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PREFACE

In July 1987 the International Institute for Applied System Analysis (IIASA) has, together
with some national Academies of Sciences, started a series of international workshops on
'Model-Oriented Data Analysis'. The first meeting, that took place at Wartburg Castle,
was co-sponsered by the Karl-Weierstrafi Institute for Mathematics of the Academy of
Sciences of the GDR. The proceedings were published by Springer Verlag in 1988.

As a continuation IIASA and the Academy of Sciences of Bulgaria organized a sec
ond workshop in St. Kyrik, Bulgaria from 28.5 to 1.6. 1990, the proceedings of which
constitute this volume. The main topics of this meeting were:

II Optimal Design, II Regression Analysis, III Quality Engineering and Applications I

Part I contains various generalizations of experimental design theory for nonstandard
regression models.

The survey paper by A.Atkinson comprises results related to the models with prior
information. It reveals that a number of regression problems, for instance estimation
of parameters for nonlinear response and model discrimination can be considered from
general positions thus clarifying the ideas of convex experimental design theory. Numer
ous examples help to evaluate the efficiency of this theory and to understand the main
difficulties a practitioner can face while constructing optimal designs.

The paper by A.Donev complements these results addressing mainly to the model
discrimination problem for several competing polynomial models.

In practice an experimental design frequently has to satisfy some natural constraints.
For instance not to exceed a prescribed level by the cost of measurements, weights of
supporting points or density of supporting points being finite, and so on. In the paper
by V.Fedorov the corresponding modifications of the equivalence theorem are formulated
and discussed.

There are many experimental situations where the underlying response has to be ap
proximated by a simpler and more treatable model. For this case R.Schwabe describes
the characteristics of a randomized design which meets both tasks of approximation and
estimation.

A.Pazman and L.Pronzato propose a method for optimal design construction, when
one applies to the constrained least squares estimators. Their approach is essentially
based on the geometrical structure of response functions and on introduction of a penalty
function.

The question of how batch sequential design performs in a nonlinear estimation problem
is discussed by W.G.Miiller and B.M.potscher. They propose a quasi-batch sequential
method, derive its asymptotic properties and give simulation results for small samples.

L.Pronzato and E.Walter in this section survey the up-to-date methodology in non
sequential Bayesian design, providing some illustrative examples.

H. Yonchev proposes the use of optimal composite designs for linear regression models,
when controlled variables belong to multidimensional simplexes (so-called experiments
with mixture). He illuminates his results with a numerical example.



VI

The pattern recognition problem is reduced to the method of estimation and the design
of regression experiments in N.Manolov's article.

An algorithm for constructing optimizing distribution, solving problems like maximum
likelihood estimation, is presented by B.Tonney and A.Alahmadi. The performance of
the algorithm is investigated in the optimal regression design context.

Part II deals with general regression methods, reporting various modern approaches to
the problem.

J.Visek presents two methods of adaptive estimation of linear regression models, which
are essentially based on the assumption of symmetricity of the distribution of observation
errors. He suggests a measure of symmetry, which can be used as a characteristic of model
stability and gives the corresponding theoretical results as well as two examples with a
classical data-set and simulated data.

B.Kovachev uses the concept of almost linear regression models to handle non-linear
regression problems with normally distributed errors. He finds, that for some of them
there exist finite dimensional sufficient statistics and he proposes some modifications of
leasts squares estimation.

Using a bootstrap technique in nonlinear regression analysis H.Liiuter manages to
increase its efficiency, explicitely using information about the structure of the model. The
results can be used as a good pattern for the use of resampling techniques in statistical
analysis.

S.Hadiivukovic and E.Nikolic-Djoric survey the approaches on L1-regression and com
putational procedures. A corresponding empirical study is given.

The problem of selection of variables and models in regression analysis is challenged
by B.Droge. Together with a short theoretical survey he describes the implementation of
the discussed algorithm on a PC.

Part III presents some contributions based on statistical methods of experimental de
sign quality improvement techniques.

Probably most explicitely these facts are expressed in the article by LVuchkov and
L.Boyadjieva, where they discuss optimal designs under Taguchi-type optimality criteria
(minimizing a process variance, conditioned on keeping a target value).

In the same framework C.Hirotsu presents various data processing techniques that to
some extent go beyond the traditional analysis of variance approach (which he conse
quently calls BANOVA).

The problem of inadequate description of a nonlinear dynamic process by linearization
and constant parameter models is investigated in the contribution by K.Velev, LVuchkov
and V.Tsochev. They compare two main types of models: parametric ones in the form of
difference equations and nonparametric ones in the form of convolution integrals.

The final contribution by A.ZhigIjavsky describes asymptotic properties of the likeli
hood ratio test for detecting rectangular change in mean for normally distributed random
variables.

Both above given techniques can be used for on-line quality control.

August, 1991 V.V.Fedorov, W.G.Miiller, LV.Vuchkov
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Part I:

OPTIMAL DESIGN





OPTIMUM EXPERIMENTAL DESIGNS FOR PARAMETER ESTIMATION AND

FOR DISCRIMINATION BETWEEN MODELS IN THE PRESENCE OF PRIOR

INFORMATION.

A.C.Atkinson,

Department of Statistical and Mathematical Sciences, London School of Economics,

London, WC2A 2AE, UK

1. INTRODUCTION.

The theory of the optimum design of experiments, together with the associated

General Equivalence Theorem (Kiefer,1959; Kiefer and Wolfowitz, 1960), leads to de

signs for many situations, both standard and non-standard. In standard applications,

such as D-optimum designs for polynomial response surface models, the design depends

upon the terms in the model, but not on the values of the associated parameters. How

ever, D-optimum designs for nonlinear models, found by local linearization of the model

about prior point estimates of the parameters (Box and Lucas, 1959), do depend on the

unknown parameter values. If the prior estimates are poor, the design will be inefficient.

Conversely, if the prior estimate is good, the designed experiment will be unnecessary.

Similarly, the T-optimum designs of Atkinson and Fedorov (1975a, 1975b) for discrim

inating between models depend upon which model is true and on the parameter values

of the true model. Such designs, optimum at a single point in parameter space, are said

to be locally optimum (Chernoff, 1953).

The inefficiency of locally optimum designs arises because the point prior infor

mation used in the construction of the designs does not adequately reflect the lack of

knowledge of the parameter values. In this paper examples are given of the use of an

extension of the General Equivalence Theorem which incorporates information about

the prior distribution of the parameters. By using the expectation of the design criterion

over this prior distribution a new design criterion is obtained, for which an equivalence

theorem holds. Thus the checks for optimality of a proposed design and the algorithms

for construction of designs are available for these extended criteria, just as they are for

the original criteria of D- and T-optimality. The chief distinguishing feature of the new

designs is that they frequently have more points of support than the locally optimum

designs.

The paper starts in Section 2 with four examples which will be used throughout to

illustrate the designs and their properties. Sections 3 and 4 are concerned respectively

with locally optimum designs for parameter estimation and for discrimination between

models. In both sections the standard form of the General Equivalence Theorem is
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used to demonstrate the optimality of the designs. The extended General Equivalence

Theorem is introduced in Section 5 and, in Section 6, applied to designs for parame

ter estimation. The section also includes a discussion of general properties of designs

incorporating prior information and the effect on the design of changes in the prior

distribution. Section 7 describes designs for discrimination between models when there

is a prior probability for the truth of each model and, within each model, a prior distri

bution of the parameters. The paper concludes in Section 8 with a discussion of related

problems and literature.

2. EXAMPLES.

In all examples it is assumed that second-order error assumptions hold and that

estimation is by least squares.

Example 1. Truncated Quadratic Model.

The expected value of the response Y is related to the single explanatory variable

z by the truncated quadratic relationship

E(Y) = TJ(z,f3,O) = f3 zO(l- zO) = f3 f(z,O) ,(0 ~ z ~ I/O)

= 0, otherwise. (1)

For known 0 this is a standard linear model with a single parameter f3, except that the

expected value of the response is constrained to be non-negative. The model is related

to those used in pharmacokinetic studies to describe the flow of a drug through a

subject, although such models usually involve linear combinations of exponential terms.

In this interpretation I/O, which would vary between subjects, is the time to complete

elimination of the drug. The maximum of the curve, corresponding to the maximum

concentration of the drug, is f3/4 : interest is in estimation of f3. Observations for which

zO > 1 are not informative about the value of f3, although they may be about O.

This simple model demonstrates clearly the properties of designs in the presence of

prior information. For a given value of 0 the variance of /3, the least squares estimate

of f3, is minimised by putting all trials at the point where the response is a maximum,

that is at z = 1/(20). If the value of 0 is not known a priori, but is described by a

prior distribution, this locally optimum design could be used with 0 replaced by its

expected value. But there may be values of 0 within the prior distribution for which

concentration of the design on one value of z will give estimates of f3 with large, or

even infinite, variance. The designs derived in this paper are intended to provide, for

example, a small value of the expected variance of /3 taken over the distribution of e. As
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we shall see, such designs can be very different from those which maximize the expected

information about /3.•
Example 2. First Order Decay.

A simple model arising from chemical kinetics is that for first order decay in which

E(Y) = 71(x,8) = e- z
, (x, 820).

Linearization of the model about the prior value 80 gives

871(x, 8) I
E(Y) = 71(x,80 )+(8-80 ) 88 6=6

0

+ ...

= ,..,(x,80 ) + (8 - 80 )f(x),

where f(x) = -x exp(-80 x).

The relationship between (3) and (1) is expressed more forcefully by writing

E(Y) - 71(x,80 ) = (8 - 80 )f(x)

=/3f(x).

(2)

(3)

(4)

The variance of iJ is again minimized by performing all trials where f( x) is a maximum,

that is at x = 1/80 when 71 = e- 1 . As in Example 1, if the true value of 8 is far from

80 , the variance of iJ will be large, because experiments will be performed where f(z)

is small. In such regions the value of the response is near zero or one, providing little

information about 8.•

Example 3. Two Models for Decay.

An alternative to the exponential decay model (2) is the inverse polynomial

712 (x, ¢» = 1 / (1 + ¢>x ), (x, ¢> 2 0). (5)

It may be hard to discriminate between these two models. If one of the models is known

to be true, although it is not known which one, the most efficient designs are those of

Section 4. These locally T-optimum designs lead to experiments at two values of x

in order to maximize the expected value of the residual sum of squares for the false

model. •

Example 4. Two Linear Models.

The two models of Example 3 are both nonlinear in the parameters. Some addi

tional insight into the structure of the designs comes from considering linear models.

As an example let

(6)
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and

(7)

Both models are linear in three parameters and so will exactly fit any three point

design. Designs for discriminating between the two models will therefore need at least

four points of support. I

In Examples 3 and 4 only one model can be true. If however the two competing

models are not separate but nested, so that one is a special case of the other, either one

or both may be true. The design implications are mentioned briefly in Section 4.

Whether the designs are the locally optimum designs of Sections 3 and 4 or those

incorporating prior information of later sections, only non-sequential designs will be

discussed in this paper. Sequential experimentation, where possible, provides a more

efficient way of learning about parameters and models. But, at each stage of a sequential

procedure, design considerations similar to those of this paper will be of importance.

3. LOCALLY D-OPTIMUM DESIGNS FOR PARAMETER ESTIMATION.

3.1. The General Equivalence Theorem.

In this section the General Equivalence Theorem of optimum design theory is stated

in a form suitable for extension to include prior information. Silvey (1980, Chapter 3)

gives a careful discussion of the theorem with a notation similar to that used here.

For the linear model E(Y) = Fj3, where F is an n x p matrix with ith row P(zd, a

function of m known explanatory variables, the information matrix for the least squares

estimates of the parameters j3 is

In the continuous, or approximate, theory the exact n-trial design is replaced by the

design measure ~ over the design region X. This measure puts weight Wi at the point

Zi. The information matrix is then written as

M(~) = Lf(z)P(Z)~(dZ) = Lm(z)~(dz).

Optimum design theory is concerned with designs which minimize the convex func

tion \II{M(O}. Let this design be given by the measure C and let the measure [ put

unit mass at the point z. The derivative of \II{M(~)} at ~ in the direction [ is

q,(z, 0 = lim ~ [\II{(l - a)M(e) + a M([)} - \II{M(~)}].
0->0+ a
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The General Equivalence Theorem then states the equivalence of the three conditions:

(i). C minimizes 1It{MW}.

(ii). min <p(x,C) ~ O.

(iii). <p(x,C) achieves its minimum at the points of support of the design.

The best known example is the equivalence of D- and G-optimality for linear models

in which

1It{MW} = -log IMall, (8)

so that the determinant of the information matrix is maximized or, equivalently, the

determinant of M-1(e) is minimized. Also, ifthe standardized variance ofthe estimated

response at x is

It is customary to write

d(x,{) = l(x)M-1({)j(x),

<p(x,{) = P - d(x,e).

(9)

(10)

x:~d(x,{) = d(()

when the second condition of the theorem becomes a(C) = p, the condition for G

optimality.

The theorem suggest algorithms for the construction of designs. In the approximate

or continuous theory for D-optimality, designs are built by adding points where d(x, e)

is a maximum. The process can be speeded by the removal of design points for which

the variance is low (Wu and Wynn, 1978). Similarly, algorithms for the construction

of exact designs (Fedorov, 1972, p.164; Mitchell, 1974; Atkinson and Donev, 1989) add

points with high variance or exchange them for design points with low variance.

Of particular importance in the construction of designs with prior information is

the number of points of support of the design. For linear models the number of points of

support of the optimum design is"bounded by p(p +1)/2, a result which follows from the

additivity of M({) and Caratheodory's Theorem (Silvey, 1980, Appendix 2). Optimum

designs with a greater number of points will have an information matrix identical to that

of a design satisfying this bound. For locally optimum designs found by linearisation of

nonlinear models, the number of design points is often p. However there is in general no

bound on the number of support points for the designs of Sections 6 and 7 in which the

expectation of the design criterion is minimized. A second property of these Bayesian

designs is that the derivative function <p( x, {) is often appreciably flatter than that for

the locally optimum designs. The implications of this property for the construction of

optimum designs is discussed in Section 6.4.
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3.2 Locally D-Optimum Designs.

The locally D-optimum design found from the linearised model for first-order decay

maximizes M(e) with j(z) given by (3). To extend the equivalence theorem to designs

for nonlinear models with a vector parameter requires the extension of the Taylor series

expansion leading to (3) .If 8 in the model E(Y) = 71( z, 8) is of dimension p, then the

p x 1 vector P(z) is given by the p partial derivatives

(11)

The extended design matrix F has ith row P(Zi) and the locally D-optimum design

maximizes 1Ft FI, where the derivatives are evaluated at 80 , The General Equivalence

Theorem of Section 3.1 then applies to this linearized model.

Example 2. First Order Decay.

For this one parameter example we have already seen that j(Zi) = -Zi exp( -80 z i).

The locally D-optimum design for 8 which maximizes

concentrates all experimental effort at the value of Z for which j(z) is a maximum. This

confirms the result of Section 2 that all trials should be performed at z = 1/80 ,

This design illustrates two aspects of optimum design theory. One is that for p = 1

the bound on the maximum number of support points p(p + 1)/2 is one, so that the

design satisfies this condition. The second is that the design satisfies points ii and iii

of the General Equivalence Theorem. Figure 1 shows a plot of d( z, eo) for 80 = 1 : the

function has a maximum value of 1, that is p, and this maximum occurs at the point of

support of the design, namely z = 1.

4. LOCALLY T-OPTIMUM DESIGNS FOR DISCRIMINATION BETWEEN TWO

MODELS.

A description is given in this section of designs for discriminating between two

models. References to work on the more complicated problem of discrimination between

three or more models are given in Section 8.

The optimum design for discriminating between two models depends upon which

model is true. Without loss of generality let this be the first model and write

(12)
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FIGURE 1. Example 2 (First Order Decay): the variance function d(:z:,C) for the

locally D-optimum design when (Jo = 1.

A good design for discriminating between the models will then provide a large lack of

fit sum of squares for the second model. When the second model is fitted to the data,

the least squares parameter estimates will depend on the experimental design as well

as on both the value of (JI and on the errors. In the absence of errors the parameter

estimates are

(13)

yielding a residual sum of squares

(14)

For linear models nli.2 ( e)/u 2 is the non-centrality parameter of the X2 distribution of

the residual sum of squares for the second model. Designs which maximize li.2 (e) are

called T-optimum to emphasize the connection with testing models. The T-optimum

design maximizing (14) provides the most powerful F test for lack of fit of the second

model when the first is true. When the models are nonlinear in the parameters, the

exact F test is replaced by asymptotic results, but we still design to maximize (14).

For linear models with extended design matrices FI and F2 and parameter vectors

{31 and {32 the least squares estimates ~2 minimizing (13) are

(15)
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when only model 2 is fitted to the data. Further understanding of the designs for linear

models comes from consideration of a combined model. If the two models are separate,

that is F1 and F2 have no terms in common, they can be combined to yield the model

In this combined model fJ2 = 0 corresponds to model 1 being correct. However the

models will frequently have terms in common, sometimes, as in Example 4, only a

constant, but often other terms as well. The combined model is then

(16)

where F2fJ2 is the complement of F1fJI in the combined model FfJ, and similarly for

F1fJI' The non-centrality parameter (14) for models with some terms in common is

(17)

which makes explicit the dependence of A2(en) on the elements of F1fJI not included in

the second model. If fJI is a scalar, designs maximizing (17) minimize the variance of

the estimate of fJI in the combined model (16) and so do not depend on the value of fJI'

However if fJI is a vector, the T-optimum design will depend on the parameter values.

If model 2 is true, rather than model I, the T-optimum design will maximize the

non-centrality parameter when model 1 is fitted to the data. The design criterion to

be maximized is then A1(en), the analogue of (17) with l's and 2's interchanged. If

model 1 is a special case of model 2, model 2 must be true, since it is assumed that

one of the models is true. Then the complement fJI will be empty and the only non

centrality parameter to be maximized is AI(en), which gives information as to whether

the larger model is justified. If it is not and model 1 is all that is required, fJ2 = 0 and

the non-centrality parameter AI(en) will be identically zero for all designs.

The quantity -A2(en) is another example of a convex function to which the General

Equivalence Theorem applies. To establish notation for the derivative function let the

T-optimum design yield the parameter estimate 8; = 82 (C). Then

(18)

The squared difference between the true and predicted responses at z, for this design,

is

(19)
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with <P2( z, {) being the difference for any other design. The following conditions on the

design are then equivalent:

(i). The T-optimum design C maximizes A2({)'

(ii). <P2(C):::; A2 (C), for all z EX.

(iii). At the points of the optimum design <P2(C) = A 2 (C).

(iv). For any non-optimum design, that is one for which A 2 ({) < A 2 (C),

These results are, in all important respects, the same as those for D-optimality in

Section 3.1 and lead to similar methods of design construction and verification.

Example 4. Two Linear Models (continued).

Without loss of generality we take the first model as true, just as was done in

the theoretical development. Then the T-optimum design depends on the values of

the parameters 1311 and 1312, but not on the value of 1310' since both models contain a

constant. We consider only one pair of parameter values, taking as the true model

"1t(z) = 4.5 - 1.5 eZ
- 2 e-2z

• (20)

This function, which has a value of -1.448 at z = -1, rises to a maximum of 1.036 at

z = 0.144, before declining to -0.131 at z = -1. It can be well approximated by the

quadratic polynomial (7). The T-optimum design for discriminating between the two

models is found by numerical maximization of A2(0 to be

{
-I

C = 0.253
-0.669 0.144 0.957}
0.428 0.247 0.072

(21)

for which A2(C) = 1.087 X 10-3 • A strange feature of this design is that half the weight

is on the first and third design points and half on the other two.

For the particular parameter values of (20) the design is not symmetrical and does

not span the experimental region. It contains only four design points, the minimum

number, in general, for discrimination between two three parameter models. As an il

lustration ofthe equivalence theorem, <P2(Z, C) is plotted in Fig. 2. The maximum value

of <P2( z, C) is indeed equal to A2(C), the maximum occuring at the points of the opti

mum design. The minimum values of zero occur where the two fitted models coincide.

Incremental experiments at these points would be non-informative for discrimunation

between the models.•

Example 3. Two Models for Decay (continued).
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~2(Z,C)
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0.0004
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FIGURE 2. Example 4 (Two Linear Models): the derivative function tP2(Z,C) for the

locally T-optimum design for discriminating between the two models.

Both models in Example 4 are linear in the parameters. We now find the T

optimum design for discriminating between two nonlinear models, using as an example

the two models for decay (2) and (5).

Let the first model be true with fh = 1 so that

(22)

The T-optimum design again maximizes the non-centrality parameter ~2(e) (14), the

only small complication introduced by the nonlinearity of 772 (Z, O2 ) being the iterative

calculation of the nonlinear least squares estimates 92(0. The iterative numerical max

imization of ~2(e) thus contains an iterative fit at each function evaluation.

The T-optimum design when 01 = 1 is

e* = {0.327
0.3345

3.34 }
0.6655 '

(23)

a two-point design allowing discrimination between these one-parameter models. In

Section 3.2 the locally D-optimum design for 01 when Or = 1 put all trials at z = 1.

The design given by (23) divides the design weight between points either side of this
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value. Confirmation that this is the optimum design comes again from the Equivalence

Theorem. The plot of 4>2(Z,C) in Fig. 3 has two maxima with the value of ~2(C),

which is 1.038 x 10-2 • Since both models are one at z = 0, experiments at this point

are not informative and 4>(z, C) = O. It is also zero at the point of intersection of the

true model and model 2 with parameters estimated from the optimum design. A third

non-informative point is at z = 00, when both models predict zero for the response.•

•10·'

096

0.72

0.48

0.24

-=--~.... -- --- .... -- .. --- -- ........_.._....... -... -.

65432

O.O+-----,.:>'""'-----r----,r-----,-----r----....,

o

FIGURE. 3. Example 3 (Two Models for Decay): derivative function 4>2(Z,C) for the

locally T-optimum design for discriminating between two nonlinear models.

5. A GENERAL EQUIVALENCE THEOREM INCORPORATING PRIOR

INFORMATION.

In this section the General Equivalence Theorem of Section 3.1 is extended to

include dependence of the information matrix on a vector parameter 8. We write the

information matrix as

M({,8) = Lf(z,8)!t(z,8){(dz) = L m(z,8){(dz).

The generalization is to consider design criteria of the form

IlI{M({)} = Eslll{M({,8)}.
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For the one parameter examples of Section 2 reasonable extensions of D-optimality

would be to find designs to maximize the expected information about the parameter,

or to minimize the expected variance of the parameter estimate. The results of Section

6.2 show that these designs are not the same.

There are similarly several generalizations of D-optimality when 8 is a vector. The

obvious generalization of (8) is to take

(24)

Another possibility is

(25)

which, when p = 1, reduces to minimizing the expected variance of the parameter

estimate. Five possible generalizations of D-optimality are listed in Table 1, together

with their derivative functions, for each of which an equivalence theorem holds (Dubov,

1977; Fedorov, 1981). These criteria are compared in Section 6.2. For the present

we notice that, from a Bayesian viewpoint, not all criteria correspond to preposterior

expected loss, although Criterion I does.

TAB~E 1. Equivalence Theorem for Bayesian Versions of D-optimality:
DeSIgn Criteria and Derivative Functions.

I

II

III

IV

V

Criterion' {I(e)}

E logl.-1 1

log EII-1 ,

log IEI-1 ,

log {EIMI }-1

log IEMI-1

Derivative Function ;(x,e)

p - E tr .-1m(x,D)

p _ E{I.-1 1 tr .-1 m(x,D)}/ EI.-1
1

p _ E{ tr .-1 (E.-1) .-1 m(x,D)

p - E{III tr .-1 m(x,D)}/ EIII

p - tr (EI)-1 m(x,D)

In this table EM is short for EO M(e,D), etc.

For T-optimum designs the extension is to take the expectation over parameters and

models of the non-centrality parameters A 2 (e) (14) and Al (e), the latter being obtained

when model 1 is fitted with model 2 true. As with the extensions of D-optimality this

yields a convex design function to which the General Equivalence theorem applies. In the
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case of T-optimality the derivative function is the expectation of the derivative functions

for each parameter value. However, for some extensions of D-optimality, I/>(z, e) is more

complicated.

These results provide a means whereby the uncertainty in the prior estimates of

the parameters is translated into a spread of design points. In the standard theory

the criteria are defined by matrices M(e) which are linear combinations, with positive

coefficients, of elementary information matrices m(z) corresponding to designs with one

support point. But in, for example, the extensions of D-optimality, dependence is on

such functions of matrices as E 9M- 1(e,8) or E 9 IM(e,8)1, the non-additive nature of

which precludes the use of Caratheodory's theorem. As a result the number of support

points is no longer bounded by p(p + 1)/2. The examples of the next two sections show

how the non-additive nature of the criterion leads to designs with appreciable spread of

the points of support.

6. DESIGNS FOR PARAMETER ESTIMATION WITH PRIOR INFORMATION.

6.1. The Truncated Quadratic Model, Example 1 (continued).

As a first example of design criteria incorporating prior information we calculate

some designs for the truncated quadratic model (1), concentrating in particular on

Criterion II, given by (25). In this one parameter example this reduces to minimizing

the expected variance of the parameter estima.te. We contrast this design with that

maximizing the expected information about {3.

The derivative function for Criterion II is given in Table 1. It is convenient when

referring to these derivatives to follow (10) and call d(z,e) = p - I/>(z,e) the expected

variance. Then for Criterion II

(26)

where d(z,e,8) = r(z,8)M- 1 (e,8)j(z,8). The expected variance is thus a weighted

combination of the variance of the predicted response for the various parameter values.

In the one parameter case the weights are the variances of the parameter estimates.

From the equivalence theorem it follows that the points of support of the optimum

design are a.t the maxima of (26), where d(z, C) = p.

Suppose that the prior for 8 is discrete with mass Pm on the value 8m • The design

criterion (25) to be minimized is

(27)
m
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with !(z, 8) given in (1). To illustrate the properties ofthe design let the priorfor 8 put

weight 0.2 on the five values 0.3, 0.6,1,1.5 and 2. Trials at values of z > 1/8 yield a zero

response. Thus for 8 = 2 a reading at any value of z above 0.5 will be non-informative.

Unless the design contains some mass at values less than this, the criterion (27) will be

infinite. Yet the locally optimum designs, at z = 1/28, for the three smallest parameter

values all concentrate mass on a single z value at or above 0.5.

The expected values required for the criterion (27) are found by summing over the

five parameter values. Table 2 gives three optimum continuous designs for Criterion II.

The first was found by searching over the convex design space [0, 1], the second and third

designs by grid search over respectively 20 and 10 z values. The designs have either two

or three points, more than the single point indicated by Caratheodory's Theorem for

the locally optimum designs.The design for the coarser grid has three points, the others

two. That the three point design is optimum can be checked from the plot of d(z, C)

in FigA.

TABLE 2. Example 1 (Truncated Quadratic Model): Continuous optimum
*designs ~ minimizing the expected variance of the parameter

estimate (Criterion II).

Region Criterion Value

(a) Convex [0, 1] 32.34

x 0.3430 1

*w 0.6951 0.3049

(b) 20 point grid 32.37

x 0.35 1

*w 0.7034 0.2966

(c) 10 point grid 32.95

x 0.3 0.4 1

*w 0.4528 0.2406 0.3066

* *The design ~ puts weight Ii at the point x.

The expected variance is 1, i.e. p, at the the three design points and less than 1 at the
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1.2
d(z,C)

1.0

0.6

FIGURE 4. Example 1 (Truncated Quadratic): the expected variance function d(z, C)

for the three-point design minimizing the expected variance of ,8(27) when fJ has a

five-point prior.

other 7 points of the discrete design region. However it is 1.027 at z = 0.35, which is

not part of the coarse grid. Searching over a finer grid leads to the optimum design in

which the weights at 0.3 and 0.4 are almost combined, yielding a two-point design. It

is clear why the number of design points has changed. But such behaviour is infrequent

for the standard design criteria when the additivity property holds. Of course, for such

criteria for a single parameter model, all optimum designs would require only one design

point.

The effect of the spread of design points is to ensure that there is no value of fJ for

which the design is very poor. The appearance of Figure 4 indicates that it is the sum

of several rather different curves arising from the various values of fJ. However not all

design criteria lead to a spread of design points. If we use instead a criterion like V in

which the expected information about {3 is maximized, (27) is replaced by maximization

of

(28)
m

For the coarse grid the optimum design is at the single point z = 0.3. The effect of

little, or no, information about {3 for a specific fJ value may well be outweighed by the

information obtained for other fJ values. This is not the case for designs using (27) when
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variances can be infinite for some parameter values, whereas the information is bounded

at zero.

6.2. A Comparison of Design Criteria.

The results of Section 6.1 illustrate the striking difference between designs which

minimize expected variance and those which maximize expected information. In this

section we use the first-order decay model, Example 2, to compare the five generaliza

tions of D-optimality listed in Table 1.

When p = 1 the five criteria reduce to the three listed in Table 3, in which the

expectation of integer powers of the infomation matrix, in this case a scalar, are maxi

mized or minimized as appropriate. The values of the power parameter are also given

in Table 3. The equivalence theorem for these criteria involves an expected variance of

the weighted form

where the weights a(B) are given in Table 3. For Criterion I, a(B)

combination of variances is unweighted.

1, so that the

TABLE 3. Equivalence Theorem for Bayesian Versions of n-Dptimality:
Reduction of criteria of Table 1 for single parameter models.

Criterion Power Parameter Expected Variance
min '{I({,O)} Veight a( 0)

I -EO log I({,O) 0 1

II, III EOI-1({,0) -1 1-1 (CO)

IV, V - EO I({, 0) 1 I({, 0)

For a numerical comparison of these criteria we use Example 2 with, again, five

equally probable values of B, now 1/7, 1/y'7, 1, y'7 and 7. For each parameter value the

locally D-optimum design is at :z: = I/B, so that the design times are uniformly spaced

in log time.

The designs for the three one-parameter criteria are given in Table 4. The most

satisfactory design arises from Criterion I in which E9 10g !M(e, B)I is maximized. This

design puts weights in the approximate ratio of 2:1:1 within the range of the optimum

designs for the individual parameter vaues. By comparison, the design for Criterion II,
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in which the expected variance is minimized, puts 96.69% of the weight on z = 0.1754.

This difference arises because, in the locally D-optimum design for the linearised model,

var(9) oc 92e2 • Large parameter values, which result in rapid reactions and experiments

at small values of z, are therefore estimated with large variances, relative to small

parameter values. Designs with Criterion II accordingly tend to choose experimental

conditions in order to reduce these large variances. The reverse is true for the design

with Criterion V, in which the maximization of expected information leads to a one

point design dominated by the smallest parameter value, for which the optimum design

is at z = 7.

TABLE 4. Example 2 (First Order Decay): comparison of optimum designs
satisfying criteria of Table 4.

*Criterion Power x w

I 0 0.2405 0.4781
1.4863 0.2707
3.9907 0.2512

II, III -1 0.1754 0.9669
2.5529 0.0331

IV, V 1 6.5217 1

The numerical results of this section indicate that Criterion I is most satisfactory.

We have already mentioned the Bayesian justification for this criterion. A third argu

ment comes from the equivalence theorem. For each value of 9 the locally optimum

design will have the same maximum value for the variance, in general p. The results

of Table 3 show that the weight a(9) for Criterion I is unity. The criterion therefore

provides an expected variance which precisely reflects the importance of the different 9

values as specified by the prior distribution. In other criteria the weights a(9) can be

considered as distorting the combination of the already correctly scaled variances.

Despite these arguments, there may be occasions when the variance of the param

eter estimates is of prime importance and Criterion II is appropriate. For Example 1

this criterion produced an appealing design in Section 6.1, because the variance of iJ for

the locally optimum design does not depend on 9. But the results of the present section

support the use of the Bayesian criterion in which EI/log IM-1(e, 9)1 is minimized. In

Example 2 a further advantage of the design using Criterion I is that a close approx

imation to the continuous design is found by replacing the weights in Table 4 by 2, 1
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and 1 trials.

6.3. The Effect of the Prior Distribution.

The comparisons of criteria in Section 6.2 used a single 5-point prior for 9. In this

section the effect of the spread of this prior on the design is investigated together with

the effect of more plausible forms of prior. Criterion I is used throughout with Example

2.

The more general five point prior for 9 puts mass of 0.2 at the points l/v, 1/../v, 1,

../V and v. In Section 6.2 taking v = 7 yielded a 3-point design. When v = 1 the design

problem collapses to the locally optimum design with all weight at z = 1. Table 5 gives

optimum designs for these and three other values of v giving 1, 2, 3, 4 and 5-point

designs as v increases. The design for v = 100 almost consists of weight 0.2 on each of

the separate locally optimum designs for the very widely spaced parameter values. A

prior with this range but more parameter values might be expected to give a design with

more design points. As one example, a 9-point uniform prior wih support v-I, v-3 / 4 ,

v-1 / 2 , ... , v 3 / 4 , v with v again equal to 100 produces an 8-point design. Rather than

explore this path any further we let Table 5 demonstrate one way in which increasing

prior uncertainty leads to an increase in the number of design points. In assessing such

results, although it may be interesting to observe the change in the designs, it is the

efficiencies of the designs for a variety of prior assumptions that is of greater practical

importance.

An alternative to these discrete uniform priors in log 9 is a normal prior in log 9.

This corresponds to a prior assessment of 9 values in which k9 is as likely as 9/k and 9

has a lognormal distribution. An effect of continuous priors such as these on the design

criteria is to replace the summations in the expectations by integrations. However,

numerical routines for the evaluation of integrals reduce to the calculation once more

of weighted sums.

The normal distribution used as a prior was chosen to have the same variance 7'

on the log 9 scale as the 5-point discrete prior with v = 7, which gave rise to a 3-point

design. The normal prior was truncated to have range -2.57' to 2.57' and this range

was then divided into 7 equal intervals on the log 9 scale to give weights for the values

of 9. To assess the effect of this discretization the calculation was repeated with the

prior divided into 15 intervals. The two optimum designs are given in Table 6. There

are slight differences between these 5-point designs. However the important results are

the efficiencies of Table 7, calculated on the assumption that the 15 point normal prior

holds.
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TABLE 5. Ex~ple.2 (~irst Order Decay): dependence of design on
range of prIor dIstrIbution: optimum desi~s for Criterion I with
five-point prior distribution over l/v, l/Jv, 1, Jv and v.

1

3

7

13

100

*x w

1 1

0.6505 0.7690
1.5750 0.2310

0.2405 0.4781
1.4863 0.2707
3.9907 0.2512

0.1109 0.3371
0.4013 0.1396
1.2840 0.1955
6.1466 0.3279

0.0106 0.2137
0.1061 0.1992
1.0610 0.2000
10.6490 0.2009
99.9987 0.1862

TABLE 6. Example 2 (First Order Decay): optimum designs for
discretized lognormal priors.

Prior

7 point

15 point

•x w

0.1012 0.0873
0.2299 0.1459
0.6208 0.3653
1.6588 0.2671
4.2274 0.1344

0.1079 0.1083
0.3329 0.2489
0.7415 0.2189
1.4051 0.2496
3.7389 0.1743

The optimum design for the 7-point prior has an efficiency of 99.95%, indicating the

irrelevance of the kind of differences shown in Table 6. More importantly, the 3-point

design for the 5-point uniform prior has an efficiency of 92.58%. The 4-trial exact design

derived from this by replacing the weights in Table 4 with 2, 1 and 1 trials is scarcely
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TAB~E 7. Ex~ple 2 (Fir~t Order Decay): Efficiencies of
optImum des~gns.for varIOUS priors using criterion I when
the true prIor IS the 15 point lognormal.

Prior Used In Design Efficiency 7-

One point 23.45

5 point uniform, v 7 92.58

Exact design for v 7 92.18

7 point lognormal 99.95

15 point lognormal 100

less efficient. The only poor design is the one-point locally optimum design.

6.4. Algorithms and the Equivalence Theorem.

Results such as those of Table 6 suggest that there is appreciable robustness of the

designs to mis-specification of the prior distribution. A related intepretation is that

the optima of the design criteria are flat for Bayesian designs. This interpretation is

supported by plots of the expected variance for some of the designs of Table 6.

The plot of d(z,C) for the locally optimum design putting all weight at z = 1 was

given in Fig. 1. The curve is sharply peaked, indicating that designs with trials far from

z = 1 will be markedly inefficient. However the curve for the design for the five-point

uniform prior with v = 7, Fig. 5, is appreciable flatter, with three shallow peaks at the

three design points. The curve for the 5-point design for the 15-point normal prior,

Fig. 6, is sensibly constant over a laO-fold range of z, indicating a very flat optimum.

The flatness of the optima for designs with prior information has positive and

negative aspects. The positive aspect, illustrated in Table 7, is the near optimum

behaviour of designs quite different from the optimum design: the negative aspect is

the numerical problem of finding the precisely optimum design, if such is required.

The standard algorithms of optimum design theory were mentioned briefly in Sec

tion 3.1. They consist of adding mass at the point at which d(z,O is a maximum. For

the design of Fig. 1, with a sharp maximum, the algorithms converge, albeit relatively

slowly, since convergence is first-order. For flat derivative functions, such as that of Fig.

6, our limited experience is that these algorithms are useless, an opinion supported by

the comments of Chaloner and Larntz (1989, Section 4). One difficulty is that small
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FIGURE 5. Example 2 (First Order Decay): variance function d(z,C) for the three

point design, optimum for the five-point uniform prior with /I = 7.

1.0

FIGURE. 6. Example 2 (First Order Decay): variance function d(z,C) for the five

point design, optimum for the I5-point normal prior.

amounts of mass are added to the design at numerous distinct points; the pattern to

which the design is converging does not emerge.

The designs described in this paper were found using numerical optimization ap

plied to the design criterion, alternating with inspection of the derivative function to
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indicate regions in which the search for the optimum should be concentrated. In all

examples three iterations of optimization and inspection led to designs in which the

maximum expected variance equaled 1 ± 0.0001, so that the equivalence theorem was

sensibly satisfied. The optimization routines used were quasi-Newton algorithms with

numerical derivatives: NAG routines on the Cyber at Imperial College and the Vax at

LSE, CMLIB on the Vax at the University of Minnesota. To apply these algorithms

for unconstrained optimization, transformations were used to ensure that the design

constraints were satisfied. Examples are given by Atkinson (1969).

7. DISCRIMINATION BETWEEN MODELS WITH PRIOR INFORMATION.

7.1. True Model Known.

In this section the extension of the General Equivalence Theorem in Section 5 is

used to incorporate prior information into the T -optimum designs of Section 4. We

continue to work with only two competing models. First it will be assumed that it is

known which model is true, expectations being taken only over the parameters of the

true model. Then, in Section 7.2, a prior probability is assigned to the truth of each

model and the expectation of the design criterion is taken over this distribution. In

both cases the resulting equivalence theorem is a straightforward generalization of that

of Section 4.

To begin we generalize the earlier notation, to make explicit the dependence of

the design criterion on model and parameters. If, as before, model 1 is true, the non

centrality parameter (18) becomes d2(e,9d with the squared difference in the true and

predicted responses (19) written as 1/>2(:1:, e, 9d. Although we shall not explicitly need

the notation, for every design and parameter value 91 , the least squares estimates of the

parameters of the second model (13) are 92(e,9d.

Let E1 denote expectation with respect to 91 , Then if we write

(29)

the equivalence theorem of Section 4 applies to this composite criterion.

Example 3. Two Models for Decay (continued).

The two models (1) and (5) are respectively exponential decay and an inverse

polynomial. In Section 4 it was shown that if the exponential model is true with 91 = 1,

the T-optimum design (23) puts unequal design weight at the two points 0.327 and
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3.34. Table 8 lists some designs obtained by putting a prior distribution on 91 , If two

equiprobable values of 91 are taken at 1/3 and 3, a 3-point design results. A very simila.r

design results from taking the three values 1/3, 1 and 3. However for the four more

dispersed 91 values 1/8, 1/2, 2 and 8 the resulting design has 5 unequally weighted

points of support from z = 0.0514 to z = 22.52. To show that this is indeed the

Bayesian T-optimum design, we can again use the equivalence theorem, this time in the

form (29). Fig. 7 is a plot of <P2(Z, C) against log z. There a.re five maxima at the

design points which a.re equal to the value of ~2(C), that is 4.225 x 10-3 • As in other

applications of the theorem, we see that the design is optimum.•

TABLE 8. Example 3 (Two Models for Decay): dependence of design
on prior for O.

