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On Optimization of Discontinuous
Systems

Yuri M. Ermoliev

Alezei A. Gaivoronski*
ABSTRACT.

In this paper stochastic programming techniques are adapted and
further developed for applications to discrete event systems. We
consider cases when the sample path of the system depend
discontinuously on control parameters (e.g. modeling of failures,
several competing processes), which could make the computation of
estimates of the gradient difficult..Methods which use only samples
of the performance criterion are developed, in particular finite
differences with reduced variance and concurrent approximation and
optimization algorithms. Optimization of the stationary behavior is
also considered. Results of numerical experiments and convergence
results are reported.

KEYWORDS: Stochastic programming, stochastic quasigradient
methods, discrete event systems, simulation, concurrent

approximation and optimization.

1. OPTIMIZATION OF DISCRETE EVENT SYSTEMS: INFORMAL DISCUSSION.

The objective of this paper is to address several issues which
are important for applications of optimization algoriﬁhms to
stochastic models of discrete event systems. During last decades
considerable efforts were devoted to development of various modeling
tools for discrete event systems (DES), in particular Petri nets
[1,35], queuing models [21,51], finitely recursive processes [23],

and others, for further references see [52]. At the same time the
*at Milano Ricerche, Via Cicognara 7, 1-20129 Milan




development of stochastic programming techrigues reached the stage
of reasonable theoretical understanding, fairly advanced research
software and som2 sophisticated applications [10]. So far these two
fields interacted relatively weekly([17,30,40,46] are among rare
exceptions), though discrete event systems seem to be a natural
arplication for stochastic optimization.

We assume that it is possible to identify a set Z of states of
DES and the system evolves in time t. The set Z can be finite or
infinite, the time can be discrete or continuous. The evolution of
the system consists of the sequence of "events" which cccur at
particular time moments ti, each event is a change of the state of

the system from z, to 2y Thus, the system evolution can be

i-1
represented as a finite or infinite sequence of pairs
U={(zo,t0),(zl,tl),...,(zi,ti),...} (1)

which will be called the path of the system. It is assumed that the
system remains in the state z; at the time interval [ti’ti+1)'

Optimization will be performed on the simulation model of DES which

can reproduce the path U of the system. This model can be built
using one of the modeling approaches mentioned above and it would
incorporate particular rules which govern the state transitions.

We are interested in the situation when the major structural
decisions on the system design are already taken, but the system
still depends on the vector of controllable continuous paraﬁeters X,
and the objective is to select those parameters from an admissible
set XsR™ which would yield the best values of some performance
criterion. Examples of such problems can be found in the design of
distributed information processing systems [40], manufacturing
systems [2], logistics networks. In some DES applications there are
ad hoc on-line control strategies which depend on parameters to be

adjusted. The objective of optimization here will be to define



cptimal values orf such parameters.

" We assume that the system is affected by the presence of
uncertainty which can be modelled through uncontrocliable stochkastic
paraneters. This stochasticity may be inhe;ently presernt in the
system, for instance it may account for unpredictably changing
demand, for the fluctuations in the flow of messages to be
processed, for the unpredictable failures of some parts of the
system. In other cases it may be a convenient tool to analyze the
system.

Thus, both tranSition times ti and states z; which form the path

{1) depend on controls and random parameters:
U=U(x,w)={(zo(x,w),to),(zl(x,w),tl(x,w)),..,(zi(x,w),ti(x,w)),..}(2)

where by w is denoted the possibly infinite sequence of realizations
of random parameters:

w=(w(0),w(l),...,w(i),...)
Here each w(i) is a random vector with values in Rk and corresponds
to.the transition between zi_l(x,w) and zi(x,w) in such a way that
ti and 2y depend only on w(s), s=0:i. For a fixed value x of control
parameters and a sample w of random parameters the simulation run

can produce a path U(x,w) which will be referred to as a sample path

The path U(x,w) will be a trajectory of a random process of the
special type defined on some probability space (Q,B,P) where B is a
Borel field and P is a probability measure. Where it will nét cause
confusion, we denote an element of this space also by w. More
specifically, this process can be considered to be a generalized
semi-Markov process [53]. Precise requirements on the nature of this
process will be made later (see Comment 2 to the Theorem 1).
Finally, we assume that some performance criterion F(x) is
defined which integrates several desirable features of the system.

For instance, in the case of manufacturing system it could be a




mixture of a throughput, utilization of important machines, average
iength of gueues, preduction costs. This performance criterion is
expressed as an average over the set of possible sample paths:
F(x)=wa(x,w), f(x,w0)=¢p(U(x,w)},%,0) (3)
Once the sample path is khown, the function f(x,w) can be either
expressed explicitly or by simple recursive formulas. Thus, each
simulation run provides the value of f(x,w) for some fixed (x,w).
The optimization problem is to minimize the averaged performance
criterion (3) on the set X<R"™ of admissible control parameters:

min E_f(X,0)= min J-f(x,w)P(dw) (4)
xeX xeX Q

This problem is a typical stochastic programming problem,
although with the objective function of the special type (3). There
have been considerable activities during last two decades
concentrated on the development of numerical methods for solving
such problems (see [10], where one can find further references). The
major difficulty is presented by the expectation operation in (4)
since it requires the multidimensional integration which is
infeasible for problems of realistic dimension. Therefore the main
issue in the algorithmic development was to avoid multidimensional
integration and still solve the optimization problem. Two main
approaches were used to accomplish this. One is to approximate the
probability measure P from (4) by some discrete probability measure
PN, This would reduce the integrdtion in (4) to summation and for
important classes of stochastic optimization problems, notably for
stochastic programs with recourse, it would lead to a large scale
deterministic optimization problem with a special structure
[3,5,25,37,42]. Numerical methods were developed which exploit this
structure, those methods were particularly efficient for linear

programs with recourse. Much work is still needed to adapt these
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ztlts to the simulation medels o discrete cvent cystens.

Another apprcach meakxes use of statistical estimates of the
valuves F(x) of the objective functicn or its gradient Fx(x). It
c¢enerates a sequence of points xo,xl,...,:.r.S which cconverges to the
optimal solution of the problem (4) and at each step only a small
number of observations of the function f(x,w) or its gradient is
needed, possibly only one observation. One such algorithm is the
method éf stochastic quasigradients [8,9,13,29,31,39;41,47], among
its origins is the stochastic approximation [27]. The method

01 s .
produces a sequence x ,X ,...X ,... according to the rule

xs+l=nx(xs—psss) (5)

where Ty denotes projection operatcr on the set X, Pg is a stepsize

and Es is a stochastic quasigradient with the property

E(£S|x0,...,xs)=Fx(xs)+as (6)

where ag vanishes as s tends to infinity. In other words, gs is a

statistical estimate of the gradient and in the simplest case one
may take gs=fx(xs,ws) where w° is an independent observation of
random parameters.

This paper deals with an application of procedures of the type
(5)-(6) to simulation models of discrete event systems. We address
some issues which result from the special type of the objective
function (3) conditioned by the following specific features of DES.

1. In many cases the performance criterion (3) depends on the
stationary behavior of the system which is attained only
asymptotically. In such cases, in order to make one observation of
the objective function ideally, we should obtain a sample path of
infinite length, which is impossible. If we stop a simulation at t=T
we would obtain an observation of a function FT(x) which tends to
F(x) with T—«. Conditions when such convergence occurs for

stochastic programming problems were studied in [7,26,28,44,50]. In



this paper in the secticn 2 we consider algorithmic issuez. In
particular it is necessary to design a methcd tc minimize F({x) which

m

. T . X .
&5 observations of 7 (x) and preferably can work with =small values

I

u

"

of T on the {irst iterations, when xs is far from the solution, and
gradually increase T while approaching the solution. It means that
method optimizes different functions on different iterations and
optimization problem is nonstationary [11]. However we show in the
section 2 that under quite general conditions the method on the
basis of (5) generates a sequence x° which converges to the solution
of the problem (4).

