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Preface

The techniques of solving inverse problems that arise in the estimation and control of dis-
tributed parameter systems in the face of uncertainty as well as the applications of these to
mathematical modelling for problems of applied system analysis (environmental issues, techno-
logical processes, biomathematical models, mathematical economy and other fields) are among
the major topics of research at the Dynamic Systems Project of the System and Decision Sciences
(SDS) Program at IIASA, the International Institute for Applied Systems Analysis.

In July 1989 the SDS Prograin was a coorganizer of a regular IFIP (WG 7.2) conference on
Modelling and Inverse Problems of Control for Distributed Parameter Systems that was held
at ITASA (Laxenburg, Austria), and was attended by a number of prominent theorists and
practitioners. One of the main purposes of this meceting was to review recent developments and
perspectives in this field. The proceedings are presented in this volume.

We belicve that this conference has also achieved one of the goals of ITASA which is to
promote and encourage cooperation between the scientists of East and West.

We wish to thank the Directorate and the Stall of IIASA for their contribution to the
organization and the success of the conference. Qur thanks goes particularly to Dr. A. Khapalov
for his efforts in preparing this volume for publication.

Alexander B. Kurzhanski

System and Decision Sciences ’rogram
International Institute for Applied Systems Analysis
Laxenburg, Austria

Irena Lasiecka

Department of Applied Mathematics
University of Virginia
Charlottesville, Virginia, USA
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Tracking Property: a Viability Approach
Jean-Pierre Aubin

CEREMADE, UNIVERSITE DE PARIS-DAUPHINE
F-75775, Paris cx(16) France &
ITASA, INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

Abstract

This paper is devoted to the characterization of the tracking property connecting solutions to
two diffcrential inclusions or control systems thirough an observation map derived from the viability
thecorem. The tracking property holds true if and only if the dynamics of the two systems and
the contingent derivative of the obscrvation map satisfy a gencralized oartial differential equation,
called the contingent differcntial inclusion. This contingent differential inclusion is then used in
scveral ways. For iustance, knowing the dynainics of the two systemns, construct the observation
map or, knowing the dynainics of one system and the observation mayp, derive dynamics of the
other system (trackers) whicli are solutions to the contingent differential inclusion.

It is also shown that the tracking problem provides a natural framework to treat issues sucl as
tlic zero dynamies, decentralization, and hicrarchical decomposition.

Introduction

Consider two finite dimensional vector-spaces X and YV, two sct-valued maps F: X x ¥V~ X,
G: X x Y~ Y and the system of differential inclusions

{ a'(t) € F(a(t),y(t)
y'(t) € G(z(t),y(t))

We further itroduce a sct-valued map H : X ~ Y, regarded as an observation map.

We devote this paper to wmauy issucs rclated to the following tracking property: for cvery
2o € Dom(H) and cvery yo € H(zg), there exist solutions (z(-),y(+)) to the system of differential
inclusions such that

Vi20, y(t) € H(x(t))

The answer to this question is a solution to a wiability problem, since we actually look for a
solution (z(-),y(-)) which remains viable in the grapl of the obscrvation map H. So, if tlic sct-
valued maps F and G arc Pecano' maps and if the graph of H is closed, the Viability Tlicorein
states that thic tracking property is equivalent to the fact that the graph of H is a viability domnain
of (z,y) ~ F(x,y) x G(z,y).

Recalling that the graph of the coutingent derivative DH(2,y) of H at a point (z,y) of its
graph is thic contingent conc? to the graph of H at (z,y), the tracking property is then cquivalent
to the contingent differential inclusion

¥ (2,y) € Graph(H), G(z,y) N DH(z,y)(F(x,y)) # ¢

'A sct-valucd map is called Peano if its graph is noncmply and closed, its values are convex and its growth linear.

2The contingent conc Tk () to asubsct K al z € I\ is the closed cone of dircctions v € X such that liny_oq di(2+
hv)/h = 0. [t is cqual to X when z belongs to the interior of K, coincides with the tangent space when IV is smooth
and Lo the tangent conc of convex analysis when N is convex. We say that K if sleek at z is y ~ T (y) is lower
scmicontinuous at x. In this casc, the contingent conic Tk (z) is convex. Convex subsets arc sleek.

Il (z,y) belongs to the graph of a sct-valued map /7 : X ~+ Y, the contingent derivative DII(z,y) of II at (z,y) is
the set-valued map from X to Y defined by

Graph(DIl(z,y)) = TGraph(ll)(z' y)
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We observe that when F and G are single-valued maps f and ¢ and H is a differentiable
single-valued map h, the contingent differential inclusion boils down to the more familiar system
of first-order partial differential equations®

n

Vi=1,...,m, Z %f.—(z,h(z)) —gij(z,h(z)) = 0
i=1 9Ti

Since the contingent differential inclusion links the three data F, G and H, we can use it in
three different ways:

1. — Knowing F and H, find G or sclections g of G such that the tracking property holds
(observation problem)

2. — Knowing G (rcgarded as an ezosystem, following Byrnes-Isidori’s terminology) and H,
find F or selections of f of F' such that the tracking property holds (tracking problem)

3. — Knowing F and G, find obscrvation maps H satisfying the tracking property, i.c., solve
the above contingent differential inclusion.

Furthermore, we can address other questions such as:

a) — Find the largest solution to the contingent differential inclusion (which then, contains
all the other ones if any)

b) — Find single-valued solutions i to the contingent differential inclusion which then
becomes

Vze K, 0€ Dh(z)(F(z,h(z))) — G(z, h(z))
Inn this case, the tracking property states that there exists a solution to the “reduced” differential
inclusion
#(t) € F(=(t), i(x(1)))
so that (z(-),y(-) := h(z(+))) is a solution to the initial systen of differential inclusions starting at
(20, t(z0)). Knowing £ allows to divide the system by half, so to speak.

The obscrvation and the tracking problems are the two sides of the same coin because the
sct-valued map H and its inverse play the same roles whenever we regard a single-valued map as
a sct-valued map characterized by its grapli.

Consider then the observation problem: the idea is to observe solutions of a system z’ € F(z,y)
by a system y' € G(z,y) where G ¢ Y ~+ Y describes simpler dynamics: equilibria, uniform
movement, exponential growth, periodic solutions, etc. This would allow to obscrve complex
systems* z' € F(z) in high dimensional spaces X by simpler systems y' € G(y) or cven better,
¥ = g(y), in low dimcnsion spaces. We can think of H as an obscrvation map, made of a small
number of sensors taking into account uncertainty or lack of precision.

For instance, when G = 0, we obtain constant obscrvations. Observation maps H such that
F(z)Nn DH(z,y)"!(0) # ¢ for all y € H(z) provide solutions satisfying
V>0, z(t) € H ' (yo) where yo € H(zo)

I other words, inverse images H~'(yo) arc closed viability domains® of F. Viewed through such
an observation map, the system appears in equilibrium.

3For special types of systems of differential equations, the graph of such a map h (satisfying additional propertics)
is called a center manifold. Theorems providing the existence of local center manifolds have been widely used for the
study of stability near an equilibrium and in control theory.

“We can use this tracking property as a malhematical metaphor lo model the concept of .... metaphors in
epistemology. The simpler system (the model) ¥ € G(y) is designed to provide ezplanations of the cvolution of the
unknown system z’ € F(z) and the tracking property means that the metaphor II is valid (non falsifiablc). Evolution
of knowledge amounts to “increase” the observation space Y and to modify the system G (replace the model) and/or
the observation map II (obtain morc experimental data), checking that the tracking property (the validity or the
consistency of the metaphor) is maintained.

5When Y := R, such maps can be called “prime integrals” (or “energy functions”) of F, because when both F := f
and I := h are single-valued, we find the usual condition A’(z) - f(z) = 0.
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More generally, if there exists a linear operator A € L(Y,Y) such that
Vye Im(H), Ve € H \(y), Flz)nDH(z,y) '(Ay) # 8
then we obtain solutions z(+) satisfying the time-dependent viability condition
Yt>0, z(t) € H ' (eMyo) where yo € H(xo)

so that we can use the cxhaustive knowledge of lincar differential cquations to derive behavioral
properties of the solutions to the original system.

But instead of checking whetlier such or such dynamics G satisfy the tracking property, we
can look for systematic ways of finding them. For that purposc, it is natural to appeal to the
sclection procedures studied in [8, Chapter 6]. For instance, the most attractive idea is to choose
the minimal selection (z,y) — ¢°(z,y) of the set-valucd map

(z,y) ~ DH(z,y}(F(z,y))

whicli, by construction, satisfics the contingent differential inclusion. We shall prove that under
adequate assuinptions, the system

{ i) 2'(t) € F(z(t),y(t))
W) y'(t) = ¢°(z(1),¥(t))

has solutions (satisfying automatically the tracking property) even though the minimal sclection
g g property g
¢° is not necessarily continuous (sce {15,4] for the use of mininal sclections).
Thc drawback of thic minimal selection and tlic otlier oncs of the same family is that ¢° depends
Y g P!
upon z. We would like to obtain single-valued dynamics g independent of 2. They are sclections
of the sect-valued map Gy defined by

Guly) == () DH(z,y)(F(z,y))
el (y)

We must appeal to Michacl’s Continuous Selection Theorem to find continuous selections g of this

map, so that the systemn
{ 1) &(t) € F(a(1),y(t))
w) y'(t) = 9(u(t))
lias solutions satisfying the tracking property.
The size of the sect-valued map Gy measures in some sense a degree of inadequacy of the
obscrvation of the system z' € F(z) through H, because the larger the images of Gy, the more
dynainics ¢ tracking an cvolution of the differential inclusion.

Tracking problems arc intimately rclated to the observation probleni: Here, the system y' €
G(y), called the ezosystem, is given, and so arc their solutions when tlie initial states are fixed.
The problem is to regulate the system z'(t) € F(z(t),y(t)) for finding solutions z(-) that match the
solutions to the cxosystem y'(t) € G(y(t)) in the sense that y(t) € H(z(t)), or, more to the point,
2(t) € H I (y(1).

Decentralization of control systems and decoupling propertics are instances of this problem.

An instance of decentralization can be described as follows: We take X = ¥*, F(z) :=

"1 Fi(zi), and the viability subsct is given in the form

K:={(z1,...,24) | i:z.- € M}

so that we observe the individnal evolutions zi(t) € Fi(x,(t)) through their sum y(t) := %, =(t).
Decentralizing the system mecans solving
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— first a differential inclusion y'(t) € G(y(t)) providing a solution y(-) viable in the viability
subsct M C Y, and

— sccond, find solutions to the differential inclusions z{(t) € Fi(x(t)) satisfying the (time-
dependent) viability condition

zi(t) = y(1)

1

n
1=

condition which docs not depend anymore on M.

Hicrarchical decomposition happens whenever the observation map is a composition product
of scveral maps dctermining the successive levels of the hicrarchy. The cvolution at cach level is
linked to the state of the lower level and is regulated by controls depending upon the evolution of
the statc-control of tlic lower level.

1 The Tracking Property

1.1 Characterization of the Tracking Property

Cousider two finite dimensional vector-spaces X and Y, two set-valued maps F : X x Y ~ X
G:X xY ~ Y and a sct-valued map H : X ~ Y, called thc observation map:

Delinition 1.1 We shall say that F, G and H satisfy the tracking property if for any initial
state (2o, y0) € Graphi(H), there czists at least one solution (z(-),y(-)) to the system of differential

mclusions
" {ﬂwememm
y'(1) € G(a(t), (1))

satisfying
V>0, y(t) € H(x(t))

We shall say that o set-valued map H : X ~ Y is a solution to the contingent differential
inclusion if its graph is a closed subset of Dom(F) N Dom(G) and if

(2) YV (z,y) € Graph(H), G(z,y) N DH(z,y)(F(x,y))
We deduce at once from the viability theorens of [8, Chapter 3] the following:

Theorem 1.2 Let us assume that F: X xY ~ X, G: X xY ~ Y arc Peano maps and that the
graph of the set-valued map H 1s a closed subset of Dom(F) N Dom(G).

1. — The triple (F,G,H) enjoys the tracking property if and only if H is a solution to the
contingent differential inclusion (2).
2. -+ There exists alargest solution II, to the contingent differentiol inclusion (2) contained

in II. It cnjoys the following property: whenever an initial state yo € H(xy) does not belong to
H.(x0), then all solutions (x(-),y(-)) to the system of differential inclusions (1) satisfy

) ) Yiz20, y(t) ¢ H(z(1))
3
i) AT >0  such that y(T) ¢ H(x(T))

3. —  If the set-valued maps H, C H are solutions to the contingent differential inclusion
(2), so is their graphical upper limit®,

SThe graphical upper limit of a scquence of set-valued maps /I, is the scl-valued map whose graph is the (Kura-
towski) upper limit of the graphs of the I1,,’s.
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We shall be interested in particular by single-valued solutions i to the partial contingent dif-

ferential inclusion
Vze K, 0€ Dh(z)(F(z,h(z))) — Gz, h(z))

In this casc, the stability property implies the following statcinent: Let us consider an cquicon-
tinwous scquence of continuous solutions h, to the contingent differential inclusion converging
pointunse to a function h. Then h is still a solution to the contingent differential inclusion.

First, a pointwise limit h of single-valued maps h, is a sclection of the graphical upper limit of
thie h,. The latter is cqual to h when A, remain in an cquicontinuous subsct: Indecd, in this casc,
any limit of clements (z,, hn(z,)) being of the form (2, h(z)) belongs to the graph of h.

Remark — We could also introducc two other kinds of contingent differential inclusions:
¥ (2,) € Graph(H), DH(z,y)(F(z,y)) C G(z,v)

and
¥ (z,y) € Graph(H), G(z,y) C [)| DH(=z,y)(n)
u€F(zy)

The first inclusion implics obviously that any solution (z(-), y(-)) to the viability problem
2'(t) € F(a(t),y(t)) & z(t) € H'(y(t))

paramnctrized by the absolutely continuous function y(+) is a solution to the differential inclusion

y(t) € Ga(t),y(t))

The sccond inclusion states that the graph of H is an invariance domain of the set-valued map
F x G. Assume that F and G are Lipscliitz with compact values on a ncighborhood of the graph
of F. By the Invariance Theorem of [8, Theorem 5.4.5}, thie sccond inclusion is equivalent to the
following strong tracking property:

For any initial statc (o, %) € Graph(II), cvery solution (z(-),y(+)) to the system of differential
inclusions (1) starting at (@o, yo) satisfics y(t) € H(z(t)) forallt > 0. O

We shall address now thic problem of constructing trackers, which arc sclections of the set-valued
map ¢

(z,y) ~ @(z,y) = DH(z,y)(F(z,y))
For that purposc, we recall what we mcan by sclection procedure of a sct-valued map F from
a mctric spacc X to a normed spacc Y.

1.2 Selection Procedures

Definition 1.3 (Selection Procedure) Let X be a metric space, Y be a normed spacc and F
be a set-valued map from X to Y. A sclection procedure of a sct-valucd map F: X ~ Y w e
sel-valucd map Sp: X ~'Y satisfying

i) Vz € Dom(F), S(F(z)):= Sp(z)NF(x)#£8

iz) the graph of Sr is closcd

The sct-valued map S(F): x ~ S(F(z)) is called the sclection of F.
Thle set-valued map defined by
(4) Si(z,y) = {veY||v| d0,F(z,y))}

1s naturally a selection procedure of a set-valued map with closed convex values which provides
tlic minimal sclection.

We can casily provide more cxamples of sclection procedurcs through optimization thanks to
the Maximuim Theorain.
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Proposition 1.4 Let us assume that a sct-valued map F : X ~ Y is lower semicontinuous with
compact values. Let V : Graph(F) — R be continuous. Then the sct-valned map Sy defined by:

Sp(z) ={y €Y |V(z,y) < ot V(z,y")}
18 a sclection procedure of F which yiclds sclection S(F) equal to:
S(P@) =y € F@) V(@0 < inf V()
Proof — Since F is lower semicontinuous, the fuuction
(z,9) = V(z,y) + sup (=V(z,y))
v'EF(z)

is lower semicontinuous thanks to the Maximum Theorem. Our proposition follows from :
Graph(Sf) =
{(z,y) | V(z,y) + supyepz)(—V(z,y')) <0} O
Most sclection procedurcs through game theoretical models or equilibria are instances of this
genceral sclection procedure based on Ky Fan's Incquality (sce {3, Thicorem 6.3.5] for instance).
Proposition 1.5 Let us assume that a set-valued map F : X ~ Y is lower semicontinuous with

convez compact values. Let o : X x Y x Y — R salisfy

i)  (z,y,y') is lower scmicontinuous
4) Y(z,y) € X xY, ¢ = p(z,y,y) is concave
wi) ¥(z,y) € X xY, ¢(z,y,y) <0

Then the map Sr associated with ¢ by the relation

Sp(z):={yeY | sup o(z,y,y') <0}
y' EF(z)

18 a sclection procedure of F yielding the sclection map z — S(F(x)) defined by
Sp(z):={ye F(z) | sup ¢(z,y,¥') <0}
yEF(z)

Proof — Ky Fau's incquality states that the subscts Sg(x) arc not empty since the subscts
F(z) arc couvex and compact. The graph of Sg is closed thanks to the assumptions and the
Maximum Thcorem because it is equal to the lower scction of a lower scimicontinuous function:

Graph(Sr) = {(z,y) | sup ¢(z,y,y') <0} O
y'€F(z)
Proposition 1.6 Assume thaet Y = Y; x Y2, that a sct-valued wap F : X ~ Y i3 lower semicon-
tinuous with convez compact values and that a: X x Y7 x ¥, — R satisfics

1) a i3 continuous
ir) Y(z,y2) € X x Y2, y1 — a(z,y1,12) ts convez
11t) VY(z,y) € X x Y1, y2— a(z,y1,y2) 18 concave

Then the set-valued map Sp associating to any z € X the subsct
Sp(z) = {(y1,y2) € Y1 x Y2 such that
v(ll,22) € F(l), ("(‘T)yly;Q) S (‘(:1712173/2)}
18 a sclection procedure of F (with convez values). The selection map S(F(-)) associates with any
z € X the subsct
S(F)z) = {(y1,y2) € F(x) such that
Y(z1,22) € F(x), a(z,y1,2) < a(z,y1,y2) < ofz,21,92)}
of saddlc-points of a(z,-,) in F(z).



Proof — We take
oz, (y1,v2), (¥, 13)) = al(z,y1,13) — a(z, v}, v2)

and we apply the above theorem. O

1.3 Construction of trackers
Any sclection of the map @ dcfined by
V (z,y) € Graph(H), ®(z,y) := DH(z,y)(F(z,y))

provides dynamics that satisfy the tracking property, provided that the system has solutions.
Naturally, we can obtain such selections by using sclections procedures G := Sp of @ (sce
Decfinition 1.3) that have convex values and lincar growth, since the solutions to the system

{ i) (1) € F(z(t),y(t))
i) y'(t) € So(x(t),y(t))

satisfying the tracking property (which exist by Theorem 1.2) are solutions to the system

{ i) Z(t) € F(a(t),y(t))
) y'(t) € S(®)(x(t),y(1)) := B(=2(t), y(£)) N Sa(x(t), y(t))

Let us mention only the casc of the minimnal selection ¢° of ¢ defined by

{é) 9°(z,y) € DH(z,y)(F(z,v))
i) lg*(@ vl = infuepnyyrea IVl

Theorem 1.7 Assume that the Peano map F is conlinuous and that H is a slcek closed set-valued
map satisfying, for some constant ¢ > 0,

V(z,y) € Graph(H), |DH(z,y)|| <c

where ||DH(z,y)|| := supyy<) infvenn(zyw) vl denotes the norm of the closed convez process
DH(z,y). Then the system observed by the minimal selection g° of DH(-,-)(F(:,"))

{ i) (1) € F(x(t),y(t))
i) y'(1) = ¢°(=(t), ()
has solutions cnjoying the tracking property.

Proof — By (6, Thecorem 3.1.1] ,the sct-valued map (z,y,u) ~ DH(z,y)(u) is lower scmi-
continuous. We deduce then from the lower semicontinuity of F' that the set-valued map @ is also
lower semicontinuous. Since DH(x,y) is a convex process, it maps the convex subsct Fi(z,y) to
the convex subsct ®(x,y). Therefore, @ being lower semicontinuous with closed convex images, its
minimal sclection S§ defined by (4) is closed with convex values. Furthermore,

lo°(z, Il < ellF(z, )l < (=l + vl + 1)

since [[DH(z,y)|| < ¢ and the growth of F is linear. Then the system
1) (1) € F(z(t),y(t))

i) y'(t) € S§(=(t),y(®)) ne(l=(O] + v +1)B
has solutions cujoying the tracking property by Theorem 1.2. Thercfore for almost all ¢ > 0,
V(1) € e(=(1),y(1)) N S (x(t), y(t)) = ¢°(=(1),y(t)) O



1.4 The Observation Problem

We consider the important case when G : Y ~» ¥ does not depend upon z. Hence the contingent
differential inclusion becomes

Vz € Dom(H),Y y € H(z), G(y)NDH(z,y)(F(z,y))# 8

Example Let us consider the case of descriplor systems
Ez'(t) = Az(t)+ Du(t)
which we want to observe through I € £(X,Y) by the linear equation
y(1) = Gy()
where G € L(Y,Y). We introduce the matrices (A,GII') from X to X x Y and

E D . .
<II 0) from X x Z to X x1}

We observe that the system enjoys the tracking property if and only if

Im(A,GII) C Im< 1[} g )
In this case, the velocities 2’(t) and the controls u(t) are supplied by the lincar system
Eg'(t) — Bu(l) = Ax(t)
H'() = Gl (1)

which can be solved by linear algebraic formulas. O

Example: Energy Maps (or Zero Dynamics) The siinplest dynamics is obtained when
G = 0: in this casc, cach subset H~!(y) is a viability domain of F(-,y), because, for any y € Im(H)
and zo € H™!(y), there exists a solution z(-) such that z(t) € H™!(yo) for all t > 0.

This viability property becomces:

Yy € Im(H), Yz € H(y), F(s,y)nDH(z,y)"(0) # 0
When F' is a Pcano map, we deduce that it is also cquivalent to condition
Vyelm(H), Yz € H ' (y), F(z,y) NTy-1y(z) # 0

We shiall say that such a sct-valued map H is an energy map of F.

In the general casce, the evolution with respect to a parameter y of the viability kernels of the
closed subscts H~!(y) under the set-valued map F(-,y) is described by the inverse of the largest
solution H,:

Corollary 1.8 Let F : X ~» X be a Peano map. Then for any finite dimensional vector-spacc Y,
there czists a largest closcd energy map H, : X ~ Y of F, a solution to the inclusion

Vz € Dom(H), Vy € H(z), DH(z,y)(F(z,y)) 30
The inverse images H;'(y) arc the viability kernels of the subscis H='(y) under the maps F(.,y):
Viabr(y)(H™'(y)) = H.'(y)

The graphical upper limit of encrgy maps s still an energy map.
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Then the graph of the map y ~ Viabp(.,y(H™'(y)) is closed, and thus upper semicontinuous when-
ever the domain of H is bounded.

When the observation map H is a single-valued map h, the contingent differential inclusion
becomes

Vz, 3u € F(z,y) such that 0 € Dh(z)(u)

Wlien h is differentiable and F := f is single-valued, we find the classical characterization
t. Bh
< k(z), f(z) > Za— (z)fi(z)=0

of energy functions or prime integrals’ of the differential equation =’ = f(x).

The largest closed encrgy map contained in h is necessarily the restriction of & to a closed
subset of the domain of h, which is the viability kernel of h~*(0). The restriction of the diffcrential
inclusion to the viability kernel of A~1(0) is (almost) what Byrnes and Isidori call the zero dynamics
of F (in the framework of smooth nonlincar control systems).

Remark — The Equilibrium Map. We associate with each parameter y the sct
E(y) = {t € H'(y) | 0 € F(z,y)}

of the cqnilibria of F(-,y) viable in H~!(y). We say that E: Y ~ X is the equilibrium map.
We can derive some imformation on this equilibrium map from its derivative, which we can
compute casily:

Theorem 1.9 Assume that both H: X ~ Y and F: X xY ~ X are closed and sleck and that

V(z,y) € Graph(H), V (v,v,w) € X xY x X,
Jv, € DH(z,y)(uy) such that w € DF(x,y,0)(v + uy,v + v;)

Then the contingent derivative of the equilibrium map is the equilibrium map of the derivative:
u € DE(y,z)(v) <= u € DH(z,y) '(v) & 0 € DF(z,y,0)(u,v)
Proof — We observe that by sctting n(z,y) := (z,y,0), the grapl of E~! can be written:
Grapl(E™") := Graph(H) N ="' (Graph(F))

and we apply [6, Tlhcorem 4.3.3], which states that if the transversality condition: for all (z,y) €
Graph( E~1),
7r (TGraph(u)(xay)) - TGraph(F)("(I’y)) = A xVxX

liolds true, then

TGraph-(®:y) = TGraph(u)(‘T'vy) ar! (TGrnph(F)("(“:"J)))

Recealling that the contingent cone to the graph of a set-valued map is the graph of its contingent
derivative, the assumption of our proposition implies the transversality condition. We then obscrve
that the latter equality yields the conclusion of the proposition. O

Using the inverse function and the localization thcorems presented in [6, section 5.4], we can
derive the same kind of informations as the ones provided by [6, Proposition 5.4.7.].

For instance, sct

Q(y,z) := u€ DH(z,y)"'(0) |0 € DF(z,y,0)(u,0)

“When [ is real-valued, this is the “contingent version” of the [lamilton-Jacobi equation. Sce the the papers aud the
forthcoming monograph by Frankowska [16] for an exhaustive study and the connections with the viscosily solutions.
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Then, for any cquilibrium z € E(y) and any closed conc P satisfying P N Q(y,z) = {0}, therc
cxists € > 0 such that

Ey)n(z+e(PND)) = {z}

where B denotes the unit ball. In particular, an equilibrium z € E(y) is locally unique whenever
0 € DH(z,y)"'(0) is the unique cquilibrium of DF(x,y,0)(-,0).
Furthermore, if the set E(y) of equilibria is convex, then

E(y) C 7+ Q(y,z) D

More generally, the behavior of obscrvations of some solutions to the differential inclusion
z' € F(x,y) may be given as the prescribed behavior of solutions to differential equations ¥ = g(y),
wlicre g is a selection of

glv)e () DH(z,y)DF(z,y))
zell"’(y)

In the case when the differential cquation ¥’ = g(y) has a unique solution r(t)y, staring from yo,
the solution z(+) satisfics the condition

V20, z(t) € H(r(t)y(0)), =(0) € H™'(y(0))
When ¢ is a lincar operator G € L£(Y,Y), it can be written
Y>>0, z(t) € H(c%y(0)), z(0) € H'(y(0))
When H = h is a single-valued differentiable map, then the map Gy can be written

Guly) = ﬂ W(z)F(z,y)

hir)=y
and a single-valued map g is a sclection of Gy if and only if
Yz € Dom(H), 0¢€ l(z)F(z,y) ~ g(h{x))

The problem arises to construct such maps g.

1.5 Construction of Observers

These maps ¢ are sclections of the map Gy : ¥ ~ Y defined by

Gll(y) = m (DH(‘T’y)(F(T’y)))

zell-1(y)

(The sct-valued map Gy mcasures so to speak a degree of disorder of the system 2’ € F(z,y),
because the larger the images of Gy, the more observed dynamics g tracking an cvolution of the
differential inclusion.)

By using Michael’s Continuous Seclection Theorem, we obtain the following

Theorem 1.10 Assume that the sct-valued map F is continnouns with convez compact ymages and
lincar growth, that H is a sleck closed sct-valued map the domain of which is boundcd and that
there czists a constant ¢ > 0 such that

V (z,y) € Graph(H), ||DH(z,y)|| <c
Assume also that there exist constants & > 0 and v > 0 such that, for any map z — c(z) € vB3,

§Bn () (DH(z,y)(F(z,y)) —e(z)) # ¥

zell—}(y)
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Then there ezists a continuous map g such that the solutions of

{ ) 2'(t) € Fla(t),y(t)
i) y(t) = g(y(t))

enjoy the tracking property for any initial state (zo,yo) € Graph(H).

Proof — The proof of the above theorem showed that the sct-valucd map @ is lower semicontin-
uous with compact convex images. Furthermore, the sct-valued map H~! is upper scmicontinuous
with compact images since we assumed the domain of H bounded. Then the lower semicontinuity
criterion {6, Theorem 1.5.3] implies that the set-valued map Gpy is also lower scmicontinuous with
compact convex images. Then there exists a continuous selection g of Gy, so that the above system
docs have solutions viable in the graph of H. O

2 The Tracking Problem

2.1 Tracking Control Systems

Let 17 : X ~ Y be an obscrvation map. We cousider two control systcins

{ i) for almost allt > 0, '(1) = f(z(2),u(?))

(5) it) where u(t) € U(z(t))

and
©6) i) for almost allt > 0, y'(¢) = g(y(t),v(t))
17) where v(t) € V(y(1))

on the state and obscrvation spaces respectively, where U : X ~» Zx and V : 'Y ~ Zx map X and
Y to the control spaces Zx and Zy and where f: Grapl(U) — X and g : Graph(V) — Y.
We introduce the sct-valued maps Ry (z,y) : Zy ~ Zx dcfined by

Ry(z,yiv) = { (w € V(1) € DH G0 6y} o y m

Corollary 2.1 Assumc that the sct-valued maps U and V are Pcano maps and that the maps f
and g are continuous, affine with respect to the controls and with lincar growth. The two control
sysiems enjoy the tracking property if and only if

V (z,y) € Graph(H), Graph(Ru(z,y))#90
Then the system is requlated by the regulation law
for almost all t > 0, u(t) € Ry(x(t),y(1);v(t))

When H = & is single-valued and differentiable and when we set f(x,u) := ¢(z) + g(x)u and
9(y,v) := d(y) + c(y)v where g(z)- and e(y)- arc lincar opcrators, we obtain the formula

Ru(z;v) == Ux) N (R (2)g(x))  (d(h(z)) — B'(z)e(x) + c(h(x)v))

2.2 Decentralization of a control system

We assume that the viability sct of the control system (5) is defined by constraints of the formn

K := LN h~'(M) wherc

i) h isaClmap from X to Y

i) ¥z € K :=Lnh'(M), Y =N)Ty(z) - Ta(h(z))

i) LCX and M CY aresleck
(7)
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We associate with the two systems (5), (6) the decoupled viability constraints

i) Vt20, z(t)e L
(8) i) Vt20, h(z(t)) = y(t)

i) V20, yt) € M

It is obvious that the statc component z(-) of any solution (z(-),y(-)) to the system ((5),(G))
satisfying viability constraints (8) is a solution to the initial control system (5) viable in the set J{
dcfined by (7).

On the other hand, solutions to the system (5) viable in [\’ can be obtained in two steps:

— first, find a solution y(-) to the control system (6) viable in A and then,
— sccond, find a solution z(-) the control system (5) satisfying the viability constraints

{i) vi>0, z(t) € L

(9) i) Ve20, hz(t) = y(t)

which no longer involve the subset M C Y of constraints.

This decentralization problent is a particular casc of tlic obscrvation problem for the set-valued
map H defined by
hz) if € L&n(z)e
H(z) = { ¢ if uot

whose contingent derivative is equal under assumptions (7) to

DH(z)(n) = { h'(;)u e Tu(x) & W(z)u € Trr(h(z))

We know that the regulation map of the initial systemn (5), (6) on the subset i defined by (7)
is equal to

Ry(z) = {ueU()NTyz) | ¥(@)f(x,u) € Tn(h(z))}
The regulation map of the projected control system (6) on the subset M is defined by
Ru(y) = {veV) | 9(y,v) € Tu(y)}
We introduce now the sct-valued map 12y which is equal to

Ry(z,y;v) = {veU@)nNT(s) | K(@)f(a,u) = g(y,v)}

We observe that

Vz € I, Ry(z,h(z); Rp(h(z))) C Ry(x)

The regulation map regulating solutions to the system ((5),(6)) satisfying viability conditions (8)
is equal to x ~» Ry(z, h(x); Ras(h(z))). Therefore, the regulation law feeding back the controls
from the solutions arc given by: for alinost all ¢ > 0

{i) v(t) € Rum(y(?))
) u(t) € Ry(z(t);v(t)

The first law regulates the solutions to the control system (6) wviable in M and the sccond
regilaies the solutions to the control system (5) satisfying the viability constraints (9).

Remark — Tle rcason why this property is called decentralization lics in the particular case
when X =YY", when h(x) := 30, & and when the control system (5) is

Vi=1,...,n, 7}(1) = fi(z:(t),n(t)) where ui(t) € U(xi(t))
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constrained by
Vi=1,...,n, m(t)eLl; & Y zm(t)eM
i=1

We introduce the regulation map Ry defined by

Ry(zy,..., Ty y;v)

= {u € ML (Ui(z:) N T, (2:)) | Tl filzisu) = g(y,v)}

This system can be decentralized first by solving the viability problem for system (6) in the
viability set M through the regulation law v(t) € Rar(y(1)).
Tlis being done, the state-control (y(-), v(-)) being known, it reinains in a sccond step to study

tlic cvolution of the n control systems
Vi=1,...,n, zi(t) = fi(zi,u(t))
through tlic regulation law

u(t) € Ry(zi(t),...,z.(1),y(t)v(t)) O

Economic Interpretation — We can illustrate this problem with an cconomic interpretation: the
statc z := (Zg,...,Z,) describes an allocation of a commodity y € M among n consumers. The subsets L;
represent the consumptions sets of cach consuiner and the subset M the set of available commodities. The
control u plays the role of the price system of the consumptious goods and v the price of the production goods.
Differential equations 2} = fi(z;,u) represent the bebavior of cach consumer in terms of the consumption
price and ¥’ = ¢(y, v) the cvolution of the production process.

