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Application of Multivariate Statistical Analysis 
for the Detection of Structural Changes 

in the Series of Monitoring Data 

M.Ya. Antonovski, V.M. Buchstaber, and L.S. Veksler 

Abstract 

A new approach to the study of time series by the projection pursuit methods is described. 
The ideas are illustrated on the time series of the monitoring of the environment and climate: 

( a )  on time series of anomalies of global mean annual temperature - the main climatological 
parameter; 

( b )  on time series of atmospheric C02 concentrations - the main greenhouse gases; 

(c) on time series of vegetation index (NDVI) - the main global characteristic of biota 
activity on the satellite data. 

With the aid of the shift operator for time signal, we construct a curve in n-dimensional 
Euclidian space (shift operator and integer n are the parameters of method). So an analysis of 
a time series is reduced to the analysis of the most informative projections [for example, by the 
criterion of factor analysis or spectral analysis (discrete Fourie analysis)] of the corresponding 
n-dimensional curve. We show that the comparison of such projections for model-test time 
series with the projection of the time series under investigation gives an effective way of 
finding the structural changes of the monitoring time series. For example, the case of the 
Hansen-Lebedeff time series of anomalies of the global mean annual temperature (see R e n d s  
'go), shows that the structure of the series in the interval from 1920 until 1950 essentially 
differs from the structure on the intervals 1880-1920 and 1950-1987. For the series of C02 
on the Mauna Loa and Barrow monitoring stations, we obtained dynamics of the amplitudes 
of the year and semi-year cycles. We give the construction of a nonparametric estimation 
of a model of the initial time series using k-dimensional projection of n-dimensional curve. 
As a consequence, for example, we found the main components of the C02 time series and 
obtained the models of the yearly behaviors of NDVI time series which permit one to carry 
out statistically stable classification of ecosystems by ecotypes and to describe dynamics of 
the separate ecosystems (see Appendices). 

Thus it is proposed a tool for the creation of the statistical description of the current 
state of the given monitoring series in the form of geometrical image. These geometrical 
images permit us to  analyze the anomalies in the monitoring series in the terms of deviation 
of these images. As it follows from the examples given below such a method of the analysis of 
monitoring data is an effective method. Between the theoretical let us stress the following: we 
show how the methods of the analysis of the time series widely used in statistical treatment 
of monitoring data could also be used in our approach as the tools of the projections pursuit 
for comparing the images of the curves p(r, f )  of the signal under investigation with the 
curves of the corresponding signals; i t  is shown that the proposed approach permits us to 
join in a united method the achievement of the theory of operators of a generalized shift and 
exploratory analysis on the basis of the projection pursuit. 



Introduction 

The problem of the assessment and prediction of antropogenic impact on climate (and vice 

versa - influence of climatic changes on society) is one of the most important among the global 

problems. Taking decisions connected with this problem lean mainly on monitoring data. For 

example, the arguments for the impact of C 0 2  emission from fossil fuel burning on changes of 

the radiative balance of the Earth (greenhouse effect) was published by Callendar in 1938 on 

the basis of the analysis of the trend of the series of mean annual temperature. But only a 

comparison of monitoring data of the trends in atmospheric C 0 2  concentration time series with 

the trends of the series of antropogenic emission of the C 0 2  in the atmosphere put a problem 

of the assessment and prediction of greenhouse effect on the line of the most known and actual 

problem. The efficacy of using monitoring data is defined mainly by the quality of the analysis 

of the given data. In this connection, the development of the methods of applied statistics that 

are oriented on the peculiarity of the monitoring time series and are directed on the solution of 

following questions of great importance: 

1. A construction of a statistical model of a time series (basic time series); 

2. Informative description of the dynamics of the anomalies (deviations from the basic time 

series); 

3. Finding the structural changes of the time series 

(reconstructions of the basic time series); 

4. Assessment of the uncertainty of the predictions of the time series (extrapolation of the 

basic time series with taking into account the dynamic of the anomalies and mathematical 

modeling of physical mechanisms of researched phenomenon. 

In this paper we describe the approach to the solution of these questions on the basis of 

jointly using the results of the theory of generalized shift and of projection pursuit. 

In §4 and 5 we give a more detailed description of the behaviors of NDVI time series. 

$1. Description of method. 

Let us start from the general construction for time signals as a function of continuous time. 

Let the signal f (t)  under investigation belongs to some linear space F of time signals. Let us 

fix a linear operator A : F + F and a set of marks (counts) t l , .  . . ,t,. Let us construct for 

each f ( t )  E F a curve (pj(r) ,  T is an internal time on curve and f in the index shows that 



pi is built using curve f ( t )  [we will also use a notation p( r ;  f)]. We construct ~ ~ ( r )  as a 

piece-wise linear curve in Rn connected consequently with knots XI , .  . . , x,, where x; E Rn, and 

21 = (f(t l) ,  . - - , f ( tn ) ) ,  2 2  = ( A f ( t ~ ) , - - - , A f ( t n ) ) ,  xm = (Am-' (f(t1)) ,**- ,Arn- l ( f ( tn ) ) )  

and Am = A(Am-l) - m-th iteration of operation A. Operator A and set of marks (counts) 

i t l , .  . . , t,} are the parameters of the method selected from the following gesture. 

Let f ( t )  be a eigen function of operator A, i.e., A f(t)  = X f (t), X = A( f ) ,  X independent 

from time t (dependent only from function f) .  Then by the construction zm = Am-' x1 for each 

set of marks. Thus, for the eigen functions of operator A the curve p(r ,  f )  is disposed in one- 

dimensional subspace of the space Rn with the guiding vector in the form z j  = fi. Moreover, 

if IXI < 1, then a curve p( r ;  f )  is on the interval [-zr, xl]. If X > 1, then p ( r ;  f )  c R1\[-zl, XI] .  

Now, let 

k 

f (t) = x cq fq(t) , k < n (hypothesis) , 
q = l  

where fq(t) is the eigen function of operator A with the eigen values Xq correspondingly, (A fq = 

A, fq, q = 1, . . . , k < n). Then a curve p (  f ;  T) lies in k-dimensional subspace of the space Rn. 

The operator A of general shift is also a parameter of the method. For an operator A 

of a given concrete form, i t  is possible to obtain a stronger assertion of the geometry of a 

curve p(t, f ) .  Let us consider as an operator A, for example, the operator of classical shift 

A1: f (t) -t Al f (t) = f ( t  + At), where At is a step of a shift and also the parameter of the 

method. This operator confront to the function f( t )  a function f (t + At). Then, m-th iteration 

of f (t) is f (t + mAt): A;" f (t) = A?-' f (t + At) = f (t + mAt). Hence, if f (t) is a periodical 

function with the period T = mAt then the corresponding curve p ( r ;  f )  is a closed broken line 

at Rn with m-knots (21,. . . , 2,). So, as the eigen functions of operators Al are exponents, 

exp ( ~ t ) ,  where p, generally speaking, is a complex number, then if f (t) is a polyharmonical 

signal, f (t) = xLl cq sin(wqt + p,), 2k < n (hypothesis), then for any set of marks {tl . . . , tn} 

the curve p( r ;  f )  will be in subspace of the space Rn stretched on vectors XI,, = (sinwqtl), 

x2,q = (COS wqtl), q = 1,. . ., k; I = 1,. . ., n. A dimension of the subspace is equal to the range 

of the (2k x n)-matrix - compounded from 2k vector column zlq,  z2q, q = 1,. . . , k. A range 

of matrix depends on selection of a set I t l , .  . . , t,}. It is easier to illustrate this remark on 

another example, that will play itself an important role. Let f (t) be a polynomial of a degree s, 

p(t) = C;=o altl, s < n. Then for any m 

is also a polynomial of a degree s. It is easy to see that in this case the curve p(r ;p)  is at the 



subspace of the space Rn stretched on the vectors 

where po(t) = l ,p l ( t )  = t, . . . ,p,(t) = t* is a basis in the space of the polynomial of the degree 

not exceeded by s. We have 

Dimension of the subspace in this case is equal to the range of ((s + 1) x n)-matrix - compounded 

from (s + 1) of these vector columns yl. 

Let J = (j l  < jz < - < j,+l) be a subset of s + 1 elements of the set {1,2, . . . , n). Then 

the minor A J of the matrix corresponding to our set J as Vanderemond determinant is 

Hence the marks should stay one from another as far as possible. But if there are a lot of marks, 

then the product of the numbers each of which is less than 1 would be very close to  zero. So 

the dimension of the subspace is s + 1 for any set of n marks where n > s. At the same time, 

the stability of the results connected with the decomposition of the polynomials by a basis of yl 

is defined by how far from zero the value maxJ A J is [here J is running by the set {J) of all 

subset (jl < jz < < j,+l) of the set {1,2,. . . , n)]. 