2. Another important specific feature of DES is that the sample
path often depends discontinuously on controlled parameters [18].
This may create difficulties for obtaining statistical estimates ES
of the gradient needed in (5)-(6). A straightforward approach for
computing such an estimate is to take finite differences, but this
would lead to large variance of Es and often prohibitive
requirements on the amount of simulation runs even for problems of
moderate dimension. Considerable efforts were dedicated recently to
the development of differentiation schemes which utilize a knowledge
of the structure of DES in order to obtqin more precise statistical
estimates of the gradient with less simulation effort. Two main
approaches are the perturbation analysis [21,51] and the score
function (likelihood ratio) method [17,43,45], special notions of
derivatives of measures [40] proved to be useful in this respect.
However, original versions of these techniques encounter some
difficulties. In particular, the perturbation analysis generally
gives a biased estimate when a sample path of the system depends
discontinuously on control parameters [20]. More rigorous discussion
of this issue is contained in the section 3, a simple but

illuminating example is contained in the Appendix B. On the other




hund, the score function methed deals zuccessfully wit!
¢ifcontinuitiec, but in scme cases may yield estimates with larce
variance [43,46]. Both techniques are now under vigorous development
and some of the weak points have been removed [18,32,46].

We consider here the complem=ntary approach intended for the
cases when differentiation schemes encounter difficulties. In
particular, we deal with discontinuities by developing methods which
need only observations of the objective function instead of
observations of its gradients, and at the same time represent an
improvement compared with ordinary finite differences. Two such
methods are presented here. |

In the section 3 an enhanced finite difference scheme is
presented with reduced variance, it uses the random smoothing and
common random numbers. In the section 4 we introduce a new class of
algorithms which perform on-line approximation of the objective
function on the basis of the current and a number of previous
observatiéns. The step direction Es in (6) would be a gradient of
the approximation or the direction to the minimum of the
approximation. Convergence of one of the algorithms of this type is
proved in the Appendix A and a numerical experiment is presented in

the Appendix C.

2. OPTIMIZATION OF THE STATIONARY BEHAVIOR

We consider here the case when the system evolves on the infinite
time horizon [to,w). At each t there exists a probability measure
Q(zo,x,t;dz) such that

JQ(zolx.t;dZ) (7)
ZI
defines the probability that at the time moment t the state of the

system belongs to the set 2’'SZ. This measure depencs also on the



initial stete z, and control parameters x. Let us assume that there

C
exlsts the stetionary measure Q(x;dz) which defines the staticnary
statz distribution of the system similar to (7), i.e.
Q(zo,x,t;dz)—eQ(x;dz) as t-—» in a sense that will be specified
later, and this measure does not depend on the initial state zoez.
The performance criterion F(x) is defined in terms of the limiting

measure:

F(x)= [p(U(x,0),%,0)P(dw) = [¥(x,2)Q(x;dz) (8)
Q Z
and the problem (4) is to be solved with the performance criterion

of this type. Many DES optimization problems can Be formulated this
way, in particular the problems of optimization of Markov systems
[40].

The main difficulty of the problem (4),(8) is that neither the
measures Q(zo,x,t;dz) nor especially the measure Q(x;dz) are known
explicitly and the solution should be found by observing ithe values
of the function ¢(:,x,w) or related values on finite time intervals.
Let us formulate this more precisely.

Let us consider a partition of the time horizon [to,m) into a
seguence of time intervals As=[tls’t25)' t11=t0, t2§=t1,s+l’
t,.7t; (W), t, ~t, (w). We would like to define an algorithm which
solves the problem (4),(8) during one simulation run, therefore we
allow changes in the values of control parameters in the course of
simulation. Let us assume that the value x° of control parameters is
set at the beginning of the interval As and remains unchanged during

this intérval._Some more notations follow:

x(s) - the sequence xl,...,xs;
t(s) - the sequence tll""’tls;
US=US(x(s),w) - the section of the sample path which is obtained

by discarding all events outside the interval Agi




U{s)=U(s,x(s),w) - the section of the sample path from the
simulation start at t=to to the beginnirg ¢Z the interval A_ at t=t,
<3 —

Es - & o-field defined by U(s),x(s),t(s).
\

T - the set of sequences {(zi,ti), i=0,1,...}, finite or

infin;te, and such that ziez, tieR+, ti+12ti'

e(U,x,w), ¢i(U,x,w), i=1:X - mappings IxXx2—R, at this moment we
assume only that these functions are such that the following
expression is well defined:

F(s,x,w)=D(E(pl(Us,x,w)|Bs),...,E(wK(Us,x,w)|Bs))
where D is a mapping Rx—am.

If F(s,x,w)—F(x) in some sense then we can use techniques of
nonstationary optimization [11] to solve the problem (4),(8). That
is, on the step s of the optimization algorithm we make one
minimization step of the function F(s,x,w), and in this way arrive
at the minimum of F(x). This results in the following algorithm
which allows to solve (4),(8) in a single simulation run. Other
single run simulation optimization algorithms are presented in
[30,40,46].

Algorithm 1.

0 of

The simulation starts at t=0 with some initial value x
control variables and initial state Zg- The algorithm partitions the
time horizon [to,w) into the sequence of intervals Al,...,AS,...,
and changes the values of control variables x at the end of each
time interval as follows.

1. Suppose that the process arrived at the end of the interval
As~1
this interval is defined either deterministically or as a stopping

and the interval As starts. The time t25=t1’s+1 of the end of

time measurable with respect to BS+1.

- 2. At t=t +1 the observation gs is made such that

1,s




"(!'SF = ¢ ‘.S .
E{g iBs)—_x(r;,A ,c.u‘)'ﬁils (8)
3. A% L=ty i1 the values of centycl variablos ave
foilows:

g+l

KT TEme(xT-p € {10)

where pszo is the stepsize and Ty is the projection operator on the

set X. Let us denote

* * * * *
F = min F(x), X ={x : x X, F(x )= min F(x)}
xeX xeX

Convergence of the Algorithm 1 is established by the following

tneorem.

Theorem 1. Suppose that the following conditions are satisfied:

1. XcR" is a convex compact set.

2., F(x) is continuous on X and the set x* is convex.

3. The function F(s,x,w) is a convex function with respect to x

with a subdifferential which is bounded on X a.s. uniformly with
respect to s, F(s,xs,w) converges to F(xs) as s—w and
*

*
limsup F(s,x,w) = F a.s. uniformly for xeX .
s

4. E(HES—Fx(s,xs,w)—alsuz|xo,...,xs)=Cs<m, a,;s—0 a.s.,

5 =0 N\ = T C2 2<m
© PgEYy Z Py Z sPs
s=0 s=0

Then fhe sequence x> generated by (9)-(10) has accumulation
points and all such points belong to the set X* of solutions of the
problem (4),(8).

Proof of this theorem is given in the Appendix A.

Comments.

1. Similar result holds for differentiable nonconvex functions
F(s,x,w), but convérgence would be to the points where the first
order necessary conditions for optimality are fulfilled.

2. We intentionally did not specify precisely the properties of

the stochastic process which generates the sample path U and the

10




propaerties of the function ¢ in order to rormulate & minimal set of
conditions which grarantee applicability of the method (5)-(5) to
DES. Now the properties of U and ¢ are implied by conditions 3 &nd 4
of the theorem. For example, a ccnvergenca part of the condition 3
is obviously satisfied for regenerative case [4] due to
representation of the function F(s,x,w). Some relevant resulits for
nonregenerative ergodic case are contained in [40], where it was
required that the lengths of the intervals As tend to infinity. More
research is needed to translate conditions 3,4 into explicit general
requirements on the process in nonregenerative case.

3. Condition 3 is satisfied, for instance, when F(s,x,w)
converges to F(x) uniformly over (x,w) as s—w.

4. Important issue for implementation of this algorithm is how to
select the stepsizes. This can be done similarly to [13,31,39,47].

In the remaining sections of this paper we deal with the problem

of determining the step direction gs for the algorithm 1.

3. OBTAINING STATISTICAL ESTIMATES OF THE GRADIENT.

In this section we‘give a very brief survey of approaches for
computing a stochastic quasigradient ss for the method (5) and
indicate some of difficulties which result from specific features of
DES. We need this to place the methods proposed here in the right
context, one in the second part of this section and another in the
section 4, and explain why we consider them relevant for DES.