The deceuntralization process allows us to decouple the production problem and the consumption problem.
See more details in {8, Chapter 15] on dynamical cconomic models. O

2.3 Hierarchical Decomposition Property

For simplicity, we restrict ourself here to the case when the observation map H = h := hyo iy 1s
the product of two differentiable single-valued maps hy : X — Y| and hy: Y7 — 15
We address the following issuc: Can we obscrve the cvolution of a solution to a control problem
(5) through /iy o Iy by observing it
— first through 21, by a control system

(10) i) for almost allt > 0, y(¢) = gi(ni(t),v.1(2))
i) where vi(t) € Vi(1(t))
and then,
— sccond, observing this system through /i,.
We introduce thic maps 12, 12y, and Ry, defined respectively by
Ry(z;v) = {ueU(z) | M(z)f(z,u) = g(h(x),v)
ifv e V(h(z))}

By, (z01) = {uv e Ulz) | M(2)f(2,u) = g1(h1(2),01)
ifv; € V(hu(z))}

Ry, (z1;0) = {v1 € Vi(m1) | ho(z1)g1 (=1, v1) = g(ha(zi),v)
ifv € V(/tz(l'] ))}

and we sce at once that
Ry (25 By (la(2);v)) C Ru(ziv)
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Thercfore, if the graph of v ~ Ry, (z; Ry, (hi(z); v)) is not empty, we can rccover from the evolution
of a solution y(-) to the control system (6) a solution y,(-) to the control system (10) by the tracking

law
for almost all ¢, v,(t) € Ru,(yi(t),v(t))

and thcn, a solution z(+) to the control system (5) by the tracking law
for almost all ¢, u(t) € Ra,{=(t),v:(t))

This can illustrate hierarchical organization which is found in the cvolution of so many macro-
systems. The decomposition of the observation map as a product of sevcral maps determines the
successive levels of the hierarchy. The evolution at each level obeys the constraint binding its state
to the state of the lower level It is requlated by controls determined (in a set-valued way) by the
evolution of the state-control of the lower level.
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Extensions and Global Estimates for
Evolutionary Discrete Control Systems

V. Gurman
Program Systems Institute (PSI)
Pcreslavl-Zalessky, USSR
and
International School for Advanced Studies (ISAS),
Trieste, Italy

Abstract

This paper deals with the general procedure of the extension principle for the abstract evolutionary
control system (in the time-discrete form) and estimation of the system’s reachable set as an impor-
tant characteristic. This is a new stage of the development of an approach that initially had been
expressed in the well-known Krotov sufficient optimality conditions and proved to be very [ruitful in
applications for the lumped-parameter systems control problems.

1 Introduction

Presently, the class of distributed parameter systems that are studied with mathematical tools ex-
tends very far. Diflicullies and problems arisc in modeling new complex objects (such as ecological
scenarios) and in choosing the strategy to investigate practical problems and in the methods to in-
terpret the results (openncss, uncertainty, impossibility or high cost of tlic strict observations and
their discrete nature). As a result the model concept turns to have alternative versions (continuous,
discrete, chamber, lincar, nonlincar, degrec of its detailization, etc.).

Therefore adaptive mathematical tools should be developed. From this point of view the methods
ol cxtensions and global cstimates that were initially developed within optimal control theory are of
particular interest [Krotov and Gurman (1973) and Krotov (1988)]. In particular, some important
ccological control models with distributed parameters that arc singular and nontraditional for math-
cmatical physics and mathiematical biology have been successfully studied and interesting optimal
solutions, such as optimal dynamical forest structure and optimal fish population control have been
obtained (Moskalenko, 1983). Current accumulated experience of the application of those tools to a
broad class of lumped-parameter systems [Gurman (1985) and Konstantinov (1983)] gives us hope to
be able to apply them Lo distributed-paramecter systcms with a possibility of quantitative cstimation

of object behavior bounds depending on available information and computational recourses.
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This paper gives additional reasons to consider the abstract evolutionary system in the time-
discrete form. This form requires the fewest function-theoretic properties of all the constructions
to be used and allows us to concentrate on the proposed scheme due to its full invariance with
respect 10 spaces structure and continuily concepts. On the other hand, recent results in infinite-
dimensional differential inclusions theory (Tolstonogov, 1986) allow to use the correct transition from
the time continuous form to the time-discrete form of the same cvolutionary system either precisely

or approximately.

2 The Discrete Evolutionary Model and Its Extensions

Let us consider (as an arbitrary evolutionary system model) the following chain relation
I(t + 1) = f(t,:(t),u(t)),t = {ti;ti +1,... )tl} ) (1)

z(t) € X(1) € Xo(t:), u(t) € U(t, z(1)) € Uo(t) ,

where ¢ is a number of the time registration; Xo(t), Uo(t) are basic set spaces of arbitrary nature
(may be different for different (t); X (t), U(l, z(t)) are given subsets of Xo(t), Uo(t); f(t,-) : Xo(t) x
Uo(t) — Xo(t+1) is some given operator; and z(t), u(t) stand for the state and the external influence
(or control) description at time {.

Another form of (1) is

z(t + 1) € TI(t, z(1)) (1a),

where TI(¢, (1)) = f(1,z(1), U(L, z(1))).

We introduce an arbitrary family of maps (pa(t,-) : Xo(t) — Yo(i))a, @ € A, and the corre-

sponding family of new evolutionary systems (the derived systems)

Va(t +1) = @a(t + 1, f(t,2(1), (1)), u(t) € U(t, (1), 2(t) € Q(t,y (1)) = 7' (L,u(1)) . (2)

Another form of the derived system:

ya(t + 1) € U ‘Pa(t + I,H(t,:(t)) . (23)
z(t)ed~1 (4w ()

Any of these systems is an extension of the initial system (1) in the sensc that any solution to the
initial system is also a solution to the derived system (but not vice-versa in the general case).

The estimates of such important characteristics of the system (1) as optimal regimes, attainability
and controllability sets and related questions, may be obtained this way through the proper choice

of a-
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3 Estimation of Reachable Set

In the general case some constructive procedures for the estimation of the reachable set X, (t) can

be developed under Yoo = R, ¢a(ti) : Xo(t) — R. The following auxiliary system is considered:

zalt+1) = ha(t,2(0) 2 sup  walt+1, /(L 2(0),u(1))) 3)
weU(t,s(t))
2(0) € Aal(t:2) = [ (2(0) palty20)) = 2a(0) e, 2(0)) < 50(0). 6 # @) (M)

za(ti) = sup pa(ti, Xi) ,

where M(t) is some a priori external cstimate for X, (-), M(f) D X, () in particular, the trivial one,

Xo(t); z and designates the whole family of z4, a € A. Denote

zo(ti, Xist) = [ {z(t) s walt, 2(t)) < 2a(t)} [ M(2)

a€A

where 2,(t) is the solution to (3).

Theorem 3.1 Any system (p,h, M) (where @, h designate the whole families of po, ha, @ € A)
defines an external estimate of the reachable set of the system for each t € T : X, (t) D X, (1).

Proof Tor t =t; we have z(t;) € X, (1;) = X;. Hence,

z(t:) € Xp(ti) = [ {=(Ls) = alti, 2(t:)) < Za(t:)} () M (L)
a€A

so X, (t;) C Xy(t:). Now lct us show that
X,(8) C Xp(t) = Xo(t+1) D X (L +1).
The left-hand side of this implication means that for any z(t) € X;(¢)
walt, z(t)) = ya(t) € 24(t) Va € A. (*)
Then we obscrve that A,(t,z) can be represented by
Ralts2) = {2(t) : palt,2(0) = 2(0) (MO N Xt

Taking into account this representation, with (x) and (3) we obtain ya(t 4+ 1) = po(t +1,z(t +1)) <
2,(t+1)Va € A when z(t +1) € X, (¢ +1). Hence,
Yt+1) = N{z(t):palt+ 1,2t +1)) < 2t + DIME) 3 2(t +1),
a€A
e, X,(t +1) C X, (t +1). This is the basis of mathematical induction reasoning that accomplishs

the proof. It is important that this class of estimates contains (under some additional assumptions)

the exact one that coincides with the reachable set. O
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Theorem 3.2 Let X; be described by the inequality
Xi = {z(&) : k(z(t:)) < ¢,z : Xo(t:;) — R},

U.(t,z(t)) = Argsup (¢ + 1, f(¢,z(t), u(t))) # 0 and a map p(t,-) : Xo(t) — R satisfies the
u(t)eU (t,z(t))
following conditions

suPueugea(y(@(t + 1, F(12(8), u(t))) = c(t, p(t, 2(1)) » (4)
o(ti, (L)) = K(ti, z(t;)) with an arbitrary continuous monotone function c(t,-): R — R. Then
Xo(8) & {2(2) : (b, 2(1)) < 2(8)} = X, (1) ,
where z(t) is the solution of the chain
2(t+1) = oft, 2(8)), 2(t) = q - (5)
Proof 1t is clear that X,(-) D X,(-). Let us show that X,(-) € X(-), (.:onsidcring the subsystem
2(t +1) € f(t,2(8), Ua(t,2(1))), (6)

z(¢;) € X;, where the reachable set X is contained in X,(-), becausc of U.() C U(-). Any solution
image of this system 2(t) = p(t, z(t)) satisfies (5) due to condition (4). Take any elcment z,(7) €
X,(r), 7 € T as an initial one for (6) and solve this chain from right to left to reccive z,(t),
t € {t;,...,7} and the corresponding image 2,(t). Since z,(7) = ¢(7,z,(7)) < z(7) then z,(t) < 2(t)
for cach ¢ due to the monotonicity of c(t,-). Hence, z,(t:) < z(t;) < q, ie, z,(t;) € X; and
z,(7) € X;(7). This means that X,(-) C X,. n]

Corollary 3.3 If ¢ satisfies all the conditions of the theorem, excluding X; = {z(t;) : z(z(t:)) < ¢}
and o(t;,z(t)) = k(z(t:)) and if

max (i, Xi) = (i, z.(t:)) = ¢,

then the set X, = {p(t,z(t)) < 2(t)} is an external estimate of X,(-) for any t € T and p(i,z.(t)) =
2(t), where z.(t), 2(t) are solutions of cquations (5) and (6). In other words the “bound” of X,(-)
touches X,(-) at anyt € T.

Ezample 1. Consider the following system in normed linear space
z(t+1) = Az(t) + u(), lull £ 1,2(0) = 0= {z: ||z|| = 0}, A € R.

Take = ||z||- Then
y(t+1) = [A=(t) + u(@)l

(t+1) = sup [A2(0) + u(O)| = sup MOl +1 = A=() +1.
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Thercfore the map ¢ satisfies (4) under ¢(-) = Az + 1. We will find the solution of the last chain
when 0 < A < 1

-

ot
z(t)z_)‘ - R

1—Xtooo 1 =X’
then the reachable set of the initial system

X,(0) = X.(0) = {a(0) s el < =2

corresponds to our inluitive considerations on this symmetric system.

4 Application to the Linear Control System in
the Hilbert Space

Consider a particular case of system (1), assuming that it is linear stationary with respect to = and

acls in a the Hilbert Space H:
z(t + 1) = Lz(t) + b(u(t)),ue U, (1)

where L is a lincar self-adjoint operator, b: Ug — II, U C Ug, and b(U) is a compact sct in II.
We take the family of cxtending maps, ¢, = (¥4, 2), a € A with ¥,, and A lo be delermined,

and identify the corresponding family of extensions:
Ya(t +1) = (Wo, La(t) + b(u(t))) = (z(t), LYa) + (Va, bu) .
Then we assume that condition (4) is satisficd with
Calz) = Aoz + va & Moz + suég(\lla,bu) ,

where A, is some arbitrary rcal number.
To cnsure this last condition it is sufficient to take ¥, such that LY, = A, ¥,,a=1,2,....
We suppose that all eigenvalucs of L satisly the condition |A,| < 1. In this casc for each A, we
have a discrete scalar process
zZ(tL+ 1) = Aaz(l) + va
which converges to zF = (1 — A,) vy when ¢t — oo.
Repeat these steps for po = — (¥, z) to reccive z; = (1 + A,)~!v;. After that we can note the

final result:
X, = ﬂ{a: 1z, < (Vo,z) < 2t}
which is an external estimate of the invariant set of the system (7).

Ezample 2.! Consider the discrete casc of the first initial boundary-value problem

s+ 1,9 =2t + 12 u ) teT=(01,. )0 ¢<r, ®)

!Prepared by D. Rosenraukh, Irkutsk Computer Center, USSR.
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z(t,0) = z(t,7) = 0,2(0,¢) =siné, fu|| < 1. 9

Let the unbounded operator L be defined by the functions from C*(0, 7) with the property (9) (sct
D(L)). Assume that it corresponds to the differential operator (1 + h;’—:,) on [0, ], where z(t,£) is
determined for each ¢t € T' as an element from L;(0,7) and

- 2
(Lp,q) =/o <p+ hg—;,’) ¢d¢ = (p, Lq),¥p,q € D(L),

i.e., L is a self-adjoint operator.
Since Ay = 1 — a®h and ¥, () =sinaf, @ = 1,2,..., are the eigenvalue and cigenvector of the

operator L, respectively, then

b = (¥o,2) = [ Wa()a(t,n)dn, yalt) = ba(x(t,€))

and

Xo= N8 220 < [ Yamalt,n)dn < za. ()}, 2

a€A
is determined by
Zt+ 1) = (1 -a*h)z () + (x/2)7
2,(0) = (¥,,sin¢)

and z,, can be found by using ¢o = —(¥,,z).
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CONTROLLING THE DYNAMICS OF SCALAR REACTION DIFFUSION
EQUATIONS BY FINITE DIMENSIONAL CONTROLLERS
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Mlynska dolina, 84215 Bratislava, Czechoslovakia

The problem of stabilizing equilibria of steady states of distributed parameter sys-
tems by finite dimensional (i.e. having a finite number of inputs and outputs) controllers
lias been widely studied lately. In this paper we address a more general problem which
contains the stabilization one as its special case. We are interested in finding a finite
dimensional ( in the above sense) feedback control which, if added to a given system,
would make the essential dynamics of the resulting system to be equal to a one pre-
scribed in advance.

In order to formulate our problem precisely we have to specify what we mcan by
"cssential”. To this end we first introduce the class of systems for which it is meaningful.

Consider an abstract ordinary differential equation in a Banach spacc X in the
setting of [4]

§+ Ay = F(y) (1)

wlere
(a) A is a scctorial (in general unbounded) operator [4].
(b) Fe CHX*, X)NLip,(X*,X),0<a< 1.
(by Lipp(X*, X) we denotc the space of function from X to X with Lipschitz constant
L cndowed by the C? topology; for the definition of the fractional spacc X cf.[4]).
Note that the abstract equation (1) includes reaction diffusion equations

uy = Au + f(z,u, Vu)

on bounded domains with sufficiently smooth boundarics and appropriate boundary
conditions, f satisfying certain regularity and growth conditions, as well as certain sys-
tems of such equations.
In [4] it is proved that under the conditions (a), (b)
(i) — A generates a strongly continuous semigroup e~
(i1) The equation (1) generates a C!'-semiflow S; on X® dcfined by Si(ye) = y(¢),
wlicre y(t) is the solution of (1) satisfying y(0) = ye.
(1i1) The variation of constants formula

At

¢
Si(y) = e~y +/ e =IAR(S,(y))ds
0

Liolds.

In gencral, the semiflow S in not invertible. However, it has been obscrved that in
niaity cases there is a finite dimensional invariant manifold the restriction of S to whicli
can be extended to a flow on R and the manifold attracts all the trajectorics of S. The

existence and the properties of such manifolds (called inertial) have been extensively
studied lately (see e. g. [1,2,3]).
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A situation in which such a manifold exists is the presence of a sufficiently large
gap in the spectrum o(A) of A. Assume that ¢(A) admits a spectral decomposition at
i > 0 with gap 21, i.e.

c(A)=0,U0,

where

g1 ={A€0(A): Red < p— 7}
gy ={A € a(A): Re) > u+n}.

Denote P; the spectral projection corresponding to o;, X; := Range P;, A;:= AP; =
P;A, F;:= P;F, y; := P;F, 1:=1,2. Then, A, is bounded and the following estimates
hold:

| e=41tP) |< Me~ =M for t <0,

e~ 43Py |< Ne~ (Mt for ¢ >0,
| e~ A2 Py oL Nt~ @~ (rtmt ly| fort>0

. The cquation (1) can be written as a system of equations

h + A = Fi (1, 92),
U2 + A2y2 = Fa(y1,92). (2)

In general, the constants M, N, N, depend on the place ¢(A) is partitioned. Nev-
crthless, in some important cases (c.g. if A is self-adjoint), M, N arc indepndent on
I

The inertial manifold theorcm of [2] asscrts that if L is small compared to the gap 7
then S has an invariant manifold M which is a graph of a globally Lipschitz continuous
function h € C'(X,;, X§), X& := X N X“. We recall that by "invariant” we mecan thal
for cach yo € M there is a curve y : R — M such that y(¢t + 7) = S;y(t) for cach
t € R and cach 7 > 0. Another important property of M is exponential tracking: cvery
trajectory y(t) of S has its “shadow” yas in M which is a trajectory of S |a satisfying

e*t | y(t) — ym(t) |= 0 for t — oo.

Now, it is quite on hand, why one can consider thic dynamics on M as cssential:
it 1s mvertible and by attracting all outside trajectorics with a high cxponential rate
governs the cutire dynamics.

In casc X, is finite dimensional, so is M.This is true if c.g. A has a compacl
resolvent which is the case for reaction diffusion equations (2) with Dirichlet or Newmaun
boundary conditions. It is our goal to control the dynamics on M in such a casc.

The dynamics of the uncontrolled equation on M is the dynamics of thie ordinary
differential equation

7+ Ay = Fi(y, h(yr)) (3).

We are intcrested in finding a feedback U : X} — X; which, added to the system (1),
would bring the differcntial equation on the inertial manifold to the form
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v1 + Ay = 2(n1),
where @ : X; — X has been chosen in advance.
In general, adding a feedback U to F' may destroy or alter the incrtial mauifold.
Thercfore, we have to formulate our problem as follows:
Given & : X; — X find U : X; — X such that if My := graph hy s the wmertial
manifold for the system

y=Ay+ F(y)+U(n)

then

Fi(y, hu(y1)) + Uya) = @(v1) (4)

for all y; € X;.

To solve this problem let us first outline a mcthod of construction of incrtial man-
ifolds [2]. By C, we denote the Banach space of continuous functions ¢ : (—o0,0} — X
satislying sup<oe”‘|4(t)| < oo endowed by the norm

|gll,c = supi<oe”*|B(t)]a-
We define T : Xy x €, — C by

[4

T(E,4)(t) = e~Atig + / MU B (g(s))ds + / e~ 1209 Fy () s
0

— 00
Onc lias y = T(¢, ¢) if and only if y(¢) is a solution of the lincar nouhomogencous
cquation

y= Ay + F(4(1))

from C,, satisfying Piy(0) = €. It follows that y(2) is a solution of the nonlincar cquation
(1) from C,, satisfying Pyy(0) = ¢ if and only if y is a fixed point of T(¢,.). If

M+N 2-
N < )
7 l1-a

then T(€,.) is a contraction uniform in ¢ and, therefore, has a unique fixed point v

v =L

which is a C? function of ¢ with Lipschitz constant % [2] . The map h: X) — X,
given by h(¢) := Payg(0), ie.,

he) = / &A% Fy(yg(s))ds

—00

defines the C! inertial manifold M by

M = graph h.

Note that M is homcomorphic to X;.

We now show that under certain assumptions relating the coustants A, N, N, | 1
and s the problem (4) has a solution. We note that a solution U of (4) is a fixed point
of the map ¥ given by

YUY (y1) == 2(v1) — F1(ys, hu(y))
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To prove that (4) has a solution we show that ¥ is a contraction in an appropriate

Banach space. To this end we include U as a parameter into the map T. We define
T: Xy x Lipg(X1,X:) x Cy = C, (K to be determined later) by

T(E,U, ¢)(t) = e~ Ari¢ + /0 e U= [F(§(3)) + U(Prg(s)))ds

* / C e By (s))ds

Let U € Lipgc(X,,X1). Assume that

M+N  2-
++a

Nar®=1) < 5, (6)
2

with L := L(1 + K|P,]), the Lipschitz constant of F + UP,. Then, by the uniform

contraction theorem, the fixed point yg ;; of T'(¢, U, .) is a Lipschitz continuous function

of { with constant 2M. Since (y1,hu(y1)) = y¢ y(0), a Lipschitz constant of ¥(U)

with respect to ¢ is L(1 4+ 2M). Thus, if (6) is satified with A := 14+ 2M, ¥ maps

Lipy (X, X;) into itself. Further, a Lipschitz constant of yz,U(O) with respect to U is

2M
[}

U= I =

from which it follows that ¥ is a contraction provided

p—1

Applying the contraction mapping theorem we obtain the following result:
Let @ € Lipp(X1,X1). Assume that the inequalities (6), (7) are satlisficd with
K :=1+42M|P,|. Then, there is a unique U € Lipyc(X1,X1) such that

Fi(ys, hu(y1)) + U(y1) = &(y1) for all y1 in X,
. ¢, if the feedback U(yr) 1s added to the system (1) then the reduction of the
semiflow of the resulting system to the inertial manifold My is given by the equation
y1+ Aiys = @(v1)-

We now apply this result to the scalar reaction diffusion equation

yt:y::+f(y)1 053351,7520

with f € Lip(R,R). For simplicity we consider this equation with Dirichlet boundary
conditions

y(t,0)=y(t,1)=0

but the result applies to other separated linear boundary conditions as well.

To put this equation into the abstract framework we take X := L,(0,1) and define
Ay := —y for y € Hyn H}, F(y)(z) := f(y(z)) for 0 <z <1, o := 0. Then, A is
scctorial and F € Lip (X1, X)) .
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We have 0(4) = {An :n:=1,2,3,...} with A, = n?x%. Choosing y := 3(An+Ans1)
we have X1 = span{¢1,...,¢n}, X2 = span{¢nt1,...} with ¢.(z) = sin nwz being the
cigenvalue of A,; we can take 7 := n. We have

le=Art| < et (< c—(u—ﬂ)t) for t <0,
|c—Azt| _<- c—/\n+lt (< c—(“-{-r’)t) fOT‘ t Z 0-

Since M = N = N, = 1 independently of n, for any L we can choose n so large
that the estimates (6),(7) are met. Consequently, for fixed L, there exists an n > 0 such
that for X := span{¢i, ..., #} our abstract result applies.

Its application does not immediately give a complete freedom of the choice of the
dynamics - the dimension of the inertial manifold depends on the Lipschitz constant of
®. Since the Lipschitz constant of A; is equal to A, and, hence, incrcases with n, this
sccms to limit our influence on the dynamics on the inertial manifold considerably.

Neverthless, employing the dynamics of the uncontrolled equation we can do better.
Choosing ¢ € Lipr(R*,R¥) for a fixed k, we can construct an incrtial manifold of
dimension k on which the dynamics is given by the cquation

2= ®(z). (8)
Indeed, choose n such that the estimates (6),(7) hold with L replaced by L+ Ax. Denote
X\ == span{d1,...¢n} = Z1 ® Z;, where
Zl = Span{¢ly veey ¢k}1

ZZ = span{¢k+l 3 vy ¢n}$
Bi:= Ailz,,yi = (21,22). Define & : X1 — X1, &(y1) := (3'(11), 2%(11)) by

‘il(yl) = B]Z] + (I’(Z]),

$%(y,) := 0.

Since the Lipschitz constant of @ is Ag + L, there exists a feedback U : X, — X, such
that the dynamics of the controlled system on the inertial manifold is given by the
cquation

1+ Ay = $1(w1)
wlich is
21 = ®(z1),
29+ Bz = 0.
We have By = diag{Ak+1,..., An} . Therefore, z; decays exponentially with rate Apyg.

This means that in the inertial manifold My we have constructed an inertial subman-
ifold of dimension k on which the dynamics is given by (7).
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ESTIMATION OF CATALYST PELLET ACTIVITY DISTRIBUTION

Alena Brunovska
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Noble metal catalysts, such as platinum, palladium, silver and
others, are widely used in industry for hydrogenation and oxidation
reactions. Mostly they are composed by inert porous support in which
noble metal catalysts are dispersed. The reacting gas has to diffuse
into the interior of the pellet where chemical reaction proceeds. If
the rate of reaction is small compared with the rate of diffusion, the
concentration of reacting gas at the pellet centre is little different
from that on the surface. On the other hand, when the rate of the
reacltion is large compared to the rate of diffusion, the concentration
of reactant is depleted by the reaction before it has a chance to
diffuse within the pellet and the catalyst in the interior is not
being used to any extent. The ratio of the actual reaction rate Lo its
value when there is no diffusion limitation is called effectiveness

factor.

The performance of the catalyst pellets can be significantly
improved through the use of nonuniform noble metal distribution. For
example, for positive order isothermal reactions, diffusional
resistance reduces the reactant concentration and effectiveness factor
the maximal value of which is obtained by concentration of the active
catalyst near the external surface. However, in reactions of negative
order kinetics (or Langmuir - Hinshelwood kinetics), diffusion
resistance can enhance the effectiveness factor and the best location
of the active catalyst 1is inside the pellet. Another reason for
nonuniform activity distribution 1is to increase selectivity and

resistance against deactivation.

The catalyst pellets with nonuniform active catalyst distribution
are prepared by impregnation of support materials by solutions
containing a precursor of the active ingredient and innactive species

which is adsorbed on the support.
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The important components of catalyst design are
estimation of optimal activity distribution for a given process

estimalion of real activity distribution of produced pellets

The firsl estimation method we need at the beginning, before pellel
preparation. The following step is to develop a melhod of preparation
for a catalyst with desired aclivity distribution. To conlrol this
impregnalion procedure we need an estimation method of aclivity

distributlion on produced pellets.

The oplimal catalyst pellet aclivity dislribulion for maximizing
the effectiveness factor or global seleclivity as well as the global
yield for general reaction networks with arbitrary kinetics and finite
external heat and mass transfer resistances is presented by Wu et al.
[1]. The optimal aclivity distribution for reacling syslems which
undergo deaclivation is analysed in the paper [2]. In both papers a
general oplimality criterion has been developed, which allows Lo
conclude that the optimal activily distribulion 1s of the Dirac -

delta Lype.

The estimalion method of catalyst pellel activily distribulion has
been discussed in the papers [3, 4, 5]. In Lhe papers [3, 4] Lhe
proposed estimation method has been verified on simulated data (in the
paper [3] for a positive order testing reaclion, in Lhe paper {4]) for
a zero order lesting reaction). Experimental dala have been Lreated in

Lhe paper [5].

The optimalily criterion for optimal aclivily distribution as well
as the gradient in the case of pellet activity distribulion estimatlion
melhod have been developed with Lhe help of Lhe adjoint equations. In
both cases the results have been checked by an independenl melhod (in
Lhe lirst case by lestling few examples numerically, in the second case

by experimenls). In this paper we summarize our main results.
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Optimal catalyst pellet activity distribution

for deactivating systems

The Optimization Problem

The catalyst which is progressively poisoned with operating time
has to be periodically replaced or regenerated, depending upon whether
Lhe poisoning 1is irreversible or reversible. The duration of the
operating time and the values of the effectiveness factor as a
function of time depend upon the active catalyst distribution within
the support. In general, by locating the active catalyst inside the
pellet it is possible to increase the duration of the operating time.
On the other hand, at least for positive order reactions, the maximum
value of the effectiveness factor is obtained when the active catalyst
is located at the external surface. This 1is why we use an economic

criterion

price of the product - cost of the catalyst

profit/time = =
X operating time
T
alé n dtr - a, (1)
- *
T

where al and x, are weighting coefficients proportional Lo Lhe price
of the product and to the cost of the catalyst, respeclively, T is

the operating time and N is the effectiveness factor.

The aim of this work is to determine tLhe initial pellet activity

*
distribution a(¢,0) and the operating time T for which the maximum
value of the following objective function, proportional to the profit

per time, defined above

*
T
¥ J ndrt -1
*
g lalp,0), "] = —0o—— (2)
T
(y = al/az) is obtained. We optimize over the class of all

possible distributions of the same amount of active catalyst.

The Basic Equations

Let us consider a catalyst pellet in which an irreversible reaction

is taking place together with irreversible adsorption of catalyst
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poison. Since the rate of the poison adsorption is usually
considerably lower than that of the catalytic reaction (the form of
which may otherwise be arbitrary) the quasi-steady-state approximation
can be safely adopted. In addition, we assume negligible external
resistances to mass and heat transport. The catalyst activity
distribution is a function of location and time and is defined as the
ratio between the 1local concentration of available catalytically

active sites and its volume averaged initial value
a(p,7) = o(p,1)/0 (3)
1
where 3 ={n+ 1) f o(p,0) " do (4)
0

Under these conditions, the model equations in dimensionless form are
as follows:

Mass balance of the reactant

vy = ¢°R (5)
Mass balance of the poison
vzyA _—t% R (6)
p P P
Energy balance
vZy = - p o%R (7)

with boundary conditions

9 = 0 : dY/9 = aYp/aw = du/dp = 0

p =1 : Y = Yp = v =1 (8)
The deactivation reaction is accounted for by a balance of the active

sites, which in terms of the activity distribution function reduces to

da = - R (9)
at p
with initial condition
a = a(p,0) at T =0 (10)

where the initial activity distribution has to satisfy the constraint

which arise from its definition (3) and Eq.(4)

1
{(n + 1) f a{p,0) 9" dp = 1 (11)
0

The rates of the reaction and the poisoning processes have the

following general form

R = R(Y)Yp,avv) ) RP = Rp(YxYp)avU) (12)

The effectiveness factor 1 is normalized with respect to the initial
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value of the reaction rate computed at surface conditions and to the

initial activity distribution

1 1 1
n=1J9o"R do/ J a(p,0) 9"dp = (n + 1) J ¢"R dp = R (13)
4] (4] (4]

and is equal to the mean reaction rate.

General Condition for Qptimal Activity Distribution

Consider the general deactivation process described above [egs (5)
- (7) and (9)] in a symmetric domain with boundary conditions (8) and
initial condition (10). The goal is to find the initial distribution
a(p,0) subject to Lhe constraints

1
(n+ 1) J o" a(p,0) dp = 1 and a(9p,0) 2 0 (14)
0

~

*
and the time T > 0, such that for T =

>

and a(p,0) = a(¢,0) the

objective function (2) is maximized .
In the paper [2] the {following oplimality criterion has been

developed :If af(¢,0), is optimal, then, for any given initial

distribution a(p,0), one has

1 1
J 9" ¥(9,0) a(p,0) do 2 J o ™¥(p,0) a(p,0) dp (15)
0 0

where Y(p,T7) Is obtained as a solution of the system of adjoint

equations

IR

2 R 2 2 2
Vi + Gy (1 - po%+ sp0%) - 5?P(q¢P +¥) =0 (16)
R
2 9R _ 2 2 P 2 _
via 4 Gy (1 - p0% sp0%) - ZTP(ge] + ¥) = 0 (17)
P P
3R
2 IR 2 2 2
Vs + g5 (1~ pd%+ spe”) - gap(qu +¥) =0 (18)
IR
a¥Y . IR 2 2 2
ﬁ+£(l—p¢' +sB¢)—ap(qd)p+‘l’)=0 (19)

with the boundary and terminal conditions
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T =1 . ¥(p,0) = 0 (20)
T € <0,T> : ® = 0 : Ip/op = 3q/9p = Is/Ip = N/ = O (21)
P =1:p=qg=s5=20 (22)

with coefficients depending on a(¢9,0}.

The optimality criterion (15) practically excludes any initial
distribution a(¢,0) which is not of the Dirac-delta type. In fact for
any given distribution it is ©possible to <construct a suitable
Dirac-delta distribution which improves the objective functional (2).
The maximal value of the integral criterion (15) is obtained when all
active catalyst is concentrated at the point where the function ¥(¢,0)
is maximal. In addition the criterion (15) may exclude some delta
distributions as well and indicate in which direction to move the

activity location point to find the optimal one.

Examplie

For illustration let us consider the case of an isothermal first

order reaction wilh dimensionless rate equation

R=ayY (23)
which occurs together with independent chemisorption of catalyst
poison, leading to the following rate expression for the deactivation
process

Rp = e ¥y (24)
We will consider two type of activity distributions
Dirac-delta activity distribution located at the point ¢1’ i.e.
3(p - 9,)

a(p,7) = a(9,0) u(v) = ———— u(7) (25)
(n+1) wl

Step function activity distribution (i.e. uniformly active region

between the points 9, and wz)

0

p € <0, wl) and ¢ € (wz, 1> : a(e¢,T) (26)

P e <P,y :a(p,T) = u(r)/ept o ot

where U(0) = 1. The system of the adjoint equations is
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vZp + a(1 - p o%) = 0 (27)

qu - q ¢§a -Y¥Ya=0 (28)

aW/ar+Y(1-p<b2)-q<b§ Y, - ¥y, =0 (29)
with boundary and terminal conditions (20) - (22).

In the case of a Dirac-delta activity distribution the solution of
the model equations as well as the expression of the objective
function can be obtained in a closed form [2]. The objective funclion
(2) becomes a function of two parameters : the active point location
wl and the operating time T*. The model equations for a step function
activity distribution have to be solved numerically. The objective
function is a function of three parameters : wl, wz and t*. The
adjoint variable profiles Y¥(9,0) have been obtained by solving
numerically the system of adjoint equations. One example for parameter

values : o = 10, ¥y = 5, ¢2= 1, n = 1 is exhibited in Figs. 1 and 2 .

1.0 1.0
— N
0.9/ 0.67/ 0.8/ (0.0 (0.6;0.75) _——
__—/— SR
{P.0 AU ] —
Yie.0 53 — {0.05;0.95)
‘ﬂ=03 s 0.8
0.5 {0.2:0.8)
01 (@9, = {0.4;0.6)
0.6
0 L 1
0 0.5 ¥ 1.0 0 05 ¢ 1.0
Fig.1l Dirac-delta activity Fig.2 Step function activitly
distributions distributions

The optimal Dirac-delta distribution, obtained by a standard
optimization method, is located at wl= 0.67 (as indicaled by the solid
vertical 1line). It 1is rather surprising that for all considered
step-size distributions, even the widest one <0.05, 0.95>, the maximum
of the Y(9,0) curves is very close to the location of the optimal
Dirac~delta distribution. This provides a useful initial information
for the optimum search. In Fig. 1 the adjoint profiles ¥(9,0) are
shown relative to Dirac delta distributions centered at various

locations ¢,. It appears that using the criterion (15) it is possible
1
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to exclude the locations w1= 0.1, 0.3 and 0.5, since the corresponding
adjoint functions exhibit their maximum values at other locations. In
addition, the function ¥(9,0) indicates in all cases, that the optimal
location should be to the right (i.e. larger values wl) since the
value of the integral in the right hand side of condition (15)
increases when moving the Dirac delta location in this direction. On
the other hand, the criterion (15) is not fine enough to exclude the
location points to the right of the optimal one (i.e., 0.8 and 0.9).
The only way to exclude such points is in fact by comparing the

corresponding values of the objective function.

Estimation of the catalyst pellet activity distribution

from kinetic data

The estimation of the activity distribution inside the catalyst
pellet is useful for several reasons. One reason 1s to control the
impregnation procedure, anolher one 1is to oblain some information

about the mechanism of deactivation.

OUTPUT

CATALYST
PELLET

Fig. 3 Kinetic measurenments

The goal of the presented method is to estimate the activity
distribution from kinetic data. The kinetic data have been obtained by
measuring the stirred tank reactor outlet concentration of a fixed
testing reaction for various feed rates (Fig. 3). The form of the
Lesting reaction rate expression has been assumed to be known and the
value of the reaction rate <constants can be evaluated from

measurements in the kinetic region on the crushed pellet. Also the
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values of the diffusion coefficients have to be estimated by a
different method. For most of the testing reaclions, the estimalion of
its value along with the activity distribulion appears to be an
ill-posed problem. In any case it 1is helpful to have some more
information about Lhe activity, e.g. which part of the pellet is
aclive, or whether the distribution has increasing or decreasing

tendency, elc.

