarity and, hence, restriction of tra­

ditional experimental approaches;
- nonuniqueness of limit states of the evolution systems and evo­

lution paths to these states;
- impossibility of direct extrapolation of the nonlinear system

evolution process in both space and time (phase transitions, jumps,
bifurcations, etc.);

- strong sensitivity to perturbations, critical states, thres­
holds;

- generation of "catastrophic" regimes in the course of evolution,
for example, regimes with peaking when the nonlinear system parame­
ters infinitely grow in a finite time.

Nonlinearity gives rise to many difficulties, but it contains se­
veral variants of evolution including the one with accelerated pro­
cesses. We should admit that the nonlinearity is not an exotica,but
it is a norm, while the linearity is an idealization true only under
some restrictions. Examples of nonlinear media are microworld and
plasma; atmosphere and ocean; active biological and chemical media;
semiconductors; social, economic and ecological structures. Their
respective models contain the heat conduction equations with tempe­
rature-dependent coefficients, the gas dynamic equations, the MHD
equations, the radiative gasdynamics equations, the chemical kine­
tics equations, the Cortevege de Vriz and Schrodinger type equations,
etc.
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The nonlinearity means not only difficulties and complication but
it opens new opportunities for control. Let us give two examples
where the nonlinearity gives rise to additional parameters (the pea­
king time and the fundamental length).

Example 1. We have the equation of the chemical kinetics type

:jfE = ~ nJ. _ ci. tl-) 1:70 I 0( If>=- &waf- 7tJ I n (ot=- Ito

Here three types of solution are possible:

case = 0 we have here a new parameter
representing the time scale (the peaking

(1) nAf:) = /lo -= ~ ==~
(2) for /lo' 01.1, the'solution /I.{.-(;)....,O as f::. 7 vo

(J) for 1l'O~ «//> the solution It N:) infinitely grows
nite interval of time as &-~ -t-.f- (the solution is called
with peaking).

Thus, unlike the linear

-&1- = t: (o/If' "0 )
time).

over a fi­
the regime

Example 2. A distributed system - the process of combustion in a
medium with nonlinear heat conduction and the nonlinear volume ener­
gy release - is described by the equation

:;; .:::~ CT;I J+ T~) -t-? 0) T(~, oJ=- 1;C;;CJ I -c:>'" c:::;r,,~

One of the solutions to this system (at a special choice of
is given by the formula

rp {
('=-i--tr~ !!- Ces~ ~~ '~I c;;. ~

(x. f:) - 3 L ~ )
J - 0 ' , Ls

) X 7"'i:"
Here, along with the time parameter i (the peaking time) we

have another parameter L characterizi.;;f the solution distribution
oS

in space. As is seen from the formula for T(x,t) the combustion is

localized in the domain Ixl.:: Ls I~ (on the fundamental length Lf))'

while the rest medium does not "sense" what is going on over the
interval J;x../..:: Ls IJ...

Appearance of new parameters and new scenarios of behaviour allows
new possibilities for control and optimization. It is very difficult
to study complex nonlinear processes directly without preparation.
It is absurd to carry out direct computer simulation for them with­
out obtaining, even with elementary models, preliminary information
about some qualitative and quantitative characteristics of the pro­
cesses under study. It is well understood by physicists who widely
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use the method of simple models for studying complex objects. Simple
nonlinear model~ prove to be very pithy.

Let us illustrate this statement about effectiveness of simple
nonlinear models by an example on combustion the specific case of
which was considered in example 2 given above.

Let the combustion process be described by the equation for the
temperature T (x, t) [1J :

coT ;::. l (~ T<7 !I.) +/1 T ~ rr:?o ~ 7':1.. -t-70,
7.rt: ~ ;(. ~~ /'0 ,) I .r .J ./

T(x.; 0) -=- '7;CX) , ~ 00 <l::C.::;..o

isQC7) =-70 T-Pwhere K{f) s: I( rr 0' is the thermal diffusivity,
o

the density of a heat source.
Investigations show that depending on the relationship between

and three quite different temperature regimes are possible.
I. At ~ = C'-t":1.. we have the regime of heat localization (see

Example 2(for fl' = 1, ~ = 2) on the fundamental length L-s~Jl:VO'+~ rtf?
Here the heat does not disperse, and the temperature rises in the Ko

domain l~/..::: Ls /~ in the regime with peaking (the S-regime).
II. If jj"' (j-t-.1..... , the heat infinitely disperses and at a

certain time we come across a blow-up of temperature (i.e. it goes to
infinity) over the entire space (the HS-regime). The heat localiza­
tion is absent.