Let us consider properties of the objective function from (3):

F(x)=wa(x,w)=Ew¢(U(x,w),x,w) (11)
For the sake of clarity we assume that the sample path U(x,w)
consists of a finite fixed number N of pairs, which does not depend
on w. Such situation may appear either when the transient behavior

of a system is studied or when a section of a sample path is used to

11




rnake inference on the system behavicr, like in the »revicus secition.
The case when N depends on w or is infinrite brings nothing
conceptually new to the discussion of this section except soms
technicalities.

One of the important specific features of DES is that the sample
path U(x,w) often depends discontinuously on (x,w). This is true for
models of systems with several competing concurrent processes, like
Petri net models of manufacturing and communication systems, models
which include failures and repairs, many queueing models etc. The
example in the Appendix B shows that even for very simple problems
f(x,w) is discontinuous, or more precisely, piecewise continuous
wi;h infinite number of continuity sets. The importance of this
phenomenon is recognized in the theory of DES (see discussion in
[18,51]) where it is known as the event order change.

In such cases also the function f(x,w) from (11) depends
discontinuously on (x,w). This creates difficulties for some methods
of sensitivity analysis based on differentiation schemes, which can
be used for obtaining Es. In particular, event order changes
critically affect the infinitesimal perturbation analysis [20,22].
This technique suggests fx(xs,ws) for gs with independent ws, i.e.
simply changes the order of differentiation and expectation in (11).
It should be noted that recent developments in perturbation analysis
[15,16,18] deal successfully with some of the cases when
discontinuities occur.

Another sensitivity analysis techniques called the score function
(likelihood ratio) method [17,40,43,45] deals successfully with
discontinuities when the objective function has the form

F(x)=E,f(w)= f £ (w)dH (X, 0) (12)
where H(x,w) is a distribution with respect to which expectation is

taken (provided H(x,w) satisfy additional differentiability

12




ceanditions). This technique,; however, in some cases provide estimate
with large variance [43,51]. It is also under vigorous development
now and the scope of its applicability has been enlarged recently
{33,46}. For further discussion oI relative applications domains

for these techniques see [43,45,51].

The approach which we pursue here is to design methods of
computing stochastic quasigradient gs based not on differentiation
schemes, as in the methods mentioned above, but solely on
observations f(x,w) of the objective function. One such observation
can always be made on the basis of one sample path, or its portion,
although sometimes it is necessary to make several observations for
getting gs. This is not an alternative, but rather a complementary
approach to differentiation schemes for cases when such schemes
encounter difficulties.

One obvious way to construct statistical estimate of Fx(x) is by
using the finite differences:

Do (x5+s e, ,w %) -£(x%,00%)
Es= Z S 16 e, (13)
i=1

S
or similar expressions for central finite differences. Here‘ei are

unit vectors of Rn, wis, i=0:n are independent observations of w,
each corresponds to the separate run of the model. This approach has
two serious shortcomings:

- it requires at least n+l simulation runs which grows to 2n for
central finite differences;

- the variance of the estimate (13) approaches infinity while

as—ao since for independent observations

_ n
EneS-ee512(x0, ..., x5)= ¥ (cg;%C) (14)
s 1=1
where
i s .
Csi=E((f(xs+asei,wls)—F(xs+asei))2|x0,...,x ), i=1l:n

13




Coo=EC(£(x%,07%)-F(x®)) 2|2, ..., %)

On the other hand, taking large values of as would decrease
variance, but lead to significant bias.

On2 might think of using the common randcm numbers for computing
various observations of function values in (13). This would reduce
the variance but generally would introduce a nias precisely due to
discontinuities in the sample path diséussed above.

The number of simulation runs can be reduced by the following
device [8]. Suppose that v; are random vectors uniformly distributed

on the unit sphere in R" and i=1:M, Mzl. Then one can take

M f(xs+6 v.,wls)-f(xs,wos)
Es= Z s'i v (15)
: GS i
i=1
if vy is independent from wis. This can reduce the simulation effort

considerably since M could be equal 1. However the problem with
increasing variance would persist. In order to partially alleviate
it we propose to use the smoothing.

We propose here to smooth the function f(x,w) and make it
differentiable by delibefately introducing some noise into the
control variables of the system. Contrary to what might be expected,
introduction of the noise would lead to estimates with smaller
variance then in (14) because this would make possible the use of
common random numbers. Let us consider two independent random
vectors u=(ul,...,un) and v=(vl,...,vn) with components
independehtly distributed on the interval [-1,1], they are also
independent from random parameters w. Instead of the original system
we consider a system whose control variables have the form

X=x+5 (u+v), &z0 (16)
We can simulate a new system by the same model as the original one,
it is enough to take (x+6(us+vs),ws) instead of the variables (x,ws)v

and run the simulation model. Characteristics of this system are

14
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chtained by averaging over such runs, i.e. by averacing over

(w,s,v). I

V3
iy ]

articular, the parformance criterion takes the form

F(x,6)=Ewuvf(x+5(u+v),u) {17)
If X is a compact set and F(x) is continuous then F(x,8)-—F(x) as
6—0 uniformly over X. Moreover, it is also differentiable, as the

following lemma shows:

Temma 1. Suppose that E sup |£(x,w) | <=, where
UZAVH(X)={X: inf Hy-xns2AVﬁ}
yeX

Then for any &: 0<8<A the function (17) is differentiable and

d =
_Hi.Ewuvf(x+6(U+v)’w)—
n f(x+d(u+v)+s(1l-v.)e.,w)-f(x+8(u+v)-8(1+v, e, ,w)
Epuy 2 —3 131 e, (18)

i=1

The proof of this lemma is made similarly to general results on
smoothing found in [19]. Note, that (18) can be viewed as the

special type of the central finite differences. Now it is possible

to take independent observations ws,us,vs and choose Es as follows:

s s, .S S s S S,.S s s
s_ n f(x +as(u +v )+as(l—vi)ei,w y-f(x +as(u +v )—és(1+vi)ei,w )a
£ 75 i
i=1

There is one important difference between the last formula and the
ordinary finite differences from (13). Here all the observations of
the objective fuhction needed to compute the differences are made
with the same observation w° of random parameters and with slightly
different (for small as) control parameters, while in (13) all
observations were made with different and independent values for w.
This makes the variance of ES based on (18) considerably smaller,
especially for small 65. Let us show that for the class of objective
functions most commonly found in the models of discrete event
systems.

Let us fix 8>0, xeX and define

15



[E(x,w)-5(v,w) |

LI, x,w)= sup
L. (4
A P =yl

XJYELTSV/H(X)

hx~vI=23

¢ L{8,%)=EL(S,x,w)

Definition. A functicn f(x,w) is a function with weak Lipchitz

property of the order T if L(s,x)SL(x)a_t for some L(X)<w.

This property is closely related to Hoelder continuity.
Practically all functions of interest fall within this definition,
in particular for t=0 we obtain Lipchitzian functions and for r=1 we

obtain functions for which E sup |f(x,w)|<s. What is more
XEUSVH(X)

important, for many discontinuous, but piecewise Lipchitzian
functions, the value of Tt equals 0 or at least tT<1l. For such
functions gs based on (18) has considerably smaller variance then
traditional finite differences due to the following estimate

0,...,xs)sE(H§sH2|xo,...,xs)san(x)as_Zt

E(1£5-E£512 | x
There will be also a bias here, but in the case if F(x) is
differentiable, it will be asymptotically smaller then as. Therefore
for such cases introduction of noise in the control variables of the

system yields a surprising result: it provides more accurate

estimates of the gradient then those obtained without noise.

4, CONCURRENT APPROXIMATION AND OPTIMIZATION

In this section we introduce a general approach for constructing
stochastic optimization algorithms which is based on observations of
the values of the objective function only. It is not limited to
discrete event systems. However, it is particularly useful for
optimization of DES when direct application of differentiation
schemes is difficult due to discontinuities in the sample paths, see
discussion at the beginning of the section 3. It needs considerably
less simulation effort compared with other techniques which do not

directly involve differentiation. Finally, we specify one new

16



aljorithm based on this approach, prove the convergercz theorem and
present results of numerical experiments.