Coming back to the general case, it is possible to formulate the following demands to the 

parameters of the methods: 

1. A choice of the operator A is determined by the hypothesis of the time signal generator f (t) 

under investigation. Namely, starting from the hypothesis, we choose a finite- dimensional 

subspace FM (of the space F )  of model signals, and an operator A is choosing under the 

condition A : FM + FM. Above we have considered two different examples of subspace 

FM: a subspace of polyharmonical signals for a given set of frequencies wl, . . . , wk and a 

subspace of the polynomials of the degree not exceeding s. In both examples, the operator 

of the classical shift A1 maps the subspace FM + FM. 

2. The set of marks {tl, . . . , t,) was chosen by the way that n > dim FM and restriction 

of the linear map I : F -+ Rn, f (t)  + (f (tl), . . . , f (t,)) onto subspace FM C F is an 

imbedding. It is clear that this condition defines the set of marks in a non-unique way. It 

is important to  select such a set of marks, that if to identify F with the linear subspace 

I ( F )  in Rn then the determinant of the map I ~ I  : F + F would be essentially separated 



from zero. Here : Rn 4 F is a map conjugated to  I relatively Euclidian scalar product 

in Rn. 

Furthermore, we will continue to suggest below, that in space F is picked out the subspace 

of model signals FM. And operator A and a set of marks are satisfied to the conditions 1, 

and 2. For our method it is important to have'the effective algorithms of comparison of the 

geometry of the curves V(T; f ~ )  in FM for model signals with the geometry of the curves V(T, f )  

for the signals under investigation. In $3 will be described the results of the application of the 

algorithms of such a comparison to  the time series of monitoring based on factor analysis. The 

selection of the form of the analysis is explained by the following: 

1. The factor analysis of the set of n-dimensional vectors 21,. . . , z,, . . . permits us to  cal- 

culate the dimension of the subspace in which lies a curve V(T, f )  . Taking into account 

the fact that we know such a dimension for a model signal a priori (more precisely, we 

know an estimation from above of this dimension), and comparing with a dimension that 

we have obtained from the factor analysis we come to the first effective algorithm of the 

comparison. 

2. The factor analysis permits us to  obtain k-dimensional orthogonal projections of the exam- 

ined geometrical image on k-dimensional subspaces of main factors which are characterized 

by the property that they explain, by the best possible way, the dispersion in the set of 

vectors {zl,. . . , z,, . . .). Studying one- and two-dimensional projections of the curves 

V(T; f ) ,  we obtain the possibility to  produce the tools for a description of the types of 

deviation of the projections of the curves under examination from the projections of model 

curves. Thus, we obtain algorithms based on the human possibility to  differ effectively 

the visual images. The using of this ability of the human being lies in the foundation of 

the exploratory data analysis by the method of pursuit projection - a new perspective 

direction of multi-dimensional statistics. The results in this direction essentially based on 

the achievements of modern computer graphics. 

In $4 we show how the methods of the analysis of the time series widely used in statistical 

treatment of monitoring data could be also used in our approach as tools of the projections 

pursuit for comparing the images of the curves V(T, f )  of the signal under investigation with the 

curves for the corresponding model signals. 

In $5, it will be shown that the proposed approach permits us to join, in a united method, 

the achievement of the theory of operators of a generalized shift and exploratory analysis on the 

basis of the projection pursuit. 



52. Description of algorithm. 

The following algorithm that realizes the approach, given above, is used for the analysis of the 

time series: anomalies of mean annual temperature (see Trends 'go), mean monthly concentra- 

tion of the C 0 2  in the atmosphere (see Trends '90) and NDVJ (see Appendix I) ,  (see Figure 

1, where also given the examples of model series l a  and series l b  that was obtained from the 

generator of random numbers and also three examples of real monitoring data series the research 

of which this paper is devoted.) Let f = (fl,.  . . , fN) be a given time series, where fk  = f(tk),  

k = 1,2,. . . , N .  Let us choose as an operator A the operator A1 of the classical shift on one mark 

and as a set of marks i t l , .  . . , t,) - the set of the first n marks. Then according to  the general 

scheme of the method, we obtain the set X I , .  . . , Z, of n-dimensional vectors z l  = ( fl , . . . , f,), 
2 2  = (f2, f3, - . - 9  fn+l), - - 9  ZN-n+l = ( f ~ - n + l , .  - fN). 

Or, in the terminology of applied statistics, we obtained a (n x ( N  - n + 1))-matrix of data 

X =  (zkl , l  5 k < n , 1  51 5 N-n+l) ,m-throwofwhichisavectorx, ,m= 1, ..., N - n + 1 .  

The selection of an operator A is corresponding to the selection of the model signals of the form 

where pq(t) = C;zl aqltl, q = 1,. . . , k are the polynomials of degree sq. 

The selection of the parameter n for seasonal time series is defined by the number of marks at 

season. For example, for atmospheric COz concentration and vegetation index NDVI the natural 

season is a year of observation and hence n = 12, for the mean monthly concentration 

of C 0 2  and the values of NDVI, each of which was obtained by the standard procedure of 

maximization by the set of observation data at the corresponding month of observations. 

For the time series without a natural seasonal structure, the number n a priori is not 

fixed and is evaluated in the way of analysis. For example, for a series of the mean annual 

temperature anomalies, as described below, the analysis for n = 21, permits us to find the 

structural reconstruction of the series. 

On the first stage of the algorithm, we conduct a complete factor analysis of the matrix X of 

the data, formed by the time series j ( t )  = ( fl, . . . , f,). The result of the stage is a set of proper 

numbers X I , .  . . ,A,  and the set of n-dimensional vectors wl,. . ., w,,, where n, 5 n, n, is the 

number of the last non-zero proper numbers, i.e., Aq = 0, q > n,. Hence, the set of all non-zero 

n-dimensional vector XI ,  . . . , Z N - ~ + ~  lies in n,-dimensional subspace, stretched on the vectors 

Wl,...,wn.. 

The second stage of the algorithm consists of three steps: (1) Analysis of the projections of 

the set of the vectors X I , .  . . , Z N - ~ + ~  on the axes of the first two main factors. (2) Analysis of 



the projections of the piece-wise linear curve (P(T, f )  with knots 21,. . . , zN-rn+l on the plane of 

the pairs of the first main factors. (3) A construction of a non-parametric assessments of the 

initial series f = (fl, . . . , fn) by the projection of data matrix X on q-dimensional subspace of 

the first q main factors q < n.. 

Comments. The analysis of the set of vectors z l ,  . . . , z~ essentially use that a data matrix 

X = (zk,~; 1 5 k 5 n, 1 5 1 5 N - n + 1.) has highly special form, namely 

Zk,l = fk+l-1 , 

i.e., z is a Hankel matrix (see Gantmacher, 1967). We will show that these projections have a 

natural interpretation in terms of the initial time series. 

Let a = ( a l , .  . . , a,) be a fixed set of weights. The procedure of moving weighting (a-  

weighting) of the series f = (fl, f2 , .  . . , fN) is an obtaining of a new series g = (gl, g2,. . . ,gN-,+1) 

where 

If, for example, al = a 2  = . . . = 1/71, then series gl is a series of the moving average of the initial 

series. The procedure of moving weighting is often used for a smoothing of a given time series, 

picking up its trend and supressing the noise part. Using the Hankel matrix X = (zkTl = fk+1-l), 

it is possible to present series g = (gl,. . . , g ~ - ~ + ~ )  in the form 

It means that the set of the numbers 

where 

presents a projection of a set of vectors 21,. . . , z ~ - ~ + l  on one-dimensional subspace, generated 

by the unit vector a/llall. 

The following lemma describes a criterion by which a projection of the set of vectors z l ,  . . ., 
z~- ,+1  on the axis of the first main factor of the data matrix X corresponds to the best 

procedure of a-weighting. Let us consider the functional SST(f) putting in corresponding to 

time series f = ( fl , . . . , fN) the dispersion of its value: 



We use notation SST from the regression analysis (Afifi, Azen, 1979) in which the values of 

this functional are served as a scale under estimation of the qualitative property of the regression 

of time series f ( t ) .  

Lemma. Let g = (gl, . . . , gN-ntl) be the result of a-weighting of time series f = ( fl, . . . , fN), 

then 

where A1 is the great eigen number of the matrix X = (xlk = fktl-1). The equality is reached 

when a = (a1,. . . , an )  is a set of coordinates of the first main factor wl. Thus, between all 

a-weighting of the initial series f = ( fl, . . . , f,) the series obtained by the procedure of weighting 

with the aid of the first main factor wl have the biggest relative dispersion of the values. 

The integral part of the method is a description of the projection of piece-wise curves 

qM(r ,  fM) for model signals - a creation of a bank of model images. Analysis of the pro- 

jection of the curves ~ ( r ,  f )  for real signal is making in the terms of deviations (of anomalies) 

of its projections from the model images. 

Further, under the demonstration of the method we shall use a description of the projections 

of the curves qM(r ,  fM) for the following model signal fM: 

1. polyharmonical signal; 

2. polynomial signal; 

3. noise signal generated by the different random numbers generators; 

4. the combinations of signals of the first three classes. 