0 *x w

1 0.327 0.3345
3.34 0.6655

1/3, 3 0.1160 0.1608
1.073 0.4014
9.345 0.4378

1/3, 1, 3 0.1443 0.1749
1.0726 0.3616
7.9817 0.4635

1/8, 1/2, 2, 8 0.05149 0.0966
0.3450 0.1899
1.3932 0.2343
4.8266 0.2001
22.521 0.2791

7.2. True Model Unknown.

Let the prior probability that model j is true be 1f'j, with, of course, 1f'1 + 1f'2 = 1.

Then the expected value of the non-centrality parameter, taken over models and over

pa.rameters within models is, by extension of (29)

with the expected squa.red difference in responses given by

(30)
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FIGURE. 7. Example 3 (Two Models for Decay): the derivative function 4>2(Z,C) for

the five-point T-optimum design when 81 has a four-point prior.

That is, for each model assumed true, the expected value is calculated of the quantity

disproving the other model. These values are then combined according to the prior

probabilities 'Trj. The equivalence theorem applies to this more general design criterion

as it did to its special case (29).

Example 4. Two Linear Models (continued).

The locally T-optimum design for discriminating between these two 3-parameter

models given in (21) puts trials at four points. We now consider a prior specification

which gives rise to a five-point design.

Table 9 details one prior yielding a five-point design. The prior probability that

model 1 is true is 0.6 and, conditional on this, there are ten prior values of the parameters

whereas, for model 2, there are only 5. The optimum design

. {-1e = 0.2438
-0.6634 0.1624 0.8466
0.4265 0.2535 0.0206 ~.0556 }

(31)

differs from the non-Bayesian design (21) in spanning the range of z. However, like that

design, it places relatively little experimental effort at the higher values of z.
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TABLE 9. Example 4 (Two Linear Models): prior distribution of parameters
yielding the 5 point design (31) and the derivative function of Fig. 8

Hodel 1 1"1 '" 0.6 Model 2 1"2 '" 0.4

fJ10 fJ11 fJ12 P1 (fJ) fJ20 fJ21 fJ22 P2(fJ)

4.5 -1.5 -2.0 0.25 1.0 0.5 -2.0 0.23
4.0 -1.0 -2.0 0.14 0.8 0.4 -2.0 0.33
4.5 -2.0 -1.5 0.11 1.0 0.6 -1.5 0.17
5.0 -1.5 -1.5 0.06 1.2 0.5 -1.5 0.15
4.0 -2.0 -1.0 0.05 0.8 0.6 -1.0 0.12
4.5 -1.5 -1.5 0.08
4.0 -1.5 -2.0 0.05
4.0 -2.0 -2.0 0.12
4.5 -2.0 -2.0 0.07
5.0 -1.5 -2.0 0.07

The prior probabilities of the parameters Pj(fJ) are conditional on the
models

The plot of the derivative function cP(z,~) in Fig. 8 shows that (31) is the optimum

design. Comparison of this figure with that for the non-Bayesian design, Fig. 3, is

informative. In Fig. 3 cP(z,~) goes to zero at the three points where the two models

intersect. However the corresponding plot for the Bayesian design does not go to zero,

as, for each z, there will always be some combination of parameter values for which the

experiment is informative.•

These examples illustrate the way in which prior information can be incorporated

into designs for discriminating between models. In the second example we assumed

independence of the prior distributions of the parameters within models. It might

sometimes be more realistic to consider priors which give equal weight to parameter

values yielding similarly shaped response curves under the two models. We have also

assumed discrete joint prior distributions within models. The case of continuous joint

prior distributions would involve no new ideas, but would require the use of numerical

integration. For these Bayesian designs the extension to three or models would seem

to be straightforward: expectations can be taken over all non-centrality parameters

yielding a smooth, well behaved design criterion.

8. DISCUSSION.

The main result used in this paper is the extension of the standard equivalence the-
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FIGURE. 8. Example 4 (Two Linear Models): the derivative function ¢>( z, 0 for the

Bayesian T-optimum design with two model prior given by Table 9.

orem of Section 3.1 to incorporate prior information, yielding the General Equivalence

Theorem of Section 5. This theorem has then been exemplified by extensions to the

familiar criteria of D- and T-optimality. The equivalence theorem for these expectation

criteria has a long, implicit history. The earliest proof seems to have been due to Whittle

(1973), but the implications, particularly for the number of design points, are not clearly

stated. The first complete discussion, including examples of designs, is due to Chaloner

and Larntz (1989) who consider logistic regression. Chaloner (1988) briefly treats the

more general case of design for genralized linear models. Earlier work does not consider

either the number of design points, nor the properties of the derivative function, which

are of importance in the construction of designs. Lauter (1974, 1976) proves the theo

rem in the generality required, but only gives examples of designs for composite criteria

for linear models. Atkinson and Cox (1974) use the theorem for Criterion I of Table 1

with linear models. Cook and Nachtsheim (1982) are likewise concerned with designs

for linear models. Pronzato and Walter (1985) calculate numerical optimum designs for

some nonlinear problems, but do not mention the equivalence theorem. Fedorov and

Atkinson (1988) give a more algebraic discussion of the properties of the designs for the

criteria of Table 1. The examples of Section 6 are discussed in fuller detail by Atkinson

and Fedorov (1992).

T-optimum designs for two models were introduced by Atkinson and Fedorov

(1975a). A full discussion of designs for three or more models is given by Atkinson

and Fedorov (1975b). The Bayesian extension of T-optimality was introduced by de
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Leon and Atkinson (1991), who give details of the proof of the equivalence theorem

using (30). Atkinson and Donev (1992) in a book length treatment of optimum exper

imental designs give much related material in Chapter 19 for designs in the presence

of prior information and in Chapter 20 for designs for discriminating between models.

Similar methods can be extended to other design criteria. For example, Atkinson et al

(1992) provide c-optimum designs for properties of compartmental models, such as the

conditions of maximum yield, or the area under the curve. Again, increasing variablity

in the prior distribution of the parameters results in an increasing spread of design

points. In all applications, if the prior information used in calculating the designs is

also to be used in the analysis of the experiments, the information matrices used in this

work require augmentation by prior information. Pilz (1983) provides a survey.
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DESIONS WITH IMPROVED DETECTABILITY OF LACK OF FIT

Alexander. N. Donev
Dept.. of" Aut.omat.ion, Higher Inst.it.ut.e of" Chemical Technology
1156 Sona, Bulgaria

1. INTRODUCTION.

This paper is concerned wit.h t.he choice of" addit.ional
t.rials f"or t.he det.ect.ion of" lack of" f"it. of" a model. It. is well
known t.hat. t.he choice of" a design is very much dependent. on t.he
choice of" a model f"or t.he experiment.. The right. choice however
depends on t.he int.ervals in which t.he f"act.ors vary during t.he
experiment. and t.heref"ore we cannot. be sure t.hat. t.he choice is
correct.. For example, it. is possible f"or t.he relat.ionship t.o be
of" dif"f"erent. orders in t.he dif"f"erent. f"act.ors while we cust.omary
expect. t.he orders all t.o be t.he same. It. is import.ant. t.o be
able t.o check such assumpt.ions. Many designs widely used in
pract.ice do not. allow f"or such a check. In t.his paper we
rest.rict. our at.t.ent.ion t.o t.he f"act.orials and composit.e designs
which have very good propert.ies if" t.he model is correct.ly
select.ed. They however do not. always allow t.o discover if" t.he
model is inadequat.e because of" t.he presence of" t.erms of" a
higher order polynomial.

In t.he f"ollowing sect.ion t.he ef"f"ect. of" t.he inadequacy of"
t.he model is discussed along wit.h some relat.ed work.
Considerat.ions in t.he choice of" addit.ional t.rials, examples and
discussion are given in Sect.ion 3.

2. EFFECT OF INADEQUACY.

We assume some f"unct.ional relat.ionship

x )
m

(1)

connect.ing t.he expect.ed value of" t.he response Y wit.h t.he
f"act.ors x in t.he design region. We shall be concerned wit.h
si t.uat.ions where t.his relat.ionship is linear in t.he paramet.ers:

p

Y(x) .. ~(x,(n + & .. E (1.w. + &,

.=1
where x is a mx1 vect.or of" t.he coded f"act.ors, (1 is a Px1 vect.or
of" t.he paramet.ers of" t.he model which are t.o be est.imat.ed f"rom
t.he dat.a obt.ained in t.he experiment., w is a Px1 vect.or f"ormed
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by t.he values of'
experiment.al error

mean and variance

t.he approximat.inl!; f'unct.ions and £: is t.he
assumed t.o be normally dist.ribut.ed wi t.h zero

a
2

• The desil!;n rel!;ion is assumed t.o be
c;

cuboidal. The most.
polynomials. We shall

popular
rest.rict.

approximat.inl!;
our discusion

f'unct.ions
t.o t.hose

are
of'

t.he
first.

and second order. It. is desirable f'or t.he predict.ion Y(x) t.o be
as close as possible t.o t.he t.rue value of' t.he response E(Y).
The desil!;n is usually chosen in order t.o sat.isf'y some crit.erion
of' opt.imalit.y f'or t.he model paramet.ers. For example, t.he
D-opt.imum N t.rial exact. desil!;n minimizes t.he cont.ent. of' t.he
confidence ellipsoid f'or t.he paramet.ers f'or a l!;iven confidence
level. The LSE <least. square est.imat.es) of' t.he model paramet.ers
ensure t.hat. t.he quant.it.y

2
S

R

N A 2
1: (YI. - YI.) /(N-p)

t =1

(2)

is a minimum. In (2) Y is t.he value of' t.he response measured
I.

in t.he it.h t.rial.
As t.he t.rue approximat.inl!; f'unct.ion is usually not. known

anot.her source of' error, apart. f'rom t.he experiment.al one £:

included in t.he model, is t.he syst.emat.ic error, or bias,
arisi~ f'rom t.he inabilit.y of' t.he approximat.i~ f'unct.ion ~(x,(?)

exact.ly t.o mat.ch t.he expect.at.ion f'unct.ion (D. It. is always
necessary t.o check f'or lack of' nt., t.hat. is t.he inadequacy of'
t.he model. The usual way of' doinl!; t.his is t.o t.est. t.he

of'

an

are

as

possible

of' t.he

Of't.en

(2) is used. Many

value of' s2 which
R

exist.s. Moreover,
disadvant.al!;e t.hat.

nt..

shows t.he ef'f'ect. of' t.he inadequacy if' it.
several widely used desil!;ns suff'er f'rom t.he

s2 remains unchanl!;ed when t.he t.rue model includes t.erms
R

hil!;her order.
Let. us f'irst. consider t.he case when f'act.orial desil!;ns

used and t.he assumed model is of' 1 order, I.e.

hypot.hesis t.hat. t.he variance a
2

caused by bot.h t.he
L

inadequacy and t.he experiment.al error and t.he variance

experiment.al error a
2 are equal, leadinl!; t.o a f'ormal F' t.est..
c;

This problem has been st.udied by many aut.hors, f'or example by
At.kinson <1972, 1973) and Box 8: Draper (1987). An independent.

est.imat.e of' a
2

is usually obt.ained eit.her f'rom a separat.e
£:

sample or f'rom replicat.ed measurement.s of' t.he desil!;n t.rials. In
t.he numerat.or of' t.he F t.est. t.here showd be an est.imat.e of' t.he

variance a
2 l!;ivinl!;
L

est.imat.e t.he quant.it.y

evidence of' lack of'

S2 calculat.ed f'rom
R

desil!;ns however do not. allow f'or obt.aininl!; a

m

E(Y) • (?o + 1: (? x ..
i. =j, \. \.

(3)

If' our assumpt.ion about. t.he t.rue model is wro~ and t.he correct.
model includes second order t.erms it. can be seen t.hat. t.he
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est.imat.es b , of" t.he paramet.ers == 1, 2, m, obt.ained

f"rom such a desill;n will be unbiased, but. t.he ef"f"ect. of" t.he
second order t.erms will be conf"ounded wi t.h t.he est.imat.e of" (? .

o
It. is not. dif"f"icult. also t.o see t.hat. t.he variance SZ f"or t.he

R

inadequat.e model is t.he same as if" it. were calculat.ed f"rom t.he
correct. model. Theref"ore it. should not. be used in t.he ll;oodness
of" f"i t. t.est..

Similar conf"oundinll; of" t.he ef"f"ect.s appears if" f"ract.ions of"

t.he f"act.orials are used. The quant.it.y s~ ll;ives no evidence of"

lack of" f"it..
If" composit.e desill;ns are used t.he assumed model is usually

of" second order in t.he f"act.ors:

E(Y) == (?o +
m m-l

I: (?,'\ + I:
1. =1 \.. = 1

m

I:
i. = J+ 1

(? xx. +
'J , J

m

I: (?X
Z

.
u ,

\..=1

All

has t.erms of" hill;her order, f"or

paramet.ers unbiased.

t.hein

be

bias

will

causewillt.hey

ot.her

however
3

(?".i.Xi.'

model

and

If" t.he correct.

example (? x x
2

'JJ , J

est.imat.es of"

Theref"ore it. is also easy t.o see t.hat. t.he variance S2 will be
R

t.he same if" t.he t.rue model has all int.eract.ions of" t.he f"act.ors
equal t.o zero and it.s value will be underest.imat.ed in t.he more
ll;eneral case of" a t.hird order t.rue model.

These desill;ns are ll;ood accordinll; t.o crit.eria of" opt.imalit.y
f"or t.he model paramet.ers but. bad accordi~ t.o t.he possibilit.y
t.o t.est. t.he model f"or lack of" nt.. The reason f"or conf"oundinll;

of" t.he f"act.ors is t.hat. x
2 == 1 f"or x == ±1 and x

3
== x f"or x

\. 1. \. \.. \.

1, 0 or -1. Theref"ore t.he list. of" desill;ns which are insensible
t.o t.he t.est. of" lack of" nt. caused by omit.t.ed hill;her order t.erms

in t.he model can be essent.ially ext.ended. The value of" s2 will
R

not. ll;ive enoull;h evidence of" lack of" f"it. if" t.he desill;n point.s
have coordinat.es {-1, 1} f"or t.he f"irst. order model and {-1, 0,
1} f"or second order model because t.he est.imat.es will be
conf"ounded alt.hoUll:h in a more complicat.ed way.

Cust.o marily t.his problem is solved by desill;n of"
experiment.s simult.aneously providinll; informat.ion about. bot.h t.he
orill;inal rell;ression model and one which includes addit.ional
t.erms of" a hill;her order (f"or example, At.ldnson, 1972, Box 8:
Draper, Ch.13, 1987). The ef"f"iciency of" t.he desill;n f"or
est.imat.inll; bot.h kinds of" paramet.ers is invest.ill;at.ed. However
such desill;ns, which provide a ll;ood check of" t.he adequacy of" t.he
model, may provide poor est.imat.es of" t.he orill;inal paramet.ers if"
t.he model is in f"act. adequat.e (At.kinson, 1972). In t.he next.
sect.ion an alt.ernat.ive way t.o solve t.he problem is illust.rat.ed.

Addit.ional t.rials are used t.o obt.ain an est.imat.e of"
2

0'
L

which

will show if" t.here are omit.t.ed t.erms in t.he model.
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3. EXAMPLES AND DISCUSSION.

(5)

In t.his sect.ion several examples will be ~iven t.o
illust.rat.e t.he effect. of using addit.ional t.riais t.o det.ect.
possible inadequacy of t.he model due t.o higher order t.erms in
one of t.he fact.ors. All examples are simulat.ed. As t.he exact.
effect. obviously depends on t.he unknown values of t.he omit.t.ed
paramet.ers we shall always st.at.e t.he t.rue model.

An est.imat.e of 0
2

will be obt.ained from t.he result.s in t.he
L

addit.ional design of size L . It. is
L

S2 = L -1 E (Y _ Y )2.
L ..:lL a.t

\. =1

In (5) Y is t.he it.h addit.ional measurement. while Y. is t.he
at ~

predict.ion of t.he model which is t.o be checked for adequacy at.

prOVides informat.ion about. t.he lack
Donev (1990) suggest.s choosing t.he L

which
exist.s,

t.he point. X
o.L

In order t.o obt.ain a relevant. est.imat.e of S2
L

of fit. when it.
t.rials t.o maximize

IY
o.L

Y
o.L

for some under a variet.y assumpt.ions about.

designs

s2 and
R-

not.. The

addiU anal

compared. The designs are list.ed wit.h t.he values of

if t.he model is adequat.e and S2 and S2 if it. is
R L

freedom in all cases were chosen t.o be equal: N - p.

In t.he t.ables H denot.es 0.5 and T • ~.

possible depart.ures from t.he t.rue model.
For each of t.he examples 2 different.

are
2

S
L-

degrees of

Example 1 (Table D. The t.rue model is

E(Y) = 12.5 + 2.05x - 4.33" + 5.16" + 6.6,,2,
1 2 3 1

while we e"pect. a first. order model.

Example 2 (Table 2). The t.rue model is

E(Y) = 12.5 + 2.05" - 4.33" + 5.16" + 6.6,,2 - 3,,2 - 3.6,,2,
1 2 3 1 2 3

while we expect. a first. order model.

E"ample 3 (Table 3). The t.rue model is

E(Y) = 12.5 + 2.05" - 4.33" + 5.16" + 0.98,,2,,2 - 2.05""
1 2 3 12 13

+ 4.96"" + 3.78,,2 + 6.2,,2 - 4.9,,2 + 6.6,,3,
23 1 2 3 1

while we expect. a second order model.

E"ample 4 (Table 4). The t.rue model is



35

E<Y) = 12.5 + 2.05x - 4.33x + 5.16x + 0.98x
2 ,l - 2.05x x

1 2 3 12 13

+ 4.96x X + 3.78x
2 + 6.2x

2
- 4.9x

2

2 3 1 2 3

+ 6.6x X
2

_ 4.8x X
2 + 3.8x

3
•

1 2 1 3 1

while we expect. a second order model.

For Examples 1 and 2 t.he paramet.ers of" t.he models were
obt.ained f"rom a f"act.orial design. For t.hese designs Donev
(1990) suggest.s t.hat. t.he L addit.ionai t.rials Xl should be set.

t.o zero while t.he ot.her f"act.ors can vary in t.heir whole
int.ervals. In Examples 3 and 4 composit.e designs were used for
t.he est.imat.ion of" t.he paramet.ers. The addi t.ionai t.rials in t.his
case should be const.ruct.ed f"ollowing t.he more complicat.ed

m

rules: x ± 1; if"
.1:(51ll

) 0 and (51tl
) 0 t.hen x = O. and

1 l
l =2

m

if"
(51tl < 0 t.hen x ~ ± 1. f"or = 2. m. but. if" E (51tl <

l
l=2

0 t.he opt.imal1t.y condi t.ions f"or x. 2. m. are
l

reversed.
The result.s in t.he t.ables show large values of" S2 when t.he

L

model is inadequat.e due t.o omit.t.ed higher order t.erms and t.he
condit.ions derived in t.he previous chapt.er are achieved. Even
in t.he designs which do not. exact.ly f"ollow t.he rule S2 is

L

bigger if" compared t.o S2 . It. is int.erest.ing t.o not.e t.hat. t.he
R-

except.ion. t.he f"irst. design in Table 2. is inef"f"ect.ive because
t.he absolut.e vaiues of" t.he f"act.ors in t.he t.rials are t.he same.
Theref"ore such an arrangement. of" t.rials should be avoided. This
result.s can be ext.ended f"or t.he case when t.he inadequacy is
caused by more t.han one f"act.or.

This approach is suggest.ed as an ait.ernat.ive t.o t.he one
which proposes t.he const.ruct.ion of" a design sat.isf"ying bot.h t.he
requirement.s of" t.he crit.eria of" opt.imalit.y f"or paramet.er
est.imat.ion and t.hose f"or high det.ecabil1t.y of" lack of" nt.. The
addit.ionai t.rials. even when t.heir number is small. are shown
t.o be ef"f"ect-ive. At. a reasonable ext.ra experiment.ai ef"f"ort. we
are able learn more about. t.he invest.igat.ed syst.em. Theref"ore
t.hey should complement. every response surf"ace design.
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TABLE 1. Addit.ional t.rials for check of lack of fit. of 1 order

model obt.ained from a fact.orial design when t.he t.erm 6.6x2
is

1

omit.t.ed.

x x x 2
1.052

x x x 2
1.0521 2 3 S 1 2 3 S

R- R-
H 1 -1 2

2.255
0 -1 -1 2

2.702s s
-H 1 -1 L- 0 1 -1 L-

2
1.052

2
1.052-H -1 1

s
0 -1 1

s
R R

H -1 1
2

27.748 0 1 1
2

47.584s s
L L

TABLE 2. Addit.ional t.rials for check of lack of fit. of 1 order

model obt.ained from fact.orial design when t.he t.erms 6.6x
2

a
1

3x
2 - 3.6x

2
are omit.t.ed.

2 3

x X X 2
1.052

x x x 2
1.0521 2 3 S 1 2 3 S

R- R-

H -H -H 2
2.075

0 1 1 2
1.632s s

-H H -H L- 1 0 1 L-
2

1.052
2

1.052-H -H H s -1 -1 0
s

R R

H H H 2
2.075 1 1 0

2
30.012s s

L L

TABLE 3. AddiUonal t.rials for check of lack of fit. of 2 order

model obt.ained from composit.e design when t.he t.erm 6.6x
3

isa
1

omit.t.ed.

x x x 2
2.675

x x x 2
2.6751 2 3 S 1 2 3 S

R- R-
-T T -T 2

3.793
-T 1 -1 2

4.495s s
-T -T T L- -T -1 1

L-
2

2.675
2

2.675
T T T

s
T 1 1

s
It It

T -T -T 2 10.440 T -1 -1 2
12.280s s

L L
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TABLE 4. Addi t.ional t.rials f"or check of" lack of" nt. of" 2 order

model obt.ained f"rom composit.e desi~n when t.he t.erms 6.6x x 2
a

1 2

4.8x x
2

+ 3.8x
3

omit.t.ed.are
1 2 1

X X X 2
1.052

x x x 2
1.0521 2 3 S 1 2 3 S

R- R-
H -1 2

2.255
0 -1 -1 2

2.702s s
-H 1 -1 L-

0 -1 L-
2

1.052
2

1.052-H -1 1
s

0 -1 1
s

R R

H -1 1
2 27.748 0 1 1

2
47.584s s

L L
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VARIOUS CONSTRAINTS IN EXPERIMENTAL

DESIGN

Fedorov V. V.

CLSEM, Academy of Sciences, USSR

h Introduction

Experimental design problems considered in this paper are

basically related to the standard linear regression model:

i=l, ... ,n, j=l, . .. , r i' r rl=N,

( 1 )

where BERm are unknown parameters, fT(X)

(f/x), ... ,fm(x)) are given functions, supporting points XI

can be chosen from some set X, E: are uncorrelated random
I J

errors with zero means and variances equal 1.

For the best linear unbiased estimator of unknown

parameters the accumulated "accuracy" is described by the

information

matrix:

which is completely defined by design

context of the convex design theory:

M(~) = J f(x)fT(X)~(dx),

where ~(dx) is a probability measure or (continuous) design

with the supporting set belonging to X supp ~ «: X. The

subscript corresponding to the area of integration will be

used only when it will be essential for understanding. A

design
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*f: = Arg min IJI [M( f: )] ( 2 )
f:

is called (IJI-)optimal.

In the traditional case minimization has to be over the

set of all possible probability measures ::: with supporting

sets belonging to X. For a practitioner it means that one has

to find an optimal design with a given number of observations.

Of course, the reality can be worse and more constraints can

be imposed. For instance, the cost of observations may depend

upon x with the total cost of the experiment not exceeding

some level. Sometimes together with the parameters of model

(1) one may wish to estimate the parameters of some competing

model. Then additionally to (2) it is reasonable to demand

that the corresponding information matrix is not very "small".

In the observation network optimization problem it is usually

not sensible to locate several sensors at the same site nor

with very small distances between them. This leads to the

restriction of the number of sensors per square unit. In terms

of continuous designs it means that the density of the design

measure has to be restricted.

Thus additionally to (2) one has to consider design

problems when the structure of ::: is more complicated than in

the traditional experimental design theory, which is very

briefly surveyed in Section II. In Sections III-V the various

types of constraints are considered: and the main focusing on

the similarities among thecorresponding results rather than

on the discrepancies between them.

II. Standard Equivalence Theorem

The optimization problem (2) has been intensively studied

since Kiefer's pioneering paper (1959). In this section we

shall summarize the major properties of the traditional

optimal designs.
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Assume that:

(a) X is compact;

(b) f(x) are continuous functions in X, fERmi

(c) 'II(M) is a convex function;

(d) there exists q such that

'II[M(~)] ~ q < oo}

(e) for any ~ e 3(q) and ~ e _

'II[(l-a)M(~)+aM(~)]

Fortunately the majority of the

satisfy them, such as D- and

where L(a,~,~)=o(a).

Assumptions (c) and

restrictive for the theory.

popular optimality criteria

( e) are most essential and

linear criteria. But there exist some natural and widely used

criteria which do not satisfy (e) (for instance, the minimax

ones). One can face similar troubles even for "good" criteria

when an optimal design happens to be singular: see Silvey

(1980) •

same

Theoreml. If (a)-(e) hold,

1. For any optimal design

information matrix and

then:

there exists a design with the

containing no more than n
o
=

m(m+l)/2 supporting points.

2. A necessary and sufficient condition for a design

to be optimal is fulfillment of the inequality

*min I/J(x,~ ) ~ O.
xeX

(3 )

3. The set of optimal designs is convex.

* *4. I/J(x,~ ) achieves zero almost everywhere in s~p ~ •

Proof. The proof of this theorem is well known and is

only sketched here to clarify the main ideas which are used in

the subsequent sections.
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The proof of the first part of the theorem is based on

Caratheodory's theorem and on the fact that any information

matrix can be considered as an element of the convex hull of

the elementary information matrices:

Necessi ty and sufficiency of (3) follows from the fact

that the following inequality:

*min I I mil' [ ( I-a )M( ~ ) + aM(0] 2: 0 ( 4 )
~E:=: a-+o

*is a necessary and sufficient condition of optimality of ~ .

If (e) holds, then (4) can be easy transformed to:

min J~(X,~*)~(dX) = min ~(x,~) 2: o.
~E:=: X

The third part of the theorem follows directly from the

convexity of the objective function.

Integration of both parts of the expression from (e) with
*respect to ~ (dx) confirms the final section of the theorem.

Theorem 1 is the basic one in convex design theory and

its various modifications has been extensively discussed in

the statistical literature: see Fedorov (1972), Fedorov and

Malyutov (1972), Whittle (1973), Silvey (1980).

Example ~ For O-criterion, when II'(M)=-lnIMI and

T -1
~(x,~) = m - d(x,~), d(x,~) = f(x) M (~)f(x) ,

the theorem can be reformulated in the more traditional form

(its point 1 is omitted):

The following problems:

*~ Arq max In IM( ~) I ;
~
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~* A~ min max d(x,~);
~ xeX

max d(x,~) m;
xeX

are equivalent.

This is Kiefer's celebrated equivalence theorem.

III. Linear constraints

Constraints linear with the respect to the design measure

mainly arise in experiments when the cost of observations

depends upon controlled variables. The optimization problem

can be stated now in the following way:

(5 )

(6 )

S.t.J~(dX)

*~ =

1,

Arq

C(O

min

J4>(X)~(dX)

'l![M(O]

0,

Example l...o. Let the functions (a(X), a=l, ... , l, describe the

losses when observation is taken at point x. Assume that the

total loss for a particular a can not exceed Ca' Then

a=l, ... ,l,

where r i is the number of observations at point Xi'

For continuous designs the latter inequality takes the

form:

J4>(X)~(dX) :S 0,
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We consider the optimization problem ( 6 ) under

assumptions (a)-(e) adding to them

(b') ~(x) are continuous in X.

*condition for a design ~

inequality

m(m+l)/2 + 1 supporting points.

2. A necessary and sufficient

to be optimal is fulfillment of the

same

Theorem ~ If (a)-(e),(b')

1. For any optimal design

information matrix and

hold, then

there exists a design with

containing no more than

the

n =
o

* *min q(x,u ,~ ) ~ 0,
xeX

where q(x,u,~)

* *U = Arg max min q(X,U,~ ),
ueV' xeX

V' {u:ueRl,Ua~O}.

3. The set of optimal designs is convex.

* * *4. q(x,u ,~ ) achieves zero almost everywhere in s~p ~

Proof. To prove now the first part of the theorem it is

necessary to notice that any couple {M(~),C(~)} belongs to the

convex hull of

{m(x), ~(x)} e RmCm+ll/2+1, x e X.

To prove the second part of the theorem one has to add to

(4) the constraints (6):

s.t. J~(X)~(dX) ~ 0.(8)

The fulfillment of (7) and (8) are necessary and sufficient
*condition for the optimality of ~ . But unlike the standard

case there is generally no single point design (see comments

to (4)) simultaneously satisfying (7) and (8).
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The Lagrangian technique (see, for instance, Laurent

(1972), Ch. 7) leads to the duality of optimization problem

(7), (8) with the following maximin problem:

max min

ueU' f;

or equivalently
*max min q(x,u,f; )

ueU' xeX

Jq(X,u,~*)~(dx),

(see, for instance, Fedorov and Gaivoronski (1984» confirming

the assertion of the theorem.

The proof of two last parts of the theorem is identical

to the standard case.

Note .L. The existence of a solution of (7), (8) with no

more than (1+1) supporting points follows from Caratheodory's

theorem .

Example J....... Let us consider the design problem for one

dimension polynomial response and D-criterion:

fa(X) = x
a

-
1 Ixl:s 1, IJI(M) = -lnIMI,

with linear constraints:

1J ~(x)f;(dx) :s 0,
-1

and let {f,~} constitute a Chebyshev system on Ixl:Sl.
From example 1 it follows that

q(x,u,f;) m _ \' M- 1 a-I f3-1 + TA.( )L af3x x u 'I' X ,

L e. q(x,u,f;) is a linear combination of 2m+1 Chebyshev's

functions with some nonzero coefficients. Therefore (see, for

instance, Karlin and Studden (1966» this function has no more

than 2m+1 roots and subsequently has no more than m+1/2 (if 1

is even) or m+ ( 1+1 )/2 (i f 1 is odd) minima on the interval

Ixl:sl. But in accordance with Theorem 2 they have to coincide
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wi th the support points. So for this case the number of

support points is essentially less than no

IV.Nonlinear Convex Constraints

The approach considered in the previous section can be

usedfor the more general design problem:

*[; = Arg min q, [ M( 0 ] , ( 9 )
[;

s. t. 1fI(0:s 0, IfI e R1 .(10)

Assume additionally to (a)-(e),(b') that:

(c') 1fI([;) are convex;

(e') 1fI[(I-a)[; + a~] = 1fI([;) + aJ~(X,[;)~(dX) + ~(a,[;,[;),

where ~k(a,[;,~) = o(a), k = 1, ... ,1, [; and ~ are defined in

(e) with ~(q) and ~ satisfying (10).

The analysis of (9), (10) are mainly based on ideas of

Theorem 2 and on the possibility of linearization of 1fI([;) near

an optimal design (compare with Gaivoronski (1984) and Lee

(1988)) .

All the final results can described by Theorem 2 with

functions ~(x,[;) defined in (e') 1fI([;) = O. We shall refer to

Theorem 2' in the case of nonlinear constraints, but one has

to remember about assumptions (c'),(e').

Then the design problem corresponds to the case when one

wishes to find a O-optimal design for the response eTf(x) and

to be sure that this design is efficient for some competing

responses e~fk(X)' Taking into account that:

¢(X,[;) = m - d(x,[;),
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and assuming that f(x) and fk(x), k=l, ... ,l are continuous in

X and ck are not very small (to provide fulfillment of (d)

together with (10)) it is not difficult to check the validity

of Theorem 2'. From this theorem it follows that:

a necessary and sufficient condition for optimality of
* *~ is existence of u eU'such that

while ~(O = 0;

almost everywhere in *supp ~

A number of similar examples for various optimality

criteria can be found in Lee (1988).

Theorems 1 - 2' can be considered as specific cases of

the Kuhn-Tucker Theorem, and, of course, its versions and

generalizations of this theorem can help to extend the

previous results.

For instance, theKuhn-Tucker Theorem for the case with a

continuum of constraints (see Pshenichny (1969), Ch. 5.2)

allows analysis of the following design problems:

*~ Arq min 'It [M( ~)], (11)
~

Let there be in addition to the previous assumptions:

(c") ~(~,A) is convex for all AeA and A is compact;

(e") ~[(l-a)~+ a~, A]=~(~,A)+aJ~(X,~,A)~(dX)+L(a/~/~/A)1

where L(a/~/~/A)=o(a).

Then the above mentioned theorem leads to
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Theorem .J...o. A necessary and sufficient condition for a
* * *design ~ to be optimal is the existence of such u and AkeA

that :

k

0,

~ O},

* *min q(x,u ,~ ) ~ 0,(13)

+ uT4>(X,~),

{u: u e

xeX
q(x,u,~) = ~(x,~)

*4>(x,~,Ak)' U'4>k(X,O

1, ... ,1+1.

where

*Assume that all Ak are known. Then Theorem 3 states that

*(11), (12) are equivalent to (9),(10) with ~(~)=(~(~,A1)'... '

~(~,A;+l)/. This makes it evident how to use the results

of the previous theorems.

Example ~ As in example 4 suppose one wishes to find a

D-optimal design for the response eTf(x) and to be sure that

this design is efficient for some competing nonlinear response

Tj(X,A), 1. e.

8Tj(X,A)/8A, A e A c

The combination of the results of example 4 and Theorem 3

transforms (13) to:

If f(x)=f(x,A'), where A'

parameters A, this example can be

case of the design problem for the

is a prior value of the

considered as a particular

nonlinear response.

~ Directly Constrained Design Measures

A number of experimental design problems can be

formulated as optimization problems with explicitly bounded

measures (see Fedorov (1986), (1989), Wynn (1982)):
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*~ Arq min 'I'[M(O], (14)
~

s. t. ~(dx) ~ t(dx), I t(dx) = C ~ 1.(15)
X

As in to the moment space theory (see Fedorov (1989),

*Karlin and Studden (1966), Krein and Nudelman (1973)) ~ can

be called a 'I',t-optimal design.

Assume additionally to (a)-(e) that:

(f) t(dx) is atomless, i. e.

11m I t(dx) = o.
I1X->O I1X

Sets 3 and 3(q) in (e) have to satisfy (15).

Let _ be a set of design measures such that ~(l1x) = t(f1X)

for any I1XcX. A function rp(x, ~) is said to separate sets Xl

and X
2

with respect to the measure t(dx) if for two sets

I1X
l
eX

l
and I1X

2
eX

2
with equal nonzero measures:

sufficient condition of 'I',t-optimality
*. *X = BUPP ~ and X'J(.

Theorem ~ If assumptions (a)-(f) hold, then:
* -1. ~ e 3 exists.

2. A necessary and
* - *of ~ E 3 is that rp(x,~ ) separates

Proof. The results of the theorem are strongly related to the

moment spaces theory, and the proof is based on the

corresponding ideas.

The existence of an optimal design follows from the

compactness of the set of information matrices. The

compactness of the latter is provided by (a), (b) and (f). The

fact that at least one optimal design belong to :::: is the

corollary of Liapunov's Theorem on the range of a vector

measure (see Karlin and Studden, 1966, Ch. VIII).
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Necessity follows from the fact that if there exist AX c
• * 1

s~p X and AX
2
c X~ with equal nonzero measures such that:

J ~(X,~*)~(dX) > J ~(X,~*)~(dX),
AX AX

2

then deletion of the first set from the supporting set with

the subsequent inclusion of the second one causes the decrease
*of ~. This contradicts the optimality of ~ .

*Now assume that ~ E 3 is nonoptimal and ~ E = is optimal,

i.e. :

Let ~

*~[M(~ )] > ~[M(~)] + 8,

*(l-a)~ + a~, then:

8 > O.

~[M(~)] *~ (l-a)~[M(~ )] + a~[M(~)]

* *< (l-a)~[M(~ )] + a{~[M(~ )] - 8}

Simultaneously:

*~[M(~) ] - a8.(17)

- If J If~[M(~)] = ~[M(~ )] + a ~(x,~ )~(dx) + o(a)

~[M(~)] + a{J ~(X,~If)~(dX) ~ J ~(X,~If)~(dX)} + o(a)
E D

~ ~[M(~)] + o(a),(18)

where E and D describe the difference between the supporting
*sets for ~ and~.

The comparison of (17) and (18) gives a contradiction,

and this completes the proof.

Note ~ The comparison of Theorems 1 and 4 gives a hint

how the latter one can be generalized when to constraints (15)

one adds (6), or (10), or (12). For this purpose thefunction

~(x,~) has to be replaced by a corresponding function q(x,u,~)

= ~(x,~) + UT~(X,~).
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Abstract: In situations where little is known about the underlying model fitting a response

function results in uncertainty in prediction caused by the necessary approximation and

by observational noise. For such a situation Ermakov (197,,)) has proposed a randomized

design for selecting the sites at which observations are to be taken. We present that the

expected values of the order statistics connected with Ermakov's randomization measure

are close to both the optimum locations known from approximation theory resp. the

statistical theory of optimal designs as desired.
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Key Words: experimental design; polynomial regression; interpolation; Vandennonde

determinant; order statistics; Legendre polynomials.

1 Introduction and general considerations

We consider the problem of fitting a response surface in situations when very little is

known about the underlying shape of this surface. Thus we al'f~ faced with the task to

approximate the surface by a combination of some simple functions and we have to take

into account that evaluations of the response surface may be corrupted by noise.

To be more specific let J-1. : T ---+ IR be a (unknown) response function over a region T of

interest and let us assume that for any setting t E T it is possible to obtain an observation

X(t) = IL(t) + Z(t) (1.1 )

where Z(t) may be some random error with zero expectation: E(Z(t)) = O. Our aim is
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to find a linear combination 2:J=1 fJjaj of previously chosen regression funtions aj : T --+

JR, j = 1, ... , n, which is close to J1. on the region T. Equivalently we are interested in

the parameter vector fJ = (fJl,"" fJn)' if the set {al"'" an} of regression functions is

linearly independent on T.

For this purpose we want to perform n experiments at n (different) sites t l , .•. , tn E T.

According to (1.1) we are going to observe

Xi(t;j = J1.(ti) + Zi(t;j, (1.2)

i = 1, ... , n. Now in the absence of random noise i. e. Z(t) == 0, the most reasonable fit

is the interpolation of the observations Xi(ti) = J1.(ti), because then J1. is perfectly fitted

in case J1. = 2:~'=1 fJjaj is a linear combination itself. Thus (3 has to be chosen to solve the

n linear equations

(1.3 )

j = 1, ... ,n, which have the unique solution

(1.4 )

if the matrix A := (aj(t i ));::;::.··:; is regular, X := (Xl (t l ), .•• , Xn(t n))'. The regularity of

A means that the set of regression functions {al" .. , an} restricted to the set {t), . .. , tn}

is still linearly independent.

On the other hand, if the random errors are uncorrelated and have equal variance

Var(Z(t)) = (J"2 (which will be assumed throughout the rest of the paper) and if the linear

model J1. = 2:J=1 fJjaj holds true, fJ can be estimated by the least squares estimator jj in

case A is regular. Then jj = jj(X) can be a calculated by solving the normal equations

(1.5)

k = 1, ... ,n, which turn out to have the unique solution

(1.6 )

for regular A. This, of course, means again that the fitted function Ii = 2:~'=1 jjjaj meets

the observations.

In the general setting of unknown structure of the response function J1. and 111 the

presence of random noise we deduce from (1.4) and (1.6) that for regular A

(1. 7)

is the natural choice for the estimator of the parameter /3 in the approximating linear

combination 2:~'=1 fJja] for J1.. To cover more general situations where A is not regular
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e. g. if there are more observations than approximating regression functions, we can see

from (1.3) and (1.5) that jj should be chosen to solve the normal equations (ef. (1.5)).

The performance of the estimator jj which will be measured by the quality of the fit

in the Lrsense depends on the location of the sites iI, ... ,i" where the observations are

taken. Thus a good choice of i l , ... , i" should result in a small value for the mean squared

L2-distance between the estimated and the true response function

By (1.8) this criterion is equivalent to the minimization of the average mean squares error

of the prediction Ii = 2:7=1 73JaJ at i where the average is taken over the region T.