Further assumption 1s Lhat the system response is sensitive enough
to the activily distribution. It depends on the tesling reaclion
choice and on the experimental conditions. This can be Lested by

computer simulation of the pellet behaviour.

The proposed method has been tested on experimenlal data. The
investigated pellet (y-alumina impregnated wilh PL) had a narrow
region activity distribution. As the testing reaction hydrogenation of
ethylene (Langmuir - Hinshelwood reaction rate expression) has been
chosed. The estimaled activity profile has been compared with the
distribution of Pt obtained by the scanning electron microscope
combined with energy - dispersive analyser ol X-rays. The experimentL
and calalyslL pellet preparation is described in detail in the paper

[(51.

Optimizalion Problem

Lel us consider a catalyst pellet in a continuous stirred reaclor
in which Lhe Lesting reaction
A + B ® products
takes place. The dependence of the reactor outlet composition on feed

rate under steady state condiltions is measured.

The problem is Lo estimale the pellet acltivity distribution Lo
obtain the best fit of the measured and the computed reaclor outletl

concenlrations. As Lhe objective function

Y .- 12 = min (30)

I
Flate)] = Z Al YAi exp
i '

(
o1

has been used, where YAi is Lhe dimensionless reactor outlet
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concentration corresponding to the activity distribution a(¢)}, YAi exp
)
is the experimental dimensionless concentration and I is the number of

measurements.

The activity distribution has been considered as a piecewise linear
function given by the values a(wk) in equidistant mesh points dividing

the interval <0,1>.

The Basic Equation

Let us assume perfect gas-to-solid mass transfer, constant
temperature in the active layer and constant diffusion coefficients.
Then the model dimensionless equations are as follows

Pellet mass balances

2 2
V =
YA $°R (31)
vzyB = 5 o°g (32)
boundary conditions
=0 dYA/dw = dYB/dw = 0 (33)
9 = 1 : YA = YA(l)
YB = YB(l) (34)
Reactor mass balances
1 - ¥, (1) = Zp,R (35)
L- Yg(1) = Zp,R (36)
Reaction rate equation
2
©°Y,Y
R=a?—AD , = a’E(Y,,¥p) (37)
(1 + xle + xz\B)
Mean reaction rate expression
R=(n+ 1) Rodp (38)
0
From Egqs (31) - (36) and (38) we obtain the boundary conditions
¢2
9 =1 : dYA/dw = — [1 - YA(l)] (39)

ZRA (n + 1)
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02 5
dY, /dp = — [1 - Y,(1)]
B B
ZRB(n + 1)

(40)

and the following relation between concentralions of components A4 and
B

Y, =Y

B gll) -8 Iy, (1) - ¥

N (41)

Using Eq. (41) we can reduce the system of model equations by
considering the equations for the component A4 only. The system of

mnodel equations has been solved numerically.

Optimization Technique

The problem is to minimize the objeclive function (30) under the
constraints

1
(n + 1) J a(p) " dp = 1 (42)
0

and non-negativity of a. The objective function has K parameters
a(wl),a(wz),.....,a(wK). To find the minimum of the function (30) a
gradient type method has been employed. The gradient is Lhe veclor

wilh Lhe components

F 1 , hathere »
—— =1 {-2(n+ 1) Yy 0o+ Bpy, ) E.de )
dalp, ) i=1 p.-dp/2
k i
k= 1,2,..,K (43)
and p,» by are the adjoinl variables, which solve Lhe adjoint

equations

2 9

2.2
V =
Py (pA + 6pB)¢ a aYA (44)
2 2 2 3E
v = —_— 15
Py (pA + 6pB)¢ a aYB (45)
with boundary conditions
® =0 : dpA/dw = de/dw =0 (46)
- . - -_— -_— 2
p =1 : dpA/dw = [YA(l) YA,exp pA(1)¢ /ZRA]/(n+1) (47)

dpp/de = [-pg(1) 8%/2 1/ (n+1) (48)



39

The derivation of the gradient components and the system of the
adjoint equations is similar as for the n-th order reaction (see

Appendix of the paper [3]).

Because of the constraint (42) and the non-negativity of a(wk) the
projected gradient method has been used. The (m+1)-th iteration has

been computed from the m-th one by the scheme

a(e )" - A"y
a(wk) = 1 (49)
(nt1) J(a(p)"-ATy )o"de
o 19
where
9F/da(p, ) for a(®p, )>€ or for a(p )< € and
_ k k k (50)
Yk T 9F/9a (9, )S0
0 for a(wk)SE and aF/aa(wk)>0

and the step length A™ has been determined by a one-parameter
optimization procedure in the gradient direction (the method of
steepest descent). As the {irst approximation of the activity

distribution the parabolic function has been chosen.

Results

The estimated activity distribution is in Fig. 4. In this figure
the resulting activity distribulion is compared with the normalized Pt
distribution (ratio of Pt amount and tolal PL amounlL in Lhe pellel)

from the scanning electron microscope. We note, that this two profiles

8 T T

2L 4
Q

o
41 ° -
o
o \o
0 ] 11 °
0.4 0.6 ¢ 1.0
Fig. 4 Comparison of estimated activity distribution (——)

and Pt distribution (°).
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we can compare Jjust gqualitatively, because there is not simple and
known relation between activity distribution and active catalyst
distribution which depends on several physical properties. The
deacrease of the objective function during the iterative procedure
indicate that the system is sensitive enough on the pellet activity
distribution and that the choice of the testing reaction and
experimental conditions appers to be suitable. The proposed gradient
type estimation method works well for simulated [3, 4] as well as for

experimental data.

List of symbols

activity
characteristic dimension of catalyst pellet
equilibrium poison adsorbed amount

P
concentration

a
a

a

[of

D diffusion coefficient

F objective function in problem 2

(-8H) heat of reaction

3 objective function in problem 1

n integer characteristic of pellet geometry (n=0, slab; n=1,

cylinder; n=2, sphere)

ho] adjoint variable

q adjoint variable

r reaction rate

R dimensionless main reaction rate
Rp dimensionless poisonihg rate

s adjoint variable

t time

T temperature

to characteristic deactivation time

Q volumteric flow rate

1% catalyst mass

Y = C/CO' dimensionless concentration
ZRA = rOW/(&CAO),dimensionless parameter

ZRB = row/(VCBo), dimensionless parameter



41

Greek letters

a = ¢p2/¢2, ratio of Thiele moduli

o price of product

Gz cost of catalyst

B = (-AH)DACAO/(ATO), dimensionless reaction heat
b = al/az, dimensionless parameter

& = DeACAO/(DeBCBO)’ dimensionless parameter

n effectiveness factor

Xl KACAO' dimensionless parameter

xz KBCBO’ dimensionless parameter

3 concentration term in dimensionless reaction rate
€ accuracy

u relative activity

T = t/to, dimensionless time

A thermal conductuvity

A step length in gradient method

[} dimensionless space coordinate

¢ = a[ro/(DACAo)él/j}zreaction Thiele modulus

¢p= a[ap/(DpCpot )] ,poison Thiele modulus

¥ adjoint variable

© =1 + xl + x2 rate equation parameter

n = T/TO' dimensionless temperature

g concentration of available catalylically active sites
Subscripts

* terminal conditions

0 feed stream conditions

A,B reactants

exp experimental points

P poison

1,2 activity location
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Some remarks on the periodic linear quadratic regulator problem.

G.Da Prato ®
Scuola Normale Superiore
56126 Pisa, Italy

1 Introduction and notation.

If X is a Hilbert space ,we shall denote by L:(X), the set of all 2n-periodic
mappings u: R—X, locally square integrable, and by C,(X), the space of all 2n-

periodic continuous mappings from R into X.

We consider here three Hilbert spaces, H(the state space), U(the control space) and

Y (the observations space), and a dynamical system governed by the state equation :

Y'(0 = A(y(O+B(Du®)+(1)

(1.1)

y(0) = y(2m)

We assume :

(H1) For all te R, B(t) is a linear bounded operator from U into H. Moreover
B(t+2x) = B(t) and B(-)u is continuous for any ue U.

(H2) For all te R, A(t): D(A(t))C H—H generates a strongly continuous
semigroup in H. Moreover , A(t+2n) = A(t) and there exists a strongly
continuous mapping GA(-,-): ((t,s)e R% 2s)— L(H), such that
d
a?GA(t,s)x = A(t)GA(t,s)x and G ,(s,s)x =x for all xe H and t>s.

(H3) We have lim G, (t,8)x = G, (,8)x for all xe H, uniformly on the

n—oe  Ag A

bounded sets of ((t,s)e R%: ts),where G An(t,s) is the evolution o

operator generated by the Yosida approximations nA(t)(n-A(t))'1 of
A(r).

(1) Work partially supported by the Italian National Project M.P.1. 40% " Equazioni di Evoluziong ¢

Applicazioni Fisico-Matcmatichc"”
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(H4) f e L2(H).

Hypotheses (H2) and (H3) are fulfilled in many problems both parabolic and
hyperbolic ( see for instance [1], [7], [8]).

In (1.1) y(t) represents the state and u(t) the control of our system. A mild
solution of (1.1) is a mapping ye C#(H) such that, for all interval [a,b] C R, one has

(1.2) y(t) = GA(t,a)y(a) + JGA(t,s)[B(s)u(s)+f(s)]ds; te [a,b]

If 1 belongs to the resolvent set p(GA(21t,O)) of GA(21t,O), we say that A(t) is non

resonant ; in this case, as well known, for any ue L:(U) there exists a unique mild

solution of (1.1) given by :

2n
(1.3) ¥y =G,10)(1-G,@r0)" [G,@ms)[B(s)u(s)+(s)ds
1)

t
+ 0JGA(t,s)[B(s)u(s)+f(s)]ds
We recall that the non zero eigenvalues of G A(21t,0) are called the Floquet exponents of
A.

We are also interested in the case when A(t) is resonant; in this case, for any
ue Li(U) we set ;

(1.4) A, = {ye C,(H): y is a mild solution of (1.1)}

If A is non empty, the control u is said to be admissible. We shall denote by U_ the
sct of all admissible controls
(1.5) U, = (ueLi(U); A, # @)

Our goal is to minimize the cost functional :

2n
(1.6) J(uy) = Oj{||C(t)y(t)n?+||u(t)n2}dt

defined for all ueU_; and ye A .We assume :
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(HS) For all e R, C(v) is a linear bounded operator from Y into H. Moreover
C(t+2m) = C(t) and C(-)x is continuous for any xe H.

If there exist u*e U, and y*e A , such that :

J(u*,y*) <J(u,y), forallue Uad and ye Au
we say that u* is an optimal control and y* an optimal state.
In order to show the existence of an optimal contro! we will proceed as follows :
Step 1. We assume that (A,B) is stabilizable with respect to the observation C, that is

+eo

(H6) For all xe H there exists ue LX0,00;U) such that (J[||C(t)y(t)l|2+|lu(t)||2]dt<°<>

In [6] was proved that this condition is necessary and sufficient for the existence of a
positive 2nt-periodic solution Q,(t) of the Riccati equation

(1.7 Q+A*Q+QA-QBB*Q+C*C=0

Step 2. We solve , under suitable assumptions, the dual problem :

r'O+F*Orn+Q,f() =0
(1.8) {
r(0) =r(2rn)

and the closed loop equation

y'(©) = F(Oy()-B()B*(tr(t)+£(t)
(1.9
y(©0) =y(@2n)

where F(t) = A(t) - B(t)B*(t)Q”(t) is the feedback operator.

In order to solve problems (1.8) and (1.9) one requires that F(t) is non resonant. As
shown in [5], this happens if (A,C) is detectable ([5]); a more general condition will be
discussed in Section 3.

Step 3.By proceeding as in [5] and [4] , one first proves the identity :
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n
1.10) Juy)=J*+ 0JllB"‘Qy+B"‘r+uIlzdt ;forallueU_jand ye A
where
2
1.11) J* = OJ[<r,f>-IlB*rIlz]dt

and r is the solution of (1.8).

By using (1.10) it is not difficult to prove that there exists an optimal control u* and

that the optimal cost is given by J*.

A key point of the above program is to show that F(t) is non resonant. A result in
this direction was given in [4]. In Section 2 we recall some results on Riccati equation
and in Section 3 we will present some new result on the relation bertween the Floquet

exponents of A and F.
2 Riccati equation.
We first introduce some notation. We set
Z(H) = (SeL(H) ; S is hermitian }; T¥(H) = (Se Z(H) ; <Sx,x>>0 Vxe H }

We denote by C,([0,T];Z(H)) (resp.Cf(Z(H))) the set of all strongly continuous
mappings F:[0,T]>Z(H) (resp. the set of all strongly continuous mappings F:R—Z(H)

which are periodic)
Next we assume (H1)-(H6), fix T>0 and consider the Cauchy problem :

%?—+A*Q+QA-QBB*Q+C*C =0
@.1)
QM) =P,

where Pye Z*(H), and the approximating problem :

dQ
) d—t"+A:Qn+QnAn-QnBB*Qn+C*C =0
2.2)

QM =P,

where A= nA(n-A) ! is the Yosida approximation of A
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We say that Qe C,([0,T];Z(H)) is a mild solution of problem (2.1) if

T
23)  Q)x= T peMoA, 4 fe(s-‘)”{C‘C-P(s)BB‘P(s)}e(s""‘xds,
t

for a]l xe H,te [0,T].
The following result can be proved as in {2]

Proposition 2.1. Assume (H1), (H2), (H3) and (H5). Then problem (2.1) has a
unique mild solution Qe C,((0,T;Z(H)), such that Q(t)=0 for all t€[0,T].
Moreover, problem (2.2) has a unique solution Q_and , for all xeH

24 !lliglm Qﬂ(t)x:Q(t)x, uniformly in tin [0,T].

We consider now Riccati equation
(2.5 Q'+A*Q+QA-QBB*Q+C*C =0

We say that Qe d(Z(H)) is a periodic solution of (2.5) if, for any intcrval [a,b]CR one
has

b
2.6) Q)x = eI Qa)e®VAx + fe(s-‘)"'{c*c-P<s)BB‘P<s)}e‘S")Axds,
1

for all te [a,b] and xe H.

The following result can be proved as in [6]

Proposition 2.2. Assume (H1), (H2), (H3),(H5) and (H6). Let Q¥ be the mild

solution to the problem

dQ(T)

it A*Q(1)+Q(1)A-Q(1)BB*Q(1)+C*C =0

2.7)
Q1) =0,t<t

Then for any teR, Q) is increasing in T and there exists the strong limit
; D(tyx = .
(2.8) ‘I;IE,L. QM(x:=Q, ()x ; VxeH

Moreover Q, is a periodic solution of (2.5).



48

The operator Q,, defined by (2.8) is the minimal nonnegative periodic solution

of Riccati equation (2.5).

3 Spectral properties of the feedback operator.

We assume here (H1)-(H6). We denote by Q# the minimal nonnegative periodic

solution of Riccati equation (2.5). We set
3.1 E () =A (1) - BOB*()Q,1), teR.

where A _(t) is the Yosida approximation of A(t), and denote by G, (t,s) the evolution
n
operators generated by F (t). Recalling hypothesis (H3), it is not difficult to show

that

(3.2) lliizr)meAn(t,s)x =G, (4,9)x, forallxeH,

uniformly on the bounded sets of {(t,s)e R% t2s).
The main result of this paper is the following :

Theorem 3.1. Assume (H1)-(H6); then the following statements are equivalent :
(i) There exist loe Cand xo€ H, x#0, such that IXOIZI, Ge(2m,0)x, = XOXO.
(ii) There exist 7&06 Cand x,eH, xo;tO, such that IXOIZI, G A(21t,0)x0 = loxo and

C(G,(1,0)x, = 0 for all 0.

Moreover, if (i) or (ii) holds then :

@G.1 Ge(t,0)x; =G, (t,0)x, for all 0.

Proof. (i)=(ii). Let 7&0 and x such that (i) holds.

Let Q_be the mild solution to the problem

dQ
(2 2) d_tn+A:Qn+QnAn_QnBB*Qn+C*C =0

Q,(2m) = Q,(0)
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and GFn(t,s) the evolution operator generated by the Yosida approximations F_(t) of
F(t). Since Fn(t) is a continuous bounded perturbation of An(t), it is casy to show,
recalling (H3), that lim GF ts)x=G A(t,s)x for all xe H, uniformly in t=s

n—oo n

By a simple computation we have
d
@t <Q(0Gk, (t0)x,Gy (LO)xp> =-IB*Q (0G (LO)x,lI* - IC()G, (1,0,

from which, integrating from O to 2x, and letting n tend to infinity

2n
(A% D)<Qu(x x> + OI[IIB*Q#(t)GF(t,O)xol12+IIC(t)GF(t,O)x0||2]dt =0

which yelds
(3.2) B"‘Q#(t)GF(t,O)x0 =0 for all 20.
3.3) C(t)GF(t,O)x0 =0 forall 20.

By (3.2) F(t)GF(t,O)xo = A(Gg(1,0)x,, this implies (3.1) and that G,(2x,0)x, =
)‘oxo ; taking into account (3.3) the conclusion (ii) follows.

@ii)=(i). Let KO and x, such that (ii) holds.
Let Q™ and QS) be the solutions of the Riccati equation :
dQ( —_ A*Q(T)+Q(‘t) A- Q(‘[)BB*Q('[)+C*C 0
(B4

Q%) =0 i<t

a0p

+ A*Q P+QMA-QUBB*QM+C*C =0
3.5)

Q@ =0,

We recall that, by Propositions 2.1.and 2.2 we have :

(3.6) lim_ QD)x := Qx5 lim QPx :=Q%x ; VxeH
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uniformly in t on bounded sets. Next we compute the derivative
d
T <QPWG, (10)x;,G, (L0xe> =IB*QPG, L0y - ICOHG, 1.0)x,I*

from which, integrating from O to 7, and letting n tend to infinity

T

<QAxgxe> + J IB*QPVG ,(L0)x i dt = 0

which implies

B*Q()G, (10)x, = 0, Vi<t
Finally, as T—eo we find

F()G A(t,O)x0 =AWG A(t,O)xO,
so that G(2m,0)x, = Xoxo and (i) holds.|

Remark 3.2.

Assume (H1)-(H6) and that GF(211:,0) has only a point spectrum. By Theorem 3.1 it

follows that F(t) is non resonant if one of the following conditions is fulfilled
(1) A(t) in non resonant .
(i) A(t) is rcsonant but the following implication holds :

3.7 x,€ H, x#0, G A(2n,0)x0 =Xy = C()G A(t,O)x0 =0 for atleast one t=0.

Thus if either (i) or (ii) holds, then there exists an optimal control; othcrwise an optimal

control does not exists in general.

Take in fact, H=R%Z, U=Y = R, A(yl,yz) =Y, C(yl,yz) =Y, Bu = (0,u), f(t) =
(1,1). Then (H1)-(H6) hold and the state equation reduces to :

y,®0=1
¥,(0 = u()+1

so that no admissible control exists.
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Abstract. We study optimal control problems for distributed
parameter systems with control and state constraints by using the
theory of infinite dimensional nonlinear programming problems.

1. Introduction.

Optimal control problems for systems described by partial differential equations
including not only control constraints but state constraints have been studied
by numerous authors; see for instance [LA1], [MA1], [TR1], [RO1], [WH1]. We
propose in this paper a treatment of these problems as nonlinear programming
problems for functions defined in metric spaces, the constraint function taking
values in a Banach space. This program has been already carried out for systems
without state constraints in Hilbert spaces [FA1], [FF2], [FF1]. One attractive
feature of this treatment is that (unlike, say, separation theorems) it applies to
nonlinear equations and requires no convexity assumptions; other is that it is
relatively simple, involving the generalization of results on the abstract
nonlinear programming problem from Hilbert space valued functions to the
Banach space setting, which has been done in [FR2]. Finally, the method applies
as well to systems described by equations other than differential, for instance
functional differential equations, with state constraints included. Details will be
published elsewhere.

2. An abstract nonlinear programming problem.

Let V be a metric space, E a Banach space, Y a subset of E. Given
functions fy : V— R = [real numbers} and f:V — E we consider the abstract
nonlinear programming problem
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(2.1) minimize fg(u)
(2.2) subject to f(u)e Y.

Necessary conditions of Kuhn - Tucker type for solutions u of this problem,
have been obtained in [FR2] (Theorem 2.1 below). We denote by B(x, r) the ball
of center x and radius r = 0 in an arbitrary metric space. Let u € V and let
{C(W); u e B(u, &)} be a family of subsets of E. We denote by lim supy —, , C(u)
(resp. lim infy - y C(uw) the set of all y such that lim infy -  dist(y, C(u)) =0
(resp. limy  y dist(y, C(u)) = 0.

Let Y be a subset of E, y e E. The contingent cone Ky(y) to Y at y
consists of all win E such that there exists a sequence {hix} c R, = {positive
real numbers} with hx — 0 and a sequence {yx} < Y with yx — y such that

Y=y

— W as k— e,
hy

Let g be a function from V into E, u € V. The vector § € E is a (first
order) variation of g at u if and only if there exists a sequence {hx} < R, with
hg — 0 and a sequence {ux}  V with d(uk, u) £hg and such that

g(uy) - g(u)

- k — oo,
e & as

We denote by dg(u) (the variation set of g at u) the set of all such &. Finally,
IT1 is the canonical projection of R x E into E, (fo,f): V= R xE is the
function (f,, f)(u) = (fo(u), f(u)), and we call a set Y sleeck at y e Y if there exists
£>0 such thatforevery ye Y,|y- y| < € we have

Ky(y) = liminfy , y Ky(y) .
In particular, convex sets and C! manifolds are sleek (see [FR2])

Theorem 2.1 Let u be a solution of the nonlinear programming problem
(2.1) - (2.2). Assume that (a) the metric space V is complete, (b) the functions
f and f; are locally Lipschitz continuous, (c) the target set Y is closed, (d) the

target set Y is sleek near y =f(u), (e) there exist constants €,p >0 anda
compact set Q < E such that for each u e B(u, €) there exists a convex, closed
set C(u) c d(f,, H)(u), containing zerowith
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(2.3) B(0, p) ¢ M(C(w) -Ky(y) +Q (ue B(u,e),ye By, e)K).
Then there exists (zg, z) € R x E* (E* the dual of E) such that

2.4) 2520, ze Ny(y), (zo, 2) #0,

(2.5) zgn+(z, &) 20,

for all (n, &) e lim infy _, y C(u).

See [FR2] for a proof. In the second statement (2.4), Ny(y) c E* is the
normal cone to Y at y. Condition (e) is a combined "fullness" condition on
the variation sets and the target set. It is redundant in finite dimensional spaces
(take Q = B(0, p)). The Hilbert space version of Theorem 2.1 can be proved
under much weaker hypotheses on the functions fo, f [FF1] [FF2]. An ancestor
of this Hilbert space version (where the setup and the hypotheses are less
general) was proved in [FA3]; the case where E is finite dimensional is
essentially contained in the results of [EK1].

We sketch below how Theorem 2.1 can be applied to optimal control
problem that include state constraints.

3. Distributed parameter systems described by elliptic differential equations.

Let Q be a bounded domain of class C in Rm with boundary T, and let A
be a uniformly elliptic partial differential operator of class C(2),

dy
Xk

m

X d
Ay = Z —lan(x)
=1 ka1 9% "

+ j=z{bj(x) o + c(x)y

with a boundary condition B on I'. This boundary condition is either of
Dirichlet type or of variational type Dy = ¥(x)y (D the conormal derivative).
The operator A and the boundary condition B generate a strongly continuous
semigroup S(t, A, B) in the space C(K) of continuous functions in K = closure
of €, the space C(K) endowed with the supremum norm (for the Dirichlet
boundary condition the space C(K) is replaced by its subspace Cy(K) consisting
of all functions vanishing on I').

The control system is described by the semilinear initial value problem in
the space E = C(K),
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(3.1) O = ABY® + o, y(b), ut),
(3.2 y0) =yo,

where A(B) is the infinitesimal generator of S(t, A, B). Controls u(t) take
values a. e. in a closed, bounded subset U (called the control set) of a Banach
space F. The nonlinear term ¢(t, y, u) is defined, continuous and locally
bounded in [0, T] x C(K) x U and takes values in L*(£); we assume that it
possesses a Fréchet derivative dyd(t, y, u) with respect to y which is strongly
continuous and locally bounded. Admissible controls are assumed to be in a
space of F — valued measurable functions, where the notion of measurability
must be such that t — ¢(t, y(t), u(t)) is (L1(Q), L=(Q2)) - weakly measurable for
every admissible control. For instance, if F =L=(Q) and ¢(t, y, u) = y(t, y) + u,
the space of admissible controls consists of all (L1(Q), L=(Q)) - weakly
measurable L=<(Q) - valued functions u( -} such that u(t) €e U a. e. The
treatment of (3.1) - (3.2) under these measurability assumptions is slightly
nonstandard (see [FA2] for the linear case) but existence and uniqueness of
C(K) - valued solutions y(t) = y(t, u) in intervals 0 <t < T, is proved by
successive approximations in the usual way. We note that in general T < T,
that is, solutions may blow up somewhere in the interval 0 <t <T.
We use a cost functional of the form

t
Yolt, w) = f dols, y(s, u), uls))ds
0

where the assumptions on ¢o are similar to those on ¢; ¢o(t, y, u) is defined,
continuous and locally bounded in [0, T] x C(K) x U and possesses a Fréchet
derivative dy¢o(t, y, u) with respect to y which is continuous and locally

bounded as a E* - valued function. Finally, we assume that t — ¢o(t, y(t), u(t)) is
measurable for every admissible control. The problem is

(3.3) minimize yo(t, u)

(3.4) subject to y(t,u) e Y, y(t, u) e X(t) (0<t<t).

The target set Y and the variable constraint set X(t) are subsets of C(K).
Assuming that the endpoint t of the control interval 0 <t <t is fixed we can

simply replace X(t) by X(t) nY and reduce the target condition and the state
constraints to the unique state constraint
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y(t, e X (0<st<y).

However, it is more convenient to keep the target condition and the state
constraint separated as in (3.4).

We can mold the problem (3.3) — (3.4) into a nonlinear programming
problem (2.1) - (2.2) as follows. The space V is the space of all admissible
controls with the distance

(3.5 d(u, v) = meas{t; u(t) = v(t)} .

(or rather a ball B(u, ) c V, see Lemma 3.1 below). The space E is the
Cartesian product C(K) x C([0, t]; C(K)) = C(K) x C(([0, t] x K) endowed with its
usual supremum norm. Assuming that t is fixed, the functions f,(u) and f(u)
are defined by

(3.6) fo(w) = yolt, u),
3.7 fu) = (yt, w), y(-, w),

where y(t, u) is the solution of (3.1) corresponding to the control u € V. Since
y(t, u) may not exist in the whole control interval 0 <t <t, we may either
impose conditions on global existence or use the following result:

Lemma 3.1 Let u € V be a control such that y(t, u) existsin 0 <t <t Then
there exists & > 0 such that, if d(u, u) <& (d the distance (3.5)) then y(t, u)
exists in 0 <t <t and the map u — y(t, u) is Lipschitz continuous in B(u, 6)
uniformly in 0<t<t

Lemma 3.1 is applied to the optimal control wu, assumed to exist; by
definition it produces a global trajectory, thus trajectories corresponding to
neighboring controls will be global as well.

The target set Y for the nonlinear programming problem under
construction is

B8 Y ={{y,y(-) e CK)xC(0,t; C(K)); ye Y,y e X(t) 0<t<h)=
=Y x{y(-) e C(0, t]; C(K)); y(h e X(t) (0<st<t}=Yx Z.

We compute variations of the function (3.7) at an arbitrary control u e V
using an extension of Theorem 4 in [LY1].
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Lemma 3.2 Let u(-), v(-) be admissible controls, 0 < p < 1. Then there

exists a measurable set ep c [0, t] with meas(ep) < p and such thatif up is
the control defined by

Up(t) = v(t) (te ep), up(t) =u(t) (te ep),
then the solution &(t) of the linearized initial value problem
(3.9 £ = (A(B) +y(t, y(t, w), u()E() +
+ {¢(s, y(s, u), v(s)) — ¢(s, y(s, w), u(s))} (0O<t<t),
(3.10) £0)=0
satisfies the asymptotic relation
y(t, up) = y(t, w + p&(t) +olp) as p—>0+,

It follows from this result that (E(t), E(-)) € df(u). The variations of f; are
similarly computed; we have

Yolt, Up) = yolt, W) + pEo(t) +o(p) as p— 0+

where the function §(t) is given by

t
(3.11) Eot) = f {9o(s, y(s, w), v(s)) — do(s, y(s, u), u(sN}ds +
0

t
+ f <ay¢o(5, y(s, w), u(s)), &(s)) ds ,
0

and &(t) is the solution of (3.8) — (3.9).

Taking limits, we deduce that any vector of the form (Eq{b), &(t), £(-)) in the
space R x C(K) x C([0, t]; C(K)), where &(-) is the uniform limit of solutions of
the initial value problem (3.9) - (3.10) and &q(t) is the uniform limit of (3.11)
belongs to d(f,, f)(u). It follows then from [FR1] (or from extension of the results
in [FA1], since the equation is linear) that d(f,, f)(u) contains any vector of the
form (Eo(t), EC), E(-)) where E(-) is the solution of the initial value problem
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(3.12) £ = {AP) + dyd(t, y(t, w), ut)Ig®) + v(t) (O <t<t)
(3.13) £E0) =0

and Ey(t) is given by

t t
Eot) = f vo(s)ds + J (E)y(po(s, y(s, w), u(s)), §(5)> ds,
0 0

with (vo(b), v(D) & conv{(do, dp)(t, y(t, u), U) — (do, §)(t, y(t, w), u(t)} a. e. (conv
means closed convex hull).

We apply Theorem 2.1. The dual space E* = (C(K) x C([0, t] x K))* can be
identified with the space Z(K) x X([0, t] x K)) of all pairs (A(dx), u(dtdx)), where
A{dx) is a finite regular Borel measure in K and pu(dtdx) is a finite regular
Borel measure in [0, t] x K; this space is endowed with the total variation norm

t
o, w| = f Indx)| + j j |n(dxdp)| .
K 0 JK

The key point is the verification of (2.3) for the target set Y. Denote by C(u) the
sct of variations (Eq(t), E(1), E(- )) constructed above, and consider the set

IT(C(u)) = {(&(t), E(- ). In general, {§(-)} cannot contain an interior point in
C([0, t]; C(K)), for this would mean that every function in a neighborhood in
C([0, t]; C(K)) could be impersonated by a trajectory of the system, which
contradicts smoothing properties of parabolic equations. The same properties

imply that the set {§(t)} cannot contain interior points in C(K). Now, since Y is
sleek, for any (y, y(-)) € C(K) x C(([0, t] x K) we have

Kyly, y(-)) = Kyy) x K5 (y(+)) .
Thus, we can insure (2.3) by assuming that the X(t) are, say, convex and
contain a common open set, and requiring that the target set Y satisfy: there

exists p > 0 and a compact set Q such that

(3.14) B0, p)c Ky(y) +Q (ye B(y,e).
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This (and the sleekness condition) is satisfied, for instance, if Y is convex with
interior points or if Y is a Cl manifold of finite codimension.

Replacing C(u) by its closure, the Kuhn - Tucker inequality (2.4) for (z, 2) =
(2o, Mdx), w(dtdx)) # 0 is

t

Zo&olt) + f E(t, )Adx) + f f E(t, u(dtdx) = 0,

K 0 /K

to be satisfied for all (n, &) € lim infy _, 4y C(u). The variations (§o(b), E(B), EC- )

given by (3.9), (3.10) and (3.11) depend continuously on the admissible control

u(-) in the distance of V, thus the vectors (§(t), &(t), §(-)) corresponding to

u=u belong to lim infy -, y C(u). We exploit the arbitrariness of v(-) by using
in its place spike perturbations ursy(:) of u(-),

Ursy() =v (s-r <t <s8), urg(t) = ult) elsewhere,

where v is an arbitrary element of the control set U (see [FA3]) and then
letting r — 0 +. This produces the limit functions

E=0 (0<t<s),

E(D) = S(t, 5; wW(d(s, y(s, w), v) = (s, y(s, w), u(s)} (s<t<p),

where the operator S(t, s; u) is the solution operator of the linear equation

E(B) = (AP + 9yd(t, y(t, w), u()IE(®)

and
Eo=0 (0<t<s),

Eo(t) = do(s, y(s, w), V) = do(s, y(s, w), u(s)) +

t
+ f (ay%(o, y(o, w), u(o)),§(0)>dc (s<t<t).
S

Manipulations similar to those in [FA3] produce then the maximum (or,
rather, minimum) principle
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(3.15) ZoPo(t, Y(t, w), u() + (z(t), $(t, y(t, u), u(t))) <
< Zodo(t, y(t, u), v) + (z(1), ¢(t, y(t, u), v)) (ve U)

a.e. in the control interval 0 <t <t, where z(t) is the solution of the backwards
initial value (or "final value") problem

(3.16) dz(t) =~ (A() + dyo(t, y(t, w), u(t)}*z(t)dt -
~ dydo(t, y(t, w), u®)dt —p(dt) (0 <t<p)
3.17) z(t) = A

in the space Z(Q), where p(dt) is the measure p(dtdx) considered as a Z(Q) -
valued measure.

We note that the case where the equation is linear, the constraint set X(t) is
convex and has a nonempty interior and Y 1is an arbitrary convex closed set
(possibly without interior points) can be treated using the separation theorem
for convex sets in Banach spaces along the lines of [FA2].

4. Distributed parameter systems described by hyperbolic differential equations.

The abstract nonlinear programming formulation in §2 apply as well to
systems described by semilinear hyperbolic initial value problems

4.1) y'(t) = AB) + o(t, y(t), u@®)) ,
4.2) y0) =y°,y@=y!,

where now A(P) is the (cosine function generator) corresponding to A and
the boundary condition P in the space LZ(Q). The treatment can handle, for
instance, constraints of the form

(4.3) E(y(t) € C (0st<b),

where E(y(t)) is the energy of the solution at time t. (its norm in the space H
below). The equation (4.1) is reduced to a first order system for the function

(y(-), y'(-)) in the energy space H = HN(Q) x L2(Q). (H!,,(Q) in the case of the
Dirichlet boundary condition; see [FA4] for details). The problem is
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(4.4) minimize yq(t, u)
(4.5) subject to (y(t, u), y'(t, W) e Y, (y(t, w). y'(t, W) e X(t) (0<t<H),

where yq(t, u) is a suitable cost functional and the X(t) are sets in the energy
space H. The space V is defined in the same way as in §3. The space E is the
Cartesian product H x Cw([0, t] ; H), where Cw([0, t]; H) is the space of all
weakly continuous H - valued functions defined in 0 <t <t endowed with the
supremum norm. The dual of this space can be expressed in terms of a
complete orthonormal system {ep) in H; Cy ([0, t] ; H)* is the space X,,([0, t] ; H)
of all sequences {u,} of measures pn € Z([0, t]) such that

oo

t
2 f fen f®)un(ds) < C|£]|
0

n=1
for fe Cu(l0, t]; H). The functions fy(u) and f(u) are defined by
(4.6) folw) = yolt, W)
4.7) f(w) = (y(t, v), y'(t, w), y(-, u), y'(-, u)

where t is the endpoint of the control interval 0 <t <t and y(t, u) is the

solution of (4.1) - (4.2) corresponding to the control u € V. The considerations
in §3 about global existence apply. The target set Y is

{(yo, yl, yo(-), y1(-)) e Hx Cu([0, t]; H); (y0, yD € Y, (yo(t), yi(D) € X(t) 0O <t<t)).