For the model signals we have considered the series f = ( fl, . . . , fN), where N = 84, n = 12. 

A selection of the values N and n links with a creation of data bank for model images for analysis 

of 7-year time series of NDVI (Appendix 1). After applying the shift operator for series f were 

formed (73 x 12)-matrix of data X = X (  f ) ,  and then complete factor analysis of matrix X was 

done according to the first stage of our algorithm. 

Let us consider the results of the second stage of the algorithm on models signals. In Figure 

2 we present a harmonic a0 + a1 sin (27rkl12) and its projection in the space of principal 

component. The initial signals are shown in Figure 2a. The projection on the first pair (Figure 



2b) is a circumference that corresponds to analytical result. A projection on the second part 

(Figure 2c) demonstrates some regular figure that does not correspond to  analytical image of 

harmonic. The following analysis shows that the appearance of this figure links with the error 

of approximation at the calculation of the values of sin. 

Increasing the preciseness of the calculation takes away this figure (see Figure 2d) and 

confirms the hypothesis that this figure connected with the effect reflected the rules of the 

approximation to  (rounded off). Namely, in the first case a rounding off was done with the 

preciseness of the third valued number (and discovered secondary effects bear witness to  the high 

sensitivity of the method). In Figure 3 we present the results of polynomial series ao+al k+a2k2. 

In Figure 3a we see the initial signal; in Figure 3 b  the projection on the principal component; on 

Figure 3c the projection on the second principal component; and on Figure 3d the projection on 

the plane of the first pair of the principal factors. As the initial series is clearly not a periodical 

one, then the curve (Figure 3d) is not closed. The assessment of the dimension of initial set of 

points completely corresponds to  the analytical estimation. As we mentioned above, if we have 

a polynomial signal of degree k, then the dimension of the space where the points are plunged 

is k + 1. For parabola, the dimension of the space of plungeness is equal to 3. 

In Figure 4 the results for signals of random generator numbers are given. In this figure we see 

that under the projections in factor space there do not appear any regular images. We analyzed 

the time series which were obtained by the generator of random numbers of different laws - 

uniform law, normal law with different initial parameters, namely with different dispersions and 

means. We obtained the images as chaotic clusters, so we could say that the projections of this 

series are the image of chaos. 

Figure 5 shows harmonic (as in Figure 2) perturbed by noise, generated by normal law with 

dispersion a = 0.5; Figure 6 demonstrates the analogous situation with a = 1.0. In the second 

case, Figure 6, the dispersion of a noise is equal to  the amplitude of the initial harmonic. As a 

result visually the join signal completely loses its sinusoidal shape. Nevertheless, its projection 

on the plane of the first principal components Figure 6 still remains an image that corresponds 

to  the existence of a cycle. It confirms efficacy of the method for reconstruction of the initial 

structure that was exposed by random distortion. In Figure 7 we can see the corresponding 

results for polyharmonical signal with linear trend. The projections on the principal components 

and the planes of the pairs of the main components show evident similarity with corresponding 

projections for structural compounds of the signals (see for comparison Figures 2 and 3). It 

permits us even in the case of a huge distortion to restore the structure of the initial signal. From 

Figure 7 it is seen that polyharmonical and polynomial compounds of the signal are reflected in 

the principal components. Their order depends on the relative contribution of each component. 



Let us remark that when we have a polyharmonical signal f ,  then the components of cp(r, f )  

corresponding to the different harmonics are placed in orthogonal planes. If we add polynomial 

trend, then it is placed in some subspace not ortogonal to the subspace of polyharmonical 

(correctly, under an angle). This situation is shown in Figure 8 where a polyharmonical signal 

is presented which is put on parabolic trend. In Figure 8 pertubation of model images are clearly 

seen. But when we project into the space of the factors, we should know that, for example, the 

first projection corresponds to polynomial, or to harmonic, and so on. This is just an example of 

the explanation, how we can change the input of the different components. But as the subspaces 

corresponding to each component are not exactly orthogonal, then the projections are slightly 

distorted. Thus the study of model analytical curves permits us to estimate the stability and 

sensibility of the method in the frame of the models under consideration and to obtain model 

images. 

The algorithm of the construction of non-parametric assessments of initial series f = 

( fl ,  . . . , fN) by the projections of data matrix X consists of the following. 

Each vector s, = (f,, . . . , f,+,-l), m = 1,. . . , N - n + 1 could be written in the form 

where {w, E Rn, q = 1, . . . , n,) is the set of all principal components with non-zero eigen values 

XI >_ Xz 2 - - - >_ An, . Let us put 

and let us denote by X ( r )  the (n x ( N  - n + 1))-matrix, m-th row of which is, by definition, 

n-dimensional vector s, (r). 

We have X(n,) = X ,  but for r > n, matrix X( r )  is not more Hankel-matrix. 

Between all Hankel (n x ( N  - n + 1))-matrixes, the nearest (in the Euclidean metric of the 

matrix space to the matrix 

is a matrix 

where 



and 

I S , i f l < s < n  

s+= n ,  i f n < s < N - n + 1  

N - s t l ,  i f N - n + l < s < N  

To Hankel matrix HX(T)  corresponds time series f (T) = ( fi (T), . . . , fN(r)), where T = 1,. . . , n, 

and f (n,) = f .  

Lemma. Non-parametric estimation of the initial time series f = ( fl, . . . , fN) by the projec- 

tion of data matrix X = (xk,l = fk+l-l ) into the space of the first T main factors is a time series 

f(T) = (fl(T1, . . fN(T))- 

53. The results of analysis of some environmental 

monitoring time series. 

3.1. Time series of the atmospheric C02 concentrations 

For a demonstration of the method we selected the time series of C02 concentrations given in 

Trends '90 (see also Elliot, ed., 1988). 

In the present paper we use three time series: 

in Arctic zone - Barrow station (Figure 9); 

in Equatorial zone - Mauna Loa station (Figure 10); 

in Antarctic zone - South Pole station (Figure 11). 

For each of the stations we present: ( a )  the initial time series of concentration; ( b )  the 

projections on the first, (c) the second, and (d) the fourth main components, and also on the 

planes of the four pairs of the principal components (e ). 

As it follows from the general theory (see $2) the projections ( b ) ,  (c), and (d)  gives non- 

parametric estimations of the trend, year and half-year cycles as the principal components of 

this series. 

A visual analysis of the projections of these series into the factor space evidently demon- 

strate similar features in the structure of the series, and also their differences. Let us stress 



some differences: the complex structure of the trend on Barrow that more strong distort of a 

harmonica1 component, and absence of the second half-year harmonic at the South Pole. 

3.2. The temperature anomalies time series 

The time series of the temperature anomalies are the longest monitoring time series. Global 

characteristics have a particular meaning - the anomalies of the temperatures averaged by the 

northern hemisphere, the southern hemisphere, and on the entire Earth - because they reflect 

the global tendencies in Climatic Changes. For analysis we used time series of Hansen-Lebedeff 

(Trends '90). For the series of mean year values during 107 years the notion of parameter n 

as a value proportional to  the period of quasiharmonical oscillation is not completely correct, 

although it  is not excluded the possibility of the correlations with the cycles of solar activity. 

Nevertheless the selection of this parameter has independent values as is noted in 52. 

Figure 12 shows projections on the first principal components for a series of global tem- 

perature anomalies corresponding to  the selection of the three values n = 5, 11 and 21. Here 

it is clearly seen that n has the sense of a smoothing parameter (analogously to the sense of 

parameter n in the algorithm of moving average). Further we use n = 21. 

In Figures 13, 14, and 15 we present the results of the projections into the factor space 

of the three series of mean annual temperature anomalies averaged all over the globe Earth, 

Tglob, and also averaged by the northern hemisphere, TN and by the southern hemisphere, 

Ts. From the comparison of these figures, it is seen that the structures of the two first series 

practically coincide. But the time series for the southern hemisphere is different from them. So 

the projection of Ts on the second principal component (Figure 15c) and on the plane of the 

second and the third main components (Figure 15e) points out the existing of a main cycle with 

n = 21, in spite of a strong distortion. At the same time, for the corresponding projections for 

the series Tglob and TN (Figure 13c and Figure 14e), the main cycle is not observed. It could be 

interpreted as the main source of distortions of global temperature anomalies are placed in the 

Northern hemisphere. At the southern hemisphere these disturbances are coming in a smooth 

shape. And this is why the structure of the series Ts has a more natural character and follows 

to the cyclic law of 21 years. 

The changes are seen even more exactly in the character of the projections on the second 

main factor for the time series Tglob and TN. 

From Figure 13c and 14c it  is easy to see that in the middle of the studying time interval 

there exists a fall in a comparing with the level in the beginning and the end of the time interval, 

i.e., the time series is decomposed on three intervals. At the second interval a restructurization 

takes place in comparison with the first interval, but on the third stage the initial structure of 



the series is recovered. A testing of this hypothesis prompted by the analysis of the projections 

at  factor space is presented in Figure 16. The analogous conclusion, we could make after 

appropriate investigation of the NDVI time series (see, for example, Appendix 1). 