The problem of a good choice of the sites i), . .. ,i" has been investigated in the field

of approximation theory in the absence of random noise and in the theory of optimal

experimental design if the approximating model is assumed to be true. In general the two

designs, i. e. the choices of iI, ... ,i", motivated by considerations of approximation theory

resp. of optimal design theory differ from each other. (For the approximation theory we

refer e. g. to Cheney (1966) and for the theory of optimal experimental design to Fedorov

(1972), Bandemer et a!. (1977), and Bandemer and Niither (19~0).) As a compromise

Ermakov (197.'i) suggested to use a randomized design where the sites are chosen according

to a common probability distribution the density of which is proportional to the squared

determinant of the corresponding design matrix, i. e. for the density p of the randomized

design holds

c· (det ((a ·(it·))j~I n))2
J l_l, ,n

c· det ((L:~l ak(i;JaJ(i;)):::',···'.',J

for some posi tive constant c (see also Er11lakov et a!. (198:3), Ermakov and Zhigljavskij

(1987), and Ermakov (1989)). It was also shown by him that the resulting estimator jj
is unbiased for the parameter j3 of the best approximating linear combination 2:j'=1 j3jaJ

to J.l in L 2 • In particular, if {al'" ., an} is orthonormal on T with respect to the scalar

product in L2, i.e. fTaj(i)ak(i)di = 1 or 0 according to j = k or j =I- k, then jjj is

unbiased for the j-th Fourier coefficient associated with aj:

(1.10)

Here the expectation is taken over both random noise Zl,"" Z" and randomization

measure according to p and, as before, J.l and al,' .. , an are assumed to be in L 2 . Note

also that the density p is proportional to the determinant of Fisher's information matrix

in case of Gaussian noise.
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In what follows we deal with the special situation of polynomial approximation on a real

interval. We mention some specific results from optimal design and approximation theory

in section 2, present a simulation on the shape of the distribution of the randomization

procedure in section 3, give some exact results concerning this distribution in section 4,

and end up with some remarks on further investigations.

2 Fitting polynomials

As mentioned above we are going to consider the problem of fitting a polynomial

L:j'=l (Jjt j- I on the real interval T = [0,1]. For more general intervals [a, b] <:;; IR results

can immediately be obtained by means of linear transformations since the quality of the

fit is not affected by them.

For convenience we have written down the polynomial as a linear combination of the

monomials 1, t, 12, ... , t,,-I. Instead of using the monomials aj(t) = t j- I for the regression

function we can also employ the normalized Legendre polynomials aJ = Pj _ 1 on [0,1]

with Po(t) = I,PI(t) = JI2(t - 4),P2 (t) = vT85(t 2
- t +~) etc. which constitute an

orthonormal set of regression functions {Po, . .. , P,,_I} for any 71, on [0,1]. However, this

change is again a linear transformation and yields the same fit.

In case of the absence of random noise a reasonable choice for the sites t l , ... , tn are

the 71, distinct roots of the Legendre polynomial Pn of degree n on [0, 1]. For this choice

the resulting interpolating polynomials converge in £2 to the response function fI- with

increasing 71, according to a theorem of Erdos and Turan (1937) (cLSzego (1959), p.331,

Cheney (1966), p.l:37). Moreover for fixed 71, with observations taken at these nodes we

can determine the value of fol fI-(t)dt exactly by means of the Gauss-Jacobi mechanical

quadratare if fI- is a polynomial of degree less than 271, (see Szego (1959), p.47, Cheney

(1966), p. 110). Additionally, as has been pointed out by Ermakov and Sedunov (1979),

this choice of the sites results in an optimal (in number of points) unbiased (in the £2

metr'ic) design of an experiment for polynomial regression of degree n.

For a true polynomial model of degree n - 1, i. e. fI-(t) = L:j'=1 (Jjti- I , with random

noise Smith (1918), Guest (19,58), and Hoel (1958) have shown that the n - 2 roots of the

first derivative of the Legendre polynomial P,,_I of degree n - 1 on [0,1] plus the two end

points °and 1 of this interval, i. e. the roots of t( 1 - t) P:'_ I (t), are a good allocation for

t l , ... ,tn. This choice minimizes the maximal variance

of the prediction for the response function on T = [0, J] (G-optimality) and minimizes

simultaneously the generalized variance det(cov(~)) = det(E((~ - (3)(~ - (3)')) of the
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estimator for the whole parameter vector (D-optimality). The criterion (1.8) under con

sideration reduces for a true model to the linear criterion

with U = (Jraj(t)ak(t)dt);::::::::. We mention that in the present case we obtain for the

members Ujk of U :

= t tj+k-2dt = --;-----,-1_--,-
Ujk io j + k - 1

if the aj are the monomials resp. U equal to the identity matrix in case of an orthonormal

set {al"'" an}. In the literature the linear criterion (2.2) has been coined Q-optimality

(d. Fedorov (1972), p. 142) resp.I-optimality (d. Bandemer et al. (1977), p. 18.'5). Studden

(1977) has shown that for the problem of polynomial regression an approximate design

with the same supporting points as the D-(G- )optimal one but with different weights is

close to minimize (2.2). However, choosing t l , ... , tn as roots of t( 1 - t)P:'_1 (t) is a good

approximation to this design.

For the present situation the density p of Ermakovs's randomized design (1.9) equals

the squared Vandermonde determinant multiplied by some constant c independent of

(2.4)

Furthermore, since p is proportional to the inverse of the generalized variance the

maximum value of p( t l , ..• ,tn ) is achieved for t l , ... , tn being the n distinct roots of

t(l - t)P~_1 (t), i. e. the support points of the D-optimal design. On the other hand

side the randomized design should also be close to the roots of P,,, i. e. the nodes for

polynomial interpolation. In a private communication Ermakov has conjectured that

the expectation of the order statistics (T(I), ... ,T(n)) of a randomized design (TI , ... , Tn)

generated according to the density p are very close to those roots of Pn .

3 Simulations

In order to get an impression of the shape of the randomization measure associated

with p for fitting polynomials we have generated random numbers according to (2.4). We

have used the von Neumann rejection method to generate 10 000 n-dimensional random

numbers (t l , .•• , tn ) for fitting polynomials of degree n - 1 = 1,1000 for n - 1 = 2, ... 8,

and 200 for n - 1 = 9, ... ,11 respectively. Each sample (t l , ..• , tn ) has been transformed

to the ordered sample (t(l» ... , t(n)), i. e. {t J , ... , tn} = {t(l), ... , t(nd and t(l) < t(2) <
... < t(n)' Then the means 1(0, ... ,t(,0 have been calculated from the ordered samples to
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obtain an estimate for the expectation terms E(T(1)),' .. , E(T(n)) of the order statistics

(T(I), . .. ,T(n)) of a random allocation (T1 , • •• , Tn) according to the density p.

The results of this simulation study suggest that the means l(;), ... ,I(.:) and conse

quently E(T(I)), . .. , E(T(n)) are close to the ordered roots of the Legendre polynomial Pn·

Numerical values of the means and the roots are listed in TABLE 1.

TA BLE I: Simulated and exact values of E(T(k))' roots of Pn and t(l - t)P~_1 (t)

n=2 11=3 n=4

Pn
-

ET(k) P~-l Pn T(k) ET(k) P~-l Pn
-

ETr.k) P~-lt(k) t(k)

0.2113 0.2005 0.2000 0.0000 0.1127 0.0988 0.1000 0.0000 0.0694 0.0605 0.0588 0.0000

0.7887 0.7980 0.8000 1.0000 0..5000 0.4986 0.5000 0..5000 0.:3300 0.:3195 0.3200 0.2764

0.8873 0.9008 0.9000 1.0000 0.6700 0.6852 0.6800 0.7236

0.9306 0.9426 0.9412 1.0000

n=5 11=6 I 11=7 11=8

Pn I -
ET(k) I P~-l Pn

-
P~-l Pn

-
P~-1 P"

-
P~-lt(k) t(k) t(k) t(k)

0.0469 0.0376 0.0385 0.0000 0.0338 0.027.5 0.0000 0.02.54 0.0193 0.0000 0.0199 0.0154 0.0000

0.2308 0.2116 0.2178 0.1727 0.1694 0.1.572 0.1175 0.1292 0.1165 0.0849 0.1017 0.0903 0.0641

0.5000 0.496.5 0..5000 0.5000 0.3807 0.:3728 0.:3574 0.2971 0.286.5 0.2656 0.2372 0.2256 0.2041

0.7692 0.7816 0.7822 0.8273 0.6193 0.6234 0.6426 0.5000 0.4975 0.5000 0.4083 0.4027 0.3954

0.9531 0.961.5 0.9615 1.0000 08306 0.8472 0.882.5 0.7029 0.7130 0.7344 0.5917 0.5923 0.6046

0.9662 0.97:36 1.0000 0.8708 0.879:3 0.9151 0.7628 0.774.5 0.7959

0.9746 0.9792 1.0000 0.8983 09101 0.9359

0.9801 0.9840 1.0000

11=9 II = 10 11 = 11 n = 12

Pn
-

P~-l Pn
-

P~-l Pn T(k) P~-l Pn
-

P~-lt(k) t(kJ t(k)

0.0159 0.0122 0.0000 0.0130 0.0107 0.0000 0.0109 0.0074 0.0000 0.0092 0.0071 0.0000

0.0820 0.0726 0.0501 0.067.5 0.0621 0.0402 0.056.5 0.0478 0.0330 0.0479 0.0431 0.0276

0.1933 0.1825 01614 0.1603 0.1536 0.1306 0.1349 0.1259 0.1078 0.1150 0.1072 0.0904

0.3379 0.3306 0.3184 0.2833 0.2828 0.2610 0.2405 0.2:3.57 0.2174 0.2063 0.2017 0.1836

0.5000 0.4966 0..5000 0.4256 0.4231 0.4174 0.3652 0.3631 0.3.521 0.3J61 0.3134 0.3002

0.6621 0.6656 0.6816 0.5744 0.5838 0..5826 0..5000 0.5004 0.5000 0.4374 0.4354 0.4317

0.8067 0.8171 0.8386 0.7167 0.7274 0.7390 0.6348 0.6356 0.6479 0.5626 0..5623 0.5683

0.9180 09267 0.9499 0.8397 0.8512 0.8694 0.7595 0.7611 0.7826 0.6839 0.6876 0.6998

0.9841 0.9873 1.0000 0.9325 0.9431 0.9.598 0.8651 0.8736 0.8922 0.7937 0.8057 0.8164

0.9870 0.9896 1.0000 0.94:35 0.9481 0.9670 0.88.50 0.89.57 0.9096

0.9891 0.9916 1.0000 0.9.521 09600 0.9724

0.9908 09919 1.0000

For illustrative purposes we present the histograms for the lower half sample of the



59

ordered random numbers t()), . .. , t(n/2) in case n = 8 in FIG. I. The sequence of pictures

in this figure is supplemented by the histogram of the collected random numbers t), ... , t n
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FIG. I.e: n = 8, Frequencies of t(3)

0.15 ,..----------------,

010

0.05

0.00 --~0.':;2~----:0;;-.7,-----,0"6,...--...,0"8;---....J

FIG.l.b: n = 8, Frequencies of t(2)

0.15,----------------,

0.10

0.05

,..-ill!.
0.00 L----::0.-::2.11ll1.0~.~4• ....,0'"6,,---...,0'""'.8,....--..J

FIG. I.d: n = 8, Frequencies of t(4)

0.15 ,..--------------------------------,

0.10 VI

0.05

0.00
0.2 0.4 0.6 O.s

"

FIG. I.e: n = 8, Frequencies of t), . .. , t s



60

showing an approximation to the one-dimensional marginal dpnsi ty of T = (T1, ••• , T,,).

(We recall that for the present density p the components T1, ••• , T" of T arp identically

distributed). The location of the means 1(0, ... ,"t(,0 and the corn'sponding roots of the

Legendre polynomial P" are indicated by simple and solid triangles respectively.

4 Some exact results

Despite the apparent closeness in the simulation we can notice that the means are a

little bit more scattered than the roots of P". This suggests that the means are shifted

towards the corresponding roots of t(l - t)P~_1 (t) which are also listed in TABLE I.

This observation led us to compute the expectation E(T(k)), 1 :::; k :::; n, exactly in some

situations where it is possible.

Lemma l.

Let T be distributed according to the density p defined in (:l.4). Then for the distri

bution function FT(n) of the largest member T(,,) of the order statistics it holds

FT(n)(.s) = 8,,2 (4.1)

for 0 :::; .s :::; 1.

Proof.

Let a denote a multi-index, i.e.a = (a1, ... a,,) and (Yi E {O,I,2, ... },i = [, ... ,11.,

and let the magnitude of a be defined by the L1-norm: lal = Z=:'=l Cli.
Since p( t 1 , .•. , tn) is essentially a prod llct of ~ 11.( 71 - 1) factors of tllP type (ti - t])' we

call conclude that p is a polynomial of degree 11.(11. - 1). Moreov('r all components of the

polynomial are exactly of degree 11.(11. - 1) :

c· '" (tv rr~l te:')01,,1=,,(,,-1) " .=1.

where tv" are some (integer valued) weights. Thus we obtain

(4.2)



Since FT(n) (1) = 1 we get c= 1 which completes the proof.
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o

(4.3)

From the distribution function we can compute the expected value of the largest mem

ber T(n) of the order statistics:

11

(1 - FT(n)(s))ds

I - 11

sn
2

ds

I
1--

n 2 + l'

This result also could have been obtained using the density .fT(n)(s) = n 2 s n
2
-t of T(n)'

By considerations of symnwtry we get E(T(i)) = ',,'+1 for the smallest member T(i) of

the order statistics (T(i), ... , T(n))' The quantities E(T(i)) listed in TABLE II are smaller

than the corresponding smallest roots z~n) of the Legendre polynomials PH'

TABLE II: Expectation of the smallest order statistics vo. sl1lal]pst root of Pn

n 2 :3 4 5 6 7 8 9 10 1I 12

(n) 0.2113 0.1127 0.0694 0.0469 0.0:3:m 0.0254 0.0199 0.0159 0.01:30 0.0109 0.0092zi

E(T(l )) 0.2000 0.1000 0.0588 0.038.5 0.0270 0.0200 0.01.54 0.0122 0.0090 0.0082 0.0069

In particular this result holds true for large n since zln) ~ ~Rn-2 ~ 1.4458n- 2 where

it is the first positive zero of the Bessel function of the first kind of order zero (see Szego

(1959),p. 190f and p. 119) and E(T(i)) ~ n- 2 . Hence E(T(i)) ~ 0.69z~n) and E(T(l») is

close to z~n) but not substantially closer than to zero, which is tilt' corresponding smallest

root of i( 1 - i)P:'_ 1(i).

Additionally we have computed tilt' one- and two-dimensional marginal distributions

of the order statistics (T(I),"" T(n)) for n up to 5. For this purpose we have used the

representation (4.2) for the density p. The sum occuring in (4.2) already consists of 201

different terms for n = 4 and 3081 for n = 5 respectively. As in the proof of Lemma I we

get

P(TI ~ s, ... ,Tk ~ s)

where Wk f = c· '" 'I 1_ (-I) + + -f-k w"IT''--I---..L.+I if f ~ k and tllk,f = 0 if f < k., LJa.. (\' _H n ,01 ... 01.:.- t_ (\',
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Since the components of (TJ, . .. , T,,) are exchangeable we obtain for the distribution

function of the k-th order statistics, k = 1, ... ,n :

(4 ..5 )

(see David (1981), p. 10,5). The coefficients of these polynomials have been determined

by means of formal computation for k = 1, ... , nand n -:::: .5 (see TABLE III for k > n/2;

we recall that FT(k)(s) = 1 - FT(n_ ktlj{1 - s) by the properties of symmetry of pl.

TABLE III: Distribution functions of maxi=I, ... ,k T; and the order statistics

2 2 84 .4

3 2 3s8 - 1287 +28s6 - 30s5 -2s9 + 9.•8 - 36.57 + 84s6 - 90ss + :3684

+ 12s4

3 S9 s9

43 4s 15 - 30s14 + 14005 13 - :3.5505 11 _38 16 + 16815 - 120.s14 + 560,5 13 - 1420811 + 1968s 11

+ 49205 11 - :350,.10 + lO089 - 14000510 +400S9

4 816 1605

.5 3 2.50s21 - 262.')820 + 13370s 19 605 25 - 750524 + 9000521 - 6900822 + :32950..21

- 43890s1 8 + 105952~S17 - 1068900520 + 263900..19 - 5643008 18

- 20074.5s 16 + 302376.. 15 + 112.5675817 - 20221508 16 + :302:3760S15

- 3.55320s 14 + 31.5840813 - :3553200814 + 3158400813 - 2041900s 12

- 204190s1 2 + 9042005]\ + 9042008 11 - 245000810 + 3062.589

- 24.500s lO + 3062~S9

4 5S24 - 60s 23 +460S22 _4825 + 25,,14 - :30082:3 + 2:300,.2"1 - 101500521

- 2030S21 +5:376s2O + 26880s20 - 43400.5 19 + 4111008 18 - 220508 17

- 8680s 19 +8360s 18 +49008 16

- 4410s 17 + 9808 16

5 s25 s25

The expected values of the order statistics can again be calculated vIa E(T(k)) =

Jo
I
(1 - FT(k)(S))ds. These values are given in TABLE I together with the simulation re

sults and the corresponding roots of P" and t(l - t)P:'_I(t) respectively. It can be seen
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that the expected values are located between the corresponding roots. The associated

densities fT(k) of the order statistics are plotted in FIG.2.
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Letting k = 1 in (4.4) we get the one

dimensional marginal distributions FT, and

hence the marginal densities

Obviously

symmetric,

which a.re gIven 111 FIG. :3.

f I ",n f ·1 f .
T, = ;; L...ok=1 T(kl ant T, IS

i.e.h,(s) = h,(l - 8).

1.0
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I
I

/

0.80.60.40.2

\
3 \
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As in (4.4) we can calculate the two-dilm~nsionalmarginal distributions

FT"T) (8, t)

L 'ln-l L'ln-l :=:::: f m
We,m oS t

(=1 m=1
(4.7)

where :ile,m = c· 2:"'I"I=n(,.-I)".., =f-I,"2=m-1 W" Il:~1 ",~I and hellce the densities fT"T) (05, t) =

2::~~2 2:;'~:~ ((f + I)(m + I) ~!f+l,m+l) set'" which are displayed ill FIG.4.
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FIG.4.a: h"T" n = 2

Q
N

FIG.4.c: huT" n = 4

5 Concluding remarks

FIG.4.b: hooT" n = 3

FIG.4.d: h,T" n = 5

The results obtained in the previous sections give rise to the impression that the shape

of the randomized design associated with the density p proposed by Ermakov (1975) is

close to both the allocations known to be of great use in experimental design and approx

imation theory respectively. Further investigations are to be made in higher dimensions.

For the present situation of fitting polynomials on a real interval we suppose that the

one-dimensional marginal of the randomization measures is converging to the arc sine law

or some appropriate modification of it with increasing degree n (d. Kiefer and Studden

(1976)). In particular, we expect a local limit theorem to hold, that means that the

marginal density h, tends to the density of the limiting distribution which in case of the

arc sine law equals to J(t) = (1I"JiTf-=t)) -1, the density of a beta distribution with

parameters 4and ~ .This behaviour seems to be due to the fact that the distributions of
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the roots of P" resp. t(l - t)P:,(t) converge to the arc sine law (see Szego (1959), p.121).

This assumption is also indicated by FIG. :3.

All formal computations, simulations, and graphics were done on a :386 personal com

puter (33MHz) by means of the GAUSS386 programming language. The bounds on the

degree of the polynomials under consideration and on the number of generated random

number for the various degrees are due to the limitations of rnntime, workspace, and

accuracy of the calculations.
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1. INTRODUCTION

This paper is devoted to the problem of optimal experimental design for nonlinear
regression models defined by

y(x) =11(6., x) + E(X), (x E x,.6. E e),

with normal errors

E(X) _ 90((0, cr2).

(1)

The function 11<.6., x) is the response (or model) function, .6. = (aI, a2, ... , ap)T denotes the

vector of parameters to be estimated, with.6. E e, ~::::> e. The design variable x (which can be

vector valued) belongs to some design space X. In what follows, 11(.6., x) will be assumed to

d ·· d d d' . a~<.6., x) . ... a f 0 to . 0)a mit contInUOUS secon or er envatlves In every Intenor POInt ~ 0 () UL E Int ()
aaiaaj

for any x in X. The boundary ae of e will be further assumed to be attainable as a limit of

points from int e. A classical situation corresponds to a parameter space deftned by

(2)

but such an assumption is not required by the presented method. Fixed-size designs (with size
N) will be considered,

X := {XI, X2, ... , XN},

with possible replications (Xi = x· for some i *j). The observations y(Xi) will be assumed to be
independent. The experimental design problem consists in choosing the design variables X in
an optimal way according to some optimality criterion.

This is a classical set-up in experimental design, as described for instance in the recent
surveys by Ford et al. (1989) and Walter and Pronzato (1990). We are interested in parameter
estimation, so that the design criterion must be related to some measure of uncertainty on the

• This paper was initiated while the first author was visiting the Laboratoire des Signaux et Systemes
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parameter estimates. A standard approach is then based on the asymptotic normality of the least
A

squares (LS) estimator.6 (which here coincides with the maximum likelihood estimator),

(3)

One has asymptotically,

(4)

where fr is the true value of.6 and where

(MX(.6)}i" :=1.. ~ a11CfL xk) dr\(.6,Xk)
J a2 k=l aSi aSj

is the (Fisher) information matrix for the parameter vector.6 and the design X. Equation (4) is

then the rationale for the use of design criteria given by <1>(Mx(fr)), where <1> is any criterion
function (to be minimized) used in experimental design for linear models. Since the true

parameter value fr in (4) is unknown, modified criteria such as

<1>(Mx(.6°)), where .60 is some prior nominal value for .6, (5a)

(5b)

(5c)

(6)

J<1>(MxCf!)) 1t(.6) d.6, where 1t(f!) is some prior distribution for .6,
e
.6~~ <1>(Mx(.6)),

have been considered in literature (see e.g. the survey (Walter and Pronzato, 1990)).

If a is "very small" compared to the nonlinearity of the model (1), or if a sequential
A

design can be used, the asymptotic approximation (4) for the distribution of.6 is reasonable,
A

and the previous approaches are justified. However, in other situations, the true density of .6
can be quite different from the normal distribution (4), so that a "classical" optimal design
obtained from (Sa, b, c) can reveal to be far from optimal in practice. For instance, Pazrnan

(1989) shows that two designs giving the same information matrix (not depending on .6)) can
A _ A

contain a different information about.6. An approximation qx(.6l.6. ) of the true density of.6,
more precise than (4) and almost exact in some nonlinear models (see Section 2), has been
derived by Pazman (1984).

A
The new approach to be presented considers the distribution of.6 on int e and on ae in a

unified way (which is important from a computational point of view). While the distribution
A _

qx(.6I.6. ) was obtained for the ordinary LS estimator, we slightly modify this estimator near ae
by adding a penalty function to the LS criterion (3),

N
- 1~.6. := arg min (2' L,,(y(Xj) - 11 (.6., Xi))2 + 2 w(.6.)}.

.6. E e a i=l

The new expression QXm Ifr) for the density of the constrained LS estimates :fr, derived in

(Pazman and Pronzato, 1990), is presented in Section 3. The penalty function w(ID is chosen

such that w(ID ~ 0 (.6 E e), and w(ID is non-constant just near the boundary of e, so that:fr "*
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1\
fr only near ae (Section 4). The design optimality criterion to be considered corresponds to the

mean-square error for fr, and is a generalization of the A-optimality criterion used in linear
models,

'fIe-(X) = JII Ji. - fr 112 QXm Ifr) dfr. (7)

e
Other criteria could be considered in a similar way. Note, however, that a criterion based on the

entropy of the density QXm Ifr) would not take the bias of the estimate fr into account, and

could therefore lead to a density concentrated on ae whatever the location of fr in e. The

criterion (7) depends on the unknown value fr, so that a modification similar to (5b) could also
be considered,

'I'(X) = f [ j II ii - llll' ijxrJi IIlJ dii ] '(1lJ dli.

e
where 1t(~) is some prior distribution for ~. A stochastic approximation algorithm which
permits to minimize criteria such as (7-8) without any evaluation of mathematical expectation is
described in Section 5. Various examples are treated in Section 6.

1\
2. TIIE PROBABILITY DENSITY OF TIIE (UNCONSTRAINED) LS ESTIMATES fr

1\ _

The expression of qX(fr Ifr ) and its main properties presented in earlier papers are

recapitulated. Let nx<ID denote the vector of response functions

We consider designs X such that

(i) ~ E e -) nx® E 1(N is one-to-one,

(ii) the matrix Clnx<ID has full rank (equal to p), i.e. Mx(fr) is non singular for any fr E e.
afrT

Let us introduce the following matrices

1\
a good approximation of the probability density of fr is then given by

1\ _

1\ - det QxCfr, fr) (1 ~ 1\ -)
qx(frlfr):= p/2 1/2 1\ exp--2 1IPX(llx(fr)-llx(fr»\I2

(21t) det Mx<ID 20

(9)

(10)

(11)
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where 11.11 denotes the euclidian norm. This expression was derived in (Pazman, 1984) in the
non-asymptotic case, and, by independent investigations, in (Skovgaard, 1985; Hougaard,

1\ _

1985) as an asymptotic approximation of the true density. The properties of qx<.e. l!i ) for a
fixed-size design have been investigated in (Pazman, 1987a, 1987b, 1990). Two important
notions are there

(i) the expectation surface

~x := (ux<ID; !i E e), (12)

(13)kx<ID:= sup.
yE ~ 0 2 YT Mx(!i) y

(ii) the curvature kx<ID of this surface ~x at any point .!l E e,
p

II (1- pi!)~ v' d2UX(.!l) v' II
X L.J 1 d9jd9' J

., 1 J
l,j=

which is also known as the intrinsic measure of nonlinearity (Bates and Watts, 1980). (Note
that the expression (13) does not depend on 0.) Consider the number a defined by

(14)

where 13 is nearly zero (0.05 for instance), and where X~ is the X2 random variable with N

degrees of freedom. The expression (11) for qx& fa) is then correct for every ~ E e such that

1\
(0 kx<.e.»-l > a, (15)

and

(16)

1\ _

The true density is nearly zero when (16) is not satisfied, and we will take qx(!i l!i ) = 0 by

definition in such a case. Equation (14) ensures that 100(1-13) % of the samples are in the
sphere

N 1 -
q(a):=(~E ~ ;-II~-nx(~)II<a).

o

Equation (15) ensures that for every y. in q(a) the function

1\
admits only one stationary point which satisfies (16), and this point is equal to .!l(y). For

univariate models (dim!i = 1) and for so-called "flat models" (see (Pazman, 1990», the density
1\ _

qx(.!l l!i) is "almost exact", in the sense that
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Pr{s) =Jqx(6 la) de.

has an error not exceeding 2~ for any measurable set S. Even if the model is non-flat, it follows
1\ _

from asymptotic considerations (Skovgaard, 1985; Hougaard, 1985) that qx(!! I!! ) is more
1\ _

exact that the classical normal density (4). This density qx(!! I!! ) can be quite different from
(4), as illustrated on Figure 1. Note that (14, 15) prescribe a maximum on the admissible value
of o.

3. TIlE PROBABILITY DENSITY OF TIffi CONSTRAINED LS ESTIMATES fi
1\

The expression (11) is valid only for!! E int S, and the distribution on ae is unknown (it

corresponds to all the estimates that would lie outside e if the constraints where not taken into
1\

account), There are several reasons why Pr{!! E int S) can be much smaller than one,leading

to situations where the distribution on ae cannot be neglected (a is close to ae, 0 is large,
1\ _

and/or the design contains little information -it is almost degenerated- so that qx(!! I!! )

widely spreads outside e). In order to take into account the estimates that are on ae we proceed

as mentioned in the introduction, i.e. we consider the estimate fi = :e.~) defined by (6).

The penalty function w(ID ~ 0 will be chosen so as to satisfy the following requirements.

(i) It is continuous on e with continuous second order derivatives on int e, and is
- 1\ 1\

constant on some inner part eo of e. As a consequence, !!(i) =!!(i) if !!~) E eo.

(ii) Its value on as is infinite, w(!!) = 00 iff!! E ae, so that there is no estimate left on
1\

ae, and all the least-squares estimates !!~) which are on ae are shifted by (6) onto the

set [int S - eo].

(.. ') Th d rd d' . a
2
w(!!) . .. d fi . [. a C\]111 e secon 0 er envatIve---Is pOSItIve e mite on mt 0' - 00 .

a!!a!!T
- 1\ _

The probability density of !!, of the same accuracy as qx(!! I!! ), is derived in (Pazman
and Pronzato, 1990).

(17)

where

(18)

and where P~ and Qx are still given by (9-10).
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___ 1\- _

One can readily verify that qx(]. I fr ) = qx(fr Ifr ) when fr E eo. The geometrical notions
___ 1\- _

used to derive qx(].1 fr ) are the same as for qx(]. Ifr ), and the validity of qx(]. Ifr ) still relies
on equations (14-16)0

40 THE CHOICE OF w(].)~ e IS A n-DIMENSIONAL INTERVAL

When e is given by (2), it seems reasonable to take w(].) as

p
w(ID = L Wj(8i),

i=l

where, 'V i =1, .. 0' p,

(00) a2wj(8i) 0 Of 8 [8 A 8 A ]
11 2 > 1 i e: m0+ 0i, M· - 0i ,

a8i 1 1

(19)

with ~i E ~ small compared to 8Mi - 8mio

Consider a real function f continuous on [0, 1[ with continuous first and second order
derivatives f f' on this interval. Assume that f(O) = 0, lim f(x) = 00 and that f, f, f' are

x~l

strictly positive on ]0, 1[. Possible choices for f are for instance

or

7t
f(x) = tg(2 x),

1
f(x)=-l--l.-x

(20)

(21)

The functions Wi can then be chosen in the following way,

with KE ~

(22)
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5. ALGORITHMIC PROCEDURE FOR THE COMPUTATION OF THE OPTIMAL
EXPERIMENTAL DESIGN

The computation of the optimal design involves the following steps.

(i) Compute the classical A-optimal design,

1
XA =arg min trace M"x(!i ).

X

This design will be taken as the initial one for the optimization procedure (iii).

(23)

"(ii) Check the curvature condition (IS) for XA and any !i in e satisfying (16)

"(note that it can be computationally easier to check (15) for any.e in e).

If this condition is not satisfied, the noise level is too large with respect to the curvature of the
expectation surface. A flfst solution (not always feasible) is then to reduce 0". A second solution
is to restrict the design space in order to reduce the curvature. Note that a design of size N
which consists of replications of only p different design points gives a curvature equal to zero,
so that it is advisable to begin the whole procedure with a design of size p.

(iii) Optimize the design criterion (7) or (8).

Under some classical assumptions (Dvoretzky, 1956; Saridis, 1974), stochastic approximation
techniques permit to optimize a criterion such as (7) or (8) without any evaluation of the
criterion, thereby avoiding repetitive evaluations of mathematical expectations. The stochastic
gradient algorithm, applied to the minimization of (7), corresponds to the following iterative
procedure

(24)

where, at each iteration k, fr(le) is randomly selected in e with a uniform distribution. The

minimization of (8) could be performed with the same procedure, with~ generated according

to the prior distribution x(.) (independently ofID at each iteration. When X(Ie) does not belong

to the admissible domain, it is projected on its boundary. The step-size ",(k) must satisfy the
conditions

00

",(Ie) ~ 0, l ",(k) =00, L ",(k)2 < 00.

k=O k=O

The most common practice is to use the harmonic sequence

(25)

The convergence can be accelerated by changing the value of ",(Ie) only when the angle between
the gradients at iterations k-l and k is greater than 90°. Stochastic gradient algorithms have
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already been used in the context of experimental design for the optimization of criteria such as
(5b) (see e.g. (Pronzato and Walter, 1985; Walter and Pronzato, 1987» for a description of
stochastic gradient algorithms with step-size normalization).

(iv) Repeat (ii) for the final design.

This procedure will be applied in Appendix B to different examples.

6. EXAMPLES

Example 1:

The response function is given by

11(9, x) = exp(-9x), (x E X= [0, 2], 9 E 8 =[0,10]).

/\ -
Figure 1 presents the distribution qx(9 19 ) (11) and the asymptotic normal distribution

/\/\ - 2
(4) as a function of 9 (9 E int 8) for 9 = 5 and (J = 0.25. Note that the two distributions

/\ -
coincide when 9 = 9 , as can be seen from equations (10-11). The bounds on the parameters
are not taken into account for both distributions.

density

O.l,------~-~-~~-~-~-~--~-~-~-__,

0.09

0.04

0.03

e
0·020'------~-~2-~3--~4-~5:----'.;-6------;7~-~8--9~-----"1O

/\ -
FIGURE 1 asymptotic normal density (---) and density qx(9 19 ) (-).

/\ -
We now consider the distribution of the constrained LS estimates (O:S; 9 :s; 10), for 9 =

1, (J2 = 0.25 and X = (0.1, 0.2), with the rational penalty function w(9) given by (21, 22).
- - - /\ -

The value of!!. which defines the inner part 8 0 of 8 where qx(9 19 ) coincides with qx(9 19 )

is taken equal to 0.5 (80 = [0.5, 9.5]). The influence of the scalar K (22) on the distribution

qx(e Ie) in int 8 - 8 0 has been considered in (Pazman and Pronzato, 1990). When K is

small (so that the influence of w(9) on e is negligible when 9 is close to 8 0 ) the distribution is

concentrated near the outer boarder of int 8 - 8 0 , while it is concentrated near the inner boarder
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of int e - 8 0 when K is large. Values of K between 0.01 and I where found to give a

disnibution reasonably spread on int 8 - 8 0 (which is important from a computational point of
view), and we use K = 0.1. The corresponding optimal experimental design (of size 2) obtained
according to the procedure of Section 5 is approximately given by X" = {0.32, 0.32}. An

evaluation of the criterion 'PF by numerical integration gives 'PF(X") = 5.70 and 'PF(XA) =

86.4. The initial A-optimal design (XA = (I, I}) is therefore far from being optimal according
to the new criterion 'PF. Note that the curvature condition (15) does not need to be checked for

X" since X" consists of replications.
Finally, we consider the criterion 'P (8), where a normal prior disnibution 1[(8) is given

for 8, 8 _ ?(I5.5, 1.52). The optimal design of size 2 obtained with the stochastic gradient
algorithm (24) (harmonic sequence (25), a = 0.05) is approximately equal to {0.18, 0.18}. It
can be compared to the optimal design of size 2 for the criterion (5b), with <1>(M) = trace (M-I),
which is given by {1.61, 1.61} (Walter and Pronzato, 1987).

Example 2:

We consider the Michaelis-Menten model function

8IX
11m, x) =--, (x E X = [0, 2]).

82 + x

The nue value ft is fIxed to ft = (0.1, 1.7)T, and the noise variance to 0 2 = 25xl0-6. We

use the tangent penalty function w@ given by (19, 20,22), with ~j =0.1(8Mj - 8mj) and K =

0.01. Figure 2 presents a 3-dimensional plot of qx<fi 1ft) for the design X = (O.5, 1.5) and the

admissible parameter domain e = [0, 0.25] x [0,4] (note that 'Ex (12) has a curvature ~ (13)

equal to zero since the size of X is equal to dim ID.

o
4

HGURE 2 density qxw. r~}
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The A-optimal design of size 2 is given by XA = (0.5187, 2). When e =[0,0.25] x [0,

10], the optimal design for the criterion 'I'e- (7), obtained via the stochastic approximation

algorithm described in Section 5, is approximately given by X* = (0.7, 2). The evaluation of
the criterion by numerical integration then gives 'I'e-(XA) = 4.51 and'l'e-(X*) = 4.26.
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Batch Sequential Design for a Nonlinear
Estimation Problem

Werner G. Miiller, Benedikt M. Potscher ...

Abstract

A method for constructing batch sequential designs for a nonlinear problem
is presented. The limiting behaviour is investigated for a particular model and
simulation results are provided.

1 Introduction

As is well known (e.g. Fedorov (1972) or Ford et al. (1989)) the optimal design measure
in a nonlinear setup depends upon the the unknown parameter, which is to be estimated.
This creates a circular problem, for which two solutions have been proposed in the litera
ture. First, construction of the optimal design based on a prior guess 80 of the parameter
vector 8, or second, sequential methods, where the parameter estimators are updated dur
ing the experiment and the design is then based upon the current estimators. Procedures
of the second type can be performed either as a batch sequential or as a fully sequential
method (i.e. batches of size one), where after each batch of observations the estimation
and the design are updated. Although the fully sequential method is expected to be the
oretically superior to a batch sequential procedure (with batchsize > 1), in a number of
applications practical reasons can lead to a preference for the latter procedure, as taking
observations in batches may for instance be cheaper than taking them individually.

2 A Nonlinear Design Problem

The model of interest is the regression equation:

(2.1)

where Y. is the response variable, z. is the design variable, 81 and 82 :# 0 are parame
ters and the errors €. are independently identically distributed with zero mean and unit
variance. The design variable Zi is assumed to take its values in the interval [-1,1] only.

"Department of Statistics, University of Economics Vienna, Augasse 2-6, A-I060 Vienna and
Department of Statistics, University of Vienna, Universititsstralle 5, A-I030 Vienna
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The goal is to estimate the value z, which optimizes the response, i.e. to estimate the
nonlinear function g(8) = ~, leading to a nonlinear design problem.

This example has been frequently used in the literature (e.g. Ford & Silvey (1980),
Ford et al. (1985), Wu (1985) and Chaloner (1988)) to illustrate the performance of opti
mal design methods in a nonlinear setup, since it is simple enough to allow an analytical
treatment.

A reasonable and widely used design criterion is the asymptotic variance of the
(pseudo) maximum likelihood estimator 9N of g(8), derived under the assumption of
normal errors and fixed design. Since this asymptotic variance suggests the approxima
tion

(2.2)

the design criterion becomes I

(
1

) (
""N 2 ""N 3)_ 8g(') _ _ L..i=1 Zi L..i=1 Zi' . .

where cg - (-282 ) 8. - 2 (8) ,and I N - ""!V Z3 ""N ~ IS the mformatlOn
9 L...=I • L...=I Z.

matrix for N observations. It is well known, that the non-sequential optimal design for
this situation takes values only at Z = -1 and Z = 1 with the design measure given by:

{
1/2 + g(8) if Ig(8)1 ::::; 1/2

p(l)= 1/2+g(8)-1/4 iflg(8)1>1/2

and

{
1/2 - g(8) if Ig(8)1 ::::; 1/2

p(-1)= 1/2-g(8)-1/4 iflg(8)1> 1/2

The fully sequential design is found by minimizing ~(Ji' 8) with respect to the design
variable Zi, where 8 is the estimator from sample size i-I, see Silvey (1980). The k-th
batch of the batch sequential design is obtained as follows:

Choose the spectrum(zlIll"" Ziln.) which minimizes ~(JN.,811-d,

where Nil = ~~=I nj, nj is the batch length of the j-th batch, nj 2 1, and 811 _ 1 is the ML
estimator for 8 after the k -l-th batch. 2 Of course, if nj = 1 for all i, this reduces to the
fully sequential design. Since optimization of ~(JN., 811 - 1) is computationally burdensome
or requires algorithms from approximative design theory, we consider in the following an
alternative method, which can be viewed as an approximation to the batch sequential
design. We call this method quasi-batch sequential design, which is given by the rule:

(2.3)

1Ford et al. (1985) criticize the choice of (2.2) as a design criterion, since it is based on a fixed
non-sequential design, Wu (1985), however, provides asymptotic justification for this choice.

2For ease of notation the j-th element of the k-th batch is here denoted by z"i' i.e. z"i =zN._.+i in
the original notation. For convenience, we keep both notations, as no confusion seems possible. We also
use the convention No = O.
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Since minimization of ~ in (2.3) may be computationally awkward, we shall in
stead, following the literature, choose the next design point by maximizing the Gateaux
derivative of log ~ in the direction (ZIo;, zfJ'(ZIti, zf;), rather than by (2.3).

Chaloner (1989) suggests an alternative approach, namely to augment the design at
N Io- 1 observations in such a way that the resulting design is closest to the non-sequential
design for N io observations according to some closeness criterion. For batch sequential
design in a different framework see also Abdelbasit & Placket (1983).