III. If ft '76"+,.:1... , the localized temperature structure of
the LS-regime is formed, while an effective size of the temperature
field is preserved and infinite temperature is achieved only at a
single point.

As we see, this simple model has great potentialities, for examp­
le, it contains three types of combustion regimes. Further investi­
gations show that in more complex models, for example, in models of
media under compression we also come across three similar regimes
with peaking.

While solving the classical problem on compression of an ideal
gas by a piston, when pressure on the piston grows in the peaking
regime, we also revealed three compression regimes. If the piston
pressure is given by the law [3]

fL,.

!?Co,-l:-)=- po (-&;--tj ) ~<. 0) f:<f:t
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then:

(I) at IV::::: flS:= --21ttfl.) '/7/) we have the S-regime (a localized
standing wave of nonshock c6mpression);

(II) if rt~ns ,there is compression without shock wave, the lo­
calization occurs at a point (the LS-regime);
(III) if fl<. n

S
,the shock wave has a finite velocity, there is

no localization (the HS-regime).
It is shown that at the compression with peaking the complex gas­

dynamic structures may arise with localized density and temperature
extrema determined by the entropy distribution in a gas.

The localization and structure generation effects suggest new
methods of processes control. For example, the localization effect
may prove useful in some plasma physics and thermal chemistry
problems. [2J • There are many examples proving that simple nonlinear
models are extremely pithy: generation of heat structures in a me­
dium with nonlinear heat conduction; self-focusing of light descri­
bed by the nonlinear Schrodinger equation, collapse of Langmuire
waves, colla~ein gasdynamics problems. Using more complex models
and stUdying them by the computer simulation confirmed at least qua­
litative (sometimes quantitative) characteristics obtained in simple
models. A preliminary knowledge (even crude) of the process nature
allows more efficient use of numerical methods including the adapti-
ve ones.

Now we shall give two examples of successful investigations of
real complex nonlinear problems by using the computer simulation. In
the both cases we solved the process optimization problem by using
the input control. The first example: simulation of processes in
targets for laser thermonuclear fusion (a spherical denterium-tri­
tium target is radiated by a laser). It is required to heat and
compress the target up to the parameters when the thermonuclear
reaction would be possible. It is also required to find optimal pa­
rameters at which the energy release is maximal for a given laser
energy. The process is rather complex: on the target periphery
"a corona" is formed, while the interior ("the core") is compressed
and heated. Without going into details of the mathematical model we
note that it involves the gasdynamic motion, the two-temperature
condition, the electron heat conduction, the radiation, the complex
state equations, the kinetics of thermonuclear reactions, neutrons,
alpha-particles, etc.

It has been found out that we should differentiate between two
variants of the subtype of laser impulse applied to the target
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surface. In the first case the laser power negligibly changes over

the impulse time. The second case t4] - when the laser radiation po­
wer changes in the peaking regime. Accordingly, two regimes are pos­
sible. In the first one a powerful shock wave arises, and hence, the
following heat wave weakly changes the target density. This variant
is not advantageous since a final target density is not large and
the thermonuclear reaction energy is small too. In this case to ig­
nite the target we must feed the energy of 109 • In the second re­
gime the target is heated and compressed by a subsonic heat wave so
that the thermonuclear reaction is possible at much lower laser ener­
gy (104 - 105 J). Thus, using the second regime allows reducing the
laser energy by 4-5 orders of magnitude, which makes LTF a competitor
among other projects. Here the regime control is made by changing
the laser power in time.