3.3. The time series of vegetation index NDVI 

For the illustrative analysis we selected two characteristic series of observations. The first one 

(Figure 17) corresponds to the stable ecosystem (grass savanna) with a stable climatic and 

vegetation characteristics. The projections into the factor space show on the existing in the 

structure of the signal of two harmonics, and show a dynamics of its changes by years. A 

separate analysis of the picked-out structured components and comparing them with the real 

feature of the ecosystem, permit us to take into account the influence of the different parameters 

of the ecosystem on its vegetation activity. 

Figure 18 corresponds to the ecosystem which in the process of dynamic reconstruction 

(transition) from one ecotype to the other. A projection on the first principal component shows 

two levels of the state of the system (complex trend). A projection on the second main component 

shows the main harmonic amplitude of which is changed sharply. 

In spite of the length of the NDVI it  is not long enough (only 7 seasons), the proposed 

method discovers not only the structure of time series but also the dynamics of its compounds. 

More detailed analysis of NDVI curves is given in the Appendices. 

54. The different methods of analysis of time series 

as the variants of a projection pursuit. 

In this 5 we show that the approach to the analysis of time series on a base of general shift 

permits us to interpret as variants of a projection pursuit the following methods of the analysis 

of time series and widely used for statistical analysis of monitoring data: moving average, 

Karunen-Loev's decomposition, discrete Fourie transformation and others. 

So we show that some set of methods appeared from the beginning as independent unlinked 

approaches as it turned out are the parts of a unified common approach. It permits us to make 

some ordering in this set of methods which means: when, why, and how to switch off from one 

method to another, for which goals, problems, hypotheses and so on a given method in the best 

(extremal in some sense). 

It is shown in the example of the time series of El Nifio. 



1. The moving average as a procedure of projection pursuit. 

Let f = ( f l ,  . . . , f n )  be a time series. Let us fix a number n << N and some set of weight as 

vector a = (a , .  . . , a )  E Rn, IIaII # 0. Let us construct a set of vectors z l , .  . . , z~- ,+l ,  where 

zk = fk+1-l, 1 = 1, .  . . , n, and a data matrix X = ( zk l1) ,  zk,l = fk+l- l ,  k = 1 , .  . . , N - n + 1,  

1 = 1 , .  . . , n, the row of which are vectors X I , .  . . , X N - , + ~  

Then the series g = g ,  = ( g l ,  . . . , gN-,+1), where gk = C;=l al fk+1-l, k = 1,  . . . , N - n + 1, 

as vector from R~-"+' could be written in the form 

It means that number series g/llaII is a series of projections of a set of n-dimensional vectors 

3 1 , .  . ., ZN-,,+~ on one dimensional subspace in Rn with directing vector alllall. Let us denote 

as a* = (a;,  . . .,a:) directing vector of the first main component of the data matrix X .  

Lemma. For any set at weights a = ( a l , .  . . ,an)  the following relation takes place: 

where 

mean value of a-weighted series g, and l(N - n t 1) E R~-"+' is a vector each coordinate of 

which is equal to 1. 

Proof. We have 

Hence, g,  = Xa,  where 



Let us note now that x is a (n  x ( N  - n + 1))-matrix each row of which coincide with the 

n-dimensional vector which was obtained from the initial series f by the procedure of moving 

average with a step equal to  ( N  - n + 1). 

Thus, 

llga - ja)(2 = IIX, - xa(12 = al(x - X ) ~ ( X  - X)Q = ~ ' V Q  , 

where V = ( X  - x)'(x - X) is a covariation matrix of the set of n-dimensional vectors 

z l ,  . . . , Z N - ~ + ~  as a transition from matrix X to matrix X - X corresponds to  the centering of 

each column of the matrix X .  

Now using the main theorem of the component analysis we obtain that the expression $$ 
reaches a maximum if, and only if, when a is proportional to the vector a, of the first main 

component of the data matrix X .  So Lemma had proved. 

Definition. Relative scattering of the moving a-weighted series g, is called 

From the Lemma we get the following consequence. Between all moving a-weighted series 

f = ( fl , . . . , fN) the largest relative scattering of the value has its moving a,-weighted series, 

where a1 is the first main component of the Hankel data matrix which corresponds to  the series 

f .  
Let us remark that the pursuit projection approach to  the analysis of multidimensional data 

is contained in a description of the set of n-dimensional vectors under consideration in the terms 

of its extremal q-dimensional projection (q << n, frequently q = 1 or 2). 

2. The notion of extremal projection. 

The notion of extremal projection is introduced in the following way. Departing from the goal 

of analysis a criterion is selected that characterized projected data. This criterion defines a 

function on the manifold of all projections. The projection on which this function reaches the 

maximum is called extremal (the best) by this criterion. 

From the preceding calculations it follows that moving weighting is a procedure of pursuit 

projection. The consequence shows that when as a criterion we select the dispersion, then the 

extremal is a,-weighting. Here a, is the first main component of the matrix X = ( fk+,-l), k = 

1,. . ., N - n + 1, I = 1,. . . , n. It is clear that for the other criteria, which characterize time 

series g, the extremal will be the different vectors of weights. 



In the conclusion of this point let us mark that the moving weighting of a time series f = 

(fl, . . . , fN) would be considered as a particular case of more general procedure corresponding 

to the following hypothesis: in the sequences of the intervals of length n of time series f = 

(fl , .  . . , fN) each K-th interval z~ is a vector of n realization of K-th mark of the time signal 

under the investigation. 

The method of treatment is concluded in construction of assessment of the value of each K-th 

mark by this realization. In particular, the moving average responds to assessment of the mark 

value as mean by n realization, and median smoothing as a median of n realizations. In such 

an approach median smoothing, for example, became a variant of nonlinear pursuit projecting, 

which corresponds to application to the rows of Hankel-matrix X of nonlinear operator of the 

projecting. 

3. A n  analysis of t ime  signals by t h e  shift method and  a 

Karunen-Loev's discrete decomposition. 

First of all let us remark that the necessary facts about Karunen-Loev's decomposition are to 

be found, in more detail, in Fukunaga, 1972. 

Let z be n-dimensional random vector. Let us choose an orthogonal and normed basis 

4 = [&, . . ., &] in the space Rn. Then 

where y = (yl, . . . , y,). Each coordinate y; of the vector y is a feature of the initial vector z.  

Let us suppose that we would like to characterize vector z only by q features yl, . . . , y,, q < n 

fixing for the rest of the coordinates some values y,+l = b,+l,. . . , yn = b,. Then instead of z 

we obtain its assessment 

Let us denote 

n 

Az(!7) = z - f (q) = C (y; - b;)4; . 
i=q+l 

Let us use a mean value of the square of norm at random vector Az(q) for measurement of the 

efficiency of subset of q-feature y l ,  . . . , y,: 



To each set of basis vectors 41,. . . ,$, and the values of the constants b,+l, .  . . , b, corresponds 

to  some value of the formula c2(q). 

Lemma (Karunen-Loev). Between all orthonormed basis 4 = . . ,4,) and possible 

constants bq+l ,  . . . , b, the minimal value of mew-square error is reached when &, .  . . ,4, is a 

set of the proper vectors of covariance matrix C, of random vector z ,  ordered by decreasing a 

proper numbers X1 2 X 2  2 . - .  2 A, and b; = q!(E{z}, i = q + 1,. . . , n. 

Definition. By discriminant Karunen-Loev's decomposition of random vector z is called 

decomposition by the basis of proper vectors of its covariance matrix. 

In that case, when instead of random vector z we have data matrix X the row of which are a 

realization of the random vector z. Then, using a decomposition by the first q proper vectors of 

the covariance matrix of the sample X, we obtain sampling Karunen-Loev's discrete q-component 

decomposition. Turning to  the time signal f(t) ,  to the shift operator A and to the set of marks 

t l , .  . . , tn (see §I), let us consider our method from the point of view of hypotheses that the 

vectors z1 = (f (tl), f (t2), . . . , f (t,)), zm = ((Am-' f)(tl), . . . , (Am-' f)(t,)), are realization of 

some random vector that completely characterized initial time signal. 

Then projections of the set of the vectors, z l ,  . . . , zm on the space of the first q-main vectors 

of its covariance matrix will exactly correspond to the sampling Karunen-Loev's discrete q- 

component decomposition. 

The specific feature of the method of the analysis of time signal with the aid of the shift op- 

erator A is that principal addition to  the Karunen-Loev's decomposition: we analyze projections 

on q-main component of a curve (~(7, f )  as well as a set of vectors 21,. . . , z,, . . . 

4. Analysis of the time series by shift method and discrete Fourie transformation. 

Let us fix in the space R" an orthogonal basis Fourie W = [Wl, . . . , W,], where row 

Let us remark that (Wll, W12) = ~61112, where 61112 is a Kroneker's feature. In particular 

IlWll12 = 3. 