Informally speaking, the idea behind ti:2 propcsed apprcach is the
following. Suppose that in the course of c¢ptimizaticn the seguence
cf points xo,...,xS and the set of observations cl""’cs such that
E(ci|xo,...,xi)=F(xi), 1=0:s were cbtained. These observations
are used to approximate the function F(x) bv a function F(s,x). Let
x°eX be a point at which F(s,x) attains its minimal value over the
set X. Then the next approximation to the optimal solution of the
problem (4) is obtained as a linear combination of x° and x°

xs+1=(1-ps)xs+psis
or, it is obtained by making a step in the direction opposite to the
gradient of the approximating function:
xS+l=nx(xs—psFX(s,xs))
After that a new observation is made, the approximation F(s,x) is
updated using this observation and the process continues.

Let us compare this approach with two other techniques which does
not use derivatives: finite differences and response surface
methods. Shortcomings of the finite differences were discussed in
the section 3. Here we point out that all observations of the
objective function which are made at the point x° in order to obtain
an estimate of the gradient via finite differences (13) are
discarded on the next iteration wheﬁ all observations are made again
at the point xs+1. At the same time these observations.contain
considerable amount of information on the value of Fx(xs+1) since
the stepsize Pg is usually small and F(x) is continuously
differentiable. The approach which we propose here use all this
information, which result in estimates with smaller variance and/or

smaller simulation effort since it can work with only one new

observation on each iteration.
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The rasponse surface methed [24,32,34,36] constructs
approximation of the objective function on the basis of otservations
distributed over some region, then finds the minimum of this
approzximate function. These steps may be repeated. The novelty of
the approach proposed here is that we integrate approximation and
optimization into a single on-line procedure. Approximaticn is
updated after each step using new samples made at points (or point)
obtained by optimization procedure. In this way excessive sampling
in regions far from a vicinity of optimum is avoided. This again
results in savings of simulation effort. Of course, an extensive
experimentation is needed to further validate these assertions.

In fact, much has to be done to design on its basis a practical
algorithm, some of the issues to be clarified are how to choose an
appropriate approximation criterion, how to select approximation
points properly in order to insure stability of approximations, how
to discard old points, etc. Some of those issues are reflected in
the following scheme.

Algorithm 2.

1. At the beginning the initial point xl is chosen, v0=0, Y0=a,
Eo=z are set.
. 2. Suppose that prior to making iteration number s the algorithm
generated the point xs, the set of observation points

Ys_1={yl,i=1:vs_l}, Ys_lsx, and the set of observations

[n

5"1={ci,i=1:us_1} such that E(Ci|yl)=F(yl). The following
computations are performed at the iteration number s:

k_s
i. The new set of observation points Ys(xs)={yls...,y S } is

selected, ¥°¢x and observations ci,...,ci are made such that
S

E(ci|yls)=F(yls), the sets Y° and =° are obtained:
i 17vgo18

= S_ i i=1- = i= :
vs-vs_1+ks, Y —{y ’ 1—1.vs, Yy =Yy , 1 vs_1+1.vs},




. ; . . o wS _. - . -
il. The weights «_(v), veY¥~ aro selected, these weighs arve used

~s
to define the approximaticn criterion.
iii. The values of approximation parameters a® are defined by

solving the following approximation problem:
v

S . s
min ¥ ag(y')e(s, ¢ -F(s,a,v7)) (19)

aelA i=1

k

where Ac<R™, F(s,a,x) is some predefined class of functions, which is

used to approximate F(x) and the function ®(s,w) measures the
closeness of fit of the approximation F(s,a,y) at the point vy.

s+1

iv. The next approximation x to the optimal solution is

obtained either by

xs+1=(l—ps)xs+ps;5, F(s,as,is)= min F(s,as,x), x°eX (20)
xeX
or by
s+1 s s _s
X =nx(x —pst(s,a 1X7)) (21)

In order to specify implementable algorithm on the basis of this
scheme it is necessary to choose the approximating function
F(s,a,x), the approximation criterion &(s,w), the set of observation
points Y® and weights as(y). Some of the issues concerning
convergence of this method to the optimal solution of the problem
(4) for particular choices of F(s,a,x), ¥(s,w), Ys, as(y), were
clarified in [12]. In the remainder of this section we shall present
one algorithm not covered there.

Let us take

1

a=(b,d), ber>, der®, a=r""!

, F(a,x)=b+d"(x-x%), &(s,w)=w?  (22)

Then the problem (19) has the explicit solution

d®=0%u® (23)
where
vS : VS . . VS .
) as(yl)[ci_'%— ) as(yj)cj](yl—xs)’ 5= L ag(¥))
i=1 ® j=1 i=1
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IRy
V»—

Deg o)l

S . . . -
s _{ i i _s i s.7 1
0= T agyhy (vix®) (v -1
. Vs .
i=1 J71
Let us specify now the rule for selecticn ¢f observation points.
lHere we consider the case when only one observaticn point is added

on each iteration, in order to minimize simulation requirements:

1

S 1
Ys={y S}’ Ys={y l"'lys}l YS=XS+ISVS

(24)

where v° are independent random vectors with zero mean. Introduction
of the term rsvS is necessary in order to stabilize the
approximation process.

Finally, let us specify the rule for choosing approximation

weights:
. (1-B_ Yo, __ if i<s
a (yH)=a, = s’ i,s-1 (25)
S is . .
B if i=s
S
where Bssl, Bl=l‘ Now it is possible to represent (23)-(25) in
recursive form in order to avoid the matrix inversion on each
iteration. Using the identity
T
(I+ab") 1=I__£§%?_
1+b ' a
we obtain _
s-1 T :
Q s__96 .
-1 -1 -1
d%= (1, 55— ) (a® Hea (7T h-0(v®))0% e, (26)
l+Bs‘sst 6sx
s-1 T ~8-1
Q 8_.6_.9Q
1 s-1 s-1 s .s-1
QS=T:§__[Q -8 X 5% ], 8o, =X T(YT-xT )
s 1+8 6 __Q 3

S sx sX

S_,4_ s-1 s S_/1- s-1 s_
C7=(1-B5)C" "B Ly ), X =(1-Bg)x" "+Bg(y -x
The iterations of the algorithm proceed as follows:
Co/1d®n  if ndi=c

s—l)_As’ As=xs_xs-l’

s+1

_ s_ [} _ 0
X7 TEmg (xT-p y A7), ¥ S {

(27)
1 otherwise
The following theorem confirms convergence of the algorithm

(22)-(27). By Bs will be denoted the o-field defined by xo,...,xs.

Theorem 2. Suppose that the following conditions are satisfied:

1. The set X<R"™ is convex and compact.
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2. Tane function F(x) is convex continucusly differentiable and

Fx(x) sa=zisfv the Lipchitz condition on X.

T

3. E(vsvs |B_)=Evsvs =v>0, E(vT{B_)=0, v i<C<w,
£(¢5-F(v°) |B,,v®)=0, l}Z((CS-F(ys)z’ES,vS)<C<m.
2
4. Bz ZB“” (1-B) —2==1-8 S5 1, 0 z
* ! r 1s’ Bls T TgTUr g 4 FTgr
i=1 2 S 2
r__ o _ ) . © P, Po._-B
?_ 1 —1, S ; —0, 2 -—;—<ml 2 —%_1<ml é > 285 -1|—0,
7S BsTg i=1 Tj i=1 T3 s | Ps-1Fs-1
[+0]
) Pi=e
i=1

Then the sequence x° has accumulation points and all such points
belong to the set X* of solutions of the problem (4).

" The proof of this theorem is contained in the Appendix A,
numerical experiments are contained in the Appendix C.

Comments.

1. With minor changes in the theorem conditions similar result
holds for nonconvex F(x) with gradient which satisfies the Lipchitz
condition. In this case convergence would occur to points which
satisfy the first order optimality conditions.

2. Although the stepsize condition 4 of the theorem looks
complicated, it is satisfied for a reasonable range of possible
sequences r, Bs‘and Pg+ For example if those sequences behave
asymptotically like s T,s P and s™ then the condition 4 is
satisfied for

p=1l, B<1l, p-B-2r>0, 2B-2r>1, 2p-4r>1
for instance for p=1, B=0.7, r=0.14. Those conditions have only an
asymptotic value and for practical implementation Bs and Ps would be
taken constant and Ps would be selected according to one of the
adaptive rules [12,39,47].
3. The algorithm (23)-(27) is one of many possible variants of

the general scheme described in the Algorithm 2. Due to explicit
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fcrmulas for the step direction, it is easisr to prove convergence
for (23)-{27), but other variants could be more advantageous from
practical point of view. We tried, for instance, a similar algerithm
based on Ll approximation and found it to bs more stalble.
M-estimates, trimming and other techniques of robust staiistics [22].
can be applied here. In order to select the measure for generating
identification step v® the methods of optimal experiment design can

be used [6,49].