The other example is optimization of technology of laser-plasma
metal treatment [5] . An advantage of this technology is that metal
in the nitrogen atmosphere is exposed to the reradiation of a plasma
cloud formed near the metal surface rather than to the radiation of
the laser itself. Plasma ions intensively infiltrate the surface
layer of metal due to which it appreciably hardens. It is required
to choose the treatment regime that would guard the metal against
destruction by the laser radiation (as it occurs with metals direct­
ly exposed to the laser radiation).

It is an experimental fact that the laser beam destroys metals
at the pressure of 30 atm and does not destroy at 100 atm. However,
the pressure 100 atm is very high, and besides, the process in this
case proved to be unstable. The problem was to understand the pro­
cess physics by means of mathematical modelling and to determine a
minimal pressure in nitrogen at which the metal is hardened without
being destroyed. It was solved by computer simulation with different
models involving the gasdynamics equations with chemical kinetics
and two-dimensional equations of radiative gasdynamics. It turned
out that the hardening could be achieved without metal destruction
at the pressure 30 atm if a proper profile for the laser impulse po­
wer was chosen. In contrast to a standard time-constant impulse, its
value should be decreased by an order of magnitUde following a cer­
tain law. Then the plasma cloud protecting the metal from destruction
by the laser impulse exists long enough and all the physical-chemi­
cal transformations necessary for the surface hardening had time to
come near completion.
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In this problem involving research and development as well as in­

tegration aspects the optimal regime of the laser-plasma unit is
achieved by the laser impulse profile control.

Studying nonlinear processes requires a combination of all meth­
ods: analytical,numerical and experimental. Investigation of a comp­
lex nonlinear problem begins with a search for analytical (self-si­
milar, asymptotical) solutions for simple models, special cases.
Usually we have to develop new methods, to carry out mathematical
analysis of resulting problems, to search for particular solutions.
In many cases group-invariant methods based on transformations for­
ming the Lee and Lee-Becklund groups prove to be efficient. The par­
ticular solutions obtained are used also for testing numerical tech­
niques. Thus, using numerical methods within mathematical modelling
stimulates the development of analytical methods. To solve nonlinear
problems one needs the numerical methods that would correctly ref­
lect basic properties of objects under investigation (for example,
the conservation laws), be economical in computations and provide
sufficient accuracy in a certain class of problems. Thus, the nume­
rical methods optimal on a class of problems are required. An impor­
tant property of computational algorithms (codes) is their adaptivi­
ty to a sought-for solution; in many cases it can be achieved by
constructing adaptive grids. At the present time the codes with au­
tomatically computed dynamic adaptive grids are available.

The first-priority tasks in this field are:
- the development of methods for solving nonlinear grid equations

arising at approximation of nonlinear differential equations, in
particular, with systems of different types;

- the development of methods for solving multidimensional prob­
lems and problems with a strongly nonconjugate operator;

- the development of codes for solving grid equations with allo­
wance for the computer architecture (vector processing, many- and
multiprocessor computations, special processor computations, profes­
sional personal computers, etc.);

- the design of program complexes and packages for different clas­
ses of problems, different categories of users (student-engineer­
scientist).

By using a new methodology great effort is to be taken to reconst­
ruct the entire system of training of specialists in applied mathe­
matics and informatics.
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INTRODUCTION

For a linear incompressible stationary fluid we consider the energy E(D), 0

being the volume occupied by the fluid. The objective of the first section is to

consider the minimization of E(D) and to underline the difficulties encountered to

obtain existence results.

The objective of the second section is to study the necessary condition which

are verified when is minimized or maximized with respect to the boundary r the mini-

mum energy E(D) of a fluid.

o will denotes the volume of IR
N

occupied by the fluid, N = 2 or 3, r is a

part of its boundary that we chose as a control parameter. The total boundary will

be in general denoted by aD = r UE , where L is an open part of aD an can be itself

decomposed in several parts corresponding to several kind of boundary condition that

will be imposed to the fluid on E. Without loss of generality we shall suppose that

o is contained in a fixed smooth domain D. We shall lose the generality when we

suppose D bounded which is in some situations necessary to use some compact imbed-

dings of Banach spaces of functions defined over D. The speed of the fluid particle

at a POillt x of n, at time will be denoted by u(t) (x) = u(t,x). When the flow is

stationary, r does not depend on t, r is a stream line of the field u

1 - MIN IMI7A TION OF TIlE ENERGY

Assuming r smooth enough so that the normal field n(x) (out going to D) is

defined, say r of class C
1

, we have for all t and xE.r

n(x).u(t,x) = 0 (l.l)