Definition. Discrete Fourie's transformation of the random vector z is called its decomposi- 

tion by the Fourie basis. 

Let X = (zk,~),  z k , ~  = fk+1-' be a Hankel matrix of the time series f = ( fl, . . . , fN). 



For the testing of hypothesis that on each interval of the length n of the marks of the time 

series are formed all its main cycles. It is justified decomposition of the rows of the matrix X 

by the Fourie basis. Hence, we have a transition from the matrix X to the matrix Y = (yke), 

where Y = WX1. 

A matrix coefficient yk,l equal to amplitude of a harmonic signal sin % It, I = m, in 

the Fourie decomposition of k-th interval xk, k = 1,. . . , N - n + 1, of time series f .  Thus 

coordinates YPn+1,l, P = 0,1,. . . are vectors of columns y1 of matrix Y gives information about 

the dynamics of the amplitude of harmonic component sin % It of initial series (in the conditions 

of the hypothesis that was given above). 

Usually in the Fourie basis the vectors Wl, . . . , Wn are ordered by an increasing of the 

frequency of the harmonical signal. From the point of view of projection pursuit (for example, 

by criterion of dispersion, as in Karunen-Loev's decomposition) the basis vectors should be 

ordered by decreasing of the criterion 

where i E Rn is a vector of means of vectors-columns of the matrix X ,  i.e., basis 4 is taken in 

the form 

where Ail 2,  A,,, 2 . . - 2 A;,. 

Under such ordering for the polyharmonial signals of the form 

n 277 
f (t) = x Cn sin 

q = 1  

and the set of marks as natural numbers the shift method gives the same results as at Karunen- 

Loev's decomposition, so at discrete Fourie's transformation. 

$5.  A development of the method on the base of the 

theory of generalized shift. 

Let us consider the following interpretation of the proposed approach. It could be accepted that 

from analysis of a time series of f (t) = (f (tl), . . . , f (tN)) we pass to the analysis of a random 

process defined by its realizations in the time moments tl, . . . , t,. Operator A is selected in 

such a way that the values (Am-l f )( tk) ,  k = 1, .  . . , n, could be considered as values of m-th 

realization of the process in these points. 



As is shown in $4 in such interpretation an application of the factor analysis equal to an 

application Karunen-Loev's filter of this random process. A construction of the set of the 

important operator A for a generation of the realization of a random process is based on a general 

theory of the operators of a generalized shift that in its turn was created as a development of 

group approach to a description of physical phenomena. 

In the case of continuous time such an operator of generalized shift T,7 corresponds to the 

time signal f (t) a function of two variables O(t, T) = T,7 f (t) that is fulfilled in the following 

conditions: 

1. TF is an identity operator . 
2. T p  O(t, T ~ )  = T p  (Ttr2 f (t)) = T z  (Tp f (t)) . 

Let us explain in more detail the operation of composition of generalized shift operators. A 

function 

could be considered as a function of an argument t and a parameter T, and at the same time as 

a function of the argument T and the parameter t. In notation of the operator T,7 the low index 

serves the notation of argument on functions of which this operator acts. Thus a function 

T,"T,"L f (t) = Tt7'O(t, T ~ )  

is obtained by application of operator T,71 to the O(t1r2) as a function of variable t. A function 

is obtained by application of the operator T,7: to the O(t, r1) as to a function of the argument 

Tl 

The first examples of generalized shift operator are are linked with the group structure on 

R1. Indeed, let * be some operation on R1, for example: 



then formula T[ f ( t )  = f ( t  * T )  gives a shift on the set of the functions fulfilled to the axioms 1, 

2. However, an operation of product * does not cover all possible shifts. It is easy to verify that 

formula 

T;f ( t )  = ; ( f ( ( J i  + & I 2 )  + f ((4 - &12) 

gives a shift on the set of function also fulfills to the axioms. 

Considering T = At as a constant in the method described above i t  is possible to put: 

T? = A. It explains why the operator A was called the operator of generalized shift. 

It is clear that not each of the operators A has a shape TFt. But as our method is based on 

using eigen functions of operator A, then using the operators of the shape T P ~  is preferable as 

ezactly its eigen functions appear as model functions for the important physical processes. But 

a function f ( t )  is an eigen function of the operator T P ~  if when it is a solution of the equation 

where operator Dt acts on the functions by formula 

d 
Dtf ( t )  = zT;f (t)lr?o * 

It is turned out that in series of the important cases Dt is a differential operator. For example, 

for a shift associated with usual addition on R1, the operator Dt is the operator $. For operator 

given by formula () this operator is 

Let us stress that in reality the operators of the generalized shift are constructed by differ- 

ential operators, the eigen functions of which model the chosen physical phenomena. Namely, 

there exists a general presentation for the operator of general shift as follows: 

(Kolunogorof theorem of presentation of a function at  two variables as a composition of the 

functions of one variable in the wide sense). 

The $( t )  is an eigen function of the operator Dt with eigen values 1, i.e., a solution of the 

equation 

Dt$(t) = $(t> 

with the initial condition $(0)  = 1. 



In the case when Dt = $ we obtain that +(t) = I t  and formula T,7 f (t) = +(TD~)  j (t) transits 

to the formula: 

T,7 f(t)  = f ( t  + T) = exp T- f(t)  ( 3 
i.e., to the classical form of Newton's series for the function f (t). 

In the case when 

we obtain that 

and formula for corresponding generalized shift takes the form 

i.e., presentation of two-values shift by its generator Buchstaber (1975). 

For comparison of the results of the treatment of the signal f ( t )  by our method, but corre- 

sponding to  the one and two-valued shifts, we applied our method of treatment to the following 

signal 

f (t) = 0.3t + (0.1 + 0.2t) cos 1 . 5 5 5 n m  . 

As can be seen from this formula and Figures 19 and 20 we are dealing with a strong nonsta- 

tionary signal, because the distance between the picks increases as time increases. 

Remark: For convenience of comparison with the results for operator A,  given in Figure 

19, the set of vectors rows of matrix X for operator A2 is formed in the same way as that for 

operator A1, i.e., the 1-th row of matrix X is obtained as value of function 

where 

f (t) = a l t  + (a2 + a$) cos(ar&) , 

f (K) = Nk . 
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Figure 1. Characteristic curves considered: (a) polyharmonical curve with a trend; ( b )  time 
series obtained by random numbers generator; (c) yearly temperature anomalies for 
107 years; (d) mean monthly values of vegetation index NDVI for 7 years; (e )  mean 
monthly concentration of atmospheric COz on Mauna Loa station for 30 years. 



Figure 2. (a) Harmonics Nk = a0 + a1 sin (wk), a0 = 0.5,al = 1 ;  and its projections on the 
planes of the factor space; ( b )  and (c) - under the calculation of Nk until the third 
valid figure; (d) and (e) - under the calculation of Nk until the fifth valid figure. 



Figure 3. (a) Parabola Nk = ag + alk + a + 2k2 ; and its projection on the ( b )  first principal 
component; (c)  second principal component; (d) plane of the first pair of principal 
components. 



.-., 
6 

Ngacrss 
I< 

-'? 
L 

(1) I:: :3 : 

PC: 

:' . ,i - 3 1) 

I i 

Figure 4. (a)  Time series modeled by a random numbers generator; ( b )  its projections on the 
planes of the principal components. 



~ i ~ u r e  5. ( a )  Harmonics as in Figure 2 but distorted by random noise, obtained by generator 
of random numbers by the law of normal distribution, a = 0.5; ( b )  its projections on 
the planes of the principal components. 



Figure 6. As on Figure 6 but a = 1.0. 



- 

-- 
5 (I! I 

i 
,..--__--__.. 

- 
.,'l 

,,'. 
; 

N 
,(.. ----d- ---. 

..' 
k 

.-----,/ 
./-.-------.. 

,.!' 
*,---- --.. .. 

..--------,*?' 

0 

Figure 7. ( a )  Polyharmonical signal with linear trend 

Nk = a0 t alk  t a2 sin ( 2 n k / 1 2 )  $ a  ,sin ( 2 n k / 6 )  ; 

and its projection on the ( b )  first principal component; ( c )  second principal compo- 
nent; (d)  fourth principal component. 
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Figure 7. Continued. (e )  projection on the planes of principal components pairs. 
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Figure 8. ( a )  Polyharmonical signal with parabolic trend: 

Nk = a0 + a l k  + azk2 + as sin (2nk /12)  + a4 sin (2wk/6 )  ; 

( b ) ,  (c), (d),  and (e)  the same as in Figure 7. 



Figure 8. Continued. 



Figure 9. (a) Time series of atmospheric COz concentrations on Barrow station; ( b ) ,  ( c ) ,  (d), 
and ( e )  as on Figure 8. 



Figure 9. Continued. 