The rest of the treatment is similar to that of the parabolic problem in §3. We
note that, due to the favorable controllability properties of the hyperbolic
equation (4.1) (see [FA2]) it is possible to handle point targets Y = {y©°, y1}.

We note another important difference between the treatment of parabolic
problems and that of hyperbolic problems; in the former, pointwise constraints
can be handled (this is implicit in the C(K) setting) whereas in the latter, the
results are restricted to constraints like (4.3} of integral type on the state
variables: pointwise constrains such as those in [WH1] are not included.

We point out that the abstract nonlinear programming setting applies to
many other different situations. For instance, other parameters in the initial
value problems (3.1) - (3.2) or (4.1) — (4.2) (for instance, the initial conditions)
can be considered as controls. Also, we may treat optimal control problems for
functional differential equations with target conditions of functional type,
including state constraints: all that needs to be done is to compute the
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variations of the maps f(u), fo(u) corresponding to the equation and to the cost
functional. This computation was carried out in a particular case in [FA3].

The work of the first author was supported in part by the National Science Foundation under
grant DMS - 8701877
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APPROXIMATE AND NUMERICAL METHODS OF THE OPTIMAL CONTROL
SYNTHESIS POR STOCHASTIC SYSTEMS

Vladimir B. Kolmanovskii and Gennadii Ye. Kolosov
Moscow Institute of Electronic Machinery
109028, Moscow, USSR

This paper is a survey of some results connected with the numerical
and approximate synthesis of the optimal control for stochastic dynami-
cal systems with concentrated or distributed parameters. Approximate
mathods of the solution of optimal control stochastic problems have
double interest. Pirst it's well known that exact analytical solution
of such problems may be obtained only in the exclusive cases. So usual-
ly approximate msthods give the possibility to obtain the efficient way
of delermining the control algorithm close to the optimal one. On the
olher hand according to the dynamic programming method many optimal
corttrol problems may be reduced to the solution of some special nonlin-
ear equations with partial or functional derivatives (the Bellman equ-
ations).Thus for the problem (1.1),(1.2) considered below the correspon-
ding equation (1.3) is a nonlinear equation of parabolic type. The solu—
{ion of the latter equation may be of interest for the theory of the
appropriate systems with distributed parameters. In this case the meth-
ods and ideas of the optimal control approximate synthesis may be useful
for the approximate solutions construction and qualitative theory
of the equations like (1.3).

The algorithms considered below are founded either on some small
parameters in the system equations or on successive approximations
procedure for the Bellman equation solution. Numerical methods which
are effective as a rule for the systems of small dimension are illust-
rated for some concrete examples.

Bibliography does not pretend on the fullness. It contains only
the sources which were essentially used in this survey, but at the
same time which contain further extensive information on the problems
under consideration.

1.Approximate synthesis of the optimal control for the systems with
small parameters. First let us set forth formally the methods of
approximate synthesis for dynamical systems described by a vector-valued
stochastic differential equation of the Ito type

dx(t) = £(t,x,u)dt + o(t,x,u)df(t), 0=t =7, x(0) = x (1.1)

o°
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Here Xx e Rn is phase vector, ue U < Rr is a control,&(t)eR1 denotes a
standard Wiener process and Rn is an Ruclidean space of dimension n.

The matrices £ and O of the corresponding dimensions, the time moment
T, the vector x_  and the set U are given. The performance index subject

o)
to minimization is defined by the expression
T
I(u) = M [F1(X(T)) + J Fa(t,x(t),u)dt]—+ inft (1.2)
ueu
o]
where F,, F2 are given scalar penalty functions. M is the expectation.

Under the assumption that the current values ol the vector x(t) can be
exactly measured it is required to find the optimal control u, in the
form of synthesis uozuo(t,x(t)). Let us denote by V(t,x), 0=+t =17,
X & Rn the Bellman function of the stated problem. Then I(uo):V(O,xo).
Under some assumptions according to dynamic programming method function
V is a solution of the following Cauchy problem

:;25 [LuV(t,X) + Fz(tvxvu)] =0, V(T,X) = F1 (X)v (1_3)
2 E 1 o

L = + 1 (t,x,u) + —I'r 01 (t,x;u) FM 01: o',

e at ax 2 ! X

where prime denotes transposition and Tr is the matrix trace.

It should be stressed that the greatest lower bound in equation
(1.3) must by calculated with respect to the vector parameter ueU.
Therefore the dynamic programming method leads fto the following algo-
rithm of the solution of the optimal control problem: first of all it is
necessary to find the function V({,x) by solving the problem (1.3) and
after thal to obiain the optimal control u, by solving the finite
dimensional optimization problem

LuV(t,x) + Fz(t,x,u) — iqf (1.4)
usy

The obtained function uo=uo(t,x), depends on (%,x) and consequently
is the control synthesis. However, exact analytical solutions for the
Egs. of. (1.3) type can be found only in exceptional cases, for instance
in linear-square and some scalar problems.

That is why different approximate and numerical methods of solving
Eq.(1.3) (hence the synthesis problem) acquire great practical import-
ance. The efficiency of approximate synthesis methods, as a rule, is
brought about by the presence of a small parameter in the problem (1.1),
(1.2). Suppose that functions £, g, F1,F2 in (1.1), (1.2) depend on
parameter £

f=f£(%,x,u,&), 0=0(%,x,u,8), Fe:Fa(t,x,u,S), F1=F1(x,8) (1.5)
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Represent v(t,x) in form

vV = Vo(t,x) + 8V1(t.x) teue (1.6)

Then substitute (1.6) in (1.2) and expand the left-hand side of (1.3)
and the function F, into a series of powers of €. Then equating to
zero the expressions for different powers of £ we obtain a system of
equations for functions Vi(t,x) in (1.6). Suppose that for some value
of j the indicated equations are solved for all i=0,1,...,J and
the functions Vi(t,x). i = j are found. Then to determine the j-th
approximation to optimal control it is necessary to solve the problem
(1.4) whose left-hand side is expanded in & taking into consideration
(1.5),(1.6) and expansion terms up to the order j. The control being
obtained in such a way will be denoted by vj(t,x). In some situations
it is possible to prove that
J
Vitx) - ) &'V (6 = oIt
o (1.7)
I(u,) - I(v,) = O(sT*).

There are two ways for the proof of the relations (1.7). In the
first place using (1.3) and the equations for V; one estimates the
differences

J ]
i i
v - }: elv, ana I(v,) - }:e v,
i:o i:O

The different way is founded on the direct analysis of the equations
(1.1) and the cost functional (1.2). Consider some concrete cases in
detail.

t.1. Small stochastic disturbances. Let the functions f, F, and F2
don't depend on € and the matrix ¢ be equal to Vr; o(t,x).The problem
(1.2) takes the form

3
vy + H(b,x, V) + —;— Ir o,V =0, V(T,x) = F,(x),

av av (1.8)
BULEY,) = Inf [ (hrwT ¢ Fyltnu) ], Vs~ Ve ——

The solution of the problem (1.8) will be found in the form (1.6). Sub-
stitute (1.6) in (1.8) and equate to zero the coefficients for the same
degrees of £. Then we get the relations that define functions V;. Acco-
rding to this scheme equation of the i-th approximation turns out to
bz linear in Vi for iz1. In particular we get for i=0,1

Vop t H(t,x,VOx) =0, V (T,x) = F1(x), (1.9)



66

oH(t,x,V, ) 1
Vgt ——— V  t — Iro, vV, =0, V1(T,x) = 0. (1.10)
av 2
X
The control of the i-th approximation vi(t,x)according to (1.4) is
defined by the equality

a
inf[f'(t,x,u)———(VO+...+€iVi) + By (,%,u)]
uey ax 3
P _ i - ]
=f (t,x,vi) ax(vo+...+e vi) + Pa(t"'vi)'

It's obvious from here and (1.9) that VO is a Bellman function and
v, is optimal control in the determined problem (1.1),(1,2) with 0=0.
The consequent approximations Vi(t,x) are determined by quadrature
from a some function of the preceding approximations along the trajec-
tories of the system (1.1) with 0 = 0 and control u = Ve For example
by virtue of (1.10) under some conditions

T

1
vV, (t,x) = — |Tr 0, (T,y(T))V, (T,y(1))dT

5 Oxx

<

Here y(T) is a solution oz Eq. (1.1) for 0 = 0, u = v, on the segment
t £ 1< T with initial condition y(t) = x. The proof of the relation
(1.7) for the case of small disturbances under consideration is
contained in the papers [20,24].

1.2. Quast llnear systems. Let the problem (1.1),(1.2) has the form

dx(£)=(B(t)u + Ax + £F(t,x))dt + 0(t)dE(t), 0St=T, x(0)=x,
T
J()=M[x' ()N x(T) + J(x‘(t)N1(t)x(t) + wiyu)dt (1.11)

t
It's assumed that U:Rr, matrices Ni are bounded nonnegative definite
and N, is positive definite. Punclion Vo(t.x) in the representation

(1.6) equals T

VO = x'P(t)x + JTr O1P(s)ds. (1.12)

+
Here matrix P(t) is d=fined by the relations
P(t) + A'P + PA - PBP + N, = 0, P(T) = N, B, = BN,'B'. (1.13)
The approximations V
1

J
1 .
Viu T Ir O Ve ¥ TV 5oy ) VigBiVgox = 9
2 4 1i=0

3 j=1 satisfy to the linear equations

(1.14)
Vj(T,x) = 0.
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According to (1.4),{(1.6),(1.11) the control of j-th approximation
v (t,x) is given by the formula

) (1.15)

1
~ - _ -1 ) CJ
Vj(t,&) = > N2 B (Vox+...+u ij

The solution of equation (1.14) has the form
T

1 37
H[[2 (e00V )y plsem) - Tiz1vix(s'y)B1(S)v(j—i)x(s'y)]ds

1, (1.16)
Where y = y(s) is the solution of the equation (1.11) with € = O,

Vj(t,x)

u = v, and initial condition y(t) = x.

The proof of the estimations (1.7) for quasi linear systems was
given in [4, 23-25,29].

1.3. Adaptive systems with small a priort unceriainty. Consider
the problem (1.11) for f = 0O, g, = 0o' > O where elements of a constant
matrix A are a priori unknown and represent some Gaussian vector from

R > with expectation m, <€ R 2and co variance matrix SDO of dimension

n n

n® x n®.In this case for the description of the controlled system
dynamics it's necessary to add to equation (1.11) with £ = O the Kalman
filtering equations for vector m(t) and matrix D(t) which characterize
the a posteriori density of the conditional probability distribution

of the matrix A elements. These equations have the form

am(t) = DR'o;'[dxm - (E(m)x + Bu)dt], m(0) = m

b = -DR,D, D(0) = &D

0*

_ -1
o° R1 = R'O1 R.

Here matrix A(m) is obtained from A by the change of the unknown ele-
ments of A by their aposteriori mean valus m. The matrix R(x) of
dimension n =n° equals

Kyeen X O ... O s v 0 ... 0

n -, ,
R(X) — 0 ... 0 51... Kn... cee O ..o O

0 vei D 0 ais 0 aie ein K, wux
1 n

Bellman function V(t,x,m,D) satisfies to the relations

Vt + x'A'(m)VX + ir_lf(u'B'Vx + u’NZu) + x'N1x
ueR
r (1.17)

1
Tr[ DR1D(V - 2V_.) + 2DR'V + O,V ] =0, V(T,x,m,D) = N,.
mm D Xm 1 XX 3

+

b
<

Let us find the solution of problem (1.17) like (1.6) in the form
v(t,x,m,D) = Vo(t,x,m) + 8V1(t,x,m,D) +... (1.18)

The control of the jfth approximation vj(t,m,x,D) is given by (1.15).

Note that in (1.18) function VO does not depend on D and is defined by
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(1.12),(1.13).4 in (1.13) being replaced by matrix A(m) with the fixed
value of m (just the same as in the left side (1.18)). Punctions Vj’

Jj =z 1 in (1.18) satisfy to the relations

]
Vot x'(A(m)—PB1)VJX+ TTPO’VJXXJr aj(t,x,m,D) =O,Vj(T,x,m,D) =0.(1.19)
Here ¢ (t,x,m,D) = 2 TP[DR D(V ~ oy + 2DR'V ]
g 5 1 (3-2)Ymm < (3-1)D (3-1)xm
1 371
- — S VBV aye 22, 0 TP[DR' (x)VOXm(t,x,m)]. (1.20)
i=1
The problem (1.19) solution may be represented in the form
T
VJ(T,x,m,D) = faj(s,y,m,D)ds. (1.21)
+

Where y = y(s) is the solution of the equation
ay(s) = [Atm) - B,(=)]y(s) + o(e)at(s), €585 T, y(t) = % (1.22)

Remark that x,m and D in formulae (1.21),(1.22) must be considered as
constant. The error estimate of the described method of approximate
synthesis was established in [8l.Adaptive hereditary systems with small
a priori uncertainty wers investigated in [71.

Remark . The methods of approximate synthesis stated above were devot-
ed to the regular disturbed systems. In singular disturbed systems the
phase vector has {wo group of components - fast y(t) and slow z(t) which
are described by the equations

a2 (t) = £,(6,2,5,0)dt + 0, (6,2,5,u)dE, ()
sdy(t) = 2,(t,z,y,wdt + Ve 0, (bz,y.u)ak, ()

Here Ei are standard Wiener processes. Besides singular perturbed prob-
lems arise in systems with "cheap" control. As examples we may indicate
the linear—-quadratic problem (1.10) with £=0, N2 = Sﬁz and problem
of the optimal estimation with small noises in the observation channel
[2]. The approximate synthesis problems of optimal control for singular
perturbed stochastic systems were investigated in [26,27,33-35,38].
The method of integral manifolds was applied in [18] for the investiga-
tion of singular perturbed Riccatti equations.This gives the possibili-
bty to calculale a fast component of the solution only with the aid of
algebraic operations.

Remark 2. The above considered methods were devoted only to approximate
synthesis of the optimal control. But if the phase vector cannot be me-
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asured then the same problems statements are valid for the open-loop
optimal control. Quasioptimal open-loop control was derived in [32] for
linear systems with small stochastic disturbances by reduction a
stochastic problem to determined one. Stochastic maximum principle was
used in [3] for the approximation of the optimal open-loop control of
quasi linear systems.
Remark 3. The principle of the generalized work [12] is effective for
the construction of approximate optimal control in some systems.
2.5uccessive approximations.Successive approximations method is
founded on the approximation of the Bellman equation solution by a
sequence of solutions of some linear equations.

2.1. Bellman method of successtve approximation [1] for the problem
(1.3). Take an arbitrary admissible control v, and substitute it in the
(1.3) left side instead of u. After that find the solution VO of the
corrasponding linear problem.Substitute VO in (1.4) and determine a
conhrol u, that minimizes the (1.4) left side. Continue this procedure.
As a resull we get the sequences Vi(t,x) and vi(t,x) such that

Lvivi + Fy(tyx,vy) = 0, Vi(D,x) = Fy(x),

. (2.1)
1gf [I.uVi + Fz(t,x,u)] = Lv. Vi + Fe(t,x,vi+1)
usy i+1

It's proved that under some conditions [(21,24,31] sequence Vi converges
to the solution of the problem (1.3) and ssquence vi(t,x) converges to

the optimal control. In particular for linear-quadratic problem (1.11)

with f = O, Vo = 0 procedure (2.1) leads to approximation of the solu-

tion of the Riccatti equation (1.13) by the sequence Pi satisfying to
linear squations

P, + A'P, +P A - P.B.P. , - P, B.P, +P. BP, .+ N =0,

P.(T) =N

: i>o0, P, =o0.

3’ 1

By virtue of (2.1) a control of the j-th approximation v. for Vj: X'ij

-1

ie given by the formula v. = -N, B'Pj_ x and in addition the

1
differences P - Pi and I(uo) - I(vi) are values of 1/(i+1)! order.
2.2. Method of succesative approzimalions for systems with small

parameter.assume that the relations (1.3) may be represented in the form

inf [LuV+F2(t,x,u)+8¢(t,x,V)]:O, V(T,x)=F, (x) (2.2)
usy

Tet VO be a solution of the problem (2.2) with £=0. Define approxima-
tions Vi, I =z 1 in the following way

inf [LuVi+F2(t,x,u)] = —8¢(t,x,Vi_1), Vi(T,X) = F1(x). (2.3)

usu
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The i~th approximation control vy is obtained as a solution of the pro-
blem (1.4) with Vi instead of V in the left side. Egs.(1.8) are an
example of the Egs. (2.2) corresponding to the control system with small
disturbances. In this case equations of successive approximations have

the form

£

Vig ¥ Hltx, Vi) = =5 Trog Vg qype

(2.4)
Vi(T,x) = F1(x).
Note that Egs. (2.4) with the esquation of zero approximation correspond
to the deterministic problems of optimal control.
2.3. Small control. Let in the problem (1.1), (1.2) be

f =a(t,x) + gq(t)u, F2 = a(t,x).
Then Bq. (1.3) has a form (2.2) with

1
LuV = LOV = Vt + a'VX + —E—Tr O1VXX y O = O(t,V) = igg [Viqu].

Successive approximations Vi are determined by the relations

LOVO + a(t,x) = Oy VO(T’K) = F1 (K)y
(2.5)

LoV + alt,x) = -sp(t,V;_ 1), Vi(t,x) = P (x), 1=z 1.

In some cases Egs.(2.5) may be solved analytically [8,10]1.0n calculating
Vi the quasi optimal synthesis of the i-th approximation vi(t,x) is
derived from the condition

1qf [Vixqu] = Vixqvi. (2.6)
uel
Quality of the i-th approximation vi(t,x) is given by I(vi). Accuracy
of the approximate synthesis (2.5), (2.6) for small £ is characterized
by the value 141
I(Vi) - I(uo) = 0(g ).
In some cases procedure (2.5), (2.6) ensures the convergence of Vi un-—
der i— o to the exact solution V of Bellman equation (2.2) for arbit-

rary (f{inite) value £ and also the convergence I(Vi) to I(uo).

3. Numerical and approximate methods of control synthesis in conc-
rete problems. Numerical methods may be divided into two groups. The
methods of the first group are founded as a rule on finite difference
schemes for partial differential equation that are applied either dire-
ctly to a Bellman equation or to relations approximating this equation.
The relations (1.9), (1.10), (1.14), (1.19), (2.1), (2.3) are an example
of such approximation. The special features of the Bellman equation
numerical solution and some results for mechanical systems are given in
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[13,23,24,36]1. The methods of the second group consist of preliminary
approximation of the initial continuous control problem by a problem
with discrete time and finite numbers of states and control and
consequent application of numerical procedures [13-15,28,30]1. In [16]
it's proposed to approximate the optimal cost function value by local
solutions of a Bellman equation defined in some domain of a phase
space. In addition if this domain is sufficiently large and the system
starts from its depth then the probability of leaving the domain will
be small. Below some results of numerical and approximate solutions of
concrete optimal control problems are given.

3.1. Control of oscillations under stochastic disturbances.Consider
the control that maximizes the probability of a system to be in a given
region Sq on the given time interval [0,T]. The applied finite differe-
nce scheme of the corresponding Bellman equation solution is effective
also for another problems. The equations of a system have a form

X =y, y=-a°% + bu + cf , 0=t =P, (3.1)

Here a,b,d,T are given and control u is a such that |u| £ 1.The initial
condition for the system (3.1) is (X,y) = So for t = O0.Denote by
V(t,x,y) the Bellman function of this problem that esquals to the maxi-
mum of probability of systiem (3.1) to be in SO on the interval [t,T]
under condition that (x(t),y(t)) = (x,y) e S,-60 over to new variables

according to the formulae
t > 02t/(2b2), x» oY%/ (463), y»02y/2b, wbu, a“»4b*a?/gt, Ta021/ (2b2).

Assume ithat in new variables domain S is a square with the origin as a

0]
center and with the sides parallel to the coordinate axes. There are

boundary condition V(t,x,y) = O, 0<t<T on the regular part of the boun-
dary of So and initial condition V(T,x,y) = 1,(X,¥) eSO. Optimal control

U, equals uo(t,x,y) = signVy(t,x,y). Bellman equation has a form

2
V + \' —_ V + V + VvV = .
y a X l | =0

Numerical solution of this equation was obtained in [17] by the frac-
{ional step method that leads to the following scheme. Let h,, h,, T

are approximation steps in x,y,t. Integer-valued indexes i, j,k vary
within the limits - N < i, js N, K2 k > 0 and vgj is a valuse of the
funetion V(t,x,y) for x = ih1, y = jha, t = kT. The difference equations
for VEJ following from Bellman equation have the form (q = q(j) = 0O

for jz0 and q(j) = -1 for j<O)

k Vk—O.S

B k-0.5 k-0.5, _
13 13 v = 0,

-1 . -1
T )+ dhoh (Ve Ty T Vil
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-1,0k-0.5 _ k-1 -2 ,ok-1 _ ouk-1 k-1
Ty Vig ) H Ty gy — @V V)
-1 - SE FC T P _
+(2h2) (uij a h11)(Vi'j+1 Vi.j—1) = 0.

Here

— i (yk=0.5 _  k-0.5
uyy o= sien(Vy gy -V i)

Initial and boundary conditions lead to equalities
k - vk vK

VN 3 N.32= i

=V =0, Kzkzo0
1 1° 11'N

ko _ A N o« s _ R -
Vij =1, -N<1i, jJ <N, -N = i, = N, -N= 11< 0, 0« Jp = N.

-N

These equations for ng are solved numerically. Some results are
given in Figure 1 where in the right are switching curves of the
optimal control for t = 0.6, a? = 0,1,2,3 and level curves of Bellman
function V(t,x,y) for a? = 1, t = 0.5 (in the left). Besides V(%,x,y)
= V(t,-x,-y) and uo(t,x,y) = —uo(t,—x,—y) that gives the possibility

to define V and u. in another parts of the square SO.

(o}
Fi e 1: A?.e Figure 2:
0z EE E(t)J n(t)J
y(t) y(t) u(t) x(t)
X
-1.2 .2

3.2. Optimal tracking servo-system. Let us consider the tracking
servo-system shown in Pigure 2. The input y(t) is a symmetrical two-
state Markov process (y(t) = *1).Its a priori probabilities pt(t1) =
P(y(t) = *1) satisfy Egs.

p,(1) = =p,(~1) = -up, (1) + up, (-1)

The observed process y(t) = y(t) + £(t) 1s a mixture of an input pro-
cess y(t) and Gaussian white noise of intensity ®/g£. The control plant
0 is a servo-motor with constrained velocity disturbed by Gaussian
white noise of intensity &€v. The behaviour of the plant O is described

by a scalar equation

X =u+ Mt jul =1, MNE) = 0, MN(E)M(t-T) = EVD(T). (3.2)
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The synthesis problem oonsists in finding a structure of the ocontrol
device which on the basis of information about processes {y(s), x(s):

0 =5 £ 4} for each moment t must form the control signal u(t) providing
an optimal tracking of output coordinate x(t) after the input process
y(t) in the sense of the minimum of functional

T
I(w) = MIJ(y(t) - x(t))%at) (3.2)
0
Let us denote by w:= P(y(t) = 1[&8), w%: P(y(t) = —1]53) the a posteri-

ori probabilities of the states of the input process y(t) = *1 in the
presence of the observation ?g = {y(s):0ss=5t}. According to [8] the

difference z(t) = w:— w; satisfies the stochastic differential equation

z = —2pz + (1 - 22)F(t) /. (3.4)

The pair (x(t),z(t)) forms the vector of "phase coordinates" for the
synthesis problem under consideration. From (3.2) - (3.4) it follows

that the Bellman equation for this problem has the form
V, + min(uv_) - 2uzV_ + sw__/2 + £(1-22)8V__ /fom + x° =
t Iu|51 X zZ XX ZZ (’)
A

0=t <P, -1<K,z<+1, Vx(t,i1,z)=0, ]VZ(t,x,i1)<m, V(T,x,2) = 0.

0

- 2zx+1 R
.5)

The diffusion terms of this equation contain a swall parameter. There-

fore for approximate solving (3.3) one can use the following schems for

calculating the successive approximations (j = O,1,...,V_1 = 0)

. 2 .
V,,— iiji - EMZVJZ + x5 - 2zx + 1 = (V¥

. I 22)ey

Jo®)

-1 j-1zz

Vy= - signV

Jx°

By using corresponding calculations of the first two approximations for
the stationary tracking problem (when the final time of tracking T » =)
the structural circuit of suboptimal tracking servo-system shown in

{E,(t) Jn(t)

y(tg i ?(tg ‘ t ] z(t) 1’— u 5 x(t)

1/% . r’ ; _l_1
Figure 3: [ ‘ L < fe— HII

L

Tigure 3 was constructed in [8],where HII denotes the nonlinear converter

~




74

z = x + 28ux[ (1 - x9)% + vel/(1 - uPx%).

The quality of system shown in Pigure 3 was estimated by numerically
solving the Bellman equation (3.5) and the linear equation for perfor-
mance index Q(t,x,z) of the system in Figure 3

Q. + v(t,x,z)QX - 2uzQ, + stxx/e + £(1 - zZ)ZQZZ/2w +

k7
+ x° - 2zx + 1 = 0, 05t<D, —1<x,z<+1, Q (t,#1,2) = 0,
|Qz(t,x,11)| o, Q(T,x,z) = 0,

v(t,z,z) = sign{z- z + 2gux{(1 - )% + vel/(1 - 4p2x2)$}-

Some results of the calculations carried out for g VY =1, b= 0.45,
® = 5, L = T-4 are shown in Pigures 4,5 where continuous 1lines
correspond to function V and dotted lines to Q. Prom the analysis of

the curves in Figure 4,5 it follows that the circuit in Pigure 3 in-
sures the relative error of minimized functional

O8I = [Q(t,x,2) -~ V(t,x,2)1/V(%,x,3) < 0.02.

Figure 4:

3.3. Optimal damping of random osctllations. Let us oonsider a
linear spring-mass system with viscous damping controlled by a constra-
ined force and disturbed by a random signal £(t) of a white noise type

x +Px+x=u+VBE(L), |u c€,p<2, 0<t=T
The optimality criterion is taken in the form (1.2) with penalty fun-
ctions Fa(t,x,u) = x° + axz, F1(x) = 0. Using the dynamic programming
algorithm (1.3), (1.4) we find optimal control
ug(t,x,y) = —Ssignvy(t,x,y), (3.6)
where the Bellman function V(t,x,y) (y = x) satisfies the equation

X - 2 _ qv€ 4 e
LA (x + ﬁy)Vy + (B/Z)Vyy— X ay< + €|Vy|,
- < X,y < 4w, 0 < £t < T, V(T,x,y) = O.

(3.7)

This equalion was solved numerically by using standard procedure of the
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net method [(17]. The calculating scheme for Eq. (3.7) and some resulis
of numerical solution of Eg. (3.7) were stated in detail in {11,37]. If
a range of admissible control is small then the quantity € in (3.7) is

small parameter and for solving Eq. (3.7) it is possible to use succe-

ssive approximations procedure (2.5). According to (2.5), (3.7)

equations of zero and first approximation have the form

Vo, * ¥V, — (X + ﬁy)VOy + (B/2)VOyy = -x° - oy, V (T,x,y) = 0, (3.8)

v + yv

1% v, (T,x,y)=0.(3.9)

- ( 2 2
1x (x + ﬁy)V1y+ (5/2)V1y_y— x“-ay“+ €|V

oyl
For constructing corresponding suboptimal control algorithms it is ne-
cessary to solve Egs. (3.8), (3.9) and to substitute the obtained solu-
tions VO, v, into (3.6) instead of V. Egs. (3.8),(3.9) and consequently
the suboptiimal control synthesis problem for zero and first approxima-
tions were solved in [8,10] in analytical form.

It is interssting to compare the optimal quantity v(t,x,y) of consi-~
dered criterion with the valus Q(t,x,y) of the same criterion when cont-
rol v (t,x,y) is used. The function Q(t,x,y) is defined by relations

. _ ’ w2 2 _ ~
Q +yQ - (x +fy VO)Qy + (B/B)Qyy = - ay©, QT,x,y) = 0  (3.10)
The solutions of Egs.(3.7),(3.10) were obtained numerically for a=p=B=1,

£=0.5. The results are represented in Pigure 6 where V is shown by the
continuous line, Q by the dotted line and T=T-t% is stated.

V("C,X,O),Q(T’X’O)
Figure 6: {3

3.4. Optimal control by stochastlic plant with unknown parameter.
Let us consider a first-order aperiodic plant with an unknown inertia
factor disturbed by Gaussian white noise £. Eq (1.1) in this case is a
scalar one and has the form

= -0x + bu+ Vv E(t) 3.11)

whore 8 is an unknown parameter, b,V are given positive numbers. The
control purpose consists in minimizing the functional (1.2) with penal-
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ty functions F,=0, F2= gx2+ hua, where g,h are given positive numbers.
Lel O be a random value of Gaussian type with the mean BO and variance

€D+ Let us write the optimal filtering equations for this case

dm(t) = —-(D(H)x(L)/v)[dx(t) + (m(t)x(t) - bu(t))dt] (3.12)

D(t) = -DZ(£)x°(t)/v, m(0) = O, D(O) = £D, (3.13)

Ol
The totality of scalar Egs. (3.11)-(3.13) plays a part of a "dynamics"
Eq.(1.1) for the synthesis problem under consideration. ILet us do the
substitution D+€D. Then using (3.11)-(3.13) one can write the Bellman
Bq.(1.17) for this problem and obtain the optimal control in the form

uo(t,x,m,D) = —bVX(t,X,m,D)/2h (3.14)

Here V = V(%,%x,m,D) is a solution of the following Cauchi problem

T, 2 2 5
Vt = mAVX b (Vx) /4h + gx= + vix/L

—e[DxV__ + D°XCV_/v - eD°X°V_ /ev), V(I,x,m,D) = O .13

~ mx D ~ mm ' [ :
If parameter € has a small value then for solving Eq.(3.15) (and there-
fore according to (3.14) the synthesis problem) one can use small para-
meter method according to scheme (1.18)-(1.21). When £=0 Eq. (3.15) has
an exact solubion

Vo (t,x,m) = £ (,m)x" + v (t,m) (3.16)
¢ (tam)= gl1-exp(-27(T-%)) ] , Y=(m2+b2g/h)1/2
N THm+ (Y-m)exp[—27 (T-t) ]
gu(T-t)  vh 2
ro(t,m): — - =
THm b THm+ (Y-m)expl-27(T-1) ]

From (3.14), (3,16) follows the gzero approzximation control

vo(t,x,m) = —bfo(t,m)x/h. (3.17)
The equation for the funciion V1 from (1.18) has the form

w2 ) . ) _
-V, = -mxV, - BOf (t,m)xV, /b WV, /2 - DxV_ ., V, (P,x,m,D) = O.

This equation has the following solution [8]

V1(t,x,m,D):f1(t,m,D)x2+r1(t,m,D),

T
£, (t,m,D)= - 2Dexp{-2[(m + bafO(T—s,m)/h)ds} (3.18)
) 0
T T

xfme(T - s,m)exp{Zfém + bfg(T - s1,m)/h)dsi}ds,
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T
r1(t,m,D)=v_[t f1(s,m,D)ds

From (3.14),(3.16),(3.18) it follows that first approximation control
is given by the formula

v, (t,%,m,D) = -bh™'[£,(t,m) + &f, (t,m,D)]x.

With the help of numerical msthods a comparison was made between minimum
value V(t,x,m,D) of the considersd performance index (obtained by
solving Eq.(3.15)) and the values Qo(t,x,m,D) and Q1(t,x,m,D) of the
same performance index for control v and v, obtained by solving

s} 1
corresponding linear Egs.

_ e 2 2 ™ Ty "
Qit_ (-mx + Vib)Qix+ hvi+ gx<+ inxx /2 DA(QimX+ DXQiD/v Dx imm/d)),

Q (T,x,m,D) =0, i =0,1.

In FPigure 7 the continuous lines correspond to V, dotted lines to 9
when problem parameters are g=h=b=V=m=1 and T =T - t = 3. In Figure 8
continuous lines correspond to V, dot-dash lines to QO, and dotted lines
to Q1 when g =h =1, b =0.1, V=5, T=2.5.

Plgure 72 v(,%,m,D) £ 55 v,Q

4

O’Q1

2000+

X

1 I
0 1 2

3.5. Optimal control by substance diffusion. In [8] the successive
approximations scheme (2.5), (3.8), (3.9) was used for approximate syn-
thesis of controls for some stochastic systiems with distributed parame-
ters. Let the object of control be a cylinder filled by a homogeneous
porous medium,of length 1 and of base radius r<<1 (that allows to ignore
the radial changing of substance strength G and consider it depending
only on (,x),0 £ x =1). Suppose that at one side (x = 1) cylinder is
closed and at the other side (x = 0) the substance flow is set. Changing
the flow one can influence substance strength G(t,x). Suppose that along
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whole cylinder length random disturbance {(t,x) influences the substance
strength G(t,x). Let £(t,x) be a Gaussian white noise correlated in
space variable. Then mathematical model of control plant has the form

G, = aacxx + E(t,x), 0 < x <1, a° = B/C, (3.19)
G, (,0) = u, G, (t,1) = 0, (3.20)
ME(L,x) = O, ME(t,x)E(T,y) = K(x,y)0(t-T). (3.21)

Here b and ¢ are diffusion and porous factors, K(x,y) is given symmetri-
cal positive defined function-kernel. PFor the object (3.19)-(3.21) it

is necessary to synthesize control uzuo(t,G(t,x)) minimizing the

functional

T11
I=m J J J 0(x,y)0(t,x)G (t,y)dxdydt (3.22)
000
when control action u is constrained by its absolute value |u| €.