We consider the simples rehology as being the linear incompressible stoke's model
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div uCt,x) = 0

- t.u + Vp

Cdu).n)r = g

in

in

on

o
r

o C1.2)

C1.3 )

C1.4)

where f is given in L
2

CD),gin HICD), H is the mean curvature of the boundary r.

r is assumed smooth enough in this strong formulation~ECU) is the displacement

tenseur, 2~u) = DU+*Du, 0 is a non negative given number

o > 0

o is the so called surface tens Lon and CECu).n)r stands here for the tangential

component of the vector ECu).n on r. The weak formulation of problem Cl.l) - (1.4)

is as follows we introduce the Hilbert space

HICO) = !u E:L2 CO )N, div <p = 0,
2

dU)E:L2 (0)N} 0.5)

Using the classical Green's Theorem

\I<P ,q, E.C"'«(j, JRN)

JOd <p) •• dq,)dx + J
O

<divCd<p» q, > dr = Jao <d<p).n, q, > dr C1. 6)

it is obvious that EC<p).n is defined, as an element of 1I-"CilO)N = CH~'caO)N)' as

soon as <p~HICO) and div Cd<P»E.L2 CO)N. (this facL derives from the extensi~n of

C1.6) when <p and q, are in HICO)N, div C£(<p» E.L 2 CO )N). Let

HICO)
o

!<pE.HICO) <p . n = 0 on r, <p = 0 on r}

The weak solution u of CI.I) - CI.4) is the ullique minimizer in Hi of
o

ECO) Min i J
O

ECU) ••• ECu)dx - J O f.u dx + J r g.u do

u Eo Hi CO)
o

From the well known Korn inequality on HICO) aCu,u)

equivalent norm to the HICO) norm.
o

J ~C 0 ECU) •. ECu)dx) is an

The objective of this section is to minimize HCO) with respect to O. We shall

first define ECO) when 0 is not a smooth domain in D but simply a measurable sub­

set of D. The first objective is then to define HICO) when 0 is a measurable sub­
a

set of D.

in weak form the condition CI.I) on r can be wrltten Cassuming r empty)

U£HICD), Vej>E.CICD)
o

J0 U. Vej> dx = 0 0.7)

More precisely we have the

Lemm., 1.1

be a domain in D with Lipschitzian boundary rand U be an element in

Cthe restriction to 0). Then u belongs to HICO) if and only if U
o

LeL 0
1

HoCD) and u = UfO

verifies C1.7)
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Proof :

----If u belongs to H1 (n) then u.V~ = div(~u) and by Stoke's theorem
o

In div(~U)dx = l r U.n ~ dx = 0

In view of the minimization of the Energy we introduce the perimeter of n relative-

ly to D, PD(n) = Ilvxn~ , where MO(D) is the Banach vector space of Bounded
MO(D)

measure on D, see R. Temann [1], J.P. Zolesio [6], [7]

the problem Inf E(n) + aPD(n)
ECnCD

0.8)

with g = 0 is then equivalent to the follOWing are

Inf

E cn CD

Inf

u~Hl(D)
o

sup e(n,u,~) + aPD(n)

4>E.H
1

(D)
o

(1. 9)

where

e(n,u,~) 1 [2In ("2 IE( u) - f E' u + u. v~)d x (1.10)

Let

z(n,u) sup e(n,u,~)

~E.Hl(D)
o

(1.11)

Lemma 1. 2.