Figure 10. (a) Time series of atmospheric C 0 2  concentration on Mauna Loa station; ( b ) ,  ( c ) ,  
( d ) ,  and (e)  as on Figure 8. 



Figure 10. Continued. 
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Figure 11. (a) Time series of atmospheric COz concentration on the South Pole; ( b),  (c) ,  ( d ) ,  
and ( e )  as on Figure 8. 



Figure 11. Continued. 



Figure 12. Comparison of the initial time series of global temperature anomaly (reduced to the 
normalized form) (1) with the projection on the first principal component (2); (a) 
n = 5 ;  ( b )  +n = 11; (c) n = 21. 



Figure 13. ( a )  Time series of the global temperature anomalies; and its projection on the ( b )  
first principal component; (c)  second principal component; (d) and ( e )  planes of 
the pairs of principal components. 



Figure 14. As on Figure 13, but for a series of the temperature anomalies in the Northern 
hemisphere. 
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Figure 15. As on Figure 13, but for time series of the temperature anomalies in the Southern 
hemisphere. 
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Figure 16. Comparison of the differences in the structure of time series of the global temper- 
ature anomalies: (1) the line of approximation for time intervals I and 111; (2) the 
line of approximation for time interval 11. 
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Figure 17. ( a )  NDVI curve for grass savanna (site 5); and its projection on the ( b )  first principal 
component; (c)  third principal component; (d)  and (e)  planes of the first and the 
second pairs of the principal factors. 
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Figure 18. ( a )  NDVI curve for transition zone (Site 37); and its projection on the ( b )  first 
principal component; (c) second principal component; (d) plane of the first and 
second principal components; and (e) on the plane of the second and third principal 
components. 



Figure 19. Application of classical shift operator A1 = T; f (t) = f ( t  + r) to the function 

f(k)  = Nk = a lK  + (az  + a&)i cos (ay&) 

(a )  initial signal ( b ) ,  (c), (d) projection on the first, second, third and fifth principal 
components correspondingly, (f)  projection on the plane of pair of the principal 
components. 



Figure 19. Continued. 



Figure 20. Application of the shift operator 

A2 = TTf ( t )  = ( f  ((& + f i2 )  + f ((& - J ; ) ~ ) )  . 
Initial function f ( k )  = Nk and notations for (a) - ( f )  as on Figure 19. 



Figure 20. Continued. 



Appendix 1 



In this part of the paper we considerably use the results of the research report by J.P. Mal- 

ingreau, M. Antonovski, V. Buchstaber, and L. Veksler, A Statistical Analysis of Time Series 

of Satellite Data Related to Tropical Vegetation, compiled jointly with the Institute for Remote 

Sensing Applications of the Joint Research Center (JRC) of the CEC (Ispra, Italy), the IIASA 

Environmental Monitoring Project (Laxenburg, Austria), and the National Scientific and Re- 

search Institute for Physical-Technical and Radio-Technical Measurements (Mendeleevo, USSR) 

(forthcoming). 

The data set used in this work is being developed within the framework of a NASA-JRC 

scientific agreement. It consists of a selected sample of the time series of the vegetation index 

data derived from the NOAA-AVHRR GAC data (so-called 8 km product) for 40 sites covering 

the tropical and subtropical ecosystems of Africa (see Map 1).  

The data are monthly maximum vegetation index data values obtained using the standard 

maximization procedure. The period between January 1982 to January 1988 is covered (84 

time-related measurements). 

The vegetation index is taken as representing an aggregated measurement of green biomass 

activity in the selected ecosystems (Table 1 ). This research is based upon existing work on the 

significance of this index and is not specifically addressed to the problem itself. 

Instead, work focuses on the temporal structure of the data upon differences/similarities 

between ecosys tems represented in the sample. 

Let us remember that vegetation indices are combinations of reflectance values in discrete 

spectral bands each of which exploit a particular characteristic of the plant canopy. The dif- 

ferential response of plant canopies to red (where the response is mainly determined by the 

absorption band of the leaf chlorophyll) and near-infrared NIR (where the response is the result 

of a multiple scattering determined by internal leaf structure and the structure of the canopy) 

illumination provides the base for calculation the "normalized difference vegetation index" which 

is simply a linear combination of the reflectances associated with each wave-length according to 

the following formula 

NIR - Red 
NDVI = 

NIR - Red ' 

Instantaneous values of the vegetation index are therefore more related to the green biomass and 

its structural arrangement at  the surface than to the type of vegetation. However, the temporal 

evolution of this index will closely follow the vegetation seasonal cycles; The analysis of the time 



Map 1. 



Table 1: List of sites. (Coordinates and short description of the  ecosystems for AVHRR time 
series). 

Name of 
No. of sitesby 
sites Malingreau Lat. Long. Short description 

nzenth 
nzesth 
nzemix 
libfor 
beyla 
burn 
kan 
for 
kissi 
mac 
congol 
congo2 
congo3 
congo4 
congo5 
congo6 
congo7 
congo8 
congo9 
congolo 
congoll 
congol2 
congol3 
congol4 
congol5 
congo16 
congol7 
congol8 
congo19 
congo20 
congo21 
congo22 
congo23 
congo24 
congo25 
congo26 
congo27 
congo28 
congo29 
congo30 

Mixed secondary forest with plantations 
Idem 
Idem 
Tropical rain forest 
Grass savanna 
Shrub savanna often burned 
Mixed tree savanna - agriculture 
Tropical rain forest 
Tree to shrub savanna 
Secondary forest with primary remnants 
Primary rain forest between Congo and Ubangui 
Primary rain forest, Central Congo basin 
Primary rain forest (marsh) Central Congo 
Primary rain forest Central Congo basin 
Primary rain forest, eastern edge of basin 
Primary rain forest northern edge of rain forest domain 
Transition area - forest woodland savanna 
Idem slightly further north toward savanna 
Tropical forest savanna transition area. Edge of forest. 
Woodland savanna ( "Guinean savanna") 
Woodland savanna 
Woodland savanna 
Tropical rain forest, western edge of Central Africa 
Forest remnant in savanna region 
Woodland savanna 
Woodland savanna, northernmost example 
Forest remnant in transition area (seasonal forest?) 
Forest remnant in transition area (seasonal forest?) 
7 

Savanna or deforested area in Congo Republic (North) 
Savanna or cleared areas in Congo Republic (South) 
Rain forest - marsh? Between Congo and Ubangui rivers 
Rain forest near Mbandaka Zaire 
Forest (savanna?), west of Inongo Lake 
Savanna at  southern edge of Congo basin forest (South of Kindu) 
Rain forest at its southern range in Basin (North of Kindu) 
Forest east of Kindu 
Kivu transition towards semi-tropical highlands 
Forest gallery (secondary formation?) near Kisangani 
Primary rain forest near Kisangani 



series can, therefore, lead to the identification of the vegetation type and of events affecting its 

development (drought, stress, etc.). 

It is easy to  be sure, that NDVI time series is a characteristics of the researched ecosystem. 

On Figure l a  and 2a are given NDVI curves for ecosystem displaced in the same geographical 

region. On Figure l a  are given curves for sites with a similar character of vegetation, and on 

Figure 2a - with sharply different characteristic. In the first case we have almost complete 

coincidences of the curves and in the second case transparent difference. 

In a preliminary exploration, sample points have been selected over ecosystems of West 

and Central Africa on the base of an a pm'om' knowledge of the nature of their ecosystems. 

The intention is indeed to assemble a collection of temporal curves representing as much as 

possible the range of ecosystems from the savanna to the tropical rain forest. The map gives 

the location of the samples. Time series were constructed by reading monthly vegetation index 

values (Malingreau, 1986). Multidimensional time-series analysis can now be combined with 

multidimensional statistical analysis. The problem in such an investigation is: 

1. To separate noise from useful information. 

2. To construct a "standard" time-dependent NDVI development curve for each ecosystem. 

3. To develop criteria of comparison between the actual and the standard curves. 

4. To develop mathematical and statistical models of NDVI curves. 

5. To analyze the possibility of using the models to predict the dynamics of NDVI under 

different climate change scenarios. 

The following steps have been taken into account in the present analysis: 

1. drawing of a statistical picture, 

2. component and factor analysis, 

3. histogram analysis, 

4. cluster analysis. 

The sequence of the step has a principal value. It reflects the following logic of the research: 

discovering of the statistical valid (meaning) values regularities in the data; working out of 

informative description of these regularities; construction of the standards of the behavior of the 

year realization and finding the ecosystems, in which during the period of the observation was 

happening structural reconstruction; construction of the features of the year realization of the 



NDVI curves for which an ordering by the scale of the values of these features according to the 

qualitative information of the biomass activity; hierarchical classification of the set of the NDVI 

curves for automatic recreation of the structure of the interrelation between the ecosystem; 

analyze the fact of how close this structure corresponds to  the structure of the transition from 

savanna to  tropical forest from the point of view of the changing of the integral characteristics 

of biomass activity. 