3 The Quasi Batch Sequential Design

It is easy to see, that maximizing the Gateaux-derivative mentioned above with respect
to Ziti E [-1,1] is equivalent to maximizing the scalar function

(3.1)

where cg(._') = (1,29(8(10_1)))" It has been shown by Ford & Silvey, 1980, that this
function can have its maximum only at z = -1 or z = 1, which therefore are the only
candidates for design points.

An explicit solution for the optimization problem (3.1) can now be given quite analo
gously as in Ford & Silvey (1980) for the fully sequential case. From the first NIo - 1 obser
vations of the experiment Ni:_1 of these will be taken at z = -1 and NL1 = N Io - 1 - Ni:-1
at z = 1. Let 31/;-1 denote the mean of the N/;_l observations on y at z = -1; yt-1 is

-- • • -+' •
defined analogously. Then YIo-l = -81(10-1) + 82(10-1), YIo-1 = 81(10-1) + 82(10-1), and hence
29(10-1) = (31/;-1 - yt-1)/(Y/;-1 + yt-1)' After N Io - 1+ i-I observations the information
matrix is given by the 2 x 2 matrix with diagonal elements equal to N Io - 1 + i-I and
off-diagonal elements equal to (NIo - 1 + i - 1)+ - (NIo - 1 + i - 1)-. Simple algebra then
yields, the positive proportionality factor being the same,

d(N._.+i-1)( -1) <X ((NIo - 1+ i _1)+)2(yt_1)2,

d(N._.+i-1)(+1) <X ((NIo - 1+ i - It)2(Y/;_1)2.

Hence, similarly as in Ford & Silvey, 1980 for the fully sequential case, the design rule for
the quasi batch sequential design can be described as follows: The i-th observation of the
k-th batch, i.e. the (NIo - 1 + i)-th observation, is taken at +1 or -1 according to whether

(3.2)

Of course the design rule (3.2) needs to be initialized. If we define !iit Yo = 0, it
suffices in principle to fix the first two design points at +1 and -1, respectively (in case
this allocation is chosen randomly it must not depend upon (f;)). However, if n1 > 2
the remaining design points in the first batch will then be all set equal to -1 by the rule
(3.2). Hence, if n1 > I, we may, as an alternative initialization of (3.2), want to fix the
design points in the first batch a priori and invoke (3.2) only for k 2: 2.

Note that the design rule (3.2) allows one to calculate the design of the k-th batch
(z , ... , z ) using only the first N observations. It may then be advantageous to
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rearrange (ZIc1' ... , Zlcn.) prior to taking observations of the dependent variable, such that
only one change from 1 to -1 occurs in the batch. This avoids frequent setup changes,
which may be costly. 3

4 Asymptotics of Quasi Batch Sequential Design

The limiting behaviour of quasi batch sequential design is studied in this section. A
proof of convergence of fully sequential designs in the particular example given above
is provided in Ford & Silvey (1980). The argument given in that paper seems to be
incomplete, however, as those authors assume the validity of a law of large numbers
for a certain optionally sampled sequence of i.i.d. variables without providing a proof.
This lacuna in the proof is closed in Lemmas 2 in the Appendix by utilizing a result of
Doob (1936). Given this amendement, Ford & Silvey's (1980) proof can be generalized to
provide a convergence proof for the more general case of quasi batch sequential designs.
As a corollary consistency and asymptotic normality of the parameter estimators are
obtained. The proofs of the Theorem and Corollary can be found in the Appendix. There
we also outline how the results of this section continue to hold if the errors fi are only
assumed to be a martingale difference sequence. For related results see Maljutov (1988)
and Wu (1985).

Theorem: Under the maintained assumptions the quasi batch sequential design con
verges to the non-sequential optimal design based on the true parameter value (given by
(4», if the batch lenghts are bounded. I.e., if ni :::; v < 00 for all i 2: 1 (in particular if
ni = v), then

N- /N -+ p(-I) = 191 +92 1/(191 +92 1+ 192 - 91 1).

N+/N -+ p(+1) = 192 - 91 1/(/91 +92 1+ 192 - 91 1).

almost surely as N -+ 00.

The Theorem allows one to derive the asymptotic properties of the estimators 8 and
9 based on the quasi batch sequential design. Here 9 and 9 denote the estimators for
a sample of size Nand ji+ = J+ L:iE1.t Yi, ji- = J- L:iE1; Yi, where Iii denotes the set
of indices i :::; N with Zi = 1 and IN is defined analogously. The symbol -+d denotes
convergence in distribution.

Corollary: Under the maintained assumptions the estimators 8 and 9 are strongly con
sistent. Furthermore, VN(g - g) -+d N(O, (292t2c~M- cg ), where M u = M 22 = 1 and
M 12 = M 21 = p(I)-p(-I), from M = limN- 1JN and M- is any g-inverse. If the optimal
design is not degenerate then also VN(8 - 9) -+d N(O, M-1).

5 Simulation Results

The small sample behaviour of quasi batch sequential designs was studied by means of a
simulation experiment. In order to make results comparable with those reported in Ford &

3The asymptotic properties of the procedure are not affected by this rearrangement as long as the
errors are assumed to be i.i.d., as may be shwon by arguments similar to those given in the Appendix.
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design method

fully sequential
batch sequential
quasi batch sequential
non-sequential (a)
non-sequential (b)
random (c)

-0.1257
-0.1248
-0.1247
-0.1248
-0.1265
-0.1263

6.090
6.186
6.237
6.569
7.315

14.165

15.524
15.620
15.471
15.645
12.510
12.180

0.470
0.572
0.531
0.229
0.250

48.579

Table 1: Performance characteristics for different design techniques.

Silvey (1980) for fully sequential designs the same simulation setup was used. Model(2.1)
with () = (1,4) and () = (1,1), respectively, was used to generate samples of size 100, where
the Zi were chosen by various design rules described below. The experiment was repeated
1000 times. At sample sizes 25,50,75 and 100 the same characteristics of the inference
process as in Ford & Silvey (1980), i.e., the mean squared error of g, were calculated. We
found no significant differences between the performance of quasi batch sequential and
fully sequential design for sample size 50 and larger. (In fact an experiment with purely
random design was not significantly inferior.) For this reason we report only the results
of the simulation for samples of size 25. As the results for () = (1,1) are quite similar to
the corresponding results for () = (1,4) we report only the latter. In this case the response
function has its maximum at Z = 0.125.

The following design methods were studied: fully sequential design, batch sequential
and quasi batch sequential design (5 batches of lenght 5) 4 and several non sequential
designs, namely (a) non-sequential optimal design under perfect information, i.e. N2i. =
15.625, (b) non-informative non-sequential design, i.e. N2i. = 12.5 and (c) pure random
design. 5

Table 1 presents the performance characteristics of the design methods given above
ordered by the empirical mean squared error of the estimator g. Unexpectedly the non
sequential optimal design did not perform. An explanation can be found in the work of
Schwabe (1989), who proved the superiority of sequential over nonsequential methods,
when the optimal designs can not be realized exactly (as in this case). The difference
in performance between fully, batch and quasi batch sequential design is not substantial,
while informative (a), non-informative (b) and random (c) design are clearly dominated.
These results seem to justify the use of quasi batch sequential procedures in expensive
experiments.

Figures 1 and 2 show the empirical distributions of the estimator 9 for N=5,10,15
observations (solid, dashed, dotted line), based on fully sequential and quasi batch se
quential designs, respectively. It can be seen that even for small samples the empirical
distributions are not dramatically different, although the distributions in Figure 1 are
slightly more concentrated.

4In the first batch two design points were chosen as +1, two as -1 and the remaining point was chosen
randomly as ±1 with probability 1/2.

5Since the non sequential design (a) is not exactly realizable for N = 25 we proceed as follows: 15 of
the design points were chosen equal -1 and 9 points equal +1. The remaining point was randomly cholen
with P( -1) = 5/8. The non sequential design (b) was constructed analogously. For the pure random
design each Zi was chosen randomly from {-I, +1} with P( -1) = P(I) = 1/2 in each simulation run.
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vector n mean(92S) m.s.e·(92s).104 mean(N2"6) Var(N2"6)

(5,5,5,5,5) -0.1257 6.237 15.52 0.548
(2,2,17,2,2) -0.1245 6.377 15.40 0.612
(5,5,5,5,5)* -0.1247 6.398 15.47 0.531
(17,2,2,2,2)* -0.1253 6.432 15.51 0.484
(2,2,2,2,17) -0.1238 6.435 15.48 1.246
(17,2,2,2,2) -0.1236 6.502 15.41 0.371
(2,17,2,2,2) -0.1257 6.551 15.49 0.620
(2,2,2,17,2) -0.1244 6.786 15.42 0.944

Table 2: Performance characteristics for different quasi batch sequential designs.

Table 2 provides information about performance characteristics of quasi batch sequen
tial procedures for different batch lengths. For samples of size N = 25 and k = 5 batches
different choices for the vector n = (nl, ... , ns) have been investigated.

The first batch was initialized as described above, except the cases marked by an aster
isk, for which perfect information was used. The simulation showed no clear indication for
the preference of any choice of vector n in this example. All the results for the empirical
mean squared error remained within the information gain of one additional information.
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6 Appendix

Let (0, A, P) denote the probability space on which all random variables are defined.

Lemma 1: Under the assumptions of Section II, the quasi batch sequential design given
by (3.2) satisfies: N+ -+ 00 and N- -+ 00 a.s. as N -+ 00.

Proof: It is sufficient to prove the Lemma for N = N/c. Suppose for some w E 0 we have

NJ;(w) = n for all k ~ k*(w).

Then condition (3.2) implies

I L Yi(w)1 < I L Yi(w)1 = const(w) < 00 for all k ~ k*(w).

iEl"t. iElN.

It follows that

(6.1)

N.
Yi(W) + L Yi(w)1 :S const(w),

i=N.·(w)+l

Hence we have
N.

lim sup I L Yi(w)1 < 00

Ic_oo i=N•• (",,)+l

(6.2)

on the event defined by (7.1). On this event the expression IE~N.*(w)+1 Yil coincides

with IE~N.'(w)+1(fi + (}1 + (}2)1. Since fi is i.i.d. (with finite variance) it follows, that
limsup._oo IE:=l(fi + (}1 + (}2)1 = 00 a.s.. Hence in view of (7.2) the event defined by
(7.1) has probability zero. Since the event {NJ; < oo} is a countabular union ofthe above
events we arrive at a contradiction. Thus N;; -+ 00 a.s.. The result for Nt is proved
analogously. qed
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Lemma 2: Suppose the assumptions of section 2 hold and let the design be generated
by (3.2). Then

lim N
1
+ L Yi = (}l + (}2 and lim N

1
_ L Yi = (}2 - (}l a.s ..

N_~ N_~

iElt iEI;

Proof: Almust surely both values 1 and -1 occur infinitely often in the design (Xi) in view
of Lemma 1. Ignoring a subset of probability zero in the following, the stopping times

J.Lj = min{i ~ 1 : card(Il) = il,

where card(A) denotes the cardinality of a set A, are well-defined and finite. Furthermore
the event {J.Lj = k} depends only on (Xl,"" XIo) and hence is measurable with respect to
(fl"'" flo-d (and the initializing design points) in view of the design rule (3.2). Define
Zj = Y",; and B. = ~ Li=l Zj. Then the sequence ~+ LiElt Yi is a subsequence of the
sequence (B.(w)) (possibly repeating values of B.(w)). Hence it suffices to prove B. -+

(}l + (}2 a.s. as s -+ 00. Observe that x"'; = 1 by construction of J.Lj. Therefore Zj =
(}l + (}2 + f",; and it remains to show that ~ Lj=l Vj -+ 0 a.s., where Vj = f",;. Now,
since (f;) is i.i.d., since the initializing design points are independent of (f;), since the
stopping times J.Lj are predetermined (i.e. {J.Lj = k} belongs to (h-l' the u-field generated
by {fl,'" flo-d and the initializing design points) and are strictly increasing, it follows
from a result by Doob (1936) that (Vj) is also i.i.d. with the same distribution as (fi), d.
also Potscher (1990). Kolmogorov's law of large numbers now completes the proof. The
second half of the lemma is now proved analogously. qed

Note that Lemma 2 does not holds only for quasi batch sequential designs but for any
design (Xi) satisfying (a) the design contains an infinite number each of 1 and -1 a.s. and
(b) Xi is measurable w.r. t. (};-l'

Proof of the Theorem: Since the batch length is assumed to be bounded it is sufficient
to prove the result for N = N io with k ~ 1. For r a natural number let .N denote the
index at which the r-th change from 1 to -1 occurs in the design, i.e. •N is the r-th
smallest index such that x

rN
= 1 and xrN+J = -1 holds. Let .N- (.N+) denote the

number of observations taken at X = -1 (x = +1) within the first.N observations. Since
N: -+ 00 and N;; -+ 00 a.s. as k -+ 00 by Lemma 1, the random variable .N is a.s. finite
and .N+,.N- are a.s. well defined. Of course .N+ and .N- are a.s. positive for r> 1,
and .N+ -+ 00, .N- -+ 00 and .N -+ 00 a.s. as r -+ 00. Let k(r) denote the number
of batches preceeding the r-th change from +1 to -1, i.e. k(r) is determined such that
NIo(.) ~ .N < NIo(.)+I holds. As the batch length is assumed to be bounded we clearly
have k(r) -+ 00 as r -+ 00. Furthermore, note that N~.) > 0 and Ni:e..) > 0 a.s. hold for
r > v/2. Applying now (3.2) to the (.N + 1)-th observation we obtain

N- N+
~_ I L Yil ~ ~+ I L Yil a.s.,

10(.) iEr 10(.) iEI+
NO(r) NO(r)

where IN is the index set corresponding to the observations in the first k(r) batches
O(r)

taken at X = -1 and rtw,r) its complement relative to {i : 1 ~ i ~ NIo(.)}. Since Lemma
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1 shows that N~.) -+ 00 and Ni:(.) -+ 00 a.s. as r -+ 00 we obtain from Lemma 2

(6.4)

and

(6.5)

Dividing (7.3) by .N we obtain using (7.4) and (7.5)

IB1 -B21Iiminf.N-/.N S; IB1 +B2Iliminf.N+/.N a.8.
r-tCX) r-tCX)

Applying the design rule (3.2) to the (.N)-th observation we get

N- N+-1
~I L Yil> 'N+ I L Yil a.8.,

,,(.)-1 iEr ,,(.)-1 iE/+
N'(r)_l N'(r)_l

on the event {.N = N,,(.)} and

.N- .N+-1
N- I L Yil > N+ I L Yil a.8.,

,,(.) iEr ,,(.) iEI+
N'(r) N'(r)

on the event {.N > N,,(.)}. Again dividing by .N we obtain in any case

IB1 - B2 1liminf .N- /.N ~ IB1 + B2 Iliminf.N+ /.N a.8.
r-tCX) r-tCX)

This gives

(6.6)

IB1 -B2 1Iiminf.N-/.N=IB1 +B2 Iliminf.N+/.N a.s. (6.7)
r-+OO r-too

Similarly we get

IB1 -B2 Ilimsup.N-/.N=IB1 +B2 Ilimsup.N+/.N a.s. (6.8)
r-too r-too

Observing that .N = .N- + .N+, it follows from (7.7) and (7.8) for B1 I- 0 (note that
B2 I- 0)

lim .N- /.N = IB1 + B2 1/(IB1 + B2 1+ IB2 - B1 1) a.8 .
• _ex>

If B1 = 0, dividing (7.3) as well as (7.6),(33) by .N- gives

1 S; liminf.N+ /.N- S; limsup.N+ /.N- S; 1 a.8.
r-too r-too

observing that B2 I- O. Hence

If furthermore •N- and •N+ denote the r-th change from -1 to 1 in the design, we obtain
analogously as above
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Observing that Ni; /NIc is monotonic between changes completes the proof. qed

Proof of the Corollary: Since B = ~(il+ - tr ,y+ + y-) consistency follows from Lemma

2. Next observe that ..;N(B-8) = (N-IJNtl*L~I(Zi,Zn'Ei and that N-IJN con
verges to M in view of theTheorem. From a standard martingale central limit theorem
applied to (Zi,Z~)'Ei, d. e.g. Gussler & Stute (1977), Th.9.3.2., and the Cramer-Wold
device we obtain -iN L~I(Zi' Zn'fi -+d N(O, M). Observe that the conditional Lindeberg

condition is satisfied for a linear combination (azi + (3Z?)fi' since fi is i.i.d. with finite
second moment and

Consequently the last claim in the Corollary follows, since the optimal non sequential
design is nondegenerate iff M is nonsingular. As an immediate consequence we obtain
the asymptotic distribution for ..;N(fJ - g) in the nondegenerate case. Finally observe
that M is singular iff p(l) = 1 or p( -1) = 1, i.e. 9 = 1/2 or 9 = -1/2. As the proofs for
both cases are similar we give only the proof for the case 9 = 1/2. Rewrite ..;N(fJ - g) as
-..;Ny+ /(y+ +y-). By Lemma 2 the denominator converges to 282 and N+ /N -+ p(l) = 1
by the Theorem. It hence suffices to establish ~y+ -+d N(O,I) as s,M-clI = 1 holds.

Now %y+ = N- I/2 L~1 Difi where D. = 1 on the event {1L1c = i for some k 2: I}.
and Di = 0 else. Clearly, Di is gi_I-measurable and hence (Dif.) is a martingale difference
sequence. Observing once more that N+ / N -+ 1 a.s., it follows that the norming condition
in the martingale central limit theorem is satisfied. Furthermore, since IDifil :S Ifil also
the Lindeberg condition is seen to hold. Consequently, N- I/2 L~I DiEi -+d N(O, 1), which
completes the proof. qed

Inspection of the above given proofs show that the Theorem and Corollary from Sec
tion 4 still hold ifthe errors (fi) are more generally assumed to be a martingale difference
sequence w.r.t. (gi) satisfying E(EUgi-1 = 1, the conditional Lindeberg condition, and
the law of the iterated logarithm (sufficient conditions on (E.) such that the law of the
iterated logarithm holds can be found in Heyde & Scott (1973)). The following modifica
tions have then to be made in the proofs above: first, in the proof of Lemma 1 we now
deduce limsuPHOD IL:=I(fi + 81 + 82)1 = 00 a.s. from the law of the iterated logarithm.
Second, to establish ~ Li=1 Vi -+ 0 a.s. in the proof of Lemma 2 we now make use of
the fact that (Vi) is again a martingale difference sequence with E(v]) = 1 as shown in
Potscher (1990) (see also the working paper version of the present paper for more details),
and hence satisfies a strong law of large numbers, d. Gussler & Stute (1977), Korollar
6.7.2. The rest of the proofs remain essentially unchanged.
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1. INTRODUCTION

Response optimization corresponds to the maximization of a dependent response variable

y with respect to some independent input variables ~ (operating conditions). In many practical

situations, including optimal quality control, the exact dependence of y on 3. is unknown, and,

moreover, y is subject to random variability. A possible policy is then to maximize the

expectation of y. Inference regarding the system can be drawn from measuring y at various

values of 3,. While replications of measurements at the same ~ inform us on the random part of

y, measurements at different ~ also inform us on its deterministic part, denoted in what follows

by 11. The number of possible measurements at different ~ is often very limited for economical,

technical or ethical reasons so that an optimal choice of these values ~i has to be performed.

The classical response surface methodology (see e.g. (Montgomery, 1976)) involves a

sequential determination of the appropriate region for the optimal inputs ~*. A small region x(k)

of the admissible experimental domain Xis considered at the kth step. If the region x(k) is far

from ~*, 11 is approximated over x(k) by a linear function of~, while a quadratic function of.1Sc.

is used when x{k) moves closer to .1Sc.*. Classically, prespecified experimental conditions (e.g.

central composite designs) are applied at each step to obtain the parameter estimates to be used

to determine the optimal inputs .1Sc.*.

We consider here a situation where the response optimization problem has to be solved

for a series of similar processes, so that prior knowledge on the possible values of the model

parameters is available. A sequential determination of the appropriate region for the operating

conditions for each process may then not be reasonable, and prior knowledge must be used to

design a single-shot experiment on the whole feasible experimental domain X

Classical prespecified designs used in response surface methodology have five major

drawbacks in this context.

(i) They imply a large number of measurements.
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(ii) All parameters receive equal attention, regardless of their influence on the intended

use of the model.

(iii) Prior information resulting from previous experiments on the same type of process

is not taken into account.

(iv) The approach is inherently local and cannot take the constraints defining Xinto

account.

(v) The model response is assumed to be a linear or a quadratic function of lS., which

may not be valid on the whole domain X

This paper suggests an alternative approach, based on a Bayesian optimality criterion that

avoids these drawbacks. It does not require a large number of measurements (i) and aims at

explicitly taking into account the intended application to response optimization (ii), prior

information on the model parameters (iii) and possible constraints on the input variables (iv). It

also permits to use other model structures than polynomial functions of~ (v).

Section 2 introduces the response optimization problem and defmes the conditional loss to

be used for the estimation and experimental design procedures. The Bayesian estimator and

experimental design criterion are presented in Section 3. The design policy corresponds to LB

optimality. Classical design policies for parameter estimation such as D-optimality could also be

used in the nonsequential context considered here. A numerical example is used in Section 4 to

compare an approach based on D-optimality and maximum likelihood estimation with the one of

Section 3, and to illustrate the robustness of the Bayesian approach to misspecifications in the

priors.

2. RESPONSE OPTIMIZATION

The quality index to be maximized will be described as

y~) = 1'\(""[", ~ + E(lS.,), ~ E X,""[" E 8), (1)

with Li.d. normal errors E(~ _ 9{(O, 0 2). The function 1'\ (fr,lS.,) = E (y(lS.)} is the model
ylft

response, fr =(91, ... , 9p)T denotes the vector of parameters, with fr E e, ~::J 8, and ""[" is

the unknown true value of these parameters. In what follows 1'\(fr, 10 is assumed to admit

d d d · . a21'\ (fr,10 . ... 0 f a /0 • a) Th .secon or er envatlves m every mtenor pomt lL 0 0 I.lL E mt o. e mput
aa afrT

variable ~ (a m-dimensional vector) belongs to an admissible design space oX. 'J?!!l ::J X

Usually, 1'\OO,~) is approximated by a low-order polynomial in some region of interest of

the independent variables. When the initial estimate of the optimum operating conditions are

remote from the optimum, the curvature of the response surface
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Sa = {Tlm.~;.ll e xl

can be neglected, and a first-order polynomial approximation can be used. The method of

steepest ascent (Box and Wilson. 1951; Brooks and Mickey, 1961; Montgomery, 1976) then

allows sequential movements along the direction of maximum increase of the response. When ~

is closer to the optimum. the curvature of Sil. can no longer be neglected. The model response

TI(.e.~ is then described by a quadratic function of ~

1
TI(.e. x) = 90 + il.T~ +'13.TOz..

or equivalently by

Tlm.~) = ~TW.e,

with
T 12 1 2 12
~ (~= (1, Xl. x2, ...• xm. '1XI , '1X2 •...• '1Xm • xlx2, xlx3,···, xlxm. X2x3, .. ·•

x2xm... ·• Xm-IXm),

(2)

(3a)

and

.e = (90, qI. q2,···. qm. Qu. Qz2..... Qrnm, Ql2. Q13..... Qlm. Qz3.· .. , Qzm•... , Q(m_I)m)T.

(3b)

Such a quadratic model response will be used in the example of Section 4, however. this

hypothesis is not essential, and we shall simply assume that TIm. 3.) is linear in .e, so that it can

be written as (2). Vectors ~(~ different from (3a) can then be used. thereby allowing more

general model structures than quadratic functions. Although it raises important and interesting

problems. deterministic deviations of yW from the model TI m.l0 will be neglected. For

situations where such an approximation is unacceptable one can refer for instance to (Blight and

Ott, 1975) for the estimation and prediction problems and to (Pesotchinsky, 1982; Sacks and

Ylvisaker. 1985; Sacks and Schiller. 1988; Sacks et al.• 1989) for the experimental design

problem.

For any.e in S.let 3.*(.e) denote the optimal value of~

~*em = arg max T1Cft. 10.xe x
(4)

Approaching ~*(~) first requires estimating fro Classically. the final purpose of the experiment

is not taken into account during the experimental design. However. as shown in Section 3. the

definition of a conditional loss function can be used to derive an optimality criterion for the

experiment which is closely connected to the response optimization problem. This loss function

L<ft i~) is defined as the cost of estimating the parameters by ~ when their true value is fro We

wish to minimize y~*(ft» - y~*®). The observations are not available at the design step and
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we take L&. fa) as the average difference E_(y(~*(a-)) - y~*(~))}. From (1) this loss
~Ifi.

function (to be minimized) can be written as

(5)

It will now be used to derive a Bayesian estimator of!l and to define an optimality criterion for

the experiment.

Remark: An alternative parametrization of a response function quadratic in Xcould also

be considered (Chatterjee and MandaI. 1981; Mandal. 1989). given by

11(6.. ~ = X() +±~-X*)TQ~ - X*).

where X* is included in the parameters to be estimated. so that
- * * Tfi. - (XO. xl.···. xm• Qu. 022.···. Omm. Q12. Ql3•...• Qlm. Q23,···. 02m.· ..• QCm-l)m) .

With this approach. the computation of X* is explicitly taken into account when designing an

experiment for estimating fi.. However. the model response is nonlinear with respect to the

parameters X*. so that classical design optimality criteria depend on the unknown value of X*. A

Bayesian approach is suggested to get round this difficulty. but the cost (in terms of the

expected response) of assuming that the parameters are ~ when their true value is ais not taken

into account. Moreover. the approach seems to be restricted to ellipsoidal (Chatterjee and

Mandai. 1981) or rectangular (Mandai. 1989) experimental regions. 0

3. BAYESIAN ESTIMATION AND DESIGN

Let~ be the N-dimensional vector of all observations performed on the process using the

design X (of fixed size N), X = [Xl. X2•... , XN ), with possible replications (xi = x-i for some

i "# j). L(a f[) depends on~ through the estimate ~(Y.x). and a Bayesian risk r(X) can be

introduced,

r(X) = E (L&.(~) lID) =Jp(Yx) (f L&(Yx) I ID p(fi.IYx) dfi.) dYx. (6)
fi.,~

The minimum risk estimator is then defined as

or equivalently. from (5) and the linearity of 11(6., X) with respect to fi. (2),

(7)



93

(the prior distribution p(ID and the feasible parameter set e are assumed to be such that

E un E e). From (5), (7) can also be written
.eJ~

or equivalently

b~)E (~E e;.~"®=2t( E (fr))}.
frl~

b~) can therefore be taken as the posterior mean,

b~)= E (fr).
frl~

Note that this result is similar to the one obtained for loss functions~I~) quadratic in ~.

Replacing ~ by ~B in the expression (6) of the Bayesian risk 7(X), and taking (5) into

account, one can write 7(X) as

7(X) = f 11 (fr, ~.. (fr» p (.6.) dfr - f p(~x) (f 11 (fr, ~.. (~B(~») p(frl~) dfr) d~,

or equivalently, with the linearity of 11(fr, ~) with respect to fr,

(8)

(9)

Given a prior distribution p(fr), the risk 7(X) can then be evaluated, at least in principle, for any

design X and used as an optimality criterion for experimental design. However, the

optimization of 7(.) with respect to X will require many such evaluations, so that we need some

simplifying hypotheses and approximations.

Firstly, we shall assume that fr _ 9{!~, n). The marginal distribution p~) is then

1dZx~, 02IN + ZxnzJ), where IN is the N-dimensional identity matrix and Zx is the N x p

dimensional matrix the ith row of which is equal to ~T~i). The posterior mean is then equal to

b~) = (..!...2 zIzx + n-Ifl (..!...zr~ + n-l~),
o 0 2

and elementary algebraic calculations show that its predictive distribution is

9{!~, n - (~2 ZJZx + n-If\ The Bayesian estimate ~(~) given by (9) will be used to

obtain the estimated optimal inputs ~.~~» via (4).

Secondly, we shall use a second-order power expansion of 11(fr, ~.(ID) around~,
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A . th '2'l • a th *11'\) • . . . f 11'\ ) d h a~*T<.IDssurmng at 2 E mt 0, at ~ uz E mt X IS a stationary pomt 0 1']\2, ~ an t at ---,'Zl
a.e. 12

exists, we compute the gradient vector and the Hessian matrix involved in this expansion. One

has

a1'] <:e. x.) - !l
a~ ~*<:e) - ,

which gives

a..,<u. x*(ID) _ a~*T<.ID a1']<n, x) -!l
a.e. In - a.e. In a~ I~*@ - ,

which in turn implies

(10)

From (2) the gradient vector thus satisfies

a1'](.e.. x*(ID) = (v*I1'\')
a.e. In ZIA UZJ •

The Hessian matrix is then given by

a 21'](.e.. x*(ID) az(~ a~*<.ID

a.e.a.e.T IB. = a~T ~*<ID a.e.T In'
(11)

As a particular case, consider the quadratic model response (2). (3a) and (3b). Equation (10)

gives ~*@ = - Q-l ~. Taking (3a) and (3b) into account, after elementary but lengthy algebraic

calculations. one obtains

which together with (11) gives

(12)

with

(13)

Replacing 1'](.• 11.*(.» in (8) by its second-order expansion, one obtains

r(X) =ik 'PLB(X),
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with

q, (X) = trace(aZT](.e., x*(ID) M -1(X)} (14)
LB a.e.a.e.T ~ B

where MB(X) is the Bayesian infonnation matrix (per sample) (Pilz, 1983) given by

liT 1
MB(X) = N (oZ ~Zx + n- ). (15)

To show that 'PLB(X) is an LB-optimality criterion (to be minimized), we must prove that the

H · . a~(.6., x*<fi». . d fi . .. Wh tho ... b (12) .eSSlan matrlx 'll IS seffil- e Imte pOSItIve. en IS matrlX IS gIVen y , It
a.e.a.e.T 12.

is non-negative definite when Q is negative definite, Le. when T] (R, ~ is maximum in

x.. = a*(ID. More generally, let j{fi) denote the function T](.6., X*@), where X*(ID is given by

(4). Assume that a convex neighborhood 'U of:e exists, e :::> 'U. 'V .e.1, .e.Z E 'U, 'V a E [0, 1],

one has

j{(1-a).e.1 + a.e.Z) = T]«(1-a).e.1 + afiZ, x*«I-a).e.1 + a.e.Z»,

The function f is thus convex, which implies that the Hessian matrix (11) is semi-definite

positive and that 'PLB is an LB-optimality criterion.

A general equivalence theorem for LB-optimal continuous design measures can be proved

(Pilz, 1983; Chaloner, 1984). It is used to define an algorithmic procedure guaranteed to

converge to an LB-optimal design measure (Pilz, 1983). Using a result from Chaloner (1984)

we know that there exists an LB-optimal design measure with at most r(2p-r+1)/2

diffi
.. h ank I. a2T](~, X*(ID) )

erent support pomts, WIt r =r \ T 'Zl.
a~a~ bl

Since we are interested here in fixed-size designs, we suggest to use the exchange

algorithm presented by Pilz (1983). As it is generally the case for algorithms for exact designs,

the convergence is not proved. For each problem we therefore perfonn several optimizations

choosing various initial designs (the detennination of an optimal design measure can be of help

for this choice), and perform local optimizations (using standard nonlinear programming

techniques) when the algorithm is no longer able to progress. This exchange algorithm could

probably be improved following the ideas used in recent algorithms for D-optimality (see e.g.

(Yonchev, 1988; Atkinson and Donev, 1989) and the references therein).

The optimal experiment for the criterion (14) depends on the values of N, n, n and oZ.

The value of N can be fixed a priori, and it is always possible to detennine the optimal

experiment for N' > N in order to evaluate how much could be gained if N' - N additional
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measurements were performed. The robustness of the design with respect to misspecifications

in the values of:n, 0 and 0 2 is now illustrated by an example.

4. EXAMPLE

Consider a response variable y, with two input variables Xl and X2. These input variables

must satisfy the following constraints, which define X,
2
L Xi ~ 1, Xi ~ 0, i = 1,2. (16)

i=l

A quadratic model response is assumed to describe y correctly on the admissible domain for the

inputs. We define T1(6., i) as

(17)

with

(18)

4.1. De.pendence og* on 0 and q2

Due to the expression of the Bayesian information matrix (15), the LB-optimal experiment

only depends on 0 and 02 through their ratio. Assuming that 0/02 =a Is, a E ~,one can

compute the LB-optimal design measure s*(aO) associated with a given value 0.0, and evaluate

the efficiency of s*(aO) when a"F- 0.0,

(19)

Figure 1 presents the evolution of ELB(s*(aOla» as a function of a, a E [1, 100], when

0.0 = 10 and H. = (3, 3, -10, -10, O)T. A prior over-estimation of a (i.e. choosing 0.0> a) is

clearly of little consequence (the efficiency remains close to 1), while a prior under-estimation

of a can lead to a design with small efficiency. This study is of course insufficient to assess the

generality of this result; however, such tests of robustness can always be performed on any

practical problem.
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0.9

0.85
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0.75

0.7

0.65

IX

FIGURE I Efficiency eLB(~*(aO)la) (19) of the optimal design for a O= 10 as a function of a.

4.2. Dependence of C* on 1), comparison with a non-Bayesian approach

~. Experimental design for parameter estimation has received considerable attention

from statisticians (see e.g. the books (Fedorov, 1972; Silvey, 1980; Pazman, 1986) and the

survey paper (Walter and Pronzato, 1990». Any criterion from the general class given by

Kiefer (1974) could be considered for estimating the parameters in the linear regression model

(2). For the sake of brevity, only D-optimality (which is the most widely used) will be

considered here. D-optimal design is defined by the criterion (to be maximized)

T'Po(X) = det (~Zx). (20)

The final purpose of the experiment is not taken into account. The parameters are estimated via

maximum likelihood as

(21)

They are then used to obtain the estimated optimal inputs .1!c.*~L6::x» via (4).

D- and LB-optimal discrete designs of size 5, respectively denoted by Xo and XLB, have

been computed for the example defined by (16)-(18). The D-optimal design was found to be

Xo = (0, I), (1, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)}.

We assumed that OIcr2 = 10 x IS and considered two values ofll, namely

n.l = (5, 10, -10, -10, -5)T,

(22)

(23)
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and

n1 = (3, 3, -10, -10, O)T.

Using the exchange algorithm described in (Pilz, 1983), we obtained

(24)

XLB~I) = (0,1), (1,0), (0.481, 0.519), (0.481,0.519), (0.481, 0.519)}, (25)

and

XLB<D.2) = (0, 1), (1,0), (0,0.897), (0.533,0.467), (0.533, 0.467)}. (26)

Simulations. Assume first that the prior is Rl (23). For both XD and XLB(al) we

generated 1000 vectors of observations ~(i) according to

~(i) =Zx "F + f(i), i = I, ... , 1000,

with f(i) normally distributed ~, 0.1 x Is). In order to test the robustness of the LB-optimal

policy with respect to errors in the prior mean -e, we chose "F different from -el,

"F = (3.75,7.5, -7.5, -13.33, -5)T.

Estimated optimal inputs ~*(i) were obtained for each ~(i), i = 1'00" 1000, and their locations

are given on Figure 2a for XD and Figure 2b for XLB.

X2

0.7

0.3

0.2

0.1

X2

JI*ah)~lK--~--~_~ __~_----'

0.9

0.8

0.7

0.6

0.5

0.4

z;.*(e)
0.3

0.2

0.1

2a: D-optimal design (22) and

maximum likelihood estimation (21)

Xl 00;--------;:'0.:0-2 ---::'0.4-:---~0.6c---·0.8

2b: LB-optimal design (25) and

Bayesian estimation (9)

XI

FIGURE 2 Location of the estimated optimal inputs.
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The highest concentration of the ~.(i), i = 1,... , 1000, around the true optimal input X·(ft)

is obtained for the Bayesian approach of Section 3 (Figure 2b). Although the prior information

on the location of X* is quite inexact, the bias in the location of X* remains reasonable.

Assume now that the prior is B.2 (24). For both XD and XLB(B.2) we generate 1000

vectors of observations ~(i) according to

(27)

with t;(i) and ""["(i) independently distributed ~,0.1 x IS) and ~.e.0, IS) respectively. In order

to test the robustness of the LB-optimal policy with respect to errors in the prior mean:n. we

assume that .e.0 can differ from B.2, and parametrize .e.0 as a function of a scalar ~,

.e.0(~) = (3+2~, 3+2~, -10, -10, O)T. (28)

When ~ =0, .e.0(~) =B.2. and ~ is a measure of the error in the prior mean. Figure 3 presents

the locus of the optimal inputs x*<.e.°(~)) when ~ varies from -1 to 1. Rather large errors in the

prior location of the optimal inputX*~) are therefore considered.

X2

1.,----~--~-~--~-___,

0.9

0.8

0.7

0.6

0.5
Jl=1

0.4 Jl=O ,/

0.3 ~ 1\.<62)

0.2 Jl=-1 .< •
0.1 \/ '\. (x (!!O(Jl»; Jl E [-1.1])

°OO-----cO'-::-.2--O'::'-4,--------0~.6c----c'0.8=----"- Xl

FIGURE 3 Optimal inputs X· <.e.0(~)) <.e.0(~) given by (28), ~ E [-1, 1]) and prior optimal

inputx·~) ~ given by (24)).
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We then evaluate the following relative risk

1000

It 1'\ (["(i) , ~*(["(i)) - 1'\(["(i), g*(i))

p(X, ~) = i=1 1000 ,~E [-1,1], X = XD, XLa~), (29)

It 1'\ (["(i), ~*(F(i)))
i=1

where the estimated optimal inputs, ~*(i), i = I, ... , 1000, are determined from the simulated

observations obtained according to (27). Figure 4 presents the evolution of p(X, ~) as a

function of ~ for the D-optimal design (22) combined with maximum likelihood estimation (21)

and for the La-optimal design (26) combined with posterior mean estimation (9). The second

policy gives better results whatever the value of ~ between -I and I, and the relative risk is

more than halved for almost all values of ~.

p(X, ~)

0.3,----~-~-~--~-~-~--~-~---~--,

0.25

0.2

0.15

0.1

0.05

o
-1

FIGURE 4 Relative risk p(X, ~) (29) as a function of ~ for the two policies XD (22) -----,

and XLa (26) --.

5. CONCLUSIONS

A Bayesian experimental design procedure has been suggested to be used when one is

interested in response optimization rather than in a precise estimation of all the model

parameters. After some simplifications, it has been formulated as the minimization of an La

optimality criterion. The resulting approach is computationally almost as simple as traditional D

optimal design, but gives better results regarding the intended model application. It could be
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used in situations where a series of similar processes have to be studied, with a small number of

measurements on each of them. First simulation results exhibit some insensitivity of the

performances of the approach with respect to errors in the prior distribution. Further studies are

required to assess such qualitative results, but in any practical situation simulated data can be

used to test these robustness properties. Designs of size N ~ dim (ID are allowed, and all the

examples that we considered with N = dim ([) yielded experiments involving replications,

thereby requiring a small number of measurements on each process.

The model robustness issue has not been considered here. The model response was

assumed to be properly described by the function T)(.fl, i). Robustness with respect to errors in

the model structure is considered for instance in (Blight and Ott, 1975; Sacks and Ylvisaker,

1985; Sacks and Schiller, 1988, Sacks et al. 1989), where some deterministic error components

are superimposed to the response, with prior knowledge on their possible values. Another

approach would consist in considering bounded disturbances from the function T)(fr, 20. The

results presented in (Pronzato and Walter, 1988, 1989) concerning experiment design for

bounded error models could then be of help.
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OPTIMAL COMPOSITE SEQUENTIAL DESIGNS FOR EXPERIMENTS WITH MIXTURE
AND PROCESS VARIABLES

H. Yonchev
Higher Institute of Chemical Technology - Sofia.
Dept. of Automation, Sofia 1156, Bulgaria

1. INTRODUCTION

(1)
and

The majority of investigations for developing new products of high
quality are based on experiments with different kinds of mixtures. The special
nature of these experiments. known as mixture experiments, is due to the fact
that in a q-component mixture the sum of the proportions of the components is
unity. If the proportion of the i-th component is denoted by x 1 then

q

[: x =1,
1

1.1

i = 1,2,... ,q
(2)

The experimental region formed by the constraints (1) and (2) is (q-l)
dimensional regular simplex. In many cases the experiment is performed in a
subarea of the simplex formed by the additional constraints A1 and B1 imposed

by economic or technological considerations on the mixture components

i=I,2, ... , q
(3)

The proportions x 1 are called "related" or mixture variables.

