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On Optimization of Discontinuous 
Systems 

Yuri M. Ermoliev 
Alexei A. Gaivoronski* 

ABSTRACT. 

In this paper stochastic programming techniques are adapted and 

further developed for applications to discrete event systems. We 

consider cases when the sample path of the system depend 

discontinuously on control parameters (e.g. modeling of failures, 

several competing processes), which could make the computation of 

estimates of the gradient difficult. Methods which use only samples 

of the performance criterion are developed, in particular finite 

differences with reduced variance and concurrent approximation and 

optimization algorithms. Optimization of the stationary behavior is 

also considered. Results of numerical experiments and convergence 

results are reported. 

KEYWORDS: Stochastic programming, stochastic quasigradient 

methods, discrete event systems, simulation, concurrent 

approximation and optimization. 

1. OPTIMIZATION OF DISCRETE EVENT SYSTEMS: INFORMAL DISCUSSION. 

The objective of this paper is to address several issues which 

are important for applications of optimization algorithms to 

stochastic models of discrete event systems. During last decades 

considerable efforts were devoted to development of various modeling 

tools for discrete event systems (DES), in particular Petri nets 

[1,35], queuing models [21,51], finitely recursive processes [23], 

and others, for further references see [52]. At the same time the 
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develap~~ent of stochastic prograrm.ing tech~iqcea reached the stage 

of reasonable theoretical understanding, falr:y advanced research 

softwzre and som9 s~phisticated applications [lC]. So far these two 

fields interacted relatively wezkly([17,30,40,46] are anong rare 

exceptions), though discrete event systems seem to be a natural 

application for stochastic optimization. 

We assume that it is possible to identify a set Z of states of 

DES and the system evolves in time t. The set Z can be finite or 

infinite, the time can be discrete or continuous. The evolution of 

the system consists of the sequence of "events" which occur at 

particular time moments ti, each event is a change of the state of 

the system from zi-l to zi. Thus, the system evolution can be 

represented as a finite or infinite sequence of pairs 

which will be called the path of the system. It is assumed that the 

system remains in the state zi at the time interval [ti,ti+l). 

Optimization will be performed on the simulation model of DES which 

can reproduce the path U of the system. This model can be built 

using one of the modeling approaches mentioned above and it would 

incorporate particular rules which govern the state transitions. 

We are interested in the situation when the major structural 

decisions on the system design are already taken, but the system 

still depends on the vector of controllable continuous parameters x, 

and the objective is to select those parameters from an admissible 

set XU?" which would yield the best values of some performance 

criterion. Examples of such problems can be found in the design of 

distributed information processing systems [ 4 0 ] ,  manufacturing 

systems [ 2 ] ,  logistics networks. In some DES applications there are 

ad hoc on-line control strategies which depend on parameters to be 

adjusted. The objective of optimization here will be to define 



0ptini.a.1 values of such pnrartleters. 

WE assure that the system is nffected by the prcsence of 

~ z c e r t a i n t y  which can be modelled through uncontr~liable stoshas~ic 

parag~~ters. This stochasticity may be in9erentl-y prcseLt, in the 

system, for instance it may account for unpredictably changing 

demand, for the fluctuations in the flow of messages to be 

processed, for the unpredictable failures.of some parts of the 

system. In other cases it may be a convenient tool to analyze the 

system. 

Thus, both transition times ti and states zi which form the path 

(1) depend on controls and random parameters: 

where by w is denoted the possibly infinite sequence of realizations 

of random parameters: 

Here each w(i) is a random vector with values in and corresponds 

to the transition between ~ ~ - ~ ( x , o )  and zi(x,o) in such a way that 

ti and zi depend only on w(s), s=O:i. For a fixed value x of control 

parameters and a sample w of random parameters the simulation run 

can produce a path U(x,w) which will be referred to as a sample path 

The path U(x,w) will be a trajectory of a random process of the 

special type defined on some probability space (R,B,P) where B is a 

Bore1 field and P is a probability measure. Where it will not cause 

confusion, we denote an element of this space also by w. More 

specifically, this process can be considered to be a generalized 

semi-Markov process [ 5 3 ] .  Precise requirements on the nature of this 

process will be made later (see Comment 2 to the Theorem 1). 

Finally, we assume that some performance criterion F(x) is 

defined which integrates several desirable features of the system. 

For instance, in the case of manufacturing system it could be a 



mix tx re  of a t?~zoc~hp~:t; xtilization of Imp~ztant machines, averaqo 

I.en3tl-i of queues, ?rcbuction costs. This perfornar,ce criterion is 

expressed as an average over the sst of possible sam~le paths: 

F(x)=Ewf(x,w), f(x,w)=p(U(x,w),x,wj ( 3 )  

Once the sample path is known, the function f (x,w) can be either 

expressed explicitly or by simple recursive formulas. Thus, each 

simulation run provides the value of f(x,w) for some fixed (x,w). 

The optimization problem is to minimize the averaged performance 

criterion (3) on the set xrlRn of admissible control parameters: 

min Ewf (x,w)= min if (x,o)~(do) 
xex xex , 

This problem is a typical stochastic progra.ming problem, 

although with the objective function of the special type (3). There 

have been considerable activities during last two decades 

concentrated on the development of numerical methods for solving 

such problems (see [ l o ] ,  where one can find further references). The 

major difficulty is presented by the expectation operation in (4) 

since it requires the multidimensional integration which is 

infeasible for problems of realistic dimension. Therefore the main 

issue in the algorithmic development was to avoid multidimensional 

integration and still solve the optimization problem. Two main 

approaches were used to accomplish this. One is to approximate the 

probability measure P from (4) by some discrete probability measure 

pN,. This would reduce the integration in (4) to summation and for 

important classes of stochastic optimization problems, notably for 

stochastic programs with recourse, it would lead to a large scale 

deterministic optimization problem with a special structure 

[3,5,25,37,42]. Numerical methods were developed which exploit this 

structure, those methods were particularly efficient for linear 

programs with recourse. Much work is still needed to adapt these 



Another a~:jrcach mzkes us2  of r;ta.;;i.st~.ical. ectixa?-.er; 0:: the 

values F(x) of the objective f u r i e t i c n  or it2 yradisnt F ( x j  . It 
X 

0 1 s Tenerztes a sequecce of points x ,x ,..., x which cGnverges to the 

optimal solution of the problem (4) acd ax each step oniy a small 

number of observations of the function f(x,o) or its gradient is 

needed, possibly only one observation. One such algorithm is the 

method of stochastic quasigradients [8,9,13,29,31,39,41,47], amony 

its origins is the stochastic approximation [27]. The method 

0 1 S produces a sequence x ,x ,... x ,... according to the rule 

where nx denotes projection operator on the set X, ps is a stepsize 

and eS is a stochastic quasigradient with the property 

where as vanishes as s tends to infinity. In other words, eS is a 
statistical estimate of the gradient and in the simplest case one 

S may take ~S=fX(~S,oS) where o is an independent observation of 

random parameters. 