Development of the "statistical picture" of the NDVI curves. For each sample, the 

seven 12-dimensional vectors of NDVI monthly development are drawn together. The visual 

examination of the set of curves gives a "picture" of the overall variability in the 12-month 

realizations during the seven years on record. Pattern recognition approaches (Fu, 1984) can be 

applied to  derive the characteristics of the samples. 

The analysis of statistical picture of 40 ecosystems (see, for example, Site 1-29 in Appendix 

2) show that the majority of them like a statistical picture on Figure 4 .  It confirms the initial 

hypothesis about the existence of standard behavior of year realization of NDVI curves. A 

consideration of the character of deviations of concrete realizations from hypothetical standard 

permits us t o  see that there exists large deviations, as a rule, in the direction of smaller values 

of the NDVI. It is in accordance with physical information, that the factors caused the errors, 

for example, cloudiness, in the NDVI data, usually tend to the smaller values than the real 

values. The selection of a method of evaluation of standard behavior is independent task. For 

its solution it  demands a large volume of information. In the present article we choose, as 

evaluation of standard behavior, median assessment (see Figure 10). It means that evaluation 

of standard behavior in a given month is a median of the series of 7 values of NDVI observing in 

this month during all periods of observation. The main advantage of this estimation compared 

with estimation by means is that median is more stable as related to  large outlier. In support of 

median also says that using median in a subsequent analysis (see factor and hystogram analysis) 

leads to  physical result. 

Let us remark that construction of the standard of year behavior for each NDVI curve gives 

not only compact informative description of this curve in the case when initial hypothesis is 

confirmed, but also permits us to  find the structural changes in i t  when the hypothesis is not 

confirmed clearly. For demonstration such potential possibilities of the method of statistical 

picture lets us consider more in detail typical examples of the statistical pictures. 

Let us compare, for example, the NDVI development curve for the grass savanna (Site 5 ) and 

its statistical picture Figure 3. The advantage of the latter is clear as i t  underlines the closeness 

of the NDVI values obtained during the seven years for the January to  June period while the 

July to  December interval is characterized by a large variability and frequent "outliers" (see, for 



example, August-September 1988); some of these outliers can be related to external factors such 

as cloudiness during the rainy season (i.e., September 1982, July 1987). The example indicates 

that there is less interannual variability in the greening-up period than during the period of 

maturation and senescence of vegetation. The statistical picture for the primary forest sample 

(Site 11, Figure 4 )  shows no clear seasonal differences between the patterns of interannual 

dispersion of NDVI. Of interest also are the transition ecosystem represented by the Guinean 

woodland savanna (Site 17, Figure 5) and the seasonal transition forest in the southern part of 

the Congo Basin. For these ecosystems, the semi-annual pattern is again visible with the first 

six months presenting little interannual differences. The pattern is, however, rather different for 

the woodland-transition forest sample selected in the southern hemisphere with the period of 

minimum interannual dispersion located in the yellowing down period of the vegetation cycle. 

The same sample shows that there is a large dispersion of vegetation index values during the 

second part of the year (greening up and maximum greenness periods). 

Let us turn our attention to a large dispersion of the realization for ecosystem 37 at the 

second half of a year (Figures 6 and 7). It is seen, that for this ecosystem it is impossible to 

create presentation about the standard behavior of the NDVI curve in the second half year by 

seven realizations. It would mean that the hypothesis that all seven realizations for ecosystem 

37 belong to the same process is not confirmed. Probably, during the period of observation it 

have happened a structural restructure of the year realization behavior. A result of a testing of 

this new hypothesis is seen on Figure 7. Seven realizations subdivided on three groups: the first 

three years of observation, the fourth year of observation, and the last three years of observation. 

Statistical pictures of the first and the third group on Figure 7 show essentially more regular 

common behavior of realization of each from this group. Effect that we have detected put at  an 

interpretator the question about the causes of structural restructure of the standard behavior 

of a year realization for ecosystem at the period from 1982 until 1988. 

Joint analysis of statistical picture for ecosystems 5, 11, 17, and 37 tends to the conclusion 

that the following characteristic of a picture is important. 

Let f;(m,y) (1 < i < 40, 1 < m < 12, 1 < y < 7) be the value of NDVI for i-th ecosystem 

in m-th month of y-year of observation. 

For each number i of ecosystem and number m of month we order the value f;(m, y) by 

increasing. We have 

So we construct a mapping 



cpi:~+C(7):cpi(m)=(~l,.--,~7) 7 

where M = (1,. . . ,12), C (7) - the group of permutation of the set of 7 elements. For example 

from Figures 4, 5, 6 and 7 we have: 

The function of permutation cp;(m) describes how much the values of a year realization have 

mixed one relative to others. And it gives tools for informative characteristics of statistical 

pictures. As one of the tools, it is naturally to take the decomposition of permutations on 

cycles. For example, for ecosystem 37 (Figure 7) we see that the first 3 years of observation 

gives a cycle of low values of NDVI and the following 4 years gives a cycle of high values. The 

NDVI curves for ecosystem 17 do not have this property. 

Let us now describe the application of constructed function of permutation cp;(m). Let for 

some i-th ecosystem and the months ml < m2 < < mk, k 2 6 in all permutations cp;(mj), 

1 5 j < k there exists the same cycle of a length not less than 3. It permits us to form a 

hypothesis that in the years entered into this cycle, a peculiar structure of the year realization 

was formed. It is possible to test this hypothesis, constructing a statistical picture of realizations 

for these years. If in such a picture the joint behavior of realization entered in cycle differs from 

the behavior for all the intervals of observation, as in the example of ecosystem 37, then our 

hypothesis is not confirmed. 

Component and Factor Analysis 

Let us denote by f;(t), t = 1,. . . ,84 the values of NDVI for the i-th ecosystem. In the previous 

notation f;(t) = f;(y,m), where t = 12(y - 1) + m, y = 1,. . . ,7,  m = 1,. ..,12. Let us put 

f; = [f;(t)] and fi, = [f;(y, m)]. 

The initial data set gives us sample 3 from 40 vectors in the Euclidian space Rg4 and sample 

F from 280 vectors in the space R12. Such a description of NDVI curves permits us to involve 

methods of component and factor analysis for the research (Aivasian et al., 1989; Harman, 1972). 

For the convenience of the account, we give the main models of these methods, using the 

approach of the theory of projection pursuit (see citation on $1 of the main text). 



Let 0, be the object under investigation, which is described by the vector z, € RP, and 

hence the set of data about the objects 01, . . . ,On is described by the sample of vectors X = 

(21,. . .,z,) C RP. 

In our case, the 0, is or the state of ecosystem for all period of observation 1982-1988 either 

it state for one of the year of observation. The z, is or f; for n = i, either f;, for n = 7 ( i  - 1) + y, 

i.e., N = 40 or 280, and p = 84 or 12. 

Initial features of the objects 0, are coordinates of vector z,. In our case these are the 

values of NDVI fi(t) or f;(y, m). First of all, we are interested only in such initial features 

(characteristics) that show the greatest changeability (variability) by transition from one object 

t o  another. For the other side, it is not necessary to  use the initial features for the description of 

the state of object. For example, in the paper of Malingreau (1986), in particular, the following 

features of vector f,(t) of NDVI curve of the i-th ecosystem are used: 

In the models of component analysis we are interested, first of all, in such initial features that 

show the most alteration (i.e., the most scatter), passing from one object to  another. Each linear 

feature of object On, described by vectors of RP, could be given by the formula 

where 

1 = (I1,l2,. . . , lP) € RP and (17zn) = Z l i z i  
i 

is a scalar product. Dispersion of the values of linear of linear indication 1 on the sample 

X = [zl, . . . , z,] is calculated by the formula: 

1 N 

S l ( 4  = - C (I, 2, - q2 , 1 1 ~ 1 1 2  ,=I 

where 

is a norm of vector I, and 

is a mean vector of the sample X. 



Dispersion of the values of feature 1 on X becomes a measure of informativeness of the feature. 

Linear features with maximal dispersion on the sample X is called the first main component. It 

is clear from the definition that the first main component is given by the vector 

ll = arg max {Sr(X) : 1 E RP, (IlI) = 1) . 

The following main components are defined by induction. Let the first "k" main components 

ll , . . . , lk, 1 5 k 5 p be constructed, then the (k + 1)-th main component is the indication given 

by vector 

lk+l = arg max {Sr(x) : 1 E RP, 11111 = 1 , (l,lj) = 0 , j = 1, .  . . ,k} . 

Thus the main components are the features that successively (in consecutive order) in the best 

way explain (reconstruct) the dispersion (variance) of a sample X .  The model of classical 

factor analysis is analogous. The main factors are the features (characteristics) cpl, . . . , cpp that 

successively explain (reconstruct) correlation relationships (correlation matrix) of sample X. 