If X
n

- X
n

in L
1

(D) and u - u in H1
(D) then z(n,u) < lim inf Z(n ,u) (1.12)

- n 0 - n n
n n

Proof :

-----for each ~ in HI (D) we have e(n ,u ,~) - e(n,u,~) as n - m then taking the
o n n

supremum over ~ we get (1.12).

in the fact that minimizing sequences (n ,u ) of
N n n

bounded in BV(D, ffi ) but only X
n

c(u) is bounded
2 n n

in L2 (D, ffiN ). One simple possibility

The main difficulty arises

problem (1.9) are such that X
n

is

2 N2 n
in L (D, ffi ) (and c(u

n
) is not apriori bounded

to over come that difficulty is to consider for some given E,C > 0 the following per-

turbated problem

(p) Inf
E

Ec.nCD

u!<:H
1

(D)
o

sup

~E-Hl(D)
o

eE(n,u,~) + oPD(n) 0.13)

wiLh

eE(n,u,~) = e(n,u,~) + ce(D,u,~) (1.14 )

The boundary condition (1.4) will be changed for a transmission condition involving

Lhe parameter C on r. The fluid is now in the whole domain D but r is an interface.

For this situation we get the following existence result :
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Propos i tion 1. 3

There exist (O,u(O)) t{O, EcOeD, PD(n) < "'} X H~(D)

1 v 1 V 1such that u = U(O)l
o

E: H (0) and Yq,~H (D), 0' , ECO'CD, Vu'€.H (D)
o 0 0

1
e (O,u,q,) < sup {e (0' ,u' .<P) I <p€.H (D)}

E - E 0

2 - NECESsr.. RY CONDITION SOLVED BY STh TIONo\ RY OOH\ INS

In this section we are concerned by the Eulerian derivative of the Energy func­

tional with respect to the domain O. The Energy functional E(O) is associated to a

stationary linear stoke's flow; 0 is the volume of mN
, N = 2,3, occupied by the

flow and at each point x of 0, u(x) = (u
1

(x) ••. , un(x)) is the speed vector of the

particle located at x. The fluid is assumed incompressible then we assume that

div (u(x)) = 0, xc;: 0 (2.1)

On the boundary ao of 0 several boundary conditions are usualy imposed, the boundary

being decomposed in several components ao = I ur, u is given on L while r is the

"free" part of the boundary. Without any loss of generality for the results we

obtain in th is section we sel L = (/J (empty sel) and we introduce a forcing term

fe.LZ(D)N, E dans D being two given smooth bounded domains in mN
, E CD with

o < meas (E) < C1 < meas (0) We cons ider the set of admissible domains 0 in n<N such

tha t

ECOCD (Z.Z)

meas (0) = ~ (Z.3)

The strong formulation of the Stoke's equation is then

flu + lip = XEf in 0

where p is the preassure and XE the characteristic function of the set E.

(Z.4)

u.n = 0 on

(du).n)r = 0

r

on r

(Z.5)

(Z.6)

and the free boundary condition would be E(u).n.n prescribed or solution of some

tangential problem on r,(aDUaE),see (Z.39), (Z.4Z).

For each smooth domain 0 we introduce the following Hilbert space

11(0) = {u,"-11
1

(0)N. div u = 0, u.n = 0 on ao}

and the functionnal
1

J 0 ( u) = I J0 d u) •. d u) dx - JE f. u dx

(Z.7)

(Z.8 )

From the Korn inequality we know that J
O

is coercive on 11(0) and that there exists

a unique minimizing element u to J
O

over 11(0). It turns out from (1.6) that u is a

weak solution to problem (Z.l), (Z.4), (Z.5).

The energy functional is then

E(O) = JO(u) = Min (JO(v) I v EH(O)} (Z.9 )
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Lemma 2.1

Let V be on admissible field, Le. Ve:Co{[O, E[, C
1

{D,D)) with V.n = ° on aD.