APPENDIX A. PROOF OF THEOREMS 1,2.

In what follows we denote by C, Cl’ C2 some finite constants, to
simplify notations different such constants are denoted by the same
letter. The same convention holds for ag by which we deno=ze an
arbitrary sequence which tends to zero.

At the beginning we need several lemmas.

Lemma 2. Suppose that for a nonnegative sequence ag the following
inequality is satisfied:

[+
as+lsas—Bs(as(1—cs)-C), c=0, Bszo, Bs—ao, z Bi=m, cs—eo (A.1)
i=1

Then limsup a; s c
i

Proof.

Let us fix some &: 0<8<1 and take such k that cs<6, Bs<6/C for
szk. Then

a -assa, szk. (A.2)

s+1
Suppose that as(l—a)—C>6 for s>k. Then (A.l) yields for s>k:

s

85+1%3579%Bgs ag=ay -8 z By

i=k ®

which contradicts with nonnegativity of ag due to z Bi=m. Therefore
i=1

there exists 1lzk such that al(l-a)-Csa. Now for any s>1 there are

the following two possibilities:
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i. a (1-8)~-C=&, then dues to (A.2)

s-1

as(l-a)—csas_l(l—a)—c+(1—6)(as—as_l)ss+(1—6}6<26
ii. as_l(i—a;—c>5, then ac=a__, and
as(l—s)—Csas_l(l—ﬁ)—C

Therefore as(l-s)—c<25 for szl anc

limsup a; < (C+28)/(1-8)
i

which yields the required assertion since & can be taken arbitrary
small. =

In what follows we deal with the convergence with probability 1
(a.s.) of random sequences defined on some probability space (Q,B,P)
where B is a Borel field and P is a probability measure. An element
of this space is denoted by w.

Lemma 3. Suppose that

o
as+1=(1—Bs)as+Bses, es—ao a.s. Z Bi=m, 3551 (A.3)
i=1

Then as—eo a.s.

Proof.
From (A.3) we obtain
k
llas+1||5(l—Bs)IIaSII+BSIICSII, Ilakllsllalll— ZBi(IIaiII—IICiII)
i=1+1

now if for some w there exist 1 and >0 such that nain-uciu>8 for

k>1 then

k
EMEENES z By
i=1+1

which contradicts nonnegativity of naku for sufficiently large k.

Therefore for any w, 8§ and 1 there exists k=k(w,é8,1)z1l such that

uaku—ucku<6. Then (A.3) implies

<
Has+1n_max{nasu,ucsu}

which yields

la_li=max{la, i e .l }= .1+
s { K/l -maxle . } @axuell
izk izk

Since es—eo a.s. the last inequality implies uasu—ao a.s. =

23



The assertion of tnis lemma can be alternatively obtaired from
results contained in [48].

ILemma 4. Suppose that

S S
as+l=(1_ﬂls)as+8286 r E(g ]a1l“'las)=ssl CSBZS/Bls—")O a.s.

[2e) [2e]
< - 2 s 2
Bg=1s Z Bii=®r Z Boi<wes E(IE - " [a;,...a,)<C<a
i=1 i=1
Then as—eo a.s.
Proof.

Let us denote

= - - S_
21,1 0, ®1,s+1 (1 Bls)':'ll,sﬂ?’Zs(E €5

a

83,1781r 33, 5+17(17Bg)a, TRy Eg

2,s and naz’sn—ao a.s. due to the Lemma 3.
2lI

Then a_= +
s a1,s a

2

12y gyt P=(1-B ) %nay 1P428, (18, ) (6%-e ,a; )85 1%-e1® (A.4)

which implies that
na, 1%+ i B2 E(1g5-e_1?|a a_)
1,s 2i s 17°"""s
i=s

: . : 2 .
is a nonnegative supermartingale. Therefore ua1 s" converges with
r

probability 1 [38]. From (A.4) follows that

Eﬂalls+luzs(1-BlS)EMa1,SH2+CB§S
which yields
s-1 2 s-1 2
Ela) 1% T (1-8p;)Ela; 1%+ C Y 854
i=k i=k

00
for any kzl, s>k. Due to z Bli=m we obtain now:
i=1

w
. 2 2
llm:up E"al,s" s C z B2i
i=k

which is true for an arbitrary kzl. Therefore lEIla1 suz—»o because
'
<]

) B§i<w. This together with the convergence of a
i=1

gives a, _—0

1l,s 1l,s
a‘s‘.

We shall use these lemmas to derive the asymptotic. expression for
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’ [~4
the aatrix Q° from (23),(26:.

Lemma I. Suppose that

*)

o © 3 “
~ 2 1 | Pg-aFfg | Ts-1 _
£,—C, ) Bi=e, ) Bi<w, B | P By L0 () —g sl
i=1 i=1 = 5
B_.-B o ® r P
s "1s - 2 - s-1 s-1
g 0 L BT ) Bl TopT ol g0
S i=1 i=1 s s's
T
EvSvS =V, 0<V<o, E(v |B )=0, E((v 3 Evsvs)les)<C<w:
E(vive |B )=EViV ?
Then
Q°= é (V+as)_1, a,—0 a.s.
r
s
Proof.
From (23),(26) follows that
s s -1 s_ @ i s 3
[Zals(y S )T | 2 T g ), et ()
i=1 i=1 i=1
Let us consider various terms in (A.5).
S i s
l. Let us estimate W= Z ais(x -x"). We obtain:
i=1
w o=(1-8_)(w. --(x5-x5"1)), Iw_i=(1-g_) (Iw__1+Cp_) (A.6)
s S s-1 ! s s s-1 s '
since
s__s-1_ -
X -X =TpgPg-1" Htoﬂ_co (A.7)

due to (27). Let us substitute stu=asps_l/ﬂs. Then (A.6) yields:
1

Ps—2Ps
as= as-l—Bs[as—l[l— B Pe—1Pa-1 —1|]-C0]

Applying the Lemma 2 to this inequality we obtain

S

limsup a. = C
i i

and finally for sufficiently large s we have:

0

, fTyls2C (A.8)

2. Let us estimate Wg Z ais(y -X ) Due to (24) we obtain:
i=1
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S
=\ U N S
W= z a; STV ={1 B ) o 1+Bsrsv
i=1
Taking as=ws/rc we obtain from this Ineaguality:
I~

-~

85 (1=Byglag 1 *Rgv

“s
therefore stzﬁls since Ty 1%Tg- Thus, the Lemma 4 can be applied

here, which yields as—eo a.s. and finally
S

i
z ais(y —xl) = I Togr t25~+0 a.S. (A.9)
i=1 -1
3. Let us take RS=Qs . From (A.5),(A.8),(A.9) we obtain:
Rs=(1_BS)[Rs—1+Bs{xs-1_(ys_xs—1)][xs—l_(ys_xs-l)]T]=
_ s-1 2, 5 S T
(1 Bs)(R +Bsrs(vb+t3s)(v tTag) ) t3s—e0 a.s. (A.10)
where -
r3s=—r Ps-2 -t Fs-1 +T Ps-1
1,s-1 Bs—lrs 2,s-1 ry Os T,

and r3s is Bs_l—measurable. This gives the following inequality for

the element R§j of the matrix Rs:

S _,q_ s- 4s 4s__3s_3s_  s_3s__s_3s 4s
Rij—(l BS)Ri +ﬁ r (vlvj+'clj ), rij LY rj +vi'cj +vj'ci ’ tij—eo a.s.

Let us substitute R.j-r ([Evi j+a ) in this inequality, then

Bg

1 _ _ s _A4s
as—(l Bls)as-l+Bls( Bl v vJ Ev, ~- T,

and Lémma 4 yields as—ao a.s. and RS J-r (V ij s).
The following lemma establishes the fundamental property of the
step directién d®.
Lemma 6. Suppose that the following conditions are satisfied:
1. The set XcR" is a compact set.