This paper deals with an application of procedures of the type 

(5)-(6) to simulation models of discrete event systems. We address 

some issues which result from the special type of the objective 

function (3) conditioned by the following specific features of DES. 

1. In many cases the performance criterion (3) depends on the 

stationary behavior of the system which is attained only 

asymptotically. In such cases, in order to make one observation of 

the objective function ideally, we should obtain a sample path of 

infinite length, which is impossible. If we stop a simulation at t=T 

T we would obtain an observation of a function F (x) which tends to 

F(x) with T-No. Conditions when such convergence occurs for 

stochastic programming problems were studied in [7,26,28,44,50]. In 



+'-:s .-.-... paper 'in the sccticn 2 ws consider alsor-ithnic iszues. In 

part.icular it is necessary to design a ~ethcd tc minimize F(x) which 

uses ob~ervatioris of F ~ ( X )  and preferably can work with snall values 

S of T 02 the first iterations, when x is f a r  fro;? the solution, and 

gradually increase T while approaching the solution. It means that 

method optimizes different functions on different iterations and 

optimization problem is nonstationary [ll]. However we show in the 

section 2 that under quite general conditions the method on the 

basis of (5) generates a sequence xS which converges to the solution 

of the problem (4). 

2. Another important specific feature of DES is that the sample 

path often depends discontinuously on controlled parameters [18]. 

This may create difficulties for obtaining statistical estimates cS 
of the gradient needed in (5)-(6). A straightforward approach for 

computing such an estimate is to take finite differences, but this 

would lead to large variance of es and often prohibitive 
requirements on the amount of simulation runs even for problems of 

moderate dimension. Considerable efforts were dedicated recently to 

the development of differentiation schemes which utilize a knowledge 

of the structure of DES in order to obtain more precise statistical 

estimates of the gradient with less simulation effort. Two main 

approaches are the perturbation analysis [21,51] and the score 

function (likelihood ratio) method [17,43,45], special notions of 

derivatives of measures [40] proved to be useful in this respect. 

However, original versions of these techniques encounter some 

difficulties. In particular, the perturbation analysis generally 

gives a biased estimate when a sample path of the system depends 

discontinuously on control parameters [20]. More rigorous discussion 

of this issue is contained in the section 3, a simple but 

illuminating example is contained in the Appendix B. On the other 



h~nci, t:le seore function rnethcd deals successf ul1.y wit11 

dj-~contin~itiez, but in sone cases Kay yield esxii?atea with lar~e 

variance [43,46]. Both techniques are now under vigorous develop~.snt 

and some of the weak points have been removed [18,33,45]. 

We consider here the complemsntary approach intended for the 

cases when differentiation schemes encounter difficulties. In 

particular, we deal with discontinuities by developing methods which 

need only observations of the objective function instead of 

observations of its gradients, and at the same time represent an 

improvement compared with ordinary finite differences. Two such 

methods are presented here. 

In the section 3 an enhanced finite difference scheme is 

presented with reduced variance, it uses the random smoothing and 

common random numbers. In the section 4 we introduce a new class of 

algorithms which perform on-line approximation of the objective 

function on the basis of the current and a number of previous 

observations. The step direction cS in (6) would be a gradient of 
the approximation or the direction to the minimum of the 

approximation. Convergence of one of the algorithms of this type is 

proved in the Appendix A and a numerical experiment is presented in 

the Appendix C. 

2. OPTIMIZATION OF THE STATIONARY BEHAVIOR 

We consider here the case when the system evolves on the infinite 

time horizon [to,=). At each t there exists a probability measure 

Q(zofxft;dz) such that 

J Q(zotxtt;dz) 
z ' 

defines the probability that at the time moment t the state of the 

system belongs to the set Z8rZ. This measure depenc:s also on the 



in t ia!, state z and coctrol parameters x. L c t  us assurllc t h a t  t h z ~ e  
C 

exists the ~tezionzry measure Q(x;dzj which defims tFLe staticnary 

statz dkstrihtion of tt.e system si~ilar to ( 7 ) ,  i.e. 

Q(z0,.%,t;dz;+Q(x;dz) as t+ in a sense that will be specified 

later, and this measure does not depend on the initial state z0€Z.  

The performance criterion F(x) is defined in terms of the limiting 

measure : 

and the problem (4) is to be solved with the performance criterion 

of this type. Many DES optimization problems can be formulated this 

way, in particular the problems of optimization of Markov systems 

1401 

The main difficulty of the problem (4),(8) is that neither the 

measures Q(zo,x,t;dz) nor especially the measure Q(x;dz) are known 

explicitly and the solution should be found by observing :.he values 

of the function p(-,x,u) or related values on finite time intervals. 

Let us formulate this more precisely. 

Let us consider a partition of the time horizon [tO,m) into a 

sequence of time intervals As=[tls,t2s)l tll=tO, t2s=tl,s+l, 

=t (0). We would like to define an algorithm which tls=tls(w)' t2s 2s 

solves the problem (4),(8) during one simulation run, therefore we 

allow changes in the values of control parameters in the course of 

simulation. Let us assume that the value xS of control parameters is 

set at the beginning of the interval As and remains unchanged during 

this interval..Some more notations follow: 

1 s . 
X(S) - the sequence x ,..., x , 
t(s) - the sequence tll, ..., tls; 
us=uS(x(s) ,a) - the section of the sample path which is obtained 

by discarding all events outside the interval As; 



L ' j s ) = U ( s , x ( s )  ,a) - the section of t h e  sz.npie path from t h e  

simulation =tart at t=t to the beginning of the interpal A at t=t, 0 9 - 
5 - a o-field defined by U(s),x(s),~L(s). 
S 

T - the set of sequences zitti), i = O l l t ~ . .  i ;!ir!:lte ar I' 
+ 

infinite, and such that zieZ, titR , ti+ltti. 

p(U,x,w), pi(U,x,a), i=l:K - mappings TxXxR+R, at this moment we 

assume only that these functions are such that the following 

expression is well defined: 

S S 
F(stxtw)=D(E(pl(U txt(.~) I D s )  I a *  tE(pK(U 1 x 1 ~ )  1 ~ ~ )  

K where D is a mapping lR +R. 

If F(s,x,a)+F(x) in some sense then we can use techniques of 

nonstationary optimization [ll] to solve the problem (4),(8). That 

is, on the step s of the optimization algorithm we make one 

minimization step of the function F(s,x,w), and in this way arrive 

at the minimum of F(x). This results in the following algorithm 

which allows to solve (4),(8) in a single simulation run. Other 

single run simulation optimization algorithms are presented in 

[30,40,46]. 

Algorithm 1. 

The simulation starts at t=O with some initial value xo of 

control variables and initial state zO. The algorithm partitions the 

time horizon [tOtm) into the sequence of intervals All...,Ast...l 

and changes the values of control variables x at the end of each 

time interval as follows. 