The temperature, the pressure or the reaction time of the technological
process of manufacturing the product are called "process variables". They are
varied in coded form in a hypercube defined by the constraints

-1 :::; x
1

:::; 1, i=q+l, q+2..... m (4)

The number of the "process variables" is r=m-q, where by m is denoted the
total number of variables

The success of statistical modeling of the mixture properties using both
kinds of variables depends on the information obtained by the experimental
designs. Specific problems arise while designing optimal experimental plans in
that case due to the necessity of working with mixture variables in a simplex
or its subarea while the process variables are varied in a hypercube in
Euclidean factor space.

The designs can be judged by various criteria. In the majority of
problems arising in the practice the following six requirements mentioned by
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A

2. Ensure that the fitted value at it, Y(x) be as close as possible to the
true value l1(it) at 't;

3. Allows designs of increasing order to be built up sequentially;
4. Require a minimum number of experimental points;
5. Not require an impractical large number of levels of the predictor

variables;
6. Give good detectability of lack of fit.
In this paper a method and algorithm for constructing by computer a new

kind of designs for experiments with mixture and process variables are
proposed. They are based on the six important requirements mentioned above.

To satisfy the first and the second ones of them the design points are
distributed in the factor space according to D- an G-optimality criteria.

To satisfy the third criterion the design matrix is made as a composition
of designs for models of increasing order. Then a sequence of points is added
to ensure the requirements of the fourth criterion. This gives the
experimenter the possibility of choosing a design with the minimum number of
experimental trials needed.

The fifth criterion is accounted by searching the design points on the
set of "candidates" with a limited number of levels for each coordinate. For
example the possible set of "candidates" are the points of support of the
continuous D-optimum designs.

T'he detectability of lack of fit is facilitated by the possibility of
choosing the number of design points i.e. the degrees of freedom for
determining the residual variance.

The new kind of designs is called "Optimal composite sequential designs",
(OCSD). The general idea of OCSD was presented by Yonchev (1990) where it was
developed for experiment with "process variables" only.

Box and Draper (1975) are to be taken into account. The design should:
1. Generate a satisfactory distribution of information throughout the

region of interest;

2. OPTIMAL COMPOSITE SEQUENTIAL DESIGNS

2.1. Soine basic definitions and assumptions

It is assumed that the response surface can be described by the equation

Y
i
= 1 T (i

1
)p + £1' i=1,2, ... , N , (5) ..

where Y1 is the experimental value of the response obtained in the i-th run, x

is a md vector of predictor variables for the i-th run; 1 is a vector of k
functions modeling the dependence of the response at 't .. P is a kx1 vector of

1

model coefficients; £ 1 is the experimental error for the i-th run. The errors

are uncorrelated, with mean zero and constant variance 0
2 = 1. The covariance
£

matrix of the least squares estimated parameters P is (FTF)-10 2, where
£

F={1T
(~ ), i=1,2, ... , N. The variance of prediction at a point it is given by

1 1

A design with F=F'" is said to be D-optimal with respect to the model (5)
if it minimizes the determinant of the covariance matrix (FTF) - 1 over the
factor space X, i.e.
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det (F*TF*)-t= min(FTF)-t (7)

X
The D-optimality criterion is essentially a parameter estimation criterion
giving the smallest possible confidence region for the parameter estimates.

A design is said to be G-optimal one if it minimizes max d(~), where the
maximum is taken over the all possible vectors ~ of predictor variables.
G-optimality is a response estimation criterion which minimizes the maximum
value of the variance of prediction at the points of the factor space X. A
good introduction to D- and G- optimality is provided by the review of St.
John and Draper (1975).

2.2. The general idea of developing optimal composite sequential designs

The general equation (5). is reduced to the following form

(8)

where "F (~ ) and "F (~ ) are vectors of k and k
2

functions correspondingly; ~t
t i 2 i t

and ~ are k xl and k xl vectors of the model coefficients (k + k = k)'
2 t 2 t 2 '

The following notations are also used

and

p = 1T (~)~ ,
t tiPt

p*= 1T(~ )~ ,i=l,2, ... , N ,
2 2 I 2

y =p + ( , or
I 2 I

(9)

(10)

( 11)

(12)

y =p + p* + (
I 2 2 I

i=l,2, ... , N . (13)

It is assumed that the polynomial P t of order n
t

is good for beginning the

experimental investigation but it is possibly underestimating the shape of the
response surface and a model P of order n , (n >n ) will give a better fit.

2 2 2 t

Taking into account this fundamental assumption the process of constructing
the experimental plan is developed into the following four stages.

Stage 1. A design with a minimal number of observations and possibly best
informative properties is constructed for the model P. Usually it is a

t

saturated D-optimal design with Nt=k
t

points and will be denoted by ~t' The

points of the design ~ are situated in the block A shown in table 1.
t

Stage 2. The design ~t is augmented with a block of k
2

additional points

(block B) to obtain the saturated near D-optimum design ~ for the model P .
2 2

These points can be used for checking the goodness of fit of P and to improve
t

its predictive properties. If the model P does not fit, the design ~ can be
t 2
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used for evaluating k coefficients of the model of order P 2'

Stage 3. The points in the block B are arranged in decreasing order of
the maximum value of the variance of prediction, calculated for model of order
n

1
and designs with k

1
+1, k,+2, ... , k

1
+k

2
points. This ordering allows the

experimenter to choose a design with a desirable number of points for checking
the lack of fit of the model of order n

1
or to improve its predictive

properties.
Stage 4. To check the goodness of fit of the model of order n

2
and to

obtain better estimates of its coefficients additional observations are
needed. Their number depends on many different conditions but in rare cases it
exceeds k

2
, To give the experimenter the possibility of choosing the number of

desired additional observations a group of k points (block C) are sequentially
added to the design 1;2' To improve the predictive properties of model P2 the

points of block C are found using the criterion of G-optimality, So the

(k+1)-th point~" is searched in the whole factor space as a point with
k+1

maximum value of the variance of prediction

1\

a 2 {y(t" )} = max IT(~)(FTF )-11(~)a2 ,
k+1 X k k £:

where F k is the augmented matrix of the design with k points and model P 2' The

next point~" is searched in the same way for the design with k+1 points and
k+2

model P 2' So the points of block C together with block A and block B

constitute a sequence of G-optimal designs for model P 2'

TABLE 1

No x x ... x x x ... X
1 2 q q+1 q+2 III

1
2

. BLOCK A
k

1

k +1
k 1 +2

1
BLOCK B

k=k'+k
1 2

k+1
k+2

BLOCK C
2k

The approach of combining two criteria using D-optimality to obtain
saturated designs and to augment it with additional points was used earlier by
Vuchkov, Yonchev, Damgaliev, Tsochev and Dikova (1978), Here this approach is
used to construct optimal composite sequential designs,
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3. THE ALGORITHM FDOPCMP FOR CONSTRUCTING OPTIMAL COMPOSITE

SEQUENTIAL DESIGNS FOR EXPERIMENTS WITH MIXTURE AND PROCESS

VARIABLES

Different versions of the general algorithm for generating OCSD are
worked out depending on the factor space being used. They take into account
the peculiarities of searching the design points in a hypercube, in a simplex
or in a subarea of the simplex defined by (3). But all of them are divided
into two big groups: 1. Algorithms for searching the designs in the whole
continuous factor space and 2. Algorithms for searching the design points on a
given preliminary finite set of "candidate points". The algorithm FDOPCMP from
the second group will be used to illustrate the main peculiarities of the
algorithms developed for constructing OCSD for experiments with mixture and
process variables.

The stages of FDOPCMP follow the four stages of constructing OCSD
described in section 2.

arei=1 .....L
1

d(~. ),
1

det

calculated and saved.

Stage 1. Constructing a saturated D-optimum design for model of order n
1

1.1. The structure of the models P 1 and P z is specified

1.2. A set S of L "candidate points" for searching D-optimal designs
1 1

for models of order P 1 is generated. For example the set S 1 can be formed by

the support points of the continuous D-optimal design for models of order n
1

•

1.3. Using the procedure FDOP of Yonchev (1988) a saturated D-optimal
design I; (k ) with N =k points is found on the set S • The design is included

1 1 1 1 1

in block A.
1.4. The values of

Stage 2. Constructing an optimal design for a model P z of order n
z

'

2.1. A set S of L "candidate points" for constructing D-optimal design
2 2

for model P 2 is generated.

2.2. The points of S 2 are randomly distributed into R groups with p

points each.
2.3. An initial design I; (k) with k-points is constructed. Its first ko 1

points are formed by the design I; (k ). The next k points are taken at random
112

from 8
2

, The values of M (I;o(k)). det M(l;o(k)) are calculated an saved.

2.4. The first group of S is added to the initial design forming a
2

"candidate list" with H=k+p points. The values of M- 1
• det M and d (1 ),

H H H I
i=k +1. k +2..... H are determined.

1 1

2.5. The point 1. with a minimum value of d(H) is found on the
min

"candidate list" with H
1
=H-k

1
points (The points of the design 1;1(k

1
) are

excluded).
2.6. The point 1 is deleted from the "candidate list" in which H-1

min
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(15 )

(17)

(16)

points are left. The values of M- 1, det M and d(~i)' i=k
1
+1, k

1
+2, ... , Hare

updated for H1-1 points using the formulae

M- 1 =M-1+(M-11(~ )) (M-11(~ . )r/(1-1T(~ . ) W11(~ . ))
H-1 H H min H I'fun min H min

d (~.)=d (~.)+ [1T(~. )M-11(~ . )) ~(1_1T(~ . )M-11(~ . ))
H-1 1 H 1 1 H min min H mIn

detM =detM (1-1T(~ )M-11(~ ))
H-1 H min H min

sequentially deleted until k points are left in

obtained and one "little excursion" is

dare
R

the "candidate list". A design 1;1 (k) is

2.7. The procedure is repeated from point 2.5. and a second point with
minimum value of d is deleted from the "candidate list". In this way points

H

with minimum value of

counted out.
2.8.The design 1;1 (k) is taken as a new initial design if the following

condition is fulfilled

(18)

where £ is a sufficiently small numeral.
2.9. Another group of p points from S is added to the new initial design

( or to the old one depending on the condition (18)) and a new "candidate
list" is formed. The points are added one by one, updating at each step M- 1•
det M and d(~ ), i=k +1, k +2, ... , H by the formulae (15), (16) and (17)

i 1 1

transformed for addition of points.
2.10. A "little excursion" is made on the new "candidate list" and the

procedure is repeated R times until the set set S 2 is exhausted. The sequence

of R "little excursions" form an "excursion" over the set S • At the end of
2

the "excursion" a design I; (k) is found.
R

An excursion is successful if the following condition is fulfilled

det M(I; (k))/det M(I; (k)) > 1+£
R 0

(19)

after a given number t of unsuccessful
design obtained is denoted by I; (k) and

k
includes block A and block B shown in table 1.

2.11. If the excursion is successful a new one is performed including in
the "candidate list" the design I; (k). In the case of unsuccessful excursion

R

the old design I; (k) is included.
o

2.12. The Stage 2 is finished
excursions is performed. The best

Stage 3. Rearranging the points in block B

... ,K

1\

3.1. The values of the variance of prediction d =<J2{y },
iii

for a model P 1 are calculated in the points of block Busing

i=k/l, k 1+2,

the formula
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i=k
t
+1, k

t
+2, ... , K (20)

where F is the augmented matrix of the design I; (k ) for model P obtained at
t t t t

the end of the first stage of the algorithm.
3.2. The points of block B are rearranged in decreasing order of maximum

values of the variance of prediction, calculated for model P t and designs with

k
t
+1, k

t
+2, ... , K points.

Stage 4. Augmenting the design for model P
1\ 2

4.1. The variance of prediction d. =0
2 {Y(~. )} is calculated in each point

1 1

of the set S=S t +5
2

by the formula

(21)

arethe design I;k (k). The values of d i

~ with maximum value of d is found.
max i

4.3. The point ~ is added to the design I; (k) with k+1 points
max k

4.4. For the design I; (k) are updated the values of d. in L+1 points of
k + t 1

5, M- t =(FT F Jt and d using the transformed formulae (15),(16) and
k+t k+t k+t k+t

(17).

where F k is the augmented matrix of

saved.
4.2. The point

4.5. The procedure is repeated from point 4.2. and a new point with
maximum value of d., found on the set of L-1 points of 5 is added to the

1

design I;k+t(k). A design with k+2 points is obtained.

4.6. The procedure of sequentially adding new points terminates whenever
a given number of points is added. Normally k points are added.

4. SOME COMMENTS AND EXAMPLES

Three kinds of optimal composite sequential designs can be generated for
experiments with mixture and process variables:

1. The design is composite with respect to the mixture variables
2. The design is composite with respect to the process variables
3. The design is composite with respect to both mixture and process

variables
The following example illustrate the constructing of OC5D by the

algorithm FDOPCMP.
Example 1. In the table 2 is shown an optimal composite sequential design

in three mixture variables Xt' x
2

' x
3

and three process variables x
4

' x
s

' x
6

'

The first 21 points form a saturated D-optimal design I; for a second order
t

model P with respect to both kinds of variables (n =2, n =2). The model P is
t t 3 t

given by the polynomial:



110

356 6

Y = Lb, X, + L L b, ,X, X + L b X
2

ia1 1 1 ia1 i<j 1J 1 j 1~4 ii i
(22)

The design is found at the first stage of the search by the procedure FDOP
over the set 8 l' To obtain the set 8

1
the coordinates of its points are found

as a full combination of the levels [ OJ 0.5j 1 1 and [ -1j OJ 1 1 which
correspond to the support of the continuous D-optimal designs in mixture and
process variables. The coordinate 0.333 is also added.

The next four points ( 22, 23, 24 and 25) are forming a block B which
augments the design ~1 to a saturated near D- optimal one ~2 for a model of

third order (n =3) with respect to the mixture variables and second order
2

(n =2) with respect to the process variables P :
33 56 23 2

y= Lb x + L [b x x + L Lc x x (x -x )+
1~1 I I i-1 i<j ij i j 1-1i<j Ij i j I j

6

+b x x x + L b
"

l,x
2

1123 1 2 3

TABLE 2

(23 )

No x x x x x x No x x x x x X
1 2 3 4 5 6 1 2 3 4 5 6

1 0.000 0.500 0.500 1 1 1 26 0.788 0.212 0.000 1 1 1
2 0.000 0.000 1.000 -1 -1 -1 27 0.788 0.000 0.212 -1 0 1
3 0.000 0.500 0.500 0 0 -1 28 0.212 0.788 0.000 1 1 1
4 0.500 0.500 0.000 -1 1 -1 29 0.333 0.333 0.333 1 0 1
5 0.000 0.000 1.000 1 1 -1 30 0.000 0.000 1.000 0 -1 1
6 0.000 0.000 1.000 -1 0 1 31 0.000 0.788 0.212 -1 1 -1
7 0.333 0.333 0.333 -1 -1 1 32 0.788 0.000 0.212 1 -1 -1
8 1.000 0.000 0.000 1 -1 1 33 0.212 0.000 0.788 1 -1 -1
9 0.000 1.000 0.000 1 1 -1 34 0.788 0.212 0.000 -1 -1 0

10 0.000 0.000 1.000 1 -1 0 35 0.000 0.212 0.788 -1 1 -1
11 0.500 0.500 0.000 1 -1 -1 36 0.333 0.333 0.333 0 1 0
12 1.000 0.000 0.000 1 1 -1 37 0.000 0.788 0.212 1 -1 -1
13 0.000 0.000 1.000 -1 1 0 38 0.788 0.000 0.212 -1 1 -1
14 0.500 0.000 0.500 1 0 0 39 0.000 0.000 1.000 1 1 1
15 0.000 1.000 0.000 1 -1 1 40 0.788 0.212 0.000 0 0 -1
16 1.000 0.000 0.000 -1 1 1 41 0.212 0.788 0.000 0 -1 1
17 1.000 0.000 0.000 -1 -1 -1 42 0.000 0.212 0.788 1 -1 1
18 0.000 1.000 0.000 -1 -1 -1 43 0.212 0.000 0.788 -1 1 -1
19 0.500 0.500 0.000 0 0 0 44 1.000 0.000 0.000 1 1 0
20 0.000 1.000 0.000 -1 1 1 45 1.000 0.000 0.000 0 -1 1
21 0.500 0.000 0.500 0 1 1 46 0.000 1.000 0.000 1 1 -1
22 0.000 0.788 0.212 -1 -1 1 47 0.000 1.000 0.000 -1 -1 -1
23 0.212 0.788 0.000 -1 0 0 48 0.000 1.000 0.000 -1 1 1
24 0.212 0.000 0.788 -1 0 1 49 0.000 0.212 0.788 1 0 -1
25 0.000 0.212 0.788 -1 -1 1 50 1.000 0.000 0.000 -1 0 -1

The points of the block B are searched on the set 8
2

, obtained as a full

combination of the levels [ O.OOOj 0.500; 1.000j 0.788: 0.212 0.333 1 of the
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mixture variables and [-1; 0; 1 ] of the process-variables. At the third stage
of the algorithm they are rearranged in decreasing order of the values of the
maximum variance of prediction d(n , n ) calculated sequentially for a designs

1 3

with 22, 23, 24 and 25 points and a model P l' The points 26...50 constitute a

sequence of designs found by the G-optimality criterion over the set S=S 1+S z

and a model P •
2

In the table 3 are given the values of variance of prediction and

det(FTF) for the different models and designs which can be obtained on the
base of the optimal composite sequential design.

TABLE 3

No det(FTF) det(FTF) d(n ,n ) d(nz,n)
"1'"3 "2'"3 1 3

21 2.706E -19 2.887
22 2.486E -19 2.861
23 1.991E -19 2.546
24 1.548E -19 2.545
25 1.233E -19 5.946E -35 2.312 5.334
26 1. 722E -19 1.413E -34 2.188 5.192
27 1.409E -19 3.405E -34 2.073 3.039
28 1.262E -19 5.540E -34 2.073 2.760
29 1.010E -19 8.663E -34 2.054 2.335
30 1.513E -19 1.238E -33 1.623 2.024
31 1.709E -19 1.650E -33 1. 477 1. 981
32 1.956E -19 2.224E -33 1.426 1.837
33 1.877E -19 2.923E -33 1.409 1.767
34 1.881E -19 3.834E -33 1.408 1.743
35 1.842E -19 5.094E -33 1.379 1.664
36 1.772E -19 6.711E -33 1.343 1.395
37 2.046E -19 8.104E -33 1.333 1.360
38 2.403E -19 9.818E -33 1. 317 1. 351
39 3.226E -19 1.206E -32 0.957 1.128
40 3.184E -19 1.362E -32 0.922 1.105
41 3.231E -19 1.546E -32 0.837 0.990
42 3.184E -19 1.685E -32 0.834 0.911
43 2.963E -19 1. 788E -32 0.823 0.882
44 3.328E -19 1.894E -32 0.823 0.853
45 3.785E -19 2.001E -32 0.786 0.812
46 4.262E -19 2.093E -32 0.729 0.808
47 4.689E -19 2.211E -32 0.721 0.804
48 5.186E -19 2.356E -32 0.708 0.787
49 5.175E -19 2.514E -32 0.677 0.739
50 5.559E -19 2.638E -32 0.662 0.712

Optimal sequential designs composite with respect to both kinds of
variables are constructed in the same way. The basic difference arises while
generating the sets of "candidate points".

On the base of the algorithm FDOPCMP a FORTRAN-77 program is developed.
The computer experiments are conducted on VAX 11/750 VMS computer. A catalogue
of optimal composite sequential designs is generated for polynomial models of
order n 1=2 and n

z
=3 for up to ten variables. The designs are composite with
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respect to mixture variables, process variables and both kind of variables.
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DESIGN OF EXPERIMENT SUPPLYING
TRAINING SAMPLE FOR PATTERN RECOGNITION

N. E. Hanolov,
Higher Inst.it,ut.e of" Chemical Technology,
Depart.ment. of" Aut.omat.ion, Sof"ia, Bulgaria

1. INTRODUCTION

There are many kinds of" object.s t.hat. can be invest.igat.ed by
means of" experiment.al designs. One of" t.hem is case when input.
variables are cont.inuous and one or several out.put.s are
discreet. (wit.h t.wo levels). In t.his case decision f"unct.ion
bet.ween 2 areas in t.he space of" input. variables x,
corresponding t.o 2 qualit.at.ive values of" out.put. may be
polynomial and it.s coef"f"icient.s may be est.imat.ed using pat.t.ern
recognit.ion met.hods. Of" import.ance is how many experiment.s will
be necessary t.o obt.ain a decision f"unct.ion, possessing a
sat.isf"act.ory predict.ive abilit.y. This paper proposes design of"
experiment.s, solving some specif"ic aspect.s of" t.he above
ment.ioned problem.

2. PROBLEM STATEMENT

Let. us assume, t.hat. we have t.o invest.igat.e an object. wit.h 2
condit.ions of" out.put.: y-1 or y--1, corresponding t.o 2
uncrossing areas of" ~ values Wi and W

z
in t.he mult.ivariat.e

space of" input.s. The problem of" describing such an object. by
polynomial decision f"unct.ion d(~).O such t.hat.

d(~,> < 0

d(~) > 0

if" ~e Wi and

can replace (1) by

(2)

vect.ors

squaresleast.

and

pat.t.ern

t.he

> 0, or fY equat.ion
y!.. ~ • y;, ;'=1.Z••.••Np

y!.. is a vect.or of" ciassif"ier, ~;, arey.>O,,

Let.

where

can be resolved by an i t.erat.ive version of"
met.hod, known as Ho-Kashyap algorit.hm (1965).

~T.{1,x ,x , .. ,x ,x x , .. ,x x ,x
z

, .. ,x
z

}
t. Z m t. Z m- t. m 1 m

and let. suppose ~ • -& if" ~ e W
z

.Then we

condit.ion y!"T~
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and Np t.he is number of pat.t.erns.
Let. mat.rix

x _ <x Ix 1•.. lx }T
-1 -Z """'Np

t.hen equalit.ies (2) may be writ.t.en as follows

x!!: - Y, (3)

(4)

pat.t.erns

supplying
account.

ofnumberequal

where y _ {y Iy 1••• ly }T. Now t.he unknown w can be est.imat.ed
1 % Np

by t.he following it.erat.ive procedure:

!!:<t) _ <X TX)-I XTy<1)

~<k) - X !!:<k)-y<k)

!!:<k+1) - w<k) + c <X
T
X)-I XT[e<k) + I~<k) IJ

y<k+1) - y<k) + c [~<k) + I~(k) IJ
where O<c::!:1; I~I is a vect.or, composed from t.he absolut.e
values of t.he component.s of ~ ; k is number of it.erat.ion.

Proof of it.s convergence is given by 80 and Kashyap (1966)
in t.he case of separabilit.y of t.he pat.t.erns.

Solv1ng t.he problem of design t.he experiment.
pat.t.erns for a learning procedure, we must. t.ake int.o
t.he following peculiarit.ies:
1.Experiment.al point.s <pat.t.erns) must. be locat.ed as near as
possible t.o t.he decision boundary bet.ween 2 areas in t.he space
of input. ~ <Fukunaga 1972).
2.We need an approximat.ely
corresponding t.o WI and W%·

It. is evident.,t.hat. we can't. t.ake int.o considerat.ion t.he
above condit.ions before we know t.he t.rue locat.ion of t.he
decision boundary. Therefore we come t.o t.he idea of sequent.ial
design of t.he t.raining experiment.s.

3. SIMPLE EXAMPLE FOR SEQUENTIAL DESIGN

Consider t.he sit.uat.ion where we have 2 independent. input.
variables x. limit.ed by condit.ions:,

x. . ::!: x ::!: X. i.=I.%
\."m\.n i ""max

(5)

Let. us asswne t.hat. 2 pat.t.erns ~(1) e WI and ~(2) e W
z

are known

and t.heir belonging are est.ablished by an experiment..Then we
can calculat.e t.he component.s of ~(3) so t.hat. ~<t>, ~(2) and
~(3) form a regular simplex. Now we est.ablish belonging of t.he
new pat.t.ern ~(3) t.o one of t.he t.wo classes by a new experiment..
Let. ~(3) e w

1
.Disposing of t.wo pat.t.erns from WI and one from W%

we can reflect. point. ~<t> replacing it. by a new point. ~(4) and
est.ablishing it.s belonging.So we can formulat.e t.he following
rules:
1.A point. from t.he current. simplex must. be reflect.ed, if it. is
not. unique in it.s own class.
2.We must. reflect. t.he older of t.he t.wo point.s having t.he same
belonging. in t.his way we always ensure t.wo apex of t.he simplex
from class W. and one from W., ill"!J, i,J-1,2.

, J
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(Reflect.ion, can be done usi~ t.he same formulae as in t.he
classical simplex met.hod.)

The mot.ion of t.he simplex cont.inues unt.il some of t.he
limit.s (5) are broken.

At. t.he end of t.his procedure, we dispose of t.he t.raini~

sample, sat.isfyi~ necessary condit.ions formulat.ed above
pat.t.erns are locat.ed near t.he t.rue boundary and t.he number
of observat.ions from each of 2 classes is approximat.ely equal
as is obvious from followi~ example.

Example 1

Let. -1~x. ~1,i.-1,2 and belo~i~ of 2 pat.t.erns is known
•

a1"t.er ~ experiment. respect.ively K(1)-<O.1 nTew1,
x(2)-<O.3 1} E(,)2. The result.s of a simulat.ed experiment. are
c;iven in a t.able 1. Second order polynomial is used as
decision funct.ion; w est.imat.ed by (4) a1"t.er 100 st.eps is:

'~Z-< -.179805 .305571 .363424 -.143261 -.130971 -.208544}

Table 1 Traini~ sample and experiment.al belo~i~ of pat.t.erns

No x x class No x x class
£ 2 £ 2

1 0.1 1.0 1 10 0.5 0.30718 2
2 0.3 1.0 2 11 0.4 0.13398 1
3 0.2 0.82679 2 12 0.6 0.13398 1
4 0.0 0.82679 1 13 0.7 0.30718 2
5 0.1 0.65359 1 14 0.8 0.13398 2
6 0.3 0.65359 2 15 0.7 -0.03923 1
7 0.2 0.48038 1 16 0.9 -0.03923 1
8 0.4 0.48038 2 17 1.0 0.13398 2
9 0.3 0.30718 1

The plot. of t.raini~ pat.t.erns and est.imat.ed decision funct.ion
is shown in Fic;ure 1.

F "p'Class 1 +1 x 0 0 Class 2

I 0
I

I I

and est.imat.ed decision
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4. GENERALIZED ALGORITHM FOR SEOUENTIAL DESIC3N

Despit.e i t.s simplicit.y t.his met.hod is only applicable t.o
2-dirnensional t.asks. In ,;eneral, we propose t.he f"ollowin,;
approach: An init.ial experiment.al desi,;n can be chosen af"t.er
t.he same considerat.ions as wit.h re,;ression problems.It. is
convenient. t.o use a D-opt.imal symmet.rical desi,;n. Af"t.er
applicat.ion of" Ho-Kashyap's procedure T we have Hrst.
approximat.ions of" decision f"unct.ion d<~)-w (1)x-0. Havin,; t.his
f"irst. approximat.ion of" ~ it. is clear, t.hat. we can bet.t.er
predict. t.he response of" t.he point.s, locat.ed f"ar away f"rom t.he
decision boundary,and t.here is t.h.f bi,;,;est. uncert.aint.y in
point.s, sat.isf"ytn,; t.he equalit.y ~ <1>~0. Consequent.ly we
shall ,;et. richest. inf"ormat.ion about. t.hlf object. maldn,; in next.
experiment. so as t.o sat.isf"y equalit.y ~ (1)~0. TThere are many
opt.ions f"or t.he choice of" point.s ~, sat.isf"ytn,; ~ (1)~0. One of"
t.hem is t.he D-opt.imal st.rat.e,;y t.he advant.a,;es of" which are well
known.

By increasin,; t.he number of" point.s we collect. a t.rainin,;
sample, in which t.he new point.s are sit.uat.ed closer and closer
t.o t.he needed decision f"unct.ion d<~). They carry much more
inf"ormat.ion t.han t.he old pat.t.erns, sit.uat.ed in a dist.ance. It.
is most. convenient. t.o use t.he value of" Id<~) I as closeness
measure. The pat.t.erns f"or which t.his measure is hi,;hest. could
be reject.ed f"rom t.he t.rainin,; sample and be replaced wit.h new
ones, bearin,; much more inf"ormat.ion. Thus t.he volume of" t.he
t.rainin,; sample remains const.ant., independent. by t.he number of"
experiment.s. This improves t.he conver,;ence of" procedure (4).
Thus we come t.o approximat.e equalit.y of" pat.t.erns number,
represent.in,; t.wo classes.

The above ment.ioned considerat.ions could be summarized in
t.he f"ollowin,; al,;orit.hm:

1. Chose t.he init.ial desi,;n and order of" decision f"unct.ion;
2. Carry out. an experiment. in t.he point.s of" init.ial desi,;n;
3. EsUmaUon of" ~<1> by Ho-Kashyap al,;orit.hm
4. If" e i. <0 f"or i.-1 ,2, ... ,Np order of" decision f"unct.ion is

inconvenient., t.hen ';0 t.o 1;
5. If" k-K t.hen st.op;

mClX

6. Generat.e a new point. ~<N+1> sat.isf"ytn,; condit.ion
T T
~ <k)~<N+k)-O, and such t.hat. IdeUX <N+k)X<N+k») I
t.o have maximal value; T

7. Reject. x such t.hat. I~ <k)~1 t.o have maximal value;
8. Carry out. an experiment. in t.he new point.; t.hen ';0 t.o 3.
<N is number of" point.s in t.he init.ial desi,;n; K mQX is

t.ot.al number of" i t.erat.ions)

Example 2

The al,;orit.hm considered above was t.est.ed by a simulat.ed
experiment.. Followin,; decision f"unct.ion was used:

d<x) - 0.2+O.1x -0.3x +0.4x x -0.5x
2
-O.2x

2
_0 (6)

- 1 2 12 1 Z

The desi,;n of" experiment., t.he be lon,;in,; of" point.s and
predict.ive abilit.y of" classiHer are ,;iven in t.able 2. Plot.s
of" t.rainin,; pat.t.erns, real and est.imat.ed decision f"unct.ions are
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shown in Fir;. 2. Est-irnat-ed classifier is:

!!.-< .779338 .353493 -1.16874 1.32043 -1.97171 -.543722:>T

Table 2 Traininr; sample, experiment-al belonr;inr; of pat-t-erns and
predict-ive abilit-y of esUrnat-ed classifier

No X
2

Class predict-ive No
abil it-y, (%)

X
2

Class predict-ive
abi 11 t-y, (%)

111 1
2 1 -1 1
3 -1 1 1
4 -1 -1 2
510 1
601 1
7 -1 0 1
8 0 -1 2
900 2

10 0.78 -1 1
11 -1 -0.35 1
12 -0.2 0.41 1
13 0 0.29 2
14 -1 -0.61 1
15 0.72 -1 1
16 -1 -0.72 1
17 0.64 0 2

91.2
91.5
92.0
92.1
88.2
90.3
92.0
93.5

18 -1 -0.79 2
19 0.7 -1 1
20 0.69 0 2
21 0.5 0.75 1
22 0.67 -1 1
23 0.64 -1 1
24 -0.45 0 2
25 -0.2 0.31 2
26 0.48 0.6 1
27 -0.52 0 2
28 0.79 -0.1 1
29 0.78 -0.1 1
30 0.3 0.59 2
31 -1.0 -0.75 2
32 0.64 -1 1
33 0.4 0.6 2
34 -0.54 0 2

95.6
95.2
96.5
96.9
97.3
97.4
97.7
98.0
98.6
98.9
98.8
99.1
98.7
98.9
99.1
99.2
99.1

IstiNt

°1
Class 2

X2
;jl-------,fH----+----_~-.

I +1

l
c---------,~l+--------lI:

Class 1
x

-1

FIGURE 2 Plot- of real, est-irnat-ed decision funct-ions and
t-raininr; sample

The above considered case is applicable for such obJect-s
for which t-he belonr;inr; of t-heir point-s depends only on K
coordinat-es and has not- any probabilist-ic charact-er. If d{x)-O
is t-rue t-hen P{Kew~)-1 for each K such t-hat- d{K»O. In t-he

t-asks exist-inr; in pract-ice t-here are many cases when P{Kew~)<1

alt-hour;h d{K»O and P is cont-inuous funct-ion of K. Usually, as
t-he Euclidean dist-ance bet-ween K and decision funct-ion
increases as t-he probabilit-y P{Kew~) is near t-o 1. St-at-isUcal

met-hods in t-he pat-t-ern recor;nit-ion are based on present-at-ion of
classes by t-heir condiUonal probabilit-y densit-ies P{¥wi.), so
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not. only t.he beloncinc of' t.he pat.t.erns but. t.he possibilit.y of'
apparit.ion of' each point. x has st.ochast.ic nat.ure. That. is why
t.he met.hods of' desi@;n of' experiment.s can not. be used in
st.at.ist.ical classi!'icat.ion t.asks in t.heir classical
f'ormulat.ion. Known are only a f'ew invest.i@;at.ions of' imluence
of' sample size t.o classi!'ier desi@;n (FukUll8l!:a and Hayes 1989).

Let. us suppose t.hat. t.he probabilit.y of' beloncinc of' ~ t.o
t.he class W1 chances f'ollowinc a normal dist.ribut.ion f'unct.ion
in t.he direct.ion of' t.he perpendicular t.o t.he surf'ace of' t.he
decision f'unct.ion

(7)

where IDC) is f'unct.ion of' normal dist.ribut.ion, a is st.andard
deviat.ion, and ~ is t.he nearest. point. t.o & such t.hat. d{~).O.

This point. can be f'ound by minimizat.ion of' dist.ance n~~ II
provided t.hat. d{~).O. La,;rance mult.ipliers can be used.

Let.s minimize f'unct.ion
m
E (x . - x.)2

i=1 O\. \.
(8)

where m is t.he number of' independent. input. variables x,
Consider t.he case when t.he order of' decision f'unct.ion is 2.Then
t.he part.ial derivat.ives J{~,~) and d{~) are as f'ollows

aJ{~,~o)/axi. • 2{xi.-x Oi.) (9)

i-1 m

(}d{~)/axi.· 111'0+ E wkixk + E wi.kx k+2wi.i.x i.
k: 1 k:i.·ot

Applyinc La,;rance mult.ipliers one can obt.ain
syst.em of' equat.ions:

(10)

i=1,2,,_ .. ,m

t.he f'ollowinc

{

2{x. -x )+ A{W + i.i:.
1

\. O\. 0
k:1

d{~) • 0

m

wki. x k+ E wi.kxk+ 2wi.i. xi. ) , 0
k:i.+1

(i=1,2, ... ,m)

{1i>

where A is a La,;rance mult.iplier. Af't.er some
t.ransf'ormat.ions of' (U),we @;et. a syst.em of' m+1 equat.ions. First.
m of' t.hem are linear wit.h respect. t.o ~.

A{A)~ • ~(A)

where A{A) is a mxm mat.rix

(12)

111'
12

111'
12

111'
1m

111'
2m

A{A)·

111'
1m

...... 2{1 + AW )
mm

<13 )
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x • <x
-0 01

X }T, W .(w .. _ W }T and W is mxm mat.rix,
Om --", I m

(14)

W • Bw, .1, J
i.i= 1.2 •...• m (15)

Now syst.em (11) can be writ.t.en as f'ollows:

{

<21 + AW)~ • ~<A)

d<~) • 0 (16)

One can f'ind t.he solut.ion x of' (16) by minimizinc t.he
absolut.e value Id<~) I wit.h respect. t.o A and solvinr; f'irst.
l1near part. of' a syst.em on each st.ep of' an it.erat.ive procedure.

It. is int.erest.inr; t.o t.est. above proposed sequent.ial
D-opt.inuU procedure t.o an object. such t.hat. probabil1t.y of'
belonr;inr; of' it.s out.put. t.o 2 classes chanr;es in t.he way
considered above. It. is evident. t.hat. if' t.his probabil1t.y
chances accordinr; t.o (7) and d<~).O, t.hen p<~ E WI)·P<~ e W

z
).

0.5, so t.here is t.he larcest. possibil1t.y of' error at. t.he
decision f'unct.ion surf'ace. The f'act. t.hat. P<~ E WI) > 0.5 f'or

each ~ locat.ed near decision boundary if' d<~) > 0 and P<~ E

W
z

) > 0.5 if' d<~) < 0 allows t.o collect. a t.rue inf'ormat.ion

about. t.he pat.t.ern's belonr;inr; when t.he sequent.ial procedure is
run. The separabil1t.y condit.ions can be violat.ed if' a point. has
a wronr; beloncine <f'or example, if' an experiment. shows t.hat.
~<k) e WI and d[~<k)] < 0, where k is t.he number of' it.erat.ions

of' sequent.ial desiCn procedure). Such a pat.t.ern will be
reject.ed f'rom t.he t.rainine sample and replaced by a new
experiment.al point.. When t.his procedure is f'inished at"t.er N
st.eps, we have an est.imat.e of' classif'ier !!<N).Then amone t.he
pat.t.erns, t.hat. had been present. in t.he t.rainine sample, we can
f'ind some point.s ~.r' t.hat. are classif'ied incorrect.ly by

!!<N).If' !!<N) is an unbiased est.imat.e of' t.rue value !! t.hen
est.imat.e

zs (17)

will be an est.imat.e of' a in (7); Ne is number of' pat.t.erns
classif'ied incorrect.ly.

One can use s f'or det.erminat.ion of' a conf'idence bound round
est.imat.e of' decision f'unct.ion d<~) • !!<N)T~. Thus t.he beloneine
of' t.he point.s, locat.ed in a dist.ance less t.han 2s will not. be
predict.ed rel1ably. Out. of' t.his area t.he probabilit.y of' errors
is pract.ically equal t.o O.

The numerical simulat.ion of' such an object. of'z invest.ieat.ion
is possible usine a random vect.or £_ N [O,I:!, I:-a I, where I is
an ident.if'y mat.rix. The beloneine of' x can be obt.ained provine
t.he siCn of' t.he f'unct.ion d<~£), and t.hen x is used in learninr;
procedure wit.hout. any chanr;es.
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Example 3

A numerical experiment. has been simulat.ed by usinr; a second
order decision f"wlCt.ion d{~.e:) of" 2 variablef and a random
vect.or .e: wit.h a covariance mat.rix E - a I, where 0-0.05.
loot.ial experiment.al desir;n is t.he same as in Example 2. The
main result.s are shown in t.he t.able 3. Plot.s of" wronr;-predict.ed
pat.t.erns, mat.hemat.ical expect.at.ion of" real decision f"Wlct.ion
(t.he same as in Example 2) and est.imat.ed decision f"Wlct.ion are
shown in Fir;ure 3. Est.imat.ed classif"ier !! af"t.er 120 experiment.s
is:

1.28382!! - {

Table 3
f"Wlct.ions

.582984 -1.77598

Predict.ive abilit.y of"

2.04184

est.imat.ed

-3.26945

and real

_ .927592}T

decision

Number of"
pat.t.erns

N

18
30
60
90

108
120

predict.ive
abi I i t.y of"
!!(N) , (X)

91.0
93.2
94.2
95.0
95.1
95.2

predict.ive
ab iIi t.y of"
d{~)-O (6)

96.1
96.1
96.1
96.1
96.1
96.1

Number of" wronr;
predict.ed s
pat.t.erns Ne

18 0.0183
15 0.0242
20 0.0207

...-------:X1-+t--------,
+1

Class 1

-1

X2
1-----1f'-----t-----+--flo

+1

FIOURE 3 Plot. of" real, est.imat.ed decision f"Wlct.ions and wronr;
classif"ied point.s
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FURTHER DEVELOPMENT
DISTRIBUTIONS

OF ALGORITHMS FOR CONSTRUCTING OPTIMIZING
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ABSTRACT

A class of multiplicative algorithms, indexed by functions which depend
on derivatives and a free parameter is proposed for constrained
maximization problems which require the calculation of an optimizing
probability distribution. The performance of the algorithm is investigated
in constructing D-optimal designs under optimal cho'ices of the parameter
and in constructing c-optimal designs starting from difficult initial
designs.

KEYWORDS: OPTIMIZATION, OPTIMIZING DISTRIBUTIONS, DIRECTIONAL DERIVATIVES.
OPTIMAL DESIGN, MULTIPLICATIVE ALGORITHMS.