<
Using dynamic programming method to the problem (3.19)-(3.21) leads
to the optimal control operator

oV
u, = u (t,6(t,x)) = & sign [ ] ) (3.23)
0G (x,t)]x=0

where loss functional V(t,G(t,x)) satisfies the Bellman equation with
functional derivatives

11
oV . p 0% | ov
- - | [ ommietocttyaxay + o fettino | —— fax
at % | BG(t,x)
00 0

2[ J oV 5 o 5V
P S L [ ) L
ax | O0G(t,x) x=0 ax L 0G(%,x) x=1

o v ]
[ 8G(t,x) J=x=0

0G(t,x) BG(t,y)

11
1 5%V

+ 5{ J K(t,x,y) dxdy ~ sa®

0 0

(3.24)

v
If the range of substance flow changing is small then € in (3.24) is a
small parameter and for approximate solving of (3.24) one can use
successive approximations scheme (2.5), (3.8),(3.9). In this case as is
established in [8] the functionals Vo(t,G(t,x)),V1(t,G(t,x)), ... are
calculated in the quadrature form. Subopiimal control operators

v, (t,0(t,x)) are obtained by means of substitution Vi in (3.23) 1in-

4
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stead of V. In particular control operator of gzero approximation
vo(t,G(t,x)) has the form

T 111
Vo (4,G(t,x)) = € sign[ jdfc” e(x,y)r(m,x,t.omm,y,t,i)c(t,i)didxd.v].
t 000
where o 2
2 1 sl > Tn ™
I't,x,%,y)= — [— + z exp —[ — | a“(1-t)|cos X cos y
1 n=1 1 1 1

is the Green function for boundary problem (3.19), (3.20).

Conclusion.Approximate synthesis methods make it possible to obtain
control algorithms in analytical form that is important for practical
using of stochastic optimal control methods in concrete problems. Besi-
des the results of numerical analysis carried out for concrete optimal
control problems show a high efficiency of the small parameter and
successful approximations methods in the cases when parameter € has the
same value order as another parameters of the synthesis problem.Moreover
the calculation results represented in Figures 6,7 show that it is
possible when even zero approximation control insures a control quality
close to the optimal one. In other cases a zero approximation control
is insufficient and for high quality control it is necessary to use
next (higher-order) approximations which is illusirated by results
represented in Figures 4, 5, 8
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Convergence Rates for Regularized Nonlinear Illposed Problems*
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Abstract. Convergence and rate of convergence are studied for nonlinear illposed inverse problems that are
stabilized by means of Tikhonov regularization while the parameter space as well as the parameter-to-output

mapping are discretized. The theoretical results are illustrated by means of numerical examples.

1. INTRODUCTION

In this contribution we focus on nonlinear illposed inverse problems of the type
(1.1) F(z) = yo,

where F': D(F') C X — Y is a nonlinear operator between Hilbert spaces X and Y. The
problem consists in inverting F’ at yp in a stable manner without making assumptions
on the continuous invertibility of F’ at yp and while allowing errors in the “data” yo. To
address this problem the regularized least squares formulation

1.2 min |F(z) — ys|% + a|z — z*|% over D(F
Y X

is used. Here ys denotes the noisy data which are assumed to satisfy an a—priori estimate
of the type

(1.3) lyo — ys| < 6,

and z* stands for an estimate to a solution of (1.1). The problem of an adequate choice
of a in terms of § such that the solutions z of (1.2) converge and also converge with
a certain rate as § —+ 0 was extensively studied for the case when F is linear (see e.g.
(G,M] and the references given there) and has recently been investigated for nonlinear
F for instance in [EKN,N]|. If the domain and the range of F are infinite dimensional,
then the optimization problems (1.2) are infinite dimensional as well, and any numerical
approach to solve (1.2) will require a discretization of D(F) as well as of the mapping
F. In this note we address the problem of convergence and of rate of convergence of the
solutions of the fully discretized version of (1.2) as §,a — 0 and as the discretization
indices tend to infinity. The case when only D(F) is discretized was already treated in
[N]. Moreover we give sclected numerical results for parameter estimation in a two point
boundary value problem. Such problems are wellknown to be nonlinear illposed inverse
problems. We shall illustrate that the theoretical results on the rate of convergence can
be observed numerically and we shall illustrate the necessity of the hypotheses that are
made. Many additional numerical results can be found in [Ge,GK]. The techniques that
are required for the proof of the rate of convergence are strongly related to those in

[EKN,N].

*Supported in part by the Fonds zur Férderung der wissenschaftlichen Forschung, Aust-
ria, under S3206.
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2. CONVERGENCE AND RATE OF CONVERGENCE

The following specifications will be necessary:

X, Y are Hilbert spaces,

F:D(F)C X — Y, with D(F) closed and convex,

F is continuous and weakly sequentially closed, i.e. for any sequence {z,} in D(F),
Tz, — ¢ and F(z,) — y imply ¢ € D(F) and F(z) = y,

Yo S R(F)v

{Xn1}22, is a squence of finite dimensional subspaces of X,

P, : X — X, are the orthogonal projections, which satisfy P,z — z for all z € X,
Cn:=D(F)N X,, Pc, : X — C, is the metric projection,

FN . D(F) = Y are continuous operators for N = 1,2,.. ..

Here and below we denote by ‘=’ strong and by ‘—’ weak convergence in a Hilbert
space and D(F) and R(F) stand for the domain and the range of F. Due to the
assumption that yo € R(F'), the existence of a solution to F((z) = yy is trivially satisfied.
Henceforth the focus will be on solutions to (1.1) which are closest to the estimator z*.
We define zy to be an z*-minimum norm solution (z*-MNS) of (1.1) if

F(l‘o) =Y

and
|zg — z*| = min{|z — z*| : F(z) = yo}-

The existence of an z*-MNS is a consequence of the weak sequential closedness assump-
tion. The motivation for the concept of z*-MNS to (1.1) will follow from Proposition 1
below.

To solve (1.1) numerically with possibly noisy data ys we introduce the regularized
finite dimensional problems

(P) min |[FY(z) — ys|? + alz — Poz™|? over z € Cp = D(F)N Xy;

where we tacitely assume that the range of F'V is finite dimensional, although this is not
further necessary within this section. In (P) we did not introduce additional notation
for discretization of ys. Rather the data ys can be considered to be elements of finite
dimensional spaces, converging to yg as § — 0. Due to the assumptions on FN and
D(F), it is simple to see that (P) has a solution for any @ > 0, N, n and z*. In
our analysis we shall not insist on exact solutions to (P) but rather we analyze the

Sm  which satisfy

convergence of elements z )7
",

(21) PN @ N — sl +alzll v = Pac’ P < [FV(2) - ys|* + alz — Paz”* +1

a,n,N

for all z € C,, where 7 > 0. Asymptotic expressions involving &, §,7,n, N will always
be understood in the sense that @,4§,7 — 0 and n, N — oo. It will be shown next that
weak cluster points of zi"n n are strong cluster points and that they are 2*-MNS.
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PROPOSITION 1. Let zg be an z*-MNS of (1.1} and let a = a(n, N, 6,1) be such that
a — 0, n/a =0, 62/a = 0 and |FN(Pc,z0) — yo|*/a — 0 as 6,7 — 0 and N,n —
co. Assume further that FY — F uniformly on bounded subsets of D(F) and that
Pc,z9 — zo. Then every sequence {zf,’;'ll"k Nk} (with ék,mx — 0; Ng,np — oo for
k — oo, ak := a(nk, Nk, bk,mk) and za"k N, Satisfying (2.1)), has a strongly convergent
subsequence and the limit of every convergent subsequence of :ci"""_N is an z*-MNS of

F(.’L‘) = Yo-

The proof can be given with standard arguments. We refer to [N] and the discussion
given there. Concerning the hypotheses of the proposition we refer to [Mo, Lemma 1.2
and 1.5] where conditions on X, are given that imply limp—eo Poc, 2o = zo. With
respect to existence of values for a satisfying |FN(Pc,z0) — yo|*/a — 0, one observes
that

1 2 2
ZIFN(PCJO) —yol? < ;|FN(PCHIO) — F(Pc,zo)|* + ;|F(Pcnl‘0) — yol?.

For appropriate choice of @ the middle term converges to zero, if limy_.oo |F'N(z) —
F(z)| = 0 uniformly on bounded subsets of X and the last term converges to zero due
to continuity of F* and limp— Pc,Zo = Zg.

We proceed with a result on the rate of convergence of z w28 60,7 — 0, and
N,n — co. Some hypotheses are summarized first. They mvolve an z*-MNS z,.

(H1) F is Fréchet differentiable,

(H2) there exists L > 0 such that ||F'(z¢) — F'(z)|| < L|zg — 2|, for all z € Bp(z¢)N
D(F), where p > 2|zg — z*|,

(H3) there exists w € Y such that zo — z* = F'(z¢)*w

(H4) Llw| <1,

(HS) |zo — Pazo] = O(n

(H6) |F(z) — FN(2)| =
th__,ooaN =0.

3

) with lim 4, = 0,
O(en) for all ¢ € Byp(zo) N D(F), p > 2|zg — z*|, with

Here By(z¢) = {z : |z — zo|] < p} and F'(zq)* stands for the adjoint of the Fréchet
dcrivative of F' at z¢. Furthermore we put

Tn = [F'(z)(I = Pu)ll,

and observe that lim, ..y, = 0 if F'(zp) is a compact operator. In the following
theorem it will be implicitly assumed that the interior of D(F’), int D(F), is nonempty.

THEOREM 2. Assume that z¢ is an z*-MNS of F(z) = yqo, that (H1) - (H6) are satisfied
with zo € int D(F) and that F'(z¢) is compact. If in addition n = O(6% + v242) and
a ~ max(8,%2, ¥n, Tn,eN), then

lzfx'zx,N —zo| = 0(\/5+ In + Ve + VEN).
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ProOF: The first objective is to derive estimates on |F(Pnzo)—ys), |FN(PN120)—y5| and
to show that z := Ii’?n,N € By(z¢) for all n, N sufficiently large and a, §, 7 sufficiently
small. Since z¢ € int D(F'), (H5) implies that

(2.2) Pazo € Cn
for all n sufficiently large. Let us define
rn 1= F(Pazo) — F(z0) — F'(z0)(Pnzo — Z0),
where here and below it is assumed that n is sufficiently large so that (2.2) holds and
that |Ppzg — x| < p with p as in (H2). Then by (H2) one finds
(23) ral < S0 — Pz’
By (2.3) and due to F(zg) = yo it follows that
|F(Pnzo) = ys| = |rn + F'(20)(Pn — I)zo + F(z0) — ys]
(24) < Zloo = Pazol + yalao = Paol +
= O(34 + Ynin + 6),
where for the last estimate we used (H5). Moreover, by (H5), (H6) and (2.4)
(2.5) |[FN(Pazo) = ys < O(FE + Yn¥n + 6 +€n)

holds for all n sufficiently large. Due to (2.1), (2.2), (2.5) and the assumption on 7 one

obtains
(2 6) IFN(z) - y5|2 + a|z - Pnz*lz < |FN(Pn$0) - y6|2 + a|Pn$0 - Pn:z:ml2 +7
' < O(a + 7242 + 6" + e) + alzo — 2",

and hence

|2 — 20| < |2 Paz®|+|Paz” — 20| < %O('ﬁ-{-'yn’yn-{-é-{-e}v)-{-anz'—z'|+2|zo—z"|.
Since a ~ max(8, Y2, Yn¥n,en) it follows that z € B,(zo) for all n, N sufficiently large
and §é sufficiently small.

These estimates conclude the verification of the claim at the beginning of the proof.
Using the fact that |a|? — |b|? = 2(a,a — b) — |a — b|? for all a,b € X one deduces from
(2.6) that

[FN(2) — ys|* + a|Pazo — 2> < O(¥4 + 72742 + 6% + %)

(2.7) N
+ 2a(Ppzo — Ppz®, Pazo — 2),
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which further implies the estimate
[PN(2) — ys|* + alz — zo[* < O35 + 7575 + 6% + €X) + ol Pazo — z0[?
(2.8) + 2a(zo — 2%, Przo — 2)
= O(p) + 2a(z0 — 2", Pazo — 2),

with p = 74 + 292 + 6% + €% + a¥%. For the next estimate one employs (H3):

2.9) |[FN(2) — ys|? + alz — z0]® < O(p) + 2a(w, F'(z0)*(Pazo — 2o + z0 — 2))
' = 0(p) + 2a|w|vn¥n + 2a(w, F'(20)" (20 — 2)).

Due to (H2) and the fact that z € By(x0) for all n, N sufficiently large, one can use
Taylor’s theorem to obtain p, satisfying
F(Z) = F(l’o) + F’(:Co)(z — 110) + p:
with 1
lpal < SLIz — o,
and hence from (2.9)
10 VN =l ol soft < 0(p) + 2alulgain + 20(w, Flso) = F(2) + o)
' = 0(p) + 2alw|ynin + 2alw]é + 2alw|lys — F(2)| + aLlw| |z — zol?,
from which it follows that
|FY(2) = ys]* + (1 = Llw|)lz — zo|”
(2.11) < O(p + atuin + ab) + 2afu] lys — ¥ (2)] + 2alulen
= O(p + aYnin + @b + aen) + 2afw| [FV(2) — ys).

From (H4) and (2.11) with the second term on the left hand side eliminated one obtains

(2.12) |FN(2) — ys| < O(VP + Vavadn + Vab + Jagn) + 2alw],
and (2.11) together with (2.12) and (H4) imply

|z — zo]® < O(§ + Yndn + 0+ €4) + O(V/p + Vavndn + Vad + Jaen + a)
= O('?,Zl +7n:?n +5+EN)

This gives the desired estimate.

REMARKS:
(i) In applications, ¥, in (H5) will converge to zero with a certain rate if a—priori
smoothness properties of z¢ are known [KW]. (H5) can be replaced by a requirement
on the estimator z*. In fact, assume that

(H5’) 2% = Poz™[ = O(n)
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and that (H3) holds. Then the following estimate can be used to replace (H5) [N]:
|2 — Pazo| = |2* — Pax® + (I — P)F'(20)*w| < O(Fn) + O(7n)-

(1) If it is known from other considerations as for instance from Proposition 1 that

:ci’"i,’N — zg, then (H2) and (H6) need only to hold in some neighborhood of z.

(iii) As a consequence of Theorem 2 it follows that if z¢ is not unique as an z*-MNS of
(1.1), that there can only exist one such z*-MNS which satisfies the hypotheses of
this theorem.

(iv) If F is twice continuously differentiable then (H2) and (H4) can be replaced by

1
(H8)  2{w, /(1 — t)F"[z0 + t(z — 20))(2 — z9)%dt) < plz — z0]?, with p < 1.
0
The hypotheses (H2) and (H4) where used twice in the proof of Theorem 2. To estimate

T, one uses a version of the mean value theorem to establish the existence of 7, € [0, 1]
such that

1
Tn S EIF”(IO + Tn(anO - 30))(Pn$0 - 30)2|-

Since limn o0 PnZg = 2o and since F'" is bounded in a neighborhood of =g there exists
L such that r, < L|z¢g — Pnzo|%. Secondly, due to (H4’) the term 2{w, p.} in (2.10) can
be bounded by p|z — z¢]? and in the remaining estimates L|w| < 1 is replaced by § < 1.

3. NUMERICAL EXAMPLES

We shall illustrate Theorem 2 by considering the illposed problem of estimating the
diffusion coefficient a € H!(0,1),a > v > 0in

(3.1) (aug)e +cu=f in (0,1),
u(0) =u(1)=0

from noisy data ys; € L%(0,1) here it is assumed that f € L?(0,1) and ¢ € L?(0,1),
¢ > 0 a.e. It is assumed that the unperturbed measurement yg is attainable, i.e. that
there exists a € H!(0,1), @ > v such that u(a) = yo. To realize this parameter
estimation problem as a special case of the general theory one defines the operator F
by F': D(F) = {a€ H'(0,1):a > v} — L%*(0,1), with

F(a) = u(a),
where u(a) denotes the solution of (3.1) and puts X = H!(0,1) and ¥ = L?%(0,1).
It 1s not hard to argue that F' is continuous, weakly sequentially closed and twice

continuously differentiable. (See [EKN,N] for details and references). Henceforth we fix
an estimator a* and an a*-MNS ag with ag > v so that ag € int D(F). To discuss (H3)
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one introduces the Neumann operator B : D(B) = {¢ € H%(0,1) : ¢'(0) = ¢'(1)
0} — L%(0,1) defined by By = —p; + . Condition (H3) takes the form
ag — a* = =B uz(ag)(A(a0)'w)z),

for some w € L2(0,1), where for a € D(F), A(a) : H} N H? — L? is given by A(a)u
—(augz)z + cu. Such an element w exists if ag — a* € H3 N D(B) and B(a* — ag)
uz(ao)(A(ag)*w); or equivalently

I

- / B(a” — a) 2 1
(3.2) W= u2(a0) (s)ds € H* N Hy,
and it 1s given by
(3.3) w = A(ag)®.

As described at the end of the previous section (H2), (H4) can be replaced by (H4’). In
[EKN] it was shown that (H4’) is satisfied provided that

25 - _
(3.4) 3”1‘1(&0) leqer wenmy @] L2 lu(ao) 1z < 1.

Finally it is simple to check that F'(ag) is compact. Thus all hypotheses that do not
involve discretization are satisfied if (3.2) - (3.4) hold. To turn to the discretization
of this infinite dimensional nonlinear inverse problem let S, = {2}%, be a sequence
of uniform grids on {0,1], with n = 1,2,.... We shall discretize the coefficient— and
the statespace of (3.1) over the same grid and we shall use n = N. Let X, C H' and
Y, € H} N H? denote the canonical spaces of linear— respectively cubic B-splines with
respect to the grid S, [BK, Appendix], where the cubic B-splines are modified so as to
satisfy the boundary conditions. For a € D(F) let F*(a) = u™(a) denote the Galerkin
approximation to (3.1), i.e

(auz,vz) + (cu™(a),v™) = (f,0") forall o" €Y,

where (-,-) denotes the inner product in L. Finally let P, : H!(0,1) — X, denote
the orthogonal projections. From wellknown approximation properties of X, and Y, it
follows that limy—co Paa = a for all a € H*(0,1) and that v, = O(%). It is simple to
check that a = FN(a) = uM(a) is continuous for a € D(F). Moreover for ap € H*(0,1)
or a* € H%(0,1) as will be assumed henceforth we have ¥, = O(%). With standard
Galerkin techniques one can show that €, = O(Z;). Hence (H5), respectively (H5’ ) and
(H6) are satisfied. Thus the best rate that we can obtain with our estimates is O(%), if
n = 0O(3) and a ~ § = O(Z;). For the numerical results to be presented below X, and
Y, are chosen as explained above. If Y,, was replaced by linear splines on the same grid
then the overall convergence would again be O() if @ ~ § = O(75) and n = O(3%
As a specific numerical example we considered the estimation of a in (3.1) where

ap =1 +sinnz, u(ag) =sin2wrz, c =1,

f = —(asu(ao)z)r + u(ag) = 27%(2(1 + sin vz)sin 27z — cos 7z cos 27z) + sin 27 z.
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For this choice of f and u(ag), ag¢ is the unique element in H'(0,1) satisfying u(a) =
u(ag). One can show that a function w satisfying (3.2), (3.3) exists, provided that the
cstimator a* has the form

a*(A k) =ap + Aw, where A€R and
(3.5) cos((2 — k)mz cos((2 + k)mz)

YT o0+ @r - kn)2) T 21 + (27 + kn)?)

The perturbed data where generated in the following manner
2= Pu(ag) + 6 ZriB,-",
1=0

where § characterizes the error level, r; are uniformly distributed random numbers in
[-1,1], B? are the basis functions for ¥, and P™ denotes the orthogonal projection
of L*(0,1) onto Y, in L*(0,1). The finite dimensional problems were solved with the
Levenberg-Marquardt alg)orithm that is available in the IMSL-library, and the solutions
are denoted by a,, = ai((';)’n. We did not attempt to estimate the numerical error n(n)
involved in solving (P). In all plots except for the last one, the abscissa gives the values
for Inn and the ordinate those for In |ag — an|y1. Thus in the casc where one expects
O(%) respectively O( \/%T) convergence, the values for In Jag —a,] should lie approximately

on a line with slope —1 respectively — % Due to the fact that different random numbers
are involved in defining the perturbed observations ys(n), one cannot expect that the
values for In |ag — an| g lie on a perfectly straight line. The finite dimensional problems
were solved for the values n = 6,8, ..., 36.

In Plots 1 and 2 we give the results for a(n) = g with § = 0 and 6§ = 10a
respectively. In each case the estimator was chosen according to (3.5) with A = =50,
k = 3, so that in particular (H3) is satisfied. The expected and observed error rate is
O(\%—l) in either case. In Plot 3 the results are given for a(n) = ﬁ and 6 = 10«a, with
the estimator a® now changed to be the function with constant value 1.5. The error
rate 1s now much lower than O(ﬁ)

For Plot 4 we took a(n) = t55—, § = 100a, and the estimator was chosen according
to (3.5) with A = —50, k = 3. The expected and observed rate is O(+). If the estimator
is replaced by a* = 2 — z, while the other specifications remain fixed, then the rate

of convergence is much lower than O(ﬁ), see Plot 5. For Plot 6 we repeated this

calculation with a(n) = soéﬁ’ 6 = 100a, and used iterative estimator improvement, 1.e.
starting with the estimator a* = 2 — z for n = 6, we used as estimator for n = 8,10, ...
the result a,_; obtained in the previous step. For this procedure the convergence rate
is again O(}). In the last plot the solid line shows ao and the dotted line gives the
result a;g with the other specifications corresponding to those of Plot 4.
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This paper deals with the selection of an initial distribution in the first boundary-value
problem for the heat equation in a given domain [0,0] x €2, § < co with zero values on its
boundary S so that the deviation of the respective solution from a given distribution would
not exceed a preassigned value 7 > 0. The result is formulated here in terms of the “theory of
guaranteed estimation” for noninvertible evolutionary systems. It also allows an interpreta-
tion in terms of regularization methods for ill-posed inverse problems and in particular, in

terms of the quasiinvertibility techniques of J.-L. Lions and R. Lattes.

1. The Problem.

Assume 2 to be a compact domain in R™ with a smooth boundary S; # > 0, v > 0 to be
given numbers, functions y(t,z), z(z)(R x R™ — R1), (R™ — R!) to be given and such that
y() € Ly((0,6] x 9), 2(*) € Ly(0).

Denote u = u(t,z; w(-)) to be the solution to the boundary value problem

%’ti—Au—o 0<t<y, (1)
jo,61xs =0
tly=o = w(),
Also denote
0
J(w( :azl)'ifl(u(tz w(-)) — y(t,z))%dzdt + (2)
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+ ﬂg (u(0,2; w()) — 2())%dz

with a > 0, 8> 0.
Consider the following problem: among the possible initial distributions w(-)eL,({1)

specify a distribution w%(-) that ensures
J(w'()) < 7. (3)

The latter is an inverse problem [1]. With a =0 it was studied by J.-L. Lions and R.
Lattes within the framework of the method of “quasiinvertibility” [2]. Numerical stability

was ensured in this approach.

Let us now transform the previous problem into the following: among the distributions
w(-) € Ly(f2) determine the set W'(-) = {w'(-)} of all those distributions w"(-) that yicld the

tnequality
Jw () <7

Assuming that the problem is solvable (W‘(-) # ¢) we may describe its solution in terms
of the theory of “guaranteed observation” [3]. Namely, assume y(¢,z), z(z) to be the available

measurements of the process (1), so that
y(t,2) = u(t,5; w()) + E(t,2) (1)
z(z) = u(8,z; w(-)) + o(z)
0<t<8 z€2

where £(t,z), o(z) stand for the measurement noise which is unknown in advance but bounded

by the restriction
4
af [ &(t,z) dzdt + B [ o*(z)dz < . (5)
U ¢4

Then W‘(-) will be precisely the set of all initial states of system (1) consistent with
measurements y(t,z), z(z) (4) and with restriction (5).

The aim of this paper will be to describe some stable schemes of calculating the sets
W‘(-) and their specific elements. (A direct calculation of these may obviously lead to

unstable numerical procedures.)
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2. The Regularizing Problem (A General Solution)

Consider a rather general problem. Assume the values &, o, w to be unknown in advance

while satisfying a joint quadratic constraint

[}
(w(:), Ne)w(-)) + ,(l; (£(t)), M(e)€(t,))dt (6)

+ B (o(-), K(e)o(-)) S v+ he, A >0,

Here N(c), M(e), K(¢) are nonnegative self-adjoint operators from L,(f2) into itself
(with N(e) invertible) and such that each of them depends on a small parameter ¢>0. The
symbol (-,-) denotes a scalar product in Ly((1).

An informational set W,(-) of distributions w(-) consistent with measurements y and z
will be defined as the variety of those and only those functions w(:) € L,(R) for each of which
there exists such a pair £(-,-) € £4([0,0] x ) and o(-) € L£4(0N) that equalities (1), (4) would
be fulfilled together with the inequality (6).

Lemma 2.1. The informational set W,(-) consists of all those functions w(-) € L,(0) that

satisfy the inequality
(w(-) = w(), B(e)(w(’) = w(1))) <7+ he — &7 (7)
where
B(e) = N(e) + U'M(e)U + UgK(e) Uy,

wd(-) = B~Ye)(U M(e)y(-) + UgK(e)2())
8
k2= (2(), K(e)2(-)) + { (9(t,), M(e)y(t,))dt

(Uw(-))(t,2) = u(t,z; w()) , (Ugw())(z) = u(8,z; w(’)) ;
U: Lg() — L5([0,6] x Q); Ug: L2(Q) — L4(D)

and where U stands Jor the respective adjoint operator.
It is further assumed that A, is such that W,(-) is nonvoid.

If there exists an €y > 0 such that

J(wg () — inf {J(w()) | w() € Ly(2)}
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with € — ¢

then the problem of estimating the distributions w(-) due to the system (1), (4), (6) will be
further referred to as the regularizing problem for problem (1), (3).

3. Quasiinvertibility

With a = 0 in equation (2) we arrive at the problem investigated in [2] by means of the
quastinvertibility techniques. Following the latter consider an auxiliary boundary-value prob-
lem

av
at

S~ AV,-eAW,=0, 0<t <8, (e>0)

Velo,gjxs = AVeljo,g)xs =0
Velizg = 2(-) -
Then taking
we(’) = V(o) )
we come to

Hw()) =0 (¢ —0).

The following question does arise: is it possible to select the operators N(g), M(¢e), K(e)
that define the quadratic constraint (6) in such a way that the center wl(+) of the informa-

tional ellipsoid W,(-) would coincide with the solution V,(0,:) of Lions and Lattes?

Assume 0 < A} <Ay < «-- < A; - to be the eigenvalues and {,(-)} to be the respec-
tive complete system of orthonormal eigenfunctions in the first boundary-value problem for

the operator A = —A in the domain 1.

Assume

Y]
€

(mwm=§u— Ywipi(-) ©

(k@a)() = 3} « 7 o)

with w; (respectively o, z;) being the Fourier coefficients for the expansion of functions w(-)

(respectively o(+), 2(-)) in a series along the system of functions {y,(-)}.
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Theorem 3.1. Assume a =0 and operators N(g), M(e), K(e) of inequality (6) to be
defined as in (9) with M(e) = 0. Then for all € > O the center wO(-) of the ellipsoid W,(-) (7)
will coincide with the “Lions - Lattes” solution w,(-) (8). Namely

wl(") = () = V,(0,)

and wQ(-) will be represented as
XD (—er+A,)8
wg() = 35 TN M ).
=

The next theorem indicates that an appropriate selection of the operators N(g), K(¢) in

(6) (with M(e) = 0) would allow to approximate the set

*

W) = (' () <1
with respective informational sets W,(-).

Theorem 3.2. Assume a =0, =1, € >0, v >0 and the operators N(c), M(e), K(e)
of inequality (6) to be defined as

(N(e)w)() = (N, w)() =

(eTHEPAITINE o m I (),

o8

(K(9)() = (Keo)) = & ¢« owoi(),

Then with h, = O there ezists a pair g > 0, vg > 0 such that with € < gg, v < vy the respective
informational ellipsoidal set W,(-) = W, ,(-) # ¢. Its centers wg_,, converge:

lm wl, = w,() (v—0)

and

*

lim W, ()= W () (¢—0,v—0)

in the sense of Kuratowski [{].
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4. Extremality and the General Regularization Scheme

Consider the minimization process for the functional (2). With o = 0 a numerically
stable scheme for calculating inf J is ensured by the quasiinvertibility method discussed above.
We will now proceed with the construction of a respective algorithm for the general case, par-

ticularly for § > 0.

Theorem {.1. The value

0 00
inf J = a [ ly()I dt + BlzC)I = 3, vilori + 5 e M),
wl- 0 h

1=1

where
-‘2).’0 -1
v; = 2X,[27;8 e A8 + g(l_Z—;—)-
%
yi(t), p; are the Fourier coefficients for y(t,"), p(-),

p(z) = [ u(t,z;y(¢,2))dt

O%— @

y(t) = {yl(t))'“)yk(t)r“'} ]

18 a sequence in £5. The sequence

vila e g+ B EN T 0010 (10)

8

1l
A

w(-) =
minimizes J(w(-)) withe — 0.
Theorem {.2. Suppose 8 =0. Then for w.(-) of (10) we will have

we(#) = ~2(au(ezp() + 3 Au(Ekzip()))

and consequently

Hw. () — ;}r(lti Jw(-)) with € 0.

Remark 4.1. Once there exists a distribution w(-) € Ly(02) that ensures the equalities
y(t,z) = u(t,zw())

2(z) = u(8,z;w(-))
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the value

int J(u()) =0.

The next question is whether the functions w,(-) of (10) could serve as centers of some
“informational ellipsoids” W, that would correspond to an appropriate selection of operators
N(g), M(g), K() in the restriction (6). The answer is affirmative and is given by the follow-
ing theorem.

Theorem 4.3. Suppose the restriction (6) is defined through the operators

TN (1~ P g (Dpy(a) (11)

8

(M(e)€) () =2

1
—

with N(e), K(€) being the same as in (9). Then the center w2(-) of the respective informational
domain W, for equation (1) under restriction (6), (9), (11) will coincide with the distribution
given by formula (10): w2(-) = w,().

Remark {.2. Define a minmaz estimate w® for a bounded convex set W as its Chebyshev
center:
sup{[|w® — w|| | w € W} = min sup {||z - w|| | we W} .
€W
Then once W is an ellipsoid its Chebyshev center w® will coincide with its formal center. For
an arbitrary bounded informational set that may appear in nonlinear nonconvex problems its

Chebyshev center may be taken as a natural “guaranteed estimate” for the unknown parame-

ler w.

5. Other Regularizing Procedures

Consider a = 0. (a) Another regularizing procedure may be designed through the solu-

tion v,(t,z} to the following problem:
a
E("s_eA”e)—A"g:O, 0<t<#
Ve llogjxs = 05 e le=g = 2(")

so that

we(') = ve(o!') . (12)
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The system (12) was introduced in paper [5]. The function w.(-} = v_(0,:) will be the

center of the respective informational ellipsoid consistent with measurement 2(-) if we assume

(N(e)w)(") § c~,\ (1 —e(l + e,\,.)—x,\?o)w’_‘o'_(_)

-
—

(K(e)o)() = "f;l ST ) M(e) =0

Here the center of the ellipsoid is defined in a formal way, through formula (7). The ellipsoid

itself is however unbounded.

(b) With 2(-) given, assume that there exists a solution to equation
Ugw(:) = ()
Consider the constraint (6) with
(N(Ew)() = n,u(), (K(&)a)(:) = keal?) , M(e) =0

where n, > 0, k. > 0 are real numbers.

Then with n, = €2, k, = 1 the center w2(-) of the respective ellipsoid W,(-)} will coincide

with the quasisolution (in the sense of V.K. Ivanov (6]} to the equation
Ugu() = 2(-)
on the set

= {w() [ o)l < w21}, i

wl() = arg min || Upw() - 2()Il , w() €M .

£

(c) Assuming n, =1, k, = €2 the function wQ(-) will be an approximate solution to the

cquation
Ugw() = 2(-)
by the “bias method” with bias
d(Ugu(-),2(")) = J(w(")) -
So that

wl(-) would solve the problem
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min {||lw(-)]| : d(Ugw("), 2()) < J(w2(-))}

In both cases (b), (c) we observe that J(w2(-)) — 0 with e — 0.

6. A Continuity Theorem

Taking the solution (10) present it as a linear maping
w() = Fz(y('r')’z('))

from L,([0,0]xQ) x Ly(01) into L4(£2).

Suppose
ys(t,z) = u(t,z; w'(-)) + &x(t,2)
25(z) = u(0,5; w'()) + o5(z)
where

N6sCo )l < 61, llos( )l < 825 61,62 >0

Theorem 6.1. The mapping F, is uniformly continuous in Ly([0,0]xQ) x Ly(Q1). The fol-

lowing estimate 1s truc

£
1Byt 500) w0l < |Rle0) + e + aze“], R(ew’()

é
With €—0, (8 /Ve)— 0, (8 et) -0, there 18 a strong convergence

Fo(ys(-)s 25())) — w,(')-
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EXPONENTIAL STABILIZATION, VIA RICCATI OPERATOR, OF HYPERBOLIC SYSTEMS
WITH UNCONTROLLED, UNBOUNDED PERTURBATIONS

I Lasiccka”
Department of Applied Mathematics

University of Virginia
Charlottesville, VA 22903

1. Introduction

Let A be a generator of a s.c. semigroup ¢ on a Hilbert space H with domain D(A). Let
[D(A)]’ denote the dual (pivotal) space to D(A) with respect to the H-inner product. D(A) is
equipped, as usual, with a graph norm topology and [D(A)]” is equipped with a norm given by

Ml by = [[A* = Ag)! ul where Ao € p (A"). Without loss of generality, we shall assume

We shall introduce the following operators:
(1.1) The linear (generally unbounded on H) operators

B; € £(U; - [D(AH]"); i = 1, 2 where U; denote another Hilbert space. The operators B; are
required to satisfy

(11-1) (i) For some T > O there exists constant Ct such that

T
[ 1ByeAx 12 di<Cr 1x12; xe DA™,
) Uy H

(ii) D(B3) c D).

(1.2) The nonlinear, continuously Frechet differentiable operator
G: H—> U; such that

(FH.2) G(0)=0; G'(0)=0
where G’(y) stands for the Frechet derivative of G(y).

(1.3) The linear densely defined operator
F: H— Uy suchthat D(A) < D(F).

Consider the following abstract model

cscarch partially supported by the NSF Grant DMS-8301668 and by the AFOSR Grant AFOSR 89-0511.
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v, = Ay + B, G(y) + B,Fy on [D(A"))
49 Yy0)=yp e H.

The main goal of this paper can be formulated as follows: given the operators A, By, find the
operator F such that the system described by (1.4) is locally exponentially stable for all nonlinear
perturbations G subject to the condition (H-2). More precisely, we seek a stabilizing feedback F
(depending only on A and B) such that the solutions y(t) of (1.4) corresponding to the initial data
yo € B(0, R) (where B(0, R) denotes a ball in H with a radius R) decay exponentially to zero for all
perturbations G taken from the class described by (H-2).