Let 0t = Tt(V) (0) be the perturbated domain. Then the following transformation

u -u = [(det(DT ))-1 DT .u] oT-1 (2.10)
t t t t

is a linear isomorphism from H(O) onto H{Ot)

Proof :

It can be easily verified that

-1 -1
(div u) 0 T

t
= (det(DT

t
)) div «det DT

t
) (DT

t
) u 0 T

t
) (2.1l)

(2.12)

and also that, n being the unitary normal field on f, out going to 0, then on f
t

we have

n
t

= (1IM{DT
t
)·nll-

1
M{DT

t
)·n)oT;l on f

t

where M(A) is the cofactor's matrix of A,

M{A) = det A \-1
From (2.10), (2.12) we get, with J = det (DT ), (u.n) oT proportional to

t * t -1 t t t -1
<M(DTt)·n, DTt.u>,that is proportional to < DT

t
.n, DTt.u> = <n, DT

t
.DTtu> then

(ut.nt)oT t = a(t) u.n,and it can be verified that for t small enough, O:':.t.:':.E, the

function a(t) is strictely positive on O.

From (2.10) and (2.11) we get

) -1 -1 -1
(d i v u toT t = J t d i v [J t (DT t ) J t DT t • u]

that is

(div u ) oT = J-1 div u (2.13)
t t t

Again, as J-
1

is strictely positive (and continuous) on D we conclude the proof of
t

the lemma

Corollary 2.2

u
t

being defined by (2.10) we have

E(O ) = Min J
O

(u )
t uE;H(O) t t

(2.14)

We shall write E(O )
t

Min F(t,u)
UE:H(O)

(2.15)

with F{t,u) J
O

(u
t

)
t

1 f I -1 -1] 12
"2 0 d(Jt DTt·u) oTt dx

t
f -1 -1

- E< f , (J t DT t • u) 0 T t >dx (2.16)

We assume now that 0 and f are smooth enough so that u
t

' t ~ 0, is smooth, say

UtE: H
2

(Ot)N nH (Ot)' In that case the differentiation with respect to the parameter

t of a minimum results applies{see J.P. Zolesio [4], M.C. Delfour, J.P. Zolesio [5],

and we get from (2.15)

dE(O;V) =~ E{Ot)! =~ F(O,u)
dt t=o at

{2.1n
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Then we concentrate our study on the calculation of the term ~t F(O,u), u being

assumed smooth. From (2.16) we know that this derivative will involves two integrals

a boundary integral and a volume integral over O. Only the first one requires smooth

ness of u. In bat form the necessary condition associated to any stationary domain

will immediately turn to be a free boundary condition in strong version.

aat F(o ,u)

where au

fOdu) •• dau)dx - fof au dx

1 12+ f r 2" Idu) V(O).ndr-frLu V(O).ndr,

~ u I IS H
1

(O)N
at t

t=o

(2.18)

(2.19)

is the element of H1 (O)N such that u
t

u + t au + 0 ( t)

where O(t)E.H
1

(O)N, I\O(t) II It-o, t-o.

We have the following characterization

Lemma 2.3

au - div V u + DV.u - Du.V (2.19)

Proof

(2.19) derives from the classical results, see J.P. Zolesio [:], [~],

J. Sokolowski - J.P. Zolesio [3], under smoothness assumption we have

d a
<it f(t,Tt(x»lt=o = at [(o,x) + 'i7x f(O,x).V(O,x)

and (dd J) = div V(O) ; (dd DT) = DV(O)
t t t=o t t t=o

Remark 2.4

As the derivatives with respect to t and to the space variable x commutes we

get

(2.20)£(au)
a

(at E(ut»t=o

Corollary 2.5

Let No be a smooth unitary extension of the normal field n ; If r = ao is of

class C
k
,k>l, there exists such aN e.C

k
-

1 ('1.D, 1.1 being a neighborhood of r. Consi-
- 0

der speed vector fields V such that in 1.1. we have

V(t,x) = v(t,x) No(x) (2.21)

Then the normal component of au on r is given by

au.n d iv r (vu) (2.22)

where div
r

( ) is the tangential divergence, see J.P. Zolesio [2], J. Sokolowski ­

J.P. Zolesio [3], defined by, e being a vector field on r, E any extension.f e.