Namely, the informativeness of linear feature 1 on the sample X = {xl, . . . , xn} is calculated by 

the formula: 

where 

and 

1 N N 
-k - x - -  x: and ( o k ) ' = 1  c (2:-zk)' 

;=I N .  
r = l  

are a mean and dispersion, respectively. The transition from xk to yk is called standardization of 

the variables. Hence the factor analysis is a component analysis in standardized variables. Let 

us note that to variable xk and to any linear transformation thereof, x i  = ~~x~ + bk corresponds 

to the same standardized variable yk. 

Hence the results of factor analysis are the same for the NDVI curves and PV curves that 

are connected by the formula 

NDVI = 0.0019(PV) - 1 . 

Let us now describe the results of applying the methods of analysis discussed above to the NDVI 

curves. The sample F C R1' is the union of 40 subsample {fij, j = 1, .  . . ,7}. On the basis of 



the analysis of a statistical picture of NDVI curves of the ecosystems we choose as standard year 

realization of NDVI for the i-th ecosystem the vector M(  f;)(m) E R12, where 

So we obtain a sample M from 40 vectors {M( f;) E R", i = 1,. . . ,401. Let us make a factor 

analysis of this sample project it on the plane of the first two main factors, i.e., let us describe 

each ecosystem by two main factors of standard year realization of its NDVI curve that is 

chosen by us. In Figure 8 we see as very definitively separated open circle points (forest) and 

triangle points (savanna); between them exist closed circle points (transition zones and unknown 

ecosystems). It is possible to say that factor analysis we have passed gave the result which has 

physical interpretation. 

It is spring up the following task: to reconstruct the meaning of the factor 1 and 2, i.e., to 

show what properties of the NDVI curves they characterize. As we have noted above, the factors 

pl and p2 are vectors in the space R". The initial basis in this space are features characterizing 

values of NDVI by months; the first vector of basis corresponds to January, the second vector 

corresponds to February, and so on. Thus, we have (in the space R12) two-dimensional plane 

stretched on two main factor and 12 points - the initial basis vectors, which we enumerate 

according to the order of numbers of the month. Let us project these 12 points on the plane 

main factors (see Figure 9b). From Figure 9b it is seen that the points-months are grouping: the 

first group (1,2,3,4), the second (6,7,8,10,11,12), and the third is (9,5). The projections of the 

first group on the axe of factor 2 and projection of the second group on the axe of factor 1 give 

approximate equal values. So we get that the first factor have a good approximation by mean 

value of NDVI for the months 6,7,8,10,11,12, and the second factor have a good approximation 

by mean value for the months 1,2,3, and 4. 

Let us note that in a paper by Malingreau (1986) it was shown that the informative char- 

acteristics of the NDVI curves are the indications of sum activity by a half years (six months). 

Thus, the factor analysis, made by us, permit us to explain the result of Malingreau and to 

improve it by the criterion of pattern recognition of ecotype. This criterion has the following 

interpretation, the most information characteristics are the mean values for the periods of the 

biggest and the smallest vegetation activity: 

where fjy is a realization of NDVI curve in y-year of observation for i-th ecosystem, y = 1,.  . . ,7, 

i = 1,. . . ,40. Relatively good informativeness of means by half year is explained that this is the 

appropriate period of time. 



Hystogram Analysis 

Visual analysis of NDVI curves and their statistical pictures permits us to pick up the charac- 

teristics that help to express common features for proxime ecosystems and particular not close. 

Such characteristics in our case are the following: the positions of minimum and maximum and 

their values for different evaluations of the standards of the year realizations, mean value of 

NDVI, and also various evaluations of a dispersion of process, presented by 7-year realizations. 

The list of such characteristics could be extended. 

For each chosen characteristic were constructed hystograms. On the basis of their comparison 

there were selected the most informative characteris tics (features). 

Let us consider several examples, how informativeness of the features is evaluated by the 

hystograms. Figure l l a  gives the hystogram of feature (ma-min)  of median evaluation of year 

behavior. This characteristic could be interpretated as a measure of vegetation activity during 

the year for each given ecosystem. It is seen from Figure 11, that in the domain of lesser values 

of the hystogram are grouped the ecosystem, corresponding to the tropical rain forest, and in the 

domain of greater values of scope - (ma-min)  - grass savanna. Moreover, let us look carefully 

at  ecosystem 17 and 18. In the initial description it is said that both ecosystems are transient 

from forest to savanna, but ecosystem 18 is closer to savanna (slightly further north toward 

savanna). On hystogram these ecosystems disposed in the domain of intermediate values of 

indications, but ecosystem 18 moved to the side (domain) of greater values relative to ecosystem 

17. So comparing mutual disposition of the ecosystems ordered sake for hystogram along the 

axis which correspond to (ma-min)  of the year evaluation of NDVI. With the initial description 

of the ecosystems, we have a result that agrees to a qualitative ordering by biomass activity, 

which is possible to estimate by means of description of ecosystems also. 

For ano the r  hystogram (Figure 11 6 )  as a classification feature was used mean value. This 

feature could be interpreted as an estimation of mean vegetation activity of the ecosystem during 

the whole period of observations. It is seen, that ecosystems of savanna type gravitate toward 

the domain of lesser value, and ecosystems of tropical rain forest type gravitate toward the 

domain of larger values. Comparing this ordering of ecosystems along the axis of mean values, 

we note, that it again, as a rule, coincides with initial description of ecosystem. 

Let us stress that in the present research, we have dealt with well enough uniform sam- 

ple contained a small (restricted) number of ecotypes with natural transitions between them. 

Analyzing the samples more extensively geographically and more diversely by ecotype from 

the article of Townshend et  al. (1987), we see that ordering by each of these characteristics 

would not have interpretat ion,  and then it is necessary to resort to the help of the method of 



multi-dimensional classification on the basis of description of the ecosystem by the aggregate of 

indications (characteristics). 

The Methods of Classification 

The methods of classification is directed at automatically grouping the objects and features 

characterized by them. In our case, the target of such analysis could be the solution of the 

following problems: 

1. To establish if gathered in one group the ecosystems close by the vegetation character and 

how far could be divided unlike systems (i.e., how much the description in NDVI terms 

reflect the real vegetation activity); 

2. To restore vegetation type of the ecosystems for which this characteristic is not given in 

initial description or defined not enough reliably. 

3. To single out the ecosystems which do not correspond to ecotype given in initial description 

and for the following analysis of the causes (reasons) for this. It should be also find 

processes that were or are going in these ecosystems. 

We apply the methods of automatic classification to subsample of the objects for the it would 

be possible to account the median of 7 years realizations as a good evaluation of the standard 

of year realization. 

The methods of classification include the different approaches, each of which have its own 

optimal domain of application. If we take vegetation activity as the main (internal) classifica- 

tion characteristic (feature), then in the case of our sample, it is natural to account that this 

characteristic runs a continuous scale. For such classification characteristics the more appro- 

priate classification method is the hierarchical that defines the place of every object relative to 

the others in the hierarchy we obtained. The methods of hierarchical classification differs by 

the measure of closeness between the objects and the ways of assessment of distance between 

the classes (for example one-connected, two-connected and many-connected methods) on inter- 

mediate stages of classification (Aivazian et al., 1989). The selection of measure of closeness 

(proximity) and of the agglomeration method are one of the more important elements of the 

tuning up of the classification method on peculiarity of the problem that we try to  solve. Such 

a tuning was conducted on the stage of exploratory hierarchical classification. As a result it was 

shown that the most effective is one-connected method. 

The results of classification by this method of standard year realization M( f,) E R12, i = 

1,. . . ,40 are given in Figure 12. From this figure i t  is seen that the (investigated) group of 



ecosystem is described by the hierarchical structure in which as the ordering of the objects so 

the values of the measures of relations between objects and groups of objects have a good enough 

interpretation in the terms of initial description of ecosystems from grass savanna to the tropical 

forest with the transition zone as bush savanna, forest savanna and different types of mixing 

zone of savanna and forest (different mosaics). 

In the concluding section, let us describe the result of classification of months of the obser- 

vation as the features of standard year realization. 

To each month m we put into the correspondence a vector the dimension of which is equal 

to the number of the ecosystems and i-th coordinate is equal to the characteristic values of 

NDVI in m-th month for the i-th ecosystems for all period of observation. Making the hierar- 

chical classification of the 12 vectors, we obtain the description of the interrelations between the 

characteristic values of NDVI during the transition from month to month. 

Figure 9a represents the result of such a mean-connected method for month-features de- 

scribed by 12 vectors cp, = {M (f;(m)) , i = 1,. . . ,401 E R40, where M (  f;(m)), as above, is a 

median of seven values of NDVI in m-th month of 7-year series of observations for i-th ecosystem. 

Comparing Figure 9a and Figure 9b ,  on which are represented the results of the classification 

of the month by the two methods, we obtain a more complete understanding of the feature of 

the standard year realization of the NDVI. 
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(months), on the plane of the first main factors in R12. 
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mean value of seven-year series of observations. 



Figure 12. Hierarchical tree for ecosystems of West Africa at Equatorial zone. 
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