1. INTRODUCTION

There are a variety of problems in the statistical arena which demand
the calculation of an optimizing probability distribution or measure and
hence are examp les of the general problems we consider. These include
maximum likelihood estimation problems and optimal regression design
problems. Also some results in probability theory can be established from
the solution to such problems (see Torsney (1986» and some approaches to
image processing or image reconstruction tasks generate examples in which
several optimizing distributions are sought (see Torsney (1988». Our
interest in this contribution is to explore a class of algorithms for the
solution of such problems which often cannot be obtained in closed form.
The problem of interest is formally defined in section 2 and optimality
conditions are given in section 3. In section 4 the class of algorithms is
proposed and properties of these are outlined in section 5. Results of
using them in optimal design problems are reported in sections 6 and 7.

2. A HIERARCHY OF PROBLEMS

We consider the following general problems.
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Problem (PU

"Maximise <pep) over I> - (p - (Pl' P2, ...• PJ): Pj > o. IPj - 1)".

Problem (P2)

"Maximise ~(X) over the convex hull of the points G(vl). G(v2).

G(vJ), where G(') is a given one to one function and \J - (vl. v2 •...• vJ)
is a known set of vector (or matrix) vertices of fixed dimension. That is.
solve (Pl) for

<pcp) - ~(Ep[G(v)l)' X - Ep[G(v)] - IPjG(Vj)'"

3. OPTIMALITY CONDITIONS

We focus attention on Problem (P2) and define optimality conditions in
terms of what might be called point to point directional derivatives.
3.1. Directional Derivatives

Let
f(X,Y,£) - ~«l-£)X + £Y)

F~(X.Yl - lim f(X.Y.£) - ~(X) df(X.Y.£)

I £-0+£!O £ d£

(2) d2f(X,Y,£)

IF~ (X,Y\ -
d£2 £-0+

Whittle (1973) called FIk{X,Y) the directional derivative of Ik(') at X in
the direction of Y. It is a derivative which can exist even if Ik(') is not
differentiable but we will in general wish to assume differentiability of

~(.) and then F~(X.Y) - (Y-X)Ta~;ax.

Let Fj - F~ (X.G(Vj))' We call Fj a vertex directional derivative of

~(.) at X. If ~(.) is differentiable, then so is the function
<pcp) - ~(Ep(G(v))), and

Fj - dj - ~_lPidi' dj - a.p;apj'

3.2. Conditions for Local Optimality

(a) If Ik(') is differentiable at X* - Ep*{G(v)},

maximum of ~(.) in the feasible region of problem

{

- 0, if Pj* > 0
FJ* - F~(X*. G(Vj))

(0. if Pj - 0

Fj * (2) - F/2) (X*. G(vj )} ( O. if Pj > 0

then Ik(X*) is a local

(P2) if.

(i) •

(11) .

See Whittle (1973) for a proof. If Ik(') is concave on its feasible region
then the first order stationarity condition (i) is both necessary and
sufficient for a solution to (P2), a result known as the General
Equivalence Theorem in Optimal Design.
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4. A CLASS OF ALGORITHM

Problems (PI) and (P2) have a distinctive set of constraints, namely
the variables PI, P2, PJ must be nonegative and sum to 1. An
iteration which neatly submits to these and has some respectable properties
is

(4.1)

wher~ .now dj - o,o/(JpjIP - p(r), while f(d,6) satisfies the following
condltlons:
(a) f(d,6) > 0;
(b) f(d,6) is strictly increasing in d for some set of 6-values, say 6>0;
(c) f(d,O) - constant T 0;
(d) the variable 6 is a free parameter.

This type of iteration was first proposed by Torsney (1977), taking

f(d,6) - d6 , with 6 > O. Subsequent empirical studies include Silvey et al

(1978), which is a study of the choice of 6 when f(d,6) - d6 , and Torsney

(1988), which mainly considers f(d,6) - e 6d in a variety of applications,
including estimation and image processing problems. We continue these
investigations exploring other choices of f(d,6) for which an approximate
optimal finite 6 can be determined.

Of course other iterations for problems like (P2) have been proposed.
Vertex direction algorithms which perturb one Pj and change the others
proportionately were first proposed by Fedorov (1972) and Wynn (1972).
These are useful when many of the Pj are zero at the optimum as happens in

design problems. At the other extreme, when all Pj are positive at the

optimum or when it has been established which are positive, constrained
steepest ascent or Newton type iterations may be appropriate. See Wu
(1978) and Atwood (1976,1980) on these respectively. It is in a context
intermediate to these, when only a few optimal weights might be zero that
iteration (4.1) is to be recommended in its raw form. See Torsney (1983)
for further discussion of this.

5. PROPERTIES OF PROPOSED ALGORITHM

5.1. General properties

Under the conditions imposed on f(d,h), iterations under (4.1) possess
the following properties.

(i) p(r) is always feasible.

(11) F<p{p(r). p(r+l)} ;;. 0 with equality when the dj corresponding to

nonzero Pj are equal (in which case p(r+l) - p(r». This can be seen by

letting a positive random variable Z take the value o,o/(Jpj with probability

Pj (Pj - Pj(r». Then

F<p(p(r), p(r+l» - Cov(Z,f(Z,6»jE{f(Z,6)}.

If f(Z,6) is increasing in Z it must have nonnegative covariance with Z.
This result implies that an increase in the criterion can be obtained by

stepping from p(r) to p(r+l) though it does not guarantee that <p(p(r+l) ;;.
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<p(p(r)) .

(i.ii) In relation to Problem (P2) let supp(p) - (Vj f ~ : Pj > 0) denote

the support of the distribution p. Under the above iteration supp(p(r+l))

~ supp(p(r».

(iv) An iterate per) is a fixed point of the iteration if the

derivatives a<p/apj(r) corresponding to nonzero Pj(r) share a common value.

This is a necessary but not a sufficient condition for per) to solve (Pl)

or (P2). Thus in view of the conditions for (local) optimality, a solution
to (P2) is a fixed point of the iteration but so also are the solutions to
(P2) for any subset of ~.

(v) Let g(o) - F(p(r), p(r+l». Then
g'(o) - Cov(D,G),

where
G - laf(D,o)/ao)/f(D,o)

- aQn(f(D,o»)/ao,
and D is a random variable taking the value dj with probability qj'
qj - Pjf(dj,o)/l:Pif(di,O).

5.2. Properties of Specific Cases

5.2.1. To begin with we consider the two choices f(d,o) - dO and f(d,o) 

e od together. These share two properties, namely:
(a) if there is a unique maximum derivative at p(r), say d t -

i3.,0/aptIP = p(r), then p(r+l) -+ et as 0 -+ co, where et is the tth unit
vector;

(b) g(o) - F(p(r),p(r+l)) is nondecreasing in O. The first property is
trivial. In respect of the second we note that the function G(D) of 5.1
(v) is given by G(D,o) - QnD and C(D,o) - D in the two cases respectively.
Both are increasing functions and therefore g'(o) - Cov(D,C(D,o» > O.

Note care must be taken in interpreting the latter. In the optimal
design context the vector et corresponds to a single point design. For a

number of optimal design criteria <p(et) - -co. The implication is that for

such criteria iteration (4.1) is unlikely to be monotonic and possibly not
convergent if 0 is large. In fact non-convergence occurs under the
following combinations:

J
<p(p) - ~j-1Pj' f(d,o) - dO, 0 - 2;

<p(p) - - ~_lPj-t, f(d,o) - dO, 0 - 2/(t+l);

In each case iterations oscillate between two values unless the initial
value is the optimizing p*, which is Pj* - l/J for each <pCp).

In contrast this optimum is attained in one step from any initial p(o)
if 0 - l,l/(t+l),l respectively in the three examples. An implication
would seem to be that iteration (4.1) would be convergent if not monotonic
at least for 0 < 1, 0 < l/(t+l), 0 < 1 in the three examples respectively.

For larger 0 we recall that properly 5.l(ii) only guarantees an increase in
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the criterion if we take a small enough step from per) to what we have

defined to be p (r+l). This would mean a different formula from (4.1) for
the next iterate. If we adopt such a method property (b) suggests taking
6 - 00. The revised iterative rule would then be a vertex direction one but

not a steepest ascent method since F~(X,y) depends on the distance between

X and Y. Cons trained steepest ascent techniques choose directions which
maximise normalised directional derivatives.

5.2.2. We again consider two cases of f(d,6), namely f(d,6) - Qn(e+6d) and
f(d,6) - F(6d) where F(x) is increasing in x and bounded above so that it
must have an asymptote as x ~ 00, Examples include cumulative distribution
functions. In these examples the following is true:

(a) p(r+l) ~ per) as 6 ~ 00;

(b) g(6) is maximised by some finite 6, say 6*.
The first is again trivial. It implies that g(oo) - g(O) - 0 since
F(p,p) - O. Given that g(6) ) 0 from 5.1(ii), property (b) follows.

It is a possibility then that convergence, if not monotonicity are
obtained for any 6. An optimal choice might be the 6* of (b). In general

there is no explicit formula for 6* in terms of per) and d - Op/apIP-p(r),
(terms on which it must depend), but we can suggest an approximation to it
in the case f(d,6) - F(6d). Recall that g' (6) is a covariance between a
random variable D and G(D,6) where G(D,6) - aQn{f(D,6)J/aD. Thus g'(6) is
likely to be zero if 6 is such that G(D,6) has a turning point in the range
of dl' ... , dJ.

Now
oG(d,6)/od - o2Qn{f(d,6)1/6do6,

and for f(d,6) - F(6d) this derivative has value H(x) where x - 6d and

A possibly simplistic suggestion is to approximate 6* by
by corresponding terms based on other moments of the di's.

H(x) _ F' (x)

F(x)

Let H(x*) - O.
6* = x*/2Pidi or

+
xF' I (x)

F(x)

x[F'(x)J 2

[F(x) ]2

We focus attention on this choice of 6 in the next section.

6. CONSTRUCTION OF OPTIMAL DESIGNS: EMPIRICAL RESULTS ON CONVERGENCE

6.1. We report the performance of iteration (4.1) in calculating D-optimal
designs when f(d,6) satisfies the conditions of section 5.2.2. and
6 - 6* - x*/2Pidi'

Optimal regression design problems are examples of (P2) in which

(i) V c Rk and is called the (induced) design space.
(ii) G(v) _ y yT.

(iii) X is a symmetric kxk matrix.
(iv) a variety of criteria ~(.) have been considered including

~(X) - Qndet(X) which is the D-optimal criterion.
We calculate D-optimal designs for five examples considered by Silvey

et al (1978) and Wu (1978). The examples are defined by their design
spaces.
Examp le 1. lJ - lJl - {( 1 , -1 , -1) T, ( 1, -1 , 1) T, (1, 1 , -1) T, (l, 2 , 2) TJ
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Example 2.

Example 3.

Example 4.

Example 5.

v - V2 - {(l,-l,-l)T, (l,-l,l)T, (l,l,-l)T, (l,2,3)T)

V - V3 - (l,-l,-2)T, (l,-l,l)T, (l,l,-l)T, (1.2,2)T)

V - V4 - (l,l,-l,-l)T, (l,-l,l,-l)T, (l,-l,-l,-l)T
(1,2,2,-1)T, (l,l,-l,l)T, (l,-l.S,l,l)T
(1,-1,-1,2)T)

V - Vs - V4 u (l,l,l.S,l)T)

In Tables 1-3 of section 7 we report the number of iterations needed to
achieve max Fj " lO-n, n-l,2,3,4 under three choices of f(d,6). It is

clear that on the whole convergence is slow in terms of numbers of
iterations. However arguably it is fast to begin with. It must be
remembered too that at each iteration only first derivatives are required.
One marginally positive result is that convergence is faster under the case
f(d,6) - c - exp(-od) with c-l.0001.
Convergence was slower for larger values of c. Interestingly if c~l and 6

is small then f(d,o) 7 od. Iterations are then approximately those

under f(d,6) - d. This suggests that f(d,o) - d is an efficient choice for
D-optimality. Certainly it is known to be monotonic for this criterion.

6.2. We have not addressed the topic of convergence of iteration (4.1).
So far only isolated results have been established in the literature, and
mainly on monotonicity. Titterington (1976) describes a proof of
monotonicity of f(d,6) - d in the case of D-optimality, while Torsney
(1983) establishes a sufficient condition for monotonicity of f(d,o) - dO
6 - 0t - l/(t+l) when the criterion .p(p) is a homogeneous function of
degree -t with positive derivatives, t>O. He further shows that this
condition is satisfied by linear design criteria such as the c-optimal and
A-optimal criteria. For these t-l so that 0t -~' Also the case f(d,6) -

d sometimes proves to yield EM iterations which are therefore monotonic and
convergent. See Dempster et al (1977). The EM algorithm is known to have
notoriously slow convergence. This also seems to be the case with
iteration (4.1). Silverman et al (1990) proposed a smoothed version of the
EM algorithm to improve convergence in stereo logy and emission tomography
problems, but convergence per se has not been proved. This too is the case
with iteration (4.1). The extent of the difficulty is emphasised by the
fact that Gaffke and Mather (1990) prove convergence of a wide class of
algorithms for design problems but they cannot fit iteration (4.1) into
their class. Of course convergence results must depend on properties of
the criterfon .p(p) , on the function f(d,o) and on O. We believe that if 0
is sufficiently small convergence and probably monotonicity will be assured
in a wide range of problems. Certainly this has happened in many examples.

In the absence of analytic progress we report some empirical results
obtained when using f(d,6) - d 1 / Z for constructing c-optimal designs under

fairly testing conditions. The form of this criterion is -cTX-c for a
given vector c. Pukelsheim and Torsney (1990) report that there always
exists a c-optimal design with a linearly independent support and given the
support points there is an explicit solution for the optimal weights. This
combines results of Fellman (1974) and Kitsos et al. (1988). Moreover
iteration (4.1) with f(d,6) - d 1 /2 will find this optimum in one step,
starting from a design which assigns weight only to the optimal support
points. More generally if an initial design p(o) has a linearly
independent support, this particular case of (4.1) will identify the
c-optimal design on this support in one step.

Consider c - (l,2,3)T in examples 1,2,3. In each case V contains four
points, say vl,v2,v3,v4' If vl,v2.v3,v4 represent the four design points
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of example I, then the support of the c-optimal design is \v2,v3,v4} with

optimal weights '072, '214, ,714. In example 2 the fourth point is the
only optimal support point. Finally if vI, v2, v3' v4 represent the four

design points of example 3, the optimal support is \vl,v2,v4} with weights

·2, '2, ,6. We started iteration (4.1) with f(d,6) - d 1 /2 from various
initial designs p(o), which put small weight on at least one of these

support points. These included permutations of p(o) - (0,0,0,(3), p(o) 

(0,0,(3,(3) and p(o) - (0,(3,(3,(3) with (3 (10-12 . At the first iteration the
algorithm irresistably moves immediately to the optimal design on the
subset of points receiving weight o. However the algorithm slowly moves
away from this and converges to the global optimum. Similar results were
found in the other two examples. It is hoped to produce analytic results
in the
future.

7. TABLES

In the followinl tables we report results when using three choices of
f(d.6) with 6 - 6 - X*/~Pidi (see section 5.2.2) in Examples 1-5 to
calculate D-optimal designs. In particular we record for n-l, 2,3,4 the
number of iterations needed to achieve Fj ( 10-n. for all j-l, ... ,J, where
Fj are the vertex directional derivatives. We note that 6* - x*/k for
D-optimality when U c Rk.

TABLE 1 f(d,6) - I2n(e+6d)

Example n-l n-2 n-3 n-4

1 6 25 50 75
2 6 41 89 141
3 6 24 45 66
4 18 121 339 714
5 13 190 488 880

TABLE 2 f(d,6) - exp(6d)/[1+exp(6d)]

Example n-l n-2 n-3 n-4

1 7 29 57 86
2 7 48 101 161
3 6 28 52 76
4 20 139 388 815
5 15 217 557 1004
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TABLE 3 f(d,a) - c - exp(-ad), c-l.OOOl

Example n-l n-2 n-3 n-4

1 1 7 14 22
2 3 13 27 43
3 2 7 13 19
4 6 39 109 229
5 5 61 157 283
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Adaptive estimation in linear regression model

and test of symmetry of residuals
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1 Introduction

Studies of efficiency go back nearly to the first years of this century. Hence it is not suprising
that on the Third Berkeley Symposium on Mathematical Statistics and Probability (in 1955)
Charles Stein opened the question of possibility of efficient testing and estimation under (com
pletely) unknown distribution (see Stein (1956) and for a possible solution Bickel (1982)). It
is clear that any such procedure requires (explicit or implicit) adaptation to the unknown un
derlying distribution, or in another words, less or more explicit estimation of (density of) the
unknown distribution (or some other function identifying the underlying distribution as for in
stance the logarithmic derivative). This yields - besides another difficulties - usually more time
and space consuming procedures than those of classical statistics are. Naturally we expect that
it will be paid back by some advantages, particularly by much better exploitation of information
brought by data.

When we think about this matter we usually (unconsciously) have in mind a (possible) low
efficiency of classical methods for "real" data. Really, already K. Pearson (1902) having collected
under highly uniform conditions series of data found that the best approximation of their d. f.
is Student t with 5 - 9 degrees of freedom and P. J. Huber came to conclusion that for some
kind of high-quality data it may be even 13. Together with the results of R. A. Fisher (1922)
that the asymptotic efficiency of (n _1)-1 L~=I(Xi - x)2 is for t9,t5 and t3 equal to 83 %, 40 %
and 0, respectively, it seemingly justifies this idea. However the loss of efficiency of modern
(appropriately selected robust) procedures is usually not so dramatic. E. g. for the mixture
model F(x) = (1 - E)~(X) + E~(x/3) - l' being standard normal distribution - the efficiency
of 6 %-trimmed mean is not less than 96 "0 for any E E [0,0.1] although the efficiency of mean
falls down to 70 % (for more complete discussion see Hampel et. al. (1986)).

So it seems that application of the adaptive procedures may be justified only in special
cases e. g. when there is a suspicion that the distribution could be rather strange (or level of
contamination considerably high). But then it is questionable wheat her the assumptions under
which the given adaptive procedure works hold. So it may seem at a first glance that (direct, i. e.
without preprocessing steps) adaptive procedures may be more theoretical matter than practical
tools. Nevertheless we shall try to show that at least in special cases adaptive procedures may
be useful.

Present paper offers two methods of adaptive estimation of linear regression model. A
common assumption for both of them is symmetry (of distribution of errors). Although the
symmetry (or at least precise symmetry) doesn't take place so frequently as it is sometimes
believed, if it can be assumed, it is advantage not only from technical point of view but it



134

may clarify also philosophy behind the mathematical theory. E. g. for location problem 
under symmetry - the mean (if exists), median, modus (if unimodal distribution) and center
of symmetry coincide and hence there is no problem what is to be understood under location
parameter and estimated. Moreover the experiences of practitioners with symmetry are so good
that sometimes they prefer to find (a simple) one-to-one transformation of data bringing them
to symmetry and only then they apply an estimating procedure (naturally with succeeding
retransformation). But even if we accept such kind of arguments we have to realize that the
situation for location model is much simpler than for regression model because we may e. g. test
whether the data are symmetric or not, or even we may estimate "a true" model.

Although today more and more people prefer such point of view that the objective existence
of "a true model" (or if you want "objective nature laws" together with possibility of separation
of them from the subjective role of observer) is only an illusion, the idea of "true model" - as
something what may be (asymptotically) reached - is used very frequently as a pragmatic license.
And for the location problem the situation with such license is not very complicated since there
are tests which say which mathematical models are - with high probability - incompatible with
given data and hence they can't serve as "true models". For the regression model the situation
is more complicated because there is usually at least a few competing models and it is on user
to select which he (or she) prefers. And not for all of them we have at hand tests reliably
(and sensefully) disqualifying inappropriate models (especially for the whole family of (robust)
methods one may invent a sequence of criteria to compare different models - see e. g. Ruppert
& Carroll (1980)). Most of such criteria will be inspired - may be very loosely and through a
long chain of considerations - by idea of "consistency" , i. e. by idea to be as near as possible to
the "true" model. Since most of new (robust) methods is (strongly or weakly) consistent under
rather general conditions (see Marona & Yohai (1981)) - although their estimates of coefficients
considerably differ (see e. g. estimates of regression model for Salinity data presented in Ruppert
and Carroll (1980) and also bellow in this paper) - this asymptotic property may occur to be
of little help for the finite sample situation. Then we may remember on the experience with
the symmetry and to prefer such model which assures symmetry (in a reasonable level, i. e. in
a such level which doesn't cause overdetermination). And we find (may be suprisingly) that
the symmetry was used when deriving properties of regression analysis methods many times
(see Bickel (1975), Rousseeuw and Yohai (1974), Ruppert and Carroll (1980), Yohai (1974)).
Moreover, even if we can dispense with the symmetry some results may simplify under it (see
Juretkova (1977) (and Huber (1969)) Remark after Corollary 3.1 or Hampel et. al. (1986)) or
become more intuitively acceptable. Let us mention only one example. The regression quantile
technique (as introduced by Koenker & Bassett (1978)) include as a special case L1 estimate (as
regression quantile for ct = t). But as Juretkova (1984) showed the difference of the estimate

of intercept and its value (strongly) converge to F-l (~) which is zero e. g. for symmetric d. f..

(For more detailed discussion see Yi~ek (1990).) Moreover some (highly) robust techniques (as
Least Median of Squares) are proved to be consistent under symmetry (Rousseeuw & Leroy
(1987)) and hence it may be useful - after having used them, usually for the first rough fit of
model, i.e. as a hint for smooth rejection of points - to test the symmetry of residuals (at least
of a bulk of data). But residuals are dependent although identically distributed and hence the
Wilcoxon test (as one possibility of test of symmetry) is out of game. That is why this paper
proposes a special test for symmetry of residuals.
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2 Notation

Let R be the real line and N the set of all positive integers. We shall consider a linear regression
model

Y = X(3° + e

where Y = (Y" ... ,Yn)' is a response variable X = {Xii}:I.~=1 is a design matrix (in the case

that the intercept is assumed we suppose Xii = 1 for i = 1, ... ,n), (30 = ((3~, ... ,(3~)' vector of
regression coefficients (unknown but fixed) and e = (el," ., en)' is a vector of i. i. d. (according to
a distribution G) random variables. (We assume that p ~ 2.) G is assumed to allow absolutely
continuous density 9 being symmetric. Moreover we suppose that Fisher information exists, is
finite and denote it by I(g).

Both estimators of regression coefficients as well as the test of symmetry will be based on
kernel estimator of density of residuals. So we need a necessary notation for it. Let Xi denote
i-th row of design matrix (i = 1, ... , n) and for any (3 E RP let ei((3) = Yi - X i(3 be i-th residual;
for (3 = (30 let us write simply ei (instead of ei((3°)). Let w be a symmetric and everywhere
positive kernel and {cn}~=1 10. Denote for any y E R, Y E Rn and (3 E RP

gn(Y. Y,(3) = _1 t w (c;:;l(y - ei((3)))
nCn i=l

the kernel estimator of density of residuals. We shall assume that w is symmetric, three times
absolutely continuous and that there exist constants K I, ...• K5 such that

sup w(y) < K,.
vER

Iw"(y)1
sup -(-)- < K3 •
vER w yL: X w(x)dx = 0,

Iw'(y)1
sup -(-)- < K2.
vER w y

Iw"'(y)1
sup -(-)- < K.,
vER w Y

lim x· w(x) = 0
Izl-oo

and for any n E N
max IXiil < Ks.

,='l n
;;L ,p

3 Estimator based on Hellinger distance

For a sequence of positive numbers {an}~=1 /00 denote by bn(y) a symmetric differentiable
function such that for all y E R. 0 ~ bn(y) ~ 1 and

)yl 'S an.

Definition 1. For any Y E Rn put

,an(y) = argmax!lERP j gJ (y'y.(3)gJ(-y, Y. (3)bn(y)dy.

If there is no such point then put fin(y) equal to any i3 E RP such that

j gJ(y,y,,B)gJ(-y,Y,,B) > sup gJ(y,Y,(3)gJ(-y,Y.(3)bn(y)dy-'£,
!lERp n
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Denote for any a, b E R by Cpra, 13°) = {f3 E RP: \113 - 13°11 > a} and by

Condition A. For any 8 > 0 there is A E (0,1) and K(;. E R such that
i)

lim sup sup ! E4 gn(Y, Y, ,B)E4 gn( -Y, Y, (3)bn(y)dy < A
n-oo Cp (6,K"" ,13°)

and
ii)

lim sup sup ! gJ (y, Y, (3)g~ (-y, Y, (3)bn(y)dy < A in probability.
n_oo Cp(K"",I30)

Theorem 1. Let Condition A be fulfilled and

lim nCn = 00
n-oo

and

Then pn (Y) is (weakly) consistent estimator of 13°.

Theorem 2. Let there is MER such that

sUPlg'(y)11 < M
yER

and
limsupg(an)/cn = O.

n_oo

Further let

and Condition A be fulfilled. Then

p n n

n-4[(g) L (Pl'- f3~) LXil = n-4 Lg' (Yo - X.(30) g-1 (Yo - X.(30) + op(l).
l=l .=1 i=1

Since the proofs of both Theorems are long (in both cases they are chains of simple but tedious
approximations) we give only a hint of it in a form of sequence of lemmas proofs of which are
either simple or references will be given. (We shall assume that assumptions of Theorem 1 and
2 hold in the rest of this chapter.)

Lemma 1. For any 13 E RP

Lemma 2.

in probability.



LelllIIla 3. For any {3 E RP and k = 1, ... ,p we have

8 f ! !8{3k g~ (y, Y, {3)g~ (-Y, Y, {3)bn(y )dy =
!

2· f 8g~ (y, Y, {3) ~ (- Y {3)b ( )d8{3k gn y" n Y y.

LelllIIla 4. For any {3 E RP and k = 1, ... ,p

f [ 8 ~ ( ) 8 1 ( )] 2 () _ (-I -3 )8{3k gn y, Y,{3 - 8{3k E2gn y, Y,{3 bn y dy - Op n Cn an .

LelllIIla 5. For any k, l = 1, ... , p

LelllIIla 6. For any k, l = 1, ... ,p

LelllIIla 7. For any k, l = 1, ... , P

LelllIIla 8. For any k = 1, ... ,p

_ 8Et gn (y, y,{30)] x
8{3k

Etgn(-y, Y,{3°)] bn(y)1 dy = Op (n- 1c;;-2 an ).

137



138

Lemma 9. For any k = 1, ... ,p

oEtgn(y, y,{3D)] Et ( yaD)
o{3k gn y, ,I'

Etgn(y, y,{3D)] } bn(y) = op(1).

Lemma 10. (Beran (1978))

r -3 f If W' (C~l(y - z)) g(z)dz]2 d - I( )
n.!..~ Cn JW(c;;-l(y - z)) g(z)dz Y - 9

Lemma 11. (Beran (1978))

t f oEtgn(y, y,{3D) [1( y aD) _ Et ( Y aD)] b ( )d" o{3k gn y, , I' gn y, ,I' n Y Y

1 _1 [Li-l Iik] ~ , ( X aD) -1 (y. aD) ( )= 2" 2 n L 9 Yi - il' 9 i-XiI' + op 1 .
1=1

For the full proofs of all assertions see Vi~ek (1990a). The proof of the Theorem 1 is based on
idea of coverage of a compact ball (with radius Kli. - see Condition Aii)) by balls of uniform
continuity of the functional (from Definition 1). At centers of these balls - due to Condition A i)
and Lemma 1 - the functional can be "made" enough small (except of ball with center at (3D).
The proof of the Theorem 2 utilizes the fact that under its conditions (and common assumptions
on 9 and w) we have for /3n (and k = 1,. ,p)

f [OgJ (y, Y, (3)] 4( y an)d = 0
oa gn y, ,I' Y

I'k •
13=13"

and using the standard technique of Taylor's expansion together with Lemmas 1 - 11 we arrive
at the required assertion.

4 Maximum-likelihood-like estimator

In what follows let jjn denote a preliminary estimator of regression coefficients and denote by ei
residuals ei (.en). For a sequence {an}::'=l of a positive number, an / (Xl define

Condition B. Let for some 5 E [~, !]
and
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Moreover let

and preliminary estimator is assumed to be such that for any j = 1, ... n; i = 1, ... , n, t E

R, s E R

Condition C. Let for any a E R

lim sup n-!c;;2! w- I (c;;l(z + b - t)) g(t)g(z)dtdz = O.
n-oo Ibl<a

Further let there exist 1/, D (1/ > 0, D> 0) such that for any Zl, Z2 E R, IZI - Z2! < 1/ we have
w(Z.)/W(Z2) < D. Let

lim .!.X'X =Q
"-00 n

where Q is a regular matrix.

Definition 2. For any sequence {d"}~=l 1 0 denote by

9 ({d"}~=l) = {h; his a density and for anyn EN

Ph { max {~~~ Ig,,(y, Y,f30) - h(y) I, :~~ Ig,,(y, Y,f3o) - Ehg,,(y, Y, 13°) I} > ~d,,} < d" } .

Definition 3. For any Y E Rn put

r (Y) = argmax~ERP IT g" (ej(f3J, Y,.8") b" (ej) .
j=l

." -
Again, if such point does not exist let /3 be any point .8 for which

Condition D. Let
. dn

11m - = 00.
"-00 en

Further let us assume that there is a constant KG such that

Let 9 E 9 ({dn}~= 1) and- the above given sequence {an} ~=1 be chosen so (and 9 be of such type)
that starting from some no E N we have for any n :::>: no

(-2a",2a,,) C {y E R: g(y) > d~ } .
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Finally let

Condition E. Let the density 9 and the kernel w be such that for any t > 0

J[g'(t - y) - g'(t)] w(y)dy > 0

and let there is M > 0 such that
sup 19'(y)1 < M.
yEn

Remark. Although the above given Conditions B - E may seem at a first glance rather
restrictive they can be fulfilled for rather broad class of distributions. The details were described
in Vgek (1990 b).

'n
Theorem 3. Let Conditions B - E holds. Then i3 (Y) is (weakly) consistent estimator of
13° and the following representation takes place for any k = 1, ... ,p

Corollary.

f. ( n-! (.an - 13°) X' X) n~ N (0, Q . r I (g)) .

We give again some hint for the proof of Theorem 3 and of Corollary. (We shall again assume
that the assumptions of Theorem 3 hold through this chapter.)

Lemma 12. Let Q be a regular and symmetric matrix. For any w > 0 denote

Z'" = {z E RP: liz!! =w}. Then
min z'Qz > o.
zEZw

Lemma 13. Let \' be a matrix {Vkl};=l~=l such that there is a C > 0 such that for any nE N

.~axn IVkll < C
l=1. ... ,,..

and limn_co ~V'V = Q where Q is a regular matrix. Then for any w > 0 there are A > 0, T > 0
and no E N such that for any zE RP, Ilzll ~ wand n ~ no we have

# {k: kE{l, ... ,n}; IEVklZll>A}~n'T

(where # A denotes the number of elements of the set A).

Lemma 14. Let flu) be a convex function on (0,00) and gl,g2 densities on (-00,00) such that
92(X)/gl(X) is increasing on (-00,00). Then there is a nondecreasing function <p(u) on (0,00)
such that



Lemma 16. (Csorgo, Revesz (1981) Lemma 6.1.2 and Theorem 6.2.1.)

sup !E9n(Y, Y,,8°) - g(y)1 = O(c~),
yER

sup var c,:;-lw (c,:;-l(y - z)) = c,:;-l
yER

where variation is taken over z E R. If moreover for any y E R

lim c,:;-lw (c,:;-l(y - z)) [C(z) log logC-1(z)] 4 =
z-oo

lim c,:;-lw (c,:;-l(y - z)) [(1 - C(z)) log log(1 - C(zW 1] 4 = 0
%--00

then
lim sup !gn(y, Y, ,80) - g(y) I= 0 a. e. g.

"-00 yER

Lemma 17.

n- 1c,:;-3 t J[w" (c,:;-l(y - eil) - Ew" (c,:;-l(y - ei))] bn(y)dy = op(l)
i=l
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Lemma 18.

Lemma 19. For any k, t. = 1, ... ,p we have

and
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Lenuna 20. For any k = 1, ... , p we have

_1 -I~ [I:i=1 W' (c;;-I(ej - ei))
n >cn L.J Xjk "n (I ( _ ))

j=1 L..i=1 W cn ej - ei

f W' (c;;-I(ej - z)) 9(Z)dZ] bn(e-) = a (1).
f W(c;;l(ej - z)) g(z)dz 1 P

Lenuna 21. The asymptotic distribution of

{

_1 -I~ fw'(c;;-I(ej - z))g(z)dz b ( )}
n >c L.JX·k e·n ]=1 1 f w (c;;l(ej - z)) g(z)dz n 1 _

k-I, . .,p

is N(O,Q' leg)).

Full proofs of all assertions may be found in Vi~ek (1990 b). The proofs of Theorem 3 and
of Corollary use the same technique as the proofs of Theorem 1 and 2 but the approximations
are now based also on Lemmas 12 - 21.

5 Test of symmetry of residuals

In this chapter we shall propose a measure of symmetry of residuals based on an idea similar to
Hellinger distance is based on.

It was mentioned several times that robust statistics is the statistics of the bulk of data and
the rest - possibly outliers - should be (smoothly) rejected (e. g. Hampel et. al. (1986)). The
above proposed methods also "reject" (by means of functions bn(y) and hence not smoothly)
some part of observational space. But this is a technical matter just allowing to cope with tails
of the estimator 0'[ density in the region where we have no data. Hence this rejection doesn't
lead - in applications - to rejection of any data. Nevertheless it is clear that from the idea
of adaptation it follows that some data (being in the tails of estimated density) are - in some
sense - "smoothly rejected" since they are in the region of small values of estimate of density.
The idea of "smooth rejection" or "construction a model for the main mass of data" may be
emphasized by considering as a measure of symmetry or residuals the following statistics

- Ja" [ 1 1 ] 2Hn(Y,,8) = n· -a" g~(y,Y,,8) - g~(-y,Y,,8) gn(y,Y,,8)dy

where we assume {an}::"=1 / 00 and

It is clear that although Hn(Y,,8) seems to be "asymmetric" for

Hn(Y,,8) = _n f~;" [gJ (y, Y,,8) - gJ (-y, y,,8)] 2 gn( -y, Y, ,8)dy we have from the Lemma 24

Hn(Y,,8) - Hn(Y,,8) = op(l).
Through this chapter we shall assume that there is V E R such that

supg(y) < V < 00.
vEIl
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Theorem 4. The asymptotic distribution of

where
1 /00mn = -. C;;-l w2 (z)dz
2 -00

and

is N(O, 1).

For the proof of Theorem we prepare a few lemmas. (We shall utilize the function bn(y)
from the previous chapter, i. e. bn(y) = 1 for Iyl :S an and equal to zero otherwise. Let us recall
also that we have assumed sUPzER w(x) < Kd

Lemma 22.

I: I: w(z)w (z - 2c;;-lt) 9 (t - cnz) bn (t - cnz) dtdz = 0(1).

Proof. Fix an e > 0, find T so that for Izl > T w(z) < e and Ilz1>T w(z)dz < e· K11 and finally

select no E N such' that for n 2: no Cn < {T- 2
, 4e 2 K I 2V- 2

}. Then for n 2: no and It I > c~ we
have 2lc;;-ltl > 2T, i. e. for Izi < T Iz - c;;-ltl > T and it implies that

r w(z) r ! w (z - 2c;;-lt) 9 (t - cnz) dtdz
11z l<T 1Itl>'"

:S e r w(z) r ! 9 (t - cnz) dtdz :S e
11z l<T 1Itl>'"

and also

r w(z) r ! w (z - 2c;;-lt) 9 (t - cnz) dtdz
11z l>T 1Itl>'"

:S K1 r w(z) {/oo 9(Y)d(Y)} dz :S e.
11z l>T -00

On the other hand

/00 w(z)l \w(Z-2c;;-lt)g(t-cnz)dtdz-00 Itl<',;

:S V· Kl . 2c~ ·1: w(z)dz = 2· V· K 1 • c~ < e.

Lemma 23. The asymptotic distribution of
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is N(O, 1) where mn = 2· c;;-l f~oo w2(z)dz and

ton = 8· c;;-l L: g2(r)dr L: {L: w(z)w(v + Z)dZ} 2 dv.

Proof: Let Gn(y) denote empirical distribution function and put Bn(t) = yin [Gn(invG(t)) - tl.
Moreover denote tPn(x, y) = c;;-l {w (c;;-l (x - y)) - w (c;;-l (x + y))}. Then we have

vn {gn(y, Y, {30) - gn( -y, Y, {30)} =

n-~ {{ Bn(t)dttPn(y,invG(t)) - { Bn(t)dttPn(-y,invG(t))}

(see Csorgo, Revesz p. 223). Now, following again Csc5rgc5, Revesz, p. 227, denote

~n(x, y) = tPn(x, y) - tPn( -x, y)

and put

r~(x) = { ~n(x,y)dW(y)

where W is the Wiener process. Finally let R'(t, s) = Er'(t)r'(s). Then we have

R'(t, s) =L: ~n(t, Y)~n(s, y)g(y)dy

and denote

~~ = 2· L:L: [R'(t, s)1
2

dtds.andmn = L: R~(t, t)dt

Then we find that

mn 2· c~l L:L: {w2 (c~l(t - y)) - w (c;;-l(t - y)) w (c;;-l(t + y))} g(y)dydt =

2· c~l L:L: {w2(z) - w(z)w (z - 2c~lt)} 9 (t - cnz) dtdz =

2· c;;l {L: w2(z)dz + 0(1) }

the last step being implied by the previous lemma. Similarly for to~ we obtain successively

L:L: {c;;2 L: w (c;;l(t - y)) w (c;;-I(S - y)) 9(Y)dY}2dtds

= c;;l L: g2(r)dr L: {L: w(z)w(v + z)dZ} 2dv

and evaluation of

gives the same result. To be able to use Csorgo, Revesz, Theorem 6.1.4 we need to verify 6.1.14
of their book. We may write for any h(t) E £2

L: [L: {c;;2 L: w (c;;l(t - y)) w (c;;-l(s - y)) 9(Y)dY} h(t)dtf ds

L: [L: L: w(z)w(v + z)g (s - cnv - cnz) dzh (s - cnv) dV] 2 ds = 0(1)
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and the proof follows (compare Csorgo, Revesz, 6.1.24).

LelIlIIla 24.

and

'Proof: By the Schwarz inequality we find an upper bound of the squared value of the left
hand-side (using the fact that Egn(y, Y, ,80) = Egn(-Y, Y, ,80)) in a form

n2f:
n

[gJ (y, Y, ,80) - E~ gn(Y, Y, ,80) - gJ (-Y, Y, ,80) + E~ gn(Y, Y, ,80)r.Egn(y, Y, ,8°)dy x

x f:
n

[gn(Y, Y, ,80) - Egn(y, Y,,8°)rE-1gn(y, Y, ,8°)dy. (l)

Now the first member may be bounded by

Jan [[ ! ° 1 °]4 [! ° 1 °]4] °8· -an g~(y'y,,8) - E'ign(y,Y,,8) + g~(-y,Y,,8) - E'ign(-y,Y,,8) Egn(y,Y,,8 )dy

We shall use inequality (a - b)2 ~ b-2 (a2 - b2)2 which holds for a 2 0 and b > O. We obtain
again upper bound for the first summand of the last expression

8 fann E-1gn(y, Y, ,80) [gn(Y, Y, ,80) - Egn(y, Y, ,80)rdy ~

~ 8. Jan E-1gn {~E[W - Ew]4 + 26 4 {E[w _ Ew]2} 2} dy.
-an n en n en

Now

E[w - Ew]4 ~ E[w - Ew]2[w + Ew]2 ~ 4 b~w(z)r E[w - Ew]2

~ 4· sup 2w(z)Ew2 ~ 4· sup 3 Ew = 4· Cn . sup 3w(z)Egn.
~R ~R ~R

In a similar way we arrive at

{ 2} 2 3E[w - Ew] ~ C"sup w(z)Egn.
zER

Hence the first member of (1) (taking into account also n2 ) has order Op (c;;3 an ). For the second
member we may derive (along similar lines) the order Op (n-1c;;lan ). Taking now into account
the fact that we have investigated the squared upper bound we obtain the first assertion of
Lemma. The proof of the second one is similar.