It should be noted that the main technical difficulties of this problem stem from the fact that
the operators B; are generally unbounded from H — U;. Indeed, in the case of ordinary differential
equations or more generally, abstract differential equations with input operators B; bounded (from
H — U, ), it is well known that any operator F stabilizing the linear part of the system, will produce
local exponential stability of the nonlinearly perturbed system. This is not the case when the input
operators B; are unbounded and A is a generator at an arbitrary Cy semigroup. In fact, it is known
[sec [L-T.1], [T.1] that the presence of unbounded perturbation B; G(y) (even if G is linear) may
destroy the generation of the feedback semigroup, let-alone the exponential stability. Thus, the
addition of unbounded nonlinear perturbation B; G(y) to the wellposed, stable system may, in gen-
cral, destroy the desirable properties of the dynamics. In order to obtain the sought after stability
results, special care must be given to the selection of the operator F. In this paper, we shall prove
that under some additional restrictions placed on the system, the sought after stabilizing feedback F
can be constructed via the solution to the Algebraic Riccati Equation. We shall establish that for
this class of systems, the lincar feedbacks given by the Riccati operator produce a robust stabiliza-
tion in presence of uncontrolled nonlinear and unbounded perturbations.

We remark that our abstract model (1.4) incorporating nonlinear unbounded perturbation is
motivated by several applications, (described in section 4) arising in control problems for the platc
and wave equations with nonlinearly perturbed boundary conditions. Here, the effect of uncon-
trolled nonlinearities on the boundary is inherently unbounded and must be described by the
unbounded operators B;.

The outline of the paper is as follows. In section 2, we first recall some recent pertinent results
on solvability of Riccati Equations with unbounded coefficients and then we shall formulate our
main abstract theorem. The proof of the Main Theorem is relegated to scction 3. Section 4 is
devoted to concrete applications of our abstract results. As an example, we prove local exponential
stabilizability of a Kirchhoff plate with nonlinear perturbations on the boundary.

2. Statement of the results

In order to formulate our results we need to introduce the following Algebraic Riccati Equation
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(ARE) (PAX,y) +(A"Px,y), +(x ), =(B3Px, Bz Py); X ye D(A)

If B; € (U3, H) and the pair (A, Bj) is controllable or stabilizable, then the standard result Isce

[B-1] )is that there exists positive selfadjoint solutions to (ARE). Recently, the above result has
been extended to the case when the operator B, is unbounded, but subject to the hypothesis (H-1).
In fact, the following result is available.

Theorem 1.1 [F-L-T]

Assume that the operator B, satisfies (H-1)(i). Assume moreover that the following "Finite
Cost Condition" is satisfied

(F.C.0O)
Forany yg € H, 3ue L, [0, e ; U] such that

Ju, y)= [ tymi? + )u(t)llzjdt<oo
0 H

where y(u) satisfies

yi=Ay+Bayu; y(0)=yo € H.

Then:
(i) There exists solution P € £ (H) to (ARE) such that P 2 0; P = P*, Moreover P enjoys the fol-
lowing regularity properties

(1.5) Pe L(D(A), D(A;)) where
Ap=A-B, B; P is a generator at a s.c.semigroup e* onH.
(1.6) Pe LD(A), DA") A L (D(A), D(A})

(1.7) B3 Pe L(D(A), Up) N L(D(A,); Uy).

(ii) the solution P is unique within the class of linear operators P € L(H) such that
B; Pe L(D(A,); Up) M L(D(A); Uyp)
(ii1) cA"l is exponentially stable on Hi.e:
lefet) <Ce™" for some wy>0.
LH)

Remark:

Notice that the above theorem, while it provides the existence of a bounded Riccati operator P,
does not state that the gain operator B; P is bounded (in contrast with the classical results). This is
a distinctive feature of the problem under study. We shall see later that, in general, when the opera-
tor B, is unbounded, the gain operator must remain unbounded.
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Before we formulate our result we recall the following definitions.
Definition 2.1 the pair (A,B) is stabilizable on a Hilbert space H iff: there exist an operator F: H —
U, with D(F) D D(A) such that Ag = A + BF generates a s.c and exponentially stable semigroup on
Hi.e: there exist constant C > 0; @ > 0 such that

leArt| <Ce™t>0.
4H)

Definition 2.2 the pair (A, B) is exactly controllable on a Hilbert space H for some Ty > 0 iff for any
T

xt € H there exists ue Ly (0,T; U) such that J'eA(r“) B u(t)dt=xr. The necessary and
0

sufficient condition is that the following inequality holds:
To
* AN, (2 2
g IB” e 'x |Udt2CT0 leH

Definition 2.3
System (1.4) is locally exponentially stable iff: given A, B and F subject to (H-1), (1.3), there exist

constants C > 0; @ > 0 such that solutions y of (1.4) with ||yg ||H <R and with any perturbation G
subject to the condition (H-2) satisfy

—wl .
Iyl < Cellyoll, ;>0

Now we are ready to formulate the main result of the paper.

Main Theorem

With reference to the system (1.4) assume that the hypothesis (H-1) and (H-2) are satisfied.
Assume moreover that the pair
(1.8) (A, B,) is either stabilizable or exactly controllable for some Ty > 0.
(19) (A", Dis exactly controllable on H for some Ty > 0.

Then the solutions y of (1.4) with the feedback operator, F given by
Fy=-B; Py
(where P is the solution to (ARE)), are locally exponentially stable on H W

Since in the case of a unitary group, the condition (1.9) is automatically satisfied we obtain

Collorary:

Assume that A generates an unitary group, the hypothesis (H-1) and (H-2) are satisfied and that
(1.8) hold. Then the assertion of the Main Theorem holds true.
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3. Proof of Main Theorem

The following two results will be crucially used in the proof of the Main Theorem.

Theorem 31. [L.1]

With reference to the system (1.4) we assume that the hypothesis (H-1), (1.3) and (H-2) are in
force. Moreover we assume that

(A-1) A+ B;F generates an exponentially stable semigroup on H.
(A2) (A+B, F)'! B, e £(Uj; H)
(A-3) There exist T>0; Cy >0 such that

[1B] A B2 drccp ixi? .
0 Ui H

Then the semilinear system (1.4) is locally exponentially stable on H.

Theorem 3.2 [F-L-T}

Assume the hypothesis of Theorem 1.1. In addition, assume that
(3.1) the pair (A' L) is controllable for some Tg > 0.
Then the solution P to (ARE) is an isomorphism and ple H).

At is a group.

Remark 3.1 Notice that (3.1) holds whenever e
Remark 3.2 If P! e £(H) then the gain operator B;P e L(H) iff B, € £{U,; H). Thus, in the case
of a group, the gain operator B;P must be unbounded if B, is unbounded. This fact should be con-
trasted with the case when ' generates an analytic semigroup and the resulting gain operator B*P
is bounded even if B is unbounded (see [L-T.1, [F.1]).

Going back to the proof of our result, we notice first that by virtue of (1.8), the (F.C.C) condi-
tions is automatically satisficd. Thus Theorem 1.1 yields the cxistence and uniqueness of the Ric-
cati operator P. By (1.7) of Theorem 1.1 we also have: B;P e L (D(A); Up), hence the fecedback
operator F defined by
(32) Fy=-B3Py
is densely defined on H, so (1.3) is verified. Therefore, the conclusion of our Main Theorem will
follow from Theorem 3.1 once we establish validity of the assumptions (A.1) - (A.3). As for
assumption (A.l) this, again, is a consequence of Theorem 1.1 part (iii). Indeed, by (3.2)
Ap=A+ByF=A~B, BjP=Ap.
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In order to establish (A.2) and (A.3) we shall need several supporting Lemmas and Proposi-

tions.

Let P be the solution of (ARE). Define
(3.3)D =Range Pl DeA)

By the assumption (1.9) and by Theorem 3.2 we have
(3.4)P: H — H is an isomorphism.

Now by density of D(A), we conclude that D is dense in H, and by (1.6) in Theorem 1.1 that D

c D(A}). We shall prove that D is dense in the topology of D(AD).
Proposition 3.1
(3.5) Disdense in D(A})

(3.6) P! satisfies the following "Dual Riccati Equation”.

(DRE) (AP x,y) + (A", Ply), + (P 'x, Ply), = (B5x, Bzy) forx, ycDcD(Ap).

Proof:

() proofof(3.5)

Letze D( A;) be such that
@37 d, z)D(A[.)) =0 forallde D.

We need to show that z = 0. (3.7) can be rewritten as (d, Ap Af; z)H =0and sinced € D,
3.7) (Px, Ap Ap* z)H =0 forallx e D(A).
Now, by (1.6) in Theorem 1.1 and by duality
Pe £(D(Ap)Y; D(AY), hence

P Ap Apze D(A) and

PAp Apze D(AY and

(3.8) A"™'PApApze H;

From (3.7")
(3.9) (Ax, A"'PAp Ap 2), =0 forallxe D(A).

Since the Range of A is dense in H, by combining (3.8) and (3.9) we conclude

A*'PAp Apz=0
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or cquivalently

PAp Apz=0.

By (3.4) wc know that P is injective on H. We shall show that P is also injective on a Jarger space;
[D(AD)Y. Indeed, it is enough to show that with any X € H

(3.10) PApx=0 = x=0.
But from the explicit representation formula for the Riccati operator (see [F-L-T]) we obtain

PApx=[ c**[I+2wP]e™® Apxdi=-A Px~(I+2wP)x onD(A); xe D(Ap)
0

where A=A —wl Ap=Ap—wl and w is selected such that 1A ![(H) <Ce™.

Thus

P Apx =~A" P x ~ (I+2wP)x on[D(A)]’

and P Apx = 0 implies that

(3.11) A"PX=—-%X-2wDx; and X D(A*P).

Rewriting (ARE) as

(Ap X, PY)+ (X, y)=— (A‘ Px, y)

and recalling that P! e £ (H) we obtain
* *
> < ; .
lA,le _C[leH + 1A leH] ;x€ D(A'P)
The above inequality shows that D(A*P) ¢ D(Ap). Combining with (3.11) we conclude the follow-
ng implication: x € Hand P Apx =0 => x € D(Ap). Thus if P Ap x = 0 then Ap x = 0 follows from
the injcctivity of P on H. Since ™ is an exponentially stable semigroup, 0 ¢ & (Ap), x must be

zero, proving (3.10). Thus P Ap Apz =0 implies that Ap z=0 and by invertibility at Af), z=0as
desired.

Proof of (3.6)

Let Xx=P! x and ¥ = P! where x, y € D. Then X, y € D(A) and applying (ARE) with above X, ¥

yiclds

AP PPy +(ATPPIX, Py + (P, Ply), =<Byx By y> X ye DcAp).
2

this yields (3.6).
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Next result asserts that Dual Riccati Equation holds on a larger space, namely DAD).
Lemma 3.1
The Dual Riccati Equation (DRE) is satisfied for all x, y e D (A;),

proof of Lemma 31. will follow through a sequence of Propositions.

Proposition 3.2
Pl e LD(Ap); D(A)).

proof
We shall use (DRE) with x,y € D. SinceDe D (A;)) we can write
(AP !k, Myt (IA* —PB, BJlx, P'ly)H + (P x, 1>'1y)H =0

or cquivalently

G.12) (APxy) +(Apx Ply) + @ 7'x, PTly) =0

By the result (3.5) of Proposition 3.1, for any x € D (Af)) we can take x, € Dand x, 9 x e D(A;)
where the convergence is in D(Af,) norm. Applying (3.12) with x = x,, yields

AP, 9, SIS 5ol 3+ Cli Iy < Cllxa e 1905y € B

where we have used (3.4). Thus

(3.13) JJAP!x, IIH <Cllx, | DAD)

Since A P71 is closed on H by (3.13) and by weak closedness of A P! (see [K.1]) we infer
(3.14) APlx, 5 AP 'x weaklyinHforxe D (A}).

Hence A P'x e H and by the Closed Graph Theorem
Pl e L(D(A); D(A) B

Proposition 3.3

B3 e £L(D(A}); Up)
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proof:
Setting x =y € D in (DRE) yields

12 < -1 1,2
B3 12, <IAP x| ], +1P7 I

by Proposition 3.2 and by 3.4
<Clixl

2
ooy Il X2 xe D

Now the above inequality can be extended by density (recall Proposition 3.1) to all D(Ap).
This completes the proof of the Proposition 3.3.

Proof of Lemma 3.1. The result of Lemma 3.1 follows now from (3.6) in Proposition 3.1 combined

with the results of Propositions 3.2 and Proposition 3.3.

Now, we are in a position to verify the assumptions (A.2) and (A.3) of Main Theorem.

Verification of (A.2)

From Proposition 3.3 we obtain

B3 (Ap)™" € L(H; Uy)
Hence by the duality
(3.15) Ap! By e £(Uy; H)
and (A.2) follows after noticing that with F given by (3.2)
(3.16) A+ByF=A-B,B; P=Ap.

Verification of (A.3)

In view of (H.1) (ii) and of (3.16) it is enough to prove

Lemma 3.2
B} A e L (H; L, (0,T; Uy)).

proof of Lemma 3.2

Notice first that bx the result of Proposition 3.3 B; M H o L, ((0,T); Uy) is densely defined (as
D(AS) = DB ).

Next, we shall prove that this operator is closed. Indeed, let us introduce the operator
J: Ly {0, T; U] = H given by
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T
(3.17) Ju=[ "B, u() dr.
0

By (3.15) and by standard results (see [K.1]) J is closed. Moreover, J is also densely defined. To
sce this, we take u e H' [0, T; U,] < C[0T; U,] and we compute

T T
(3.18) () =j c‘ijl A% AR By u() di=¢®* T A7l By u(T) - Ap' By u(0) - [ %' Ap! By i (1) dt.
0

All the terms on the RHS of (3.18) are bounded in H with u € H'[0T; U]. Thus H! [0T; U,) < D@)
and the density of D(J) follows from the density of H! [0T; U,] in L,[0T; U,]. Hence the operator
J defined by (3.17) is closed and densely defined. On the other hand it is immediate to verify that
7 =B3 eA"( ). Hence B>e AR ), :H > L, (OT; U,)) is closed and densely (on D (Ap)) defined, as

desired.
To complete the proof of the Lemma it is enough to establish the following inequality

T
* Apt_ 12 2., .
(3.19) (j)lee x 12 dtsClixll; xe D(Ap) .

Indeed, the assessment of the Lemma will follow from (3.19) and standard density argument

ot
(closedness of B; ¢ has been asserted above ).

proof of (3.19)

By the result of Lemma 3.1 we are in a position to apply (DRE) withx =y € D (Af;). This yields
(320) 2Re (AP 'x, %), + 1p! xlz =1IBj xlf}z ;. xeD(Ap)

Consider next

w(t) =™ x with x & D(Ap),

so w, € H and we have

w, =Apw=(A"-PB, By) w
G2 Ywoy=x.

We multiply both sides of equation (3.21) by P~lw, which by the virtue of Proposition 3.2, is in
D(A).

(W, 17-1w)H =(A"-PB, Byw, Plw)=(w, A P‘lw)H - 1Bywl ‘2]2 =

(integrating from 0 to T)
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T T
W(D), P w(D) - (%, P %), =2Re [ (w(), AP w(), dt=2 [ IBjw@I? di.
0 0 2

Applying (3.20) with x = w(t) € D(Ap) gives
T
(w(T), P“w(T))H - (x, P‘lx)H =—|p-1xlfl —g IByw(t) | f}z dt
and by (3.4)
T
g |13;w(t)|fJz sC[|x|i+ Iw(T)Ifl]SC lef{

which implies (3.19). &

To conclude, we have verified all the assumptions of Theorem (3.1) and consequently the con-
clusion of Theorem 3.1 is applicable. This proves the result claimed in Main Theorem. W

4. Applications

Kirchhoff plate with boundary feedback and boundary perturbations.

We consider on any smooth bounded Q c R?,

wy +A2w ~p Awy =0 in (0, ) xQ2=Q
w(0, - ) =wg; w(0, - )=wy inQ

“4.1) WIZ =0

Awlz = F(w(1), wi(1)) + G(w(t), w, (1))

with p > 0 and with boundary feedback F.
Here G: Ly(Q2) x Ly (2) — Ly (I') is Nemycki’s operator associated with a scalar function g, i.e.:
(42) Gy1, y2) ®=gn®x), y2(x)); xe (I

where g e C! (R x R) and it satisfies the following requirements

{(i) g0 =0; g'(0)=0;
4.3)

(ii) g is of a polynomial growth in the second variable.

The main goal of this subsection is to show that the results of Main Theorem are applicable to
the present context. We shall prove that the feedback operator F: L, () x L, (£2) given by

(4.4) F(w, w) = % AP, [\;"‘] .
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where the operator P = (P, P;) solves the appropriate Riccati Equation, provides for the system
(4.1), the sought after local exponential stability subject to an arbitrary perturbation g.

To accomplish our goal we need to put problem (4.1) into the abstract model (1.4).

We introduce the positive self-adjoint operator

Ah=A%h; DA =(he H‘(Q);hII_:AhlI_:O)

and define the operators; A = (I+p 4%)! 2

; Bu=[ho ]
ADu

where D: L, (I) - L, (Q) is the appropriate Green map

0 I

45 A= ~ 0

y=Dve (Aly=0 inQ; yl.=0; Ayl =v].
Now we set
H=[H? (@) HY (@] x Hp (@); Uy =Uz2 =Lz (O
Bl =B2 EB

G: H2(Q) x HY(Q) - L, () is given by (4.2).
We shall first verify the assumptions (1.1), (H-1) and (H-2).

Assumption (1.1)

Assumption (1.1) is equivalent showing

4.6) A'Be (U, H).

From (4.5) we readily obtain

0 -4

-1 gy =
A" Bu= | 7

and (4.6) holds true by the elliptic regularity:
De £(Lp (D H (@) HY (@) € LU H).

Assumption (H-1)

Part (ii) holds as B, =B, =B. As for part (i) one can show (see [F-L-T] Appendix C)
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« A% [X1] aA(D(t)
(4.7) B'eA? [xz] _Tir

where ®(t) solves the corresponding homogeneous problem:

du+AZ0-pAG, =0
(48) 00 =¢o=U+p A% xy; ¢y =— T+p A% A% x,

=90, _

Thus, by (4.8), an equivalent formulation of the assumption (H-1) (i) is the inequality

(49) é 18012 aZ<Cril do 2 g, +lor N o)1

It should be noted that inequality (4.9) does not follow from a priori regularity of the solution ¢. It
is an independent regularity result which holds indeed true see ([L-L], [L-T.3]) for any general
smooth Q. Thus assumption (H-1) holds true for the problem (4.1).

Assumption (H-2): By Sobolev’s Imbeddings: H? QcC (£_2) and H% O c LF (I for any p >
0. Since the trace operator y | r is bounded from H! () into H* (I"), the operator G given by (4.2)
is continuously Frechet differentiable from H? Q) x H' Q-L,yM. .

We verify next that the assumptions (1.8) and (1.9), leading to the solvability of Riccati Equa-

tion, arc satisfied as well.

Assumption (1.8): By the result of [L-T.3], the exact controllability of problem (4.1) holds true for
any T > 0 on the space H = [H? () ~ H} ()] x H§ (Q).

Assumption (1.9) is satisfied automatically since A is a group.

Thus all the assumptions of Main Theorem have been verified and we are in a position to state
the main result.

Theorem 4.1
Consider the system (4.1) with the feedback operator F: H? (Q) x H! Q) » L, (D) given by

F(w, w,) = - PN Py (w, W)l

an
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where P = (P, P;) is the solution to (ARE) with A and B as above. Then for any perturbations G
subject to (4.3), system (4.1) is locally exponentially stable in the topology of H? () x H! ().

Remark

Other dynamics, like wave equations or plate equations with uncontrolled nonlinear perturbations
on the boundary can be treated in a similar manner. Indeed, one can verify that for these systems
(sce [F-L-TJ) all abstract assumptions (H-1), (H-2), (A-1) - (A-3) are satisfied. Therefore, the con-
clusion of Main Theorem is applicable to yield the sought after stability results with Riccati feed-
back applicd on the boundary.
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SOME TWO-DIMENSIONAL BOUNDARY SHAPE OPTIMIZATION
PROBLEMS FOR DISTRIBUTED PARAMETER SYSTEMS

AY. Mednikov, V.A. Troitsky
Polytechnical Institute
Polytechnicheskaya, 29, Leningrad, USSR.

There are many investigations about boundary-shape optimization problems
(BSOP) and many analytical and numerical methods to solve them (Banichuk,
1970). This report deals with only four two-dimensional boundary-shape optimiza-
tion problems for elastic bodies: namely, the boundary-shape optimization prob-
lems for oscillating membrane, vibrating thin plates, and bending thin plates and
torsional prismatic bars. It is well known that many BSOP have multi-extremal
solutions. For this reason, we attempt to obtain and analyze the second variation.
At the same time we discuss numerical results which were derived by gradient al-
gorithms. Also the FEM and BEM algorithms for solving corresponding problems
are discussed.

Let us denote the boundary to be oplimized by I', the inner domain bounded
with contour ' by Q and the outer unit normal veclor by n as illusirated in
figure 1.

Figure 1:

(=4

Therefore we can write the variation of a double inlegral wilh wvariable
boundary as

a”F(R)dQ =” [aF +VF-5R] dQ +”F 5(dQ)
Q Q

Q

=”[6F + VF-8R]dQ + ”F V-8R dQ

Q Q
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=JJ6FdQ + JF n-8R dQ = JJGFdQ + JF én dQ
r Q r

Q
In these formulae the operator V is defined as V = i8/8x + j8/8y, also we
have denoted n-8R=8n, where 8R is the variation of the boundary I.

Shape optimization problem for oscillating membrane. The optimization
problem is to find the boundary contour that minimizes the first natural
frequency of membrane. The area of membrane is fixed (and equals to s*).
Therefore

S = J dQ = S°.
Q
If we use Reyleigh formula then we can write functional to minimize as

m=1 [(Vw)2dQ.
Q
We suppose the isoperimetric consiraint

= 1 240 =
T—EJJWdQ—l

Q
to take place. Here T and T are amplitude values of potential and kinetic
energies, w(x,y) - displacement of membrane points.
We are searching for the boundary contour of membrane that corresponds to
minimum of the first natural frequency.
The adjoint functional of this optimality problem is

3= %U;Vm“’m ¥ B[%Jiwi’dn-x] N ,Uidg _ S-]

where B and ¥y are the constant Lagrange multipliers. The first variation of
this functional can be transformed to

8y = -L[[v?w _ Bw]éwdmx[[y—% [g%]?]an dr.

We have used the condition w=0 on contour T.
In accordance with the first necessary condition of the calculus of

variations (rule of multipliers) this first variation must be equal to zero.
Therefore 83=0.

Ii we carry out usual variational transformations we obtain the equation
Vlw - Bw=0  in @,

- 13- 0onr
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As can be easily shown the circular boundary contour satisfies this equation.
The second variation of functional at the point of extremum can be
transformed to

82y = ”[(\7<5w)2 + B(Gw)Q]dQ.

This formula together with Reyleigh formula show that

3y =0
Therefore circular membrane has minimal first natural frequency of all the
membranes of the same area.

We consider {two problems from a variely of boundary optimization problems
for thin plates namely contour optimization for free {ransverse vibrations,
and boundary shape optimization for bending of a clamped plate.

Contour optimization for free transverse vibrations. The {unctlional in

this problem is the first natural frequency. If we use the Rayleigh formula
again we obtain the functional

n=%”[(1-v)\7\7w- VW + v(Aw)Q]d.Q
Q
and isoperimetric constraints

P uw240 =
T-z—”w dQ = 1,
Q

-+

Q

We again assume that the area of the plate is fixed. In these formulas w(x,y)
is the displacement of the middle surface points, v - the Poisson ratio, p -
the density of material, E — the Young modulus, and D=Eh3/12(1-v?) is the
rigidity of the plate.

The adjoint functional of this optimality problem is

3 =%”[(1-u)\7\7w- VVw + v(Aw)2]dQ + B[”w?dsz-1]+ W[Hdsz —s‘]
Q Q Q

where B and 7y are the constant Lagrange multipliers. The first variation of

this functional can be transformed to &y = -D”[AAW +gw]awd9 +
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+DJ[—n-VAw6w + n-((1-v)VWw + DAWE) - Vow +
T

o
» H(1-0)(VWw+ - TTw)so(Aw))an + 6(%Bw2+7)6n]dl',

where E is the plane unit tensor.

Here the first necessary condition of the calculus of variations 83=0 leads
to equations

R=nw-+fw=0 ing

T =0 on I

P

We consider the different boundary conditions now. For clamped boundary
contour we have equalities

w=0, =0 onr

consequently

6

6_w—6w+§%6n=0 -3— 63— 6n=0.

Here the asterisk marks the full variation. Therefore we have

6w=—g%6n=0and63—=—gn—5n0nr

and from equality TP=0 on I we oblain
2
- 6_ = % on I.
an?

It can be shown that the circular plate is oplimal. The second variation in
this case can be writien as

8% = D{”[(A(Sw)"’ N g(dw)2]d9 - J"’Q‘;[a?‘; + 2 32‘; k]anQdI’ .
Q

dn“ |8n dn
r

Boundary shape optimization for bending of a clamped plate. We shall
consider the second shape optimization problem of a thin plate as to minimize
the functional

E@Q) = ”(W(Q)—w 4)7do,
D

where W, € L? is the given function and the domains D and Q (DcQ) are
illustrated on figure 2.

e
Figure 2:
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We again assume that the area of the plate is fixed, i.e.

-+

Q
and also we consider thal the displacement of the middle surface points W(Q)
salisfies the equalities

W=1 in Q,

wW=0 , a——O onTl .

The adjoint functional of this optimality problem is

3 = ”(W(n)—wd)%o : ”p(AZW ~ g+ B(”dg sy
D Q Q

where the function p € Hg(Q) is the Lagrange mulliplier. The first variation
of this functional can be transformed to

3y = 2”6W(W(9)-w Jdo + JJAQp 3WdQ +

+J[ gOW _ 98p 5w + g ]5ndr.

r
Taking into account the boundary condition on a clamped edge we can write the
2
variations on contour T as oW = - W n, oW _ _ o7W
n dan an 2

Therefore the first variation of the adjoint functional may be obiained as

2
8y = 2”(A2p + 20, (W(R)-W,))aWde —J[Apa oW _ O4p oW B]andr
> dn 3n? an

where Xy is the characteristic function.
Once again, the first necessary condition of the calculus of variations &3=0
leads to equation

Aaw a—g onr.

where p € H2 0@ is the solution of the adjoint problem

% p+ 2xd(W(Q)-Wd) in Q,

p=0.g—r2l=0 on [

The second variation in the shape optimization problem that is discussed can
be wrilten as
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2 2 a%p 3w _ a%p 82
55:2”15de+J "W,
: d n?3n® 48nd an

where k is the curvature of the boundary. To obtain the last formulae we
implied the wusual double integral transformations and the property of
variations &w that is A%3W= 0.

Numerical solution of the optimization problem discussed is based on
gradient algorithm of order one. The value of the gradient of minimizing
functional is represented as

8y = - J[Apgf“g’ + B]Gndl",
r

2 2
Woadpd W]6n2dl",

where W € Hg(Q) and p € Hg(Q) are functions always introduced. Therefore at
each point we have to transform the designing boundary in the direction of
outer normal with respect to the value

2 2 2 2
5nz_a_gg—\;/+3, whereB=-Ja—qur/Jdr-
dn“ dn ran dn

Some numerical results are pictured on figure 3. To simplify the problem
the D-region was considered as a point.

Figure 3:

The left figure presents the case when énf {3) > 0, ie. the lower limit of
i

minimizing functional is larger than zero (absolute minimum). In this case

there is only one optimal solution that is the circular boundary. The right

figure represents the case when énf (53 = 0, i.e. the lower limit of
i

minimizing functional achieves the absolule minimum value that is equal to
zero. In this case the optimality problem has no one solution and each of them
is optimal. There the extra mass is in some way distributed into outer space.
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The model was discretized with only boundary elements. The analysis
(which was made by the authors) of BEM~ and FEM- algorithms due to plate
bending problem shows thalt BEM is more efficienl when the edge of plate is
clamped.

Torsion problem. Cross section of prismatic bar is shown in figure 4.

Figure 4:

Q @)

N

r =uI‘k, k=0,n

Contours T, k=T.n are fixed. Outer contour I') may be changed. Mass of bar
is fixed. Therefore

s [[en-s

Q
Here S is cross section area and S° - given value.

If we maximize geometrical torsion stiffness of bar, the functional can
be wrillen as

€= 2[ JiMQ + Z1Cksk]

where ®=®(x,y) is stress function of the torsion problem, S,- area bounded by
contour Fk, Ck - constant value such that

[c»]rk = C, k=T/m; [¢]r0 = 0.

For stress function ¢ we have equality

T = po¥P x k
Here 1.'=(1:x,1:y) is tangential stresses, « - torsional angle, V -
two-dimensional operator “nabla”, k - unit vector in z direction, g - shear
modulus.

The problem is expressed as finding the shape of outer boundary contour
FO to maximize geometrical rigidity, subject to constraint of fixed area.

Real stress state of bar gives minimum of additional work ¥, that is
given by
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n
1 2
v= EH[(w;) - 42]ae - 2) CS,
0 k=1
Geometrical rigidity is connectied with 1{he additional work by the

equality
€ = -2mgn V.

Using the variation calculus we have to compose the adjoint functional

ool

Here B is Lagrange multiplier. The first variation of these functional may be
obtained as

5y = + “%(v"o)? " B]andr - - ”[A% + 2]5<1>d§2 . J 9% sedr +
r Q r

Q o]

" Zn [ [6"’ 8C,dr - 225(: S, + “%(V%)? * B]éndf :
=1

k I-o

The formulas

1) om? _ (8972
50 - - P an, (V@)-[aﬁ] on I,

[+]

imply the equality

8y = —Jl[Aomz]a@dmZ] u[gi -25, ] 6C,dr- J[ [g%] -g)ondr.

k l"o
In accordance with the first necessary condition of functional minimum
(multipliers rule) this first variation must be equal o zero. Therefore 33=0.
Usual transiormations gives us Euler equation

AP = -2 in Q
conditions
P _ _
J a—n—kdl' =25, ., k=T n,
I-k
and equality

18 -8-0 onr,
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This equality determines optimal shape of contour T,

These results are well known. Qur way to achieve them is simpler.

If we have simply connected cross section then the last equality is
satisfied on circular boundary. The second variation of our functional can be
writlen as

8%y = 2” [(v x k)6<l>]2dQ.
Q
It is nonnegative. Therefore the geometric rigidity of circular section is
maximal.
For multiconnected section we have to use numerical method for solution
of optimality problem. The gradient of minimizing functional can be written as

8 = l[- [g%]'ﬂ B](SndI' :

o]
where function ¢ was already introduced. Therefore like in above section at
cach point we have to transform the designing boundary in the direction of
outer normal with respect to the value

oo = <[ 32 ).

where o € (0,1]. Constant value of B is defined of isoperimetric constraint as

8"= J(SndF:O, therefore B= —J[S%]2dr / JdI‘ - [g%]Q

cp.
r0 1"0 r0

When the condition

Jlén]drs £
r

o]
is satisfied the optimal problem considered to be solved.
The & function is obtained in a following form

n

O =D+ Z Co,
k=1

where functions <I>i, i=0, n are the solution of the problem as
A°¢>O = -2, A°<I>k =0 in Q, k=T Tn;

P

o 0 on I'k.

.= 8. on T, , k=T,n, i=T n.
i ik k

k=0, n;

P
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The unknown consiants C, (k=1.n) can be oblained from the equality

[t

i=1

that is transformed to the system of linear equations:

n
kz B,,C, =

=1
where

B, = Ja‘f:(dr . B, =25 - Jg%(:dl‘, k=T,7, i=T 7.
r r

We prefer the BEM algorithm because of some disadvantages of FEM:namely
the FEM requirement  of mesh regeneration on each  optimization step is not
accurate, and it computes slowly the design variables such as 9$/8n at boundary
points.

Discretization of a model was made by constant elements. Qur analysis shows
that it is simpler to achieve accuracy by increasing the number of constant elements
rather than by implying the linear elements.

The computation of geometrical stiffness

6 - | oo

Q

by BEM-algorithm may be overcome in the following way. Taking into account the
known formula

n

. oD 4 %" .
¢=2JJ¢do+Jﬁ¢dF—Z J o, 8arin g
k=1
Q r r,
where @ = — I"F is the fundamental solution of Laplace equation we may write

i Hmo - Ji[ zjicb-do Jdo + L[[ 32 0rar]eo

Having implied the usual double integral transformations we may obtain the
needed formulae as

G =2 [;.—n[ U [% [lnl?r%]gi + :%2 [lnl?rg]cos(no,r)]cos(n,r)d[‘] dr' +
rr

+ ZanSk ],
k=1

where n, denotes the ouler normal at current point of the external integral.

=]
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Several numerical results are illustrated in Figure 5. We observe the solution to
the optimal problem depends on the initial form of the designed boundary. The
results for the cross sections with one shaft are in accordance with the the same
results obtained by other authors.

Figure 5:

~~— ntial To

—oplimal T,

In conclusion, the analysis of the second variation applied to simple problems
confirms well-known results. At the same time all attempts to obtain and to
analyse the second variation in more complex problems were discharged because
of their hopelessness. Applying BEM to solve BSOPs is a good idea and has only
a few problems. It seems the FEM is, in general, more adequate because it is a
more universal tool of numerical analysis.
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INVERSE PROBLEM OF DYNAMICS FOR SYSTEMS
DESCRIBED BY PARABOLIC INEQUALITY

Yu.S. Osipov

Institute of Mathematics and Mechanics
of the Ural Scientific Center
Academy of Sciences of the USSR, Sverdlovsk

The considered problem is concerned with the following questions.

Let ¢ be the time variable. Consider an evolutional system I on an interval T = [¢(,0].
We are interested in some unknown characteristic §;(¢), t€T of the system (e.g., £; may be a
collection of some parameters of the system, or of some disturbances acting on the system or
of controls etc.). We are to reconstruct {;(¢) on the basis of measurements of some other
characteristic £,(t), teT of the system Z. The results of measurements ¢(t) are not precise,
the error being estimated by A.

The smaller h is, the more precise should be the reconstruction (in the appropriate
sense). This is the stability property of the reconstruction algorithm Dj,.

We consider two types of reconstruction problems. In the problems of the first type
(which we call problems of program reconstruction) the measurements ¢(t) are known for all
teT at once. Hence the input of the reconstruction algorithm is the function ¢(t), ¢y < ¢t < 0.
The output of Dy, is a function f{")(t), ty < t < 8 close (in a suitable sense) to the characteris-
tic £;(¢), ty < t < 0 for h small enough.