1. Suppose that the process arrived at the end of the interval 

As-l and the interval As starts. The time t2s=tl,s+l of the end of 

this interval is defined either deterministically or as a stopping 

time measurable with respect to Bs+l. 

2. At t=tlt s+l the observation cS is made such that 



where p r0 is the stepsize and nx is the projection operator on t h e  
S 

set X. Let us denote 

Convergence of the Algorithm 1 is established by the following 

tneorem. 

Theorem 1. Su?pose that the following conditions are satisfied: 

1. XCR" is a convex compact set. 
* 

2. F(x) is continuous on X and the set X is convex. 

3. The function F(stx,w) is a convex function with respect to x 

with a subdifferential which is bounded on X a.s. uniformly with 

S S respect to st F(stx ,o) converges to F(x ) as S--+a and 
* * 

limsup F(stxto) F a.s. uniformly for XEX . 
S 

S S 2 0 S 4. E ( H <  -Fx(stx ,o)-alSI lx ,..., x )=Cs<wt a +O a.s., Is 

Then the sequence xS generated by (9)-(10) has accumulation 
* 

points and all such points belong to the set X of solutions of the 

problem (4),(8). 

Proof of this theorem is given in the Appendix A. 

Comments. 

1. Similar result holds for differentiable nonconvex functions 

F(s,x,o), but convergence would be to the points where the first 

order necessary conditions for optimality are fulfilled. 

2. We intentionally did not specify precisely the properties of 

the stochastic process which generates the sample path U and the 



~~operties of t h e  function p in order to f.srr::ul.ate n mininal set of 

cu~ditio~s wh:.c?l gvarantee applicsSility of t.he :;let.hod ( 5  > - (5) ts 
DZS. Now the pro2erties of U 2nd p are implied by coneitions 3 z.nd 4 

of t h e  theore:?. For exarnple, a convergenca part of the condition 3 

is obviously satisfied for regeneretive case [4] due ta 

representation of the function F(s,x,o). Some relevant results for 

nonregenerative ergodic case are contained in [40], where it was 

required that the lengths of the intervals As tend to infinity. More 

research is needed to translate conditions 3,4 into explicit general 

re~uirements on the process in nonregenerative case. 

3. Condition 3 is satisfied, for instance, when F(s,x,w) 

converges to F(x) uniformly over (x,o) as S--m. 

4. Important issue for implementation of this algorithm is how to 

select the stepsizes. This can be done similarly to [13,31,39,47]. 

In the remaining sections of this paper we deal with the problem 

of determining the step direction tS for the algorithm 1. 

3. OBTAINING STATISTICAL ESTIMATES OF THE GRADIENT. 

In this section we give a very brief survey of approaches for 

computing a stochastic quasigradient tS for the method ( 5 )  and 

indicate some of difficulties which result from specific features of 

DES. We need this to place the methods proposed here in the right 

context, one in the second part of this section and another 'in the 

section 4, and explain why we consider them relevant for DES. 

Let us consider properties of the objective function from (3): 

F(x)=Euf(xtw)=Eu~(u(xtw)txtu) (11) 

For the sake of clarity we assume that the sample path U(x,w) 

consists of a finite fixed number N of pairs, which does not depend 

on w .  Such situation may appear either when the transient behavior 

of a system is studied or when a section of a sample path is used to 



c!ake i n f e r e n c e  on f k ~  system bellavicr, liks in the pre-,j ic.xs scct.io,l. 

Tl'le case w:ien N depe~ds on w or is infir..ite brings ni-rthing 

conceptually new to the discussion of this section except somo 

technicalities. 

One of the important specific features of DES is that the san2le 

path U(x,w) often depends discontinuously on (x,w). This is true fcr 

models of systems with several competing concurrent processes, like 

Petri net models of manufacturing and communication systems, models 

which include failures and repairs, many queueing models etc. The 

example in the Appendix B shows that even for very simple problems 

f(x,w) is discontinuous, or more precisely, piecewise continuous 

with infinite number of continuity sets. The importance of this 

phenomenon is recognized in the theory of DES (see discussion in 

[18,51]) where it is known as the event order change. 

In such cases also the function f(x,o) from (11) depends 

discontinuously on (x,~). This creates difficulties for some methods 

of sensitivity analysis based on differentiation schemes, which can 

be used for obtaining eS. In particular, event order changes 
critically affect the infinitesimal perturbation analysis [20,22]. 

S This technique suggests fX(xS,oS) for cS with independent o , i.e. 
simply changes the order of differentiation and expectation in (11). 

It should be noted that recent developments in perturbation analysis 

[15,16,18] deal successfully with some of the cases when 

discontinuities occur. 

Another sensitivity analysis techniques called the score function 

(likelihood ratio) method [17,40,43,45] deals successfully with 

discontinuities when the objective function has the form 

F(x)=Eof (a)= f (w)dH(x,w) ( 1 2 )  

where H(x,o) is a distribution with respect to which expectation is 

taken (provided H(x,o) satisfy additional differentiability 



c c n d i t . i o n s ) .  "5:s techriique; howcver, in saxe czses provide estimate 

w i t h  lcrge variznce [43,51]. It is also under vigorogs development 

now 2nd the scope of its applicability has been enlarged recently 

[ 3 3 , 4 0 ] .  For further clscussion 0 2  relative applications domains 

for these techniques see [43,45,51]. 

The approach which we pursue here is to design methods of 

computing stochastic quasigradient eS based not on differentiation 
schemes, as in the methods mentioned above, but solely on 

observations f(x,w) of the objective function. One such observation 

can always be made on the basis of one sample path, or its portion, 

although sometimes it is necessary to make several observations for 

getting eS. This is not an alternative, but rather a complementary 
approach to differentiation schemes for cases when such schemes 

encounter difficulties. 

One obvious way to construct statistical estimate of Fx(x) is by 

using the finite differences: 

or similar expressions for central finite differences. Here.ei are 

n is unit vectors of W , w , i=O:n are independent observations of o, 

each corresponds to the separate run of the model. This approach has 

two serious shortcomings: 

- it requires at least n+l simulation runs which grows to 2n for 
central finite differences; 

- the variance of the estimate (13) approaches infinity while 

6,--30 since for independent observations 
n 

where 



s G S  2 xC: 2 

Cso =~i(f(x ,w  I-F(X~)) I ,. . .  ,x j 

On t X a  other hand, tskfng large values of 6 woulc! decrease 
B 

variznce, but lead to significant bias. 

On12 might 'chink of using the cornmon randcn nunb;.ez:j for computing 

various observations of function values in (13). This would reduce 

the variance but generally would introduce a !3ias precisely due to 

discontinuities in the sample path discussed above. 

Th.e number of simulation runs can be reduced by the following 

device [ 8 ] .  Suppose that vi are random vectors uniformly distributed 

on the unit sphere in IRn and i=l:M, Mrl. Then one can take 

if vi is independent from uiS. This can reduce the simulation effort 

considerably since M could be equal 1. However the problem with 

increasing variance would persist. In order to partially alleviate 

it we propose to use the smoothing. 