(2.23)d i v r e = d i v E - <£ (E) • n, n >

(It turns out that the right hand side of (2.23) is independant on the choice of

extension E defined itself on an arbitrary neighborhood '1.D.
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Proof :

Let V be any admissible vector field from (2.19), (2.5) we get

au.n : <DV(O).u,n> - <Du.V,n>

But when V takes the form (2.21) we get, see J.P. Zolesio [2J,

DV(O) : v(O) DN + n.*Vv(O) on I'
o

and then

au.n

Remark 2.6

Vrv(O).u + v(O) divr u divr (v(O)u)

As u is a smooth divergence free field, from (2.23) and (2.1) we get (writ­

ting (2.1) on the boundary)

divr (u) <c(u).n,n> (2.24)

We adopt the fluid mechanic notation c(u).n.n for this term.

Finely we obtain a first expression for the Eulerian semi-derivative of the

Energy E(O)

Propos it ion 2.7

The speed field V is given verifying (2.21), then

1
dE(O;V) : lo«-Ilu-f, au> N dx + Ir«c(u).n, au> N + 2" c(u) .• c(u)v(O)-Luv(O)dr

m m (2.25)

Using now the problem (2.1), (2.4), (2.5), (2.6) whose u is assumed to be the strong

solution we get from (2.25)

Corollary 2.6

dE(O;V) : -/
0

au Vp dx - II' divr(u) divr (v(O)u) dr

1
+ I I' 2" c( u) ., c( u) v (0) d I' - I I' L u v (0) d I'

Proof

from (2.6) we get c(u).n : c(u).n.n n on 1', then from (2.23), (2.24)

c(u).n : - divr(u) n on I'

using (2.4), (2.27) and (2.22) in (2.25) we get (2.26)

Lemma 2.7

Assuming the preassure smoolh enough, we have

loau. Vp dx = IrP divI' (v(O)u) dr

<2.26)

(2.27)

(2.28)

Proof :

From Lemma 2.1 we know that the element u
t

belongs to H(Ot)' then

div(u
t

) : 0 in 0t' Taking the derivative with respect to t, which commutes with

the divergence operator we get, at t=o, div (au) : 0 in O. Then au Vp : div (p au)

and from Stoke's formula we get.
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Jn au. vp dx = J r p au. n d r

The expression (2.28) derives from (2.29) and (2.22)

(2.29)

Corollary 2.8

Assuming the Speed field V such that (2.21) is verified and assuming r, u and

p smooth enough we get the Eulerian semi-derivative as expected by the Structure

Theorem (see J.P. Zolesio [2]), i.e. as a boundary expression:

dE(n;V)

Lemma 2.9

Jr(p+ divr(u)) divr(v(O)u) dr + 4Jr(E(u) .. E(u) - f.u) v(O) dr (2.30)

Assuming r,p and u smooth enough

JrudiVr(U) Vrv(O)dr = -Jrdivr[(divr(u)).u]v(O)dr

Proof

(2.31)

(2.31) directely derives from the by parts integration formula on r, see

J.P. Zolesio [2], J. Sokolowski, J.P. Zolesio [3 J. It must be noticed that as

u.n = 0 the mean curvature H does not occur in (2.31) ; also the speed v must be

zero at the boundary of r, for short we assume here that the boundary r has no boun·

dary (it is a compact manifold)

The preassure on the free surface r of the fluid is in many example a constant

for example the atmospheric preassure. As p is defined up to a constant we shall

now assume that p is zero on f, then

Proposition 2.10

/I ssuming r, u smooth enough and p=O on the boundary we have

dl';(O;V) = Jr(Vr(diVru).u + 4 £(u) .. E(u) - f. u)v(O)dr

Proof

we have d i v r( au) = a d i v r u + (V r a) . u

then from (2.30) and (2.31) we get (with p=O on r) :

dE(O; V) = + J r div r (u divru) v(O) dr - J r (div
r

u)2 v(O) dr

1
+ Jr(I£(u) •. E(u) - Lu)v(O)dr

and with (2.33)

dE(O;V) = Jr«div
r

u)2 + u.Vr(divru) - (div
r

u)2)v(O)dr

+ ••• and we get (2.32)

(2.32)

(2.33)