2. The function F(Xx) is continuously differentiable and Fx(x)

satisfies a Lipchitz condition.

3. There exists a.s. k=k(w) such that HQSHS-Ej-, C<eo for szk
22 Ts
4 Z B = z Bz<w (1- B ) ——— S _S-1 =1-8 i B,:0, r —0
* ! i 1s’ 1i 77 ~s !
i=1 i=1 s i=1
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ps—1 & B? 2 p?—1 £ -1 Bc'
_—5____)0, z = <w, z Z ~- <o, f’_ = <C<w, B" <C<w
J -~ ‘o 1=
F1sTs i=1 Ty i=1 Ti s 35

E(5-F(y®) |Bg,v®)=0, E((5-F(y®)?

B, V") <C<m, E(VS|BS)=0, v i<C<w
Then ds=F(xs)+as where as—ao a.s.

Proof.

1. Let us derive an expression for dS—F(xs). Denoting

el=tt-F(y), 8y =F(yh)-F(x®) - (v1-x%)TF, (x)
we- obtain from (23):
s s 1 s,, & i s i
u =Q Fx(x )+ z ais(y -X )[Ais+e -

i=1 j

I B~

S .

- ]
ajsAjs z ajse ]
1 j=1
Combining this with (23) we obtain:

S . . S S .
S _ S, _ S i_s i _ j :
d®-F (x%) = Q7 ) o, (v -x )[Ais+e Y o5 Byg > oy g€ ] (A.11)
i=1 . j =1 j=
Let us consider different terms in the right hand side of (A.ll)
i s, i

S
2. Let us estimate W= z ais(x -x")e We obtain
i=1

_q, S-1 .
ws=(1_Bs)ws--1-(1_Bs)(xs_xs 1) z ai,s—lel
i=1

which gives
S/ s-1
lw™it=(1 Bs)uw II+C0pS_1r1s (A.12)
where

- i
T, =l a; g-1F I —0 a.s. (A.13)

due to the Lemma 4 and

3 T L2 i i.2
Y Bi==, ) Bi<w, E(e"|B;)=0, E((e")|B;)<C<w
i=1 i=1

Taking as=HwSH/r§ we obtain from (A.12):

a <(1—B )a +C B &‘t
s~ 1s’"s-1 ~0"1s 2 “1s

Blsrs

This yields as—ao a.s. due to the Lemma 3 and finally

3 (xi—xs)el —0 a.s. (A.14)
r
s

lod
1

is

=
[l g [ ]

i
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J. Let us estinmnate W= y . We obtain

1
Ys (l )ws—1+ﬁsrsv <
Taking as=wsn/r§ we obtain:
: 8
n o=f1_ S _S_S
ag (1 Bls)as-1+'E;_v €
The Lemma 4 yields now as—ao a.s. and finally
1 3 ii
—5" z a; gLV E —0 a.s. (A.15)
Ts i=1

S : S .
- i__s j
4. Let us estimate W z ais(x x7) z ajse . We obtain:

i=1 j=1
s =
1 2 s i s\_,._ _
ws_(1 Bs) ws—l+Bse Z o‘is(x x7)-(1 Bs) (x x° Z j,s- 1
i=1 =
Due to (A.8),(A.13) we have the following estimates:
2, .s__s-1,5¢! j
(1—BS) (x"-Xx ) z j,s—le = Pg-1T1s7 tls—ao a.s.
i=1
s & i s s
Bse z ais(x -Xx")= ¢ Pg-1T2g’ "t25"<C<m a.s.
i=1
where Tog is measurable with respect to Bs. This yields the

following equality:

L 2 S _
ws_(1 Bs) ws—1+ps—1(€ T2s tls)

‘ _ 2 i
Taking as—wsll/rS we obtain:
Ps-1
ag=(1-B5) (1-Byg)ag 1+ )
s

S
(7Ty57T1g)

For ag all assumptions of the Lemma 4 are satisfied, which implies

]

. S .
——%— z ais(xl—xs) Z ajseJ —0 a.s. (A.16)
Ts 1=1 j=1

5. Let us estimate ws= z “is lv

a e . We obtain:

PV1

=(1-8 )2 - s” ]
Ws=(1-Rg) Wy _1+Bg(17Bg) gV Z *y,s-1° *
j=1

B (1-8,)e® Z @y o175 j+B§rsvsss (A.17)
j=1
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wWe need now to estimate bs= \
=1

b ={1-8_)b__ +B T

It 1~
R
H
<

we obtain:

B
=1 s s
Cs=(17B1g)Cs ¥V

O’lk\)(ﬂ

Making the substitution cs=b~/*

with all conditions of the Lemma 4 being satisfied for as=cs,
therefore c,—0 a.s. Substituting this and (A.13) in (A.17) we

obtain:

ws=(1—BS) w -1 B (1- B )r v rls+ﬁ (1-8 )csrg 1 5 1+B r vsss

after another substitution as=ws/r§ we obtain:

Bs S s ri—l Bg S s
as=(1-85) (1-B glag ,* T (1-B)VTT g *B (1-B )e -2 Cg-17 T v E
s

All conditions of the Lemma 4 are satisfied and as—ao a.s., which

vields

s . S .
z a, r,vt z a, el — 0 a.s. (A.18)

S .
. _ i s L.
6. Let us estimate W = z ais(x bd )Ais. We obtain:

s-1

ws=(l—Bs)ws—1—(l—Bs)(xs_xs—l) z ai,s—lAis
‘ T i=1
sat i s-1
H(1-Bg) Y @y o (XX (A by o) (A.13)
i=1
where
Ais—Ai’s_l=F(xs"1)—F(xs)—(ii—xs)T(Fx(xs)-Fx(xs‘l))+(xs—xs'1)fo(xs’1)

We obtain the following estimates for the first and the second term

in (A.19):
s s-1 s-1 s-1
Hx"=x""7) ) o; go1BighsCog I Y o; go185515CPg_; (A.20)
i=1 i=1
since Ais is bounded due to the compactness of the set X and the

differentiability of F(x). The Lipchitz property of Fx(x) yields:

i _s-1 <
) o oo (XX TN (B By o )ISCp ) (A.21)
i=1
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Here we assumed in addition that F_(x) has the Lipchitz property on
st prog

>

Cembining (A.19)-(A.21) we obtain:

IinHS(l-Bs)IIwS u+C2p

-1

After the substitution "ws"=as/r§ this yields:
Ps

- - —

ag=(1"B1glag 1%Cy—

r
s

s-1

We now obtain from the Lemma 3 that as—eo a.s. and finally

S .
——%- ) ais(xl—xs)Ais — 0 a.s. (A.22)
ro . :
s i=1
2 i
7. Let us estimate W= Z o TV Ais‘ We obtain:
i=1
' s scl i \
We=(1-Bg )Wy _1#B T v A +(1-B5) Z *i,s-1%iV (Bis785,5-1) (A.23)
i=1
Since Iv®I is bounded and due to conditions 1,2 we get
s-1 .
1
(1-B )M ) o goqTyV (BygmAy o q)NsCog (A.24)
i=1
Ass can be estimated as follows:
S S S S S S S
ASS=F(yS)—F(x )=r (VO F (x7))=r_(v°,F (x"+6r_v’)~F (x")), 0s6xl
therefore
_ L ,
HASSH_CrS (A.25)

Combining (A.23)-(A.25) we obtain

_ 3
uwSHS(l Bs)uws_1H+CBer+Cp

s-1
which yields after the substitution as=uwsn/r§:
s-1
ass(l Bls)as—1+CBsrs+C r2
s

and all conditions of the Lemma 3 are satisfied which yields-as—eo

a.s. and finally

S .
-—%— z aisrileis — 0 a.s. » (A.26)
ro .
s i=1
s
8. Let us estimate W= z ajsAjs' We obtain:
j=1
: s-1
Ws=(1Bg)Wg_1+BgA 5 (17Bg) z Qj,s-l(Aj,s_Aj,s—l) (A.27)
j=1
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Similarly to (A.21) we obtain:

s-1 :
) oy go1(By, g7hs oy )ISTo ) (A.28)
j=1
Expressions (A.25); (A.27) and (A.28) yield:
</ 1- 2
| Iw li=(1-B_ )W _ I+C,B T +Cp__;
after making the substitution uwsH=as/r§ we obtain:
- s-1 _ _ _ Bs _ Ps-1
ag=(1-Bjglag 1+CB*C 7 "35-17F15(85.17Cy R C— )
Ts 1s rsBls

Under assumption 4 a_ satisfies conditions of the Lemma 2 which

yields 1limsup ay = C and finally
k

S
I Z %ygbygl = Crg, C<w (A.29)
j=1 S . S
9. Let us estimate w_= z o, (yl-xs) z . A. . Similarly to
s is js“js
i=1 j=1
(A.8),(A.9) we obtain

S .
i__s
[ Z ais(y x")I—0 a.s.