We propose here to smooth the function f(x,u) and make it 

differentiable by deliberately introducing some noise into the 

control variables of the system. Contrary to what might be expected, 

introduction of the noise would lead to estimates with smaller 

variance then in (14) because this would make possible the use of 

common random numbers. Let us consider .two independent random 

vectors u=(ul, ..., un) and v=(v .,v ) with components 1'" n 

independently distributed on the interval [-1,1], they are also 

independent from random parameters w.  Instead of the original system 

we consider a system whose control variables have the form 

We can simulate a new system by the same model as the original one, 

it is enough to take (x+6(uS+vS) ,us) instead of the variables (x,os) 

and run the simulation model. Characteristics of this system are 



cbts ined by avera~L2g over such r-~ris, i.e. by averaqir :g over 

( w )  . 111 p ; r t i c u i . a r ,  t3.e p~rfcrsance crikarion t . l k e s  'itre for*? 

?(x,d)=E f(x+S(u+v) ,wj 
U!lV ( 1.7 ) 

If )I. is a compact seZ and F(:r) is contiriuocs then F(>:,6!--~I(x) as 

6+0 uniformly over X. Moreover, it is also differentiable, as the 

following lemma shows: 

T,emma 1. Suppose that Eu - SUP Jf(x,u)J<m, where 
x'u2Afi(X) 

Then for any 6: 0<6<A the function (17) is differentiable and 

- E f (x+6(u+v) ,w)= 
dx wuv 

The proof of this lemma is made similarly to general results on 

smoothing found in [19]. Note, that (18) can be viewed as the 

special type of the central finite differences. Now it is possible 

to take independent observations ws,uS,vS and choose eS as follows: 

There is one important difference between the last formula and the 

ordinary finite differences from,(l3). Here all the observations of 

the objective function needed to compute the differences are made 

with the same observation wS of random parameters and with slightly 

different (for small 6,) control parameters, while in (13) all 

observations were made with different and independent values for w .  

This makes the variance of eS based on (18) considerably smaller, 
especially for small as. Let us show that for the class of objective 

functions most commonly found in the models of discrete event 

systems. 

Let us fix 6>0, XEX and define 



sup  lf(x,u)-f(y,r,.))i i2(6,~,~)= -----. - 
I! 1: - .y 11 L ( 6 , : ~ ) = i E L ( € , x , w )  

x;y~kT ,(x) 
6 v n  

Dsfinition. A fuxcticn f(x,o) is a function with weak Lipchitz -- - 
-7; property of the order 7; if L(S,x)sL(x)G for sone L(x)<m. 

This property is closely related to Koelder continuity. 

Practically all functions of interest fall within this definition, 

in particular for 7;=O we obtain Lipchitzian functions and for z=1 we 

obtain functions for which IE sup (f(x,u)I<a. what is more 
xeUafi( x) 

important, for many discontinuous, but piecewise Lipchitzian 

functions, the value of 7; equals 0 or at least 7;<1. For such 

functions cS based on (18) has considerably smaller variance then 
traditional finite differences due to the following estimate 

There will be also a bias here, but in the case if F(x) is 

differentiable, it will be asymptotically smaller then as. Therefore 

for such cases introduction of noise in the control variables of the 

system yields a surprising result: it provides more accurate 

estimates of the gradient then those obtained without noise. 

4. CONCURRENT APPROXIMATION AND OPTIMIZATION 

In this section we introduce a general approach for constructing 

stochastic optimization algorithms which is based on observations of 

the values of the objective function only. It is not limited to 

discrete event systems. However, it is particularly useful for 

optimization of DES when direct application of differentiation 

schemes is difficult due to discontinuities in the sample paths, see 

discussion at the beginning of the section 3. It needs considerably 

less simulation effort compared with other techniques which do not 

directly involve differentiation. Finally, we specify one new 



al~orithm based on this ap?roac:l, >rove tho eonvergEr.cs .th60r~r~1 and 

present results of numerical exses:.nents. 

Informally spedcing, the idea behind t::? propc*sed apprcach i.s the 

following. Su2poae t h a ~  in the course of cptimizztion the sequexe 

0 S of points x ,..., x and the set of observations c It.  t c s  such that 

0 i 
E(Ci(x 

i ,..., x )=F(x ) ,  i=O:s were cbtained. These observations 

are used to approximate the function F(x) by a functioc F(s,x). Let 

X'EX be a point at which F(s,x) attains its minimal value over the 

set X. Then the next approximation to the optimal solution of the 

problem (4) is obtained as a linear combination of xS and xS: 

or, it is obtained by making a step in the direction opposite to the 

gradient of the approximating function: 

After that a new observation is made, the approximation F(s,x) is 

updated using this observation and the process continues. 

Let us compare this approach with two other techniques which does 

not use derivatives: finite differences and response surface 

methods. Shortcomings of the finite differences were discussed in 

the section 3. Here we point out that all observations of the 

objective function which are made at the point xS in order to obtain 

an estimate of the gradient via finite differences (13) are 

discarded on the next iteration when all observations are mdde again 

at the point xS+'. At the same time these observations contain 

considerable amount of information on the value of Fx(x s+l) since 

the stepsize ps is usually small and F(x) is continuously 

differentiable. The approach which we propose here use all this 

information, which result in estimates with smaller variance and/or 

smaller simulation effort since it can work with only one new 

observation on each iteration. 



File rzspor,ss scrface l n e t h c d  [24,;2,34,36 ] constracts 

ap2raxf~nation 0: the objective function on the Sssis of okservati~ns 

distrihted over some region, then finds the minimum of this 

spproxirnate function. These steps may be zepeated. The novelty of 

the approach proposed here is that we integrate approximation and 

optimization into a single on-line procedure. Approximation is 

updated after each step using new samples made at points (or point) 

obtained by optimization procedure. In this way excessive sampling 

in regions far from a vicinity of optimum is avoided. This again 

results in savings of simulation effort. Of course, an extensive 

experimentation is needed to further validate these assertions. 

In fact, much has to be done to design on its basis a practical 

algorithm, some of the issues to be clarified are how to choose an 

appropriate approximation criterion, how to select approximation 

points properly in order to insure stability of approximations, how 

to discard old points, etc. Some of those issues are reflected in 

the following scheme. 

Algorithm 2. 

0 1. At the beginning the initial point x1 is chosen, vo=O, Y =or 

zO=a are set. 

. 2. Suppose that prior to making iteration number s the algorithm 

generated the point xS, the set of observation points 

, Y ~ - ~ s x ,  and the set of observations 

- "s-l={Ci , i=l :vs-l ) such that E(<~ 1 yi)=~(yi). The following 

computations are performed at the iteration number s: 

i. The new set of observation points ys(xs)= . . . ,tsS} is 

S selected, ySsx and observations C1,. . . , C: are made such that 
S 

s is 
E(C, 1 y )=F(yiS) , the sets yS and zS are obtained: 



S j . L ,  The wei9hts s ( y )  , ~ E Y  5z.c ?-- ;clzctedr ;- t i i ~ s e  ~aeiql:: sse usec! 
9 

to define the approximaticn criterioz. 