Remark 2.11

The expression u.Vr(divu) = u.V(div u) that we got in (2.32) is in fact a

material derivative, not with respect to the speed field V that we introduced to

generate virtual deformations of the domain n, but with respect to the physical

speed vector u(x) of the fluid. Let XoErbe given and set
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ddt X(t,X
O

) ~ U(X(t,X
O
))' X(O,X

O
) ~ X

o

we introduce the flow Transformation Tt(u) and

(2.34)

(2.35)y(tl ~ (divru) (x(t,X
o

)) ~ (divru) OTt(u) (X
o

)

where u is the solution of the fluid problem (2.1), (2.4), (2.5), (2.6) with p~O

on the Boundary, rand u assumed to be smooth enough, we get (with x~x(t,Xo) for

shortl

d
dt y( tl

that is

Vr(divru) (x(t)).u(x(t)) (2.36)

dd ( d i v
r

u) 0 T (u) ~ (V
r

d i v u) 0 T (u ) . u 0 T (u)
t t t t

Proposition 2.12. (Necessary optimality condition)

Let 0 be a smooth stationary domain of the Energy functional

VV, admissible field, dE(O;V) ~ 0

(2.37)

(2.38)

Then E(u).n.n ~ -divru on r solves (the tangential differential equation), Ic/xo€.r,

t 1 I 12
[du).n.n](x(tl) ~ (du).n.n) (x ) + ct - I (-2 du) (x(s)) +f(x(s)).u(x(s)))ds

o 0

(2.39)

where Idu)1
2

Proof

du) .. du) .l. (E, ,)2, C is a constant.
l,J 1J

We assume that 0 is a stationary domain for the functional E in the set of all

admissible domain with prescribed measure. Then the field V(t,.) has to be chosen

with free divergence so that the measure meas(Ot) ~ meas(O) is given, from Stoke's

formula,that is to say that the normal component v(O) of the field V(O)

on r verifies I
r

v(O,x) dr(x) ~ 0

From (2.40), (2.32) and (2.37) we get

Vr(divru).u + } Idu) 1
2

- Lu ~ C on r

: t [( d i v rU) 0 T t (u)] ~ C - } I d u) 1
2

0 T t (u) - (f. u) 0 T t (u)

(2.40)

(2.41)

where C is a constant deriving from (2.40), as we have the orthogonality to a closed

subspace.

Remark 2.13

If the force f is zero on r, from (2.39) we get that t- (du).n.n) (x(t)) is

monotoniquely decaying when the volume of the fluide is not prescribed.

Remark 2.14

If the volume of the domain 0 is not prescribed then the constant C ~ O.

We consider now the situations involving the surface tension o. We introduce
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EO(O) = E(O) + OPD(O)

where PD(O) is the perimeter of 0 relatively to D.

(2.42)

Proposition 2.15

Let 0 be a smooth stationary domain for the functional Eo' then, assuming

u = u(O) smooth enough and the preassure p = 0 on r, the term E(u).n.n solves the

following problem: n I<. r, x(t) = x + ft u(x(s) )ds,
o 0 0

[E(u).u.n](x(t» = (E(u).n.n)(x ) + ct
o

tIl 12
- fo[OH(x(s» + 2 E(U) (x(s» + f(x(s».u(x(s»]ds

Where H(x) is the mean curvature of the surface r at point x.

(2.43)

Proof :

-----When 0 is a smooth domain of class C
2

we have PD(O) = frdr, where r = oO"oD

and then the Eulerian derivative of PD(O), with an admissible field V such that

V=O on oD(\oO, is given by, see J.P. Zolesio [7], [6]

dP D(0; V) = f rJl V( 0) • n d r (2 .44)

where H is the mean curvature of rand n is the out going to 0 unitary normal

field on r. Then (2.43) derives from (2.39) and (2.44).
CONCLUSION

This short study intends to underline that minimizing (or maximizing) the

energy term E(O) with respect to the boundary r does not leads to the physical

free boundary (as it is true for perfect fluid, for example in hydrodynamic, see

Zolesio [ ]) but to the tangential problems (2.39), (2.41) or (2.43)
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