Proof of Theorem 4: Due to previous Lemma we have
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Making use of equality

gJ(y,Y,,8) - E!gn(y,Y,,8) = ~ {gn(y,y,,8) - Egn(y,Y,,8)-

- [gJ (y, Y,,8) - E! gn(y, Y,,8)r} E-! gn(y, Y,,8)

and the fact that (see the proof of previous Lemma)

fa'. [gn(y, Y, ,80) - Egn(y, Y, ,80)] [gj (y, Y, ,80) - E!gn(y, Y, ,80)rdy = Op (n-! e;;-2 an)

as well as

fa'. [g,t (y, Y,,8°) - E!gn(y, Y,,8°)r[g,t (-y, Y,,8°) - E!gn( -y, Y,,8°)rdy = Op (n- 1e;;-2 an )

we arrive at

. ° _n fa. [0 °]2 ( _1 -2 )Hn(y,,8) - - gn(y,Y,,8) -gn(-y,Y,,8) dy+Op n 2en an .
4 -a.

Now the proof follows from the Lemma 23.

Remark. Unfortunately the practical experiences with ifn has revealed that "smooth rejection"
by means of gn(y, Y,,8) is not the luckiest choice. The better is to take as a measure of symmetry

Hn(Y,,8) = n fa: [gj (y, Y,,8) - gj (-y, Y,,8)rgj (y, Y, ,8)dy.

The only difference is that we are not able to give explicite expressions for the moments of this
statistics and hence the moments have to be estimated from data (by numerical integration).
An analogy of the Theorem 4 can be given in the form:

Theorem 4'. The asymptotic distribution of

~;;-l {Hn(Y,,80) - m n}

where
m n = ~e~~ I J w

2
(e;;-l(z - y))g(y)dY

l
dz

2 If w (e;;-l(z - y))g(y)dy] 2

and
~~ = ~e;;-2 /00 /00 {f w (e;;-I(z - y)) w (e;;-I(s - y))g(y)dy}2 Idsdz

2 -00 -00 (fw(e;;-l(z - y))g(y)dyJw(e;;-l(s - y))g(y)dy}2
is N(O,1).

The proof may be carried out along the similar lines as the proof of the Theorem 4.

Remark. To use as a measure of symmetry just the Hellinger distance

H Dn(Y,,8) = n· fa'. [gj (y, Y,,8) - gj (-y, Y,,8)rdy

brings some difficulties since e. g.

I J w2 (e,:;-I(x - y))g(y)dy dx
Jw(e;;-l(x- y))g(y)dy

may be infinite (e. g. for normal as well as exponential kernel and g(y) = ~ exp{ -Ixl} this
integral is really infinite; on the other hand for normal kernel and norma) density it is equal to
e;;-1(1+e~)).
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6 Numerical illustration

In this section we illustrate on the numerical examples the above given results. Two sets of
data where used. The first is known from literature as Salinity Data (see Brownlee (1965) or
Rousseeuw, Leroy (1987) and for results also Ruppert, Carroll (1980) and again Rousseeuw,
Leroy (1987)). The second sample of data was simulated.

Example 1. Let us explain notation of the first table. The first column contains codes of
methods: LS - Least Squares; L1 - Least Absolute Deviations; ,BKB(a) - Trimmed Least
Squares i.e. after trimming off points "under" 100a % regrenssion quantile (of Koenker &
Bassett (1978)) as well as points "above" 100 (1- a) % regression quantile the LS were applied;
,BPE(RQI0) - finding 10 % and 90 % regression quantiles (,810 and ,890), the preliminary estimate
[J = ~ (,810 + ,890) was considered for which residuals were evaluated, then 10% of the smallest
and 10 % of the largest residuals (or more precisely points with these residuals) were cut off and
finally LS were applied; Huber - M-estimate with "'(x) = signx· min{lxl, 1.25} (1.483.MAD
as a scale estimate was used); Andrews - M-estimate with "'(x) = sine(x). I{l z l<1I'} (MAD as a
scale estimate was used); LMS - Least Median of Squares; LTS - Least Trimmed Squares (i. e.

,B = argmin { L:~= 1(Y - X ,8)1", h = [~] + [~] }); Adaptive - adaptive estimator based on
Hellinger distance was used as a preliminary estimate for Maximum-likelihood-like estimator.
The next four columns present values of estimate of corresponding regression coefficients (i. e. for
Intercept, Lagged Salinity, Trend and Discharge). The sixth column gathers values of medians
of absolute values of residuals (MAD). The seventh one offers values of interquartile range, last
but one the values of H,,(Y,,8) and finally the last one corresponding values of standard normal
distribution (for H,,(Y,,8)).

TAB. 1. SALINITY DATA

CODE INTER- SALLAG TREND DIS- MAD IQR H,,(Y, ,8) P-value
CEPT CHARGE

LS 9.59 .777 -.026 -.295 .72 1.38 .096 .538
L1 14.21 .740 -.111 -.458 .50 .98 .857 .804

,BKB(.15) 9.69 .800 -.128 -.290 .67 1.36 .251 .599
,BPE(RQI0) 14.49 .774 -.160 -.488 .60 1.05 .541 .704
Huber 13.36 .756 -.094 -.439 .56 1.02 .900 .816
Andrews 17.22 .733 -.196 -.578 .47 .83 .596 .724
LMS 36.70 .365 -.703 -1.298 .36 1.78 1.175 .880
LTS 35.54 .436 -.061 -1.277 .47 1.38 2.522 .994
Adaptive 9.59 .777 -0.30 -.294 .71 1.37 .086 .527

Let us mention that the data are such that even LS applied on the whole sample has
coefficient of determination equal to 82,6 %. The use of a robust method for the estimation of
model may be justified by (considerable) decrease of dispersion of the main part of residuals. On
the other hand the prize we have paid for it is a "decline" of symmetry of residuals (on which
e. g. consistency of LMS is based on).

Example 2. Simulated Symmetric Data. The regression model with the zero intercept and
slope equal to one was considered. The sample of 56 number from N(0,1.3) was repeatedly
(250 times) generated and the sample with the smallest value of Hellinger distance between the
kernel estimate of density of generated data and the kernel estimate of density of data with
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opposite signs was used as a "noise" to create simulated data (data are presented (below) only
graphically but available from the author of the present paper). Notation in table is the same
as above. The only difference is in the code notation ~KB(.10WIN) which means that the
winsorising was used instead of the trimming of points.

TAB. 2. SIMULATED SYMMETRIC DATA

CODE
LS
L 1

PKB(.1O)
PKB(.1OW IN)
PPE(RQ, .10)
LMS
LTS
Adaptive

INTERCEPT
-.375
-.017

-.025

-.227

-.263
.056
.007
.001

Slope
-.019
.500

.668

.588

.661

.466

.638
1.000

MAD
1.26
.61

.79

.73

.77

.61

.79
1.10

IQR
2.36
1.44

1.53

1.44

1.54
1.44
1.52
2.19

H,,(Y, f3)
7.721
3.772

1.500

4.392

4.856
3.067
1.530
-.507

P-value
1.000
.999

.933

1.000
1.000

.999
937
.306

TAB. 2 shows that the only method which estimated true model was the adaptive one - due
to fact that is had fully utilized the information of symmetry of residuals.

•
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7 Conclusion

The above proposed methods are a little more time consuming than the common (even robust)
ones. But as the above example proofs the required extratime may pay back.

The proposed measure of symmetry may be also used as a characteristic of stability of model
(an analogy of the coefficient of determination). Its drawback is that the moments of asymptotic
distribution are not very easy evaluable. In the present study normal approximations were used:
The problem deserves some further studies. The author intents to carry out such study in the
next paper.
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LEAST SQUARES ESTIMATION IN ALMOST-LINEAR REGRESSION MODEL

Boris P. Kovachev
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Bulgarian Academy of SciencesJ 1113 SofiaJ BULGARIA

1. INTRODUCTION

Efron (1975) introduces balic geometricalstrudures of one-parameter curved exponen
tial families. Bates and WaUs (1980) discUBB the effect of parameter transformations in
non-linear regression model and inb'oduce intrinsic and parameter-effed curvature in
order to elucidate its non-linearity. The higher-order geometrical uymptotic theory of
statistical estimators however is constructed only for exponential families of distribu
tions (Amari 1982J1985). The explanation is thai the regular family of distributions is
exponential if and only if a finite-dimensional BUfilcient statistic exists.

The almost-linear regression models (ALRM) are introduced by Kovachev (1989a). It
is Pl'OV'ed that a finite-dimensional sWlicient statistic exists for a non-linear regression
model with normal distributed error iff it is ALRMJ (Kovachev 1988). We put ourselves
the task to show that in the class of all regression models the almost-linear model plays
the same role aI the exponential families in the clus of all probability distributions. In
that sense the linear regression models correspond to exponential-type distributions.

A. it is shown by Kovachev (1989b) even in case of error with non-GaUSBian distribution
ALRM hal charaderistics which enable to construd suitable differential- geometrical
strudures. The ideal are similar to those developed by Amari (1985) for curved ex
ponential families. The strudures so defined lead to some higher- order uymptotic
properiies of the estimators. In the present paper first- J second- and third- order ef
ficiency of the least squares estimator (LSE) in ALRM are derived. An accelerated
double- step least squares estimaiion procedure for ALRM based on its geometrical
strudure is proposed.

2. TBEMODEL

Let '1 JY2J "'J'H be independent random variables which can be expressed as

~ =r<Pi,u) +Ii (1)

where r(p, u) is a regression function of the predictors Pl,l'2J ""PH and of the vector
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parameter u = (Ut, ..., u.m)'EU CR"'. 6t, 62, ...,&N are independent random variables
which satisfy the conditions:

E&i=O, Et!f=(Tl, Eq=O, i=I,2, ...,N. (2)

The variances (Ti, i = I,~ ..., N are supposed io be uniformly bounded by some positive
coutant. By putting fI = (fit, Y'J, •••,flN)', rN (u) = (r(plI u), .•.,r(PN, u))' and &N =
(6t'&2, ...,6N)' we obtain from (1) the common vector form of the nonlinear regression
model

(3)

Let for every fixed N the set 9N = {rN(U),UEU} be the linear hull of the regression
function and let nN =dim(9N).

neflDltion 1. The number n = limN-+OII nN (JinHe or +00) is called rank oftbe
regression model (3).

DeflDltion 2. If n < +00 tbe model (3) is caJled ALRM.

It is proved by Kovachev (I989b) that the common vector form of ALRM is given by:

(4)

where AN is an (N x n) matrix with full rank n and ,,(u) is a n-dimensional vector
function oHhe parameter u =(Ull .." Up)' which does not depend on N. Let EN be the
covariance matrix of the random vector 6N and let

(5)

be the correspondent to (4) linear regression model, where" = ('It,...,'''')' is its n
dimensional vecior parameter. In the following we shall not write the upper index N
remembering that fI, A, &and E depend on it.

Since the matrix A has a full rank then G = A'E-l A is symmetric and positive
definite. For the elements of G we introduce the following notations: G =(gii), G-l =
(gii), eli =(gii)l/2, i, i =1,2, ...,n. The least squares estimator ~ of the parameter "
in the linear model (5) based on the observations fllIfI'J, ...,flN is given by

~ =G-t A'E-l fI (6)

As it is mentioned above if the random vector 6 has normal distribution then the LSE
~ is sufficient statistic for the parameter u in the model (4). Moreover in that case G
is the Fisher information matrix for the parameter" in (&). That enables to project
ALRM without information 1088ell. As it is eeen below the projection is formally clear
even in case of an arbitrary error &satisfying the conditions (2).
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3. PROJECTION

In order to study the relations between a geometrical strudure of ALRM (4) and its
asymptotic properties (as N -+ (0) we have to project it in finite- dimensional Euclidean
space.
Let' denote e =G-IA'E-l6'. e is n-dimensional random vector e =(ell~' ...,ta)' with

which follows directly from (2).

DeflDition I. The model

Z = '1(u) +e, Z = (ZI' ... , zn)'

is called a projection of ALRM (4).

Let 4 be the LSE in the model (4) and let ube the LSE in its projection (7).

PropOllition 1. The estimators 4 and ucoincide.

Proof. The LSE 4 is the solution of the equations

(7)

(8/8Uo'l(u))'(A'E-ly - G'I(u)) =0, a =1,2, ...,m

In the model (7) uis given by min.(~ - '1(u))'G(~ - '1(u)) i.e. uis the solution oHhe
equations

(8/8u.,,(u))'(G~ - G'I(u)) =0, a =1,2, ...,m (8)

Now (6) completes the proof.•

The statement of the proposition above is important from computational point of view.
It enables us to construd a double-step least squares estimation procedure for almost
linear models:

(i) Linear regression in (5) and producing the estimator ~.

(ii) Non-linear regression in the projection (7) by taking observations at ~.

H the model is an almost-linear one and N > n the two-step procedure (i)-(ii) given
above is much more effective than the direct estimation in (2).

Furlhermore we shall study the projected model (7) and the estimators of u which are
fundions of the ~. It is necessary to aaaume some aayDl.J>totic properties of the LSE ~.

Let '10 = ('If, ..., '1~)' be the true value of '1 and ij. = d'(~. - 'If), i = 1,2, ...,n. Under
simple conditions on G given by Eicker (1963) the estimator ~ is proved to have the
following properties:

Al ~ is consistent, i.e. limN-+oo = '10 j

AJ ij = (ijl' ..., ijn) is asymptotically normal distributed with sero mean and covariance
matrix In.
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4. GEOMETRICAL STRUCTURE OF ALRM

Let us consider the linear model

S='1+e, S=(Sl, ...,SII)'

and the fundions

l(s,'1) = ~G'I - 1(,,), l(s, 9) = ~9 - "1(9)

where

(9)

9 = G'I, 1(,,) = ~"'G", "1(9) = ~9'G-19

The set of functions S = {l(s, ,,)j ,,€r} it a linear manifold with natural part of dual
coordinate systems" and 9 which is isomorphic to the n-dimensional Euclidean apace.
11le tangent vectors at point 90 are given by 8i = 8/81i for I -coordinate system and by
81 =8/8"i for 'I -coordinate aysiem respedively. The tangent space T,o at a point 90 it
a vector apace spanned on {8il or {8i } . In the following we adopt Einstein summation
convention without using summation symbol.

Theaet
TJ:) = {A(s)jA(s) = Ai8il(s,90)}

is a linear space of random variables which is naturally isomorphic to T,o.

Debltlon 4. TJ:) is called l-representatioJl oBhe tausent space T,o.

Let us introduce the inner produd of two tangent vectors of T, via their I-representation
by the following way. For every A, BU" < A, B >= EA(s)B(s)..

PropOllitlon 2. The metric teJlBOI in T, is exactly the covariance of the random
variable e.

Proof. By definition E8il(s, 9) = E(Si -8i"l(9)), but 8i"l(9) = gii9i = 'Ii. Therefore

E8il(s, 9) =0, i = 1,2, ..., n

and

Hence

which completes the proof..

Corollary 1. The metric teJlBOI in T, is given by

< lJi,lP >= gii

Proof. The statement follows directly from the definition of gii.•

(10)

(11)
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eorolluy 2. Let tbe random variable rill tbe model (3) be normally distributed.
Tben tbe metric tensor G is exactly FiBber illformation matrix for tbe parameter" in
the model (9).•

In 'he non-GaU88ian case we can define G '0 be 'he informa'ion ma'rix for 'he parame'er
" in 'he model (4).
Note. G-l is 'he informa'ion ma'rix for 'he parame'er 8.

Corolluy 8. The NO bases {a,} and {a'} are bionhogonal.

Proof. The 'wo bues {a,} and {at} are connecled by a, = (a"./a9')1JI' and 8; =
(a,./a,,;)a. Since a"./89' =g". and a8·/8,,; =/; 'hen we oMain from (11)

< a" ai >= glri""· = 6{

where 6{ is Kroneker I)'IIlbol. •

Corolluy ". <a"a; >= a,a;I'(8) and <a',a; >= aia;I(,,).

The proof follows from (10),(11)••

U8ing corollaries 3 and 4 we can say 'ha' 'he coordina'e BY8'emB 8 and " are mu'ually
dual and 1'(8) and 1(8) are 'heir po~'ial fundiona.

Debltlon 6. For tbe linear model (9) 8 and " are called natural aDd expectation
coordillate q8temB respectively.

I.e, l(z,u) =l(z,,,(u» and M ={l(z,u)j UEU}. The parame~U=(U.),4 =1,2, ...,m
defines a coordina'e BYs'em of M. I.e, 'he mapping" = ,,(u) be BIDoo'h and 'he
Jacobian ma'rix Ba =a",(u)/aUa,4 = 1,2, ...,m,i = 1,2, ...,n haa a full rank m for all
.,.U. Then ~e equa'ion ,,= ,,(u) gives a parame'ric repreeeD"a'ion of M aa a smoo'h
manifold imbedded in r. The 'angen' space T.(M) of M is a vedor 8pace spanned on
'he m vec~n a. = a/au.. Since a. = Baa' i' follow8 'h~ a. is a linear combina'ion
of at and 'he 'angen' space T.(M) is a subspace of T"••). The me'ric 'enaor of T.(M)
is given by

g.,,(u) =< a., a" >= BtliB"ig'; (12)
Prop_tlon I. (g.,,) is FiBber information matrix for tbe parameter u ill tbe model
(1).

Proal. Follows diredly from PropOli'ion 2.•

I.e, U = u(~) be an es'ima~r of u in 'he model (7). I.e, B.(u) = {"jU(,,) = u}
and A.(u) = {1(z,")j"EB}. Le' A(U) ={A.(U)jUEU}. A(U) is a family of (n - m)
dimensional submanifolds of r.
Debltlon e. Tbe estimator Uis said to be regular if tbe family A(U) form a local
foHation of Rra in a neighborbood of M.

I.e, v = (v.\),~ =m+ 1, ...,n be a coordina'e BY_em of A.(u) and Ie' 'he origin" = 0
coincide wi'h ,,(u) .Jf'he es'ima~rUis regular w = (Ua, V.\),4 = 1, ...,m,.\ = m+l, ...,n
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is a coordina\e 81s\em of R" in a neighborhood of M. Let W =(wa ), Q =1,2, ..., nand
Ie\ Oa = 0IOWa' The me\ric \ensor gaIJ =< Oa,OIJ > decomposes in\o four parls:

(9 IJ) = (gab go>. )
a gph giM

where Q,fJ = 1,2, ..., nj G, b=1,2, ...,mj '\,1£= m + I, ..., n.

Dehltion T. The family A(u) is anciUary family associated "ith the estimator fl.

The \heorema below proved by Kovachev (1989a) clarify \hat there is one-to-one cor
respondence between the statistical properties of an es\imator and the geomehy of its
ancillary family.

Theorem I. Let fl be a regular estimator and Al holds. i1 is collBistent iiI the point
,,(u)EB.(u) for every UEU••

Theorem 2. Let the conditions Al and A2 hold. The regular consistent estimator
fl is tirBt- order efficient if and only if its anciUary family is orthogonal to M in evezy
ClOBBpoint. •

Note. It means \hat the mixed parl in the decomposi\ion of \he metric tensor (13)
vanishes, i.e. go>. =0, G = I, ...,mj ,\ = m + I, ..., n

Let Hab>.(u) be the Euler- Schouten curvature tensor i.e the imbedded curvature of M
in R" and H>,jIG(u) be the imbedded curvature of Be(u). Let 6.gab be \he asymptotic
information losses of the first- order efficient es\imator fl given by:

6.g.(fl) = limN_ooEICov(Ool(z, u),O.I(z, u) I fl)1

Theorem I. Let the conditiolJB Al and A2 hold. The asymptotic information 10BBeB
of a regular tirBt- order efficient estimator are given by

6.g...(fl) = (H:t)2 +~(H~)2

where (H~)2is the sum of squares of the components (Hab>'(u)) and (H~)2 is BUm of
squares of (H>,jIG(u)).•

Corolluy 6. A regular tirBt- order efficient estimator is IJ8COnd- order efficient iiIB.(u)
is Bat in the neighbourhood of M, i.e. iiI (H~) = 0, G, b= I, ..., m.•

S. LEAST SQUARES ESTIMATION

Let 41 be the LSE for the model (7). It was already pointed out that 41 is a solution of
(8). Theorem 4. LeU be tbe LSE for tbe model (1). Tben for evezyuEU,B.(u) and
As(u) have the properties:

(i) "(U)EB.(U)
(ii) As(u) is orthogonal to Mat poin\ ,,(u).

(iii) B.(u) is an (n-m)-dimensionallinear subspace of R"



Proof. By (8) we oMain ~ha~

Bt(u) = heR" I(a."(u))'G(,, - ,,(u)) =O}

157

(14)

Hence ,,(u)eB.(u). For every fixed u ~he se~ Bt(u) is ~he se~ of 8Olu~ions of a homoge
neouslinear synem of equa~ions wi~h rank m . Therefore (iii) holds. By (14) and (11)
we ob~ain furiher ~ha~

< ,,- ,,(u) , a.,,(u) >= 0, a = 1,2, ...,m

Hence ~he ~angen~ space T.(A) of A.(u) is orihogonal ~ ~he ~angen~ space Tt(Ml a~ a
poin~ ,,(u) . Finally we. ob~ain from (13) ~ha~ ~he mixed p~ (911.\), a =..1,2, ..., m, A=
m +1, ... ,R of ~e m~nc ~DBOr (ga,),Q,P = 1,2, ...,R vanishes. Thus (II) holds.•

Corollary 8. Let ~ be a consistent estimator of" in the linear model (5). Then uis
consistent, tirrrt order and second order e!1icient estimator of in the model (7).•
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BOOTSTRAP AND ESTIMATION OF NONLINEAR PARAMETERS

Henning Lauter, Berlin

Bootstrap methods are widely used in many fields of sta

tistics. Efron pUblished in 1979 his pioneer work on jack

knife and general resampling methods. He discussed advanta

ges and disadvantages for such procedures. The resampling

methods are popular in such a high way because of the possi

bilities for approximating unknown distributions and for

increasing the efficiency of statistical procedures. Of

course not in all situations bootstrap and other resampling

methods will improve statistical decisions. This is the

reason for investigating the resampling methods from the

theoretical point of view. One has to justify the use of

these methods.

We will consider the nonlinear estimation. Mostly in such

problems the usual methods known from linear models are used

in a very direct way. But one can increase the efficiency of

nonlinear procedures by explicite using the special struc

ture of the nonlinearities. We will discuss the conditional

unbiasedness of estimators and will improve the maximum

likelihood or least squares estimators in special models

wi th the help of a bootstrap principle. As examples we

consider the estimation of an exponential parameter and the

estimation of the error rate in discriminant analysis.

1. ESTIMATION OF NONLINEAR PARAMETERS

Let y be a random variable with a distribution Qo' QOE p.

P is a known class of distributions. ~(Q)ERI is a parameter

to be estimated. If ~ is an estimate for). (Q) then ~ is

unbiased if

EQ ,\ (y) =,\ (Q) for all QE P . ( 1 )
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Here EQ " (y) J ~ (z) Q( dz). In special problems we need for ~

instead of (1) only

EQ " (y) =" (Qo) ( 2 )
(I

but Qo is unknown. An outway from this is to work wi th

approximations Q for Qo and those approximations are to be

constructed with resampling methods. For example let us

consider the linear model y=XB+€ under the standard assump

tions: X:nxk, B€Rk , E€=O, Cov €=a 2 I. And for €=(€l" .. '€n)'
A "we assume €i ~ F. Then we have the residuals €=y-XB for the

least squares estimator B=(X'X)-X'y. Because in general

~= ~ ~ €i+O we construct the centered residuals
n

"-with the empirical distribution function F. Here we have

JXdF =0. Now for given y let €;, ... , €~ be conditionally

independent with €7- F. We denote €*=(€;, ... ,€:)' and consi

der the bootstrap model

* ... *Y =XB+€

The €* is obtained by resampling the centered residuals.

Therefore the y* is generated from the data using the re-
• ."" • Agresslon model wIth XB as the expectatIon and F as the

distribution of the components in €*. The asymptotic proper

ties of estimations in the bootstrapped model is investiga

ted by several authors, especially we mention Efron (1979),

Bickel & Freedman (1981), Freedman (1981).

In this example 9 is an approximation of the unknown distri

bution F. The condition (3) can be interpreted as the vali

dity of
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for all Q from a neighbourhood of Qo' The approximations
" ,."Q=Qy of Qo are elements of another neighbourhood of Qo and

hence one could demand

"E ~ = (Qy )
~.

'"instead of (1). These Qy are based on the sample and insofar

in real practical problems the family of theQy is more

natural than a given family p.

Definition: The estimator j is called conditioned unbiased

(CUE) if for almost all z

with

E~_t= E{,
~(y;, ... ,y~) Iy=z } ,

*y (y;, ... ,y~) ~

We give now two examples for such CUE.

Example 1: Let Y1""'Yn be i.i.d. variables with EYi=~ and
. 1 "

..\( Q) =~. We use ..\ (y) = ;;: ~ Yi =y and we denote by F the

empirical distribution of the residuals. As before €~, ... ,€:

are i. i. d. variables with the distribution;:. Then

the bootstrapped model is

i=1, ... , n

* *.... "and we have (Y~ , ... ,y..,) Qy ' Then "\(Qy)=Y and E~.y:=y,

i=1, ... , n. Furthermore there is ~(y;, ... ,y~) =y* and

This means that the sample mean is CUE.
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Example 2: For k distributions QI, ... ,Qk the parameter

)(Q)= )(QI, ... ,Qk) is to be estimated,

k

) (Q) = J- ..J<p (xl1"" ,xIm ,x21 '··· ,xkm ) IT Qi(d Xi)
1 k ;=1m.

with x 1,),€R", X·,= (xil"",xim'), Qi(d Xi) = n Pi(dxi)')'
, I J=1

Here <p is syMttetrically in each of the k tupels xiI'"

",xim.' If there are given samples Yil""'Yin, of Pi'
i J\ I

ni>mi' and if Qi is the empirical distribution of all sub-

samples of Yil""'Yin. of the size mi without replacement
I •

then the usual U-statistics ) can be represented by

It

,\ = J... J<p(XI,···,xkdI Qi(d X i) = )(QI,···,Qk)= )(Q).
;=1

From this E$ <p =) (Q) follows. Hence the kernel <p of the

functional A is CUE.

In general it is difficult to find a CUE for special

estimation problems. But one can determine a first corrected

approximation starting with a given estimator ,\ . For this

one has two possibilities:

- MUltiplicative correction

We define the estimator ,\m by

- Additive correction

We def ine ,\ a by

In both variants we transmit the relations in the sample

expressed by Qy to the whole populations. E.g. A (Qy)-E¢.'\

gives us the negative bias of ,\ assuming Qy is the "true"

distribution. Then it is naturally to correct j in the given

way and to work with ,\a instead of ,\ . The same arguments

hold for ,\ m'
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The power of these corrected estimates is to be studied for

special models.

2. ESTIMATION OF A NONLINEAR PARAMETER IN LINEAR MODELS

Let Yl"" 'Yn be independently normally distributed

according to N(B, 1). We estimate ), (Q) =eB and use the

maximum-likelihood estimator ~ =e'~ with '~=y. Then ),(Q'y)= ~ if

Qy is the empirical distribution function. We denote

and find by a multiplicative correction

eY e 2Y
--~
c(y)

.iI. 1

Then we have c(y)=(~ ~ e~ y, )n. Furthermore (eB). and c(y)~

are the geometric and arithmetic means of e~lf1, ... I e~lIn and

therefore e~ < c(y) holds. This means that ~ m< ~ with the

strinkage factor eii One finds that e
fi

is independent of

B. We check that c(lI) c(lI)
e 2i

MSE ~nr E( ~ m- )'(Q»2=e2B E(-- -1)2,
c(e)

MSE ~

For '1 =MSE ~ /MSE ~ m we get the following plot.

1

30
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3. ESTIMATION OF THE ERROR RATE IN DISCRIMINANT ANALYSIS

We consider k classes with unkonown distributions PI" .. ,Pk "

For any Pi there is given a sample Yi1""'Yin. of size ni'
I

By V =(Y11""'Ykn ) we denote the total sample matrix. A
k

discriminant procedure is defined by k nonnegative

functions gl(ylv), ... ,gk(ylv) with f gi(yIV)=l and gi(ylv)

is the probability for assigning Y to P1 . The probability

for misclassification from the i-th into the j-th class is

given by

Let Q1, ... ,Qk be prior probabilities for the classes. With

the total probability for misclassification

f(plv) ~

i=l

the error rate of the discriminant procedure

g(yIV)=(gl(y\V), ... ,gk(yIV)) is defined by F(P)=E f(pIV).

We look for the estimation of F(P). We mention here the

results of Smith (1947), Lachenbruch & Mickey (1968),

Schaafsma & van Vark (1977), McLachlan (1977), Efron (1979),

Ahrens & J. Lauter (1981), H. Lauter (1985). Here one finds

results on the cross-validation and the bootstrap estimator

for F(P).

The cross-validation estimator is an almost unbiased estima

tor. By V(il) we denote the px(n-1) sample matrix of all

Y11"'·Ykn besides Yil' Here n=n 1+ ... +nk' The cross valida-
k

tion estimator is defined by

k Qi k ni
f ~ ~ ~ 9j(Yillv(il)

i=l ni j=l 1=1
j+i
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,"'The bootstrap estimator has a small variance. By Pi we

denote the empirical distribution of Yi1"" 'Yin and
.~ .A ."" .'P= (PI' ... 'Pk l. Then the bootstrap estlmator is given by

f*=F(Pl.

If one compares these two estimators then the following

results are known:

IE f - F(Pll :s IE f* - F(pll,

Var f* :S Var f,

MSE f* :S MSE f

f1SE f :S MSE f*

for "small" dimensions

or "large" ni'

for "high" dimensions

or "small" ni'

An alternative estimator to f and f* is a corrected

estimator according to the discussions in section 1. We

choose ~ = f* and Epf is to be estimated. Then ~ m is defi-

ned by

~ =m

The comparison of ~m with f and f* was done by simulations.

We considered k=2, p=10, Pi=(~i' ~l and n1=n 2=20. We choose

as discriminant procedure the maximum likelihood rule, i.e.
. " ."'- ..
If ~11 ~2' S are the usual unblased estlmators for ~1' ~2' ~

then gl(xIYl=l if (x-hl/S-1(x-~ll :S (X-~2l_S-1(X-~2)' Then

F(P) is a function of 42=(~1-~2l/~-1(~1-~~l. In the table

the values were computed on the basis of 100 repetitions.
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F(P)

E f

E f*

100·Var f

100·Var f*

E ~m

100·Var ~m

100 MSE f

100 MSE f*

100 MSE ~m

o .5 1.

.5 .455 .379

.5 .459 .378

.32 .296 .343

1.07 1.03 .768

.18 .281 .20

.5 .458.371

.758 .787 .733

1.07 1.03 .768

3.42 2.84 2.15

.758 .788 .739

2.

.226

.195

.135

.412

.224

.201

.427

.506

1.03

.48

4.

.053

.041

.028

.134

.028

.037

.099

.145

.084

.123

Here is obviously that Var ~ m> Var f* I bias ~ m< bias f* I

MSE ~m< MSE f* I MSE ~ m< MSE f hold. This means that the

corrected bootstrap estimator for F(P) is bias reduced and

in the result this new estimator is the best of the conside

red ones.
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STATISTICAL INFERENCE FOR L 1 REGRESSION

S.Hadiivukovic and E.Nikolic-Djoric
University of Novi Sad,Yugoslavia

1. Introduction

The least squares method is a common procedure in the regression analysis. Its statistical inference

is based on the theory with relatively sound assumptions. The method is optimal in the sense it provides

the maximum likelihood estimator of the estimated parameters assuming the normal distributions of

errors. There are now numerous computer packages for regression analysis.

The regression based on the least squares is sensitive to the outliers in errors. If there is only one

outlier in data, the estimate of parameters may be distorted. The outliers are more difficult to spot in

the regression than in case of simple location. Box (1953) introduced the word robustness and since then

many papers have been published on the subject. More references are given by Dodge (1987).

The best known alternative to the least squares is the least absolute errors regression method. This

method is based on the assumption of the absolute error loss function (L 1 - norm) which is less sensitive

than the least squares method, but more flexibile. It gives the maximum likelihood in case errors follow

the Laplace distribution. The wider explanation of robust estimation is given by Huber (1987). However,

the main feature of the least absolute errors regression, which makes it different from other robust methods

of regression, is that it does not require" a rejection parameter". The least absolute errors regression

has several abbreviated forms in use: MSAE, LAE, MAE, LAD, LAV and MAD. The most often used

expressions are LAV (Least Absolute Values) and MAD (Minimum Absolute Deviations).

Generally speaking, the LAV method can be recorrunended whenever errors have the form of the

Laplace or Cauchy distributions (Rice, White, 1964), when the mixture of a normal and uniform distri

bution is present (Blattberg, Sargent, 1971), or in case of the contaminated normal distributions (Ekblom,

1974).

2. Computational Procedure

The standard linear regression model has the form

Y = Xf3 + ( ( 1)

where Y is a N x 1 vector of the dependent (response) variable; X is a N xk matrix of independent

(predictor) variables (the intercept term is included); f3 is a k x 1 vector of parameters and ( is a N x

vector of errors. The estimate of the dependent variable of the model (1) is

Y = Xb (2)
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where Y is a N x 1 vector of estimated dependent variable; b is a k x 1 vector of the estimated parameters.

It is assumed that the vector c is normally distributed and E(c) = 0, E(c'c) = (12 I, (12 < +00 and

limN_+oo liN (X'X) is a definite nonsingular matrix. In this assumption the estimates of f3 and (12

based on the OLS (Ordinary Least Squares) are maximum likelihood estimates.

The LAV estimation minimizes the sum of the absolute deviations formulated as

N

min L !Y; - Xibl
i=l

(3)

where Y; is i-th unity of the vector Y; Xi is i-th row of the matrix X.

As long ago as 1757, Boscovich studied the simple model based on (3). He set the conditional under

which the sum of positive and negative errors from the fitted line should have equal values. Later, Edge

worth (1888) used the LAV for the estimation of parameters in simple linear regression. Karst (1958)

introduced the intuitively iterative algorithm. Several algorithms have been developed (Sharpe, 1971;

Rae, Srinivasan, 1972; Appa, Smith, 1973; Sposito, Smiths, 1976 etc.). A number of the computer's pro

grams have been published dealing with the simple linear regression (Sadovsky, 1974; Sposito, Kennedy,

Gentle, 1977; Armstrong, Kung, 1978 etc.).

Rhodes (1930) and Singleton (1940) introduced the L1-norm in the multiple linear regression.

Charnes, Cooper, Ferguson (1955) showed that the LAV is the equivalent to the linear programming.

That was followed by the development of a number of algorithms for the LAV solutions. Wagner (1959)

has developed the LAVas a dual problem of linear programming, so

subject to

Xb + Ie+ - Ie- = Y and (4)

where b is unrestricted in sign; e+ and e- are N x 1 vectors of over and under prediction of Y; 1 is

a N x 1 vector; I is a N x N identity matrix. There are also a number of modified simplex methods in

addition to other methods of mathematical programming (Barrodal, Young, 1966; Davies, 1967; Usow,

1967; Robers, Ben-Izrael, 1969; Abdelmalek, 1971). To solve the LAV problems an efficient algorithm

was introduced by Barrodal, Roberts, 1973. A program on the base of this algorithm is included in the

IMSL library of programs. Bloomfield, Steiger (1980) and Wesolovsky (1981) introduced the algorithms

which accelerate the computational solution of problems.

A review of algorithms for the LAV estimations were given by Dielman (1984); Narula (1987) and

Dodge (1987). A significant practical contribution was presented by Gentle, Narula and Sposito (1987)

giving advantage to the algorithms introduced by Armstrong, Frome, Kung (1979).

There have been some procedures developed to deal with a number of specific problems. These

procedures, principally are more efficient than the unmodified algorithms used to obtain the LAV. Thus,

to solve the problem Armstrong, Hultz (1977) used the restricted LAV by an extension of the interval

linear programming. Armstrong, Elam, Hultz (1977) used the LAV estimation in two-way classification

models etc.

Although the robust regression procedure has given many satisfactory results, there is a relatively

small number of program packages. One program package BLINWDR for the robust regression has been

developed by Dutter (1987); another, ROBSYS is by Marazzi (1987).
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3. Distribution of LAV regression estimates

The inference of the regression parameters of the LAV estimates is based on their behaviour in

both the small sample and the limiting case. The lack of an adequate theory of statistical inference can

explain why the robust regression was not used more extensively in the past. The recent contribution

in this area was helpful to bridge the gap. Thus, Rosenberg, Carlson (1977) concluded that if the errors

follow symetric distribution, the LAV estimation of the regression parameters b follow the multinormal

distribution with expectation f3 and variance-covariance matrix >.21N (X/X)-l where >.21N is the

variance of median for the size of sample N. Basset, Koenker (1978) developed the asymptotic theory

of the LAV estimates of regression parameters. It has been proved that in the model with independent

and indentical distributed errors, the LAV estimates of b are unbiased, consistent and follow the normal

distribution asymptotically

(5)

where limN_oo lIN (X'X) =Q; reO) is the value of density at the median and [2/(0)t 2IN is asymptotic

variance of the sample median.

The relation (5) shows that the L1 norm is more efficient than the OLS estimator in case when the

distribution of errors of the median is more precise compared with the aritmetic mean. Cox, Hinkly

(1974) introduced the unbiased estimate for the parameter>. = [2/(0)]-1. That is

. j
>. = 

2

where

j e(t) - e(s)
(t - s)IN

(6)

e(i) , (i = 1, ... , N) are residuals of the regression model on the base of L 1 ; t and s are indexes which are

symetric in relation to the median.

The (1 - a)% confidence interval is

rib ± Zo/2 >.[r' (X/X)-l rt 1/ 2 (7)

where rib is a 1 x k arbitrary vector and Zo/2 is the percentile from the standard normal distribution.

The estimate is satisfactory when the errors follow a normal distribution and in case of more than 20

sample units. If it is a Laplace distribution, for a satisfactory confidence interval, the size of sample

should be at least 100 units, and for a Cauchy distribution at least 150 unites.

The bootstrap estimation is an alternative way to construct the confidence interval (Stangenhaus,

1987). The bootstrap estimates of regression coefficients and standard deviations of estimates on the

base of B samples are given by

Sbi =

b;" = L~-o b;"(k)
B

[
L~-o{b;(k) - biP ]-1/2

B-1

(8)

(9)

The value bi (k) is i-th component of vector b· obtained from L1 regression model

Y· = Xb + e· (10)
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where e" = (e~ ,ei, ... , eN) is the sample without replacement of size N from population of residuals

(el,e2, ... ,eN) of L I (1). The empirical study (Stangenhaus, 1987) shows that standard deviations of

regression coefficients obtained by bootstrap method are closed to Monte Carlo results for normal, con

taminated normal and Laplace distributions referring to the sample size of 20,30 and 50 units and for the

Cauchy distribution, size 50. The confidence intervals on the base of bootstrap is close to Monte Carlo

results only in the normal distribution.

4. Empirical Study

The aim of this empirical study was to examine:

- the effect of discrepancy of normal distribution on standard deviation and confidence interval of

the OLS regression estimates;

- the comparison of precision of L, regression estimates with corresponding OLS values;

- the comparison of standard deviation and confidence interval of L I regression estimates on the base

of asymptotic results (5) and bootstrap sampling (8), (9) with Monte Carlo results.

In this study the linear regression model was used with two independent variables

(i=I,2, ... ,N) (11 )

The regressors of the model were independent of the errors and were generated independently from

uniform distribution U(10,20) and fixed in this study. The values of the regression coefficients were

/30 = 3, /31 = 2 and /32 = 1. The disturbances f; were random samples of size 30 and 50 from the

following distribu tions

- Normal distribution, N(O, 1)

f(x) = 1/.J21i e- I
/
2x ' (-00< x <+00); (12)

- Five values of errors are from N(0,20) and the rest from N(O, 1);

- Exponential distribution

f(x) = e- x (x 2: 0) ; (13)

- Lognormal distribution

f(x) = 1/.J21i e-(lnx)'/2 (x 2: 0) (14 )

- "Student's" or the t-distribution for one degree of freedom (Cauchy) and three degrees of freedom

(15)(-00< x <+00)
r(~)

f(x) = 2 (1 + x2)-~
Ji1ii'r (~)

All distributions were generated by the use ofrandom generation function for the uniform and normal

distributions from the Economics Computer Program SHAZAM. Also, all necessary programs are writen

using instructions of this program package. The possibility to use the random number generation and

the presence of routine for OLS as well as L) estimation make this program very helpful in this kind of

simulation studies. The SHAZAM program computes L I regression estimates on the base of regression

quantiles method (Koenker, Basset, 1978; Koenker, D'Orey, 1987) by minimizing the function

eL:I Y - X/3 I + ( 1
y ~ X{3

e) L: IY - X/3 I
Y < X{3

(16)
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where 9 = 0.5. The variance-covariance matrix for £1 estimates is computed using relation (5).