S iii. The values of approximation pzrarneters a are defined by 

solving the following approximation problen: 

vs i min 1 aS(y )@(stci-~(s,a,y~)) 
a€A i=l 

k where AER , F(s,a,x) is some predefined class of functions, which is 

used to approximate F(x) and the function @(s,w) measures the 

closeness of fit of the approximation F(s,a,y) at the point y. 

iv. The next approximation x to the optimal solution is 

obtained either by 

s+l- S -S S -S S 
x -(I-ps)x +psx F(s,a .x ) =  min F(sla ,x), :'EX 

xEX 

s+l- S 
x -nx(x (21) 

In order to specify implementable algorithm on the basis of this 

scheme it is necessary to choose the approximating function 

F(s,a,x), the approximation criterion @(s,w), the set of observation 

points yS and weights as(y). Some of the issues concerning 

convergence of this method to the optimal solution of the problem 

(4) for particular choices of F(s,a,x), @(s,w), yS, as(y) , were 

clarified in [12]. In the remainder of this section we shall present 

one algorithm not covered there. 

Let us take 

a=(b,d) , bsR1, dsRn, A = I R ~ + ~ ,  ~(a,x)=b+d~(x-xs), @(s ,w)=w (22) 

Then the problem (19) has the explicit solution 

S S d S = ~  u (23) 

where 



Let cs spscify now the rnle :or selectl~n oz obszrva-Lion points. 

Kere w e  consider the case when only oce obserl~zticn soint is ac!ded 

on. each iteration, in order to minimize simulation requirements: 

1s YS=ty 1, ys= S' yS=xs+rsv s J8 (24) 

where vS are independent random vectors with zero mean. Introduction 

of the term r vS is necessary in order to stabilize the 
S 

approximation process. 

Finally, let us specify the rule for choosing approximation 

weiahts : 

where pssl, pl=l. Now it is possible to represent (23)-(25) in 

recursive form in order to avoid the matrix inversion on each 

iteration. Using the identity 

we obtain 

The iterations of the algorithm proceed as follows: 
S C ~ / I I ~ ~ I I  if I I ~  I I = C ~  

xs+l=rcx ( x ~ - ~ ~ T ~ ~ ~  ) , 7, 
={l otherwise 

The following theorem confirms convergence of the algorithm 

0 s (22)-(27). By 8, will be denoted the u-field defined by x ,..., x . 
Theorem 2. Suppose that the following conditions are satisfied: 

1. The set XCR" is convex and compact. 



2. The function 3(x) is convex c~ntin~ously dif ferent-.iabl& &nd 

F (xj s a - i s f * ~  the LlpchFtz condlti~n on X, 
X 

T T 

5 S' 3 .  [E(v"v' I B-)=EV.V a =v>o, E(V'/B~)=G~ IIV'II<C<~, 
it 

Then the sequence xS has accumulation points and all such points 
* 

belong to the set X of solutions of the problem (4). 

'The proof of this theorem is contained in the Appendix A, 

numerical experiments are contained in the Appendix C. 

Comments. 

1. With minor changes in the theorem conditions similar result 

holds for nonconvex F(x) with gradient which satisfies the Lipchitz 

condition. In this case convergence would occur to points which 

satisfy the first order optimality conditions. 

2. Although the stepsize condition 4 of the theorem looks 

complicated, it is satisfied for a reasonable range of possible 

sequences r p s  and ps. For example if those sequences behave 
S' 

asymptotically like S - ~ , S - ~  and s - ~  then the condition 4 is 

satisfied for 

for instance for p=l, p=0.7, r=0.14. Those conditions have only an 

asymptotic value and for practical implementation ps and ps would be 

taken constant and ps would be selected according to one of the 

adaptive rules [12,39,47]. 

3. The algorithm (23)-(27) is one of many possible variants of 

the general scheme described in the Algorithm 2. Due to explicit 



fcrm~~las for the ste? direction, it is easisr to prove convergence 

for (23)-(27), but other variants conld be more sdvantacz3~:s from 

practical point of view. Ve tried, for instance, a similar algcrithm 

based on L1 approximation and found it to bo more stable. 

M-estimates, trimming and other techniques of robust stasistics [22] 

can be applied here. In order to select the measure for generating 

S identification step v the methods of optimal experiment design can 

be used [ 6 , 4 9 ] .  

APPENDIX A. PROOF OF THEOREMS 1,2. 

In what follows we denote by C, C1, C2 some finite constants, to 

simplify notations different such constants are denoted by the same 

letter. The same convention holds for as by which we denoze an 

arbitrary sequence which tends to zero. 

At the beginning we need several lemmas. 

Lemma 2. Suppose that for a nonnegative sequence as the following 

inequality is satisfied: 

as+l=as-B s ' s  (a (1-cs)-C), CaO, BsaOr pS+Or fii=mt cs+O (A.1) 

Then limsup a s C 
i i 

Proof. 

Let us fix some 6: 0 ~ 6 ~ 1  and take such k that cs<6, BS<6/C for 

srk. Then 

as+l-as=6, srk. 

Suppose that as(l-6)-C>6 for s>k. Then (A.l) yields for s>k: 
S - 
i=k 

Q) 

which contradicts with nonnegativity of as due to 1 pi== Therefore 

i=1 

there exists lrk such that al(l-6)-Cs6. Now for any s>1 there are 

the following two possibilities: 



i. ec-.(I--6)-CsE, then d u ~  to (A.2) 
" I 

a (i-6)-Csa ( - 6 ) -  - 6 )  ( -  ) r 8 + ( 1 - 6 : t & < 2 Q  
S s-l 3 8 - .I. 

ii. a G-i (1-6j-C>s, then assas-l and 

a (1-6)-Csa (1-3)-C 
S s-1 

Therefore as(l-6)-C<26 for s=l and 

limsup ai < (C+26)/(1-6) 
i 

which yields the required assertion since 6 can be taken arbitr~ry 

small. 

In what follows we deal with the convergence with probability 1 

(a.s.) of random sequences defined on some probability space ( R , I B , P )  

where B is a Bore1 field and P is a probability measure. An element 

of this space is denoted by o. 

Lemma 3. Suppose that 

as+l=( l-fis)as+fiscsf cS+O a.s. 2 pi=", fiSsl 
i=l 

Then a -0 a.s. 
S 

Proof. 

From (A.3) we obtain 
k 

I las+ l l l~ ( l -~ , ) l las l l+~s l lcs I I ,  lla 11+11a 11 -  1 pi(lla.ll-llcill) k 1 1 
i=l+l 

now if for some o there exist 1 and 6>0 such that llaill-llcill>d for 

k>l then 

which contradicts nonnegativity of llakY for sufficiently large k. 