In problems of the second type (we call them problems of dynamical reconstruction) the
characteristic {; is to be restored simultaneously with the process of system motion. Here in
every current moment ¢ the input of the algorithm D, is the previous history
¢¢ = ¢i(+) = {¢(r), tyg < 7 < t} of the measurements ¢ made prior to the moment ¢. The output

of D), in the moment ¢ is a function
g4 = (M0, < r <y,
which approximates (in the proper sense) the characteristic

(), tg <7< t, for small h .

Here D, is to satisfy the property of physical realizability [2], [3]: if (), tg <r<t; and
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d2)(r), ty < 7 < t; are such that
d‘l) = d‘z), t+ < min {tl!tZ} ,

then the functions D,,g‘fl)(-), Dhgsz) are equal on [¢g,t+).

Below we consider a problem of the second type for a system described by a parabolic
inequality. We develop further the method for dealing with such kind of problems proposed in
(1-3]. The method is based on some ideas of positional control theory [14-17] and ill-posed
problems theory [18].

The present paper is connected with {1-13].

Let V and H be real Hilbert spaces, V" and H" be the spaces dual to V and H respec-
tively. We identify H with H". It is supposed that V C H is dense in H and is embedded
into H continuously. Denote by (-,-)g and |-|g ((-,-)v and |-]yy) the scalar product and the
corresponding norm in H (in V)

Let ¢t be the time variable, teT = {¢;,d]. Consider on T a control system L. The state of
the system is y(t)eV. The evolution of the state is given by the following conditions for
almost all te€ T the inequality holds ([19,20]):

(v(e), 9(t) — w)g + a(y(2), y(t)) + S(y(2)) — $(w) < (Bu(t) + f(t), w)g YweV (1.1)
and
y(to) = vo - (1.2)

Here a(w;,w,) is a continuous on V bilinear symmetrical form satisfying for some ¢; > O the

condition
a{ww) > ey|wl¥ ; (1.3)

¢:V—(—00,+00] is a convex proper lower semicontinuous function (or ¢:H—(—00,+00] is a
convex proper lower semicontinuous function satisfying the regularity condition [21,22];
B :U—H is a linear continuous operator, U is a uniformly convex real Banach space;
feL*(T;H); u(-) is a control, i.e. measureable on T function for almost all t€ T having values
in bounded closed convex set PCU; yoe{w€V : $(w) < +oo}. Under the above assumptions
in WH2(T;H) N L2(T;V) there exists a unique function y(t) = y(t;tg,y0,u(-)), tET, satisfying
(1.1), (1.2) (see [19-22]). We call it a motion of system X from the initial state yq correspond-

ing to control u(-).
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Consider the following problem of dynamical reconstruction. Let V = H}(Q) ( or
V =HY(2)), H=L%),U = L%Q),B be the identity operator (see notation in [19,20]).
Now in (1.1) we take

y(t) = y(t,-) = {y(t,z‘), :I:EQ} )
(t) = 0u(£,)/0t, u(t) = u(t,) -
Let the control u be of the form
u(t) = u(t,z) = xg(n(z) X w0(t,z) (1.4)

Here G(t) C (1 is such that the set {(¢,z): t€T, z€G(t)} is Lebesgue measureable; x is the

characteristic function of G; the function u? satisfies the inequality
0 < By < W(t,2) < By, teT, 20, (1.5)

where g, A, are positive numbers.

Let the measurement of the system state y,(t) = y,(¢,”) be possible in every current

moment ¢, the measurement result ¢(t) = ¢(¢,-) satisfying the estimation
k(t)') - yt(t;')lLi(ﬂ) S h. (1.6)

Suppose that the motion being ‘observed is generated by the unique control of the type (1.4),
(1.5)

u,(t,z) = XG_(:)"?(tﬂ:)y teT, zeql .
Consider the problem of dynamical reconstruction with
&(8) = {u.(8) 5 5.(8)}
5.(t) = {(n2) : r€tont), z€G.(1)}
§a(t) = y(ty) -

Remark 1.1. Let e.g., (1.1), (1.2) describe the process of diffusion of a substance in a
domain €1 and y(¢,’) be the concentration of substance in {1 in the moment t. Then we deal

with the reconstruction of intensity of the substance sources and their location (see {12]).

We proceed the following way (see [12, 13]). To the system X we put into correspon-

dence a control system £, (the model) which is a copy of Z.

(2(8), 2(t) ~ ) gy + a(2(2), 2(2) (17)
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—w) + ¢(2(t)) - d(w) < (v(t) + f(t),w)L,(n) YweV

z(tg) = yo -

The control v(-)EL?(T ; L*(1)) in the model is chosen for almost all t€T from convex
bounded closed set P which contains all the L?(1) functions of the form xp-g(z) where B C 0

is a measurable set, g(-) is a measurable function, g : 2 — [8,,6,].
Consider a partition r; of interval T,
o= <1< <1y =803
m = m(h), 8(h) = max;(r;,; — 1), 8(h) < ch, c = const > 0.

Take

v()=oB(t) = v, i<t <ryy, i=1,..m
where v; are (the unique) points of minimum of the functional

¥(p) = 2(2(r; ; to, ¥o, ¥(*)) — s(r), P)Lﬂ(n) + a(h)|P|Zﬂ(n) .
The function a(k) > 0; a(hk) — 0, k/a(h) — 0 as h — 0. Form the sct
S = [r;, 7iga) X {2€0 2 vi(z) 2w}, (1.8)

where u is some positive number 8; < u < 8,.

Denote

s = "J's

=0

where d(5,(9), S(h)) is the Lebesgue measure of the symmetric difference of sets S, s,

Theorem. If h — 0 then the following is valid

|v(h) - u

— 0

ol La(r;naay)

d(s(8), s(W) -~ o0.

Remark 1.2. Similar to [12] one can obtain an estimate of reconstruction accuracy.
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2. Consider an example. Let ¢ be a convex continuous function under the assumption of Sec-

tion 1. Then the system (1.1} is equivalent to the equation

%’tL = Ay + u + f(t,2), teT, zeNl, y|lr =0 (2.1)

Here A is an elliptic coercive operator

d

(4i(x) 5) = a(e)y, o = o, (22)

a;; € L™(0), g€ L=(Q) .
For (2.1) consider a concrete variant of reconstruction problem [12].
Let {3 be a two-dimensional domain
0<zi<8,0<z3<ty; f=0, ¢=0
and
Ay = a® - 3%y /3t + b - 3%y/3zd .

For the sake of simplicity we confine the considerations to the case of reconstruction of loca-

tion G(t), teT. Let it be known a priori that the control being restored satisfying the ine-
quality |u(t,-)|L,(n) < R.

A closed ball in L2(02) of radius R is taken as P. Then
v = [o(r) = 25 tovov())] / a(h) if
16(r2) = #(r; 5 toroo ()l ) < R-alh)
v = R{s(r) = 205 to,9ov (D] / 15(r2) — 25 5 toyor ()l gy » i
I6(r) = 2075 5 tor0,9())] gy > Real(h) .

For the considered variant of the problem the calculations were carried out for the fol-
lowing data
a?=042=01, ¢, =£4=10, t,=0, =1, R =100,
¥yo=0, By=0,=10, 6(k)=h, a(h)=Vh, h=0.1.

The motions of the dynamical system and the auxiliary model were calculated with the help of

an explicit difference scheme with constant time step r = §(h) and constant spatial steps 7,

and ~, in z; and z, respectively.
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The set G(t) is depicted in Fig. 1 and Figs. 2 and 3 show the resulls of reconstruction of
the set

G(t) = {(z,zg) : 0.01 < z; £9.99,2,(t,z;) < 29 < z3(t,24)},
where
zy(t,z;) = 3.5 + cos(0.5-z; — 5-t) + 0.3-cos(5-z; + t/h)-sin(3.2-z + t/h),
z4(t,z;) = 6.5 + cos(0.5-z; — 5-t) + 0.3-cos(10-z; + t/h)xsin(3.2:z; + t/h) ,
at the moments t = 0.5 , ¢ = 0.9 respectively for
71 =7, =10/16 .

The unknown set is reconstructed with the help of rectangles with centres in the mesh
nodes and sides 4, and 7, parallel to axes z;, z, respectively.
The author wishes to express gratitude to A.V. Kryazhimski, A.V. Kim, A.I. Korotki,

V.I. Maksimov for valuable discussions and assistance, and also to A.M. Ustyuzhanin for help

in computer simulation of the illustrative example.
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SENSITIVITY ANALYSIS OF SHALLOW SHELL WITH OBSTACLE

Murali Rao Jan Sokolowski

Department of Mathematics Systems Research Institute
University of Florida Polish Academy of Sciences
201 Walker Hall ul. Newelska 6
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1. INTRODUCTION

In the present paper we provide some new results on the sensitivity
analysis of variational inequalities. We shall consider the following

obstacle problem for shallow shell [K-1

Find an element w=(w,u,v>eKcH such that.
P = W Z L, - w, VYeeK <1.1>
vwhere K is a convex , closed subset of the Sobolev space
2 .. 1 1
= el N 1.
il ”() 42 HU(U) ”0 [$ 9]

4C,> : HxH 5 R is a bilinear form , f e H'= H 2cadxH TcdxH lepy

is a given element. , and ! is a given domain in Rz.

We shall prove that the solution o of the variational inequality is
directionally differentiable in the sence of Hadamard with respect +to
the right hand side f. To this end we use the concept of polyhedric
convex set [H}l, [M], see Definition 1 below.

We refer the reader to [R-S-1] for related results in the scalar

case , including the sensitivity analysis of the Kirchhoff plate with
an obstacle, and state constrained optimal control problem {R-5-2]1 for
elliptic equation. Some applications to the sensitivity analysis of
optimization problems are provided in [S~1] - ([(S-4) We use standard

notation throughout the paper [Al, [L-Ml
2. DIFFERENTIABILITY OF PROJECTION ONTO K

First. , we introduce the notation.
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Convex set. K is defined in the following way
1

2 1
= > i
K { ¢ = (¢1, 2,¢3) 1S HO(Q)XHO(Q)XHO(Q) | R¢ 2 w in 0 > 2.1>
here w = wx> , x € 1 , is the obstacle , and R is the linear mapping
Re = ¢1 - 32¢2 - a3¢3 2.2>
where az= aw/ax1 » 33= aw/axz , here we assume for the sake of
simplicity that. the obstacle is sufficiently smooth , hence
R < H;(Q) , for all ¢ in H @3>
Denote
H(i)(fK;ﬂ) = { p e H:)(Q) | p = R¢ , for some ¢ in H > 2.4>

the image of the mapping R in the Sobolev space H:)(ﬂ) .
Let us consider the metric projection PK in H onto the set K.

We shall show that the set K is polyhedric [Ml in the Sobolev space

H=H§(Q)XH(1)(Q)XH(1)(Q) equipped with the scalar product
Gp> = (> = ‘f)( A Ap, + Vo T, + Vb Vpy ddx 2.5>

and therefore the metric projection PK is directionally differentiable
in the sense of Hadamard (Ml In section 3 we use the result on
directional differentiability of projection for the sensitivity
analysis of variational inequality (1.1,

Let TK(¢) denotes the tangent cone to K at ¢ € K . It is clear that

TK(¢>) is the closure in the space H of the following convex cone

GK(¢)={peH|3t)Osuchthat ¢+ tp € K > €2.6>
For a given element g € H , such that ¢ = PK(g) let us define the
following convex cone in the space H
S = T, (% @7
where
H =< peH | D)= Cg,p> > 2.8>

1
= [g ~ P, (eI
DEFINITION 1

The set. K is polyhedric provided for any g € H
S = cl(GK(¢)r‘|5)
here cl stands for the closure. -

First. we derive the form of tangent cone TK((.)) for any w € K.
THEOREM 1.

Tangent cone I‘K(m) t.akes the form
2 1 1
= = > = 2.
TK(m) { ¢ (¢1,¢2,¢3) =] HO(Q)xHo(Q)xHO(Q) | R¢ > 0 ge. on = 2.9

where
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]

={x e | Rox> = pwx> > 210>

is the coincidence set.

Here q.e. means “ quasi everywhere " with respect to the capacity of
the space H;(!R;ﬂ) equipped with the smallest norm for which the

mapping R is continuous . ]
PROOF OF THEOREM 1.

We assume that the coincidence set Z < © is compact. We denote by M
the following closed convex cone

M=4<¢peH | Rg 20, 0on =) 211>
It is clear that CK(u) < WM hence TK((J) c M . Let V «¢ M be a given
element and let ¢0 denote the orthogonal projection of V onto the

convex cone T _<w> , then

K
(¢0 -~ V,¢> 2 0, for all ¢ € TK(u) 212>
(¢0 - V,¢0) =0 2.13>
We claim
(¢0 - V,¢> =0 , if R¢p = 0 214>
Indeed it R¢p = 0 then *¢ e CK((,)) s0 thal 2.14) lollows (rom (2.12).

Define on H(i)(!R;Q) the positive linear map , well defined by <(2.14),
Lv = (¢0 -V, , v=Re¢p e H:)(fR;Q)
Then there is a positive Radon measure A on €1 such that

Lv =75 Rep da = S v dA
Q Q o
We claim that A is concentrated on = Indeed if ¢'0 « CO(QG) then

clearly *¢ = i(¢0,0,0) belongs to G <(w) so that from (2.12)> it follows

K
; ¢0 dA = L¢0 = (¢0 - V,¢> =0
Finally in view of (2.13>
< - - = - - = - R
Qg = (¢0 V,¢0 v (¢0 v,V S RV dA

Q
Now A is concentrated on =, RV 2 0 on £ smo that the last quantity is

non- positive. Hence we must have
P =V
Since the element V e TK(u) is arbitrary it follows that
TK(w) =M

THEOREM 2.

Let g € H be a given element , denote ¢ = PKg > then the following
condition is satisfied

L - _ L
T (#>ig - PLel = cl ¢ G plg - P gl

K&
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condition is satisfied
L . L
TK(¢)r‘(¢ PKg] =cl € CK(¢')N.¢ PKg] pJ
therefore the convex cone K is polyhedric. [ ]

PROOF OF THEOREM 2.

We denote by Z(¢$) the coincidence set

E@) = {x € | RpGod = GO >
There exists a nonnegative Radon measure 1 such that vED = O,
furthermore

[¢-PKg]'L=(¢eH | 5 R do = 0 >
Q
We have also

2 1 1,
- = > e
TK(¢) =< p = (PI’PZ’PS) < Ho(ﬂ)xHo(Q)xHO(Q) I Ry =2 0 ge. on Z($d >
We shall show that for any V = (Vj,Vz,Vs) e TK(¢)N¢ - PKg] the

metric projection ¢0 of V onto the cone clch(np)m[.p - PKg]L) coincides
with V i.e.,
vV = ¢0
Now
L
- > 2 o) -

(¢0 V,qp)H > 0, for all ¢ € ul(CK(¢)d¢t PKg] pJ

and there exists a nonnegative Radon measure A such that

(¢:0 - V’P)H = g Re dA

STEP 1

gcn\m » F = suppA , w2 0 on E(4> , then

d L
& = (4,000 € C (pxig - P gl

Let §1 e C

hence

- = - >
Wy = V& ;A(¢01 v oaEdx 2 0

We can apply the same argument as in the case of the space Hz(Q)

0
[R-S-1] in order to show that the latter inequality implies
S < (A(¢01 - \/1))2 + (¢01 - Vi)z)dx =0
Q\F
therefore
: 2 =
¢01 = V1 , in HO(Q) < CUY
STEP 2

Measure A is concentrated on Z(¢d.
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Let Py < Cg)(ﬂ\E(d))) be a given element , denote p = (p1,0,0) , then
L
- > -
(¢-0 V,p)l_l = ‘J)' pidl 2 0, for p e CK(¢)r‘(¢ PKg]
since tp € C, (PIig - PKg]'L it follows that

S pdA =0 , for all p, e COW\EP»
o F1 1< o
STEP 3

Since cl(CK(d))r‘Dﬁ - PKg]'L) is a cone it follows that
By = Vibgdy = O
therefore !R¢0 = ¢01 - a2¢02 - 33¢03 = 0, A a.e. thus

Po1 = %02 * 33%53 » A ae-

We have
o = Vit - VO = (J)‘ Rp,-V>A =
{)[(4’01-"0) = a,le V) mag (e mV A =
by STEP 1
+ + =
{)(324,02 + agp,>dA ;(a.zv2 a VoA
T + SCaV, + a Vv oodA =
Q Q
= JY_ = a V., — a V.OdA = - JKRVdA = 0
Q 0 2 2 33 a
since RY 2 0 on Z(¢> , therefore ¢0 = V. ]

3. SENSITIVITY ANALYSIS

2

Let QcR be a given domain with smooth boundary TI=dQ. We shall

consider the following variational inequality

find an element w=(w,u,v>eKcH such that

HFCw,p = W 2 L, -~ >, VYeekK .1

here we denote
W, I= aJ‘(Aw)de + J‘[s2 +52 +20e, £ -0-1(1-6)52 Idx 3.2>
et Q Q 11 " 22 11722 2 12
= + = + = +
where 511 8\.1/674:1 kiw, 522 av/ax2 kzw, 512 au/ax2 av/ax1 »
a>0,1> 0> are given constants ,
= + +
Lf,p>= JC f1¢1 f2¢2 f3¢3 ddx 3.3>

Q
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2 1 1 . . .
for all ¢ = (¢1,¢2,¢3) < Ho(ﬂ)xﬂo(ﬂ)xHo(ﬂ) , £ = (fl,fz,f‘s) is a given
element in H’ = H 2cadxH tcaysH taw.

We denote by w = N> the unique solution of variational inequality
3.1).
The coincidence set for the solution @ of variational inequality <3.1)
takes the form

E={xen | RGO = pGd >
Let us consider the mapping

M:H >f >0eKcH 3.4>
We shall show that the mapping [II is directionally differentiable in

the sence of Hadamard.
THEOREM 3.

For any h € 1’ and for £ > 0 , £ small enough

I<E + 2hd> = NIf + £II’h + o(s> 3.5>
where o(e)/c 2 0 , with £J0 in the norm of H , uniformly with respect
to h on compact subsets of H’. The element g = II’Ch) is given by the

unique solution of the following variational inequality
find an element g=(w,u,v>eScH such that

Hw,p ~ > 2 <h,p - &, V¢eS 3.6>

PROOF OF THEOREM 3.

We provide a general proof which shows that if the metric projection
in the Hilbert space H is directionally differentiable then it is
differentiable in any scalar product defined by a symmetric, coercive
bilinear form, provided an auxiliary condition is satisfied. It seems
that the same argument can be used in the case of non =~ polyhedric
convex set.
Let g(> 0,6 > H be given. Consider the family of variational
inequalities

WwIeK: ACwltd,p - wltdd 2 (glLd,p - (L)), VK 3.7>
then

w(t) = PK((.)(t,)—A(.)(t,)+g(t,)) 3.8>
where A € L(H-) is linear bounded mapping defined by bilinear form
A, P> = (Aw,d>

Denote
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z(td =

Wt~ At I+t
S = T, (00> - ZzCo>1t

3.9>
= TK(u(O))r‘r( ¢ | CAWCOD,¢d> = (gC0d,¢> >
hence
wCt) = PK(z(t)) (3.10>
and we have
Ww<€0> = Ps(z’(O)) N 11>
provided z(.)) is strongly differentiable at 0 . In such a case for
t>0 , t small enough
Wwlt) = (0> + tw<0d> + odtd 3.12>
We should show that for any given z’C(0> we can select g’{0> in such a
way that
2’C0> = (0> - AWCO> + g’ <3.13>
= Ps(z’(O)) - APS(z’(O)) + g’ 314>
Let. us denote by S‘ the polar cone , then P + P . = I and for any
hN hN
element. ¢ € H we have
¢=P¢+P‘¢, (3.15>
S hN
P ¢,P ‘ni-) = 0 3.16>
hN hN
It. can be shown that the condition
z’<0>- Ps(z’(O)) + AP

(270,63 @,y = 0 , €3.17>
for all z’C0>cH
implies ¢=0. On the other hand the image ImZ of the continuous mapping

Z: H > z’<0d > z’0d- Ps(z’(())) + APS(Z’(O)) <H 3.18>
takes the form

Imz = s* + as
It. can be shown , see PROPOSITION 1 below

, that
ImZ = H

We proved that for any element g’(0> which belongs to the
mapping <(3.18> we have

image of
w0 = Ps(z’(O)) = PS((.)’(O) = AW’CO> + g’<0d>> 3.19>
the derivative is uniform with respect to z’(0) on compact subsets of
the space H.

(319> is equivalent to the following variational inequality
' C0eS: (W0 -

€02 = Aw' (0> + g’ <0dD,¢ = <0 = 0,
hence

for all ¢S
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w’ (0deS: HACW’C0d,¢p = W0 2 (g’C0),¢p -~ W0 , V¢eS
and we have (320> for any right hand side g’{0> in

completes the proof.
PROPOSITION 1

We have

Imz =s* +as =41
PROOF
Let V € H and ® denotes its projection onto s* + as

poes'+As; G = Vb = P> 20, Vp € ST + AS

Now if ¢ € S* + AS then

e + Py € Sl.l + AS
so

Cpy = V> Z 0, Yo « ST + AS

Take ¢ € S‘ then

(goo—V,p)ZD, queS‘

O- V= pdp =0>20, Ve s*

hence P (V - ¢,.> = 0 , thus

= 0

Y

v - ¢0 e S
There exists the unique elements v0 < S‘ > wo e S such that
fo "V T Yo

From (3.21) it follows that

Cw 9> + v V)20, Yoes

0 o~

but w_. € S so (wo,p) <0, VYo € S‘ therefore

]
*
(vo—V,¢)_>_0, Vo €« S
which means that P (V - v > = 0 , thus
St o)
v - Vo € S
soV=v0+w6,forsomew6eS
Finally , from (3.21)>
. - - - - >
Vp €« S + AS : 0 = (po V,p) = (vo + Y5 Yo wo,cp)

= (wo - w(’),p) = <0 —(w(’) - wo),p -0>

In particular the projection of (w(’) - wo) on S‘ + AS is 0 so

H

<3.20>

» which

3.21>

3.22>



’ -
w wo e S
hence
» -
A(wo wo) e AS
But
- - » » -
0 = (wo wo,A(wo wo))
by coercitivity of bilinear form %(,.)
< - - > - ry <
ot(wo wo,wo wo) <=0, o>0
= »
hence wo wo i.e po Y [ ]
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A note on an interaction between
penalization and discretization

Tomas Roubiéek

Institute of Information Theory and Automation
Czechoslovak Academy of Sciences
Pod voddrenskou vé( 4, 182 08 Preha 8,
Czechoslovakia

The aim of this note is to investigate phenomena appearing when a state-constrained optimal
control (or optimal shape design, etc.) problem governed by some differential equation is handled
numerically. Then we are forced to approximate the problem on finite dimension spaces by some
discretization method like finite diferences or finite elements, and simultaneously to cope with
the state space constraints by some dual method - here we confine ourselves to the simplest
one, namely to the penalty function method, but the augmented Lagrangean method will behave
essentially by the same manner. By author’s knowledge, an interaction between discretization
and penalization has not been studied yet, except some investigations in soviet literature collected
in the book by F.P.Vasilev (3] which does not deal directly with the dual treatment of the state
constraints, however. Though the matter is not too complicated, it is perhaps worth mentioning
briefly here because, by author’s experience, all possible events are not sometimes realized well
by those who use discretization with penalization simultaneuously.

As most of the phenomena appear already on an abstract level, we may begin with the following

abstract optimization problem

(P) minimize f(z) onu €U
subject to g(u) € C

where f: U — R is a cost function, g: U — Y a state operator, U a set of admissible controls,
Y a space of states, and C C Y a set of admissible states. From now on, we shall suppose
controlability of (P), that is g(U) N C # 0. After penalization (with a parameter £ > 0} and
discretization (with a parameter h > 0) we get a family of unconstrained optimization problems,

each of which can be written in an abstract form:
(M minimize f*(u) = f* + ¢ 'p(¢"(¢)) on v € U,

where f*: U* » R, g*: U* - Y are an approximate cost function and state operator, respectively,
U* C U is an internal approximation of the set of admissible controls, and p : Y — R is an
appropriate penalty function; for simplicity we suppose that p is so easy to be evaluated that it

need not be approximated by some p”, which is often case, indeed.
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To simplify the problem as much as possible, we will assume the following, quite strong as-

sumptions:

U is compact, its topology being denoted by r,
Y is a metric space, p its metric, C its closed subset,

f,g are continuous, f > —oo,

U* is closed in U, f*,g* are continuous in the (relativized) topology r,

(1)

(2)

(3)

(4) p is continuous, p(C) =0, p(Y'\C) > 0,

(5)

(6) UM c UM for hy > hy > 0, Upso UM is dense in U, and
(7)

f* = f, g¢* — g uniformly in the sense:

Ve>03he>0V0O<h<hyVucUr: |fHu) — flu)] <e, plg*(u),g(u)) <e

Note that the assumptions (1)—(5) obviously guarantee existence of a minimizer both of (P?)
and of (P), which is, however, not too much important because all phenomena studied below
appear also in more general setting of the problem where compactness (1) need not be used, cf.
(2]

Though the assumptions (1)~(7) may seem quite powerful on a first look, they cannot ensure
the convergence of the minima of (P}) to the minimum of (P) (and a fortiori the convergence of

minimizers, either) if only €,k \, 0, as shown by the following example.

Example 1. Consider a very simple situation: U = [-1,1], Y = R, f(u) = g(u) =4, C =
{+1,-1}, U* = [-1+h,1], f*=f, ¢ =g on U* and p =1 - |u|. All the assumptions (1)-(7)
are fulfilled trivially, and clearly min(P) = —1, and Argmin(P) = {—1}. On the other hand,
it is easy to compute that, for € < h/2, min(P?) = 1 and Armin(P?*) = {1}, which shows that
neither the minimum, nor the minimizer of (P}*) converge respectively to the minimum or the

only minimizer of (P) when e,h \, 0 and € < h/2, that means when ¢ tends to zero too quickly

in comparison with k.

What the assumptions (1)-(7) can guarantee is only the existence of a stability criterion

”h < n(€)” under which the convergence is ensured:

Theorem 1. Under the assumptions (1}-(7) there exists n: Rt — R* such that

(8)

. . Ay .
¢.h\,lol,hInSr1(e) min(P,;) = min(P) , and

(9) limsup Argmin(P?) C Argmin(P) ,
€,h\0, h<n(e)

where ”limsup” has the usual meaning, i.e. it contains all r-cluster points of all chosen subnets.
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The proof is, in fact, contained as a part of the proof of Theorem 4.3 in |2] and will be thus
omitted here (however, Theorem 4.3 there itself is stated in terms of so-called minimizing filters
instead of the sets of minimizers, not supposing any compactness).

It should be emphasize that Theorem 1 has a little practical usage because it does not say
anything about the stability criterion "k < 7(€)” except its mere existence. The following The-
orems 2 and 3 provide us with more information, the former one dealing even with the extreme

situation when no stability criterion is needed:

Theorem 2. If (1)-(7) are fulfilled and moreover
(10) C =clyintyC and g(U) NintyC # ¢ and ,

(11) ¥ uniform neighbourhood B of g~'(intyC) 36 > 0: ¢7'(Cs) C B

” and "inty ” stand respectively for the closure and the interior in Y and Cj; for 6-

where "cly
neighbourhood of C in the metric p . Then (8) and (9) hold with n = 1, that means the

convergence is unconditional.

Again, the proof is essentially contained in (2] as a part of the proof of Theorem 4.4 and will

be omitted here.

Remark 1. The hypothesis (10) is particularly satisfied if ¥ is a linear metric space, C is
convex with nonempty interior and g(U) Ninty C # @; then we come to the standard Slater con-
straint qualification. As for {11), it is particularly satisfied if ¢! is uniformly continuous, possibly

in the Haussdorff sense provided ¢g~! is multivalued.

Unfortunately, (11) is typically not fulfilled in optimization problems for systems governed by
differential equations where usually Y is a normed linear space with a norm strictly coarser than
the corresponding energetic norm; e.g. Y = L*(.) while the energetic space is some Sobolev space
H*(.) with k > 0. In such case we have to perform the analysis more in detail, introducing also

the auxiliary penalized problem without any discretization:

(P.) minimize f(u) = f + ¢ 'p(g(u)) on u € U.

Theorem 3. Let (1)-(7) be fulfilled and the following discretization error is known:
(12) Yh < kg : | min(P?) — min(P,)| < E(e, k).

Then every n : Rt — R* such that “\I\Té E(e,n(¢€)) = 0 will guarantee (8) and (9).
€
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The proof of (8) follows from the fact that min(P,) converges for € \, 0 to min(P) and from
the obvious estimate:

| min(P?) — min(P)| < E(e,n(€)) + | min(P,) - min(P)|

provided h < n(e). As soon as (8) is proved, (9) is ensured simply by standard compactness

arguments.

Example 2. We outline a rather model situation dealing with an optimal distributed-control
problem for a nonlinear elliptic equation to illustrate how Theorem 3 can be applied. Let Q
be a bounded, polyhedral domain in R", 301 its boundary, U = {u € L*(01); -1 < u(z) <
1 for a.a. z € 01}, 7 is the topology induced on U from H'({1)* (which obviously guarantees (1),
7*» stands for the topological dual space), Y = L*(1), and g(u) = y € H(0) is the weak solution

of the nonlinear boundary value problem:

(13) V(a(|Vy])Vy) =z on 0,

dy
vy} =2 =
(14) a(|Vy))== +y =0 on 90

with some nonlinearity a(.) such that the function ¢ — a(¢)¢ is uniformly increasing with a linear
growth, v is the outward unit normal to 3. In other words, g(x) = y should fulfil the integral
identity:

/na(|Vy|)Vy Vv dz + /an yv dS = /n uv dz Yv e H(N).

Furthermore, let
15 =
(15) 1w = o) ds,

C be a closed subset of L*(02), and p(y) = infyec ||y — §]|72(n)- In view of the cost function (15)
together with the boundary conditions (14), we can see that, speaking in terms of a heat-transfer
interpretation, we are to choose heat sources distributed around {) in order to minimize the heat
flux through the boundary 80} representing a lost of energy outside the domain {2, subject to
some constraints imposed on the heat sources and on the temperature distribution. Hence our
model problem has a quite reasonable practical interpretation.

We discretize the problem (13)-(14) by a standard manner, using the finite element method
(any numerical integration is not needed here). Let {T4}x>0 be a regular family of triangulations of
N, U* = {u € U;u is piecewise constant on T,}, V* = {y € H'();y is piecewise linear on T,},
f*= [ on U* and ¢"(u) € V" is the unique solution of the integral identity:

h h h — h
/na(|vg (u)])Vg*(u) Vo dz+/mg () ds_/nuu dz Ve Vh,

To derive the estimate of the type (12) we employ the following facts:

i) f,g, and p are Lipschitz continuous on their respective sets of admissible arguments.
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ii) The rate-of-error estimates which are uniform with respect to the control are known:
lg(u) — ¢"(u)llzamy < ¢ h®  Vu € U* and

|f(u) = f(u)| S e #P Yue U™

If the regularity g(u) € H*(f) is valid, by (3] it is well known that a = 1, and in the linear case

(i.e. @ = const. > 0) even a = 2. As for 3, its expected value is % (or % in the linear case), but

we shall sce (cf. Remark 2) that its concrete value has no influence on mere convergence (8) and

(9)-
iii) The uniform approximation error estimate is known:

(16) u'ilellt;" ||u - uh”H‘(ﬂ)‘ <ec h? VueU.

Let us outline the proof of (16). For u € L*(Q1) denote by u* € U* the function defined
by [y u* dz = [, u dz for every simplex A € T,. It is easy to verify that |jv — v"”Lz(n)

IA

const.h||v] g1(q) for every v € H'(Q). Realizing that (u — u*,v*) = 0 because evidently f,(u —
u*) dz = 0 and v" is constant on A for every A € T, we obtain the estimate [{u — u*,v)| =
|{u — u*,v — v")] < const.(||u|lg2a) + ||u*||L2()) & ||v]|gi(q)- Taking into account that u,u* € U
and the definition of the standard dual norm, we can see that ||u—u*||;1(a)- < 2 const.v/measQl h,
and put v =1 in (16).

Now we will employ the facts i)-iii) to derive the estimate (12). Taking some u € Argmin(F,),
by (16) we can find some u* € U* with ||u — u*||g1(q)- < (c + 1)h”. By i) we can then see that
fe(u®) < min(F) + (¢ + 1)AV(L + LT’), where L stands for the common Lipschitz constant of f,g,
and p. By ii) we come to

L L
(17) min(P*) < fAuh) < min(P,) + (c + 1)(L + —)h7 + ¢ AP + Zhe,
€ €
Conversely, let us take some u € Argmin(P?). By ii) we get immediately
. . " g cl .
(18) min(P.) < f.(u) < min(P;') + ¢ A + —h".
€
Joining (17) and (18), we come to the error estimate (12) with
E(e, k) = Const.(h7 + b + (b7 + he)).
€
Then by Theorem 3, for the stability criterion function  we can take arbitrary function

11
e) =¢* ith ¢ > -, =).
n(e) with ¢> max(2,2)
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Remark 2. Note that § has no influence to a freedom of the choice of 5, which is due to
the fact that we investigated only mere convergence of the problem (P!} to (P), not any rate of
convergence. Note also that the optimal case is @ = ~, particularly the case a = 2 has here the

same efficiency as a = 1.

Remark 3. It is known that without the compactness hypothesis (1), the penalized problem (P;)
does not generally approximate the original problem (P), but some extended problem (roughly
speaking, a "relaxed control” problem). In such case, our considerations are also well fitted to
approach relaxed controls by solving numerically the problems (P}); cf. (2] for a general treat-

ment of this idea.
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PROBLEMS OF MATHEMATICAL MODELLING OF
NONLINEAR PROCESSES

A.A, Samarskii
Keldysh Institute of Applied Mathematics
USSR Academy of Sciences
Moscow

One of the most important fieldt of modern science involves such
key notions as optimization, control and optimal control. They ref-
lect an aim of research, connected with efficiency, because optimiza-
tion of any process and its control implements in a certain sense)
an optimal process. Unfortunately, classical methods employed in the
control theory are efficient only for a narrow range of problems
with elementary mathematical models. These methods prove to be non-
efficient for complex problems described, e.g., by nonlinear partial
differential equations. Meanwhile, it is obvious that optimization
and control should be performed by basing rather on a profound and
confident knowledge of an object under investigation than on its sim-
plified models of the "black box" type. Therefore, to study proper-
ties of the object that we want to control is a first priority task.
This task is generally very difficult since all modern problems un-
der study are growing in complexity and scale, some becoming global
(ecology, climate, etc.). Their study requires a system approach.
For complex systems of any nature we need a forecast of their evo-
lution,a scientific base of decision-making and control. The fore-
cast must contain not only qualitative but quantitative characteris-
tics as well - values of parameters determining a state of the
system.