Combining this with (A.29) we get the following estimate:

S . S S
1 <1 -i__s < -i__s
—5 Il —5- i z oy o (XT=x7 ) z asghsgls Cl z a, (XT-x7)I — 0 a.s.
r r . . .
s s i=1 j=1 i=1
Thus
1 3 -i s, &
= z oy (XT-%7) z ashsg — 0 a.s. (A.30)
s i=1 j=1
10. Combining (A.11),(A.14),(A.15),(A.16),(A.18),(A.22),(A.26),

(A.30) we obtain:
S S,__2.8
d Fx(x )—rSQ ag, as—eo a.s.
which due to the condition 3 completes the proof. =

Lemma 7. Suppose that for a nonnegative sequence ag the following

conditions are satisfied
[+ 4]
as+lsas—Cps¢(as)+Clpsts, ts—eo a.s., pszo, z pi=o, C>0,
i=1-

inf ¢(b) >0 for c>0
bzc

Then as—eo a.s.

31




Yroof.

We may assum2 without loss of generality that p(b)zon!{c)>0 for

&)
0O
H

bzc>0. Suppose that for some wel exists k and 8§>0 such that as>6
szk. We may assume without loss of generality that rssw(é)/2 for

szk. Then

1 s-1
ag=ax~ 7 Ce(9) Z Pi

i=k
which contradicts nonnegativity of ag for sufficiently large s.
Therefore for any k and >0 a.s. there exists m=m(k,8) such that

am<6. Suppose that there exists a number 1=1(m,8) such that 1>m and

al>36. We may assume without loss of generality that there exists r:

m<r<l, 6<ar526, 255a5536 for r<s=1, since max{o,as+1—as}—90. We

assumed already that rssw(a)/2 for szk, thus agzag ., for r<s=l.

Therefore a,=38 which contradicts assumption al>36. This

1
contradiction completes the proof =
Lemma 8. Suppose that for a nonnegative sequence ag the following
conditions are satisfied:
<a _ s
ag i 1%8g Cpsw(as)+clpsn ’ (A.31)

2 2
E(Kslao"°"as)=ts’;ts_*o a.s., E(”Ks—ts" |a0,f..,as)=Cs,

o4 0
2.2
pszo, z P, z piCi<m, C>0, Osassc2 for some C2<m,
i=1 i=1

Then as—eo a.s.
Proof.
Let us note that conditions of the lemma imply that

0
z pi(xi—ti) converges a.s. (A.32)
i=1

(see [38]). Denoting

p(a) = _inf Ep(a)
Ea=a,osasC2

we obtain inf. p(b)>0 for c>0. Taking expectation from both sides of
bzc

(A.31) we get:
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Eas+lsEaS—Cp85(Eas)+C1psEts
and for Eas 2ll cencditions of Lemma 7 are satisfied, which yields
Eas—eo. Therefore for any k and 6>0 a.s. there exists m=m(k,s)
(which depend on an element of probability space Q) such that am<6.
Let us suppose that an>35 for some n>m. Due to (A.31),(2.32) we have

max{as+l—as,0}—+0 a.s., therefore for sufficiently large k there

exists 1l: m<l<n such that ssalsza, 65a1535 and qu(ai)>c1'ci foxr

l=i=n. Thus,

n-1 . « :
i
a sa +C, z G (A.33)
i=1
Due to (A.32) we have
n-1 i
z pi(n —ri) —0 a.s. for 1,n —w.
i=1

Thus, (A.33) contradicts assertion an>35 for sufficiently large k =

Proof of the Theorem 1.

Let us denote

* * *
F =min F(x), X ={x: xeX, F(x)=F }, ws=min*nxs—xH2, uxs—x(s)u2=w5,
xeX xeX

* . * . 2
x(s)eX , ¢(w)=1nf{F(x)-F :xeX,min_lx-zl zw}, A(s,x,w)=F(s,x,w)-F(x)
zeX

Note, that ¢(w)>0 for w>0 due to compactness of X. Taking into
account convexity of the set X and the function F(s,x,w) we obtain

the following inequality for WS+1:

wStloxSte

—x(s+1)stnx5+1—x(s)stnxs—psgs—x(s)H2=
WS-Zps(Es,xs-x(s))+p§"§sH2 =
Ws-2ps(Fx(s,xs,w),xs-x(s))—2ps(Es-F(s,xs,w),xs-x(s))+p§u§su2 <
WS—ZpS(F(s,xs,w)—F(s,x(s),w))—2ps(£s—F(s,xs,w),xs—x(s))+p§ﬂ§suz <
ws-2ps¢(ws)+psxs (A.34)
where
kS=-2(A(s,%%,0)-A(5,%(5),0))-2(£5-F(s,x°,0) ,x°-x(s) ) +p_1£%17
all conditions of the Lemma 8 are satisfied for as=ws and (A.34),

therefore Ws —0 a.s. a
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Proof of the Theorem 2.

we are using here notations introduced in the proof cf the

Thecrem 1. Similar to (A.34) we obtain:

wStls ws—?,psws(ds,xs—x(s))+p:7§udsu2 =
S s S ' s s S 2 2 2
W-2p 7 _(F, (X"),x"~x(5))-2p 7, (d°-F(x"),x -x(s))+pswsudsﬂ <
WS-2p v (F(x%)-F")-2p 7 (d°-F(x®),x%-x(s)) +p 72 0a%1 (A.35)

Under assumptions of the theorem all conditions of lemmas 5,6 are
satisfied, therefore
S_ s
d —Fx(x )+as, as—eo a.s. (A.36)
This together with the boundedness of Fx(xs) on the set X implies

the existence a.s. of the number k=k(w) and C,>0 such that

1
7szC1>O , szk (A.37)
(A.36) and the compactness of the set X vyield:
S_ s s _ 2.2 .5 2
2ps7s(d F(x"),x x(s))+p575"d il _Clpsas, as—%O a.s. (A.38)

After the substitution of (A.37),(A.38) in (A.35) we get

s+1_..S_ s
W =W Cpsw(w )+C1psas, as—eo a.s.

which together with the Lemma 7 yields W°—0 a.s. This completes the

proof due to the compactness of the set X. =

APPENDIX B. AN EXAMPLE OF DISCRETE EVENT SYSTEM WITH DISCONTINUITIES

Suppose that the manufacturing system contains two machines Ml’

Mz.and the buffer B. The buffer contains items which should be

_processed consecutively by both machines (Figure 1).

gl(xl""l) gz(lewz)
g3(x3,03) Gy (X4,0,)
Figure 1.