Therefore for any o, d and 1 there exists k=k(o,6,l)rl such that 

llakll-Yskll<d. Then ( A .  3) implies 

Ilas+lllsmax{llasII, Ilc s II) 

which yields 

Ila Ilsmax{Ila II ,maxllc . II )rmaxllrill+6 s k irk 1 irk 

Since cs-0 a.s. the last inequality implies llaSII+O a.s. 



The assertion of t:?i_s lei~xa can be slternc?tively obtairec! from 

rzsults contained in [ 4 8 ] .  

Len~a 4. Suppose that -- 

Then as+O a.s. 

Proof. 

Let us denote 

a2tl=alf a2ts+l=(1-~1s)a21s+B2s"s 

Then as=a +a 1,s 2,s and Ila li+O a.s. due to the Lemma 3. 
21s 

2 2 S 2 
"alt s+l 1,s (~.4) 1l~=(l-8~~) lla fi +282s(1-81s) ( F  - ~ ~ t a ~ ~ ~ ) + ~ ~ ~  

which implies that 

is a nonnegative supermartingale. Therefore Ra l l L  converges with 
11s 

probability 1 [ 3 8 ] .  From (A.4) follows that 

which yields 

for any kzl, s>k. Due to 1 pli=m we obtain now: 

2 lirnsup Ella 112S C 1 f32i 
S 1 t s 

i=k 
2 which is true for an arbitrary kzl. Therefore Ellal I1 -0 because 

m t s 

1 f3ii<m. This together with the convergence of a 
1,s 

gives alt s+O 
i=l 

We shall use these lemmas to derive the asymptotic.expression for 



Lemm 5. Su2pose that -- 

Then 

Proof. 

From (23),(26) follows that 

Let us consider various terms in (A.5). 

S i s 1. Let us estimate wS= 1 ais(x -X ) .  We obtain: 

since 

due to (27). Let us substitute ~wsS=asps-l/~s. Then (A.6) yields: 

Applying the Lemma 2 to this inequality we obtain 

limsup ai s Co 
i 

and finally for sufficiently large s we have: 

S i i 2. Let us estimate ws= 1 ais (y -X ) . Due to (24) we obtain: 
i=l 



n- :uklnz as=w ,/re we obtain from this ir.zquaii.t-_r: 
b d - 

therefore 26 since r 2s 1s s-l=rs. Thus, the Le~nma 4 can be applied 

here, which yields as+O a.s. and finally 

S 
'7 i i L ais (Y -x = rs~2s, T.. LS --,O a . s .  ( A . 9 )  
i=l -1 

3. Let us take R'=Q' . From (A.5),(A.a),(A.9) we obtain: 
s-1 

RS=( 1-Ps) (R +f3S.(~S-1- ( Y S-~ s-l)] [ xs-l-(ys-x~-l)]~), 
S-1 2 S S T P s  (R +BSrS(v +r3s) (V +r3s) ) ,  rjS+0 a.s. (A. 10) 

where 

3s and r is Bs-l-measurable. This gives the following inequality for 

the element R: of the matrix RS: 

2 s s  Let us substitute RS =rs(Ev v +aS) in this inequality, then 
i j i j 

s 2 and Lemma 4 yields aS+O a.s. and Rij=rs(Vij+as). 

The following lemma establishes the fundamental property of the 

step direction dS. 

Lemma 6. Suppose that the following conditions are satisfied: 

1.   he set XCR" is a compact set. 
2. The function F(x) is continuously differentiable and Fx(x) 

satisfies a Lipchitz condition. 

, C<m for szk 3. There exists a.s. k=k(w) such that 110 lls 

CI rs 



S 5 2 S S S E(~S-~(yS)ls,,~ )=o, E((<~-F(~ ) I B ~ , V  )<C<m, E(V IB,)-o, nv n<c<a 
U 

rnj-. ,-, S S ,..., n d =F(x )+as where as+O a . s .  

Proof. 

1. Let us derive an expression for dS-F(xS). Denoting 

we. obtain from (23): 

Combining this with (23) we obtain: 

Let us consider different terms in the right hand side of (A.11) 
S 

2. Let us estimate ws= 1 . We obtain 

which gives 

where 

due to the Lemma 4 and 

Taking as=llwsll/r: we obtain from (A.12): 

This yields as4O a.s. due to the Lemma 3 and finally 

(A. 12) 

(A. 13) 

(A. 14) 



B 

3. Let us estimate w = i i r .  z . Wc oStain s 1 LL:a , 
i=l 

Taking a =wsll/r; we obtain: s 
19s s s " S =(1-81s)aS-1+T V & 
S 

The Lemma 4 yields now as+O a.s. and finally 

(A. 15) 

s S 
4. Let us estimate ws= 1 ais(xi-xs) 1 a cj. We obtain: 

js 
i=l j=1 

Due to (A.8),(A.13) we have the following estimates: 

where s2, is measurable with respect to BS. This yields the 

following equality: 

2 S 
w S =(I-PSI ws-l+~s-l(& rzs-r 1 s 1 

Taking as=wsll/r: we obtain: 

For as all assumptions of the Lemma 4 are satisfied, which implies 

S i S 
5 .  Let us estimate ws= 1 aisriv 1 ajscJ. We obtain: 

( A .  16) 

( A .  17) 



S 

We ::zed riow to estimate b = 7 a. r.v; 
S L 1 ,s  J 

'-1 .. 
bS= ( 1-,~3 s )bS-l+~crsvS - 

Making the substitution cs=b-/r2 we obtain: 
2 S - 

with all conditions of the Lemma 4 being satisfied for aS=Cs, 

therefore c -0 a.s. Substituting this and (A.13) in (A.17) we 
S 

obtain: 

after another substitution aS=ws/r: we obtain: 
2 2 

6s S s 5 - 1  
as=(l-Ps)(l-Bls)as-l+~ (l-BS)v Tls+Bs(l-8,)& C ~ - l +  Tg 4 v s c s 

s r 
S 

All conditions of the Lemma 4 are satisfied and as+O a.s., which 

yields 

S i s 6. Let us estimate ws= 1 aiS(x -X )AiS. We obtain: 

(A. 19) 

where 

We obtain the following estimates for the first and the second term 

i=l i=l 

since AiS is bounded due to the compactness of the set X and the 

differentiability of F(x). The Lipchitz property of Fx(x) yields: 



6 s r a  we a~sumed in atidition that Fx(x.) has the Lipchitz property oZ 

X. Zc&ining (A.19)-(A.21) we obtain: 

After the snbstitutio~ Ilw ll=a /rL this yields: 
S s s  

We now obtain from the Lemma 3 that aS+O a.s. and finally 

S i 7. Let us estimate wS= 1 aiSriv AiS. We obtain: 