An extensive introduction of computer simulation greatly has wi-
dened a scope of problems that can be studied with the use of com-
puters. We can talk to-day about computational physics, computatio-
nal mechanics and so on.

Let us note some specific features of mathematical modelling in
physics:

- using complex systems of various nonlinear equations of mathe-~
matical physics as physical-mathematical models of real physical

processes;
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-co-existence of several processes with different space-time
scales;

- a hierarchy of models differring in their involvement of physi-~
cal effects;

- a large range of variation of physical parameters;

- close connection of physics and engineering;

- a necessity to obtain optimal quantitative characteristics of
processes under investigation with ensured accuracy;

~ control of physical experiments;

- a need to know coefficients ("constants") of a nonlinear medium;

- identification of models.

All said above may be referred to other subject fields, charac-
terizing a complexity level of computing simulation. The latest ex-
perience teaches us that in a program of theoretical research prece~
ding the development of new technologies and the design we should
include the study of possible scenarios of emergency situations to
work out the control methods preventing failures.

e need a new methodology and a new technology in science. The
mathematical modelling is such an universal methodology, and the
computer simulation is the new technology. The point is to replace
an original object or process (under investigation, control and
operation) by its mathematical model and to experiment with it on
a computer by means of computational and logical algorithms. The
computer simulation consists of the following stages: a mathematical
model - a computational algorithm - a respective program complex -
computations - an analysis of results. This is the whole cycle. If
necessary it is repeated (with a new model or algorithm or program
or input), i.e. the computer simulation has an iterative nature and
it is carried out for solving a class of problems by basing on a
hierarchy of models of different completeness and accuracy.

We may single out two stages of the computer simulation: (1)
choosing and verification of mathematical models, and (2) forecast.
The model quality and, hence, the forecast accuracy depend on an
accuracy of assigning the medium properties, i.e. coefficients in
the equations. The medium properties can be determined by means of
the computer simulation, for example, using a quantum-mechanical mo-
del of atom as it occurs in the plasma physics problems.

The intellectual core of the computer simulation is the triad:
"Model-Algorithm~Program". Therefore, the computer simulation opti-~
mization (the increase of adequacy, accuracy, efficiency, etc.) must
be performed for the entire triad and not for its separate elements
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only. It opens great opportunities for improving the program packa-
ges when complex problems are being solved.

This suggets the following goals of the system and applied prog-
ramming.

-~ The development of technologies for solving problems that should
support the triad "Model-Algorithm-Program".

- The construction of integrated architectures of computer systems
and software oriented to classes of problems, the conceptual unity
of hardware and software, a high level of adaptivity (flexibility of
structures) to specific applications.

- Introduction of automatic programming for generating intellec-~
tual packages in major knowledge fields.

- The construction of the programming base relying on the compu-~
ter simulation methodology, the development of a unified base for
computer facilities and software.

- The orientation of the programmers' training not only to stu-
dying programming languages but to learning of the mathematical mo-
delling and computer simulation methodology and applications.

The mathematical modelling has great methodological potentialiti-
es and can easily be adapted to solving various problems. Its uni-
versgsal nature manifests itself in that: (1) the different processes
can be described by the same models (for example, by differential
equations of the same type), and (2) despite a great variety of
problems in any field of science and technology there is a finite
number of main or base problems for which the models can be const-
ructed which belong to a given manifold. Therefore, it is necessary
to concentrate on analysis of the problem classes by distinguishing
the base problems for which respective triads can be constructed to
act as the modules for complex problems of a given class. It is ob-
vious that the mathematical modelling:

~ combines the merits of traditional theoretical and experimental
methods;

- allows safety tests of objects in extremal (e.g., emergency)
conditions where the field experiments are either impossible or
dangerous;

- provides integration of the research, development, design, mana-
gement and operation stages within interdisciplinary methodology.

At the present time introducing the new methodology to the fields
such as biology, economy, ecology, sociology and the humanities as
well as many engineering fields is held back by a lack of adequate
models, which requires respective research.
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Incomplete information about an object cannot prevent using an
ideology of the triad. In this case an information model and the si-
mulation are used in combination with expert systems ("soft" simula-~
tion). Of great importance here is the problem of developing the mo-~
dels of decision-making on the basis of incomplete information with
involvement of mathematical modelling methods and intellectual ex-
pert systems.

Main processes in nature and society are nonlinear. Having arisen
in physics and engineering, the notion "nonlinearity" now claims the
status of a phylosophical category. It is dialectic, has many folds
and represents an intrinsic property of any complex process. Now a
new "nonlinear" thinking and a new technology of knowledge based on
ideas of nonlinear nature are required.

Let ug list main properties of nonlinear systems. They are:

- absence of the superposition principle (knowledege of the beha-
viour of fragments does not determine the behaviour of the whole);

- absense of the scale similarity and, hence, restriction of tra-~
ditional experimental approaches;

- nonuniqueness of 1limit states of the evolution systems and evo-~
lution paths to these states;

- impossibility of direct extrapolation of the nonlinear system
evolution process in both space and time (phase transitions, jumps,
bifurcations, etc.);

- strong sensitivity to perturbations, critical states, thres-
holds;

- generation of "catastrophic" regimes in the course of evolution,
for example, regimes with peaking when the nonlinear system parame-
ters infinitely grow in a finite time.

Nonlinearity gives rise to many difficulties, but it contains se-
veral variants of evolution including the one with accelerated pro-
cegsses. We should admit that the nonlinearity is not an exotica,but
it is a norm, while the linearity is an idealization true only under
some restrictions. Examples of nonlinear media are microworld and
plasma; atmosphere and ocean; active biological and chemical media;
semiconductors; social, economic and ecological structures. Their
respective models contain the heat conduction equations with tempe-
rature-dependent coefficients, the gas dynamic equations, the MHD
equations, the radiative gasdynamics equations, the chemical kine-
tics equations, the Cortevege de Vriz and Schrodinger type equations,
etc.
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The nonlinearity means not only difficulties and complication but
it opens new opportunities for control. Let us give two examples
where the nonlinearity gives rise to additional parameters (the pea-
king time and the fundamental length).

Example 1. We have the equation of the chemical kinetics type

% - /%n.z_d,,_ ) —t_—7o/o(//5:Gw32L70/ n(oj="No

Here three types of solution are possible:
(1 nit) = no = 'i/f, = Covot;

(2) for nyo< «f the solution &)~ 0 as €2vo
(3) for ﬂ°7‘x/P the solution #(¢(¥) infinitely grows over a fi-
nite interval of time as & - fz_ (the solution is called the regime
with peaking).
Thus, unlike the linear case = 0 we have here a new parameter
— t—Cq'P, No) representing the time scale (the peaking
tlme)
Example 2. A distributed system - the process of combustion in a
medium with nonlinear heat conduction and the nonlinear volume ener-
gy release - ig described by the equation

;iZi_ lL C?‘D-T.)+—7~ >0, 7"Cr,a)=-7:tt)/-——oﬂ'c:r<oo

One of the solutions to this system (at a special choice of )
is given by the formulél [
(b=1) " L Gt TE ix)< L2
Tlx,t)= 3 0T Lt
0 le7_-5_
7 2
Here, along with the time parameter - (the peaking time) we

have another parameter [_ characterizing the solution distribution
in space. As is seen from the formula for T(x,t) the combustion is
localized in the domain ﬂr/</L$4Al (on the fundamental length és),
while the rest medium does not "sense" what is going on over the
interval [x/ £ LS /2 .

Appearance of new parameters and new scenarios of behaviour allows

new possibilities for control and optimization. It is very difficult
to study complex nonlinear processes directly without preparation.
It is absurd to carry out direct computer simulation for them with-
out obtaining, even with elementary models, preliminary information
about some qualitative and quantitative characteristics of the pro-
cesses under study. It is well understood by physicists who widely
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use the method of simple models for studying complex objects. Simple
nonlinear models prove to be very pithy.

Let us illustrate this statement about effectiveness of simple
nonlinear models by an example on combustion the specific case of
which was considered in example 2 given above.

Let the combustion process be described by the equation for the
temperature T (x, t) (1]

o
%7—' CKOT PDT +i’° 0"70”371}#702
Tz, 0) ='7;be-) , — o2 <X o

where R(T) = K, rr is the thermal diffusivity, 967') ?D tTrP is
the density of a heat source.

Investigations show that depending on the relationship between
and three quite different temperature regimes are possible.

I. At ﬁ. =¢+41 we have the regime of heat localization (see
Exemple 2(for ¢/ = 1, p = 2) on the fundamental length L, =JT|[/*2 9y
Here the heat does not disperse, and the temperature rises in the o
domain (xf < [-S /3  in the regime with peaking (the S-regime).

I1I. If )5 < G4 , the heat infinitely dispersesand at a
certain time we come across a blow-up of temperature (i.e. it goes to
infinity) over the entire space (the HS-regime). The heat localiza-
tion is absent.

I1I. If 1576‘1—_1_ » the localized temperature structure of
the LS-regime is formed, while an effective size of the temperature
field is preserved and infinite temperature is achieved only at a
gingle point.

As we see, this simple model has great potentialities, for examp-
le, it contains three types of combustion regimes. Further investi-
gations show that in more complex models, for example, in models of
media under compression we also come across three similar regimes
with peaking.

While solving the classical problem on compression of an ideal
gas by a piston, when pressure on the piston grows in the peaking
regime, we also revealed three compression regimes. If the piston
pressure is given by the law [3]

R(O,'é'): Po (—{'_f"—b)n’ , <o ) f<é€
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then:

(I) at n= ﬂ&-‘zf/(ﬂl- X71 we have the S-regime (a localiged
standing wave of nonshock compre531on),

(I1) it n_;n , there is compression without shock wave, the lo-
calization occurs at a point (the LS-regime);

(III) if ﬂ<:ﬂ$ , the shock wave hag a finite velocity, there is
no localization (the HS-regime).

It is shown that at the compression with peaking the complex gas-
dynamic structures may arise with localized density and temperature
extrema determined by the entropy distribution in a gas.

The localization and structure generation effects suggest new
methods of processes control. For example, the localization effect
may prove useful in some plasma physics and thermal chemistry
problems-[E] » There are many examples proving that simple nonlinear
models are extremely pithy: generation of heat structures in a me-
dium with nonlinear heat conduction; self-focusing of light descri-
bed by the nonlinear Schrodinger equation, collapse of Langmuire
waves, collapse in gasdynamics problems. Using more complex models
and studying them by the computer simulation confirmed at least qua-
litative (sometimes quantitative) characteristics obtained in simple
models. A preliminary knowledge (even crude) of the process nature
allows more efficient use of numerical methods including the adapti-
ve ones.

Now we shall give two examples of successful investigations of
real complex nonlinear problems by using the computer simulation. In
the both cases we solved the process optimization problem by using
the input control. The first example: simulation of processes in
targets for laser thermonuclear fusion (a spherical denterium-tri-
tium target is radiated by a laser). It is required to heat and
compress the target up to the parameters when the thermonuclear
reaction would be possible. It is also required to find optimal pa-
rameters at which the energy release is maximal for a given laser
energy. The process is rather complex: on the target periphery
"g corona" is formed, while the interior ("the core") is compressed
and heated., Without going into details of the mathematical model we
note that it involves the gasdynamic motion, the two-temperature
condition, the electron heat conduction, the radiation, the complex
state equations, the kinetics of thermonuclear reactions, neutrouns,
alpha-particles, etc.

It has been found out that we should differentiate between two
variants of the subtype of laser impulse applied to the target
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surface. In the first case the laser power negligibly changes over
the impulse time. The second case tﬁ] - when the laser radiation po-
wer changes in the peaking regime. Accordingly, two regimes are pos-
sible. In the first one a powerful shock wave arises, and hence, the
following heat wave weakly changes the target density. This variant
is not advantageous since a final target density is not large and
the thermonuclear reaction energy is small too. In this case to ig~
nite the target we must <feed the energy of 1O9 . In the second re-
gime the target is heated and compressed by a subsonic heat wave so
that the thermonuclear reaction is possible at much lower laser ener-~
gy (104 - 1O5 J). Thus, using the second regime allows reducing the
laser energy by 4-5 orders of magnitude, which makes LTF a competitar
among other projects. Here the regime control is made by changing
the laser power in time.

The other example is optimization of technology of laser-plasma
metal treatment [5] . An advantage of this technology is that metal
in the nitrogen atmosphere is exposed to the reradiation of a plasma
cloud formed near the metal surface rather than to the radiation of
the laser itself. Plasma ions intensively infiltrate the surface
layer of metal due to which it appreciably hardens. It is required
to choose the treatment regime that would guard the metal against
destruction by the laser radiation (as it occurs with metals direct-
1y exposed to the laser radiation).

It is an experimental fact that the laser beam destroys metals
at the pressure of 30 atm and does not destroy at 100 atm. However,
the pressure 100 atm is very high, and besides, the process in this
case proved to be unstable. The problem was to understand the pro-
cess physics by means of mathematical modelling and to determine a
minimal pressure in nitrogen at which the metal is hardened without
being destroyed. It was solved by computer simulation with different
models involving the gasdynamics equations with chemical kinetics
and two-dimensional equations of radiative gasdynamics. It turned
out that the hardening could be achieved without metal destruction
at the pressure 30 atm if a proper profile for the laser impulse po-
wer was chosen. In contrast to a standard time-constant impulse, its
value should be decreased by an order of magnitude following a cer-
tain law. Then the plasma cloud protecting the metal from destruction
by the laser impulse exists long enough and all the physical-chemi-
cal transformations necessary for the surface hardening had time to
come near completion.
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In this problem involving research and development as well as in-
tegration aspects the optimal regime of the lager-plasma unit is
achieved by the laser impulse profile control.

Studying nonlinear processes requires a combination of gll meth-
ods: analytical, numerical and experimental. Investigation of a comp-
lex nonlinear problem begins with a search for analytical (self-si-
milar, asymptotical) solutions for simple models, special cases.
Usually we have to develop new methods, to carry out mathematical
analysis of resulting problems, to search for particular solutions.
In many cases group-invariant methods based on transformations for-
ming the Lee and Lee-Becklund groups prove to be efficient. The par-
ticular solutions obtained are used also for testing numerical tech-
niques. Thus, using numerical methods within mathematical modelling
stimulates the development of analytical methods. To solve nonlinear
problems one needs the numerical methods that would correctly ref-~
lect basic properties of objects under investigation (for example,
the conservation laws), be economical in computations and provide
sufficient accuracy in a certain class of problems. Thus, the nume-
rical methods optimal on a class of problems are required. An impor-
tant property of computational algorithms (codes) is their adaptivi-
ty to a sought-for solution; in many cases it can be achieved by
constructing adaptive grids. At the present time the codes with au-
tomatically computed dynamic adaptive grids are available.

The first-priority tasks in this field are:

- the development of methods for solving nonlinear grid equations
arising at approximation of nonlinear differential equations, in
particular, with systems of different types;

- the development of methods for solving multidimensional prob-
lems and problems with a strongly nonconjugate operator;

- the development of codes for solving grid equations with allo-
wance for the computer architecture (vector processing, many- and
multiprocessor computations, special processor computations, profes-—
sional personal computers, etc.);

~ the design of program complexes and packages for different clas-
ses of problems, different categories of users (student-engineer-
scientist).

By using a new methodology great effort is to be taken to reconst-
ruct the entire system of training of specialists in applied mathe-
matics and informatics.
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INTRODUCT ION

For a linear incompressible stationary fluid we consider the energy E(f),
being the volume occupied by the fluid. The objective of the first section is to
consider the minimization of E(Q) and to underline the difficulties encountered to

obtain existence results.

The objective of the second section is to study the necessary condition which
are verified when is minimized or maximized with respect to the boundary T the mini-

mum energy E(Q) of a fluid.

Q will denotes the volume of RN occupied by the fluid, N=2 or 3, T is a
part of its boundary that we chose as a control parameter. The total boundary will
be in general denoted by 8 = T UT , where I is an open part of 3R an can be itself
decomposed in several parts corresponding to several kind of boundary condition that
will be imposed to the fluid on T. Without loss of generality we shall suppose that
1 is contained in a fixed smooth domain D. We shall lose the generality when we
suppose D bounded which is in some situations necessary to use some compact imbed-
dings of Banach spaces of functions defined over D. The speed of the fluid particle
at a point x of 0, at time t will be denoted by u(t) (x) = u(t,x). When the flow is

stationary, TI' does not depend on t, T is a stream line of the field u

1 - MINIMIZATION OF THE ENERGY

Assuming T smooth enough so that the normal field n(x) (out going to Q) is

defined, say T of class Cl, we have for all t and x€T
n(x).u(t,x) =0 (1.1)

We consider the simples rehology as being the linear incompressible stoke's model
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div u(t,x) =0 in @ (1.2)
- Au + Vp=1[ in Q (1.3)
(e(u).n)r =g on T (1.4)

where f is given in LZ(D),gin Hl(D), H is the mean curvature of the boundary T.
I' is assumed smooth enough in this strong formulation),e(u) is the displacement

*
tenseur, 2e{u) = Du+ Du, 0 is a non negative given number

g >0

o is the so called surface tenslon and (e(u).n)r stands here for the tangential
component of the vector e(u).n on TI'. The weak formulation of problem (1.1) - (1.4)

is as follows : we introduce the Hilbert space

2
W) = wer @Y , dive =0, ewetl@" } (1.5)
Using the classical Green's Theorem
Yo ¢ ec (@, rY)
fne(q)).. e(d)dx + fn <div(e(e¢)) , ¢ >dI = fan <e(9).n, ¢ > dT (1.6)

1 L

it is obvious that e{(¢).n is defined, as an element of H_Z(OQ)N = (H*(an)N)ias
soon as ¢€-H1(ﬂ) and div (E(w))EJF(ﬂ)N. (this fact derives from the extension of
(1.6) when ¢ and ¢ are in Hl(ﬂ)N, div (e(9)) eLZ(ﬂ)N). Let

Hi(ﬂ) = {wE.Hl(ﬂ) l ¢.n =0 onT, ¢ =0 on I}

The weak solution u of (1.1) - (1.4) is the unique minimizer in Hi of
E(Q) = Min 1 J.oe(u)... e(uddx - J_ f.udx + S, g.u do
1 2°Q Q r
ueHo(ﬂ)

i
From the well known Korn inequality on Hl(n) a(u,u) = (fn e(u).. e(u)dx)? is an

1
equivalent norm to the Ho(ﬂ) norm.

The objective of this section is to minimize E(Q) with respect to fI. We shall
first def ine E(Q) when Q is not a smooth domain in D but simply a measurable sub-
set of D. The first objective is then to define Hi(ﬂ) when 1 is a measurable sub-

set of D.
in weak form the condition (1.1) on T can be written (assuming I empty)

UGHi(D), V¢ ect®
fn U.Vp dx = O 1.7

More precisely we have the

Lemma 1.1

Let @ be a domain in D with Lipschitzian boundary T and U be an element in
Hi(D) and u = U/ﬂ (the restriction to ). Then u belongs to Hi(ﬂ) if and only if U
verifies (1.7)
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Proof

If u belongs to Hi(ﬂ) then u.V$ = div(¢u) and by Stoke's theorem

fﬂ div(¢U)dx = IF U.n ¢ dx = O

In view of the minimization of the Energy we introduce the perimeter of Q relative-
ly to D, P_(Q) = | vx i , where M°(D) is the Banach vector space of Bounded
b S0 (p)
measure on D, see R, Temann {1], J.P. Zolesio [6], [7]
the problem Inf E(Q) + oP_(9) (1.8)
D
ECcQcD

with g = 0 is then equivalent to the following are

Inf Inf sup e(Q,u,$) + oPD(Q) (1.9)
EcQcCD uf_Hi(D) ¢€Hi(D)

where

e(fl,u,¢) = fn (%»Ie(u)|2 - fE.u + u.V¢)dx (1.10)

Let
Z(Q,u) = sup e(9,u,d) (1.11)
¢eHi(D)

Lemma 1.2.

If x5 = Xq in Ll(D) and u -~ u in Hi(D) then Z(9,u) < lim inf z(nn,un) (1.12)
n n

Proof
for each ¢ in Hi(D) we have e(ﬂn,un,¢) -~ e(Q,u,¢) as n = @ then taking the

supremum over ¢ we get (1.12).

The main difficulty arises in the fact that minimizing sequences (ﬂn,un) of
problem (1.9) are such that Xq is bounded in BV(D, EN) but only Xq e(un) is bounded
9 NZ n 9 NZ n
in L°(D, R ) (and E(un) is not apriori bounded in L°(D, R ). One simple possibility

to over come that difficulty is to consider for some given €,e >0 the following per-

turbated problem

(p_) Inf sup e (Q,u,d) + oP_(9) (1.13)
€ 1 € D
EcfQcD ¢e,H0(D)
uG_Hl(D)
o
with
ee(ﬂ,u,¢) = e(Q,u,$) + ee(D,u,q) (1.14)

The boundary condition (1.4) will be changed for a transmission condition involving
the parameter € on I'. The fluid is now in the whole domain D but T is an interface.

For this situation we get the following existence result
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Proposition 1.3

There exist (f,u(?))€{n, EcACD, PD(n) < @} x H(I)(D)
such that u = U(n)lneHi(n) and aneui(n),‘v’n' s ECﬂ'CD,Vu‘EHi(D)

ee(ﬂ,u,‘b) < sup {ee(ﬂ',u‘,q:) | q:eﬂi(n)}

2 - NECESSARY CONDITION SOLVED BY STATIONARY DOMA INS

In this section we are concerned by the Eulerian derivative of the Energy func-
tional with respect to the domain Q. The Energy functional E(Q) is associated to a
stationary linear stoke's flow ; @ is the volume of mp, N = 2,3, occupied by the
flow and at each point x of 0, u(x) = (ul(x),.., un(x)) is the speed vector of the

particle located at x. The fluid is assumed incompressible then we assume that
div (u(x)) = 0, xE€a (2.1>

On the boundary 90 of @ several boundary conditions are usualy imposed, the boundary
being decomposed in several components 8Q = £ UT, u is given on I while I' is the
"free" part of the boundary. Without any loss of generality for the results we
obtain in this section we set £ = @ (empty set) and we introduce a forcing term
fE,LZ(D)N, E dans D being two given smooth bounded domains in EN, ECD with
0 < meas (E) < a < meas (D) we consider the set of admissible domains @ in ' such
that
ECQcCD (2.2)
meas (Q) = o (2.3)

The strong formulation of the Stoke's equation is then
- Au + Vp = fo in Q (2.4)

where p 1is the preassure and Xg the characteristic function of the set E.

u.n = 0 on T (2.5)
(e(u).n)r =0 on T (2.6)

and the free boundary condition would be e(u).n.n prescribed or solution of some

tangential problem on I'(d3DUBE), see (2.39), (2.42).

For each smooth domain @ we introduce the following Hilbert space
1
1 N .
H(A) = {uel (), div u=0, u.n =0 on aa} 2.7

and the functionnal

Jn(u) = % fn e(u).. e(u) dx - fEf.u dx (2.8)

From the Korn inequality we know that J, is coercive on H(Q) and that there exists

a unique minimizing element u to J, over H(Q). It turns out from (1.6) that u is a

Q
weak solution to problem (2.1), (2.4), (2.5).

The energy functional is then

E(Q) = Jo(uw) = Min {J(v) | ven@)} (2.9)
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Lemma 2.1
Let V be on admissible field, i.e. VE;CO([O, ef, Cl(D,D)) with V.n = O on 8D.

Let ﬂt = Tt(V) (R) be the perturbated domain. Then the following transformation
-1 -1
u=-u = [(det(DT )) ~ DT .uloT (2.10)
is a linear isomorphism from H(f}) onto H(ﬂt)

Proof

It can be easily verified that

(div u) oT = (det(m‘t))'1 div ((det DT ) (DTt)_lu °oT.) (2.11)
and also that, n being the unitary normal field on I', out going to f, then on Ft
we have

-1 -1
n, = (”M(DTt).n” M(DTt).n)oTE on T, (2.12)

where M(A) 1is the cofactor's matrix of A,
* -1
M(a) = deta AT,
From (2.10), (2.12) we get, with Jp = det (DTt)' (ut'nt)OTt proportional to
* So -
<M(DTt).n, DTt.u>,that is proportional to < DTtl.n, DTt.u> = <n, DTtl.DTtu> then
(ut.nt) oTt = a(t) u.n,and it can be verified that for t small enough, 0< t<e, the

function a(t) is strictely positive on D.

From (2.10) and (2.11) we get

. -1 . -1 -1
(div ut)oTt =J, div [J,(pT ) " J 7 DT .u]
that is
. -1
(div ut)OTt =J. 5 divu (2.13)
Again, as J;l is strictely positive (and continuous) on D we conclude the proof of
the lemma
Corollary 2.2
u being defined by (2.10) we have
E(Q ) = Min Jo (u) (2.14)
t u€H(A) nt t
We shall write E(Q ) = Min F(t,u) (2.15)
t
ue H(N)
with F(t,u) = Jﬂt(ut)
=% a Ie[(.]-tl DTt.u)oTzl] |2dx - fE<f,(J;1 DTt.u)oT;1>dx (2.16)
t

We assume now that @ and f are smooth enough so that U, t >0, is smooth, say
ute,HZ(ﬂt)Nr\H(ﬂt). In that case the differentiation with respect to the parameter
t of a minimum results applies(see J.P. Zolésio [4], M.C. Delfour, J.P. Zolésio [51],

and we get from (2.15)

d

dE(Q; V) = ——
¢ ) dt

-2
1-:(0t)lt=0 ﬁF(o,u) (2.17)
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Then we concentrate our study on the calculation of the term %? F(O,u), u being
assumed smooth. From (2.16) we know that this derivative will involves two integrals
a boundary integral and a volume integral over fl. Only the first one requires smooth
ness of u. In bat form the necessary condition associated to any stationary domain
will immediately turn to be a free boundary condition in strong version.

g? F(O,u) = fne(u)..e(au)dx - fnf du dx

+

Sp % le@[?v(0).nar - S .u V(o) nadr, (2.18)

Y € Hl(n)N (2.19)

where 0Qu = —
at t
t=0

is the element of Hl(ﬂ)N such that u =u+t du + 0(r)
where O(t)E_Hl(Q)N, loCe)|| /t~o, t-o.
We have the following characterization

Lemma 2.3
du = - div V u + DV.u - Du.V (2.19)

Proof

(2.19) derives from the classical results, see J.P. Zolésio [}], [4],

J. Sokolowski - J.P. Zolésio [3], under smoothness assumption we have

9 QLT G = o= £(0,%) + 7 £(0,%).V(0,x)

d , o d .
and (HT Jt)t=o = div v(0) ; (HT DTt)t=o = DV(0)

Remark 2.4
As the derivatives with respect to t and to the space variable x commutes we

get
‘%E eu)),_ = e(aw) (2.20)

Corollary 2.5
Let No be a smooth unitary extension of the normal fieldn ; If T = 9Q is of
class Ck,kzl, there exists such a NoeCk-l(‘U.), U being a neighborhood of T. Consi-

der speed vector fields V such that in T we have

v(t,x) = v(t,x) No(x) (2.21)
Then the normal component of d8u on T is given by

du.n = div, (vu) (2.22)

where divP( ) is the tangential divergence, see J.P. Zolésio [2], J. Sokolowski -

J.P. Zolésio [ 3], defined by, e being a vector field on I', E any extension .f e,
div, e = div E - <e(E).n,n> (2.23)

(It turns out that the right hand side of (2.23) is independant on the choice of

extension E defined itself on an arbitrary neighborhood ).
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Proof

Let V be any admissible vector field ; from (2.19), (2.5) we get

du.n = <DV(0).u,n> - <Du.V,n>

But when V takes the form (2.21) we get, see J.P. Zolésio [2],

pv(0) = v(0) DN + n. Vv(0) on T
and then

du.n = VFV(O).U + v(0) divr u = divr (v(0)u)

Remark 2.6
As u is a smooth divergence free field, from (2.23) and (2.1) we get (writ-

ting (2.1) on the boundary)
div, (u) = - <e(u).n,n> (2.24)

We adopt the fluid mechanic notation €(u).n.n for this term.
Finely we obtain a first expression for the Eulerian semi-derivative of the

Energy E(Q)

Proposition 2.7

The speed field V is given verifying (2.21), then

. % e(u)..e(u) v(0)-F.uv(0))dT
(2.25)

dE(R;V) = fn(<-Au—f, au>IRNdx + fl.,(<e(u).n, au>]RN

Using now the problem (2.1), (2.4), (2.5), (2.6) whose u is assumed to be the strong

solution we get from (2.25)
Corollary 2.6
dE(f; V) = -fn du Vp dx - fr divr(u) divy (v(0)u) dr
+ fp g o)., e(u)v(0)dr - f f.u v(0) dr (2.26)
Proof
from (2.6) we get €(u).n = e(u).n.n n on TI', then from (2.23), (2.24) ;
e(u).n = - divr(u)n on T (2.21)

using (2.4), (2.27) and (2.22) in (2.25) we get (2.26)

Lemma 2.7

Assuming the preassure smooth enough, we have

fnau.Vp dx = pr divr(v(O)u)dF (2.28)
Proof

From Lemma 2.1 we know that the element Uy belongs to H(Qt), then
div(uL) =0 in Qt . Taking the derivative with respect to t, which commutes with
the divergence operator we get, at t=o, div(du) =0 in Q. Then 8u Vp = div(p du)

and from Stoke's formula we get.
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fﬂ 8u.Vp dx = fr pdu.n dT (2.29)
The expression (2.28) derives from (2.29) and (2.22)

Corollary 2.8
Assuming the Speed field V such that (2.21) is verified and assuming I', u and
p smooth enough we get the Eulerian semi-derivative as expected by the Structure

Theorem (see J.P. Zolésio [2]), i.e. as a boundary expression
dE(Q;V) = - fr(p+divr(u))divr(v(O)u)dF4—%fr(e(u)..e(u)—f.u)v(O)dF (2.30)

Lemma 2.9
Assuming T,p and u smooth enough

frudivr(u) VFV(O)dF = —frdivr[(divr(u)).u]v(o)dF (2.31)

(2.31) directely derives from the by parts integration formula on I', see
J.P. Zolésio [2], J. Sokolowski, J.P. Zolésio [3]. It must be noticed that as
u.n = O the mean curvature H does not occur in (2.31) ; also the speed v must be
zero at the boundary of T, for short we assume here that the boundary T has no boun-

dary (it is a compact manifold)

The preassure on the free surface I' of the fluid is in many example a constant
for example the atmospheric preassure. As p is defined up to a constant we shall

now assume that p is zero on I', then

Proposition 2.10
Assuming T, u smooth enough and p=0 on the boundary we have

dE(Q; V) = fF(VF(divFu).u + % e(u)..e(u) -~ £f.u)v(0)dT (2.32)

Proof

we have divr(au) = a divr u + (Vra).u (2.33)

then from (2.30) and (2.31) we get (with p=0 on T)
dE(R;V) = + S div, (u divou) v(0)dr - £ (div w) v(0) dr
o J(F e(w.. e(u) - £.u) v(0)dr
and with (2.33)
dE(R; V) = £ ((div, WP + ¥, (divpw) - (iw?)v(o)dr

+ ... and we get (2.32)
Remark 2.11
The expression u.VF(divu) = u.V(div u) that we got in (2.32) is in fact a
material derivative, not with respect to the speed field V that we introduced to
generate virtual deformations of the domain Q, but with respect to the physical

speed vector u(x) of the fluid. Let Xoel'be given and set
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S %X ) = ulx(t,X ), %(0,x ) = X_ (2.34)

we introduce the flow Transformation Tt(u) and
¥(t) = (divou) (x(t,X )) = (div u) oT (u) (X)) (2.35)
r o r t o

where u is the solution of the fluid problem (2.1), (2.4), (2.5), (2.6) with p=0
on the Boundary, T and u assumed to be smooth enough, we get (with x==x(t,Xo) for

short)

4 1(0) = Vo (divow) (x(£)).ulx(t)) (2.36)
dt r r

that is

d

It (divru)oTt(u) = (VF div u)oTt(u).uoTt(u) (2.37)

Proposition 2.12. (Necessary optimality condition)

Let Q be a smooth stationary domain of the Energy functional

Vv, admissible field, dE(Q;V) = O (2.38)
Then e(u).n.n = —diVP\J on I solves (the tangential differential equation), oneF,
[e(u).n.nHx(t)) = (e(u).n.n) (xo) + ct ~ f;(%Ie(u)lz(x(s))+f(x(s)).u(x(s)))d5
(2.39)
where |€(u)'2 = e(u).. e(u) = izj (eij)z, C is a constant.
Proof

We assume that 1 is a stationary domain for the functional E in the set of all
admissible domain with prescribed measure. Then the field V(t,.) has to be chosen
with free divergence so that the measure meas(ﬂt) = meas(fl) is given, from Stoke's

formula, that is to say that the normal component v(0Q) of the field V(0)
on T verifies IP v(0,x) dI(x) = 0O (2.40)
From (2.40), (2.32) and (2.37) we get

VF(diqu).u + % Ie(u)l2 -f.u=C on T

4 (v oT (W] = c- 3 [e@)]?oT () - (f.w)oT (u) (2.41)

where C is a constant deriving from (2.40), as we have the orthogonality to a closed
subspace.
Remark 2.13

If the force f is zero on I', from (2.39) we get that t—(e(u).n.n) (x(t)) is

monotoniquely decaying when the volume of the fluide is not prescribed.

Remark 2.14

If the volume of the domain 1 is not prescribed then the constant C = 0.

We consider now the situations involving the surface tension 0. We introduce
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EO(Q) = E(Q) + cPD(Q) (2.42)

where PD(Q) is the perimeter of Q relatively to D.

Proposition 2.15
Let Q be a smooth stationary domain for the functional EO, then, assuming
u = u(Ql) smooth enough and the preassure p=0 on I, the term e(u).n.n solves the

following problem : n e I, x(t) = x_+ ftu(x(s))ds,
o o o
le(uw.u.nl(x(t)) = (E(u).n.n)(xo) + ct

- S TonGx(s)) + 3 [e(u)]|2(x(s)) + £(x(s)).ulx(s))]ds (2.43)

Where H(x) is the mean curvature of the surface I' at point x.

Proof
When 2 is a smooth domain of class C2 we have PD(Q) = frdF, where T = 800D
and then the Eulerian derivative of PD(Q), with an admissible field V such that

V=0 on 8DN3N, {s given by, see J.P. Zolésio [7], [6]
de(8;V) = S HV(0).n dT (2.44)

where H is the mean curvature of T and n is the out going to fI unitary normal

field on I'. Then (2.43) derives from (2.39) and (2.44).
CONCLUSION

This short study intends to underline that minimizing (or maximizing) the
energy term E(f1) with respect to the boundary T does not leads to the physical
free boundary (as it is true for perfect fluid, for example in hydrodynamic, see
Zolésio [ 1) but to the tangential problems (2.39), (2.41) or (2.43)
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