The processing time of each machine is gi(xi,wi), i=1,2, xieml, W
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is distributed uniformly on [0,1]. If, fcr example, the processing
time is distributed expcnentially and Xy is the proceszsing rate then
gi(xi,wi)=—-%11n(l—wi)
The performance capability of the second machine can deteriorate and
is monitored by a separate process. If it is detected that the
second machine has deteriorated below certain level and the machine
is idle then the maintenance is started. If it is busy then the
maintenance is started immediately after finishing the job. If an
item arrives at the input of the second machine during a maintenance
period then it waits till the end of maintenance, and immediately
after that the processing is started. The time elapsed between the
end of one maintenance period and the detection of necessity for
another maintenance is g3(x3,w3), the.length of maintenance is
g4(x4,w4). Suppose for simplicity that the buffer contains only one

item. Then the system can be in one of the following states:

zl - M1 is busy, M2 is idle and ready for a job

z2 - M1 is busy, M2 is under maintenance

z? - M, is idle, M, is busy

z4 - Ml is idle, M2 is under maintenance and the item waits
at the input of M2

z5 - an item is at the output of the M

9
At the initial moment t=0 the item arrives at the input of M1 and

M., is considered to be just after maintenance. Suppose that the

2
probability of coincidence of the item arrival at the input of the
second machine and the detection of the need for maintenance is

zero. Then the following sample paths are possible in this system:

k .
Ulk(x,w)={[(z1(i),tl(i)),(zz(i),tz(i))].-1,(z1(k+1),t1<k+1)),
l=
@), ) fank, ko2,
k

Lt etay,

Uzk(x,w)={[(z1(i),t1<i)),(z2(i),t2(i))]
. i=1
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. , . I,y . . . . .
wnerez (z-(i),t-(i)) denotes event which coingists of the 1-th

transition to the state j from the beginning of simulation, in order

to simplify nctations we cmitted depencence on (%z,w). Here

ti(1)=0, tl(x)=c(k-1,x,0), k=2, G(k,x,0)= [g3(x3,w§)+g4(x4,wi)]

[ e -

i=1
. . K3 gl(xl,wi) for path z1¥(x,w)
te(k)=t~(k)+g5(x5,03), t7(1)= ok
G(k,x,w) for path 277 (x,w)
4 1 5 3 1
t (1)=gl(x1,w1), t7(1)=t (1)+g2(x2,w2), (B.1)
The path U'¥(x,0) is taken if (x,u)e®,, and the path U?K(x,0) is
taken in the case (x,w)e®2k, where
1 k+1
®1k={(x,w): G(k,x,w)sgl(xl,wl)sG(k,x,w)+g3(x3,w3 )},k=0,1,... {B.2)
k 1
®2k={(x,w): G(k—l,x,w)+g3(x3,w3)<gl(xl,w1)<G(k,x,w)},k=l,2,... (B.3)

Suppose that the objective function is the weighted sum of average
processing time and cost terms. The average processing time in this
case is the time of arrival for the first time at the state 25,
‘since only one item is in the buffer, i.e. it equals t5(1).
Summarizing (B.l)-(B.3) we obtain:

F(x)=Fl(x)+F%(x), Fl(x)=wa(x,w),

1 1 .
g,(x,,wy)+g,(X,,0,) 1if (X,0)ed
f(x,w)={ 1'71771 2'72 21 ‘ 1k (B.4)
G(k+l,x,w)+g2(x2,w2) if (x’w)€®2(k+l)
where k=0,1,... and G(0,x,w)=0. Therefore the function f(x,w) is
discontinuous with respect to (x,w), but it is differentiable on
each set ®1k’®2k if gi(xi,wi) are differentiable. Note that the
function F(x) may be differentiable too, depending on the properties
of gi(xi,wi). In particular, it would be differentiable in the case
when gi(xi,wi) are distributed exponentially.

Thus, even in such simple example as this, there are infinite

number of sets in the continuity partition defined by (B.2)-(B.3).
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Some o differentiation schemes can experience difficulties in this
situation. For example, a sample derivative fx(x,w) gives 1in this
X . 1
cace a biased estimate of the gradient F (x). 1In order to see this
let us compute the partial derivative of Fl(x) with respect to Xq-
Let us denote
_ . _ k+1
a(k,x,w)=a(k): gl(xlla(klxlw) )=G(k,x,w) +g3(x3rw3 ), k=0

b(k,x,w)=b(k): gl(xl,b(k,x,w))=G(k,x,w), k=1, b(0,x)=0

Then
» 1 a(k)
1, 1,, 1.1 k#l, 1 Kk
Fxl(x)— y J J glxl(xl,wl)dwldw3 dol Flawy - -dwf +
.+ k=0 0 b(k)
1
o]
1 k+1, 1 K+1
y I(axl(k)(gl(xl,a(k))-G(k+1,x,w))dw3~-dw3 duwy - - duw, (B.5)
k=0 0

Now let us try to compute the same derivative using only one sample
path, which amounts to the differentiation of f(x,w). We obtain
1, .
g (x,,w7) if (x,w)e®
fx (x,w)={ lx1 1771 1k
1 0 if (x,w)e@z(k+1)

Note, that under general assumptions this derivative exists almost

(B.6)

everywhere. Taking the expectation in (B.6) we obtain only the first
term in (B.5) and lose the second term, which appears due to

discontinuities.

APPENDIX C. NUMERICAL EXPERIMENT
The example from the Appendix B was used for the numerical
experiment reported here. The objective function of the problem (4)
was
_wl 2 1 =
F(x)=F (x)+F"(x), F (x)-wa(x,w), (C.1)
where f(x,w) is described in (B.4) and the cost term Fz(x) was the

following:

2
1 P 3 3+ 1.92x4 + 0.4

The operation times gi(xi,wi) were taken to be exponential in order

F2(x) = 1.32x, + 0.25x, - 1.28x. +0.4x
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to allow exact computation cf the objective function values, this
was necesgary for the verification of algorithm results:

1 o
gi(xi,wi)——-igln(l wi), i=i:4

where w; are uniformly distributed on [(0,1). In this case it is

possible to obtain the explicit formula for Fl(x):

1, . 1 . % 1
)= —§5+ L x X1 k+1 Xk
k=0 [1+ T] [1+ _x_]
3 4
1 k+1 kK 1 k+1 k+1 1
— + + + + — (C.2)
[ x3[ X1+X3 xl+x4] xl+x4[ X1+X3 X1+X4 X4]]

The admissible set X was the following:

X={x: xeR?, x=xsx, x=(0.5,0.5,0.5,0.2), £=(4,4,4,4)}

This problem has the optimal solution x*=(1,2,1,0.5) with the
optimal value F*=4.6

The simulation model which provided the values of f(x,w)+F2(x)
was a general simulation program intended for simulation of one of
the modifications of the Petri Nets. This program supplied the
observations of the objective function to the interactive program
SQG-PC which is an advanced implementation of stochastic
quasigradient methods [14]. This program was supplemented by the
implementation of the algorithm (23)-(27).

The objective of the numerical experiment was to compare
stochastic quasigradients (10) with finite differences (13) with the
concurrent approximation (23)-(27). Therefore the algorithm
parameters in both cases were taken as similar as possible. We used
forward finite differences (13) with the fixed value of difference
step which was equal 0.2. Thus, five simulation runs were needed on
each step in order to obtain a step direction. The finite difference
direction was normalized in order to be comparable with direction
generated by (23)-(27). In the concurrent approximation algorithm

the expression (25) was modified as follows:
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0.95«. , 1f s-50<i<«s
[ i,s-1
&is= 1 0.05 if i=s
0 otherwiss

instead of probabilistic selection of v® in (24), the deterministic

scheme was adopted here:

if i(s)=1, s>1
. s . .

rs=0.1, v =esei(s)’ i(s)=s-4[(s-1)/4], 65= e if i(s)=2,3,4

1 if s=1
where e, is the i-th unit vector of the basis in R™. Thus, the step

in finite differences equals the size of vicinity of *s in which
observations are made for concurrent approximation. The value of ?;
from (27) always was equal 1/1d°1. The step size Pg in both methods
Qas selected according to one of adaptive rules implemented in
SQG-PC.
The initial point x1 for both algorithms was
x1=(3,3,3,3), F(x!)=11.4078

Starting from this point two sequences of points were generated: xls

ll=x21=xl, with the same sequence of

by (10),(13) and x°5 by (27), x
random numbers used to generate function observations. Each
algorithm performed the number of iterations for which 2500
independent observations of the objective function were needed, 500
iterations in the case of finite differences and 2500 iterations in
the case of concurrent approximation. After that, exact function
values for both sequences of points were computed using expression
(C.2). The results are displayed on the Figure 2. The number of
observations of the objective function is depicted on the horisontal
axis and corresponding exact values of F(x) are depicted on the
vertical axis. The straight dashed line is the optimal value F*, the
solid line corresponds to the concurrent approximation and the

dotted line corresponds to the finite differences.

Both algorithms exhibit behavior typical of the stochastic
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optimization procedures: comparatively fast convergence to a certain
vicinity of the optimal solution and slow convergence with

oscillations in this vicinity. However, the concurrent approximation
method shows more regular behavior, cenverges faster and to smaller

vicinity of the solution.
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