Since llvSll is bounded and due to conditions 1,2 we get 

Ass can be estimated as follows: 

theref ore 

Combining (A.23)-(A.25) we obtain 

3 1ws lla( 1-6, ) llws~lll+C~SrS+CpS~l 

2 which yields after the substitution as=llwsll/rs: 

and all conditions of the Lemma 3 are satisfied which yields asjO 

a.s. and finally 

S 

8. Let us estimate wS= 1 ajSAjS. We obtain: 
j=1 



Ex~ressions (A.25), (A.27) acd ( A . 2 8 )  yield: 

2 after making the substitution I lw Il=a /r we obtain: 
S S S  

Under assumption 4 as satisfies conditions of the Lemma 2 which 

yields limsup ak 5 C and finally 
k 

S 
I 1 a j s ~ j s ~  5 ~r S' c<m (A.29) 

j=1 
S S 

9. Let us estimate ws= 1 ais(Yi-xs) 1 ajsAjs. Similarly to 
i=1 j=1 

(A.8),(A.9) we obtain 

Combining this with (A.29) we get the following estimate: 

Thus 

lo. Combining (A.ll)l(A.14)l(A.15),(A.16),(A.18),(A.22),(A.26)l 

(A.30) we obtain: 

which due to the condition 3 completes the proof. 

Lemma 7 .  Suppose that for a nonnegative sequence as the following 

conditions are satisfied 

as+l~as-~psrp (as) +C1psssl ss+O a. s.. ps=O. 2 pi-. C>O. 

i=l 

inf ~ ( b )  >O for c>O 
brc 

Then a -0 a.s. 
S 



We nay assun:.? without loss of generality that p(b)zy{c)>O for 

brc>O. Suppose that for some UER exists k and 6>0 such that a 26 f c r  
S 

srk. Ke may assume without loss of generality that rSsv(~)/2 fo; 

srk. Then 

which contradicts nonnegativity of as for sufficiently large s. 

Therefore for any k and 6>0 a.s. there exists m=m(k,d) such that 

am<6. Suppose that there exists a number 1=l(m,6) such that l>m and 

a1>36. We may assume without loss of generality that there exists r: 

m<r<l, 6<ar=26, 26=as=36 for r<s=l, since max -as}+O. we 

assumed already that rs=p(6)/2 for srk, thus a s ra s+l for r<ssl. 

Therefore a1s36 which contradicts assumption a1>36. This 

contradiction completes the proof 

Lemma 8. Suppose that for a nonnegative sequence as the following 

conditions are satisfied: 

S S 2 2 
E(K laof.. .,a s )=r sf rS+O a.s., E(llr -rsll lao,,. . . ,as)=CS, 

O0 2 2  pSzo, f pi=m, 1 pici<wI C>O, Osa =c2 for some c <a, 
S 2 

Then as+O a.s. 

Proof. 

Let us note that conditions of the lemma imply that 
00 i 1 pi ( K  r )  converges a.s. 

i=l 

(see [38]). Denoting 

we obtain inf i(b)>0 for c>O. ~aking expectation from both sides of 
brc 

(A.31) we get: 



- 
Eascl=Ea - C p  :o(Ea I+' p,Ez 

S S s " 1 3  S 

and for ~a~ 211 ccnditions of Lemmz 7 2re sstisfi~d, which yields .. 
Ezs+O. Therefore for any k and 8>0  a.s. there exists m=a(l:,6) 

(which depend on an element of probability space R )  sush that am<6. 

Let us suppose that an>36 for some n>m. Due to (A.31),(?..32) we have 

-0 a.s., therefore for sufficiently large k there 

exists 1: m<l<n such that 6sa1=26, 6aa a36 and Cp(ai) >C,ri for i ... 

l=i=n. Thus, 

Due to (A.32) we have 

i 
nilpi('( - +O a.s. for l,n -. 

Thus, (A.33) contradicts assertion an>36 for sufficiently large k 

Proof of the Theorem 1. 

Let us denote 

Note, that p(w)>O for w>O due to compactness of X. Taking into 

account convexity of the set X and the function F(s,x,w) we obtain 

s+l 
the following inequality for W : 

W~+~=IIX~+'-X (s+i) 11~=11x~+l-x( s) I I ~ ~ I I ~ ~ - ~ ~ ~ ~ - ~ (  s) 112= 

2 s 2 -  ~ ~ - 2 ~ ~ ( ~ ~ ~ x ~ - x ( s ) ) + ~ ~ ~  I1 - 
S 9 S s s S 2 s 2  

W -2ps(Fx(s,x .o),x -x(s))-2ps(c -F(s,x ,o),x -x(s))+pslle I1 5 

S S S S S 2 s 2 ,  
W -2ps(f(s,x to)-F(stx(s),o))-2ps(c -F(stx ,w)tx -x(s))+p,lic 11 - 

where 

K ~ = - ~ ( A ( ~ , x  S S S s 2 
to)-~(stx(s) ,o) )-2(<-F(S,X ,o) ,x -x(s) )+p,llc I1 

all conditions of the Lemma 8 are satisfied for as=wS and (A.34), 

therefore wS +O a. s. 



Proof of the Theorem 2. 

Vic are using here notations introduced iz the procf of the 

Thecren 1. Similar to (A.34) we obtain: 

Under assumptions of the theorem all conditions of lemmas 5,6 are 

satisfied, therefore 

S S 
d =Fx(x )+as, a -0 a.s. 

S 
(A. 36) 

This together with the boundedness of ~ ~ ( x ~ )  on the set X implies 

the existence a.s. of the number k=k(w) and C1>O such that 

(A.36) and the compactness of the set X yield: 

2pSTs (dS-F'(xs) ,xS-x(s) )+pzrf lldS~~2~~lpsas, as-0 a. s. ( A .  38) 

After the substitution of (A.37),(A.38) in (A.35) we get 

which together with the Lemma 7 yields wS+O a.s. This completes the 

proof due to the compactness of the set X. 

APPENDIX B. AN EXAMPLE OF DISCRETE EVENT SYSTEM WITH DISCONTINUITIES 

Suppose that the manufacturing system contains two machines M1, 

M 2  and the buffer 8. The buffer contains items which should be 

processed consecutively by both machines (Figure 1). 

gl(xllQ1) g2(x2'Q2) 

g3(x3tQ3) g4(x4,Q4) 

Figure 1. 

1 The processing time of each machine is g.(xi,oi), i=1,2, X.ER , wi 
a 1 



-. is distributed uniformly on [0,1]. ;.f, f ~ r  example, the processing 

t h e  is distributed eepcn~ntially and x is the p r o c e ~ s b r ~ g  rate then i 

The performance capability of the second machine can deteriorate and 

is monitored by a separate process. If it Is detected that the 

second machine has deteriorated below certain level and the machine 

is idle then the maintenance is started. If it is busy then the 

maintenance is started immediately after finishing the job. If an 

item arrives at the input of the second machine during a maintenance 

period then it waits till the end of maintenance,' and immediately 

after that the processing is started. The time elapsed between the 

end of one maintenance period and the detection of necessity for 

another maintenance is g3(~3,~3), the length of maintenance is 

94 (x4 104 ) .  Suppose for simplicity that the buffer contains only one 

item. Then the system can be in one of the following states: 

Z 
1 - M1 is busy, M2 is idle and ready for a job 

z - M1 is busy, M2 is under maintenance 

z - M1 is idle, M2 is busy 

z - M1 is idle, M2 is under maintenance and the item waits 

at the input of M2 

Z 
5 - an item is at the output of the M2. 

At the initial moment t=O the item arrives at the input of M1 and 

MZ is considered to be just after maintenance. Suppose that the 

probability of coincidence of the item arrival at the input of the 

second machine and the detection of the need for maintenance is 

zero. Then the following sample paths are possible in this system: 



- 7 . .  
i i ~l,es-? ( z -  (i) , t- (i) j denotca event vhicir. c r , ; ? ~ i s t 3  of t k . e  <--t.!~ 

transition to the state j from the beginzing of simulation, in order 

to simplify nctations we onitted de2endence on (x,wj. Here 

C) 1 k 3 for path ~l~(x,w) G l ( x l ~ ~ l )  
t'(k)=t (k)+93(x3tw3)/ t (I)= 2k 

G(ktx,u) for path Z (x,w) 
4 1 5 3 1 
t (l)=gl(xl~wl)~ t (l)=t (l)+g2(x2,w2), (B.1) 

The path ?Jlk(x,w) is taken i'f ( x , o ) ~ Q ~ ~  and the path u~~(x,u) is 

taken in the case ( x , w ) ~ @ ~ ~ ,  where 

Suppose that the objective function is the weighted sum of average 

processing time and cost terms. The average processing time in this 

5 case is the time of arrival for the first time at the state z , 
5 since only one item is in the buffer, i.e. it equals t (1). 

Summarizing (B.1)-(B.3) we obtain: 

1 2 1 F(x)=F (x)+F (x), F (x)=Ewf(x,w), 

where k=0,1, ... and G(O,x,w)=O. Therefore the function f(x,o) is 
discontinuous with respect to (x,w), but it is differentiable on 

each set Blk,82k if gi(xi,wi) are differentiable. Note that the 

function F(x) may be differentiable too, depending on the properties 

particular, it would be differentiable in the case 

when gi(xi,wi) are distributed exponentially. 

Thus, even in such simple example as this, there are infinite 

number of sets in the continuity partition defined by (B.2)-(B.3). 

36 



Some o2 differentiation schoines )can experience difficulties in this 

sitzation. For example, a scmple derivative fx(x,o) gives in this 

7 
case a biased estimate of the gradient F-(x). In order to see this 

let us compute the partial derivative of F.(::r) with respect tc~ x 
I 1 ' 

Let us denote 

b(k,x,w)=b(k): gl(xl,b(k,x,w))=G(kt~Iw)t k'l, b(O,x)=O 

Then 

Now let us try to compute the same derivative using only one sample 

path, which amounts to the differentiation of f(x,o). We obtain 

Note, that under general assumptions this derivative exists almost 

everywhere. Taking the expectation in (B.6) we obtain only the first 

term in (B.5) and lose the second term, which appears due to. 

discontinuities. 

APPENDIX C. NUMERICAL EXPERIMENT 

The example from the Appendix B was used for the numerical 

experiment reported here. The objective function of the problem (4) 

was 

1 2 1 F(x)=F (x)+F (x), F (x)=lEwf(x,w), 

2 where f(x,w) is described in (B.4) and the cost term F (x) was the 

following: 

2 2 F (x) = 1 . 3 2 ~ ~  + 0 . 2 5 ~ ~  - 1 . 2 8 ~ ~  +0.4x + 1 . 9 2 ~ ~  + 0.4 3 

The operation times gi(xitui) were taken to be exponential in order 



to ailow exzct computation cf the objective functian valaes, this 

was necessary fsr the verification of algarithrn results: 

where w are uniformly distributsd on [0,1). In this cese it is i 

possible to obtain the explicit formula for ~'(x): 

The admissible set X was the following: 

* 
This problem has the optimal solution x =(1,2,1,0.5) with the 

* 
optimal value F =4.6 

2 The simulation model which provided the values of f(x,u)+F (x) 

was a general simulation program intended for simulation of one of 

the modifications of the Petri Nets. This program supplied the 

observations of the objective function to the interactive program 

SQG-PC which is an advanced implementation of stochastic 

quasigradient methods [14]. This program was supplemented by the 

implementation of the algorithm (23)-(27). 

The objective of the numerical experiment was to compare 

stochastic quasigradients (10) with finite differences (13) with the 

concurrent approximation (23)-(27). Therefore the algorithm' 

parameters in both cases were taken as similar as possible. We used 

forward finite differences (13) with the fixed value of difference 

step which was equal 0.2. Thus, five simulation runs were needed on 

each step in order to obtain a step direction. The finite difference 

direction was normalized in order to be comparable with direction 

generated by (23)-(27). In the concurrent approximation algorithm 

the expression (25) was modified as follows: 



if i=s 

othe-rwisc- 

Ynstead of probabilistic selection of v" in (24), the detsrninistic 

scheme was adopted here: 
if i(s)=l, s>l 

S rS=O.l, v =8 e s i(s)' i(s)=s-4[(s-1)/4], e,= es-l i I"' if i(s)=2,3,4 if s=l 

where ei is the i-th unit vector of the basis in R". Thus, the step 

in finite differences equals the size of vicinity of xS in which 

observations are made for concurrent approximation. The value of rs 

from (27) always was equal /lldSll. The step size pS in both methods 

was selected according to one of adaptive rules implemented in 

SQG-PC. 

The initial point x' for both algorithms was 

1 x1=(3,3,3,3), F(x )=11.4078 

Starting from this point two sequences of points were generated: x 1s 

by (10),(13) and x2' by (27). x'~=x~'=x~, with the same sequence of 

random numbers used to generate function observations. Each 

algorithm performed the number of iterations for which 2500 

independent observations of the objective function were needed, 500 

iterations in the case of finite differences and 2500 iterations in 

the case of concurrent approximation. After that, exact function 

values for both sequences of points were computed using expression 

(C.2). The results are displayed on the Figure 2. The number of 

observations of the objective function is depicted on the horisontal 

axis and corresponding exact values of F(x) are depicted on the 
* 

vertical axis. The straight dashed line is the optimal value F , the 

solid line corresponds to the concurrent approximation and the 

dotted line corresponds to the finite differences. 

Both algorithms exhibit behavior typical of the stochastic 



optimization procedures: comparatively fast convergence to a certain 

vicinity of the optimal solution and slow convergencs wikb.  

oscillatioi~s in this vicinity. However, the concurrent a~proximatfon 

method shows nore regular behavior, ccnverges faster and to smaller 

vicinity of the solution. 
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