In this experiment for each distribution of errors, 500 samples of size 30 and 50 were generated. The

mean values and standard deviations of OLS and £1 estimates were computed and used for construction

of 95% confidence interval for regression parameters.

In order to compute bootstrap estimates of £1 regression coefficients, 100 bootstrap samples were

obtained for each considered error distribution and each sample size by resampling the estimated £,

errors and computing Yt using relation (10). Mean values and standard deviations for £1 regression

coefficients on the base of 100 samples (Yt, Xh, X2;) were used to construct the confidece interval for

regression parameters, bi ± 1.96 Sb;.

5. Results

The results of Monte Carlo simulation for the OLS regression are present in Table 1. They show that

the presence of outliers have affected the standard deviation of the OLS regression estimates. The value

of the standard deviations for the normal distribution of errors with five values of outliers N(0,5) are

about two times bigger than in standard normal case and six to ten times when N(O, 20). The distortion

from the normal distribution also affects the precision of estimates. For the exponential distribution with

skewness /31 = 2 and kurtosis /32 = 9 the effect is almost negligible. For the lognormal distribution

Monte Carlo results for OLS
Table 1

Error N = 30
distribution

Normal with bo 3.0958 2.2103
five values b, 1.9982 0.1326
N(0,5) b, 0.9956 0.1378

Normal with bo 3.3166 13.5510
five values b, 1.9971 0.6220
N(0,20) b, 0.9869 0.4745

bo 3.9255 1.3792
Exponential b, 2.0020 0.0719

b, 1.0032 0.0564

bo 4.3936 2.7784
Lognormal b, 2.0045 0.1205

b, 1.0116 0.1550

bo 5.1985 71.5960
Caushy b, 2.1174 3.9894

b, 0.7458 3.9579

bo 3.0425 2.7653
Student b, 1.9986 0.1023

b, 0.9986 0.1221

Standard
Coefficient deviation

Normal
bo
b,
b,

3.0365
1.9977
0.9994

1.4615
0.0618
0.0666

N = 50

Confidence Standard Confidence
interval Coefficient deviation interval

(0.172 , 5.901) 3.0375 1.0163 (1.045 , 5.030)
(1.877 , 2.119) 1.9980 0.0505 (1.899 , 2.097)
(0.869 , 1.130) 0.9998 0.0456 (0.910 , 1.089)

(-1.236 , 7.428) 3.0832 2.3626 (-1.548 , 7.714)
(1.738,2.258) 2.0096 0.1478 (1.720 , 2.299)
(0.726 , 1.266) 0.9869 0.1037 (0.784, 1.190)

(-23.243 , 29.877) 3.0753 6.9883 (-10.622,16.773)
(0.778 , 3.216) 2.0118 0.3006 (1.423 , 2.601)
(0.057,1.917) 0.9710 0.3034 (0.386 , 1.576)

(1.222 , 6.629) 4.0007 1.0886 (1.867 , 6.134)
(1.861 , 2.143) 1.9999 0.0535 (1.895 , 2.105)
(0.893 , 1.114) 1.0002 0.0477 (0.907 , 1.097)

(-1.052 ,9.839) 4.6270 2.1976 (0.319 , 8.934)
(1.768 , 2.241) 2.0018 0.1113 (1. 784 , 2.220)
(0.708 , 1.315) 1.0007 0.1125 (0.780 , 1.221)

(-135.130, 145.527) 1.3498 76.1140 (-147.834 , 150.533)
(-5.702 ,9.937) 2.1275 4.8598 (-7.398, 11.653)
(-7.012,8.503) 1.0321 3.8315 (-6.478 , 8.542)

(-2.378 , 8.463) 2.9924 1.6666 (-0.274 , 6.259)
(0.179,2.199) 1.9987 0.08053 (1.841 , 2.157)
(0.759 , 1.238) 1.0020 0.09219 (0.821 , 1.183)
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which is more skewed and more leptokurtic (13, = 4, 132 = 41) , the standard deviations of the OL5

estimates are nearly two times bigger than in the case of standard distribution of errors. The values

of standard deviations of the OL5 estimates are similar when errors follow the t-distribution. In this

example the basis is three degrees of freedom. The biggest standard deviations of estimates are obtained

by the Cauchy distribution (a special case of the t-distribution based on one degree of freedom).

Monte Carlo results {or L, regression

Table 2

Error N =30 N = 50

distribution

Standard Confidence Standard Confidence

Coefficient deviation interval Coefficient deviation interval

bo 2.9058 2.0067 (-1.027 ,6.839) 2.9875 1.2408 (0.566 , 5.420)

Normal b, 2.0013 0.0841 (1.837 , 2.166) 1.9989 0.0550 (1.891 ,2.107)

b, 1.0052 0.0840 (0.841 , 1.170) 1.0017 0.0652 (0.874 , 1.130)

Normal with bo 2.7951 2.0067 (-1.138 ,6.728) 2.9679 1.4755 (0.076 , 5.860)

five values b, 2.0104 0.1069 (1.801 , 2.220) 2.0029 0.0585 (1.888 , 2.118)

N(0,5) b, 1.0030 0.0859 (0.835 , 1.171) 0.9992 0.0709 (0.860 , 1.138)

Normal with bo 3.0448 2.3143 (-1.491 ,7.581) 3.0966 1.4245 (0.305 , 5.889)

five values b, 1.9974 0.1079 (1.786 , 2.209) 1.9975 0.0681 (1.864 , 2.131)

N(0,20) b, 1.0003 0.1087 (0.787 , 1.213) 0.9963 0.0629 (0.873 , 1.120)

bo 3.7860 1.7109 (0.443 ,7.139) 3.7796 1.1203 (1.584 , 5.975)

Exponen tial b, 2.0005 0.0643 (1.875 ,2.127) 1.9978 0.0483 (1.903 • 2.093)

b, 0.9960 0.0660 (0.867 , 1.125) 0.9981 0.0550 (0.890 , 1.106)

bo 4.1311 1.9821 (0.246 , 8.016) 3.9574 1.3415 (1.328 , 6.587)

Lognormal b, 1.9944 0.0876 (1.823 ,2.166) 2.0082 0.0648 (1.881 ,2.135)

b, 1.0015 0.0810 (0.843 , 1.160) 0.9978 0.0586 (0.883 , 1.113)

bo 2.9619 3.1423 (-3.197 , 9.121) 3.0455 1.9570 (-0.790,6.881)

Caushy b, 2.0016 0.1254 (1.756 , 2.247) 1.9953 0.0752 (1.848 , 2.143)

b, 1.0021 0.1376 (0.732 , 1.272) 1.0023 0.0954 (0.815 , 1.189)

bo 3.0599 1.7635 (-0.367 , 6.516) 2.9611 1.3497 (0.316 , 5.607)

Student b, 1.9997 0.0928 (1.818 ,2.182) 1.9985 0.0677 (1.866,2.131)

b, 0.9961 0.0814 (0.837 , 1.156) 1.0037 0.0803 (0.846 , 1.161)

Comparing the resultats of Table 1 with Table 2, which presents Monte Carlo effects for L, regression,

one can see that the OL5 gives slightly more precise estimates compared with L. but only when the errors

are normally distributed. When the errors follow the exponential distribution, the precision achieved from

the OL5 and L 1 are nearly the same. In all other considered cases, the standard deviations of the OL5

regression estimates are bigger in comparison to corresponding L, values. The greatest difference in

precision between these two methods of estimation is when some units are significantly discrepant from

the standard normal distribution and when the errors follow the Caushy distribution. The increase of the

sample size gives in all cases better precision of L, estimates. The distribution of L, estimates for sample

sizes of N = 30 and N = 50 was close to the normal distribution in all cases except the t-distribution.
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The confidence interval for the t-diBtribution should be improved by using some transformations or by the

application of percentile method for the confidence intervals which require more Monte Carlo simulations.

Table 3 presents £, regression estimates on the basis of one regression equation in seven different

presumed values of the error distribution. Standard deviations of estimates calculated by SHAZAM

program are used to construct the confidence intervals based on the normal distribution.

Table 4 shows the mean values, standard deviations and standard normal intervals of £, estimates of

regression coefficients using 100 bootstrap samples. The obtained results show that the values of standard

deviations on the basis of bootstrap sampling are close to Monte Carlo results for all distributions and all

considered sample sizes. The confidence intervals calculated by the routine of program SHAZAM are close

to bootstrap intervals and the intervals obtained by Monte Carlo simulation, especially for coefficients

{31 and {32 .

Standard deviations and confidence intervals for L I regression coefficients

on the base of asympthotic distributions
Table 3

Error N = 30 N = 50
distribution

Standard Confidence Standard Confidence
Coefficient deviation interva.l Coefficient deviation interval

ho 5.2648 0.7196 (3.854 , 6.675) 2.6107 1.3827 (-0.099 , 5.376)
Normal bt 1.9463 0.0355 (1.877 , 2.016) 2.0584 0.0565 (1.948,2.169)

h2 0.8916 0.0306 (0.832 , 0.952) 0.9828 0.0599 (0.865 , 1.1 00)

Normal with ho 3.8916 1.6902 (0.579 , 7.204) 3.4315 1.4265 (0.636 , 6.227)
five values hi 1.9500 0.0750 (1.803 , 2.097) 2.0778 0.0738 (1.933 , 2.222)
N(0,5) h2 0.9988 0.0780 (0.846 , 1.152) 0.8854 0.0756 (0.737 , 1.034)

Normal with ho 3.1839 1.9586 (-0.655 , 7.023) 3.7107 1.6221 (0.531 , 6.890)
five values hi 2.0385 0.0850 (1.872 , 2.205) 1.9349 0.0732 (1.791 , 2.078)
N(O,20) h2 0.9615 0.0825 (0.800 , 1.123) 1.0198 0.0830 (0.857 , 1.183)

ho 4.3679 1.1626 (2.089 , 6.647) 2.9732 0.9157 (1.179,4.768)
Exponential bt 1.9927 0.0598 (1.876 , 2.110) 2.0822 0.0446 (1.995 , 2.170)

h2 0.9461 0.0554 (0.838 , 1.055) 0.9681 0.0410 (0.888 , 1.049)

ho 4.5536 1.7335 (-1.156 , 7.951) 6.0502 1.4352 (3.237 , 8.863)
Lognormal h, 1.9853 0.0777 (1.833,2.138) 1.9359 0.0694 (1.800 , 2.072)

h2 0.9623 0.0936 (0.779 , 1.146) 0.9359 0.0656 (0.807 . 1.065)

ho 1.5799 2.8345 (-3.976 , 7.136) 4.0111 2.0635 (-0.033 ,8.055)
Caushy hi 2.0630 0.1461 (1.777 , 2.349) 1.9494 0.0835 (1.786,2.113)

h2 1.0202 0.1199 (0.785 , 1.255) 0.9884 0.0920 (0.808 , 1.169)

ho 4.2123 1.3159 (1.633 , 6.791) 3.9405 1.3775 (1.241 , 6.640)
Student hi 2.0465 0.0783 (1.893 , 2.354) 1.9717 0.0589 (1.856 , 2.087)

h2 0.8640 0.0643 (0.738 , 0.990) 0.9600 0.0590 (0.844 , 1.076)



176

Standard deviations and confidence intervals for L) regression coefficients

on the base of bootstrap sampling

Table 4

Error N = 30 N = 50

distribution

Standard Confidence Standard Confidence

Coefficient deviation interval Coefficient deviation interval

bo 5.2604 2.0580 (1.227 , 9.294) 2.3911 1.4650 (-0.480 ,5.263)

Normal b, 1.9468 0.0972 (1.756 ,2.137) 2.0694 0.0561 (1.960,2.179)

b, 0.8932 0.0869 (0.723 , 1.063) 0.9870 0.0569 (0.876 , 1.099)

Normal with bo 3.8486 1.7093 (0.498 ,7.199) 3.6506 1.4394 (0.829 , 6.472)

five values b, 1.9577 0.0831 (1.795 , 2.121) 2.0703 0.0665 (1.940 , 2.201)

N(0,5) b, 0.9943 0.0856 (0.827 , 1.162) 0.8827 0.0770 (0.732 , 1.034)

Normal with bo 3.1575 1.5842 (0.053 , 6.263) 3.8304 1.5712 (0.751 ,6.910)

five values b, 2.0402 0.0878 (1.868,2.212) 1.9311 0.0703 (1.793 , 2.069)

N(O,20) b, 0.9609 0.0739 (0.816 , 1.106) 1.0128 0.0811 (0.854 , 1.172)

bo 4.4933 1.0407 (2.454 , 6.533) 2.8880 1.0926 (0.747,5.029)

Exponen tial b, 1.9931 0.0570 (1.881 , 2.105) 2.0836 0.0560 (1.974 , 2.193)

b, 0.9484 0.0511 (0.848 , 1.048) 0.9713 0.0480 (0.877 , 1.065)

bo 4.6388 1.3312 (2.030 , 7.248) 6.0839 1.4834 (3.176,8.991)

Lognormal b, 1.9854 0.0621 (1.864 ,2.110) 1.9393 0.0652 (1.812 , 2.067)

b, 0.9677 0.0768 (0.817 , 1.118) 0.9476 0.0606 (0.829 , 1.066)

bo 1.4528 2.5917 (-3.627 , 6.533) 3.9112 2.0955 (-0.196 ,8.018)

Caushy b, 2.0650 0.1448 (1.781 , 2.349) 1.9535 0.0758 (1.805 , 2.102)

b, 1.0312 0.1168 (0.802 , 1.260) 0.9877 0.1050 (0.782 , 1.193)

bo 4.4428 1.3028 (1.890 , 6.996) 4.2515 1.5238 (1.265 , 7.238)

Student b, 2.Q474 0.0910 (1.869 ,2.226) 1.9628 0.0630 (1.839 , 2.086)

b, 0.8468 0.0821 (0.686 , 1.008) 0.9513 0.0718 (0.810 , 1.092)

6. Conclusion

This empirical study, as expected, shows that the standard deviations of the OLS regression estimates

are more sensitive than £, estimates to outliers and discrepencies which can appear in the normal dis

tribution. The standard deviations for £, estimates of regression coefficients are stable for all considered

distributions of errors. Thus, the results justify the application of £1 regression when some observations

are discrepant from the normal distribution. The £, regression also gave, more precise results in case of

a heavy tailed (Student's), highly skewed and leptokurtic distributions (lognormal). The results suggest

that skewuess of distribution of errors may bias the constant terms of £, regression. More empirical

study should be done to investigate the effect of biased regression coefficients in the skew distribution in

the small sample.

The standard normal confidence intervals for £, estimates of {3, and {32 based on bootstrap sampling,

are close to Mont.e Carlo results. The confidence int.ervals for t.he t.-distribution should be corrected when

the sample sizes are not sufficient for the convergence of regression estimates to normal distribution of
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errors (in this example N = 30 and N = 50 ). The confidence intervals obtained by SHAZAM program

are close to the results obtained by bootstrap sampling.

It can be concluded that both bootstrap and SHAZAM procedures give satisfactory estimates of

standard deviations for L 1 regression coefficients. Futher investigations should be done in order to find

out the nearness of the bootstrap estimates of regression coefficients to the normal distribution of errors.
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ON A COMPUTER PROGRAM FOR THE
SELECTION OF VARIABLES AND MODELS

IN REGRESSION ANALYSIS

B. Droge

Department of Mathematics, Humboldt University
P.O. Box 1297, 0-1086 Berlin, Germany

1 INTRODUCTION
We consider the problem where an output (or response) variable depends in some nonde
terministic manner on some input (or explanatory) variables, and we aim at describing
this dependence by an approximate function on the basis of observations. In particular,
we assume to have the following regression model, which includes the case of possibly
replicated observations:

m

Yij = f(Xi) +cij, i = 1, ... ,m, j = 1, ... ,ni, l:ni = n.
i=1

Here the Cij are zero mean, uncorrelated random errors with possibly heteroscedastic vari
ances a;, Xi = (xt, ... ,xn is the vector of, e.g., k input variables Xl, • •• , xk at the i-th
design point, and f is the unknown regression function that we want to approximate in
order to predict future values of the response variable, for example.

In such a situation it is common to select a model which depends only on some of the
explanatory variables, and which is known up to a finite number of parameters. Then,
these parameters are estimated on the basis of the observations to obtain an approxima
tion for the regression function.

It is widely accepted by the statistical community that the process of extracting a
convenient model should be a stepwise procedure depending on the intended use of the
model, which requires a maximal exploitation of the knowledge of the problem environ
ment and of the theory in the relevant field of application, together with the use of modern
statistical methodology including regression diagnostics, transformations, and sensitivity
analysis, as presented, for example, in the books of Atkinson (1985), Helsley et al. (1980),
Cook and Weisberg (1982), and Daniel and Wood (1980). In conclusion, model selection
is a more complex problem than merely comparing models by some criterion. At each
stage of the procedure the model candidates have to be examined carefully as well as
the role of explanatory variables and their interactions, the sensitivity of the parameter
estimates, the influence of the observations and sensible model corrections suggested by
the data. This makes it undoubtlessly desirable that, in problems associated with the
search for an appropriate model, a specialist in the corresponding field should cooperate
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with a professional statistician unless he has a profound statistical education.

In spite of the above considerations we believe that there is a need for some reliable
semi-automatic procedure of model selection in which the user comes into action at a few
well-defined stages of the process and which proposes some models for a more detailed
investigation by the user. This was the starting point for our work.

We have developed a general strategy for model selection, and we have implemented a
first FORTRAN 77-version of this on an ATARI-ST computer. Preliminary ideas of the
strategy have been discussed in Bunke (1984).

The primary purpose of this paper is to introduce those concepts and methods asso
ciated with the selection of variables and models in regression analysis which have been
used in the implemented strategy. The main steps of this strategy are treated in Section 2
and can be headed as follows:

- data pre-processing

- basic model choice

- transformation and elimination of variables

- second model choice

- nonparametric kernel estimates as competitors

- estimation of model error

- sensitivity analysis.

Due to space restrictions, however, the paper does not contain details concerning moti
vations, theoretical justifications and computational aspects for the used methods and
algorithms as well as illustrating examples and a general comparison and discussion of
existing model selection procedures. The paper is also not thought as a user's guide.

Most parts of the computer program, entitled SELEKT, have been developed by stu
dents of our department under the guidance of the author. The corresponding algorithms
are described and discussed in the diploma theses of Schultz (1986), Sohn (1987), Kinast
(1988) and Neubert (1989).

2 THE MAIN STEPS OF THE IMPLEMENTED
MODEL SELECTION PROCEDURE

First of all it is necessary to classify the explanatory variables into the following categories:

(a) Obligatory variables, which the analyst may wish to force into the final model, say,
Xl, •.. ,xm. The number of these variables should not exceed 2, i.e. 0 $ a $ 2.

(b) Basic variables, which are preliminarily considered to be most important, say Xl, •.• ,xb•

Here we assume a $ b $ 4.

(c) Important variables Xl, ••• , Xc, where max(l, b) $ c.

(d) Remaining variables: xc+l,oo.,x"'.
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Furthermore, the user has the possibility to put different weights on the design points
in order to compute weighted instead of ordinary least squares estimators of the model
parameters, for instance. However, in the following we will give all formulae without
weights to simplify the notation.

2.1 Data pre-processing

Before starting with the selection of variables and models, the data should be pre
processed in several ways. Most of the data pre-processing methods discussed here are
optional in the program.

First, the explanatory variables are standardized by

with

and

-i (i -illx j = x j - X Si,

m

xi = m-I LX}
j=1

i=l, ... ,k, j = 1, ... ,m,

m

S~ = (m _1)-1 L(x} - Xi )2.
j=1

Reasons for this being a good statistical practice may be found e.g. in Snee (1983). In
the sequel we omit the tilde in the denotation of standardized variables.

Then a polynomial model containing the important variables Xl, ••• , XC and having an
order not greater than three is fitted to the data, where the number P of parameters of
the model is required to fulfil the condition p:5 Pm&>: := min(m,nI5). Let 91(X)"" ,9p(X)
denote the resulting new variables. This means, if Pm&>: :5 c, then the first Pmax important
variables are included in the model: 9i(X) = xi for i = 1, ... ,p = Pmax. If c < Pmax, then,
in addition to the linear terms in the important variables Xl, ... , xc, quadratic terms (such
as (x j )2) and two-fold interactions (e.g. xjxk) are among the functions 9i(X).

To simplify notation, let n = m, and Y = (Yll"" Yn)' the vector of observations.
Furthermore, we denote by

G ~( ( ))~j=I, P= ~ 9j Xi lJi=l, ,n

the corresponding design matrix, and by

P = ((Pij ))i,j=I.... ,n

the projection onto the range space of G. Then, the i-th fitted data point is

p •

Yi =L {3j9j(Xi),
j=1

where the ~j are the least squares estimators of the regression coefficients {3j:

n p

• •• '" '" 2{3 = ({31,"" {3p)' = arg min L..J(Yi - L..J {3j9j(Xi)) .
fJ, .... ,fJp i=1 j=1
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Thus,

and
n

·2 ( )-1 "( • )2U = n - P LJ Yi - Yi
i'=l

would be an unbiased variance estimator in case of a homogeneous error variance.

Considering the standardized residuals

(1)

ri = (Yi - Yi)/&(1 - Pii) (i=I, ... ,n),

it is now possible to detect potential outliers in the observations. For this, we compute a
critical value r 0 for testing

H : Eri = 0 (for all i) against K: 3i: Eri i= 0

under the assumption of normally distributed observations and homogeneous variances.
The test would reject the hypothesis if r := maXi Jr;j > roo

Observing that the ~i := rU(n - k) are identically beta-distributed with parameters 1/2
and (n - P - 1)/2, and using a Bonferroni inequality, we obtain, for the critical value of
the ~i, say ~o, an approximate requirement

n

P(max~i > ~o) ~ LP(~i > ~o) = a,
1 1=1

where the significance level a may be chosen by the user (the program uses a = 0,05
as standard value). As in Cran et a1. (1977) we determine the point ~o by numerical
methods with

where b(.,.) denotes the beta function. An upper bound for the critical value of the above

test problem is then given by r o = J~o(n - p). Finally, in a residual plot all observations
with Iri I > ro are marked as potential outliers, and, at the screen, the user can select
those observations which he intends to delete from the data.

A further useful data pre-processing tool are Box-Cox transformations (see Box and
Cox (1964). The use of such transformations tends to make the data more normal and
homogeneous at least in an asymptotic sense, see Bunke (1982), where it is shown that
such transformations try to minimize the Kullback information distance between the dis
tribution of the transformed observations and a normal distribution with homogeneous
variance. Indeed, such transformations seem to make the data rather normal than homo
geneous.

Nevertheless, our program provides the user with the option to try transformations of
the Box-Cox type

>. _ { [(Yi + a)>' -IliA
Yi - In(Yi + a)

,iO;iO
, if A= 0,
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where a = 1 - mini=I,... ,n Yi.
As possible values for A we admit 0, ±1/2, ±1 and ±2. The proposed transformation is
that which maximizes the log-likelihood function. However, the user can decide whether
he wishes to perform the transformation or not. For making this decision, he can look at
the log-likelihood values and both the original and the transformed data.

For the next steps of the model selection procedure it is necessary to have estimates
of the error variances. The user can decide between the assumption of a homogeneous
or heteroscedastic variances. This may be done, for example, on the basis of the residual
plots obtained in the outlier detection step.

In case the decision is to work with a homogeneous error variance, the estimator (1)
will be used. In the other case, we define estimates of the heteroscedastic variances as
follows: Let

l'

Dij = l: l~kI19k(xd - 9k(Xj)1
k=1

(2)

denote the distance between two design points Xi and Xj in the sense of Daniel and Wood
(1980), and let

ji = arg min D ij
]

denote the index belonging to that design point which is nearest to Xi in the sense of (2).
Then, an estimator of o} is defined by

;,? = D:iWi + (1 - D:i)Vi, i=I, ... ,m,
where Wi is a variance estimator basing on the replicated observations (if they exist) in
some neighbourhood U(Xi) of Xi in the sense of (2),

n J

Wi = (Nj - di t 1 l: l:(Yjk - Yj)2,
j:zjEU(z,) k=1

with

N i = l: nj,
j:zjEU(z,)

di = #{jl Xj E U(Xi)}'

and the estimation part Vi is constructed from the variation between different means in
the neighbourhood of Xi,

T;

~ b ( -1 + -1)-1( - -)2Vj = L..J j nk nj. Yk - Yj. ,
k=1

where ri is the number of different pairs of neighbours in U(Xi)' The coefficients bj and
D:j are chosen in some sub-optimal manner, i.e. in such a way that, in estimating the
local variances, the M S E is minimized under some conditions, for details we refer to
Sohn (1987). In the program the neighbourhoods U(Xi) have been chosen with a fixed
size defined by max(5, n/5).
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2.2 Basic model choice
After the data have been pre-processed, a first model will be selected in a so-called basic
model choice step, which consists of two parts.

(a) We compare various pseudo-linear regression models including the basic variables,
where each competitor involves the obligatory variables if there are some. Each variable
can enter the model through a transformation, but we allow only one transformation for
a variable. The following transformations are possible, where Xmax and Xmin denote the
maximum and minimum value, respectively, of the corresponding variable x:

T1(x) X,

T2(x) (x + a)-I, a ~xmax - ~Xmin,

T3 (x) == In(x + b) , b ~ . lO- e (xm&X - Xmin) - Xmin,

T4(x) == eCZ c In 10/(xmax - Xmin)',

Note that the transformations T2 , T3 and T4 are defined in such a way that they have a
clear nonlinearity in the following sense:

T;(xmax ) - T;(x.) == 10
T.(x.) - T;(xmin)

where x. == (Xmin + xmax )/2.

or
1

10'

Then, any model candidate can be described by some set M and is of the form:

gfJM(X1, .•. , x b) == E f3~g~(Xl, .•. , x b),
~EM

where M ~ T,

b

T == {T == (Tl," .,Tb)1 T. E {0,1,2}, ET.:5 2}
.=1

and

(3a)

(3b)

b
1 b II i •g~(x, ... ,x)== g~;(x),

;=1
(3c)

Note that (3b) controls that at most quadratic terms of the transformed variables and
only two-fold interactions between them can enter the model. The program provides
only model candidates M that contain all (possibly transformed) obligatory variables at
least with a linear term. Quadratic terms are only included when linear terms of the
corresponding variables already occur. The parameter 13M == (f3~ )~EM is always estimated
by least squares:

n
• '" 213M == argmin L.,,(Y. - gfJM(Xi)) .

fJM .=1

Here x. == (xL ... , xt). Hence,

(4a)

(4b)
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where PM is the projection onto the column space of the design matrix associated with
M. Note that, for simplicity, the formulae in (4) are only given for the case of m = nand
no weights are desired by the user.

The competitive models are compared by an estimate of some risk for estimating the
regression function, as discussed in detail by Bunke and Droge (1984). For presenting
such an estimate, let

(5)

(6)

be the mean squared error (MSE) for estimating the regression function using the model
M. Then an MSE estimate is given by

- 1 n 2 1 •
MSE(M) = - ~)Yi - g~M(Xi)) - -tr[(I - 2PM )r:j,

n i=l n

where t is an estimate of r: = diag[lT~, ... , lT~l as introduced in Section 2.2. Clearly, (6)
would be an unbiased estimate of (5) if Et = r:. Now we select a first model M; by
minimizing the estimated risk (6):

M~ = arg min MSE(M).
MeT

Although not explicitly expressed, this minimization process is also directed to the choice
of appropriate transformations for the basic variables included in the model.
(b) Alternatively to the polynomial model in (a) we also consider multivariate B-splines
as possible basic models. Looking at the construction of the polynomial models in (a), we
observe that it is similar to the construction of a basis in certain linear spaces of functions
of variables Xl, ••• ,xb starting with a basis in each of the linear spaces corresponding to
functions in one of the variables (g~., T; = 0,1,2). Hence, if for each i the functions
g~, ... ,g~i are the B-splines of order Wi in the argument xi according to a fixed set of, e.g.,
ki knots (d. de Boor (1978)), then

b

{gT(x l , ... , xb) = II g~i(xi)1 T E MO},
i=l

with MO = {T = (TI, ... ,Tb)1 0:5 T;:5 Ti}

and Ti=wi+ki-1,

(7)

is a basis of the space of multivariate splines with corresponding order and knots. There
fore, a multivariate B-spline can be defined by

gfJM' (Xl, ••• , xb) = L f3TgT(x l , .•. , xb),
TEMo

(8)

see Bunke (1984). We remark that this multivariate spline is a spline of order Wi with
certain knots as a function of xi if the other explanatory variables are kept fixed.

The orders of the splines, Wi, as well as the number k i , and the position of knots in
each variable are selected by minimizing the criterion MSE in (6). Depending on the
number of basic variables, the possible number of knots and orders is chosen in such a
way that at most 200 or 300 models have to be compared. The maximum order of the
splines is four, i.e. Wi :5 4, whereas the number of inner knots for each variable does not
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exceed two. The knots are selected from a set of potential knots, which are defined by
various procedures:

(i) In case of only one basic variable, we choose, roughly speaking, the potential knots
sequentially in such a way that there are at least five design points between two knots.
This number will be increased by shifting the larger knot as long as the "spread" of the re
sponses observed between the knots does not exceed the "average spread" of observations
belonging to five consecutive design points. The resulting partition of the data is hoped to
provide similar response variabilities in the different intervals, for details see Willig (1982).

(ii) If there are more than one basic variable, we distribute the potential knots equidis
tantly in each direction. This is done in two different ways. On the one hand, we set
comparatively few potential knots and select among all combinations of knots (0, 1, or 2
in each direction). On the other hand, we set many potential knots and select at most
one inner knot in each direction.

Minimizing the criterion MSE for the multivariate B-splines (8) over the admitted
combinations of knots and orders of splines yields a second model of interest, which is
characterized by some set of type (7), say, Mt. As an immediate consequence of the min
imal requirements concerning the orders and numbers of knots outlined above, we obtain
for Mt that ri :5 5 for i = 1, ... ,b.

Finally, we arrive at the so-called basic model M I , which is either M; or Mt, depending
on the corresponding MSE-values.

Notice that, if necessary, at several stages the program uses additional restrictions not
described here to ensure that the number of model candidates to be compared in this step
does not exceed a certain value, say, 300.

2.3 Transformation and elimination of variables

The aim of this step is to provide a second model, say M 2 , which is obtained by a
backward elimination of variables, starting with a rough large model depending on all
(possibly transformed) explanatory variables and minimizing the criterion MSE at each
step. The elimination procedure stops when the number of explanatory variables in the
achieved model M2 is as small as possible, provided that the corresponding MSE-value
is still in a neighbourhood of the minimum value MSEmin, say

The program uses ,= 0.1. Backward elimination is preferred to forward selection because
of the higher chance for including interactions in the model.

The large starting model has the structure

" b
9{3Ml (Xl, ... ,xb) + L {ritAxi ) +oi[tAxi )]2 +L /Ciiti(Xi)tj(Xi )},

i=b+1 i=1

(9)

i.e. it extends the basic model by adding linear and quadratic terms for effects of non-basic
variables as well as simple interaction terms between basic and non-basic variables. To
secure parameter identifiability it may be necessary to omit some or all of the quadratic
(and interaction) terms. As expressed by the notation, all variables may enter the model
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(9) by some transformations t; E {Til T2, T3, T.}. For the basic variables we use always
the same transformations t; (i = 1, ... , b) as they occur in the basic model MI' Due
to computational aspects, the convenient transformations for the non-basic variables are
chosen separately for each variable by adding to M I a linear, a quadratic and interaction
terms in the transformed value of the non-basic variable and minimizing the criterion
M S E over the class of admitted transformations. This means, for example, that the
"optimal" transformation tj for the non-basic variable x j , b < j ~ k, is obtained by
minimizing the M S E-values for the models

b

9{JMl (Xl, . .. , x b
) + "(jt(X j ) + Dj[t(Xj

)]2 + L: lCij ti(X i)t(xi)
i=l

over t E {Til"" T.}.

2.4 Second model choice
Using the variables included in the model M 2 , finer models than in Section 2.3 can be
constructed and compared by the MSE-criterion in the same way as it was done in the
basic model choice step 2.2, provided the number of explanatory variables allows this.
This results in a model M3 • Notice that in many cases the computational effort for this
step will not be too high, since the M S E-values for an essential part of the models to be
compared have been already calculated in previous steps.

2.5 Nonparametric kernel estimates as competitors
In addition to the polynomial and spline models considered until now, the user has the
possibility to compute nonparametric kernel estimates of the regression function. These
kernel estimates may be constructed on the basis of those variables which are included in
one of the models obtained in the previous steps.

Let d be the number of variables to be considered. Then we calculate the following
Nadaraya-Watson type kernel estimate:

n n

j(x) = L: K(h-11Ix - xiIlB)Y;/ L: K(h-11Ix - xiIlB),
~l ~l

(10)

where x E JRd, K is the kernel, h is the bandwidth, Xi is the vector of the d explanatory
variables of the model at the i-th design point and Ilzll~ = z'Bz for ad-vector z and a
d x d (weighting) matrix B. The user of the program can decide between the standard
choice B = I d and B = diag[lbt I, ... , IbdlJ, where the bi denote the estimated regression
coefficients of the included variables in a linear regression model. The last definition of
B allows to weight the different variables in accordance with their linear influence on
the response variable. Notice that the estimator (10) coincides with the multivariate
Nadaraya-Watson kernel estimator using a product kernel if we choose a normal kernel.

Again, the smoothing parameter (bandwidth) h and an appropriate kernel K are
selected by minimizing the criterion M SE. As possible kernels we admit the moving
average, triangular, normal, and truncated normal kernel.
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2.6 Estimation of the model error
As described in the previous sections, the program provides several models that may
be of interest. As an assessment of their performance, the corresponding values of the
M S E-estimates are calculated. Additionally, it is instructive to have information on the
systematic model error (bias) of the different models,

(11)

where M is one of the models M}, M 2 or M3• ~M describes the quality of the model
in view of future replicated observations at the same design points. The program yields
both, an estimate ~M and a joint upper confidence limit is.M for ~M, which are defined
by

(12)

and

(13)

where ,xmax(A) is the largest eigenvalue of A :=: n-1 t 1/
2(I - PM)t 1

/
2

, 11" the confidence
level to be chosen by the user (the standard value is 11" :=: 0.9), and X~,.. the 11"- quantile
of the X2-distribution with n degrees of freedom. Clearly, (12) is an unbiased estimator
of (11) if Et :=: 1;, whereas (13) can be derived by asymptotic considerations. For details
we refer to Bunke and Grabowski (1978).

2.7 Sensitivity analysis
The sensitivity analysis for the models proposed in the different steps can be performed
using various plots and statistics. In particular, our program generates plots of the stan
dardized residuals rj versus the fitted values y; and single explanatory variables x}, re
spectively. Furthermore, we can generate tables containing, for each data set i, the cor
responding observations Yi, the diagonal elements of the hat matrix Pii (leverage values),
the standardized residuals ri, and Cook's distance (see e.g. Cook and Weisberg (1982)),

2D. _ Piiri
, - d(l - Pii) ,

where d is the model dimension (trace of the hat matrix). The results could suggest a
renewed application of some steps after a certain manipulation such as the elimination of
some observations or explanatory variables, if e.g. the plots exhibit patterns or trends.

3 CONCLUDING COMMENTS
The implemented strategy is only one of several possible variants. However, it is based
on a series of theoretical and intuitive justifications, which could not be presented here in
detail. Some of these possible modifications have already been discussed in Bunke (1984).
For example, it would be useful for the user to have the opportunity to propose special
model candidates or at least to try some specific transformations of explanatory variables,
which could be suggested by the sensitivity analysis. The consideration of nonlinear
regression models and its comparison by a criterion as proposed in Droge (,1987) could
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improve the strategy, too. Further modifications may be concerned with the algorithms
for searching convenient transformations of the non-basic variables, and for estimating
the heteroscedastic error variances, etc. All in all, the kind of necessary adjustments
will mainly be determined by further applications of the program to both, real data and
simulation experiments.
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Part III:

QUALITY ENGINEERING AND APPLICATIONS





QUALITY IMPROVEMENT THROUGH
DESIGN OF EXPERIMENTS WITH BOTH

PRODUCT PARAMETERS AND EXTERNAL
NOISE FACTORS

LN. Vuchkov, L.N. Boyadjieva ..

1 INTRODUCTION

This paper presents a model-based approach to the Taguchi (1986) method of quality im
provement through design of experiments. It is an extension of authors results (Vuchkov,
Boyadjieva (1988)).

Consider a product with performance characteristic 1/. Assume that all factors influ
encing 1/ can be divided into following groups:

• Product or/and process parameters P = (Pl,P2" .Pm)' They can be kept to given
values when experiments are carried-out, but in mass production they are subject
to errors ~ = (el' e2 ... emf. The errors are due to tolerances of the components
and manufacturing imperfections. For example in an electronic circuit the values of
resistors and capacitors vary within some tolerance limits around the nominals. In
a chemical process the temperature, pressure, etc. can be set with random errors.
That is why in the real production the true values of product or process parameters
can be presented by the elements of a random vector l!. + ~.

• External noise factors ~ = (Zll Z2'" ZI)T. In design stage they can be varied within
given intervals, but during the mass production and use of product they are uncon
trollable and their values are random. For example for an electronic device such
factors are temperature, humidity, vibrations, etc.

• Random noise v. It takes into account random disturbances, which are not included
in ~ and~.

Assume that ~, ~ and v are independently and normally distributed with zero expec
tations and following covariance matrices:

~. = diag(0':, O'~, ... , O'~),

'Sofia University of Technology, 1156 Sofia, Bulgaria
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The variance of random noise is oo~.

Because of normality of distributions third order moments of ~, ~ and v are equal to
zero:

E(ef) = E(zj) = E(v3
) = 0, i = 1,2, ... ,m, j = 1,2, ... ,i.

Fourth order moments are equal correspondingly to E(et) = 3ooi\ E(z1) = 3oo4(Zi) and
E(v4

) = 3oo~.

Assuming that during the experiment product or process parameters and external noise
factors can be set to given values without errors, the performance characteristic's value
IS:

where 11(l!.'~) is nonrandom.

After shipping the product's performance characteristic is

(1)

where 11(l!. + ~,~) is random, because ~ and ~ are random vectors.

We consider a model-based approach to quality improvement which comprises:

• Model building of the performance characteristic and its variance in production pro
cess and exploitation of the product .

• Optimization procedures, which ensure minimization of variance while keeping the
performance characteristic close to a target.

2 MODELS OF THE PERFORMANCE CHARAC
TERISTIC AND ITS VARIANCE

Suppose an experiment is carried out with both parameters and external noise factors.
Any response surface design can be used for this purpose. The total number of columns
in the design matrix is m + i, with first m of them corresponding to parameters and the
remaining I columns - to external noise factors. If the design matrix is written in coded
factors, for example -1 :S Pi :S 1, i = 1,2, ... , m and -1 :S Zi :S 1, i = 1,2, ... , i, then
the moments of the distribution of ~ and ~ must correspond to their coded values.

Assume that during the experiment the values of Pi and Zi can be set to the levels
given in the design matrix without errors. Consider the most impportant case when the
results of this experiment can be described by second order polynomial:

m mm I II ml

Y(l!.,~) = 11{J!., ~)+v = f3o+L f3iPi+L L f3iiPiPi+L °iZi+L L oiiziZi+L L "fiiPizi+v .
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

(2)
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This equation can also be presented in the form

(3)

where:

A is I x I matrix with elements

aij/2 for i :/: i
aii for i = i .

B is m x m matrix with elements

B .. _ {f3i;/2 for i:/:i
'J - f3.. for i = i '

and T is m x I matrix with elements '"fij, i = 1,2, ... ,mj i = 1,2, ... ,I.

In mass production errors ei occur in product parameters Pi and external noise factors
Xi are random. That is why for this case following model must be used instead of (3):

Taking expectation with respect to ~ and ~ one can find following model of the mean
value of the performance characteristic:

(5)

One can see that y(p) depends on values of parameters P and on second order moments
of ~ and ~. The coefficients of model (2) have to be also known. They can be estimated
on the basis of the experiment and substituted in (5).

Using (4) one can find also a model of variance of the performance characteristic:

q2(p) = var[y(p,~)] = (f3+2BpfE.(f3+2Bp)+(q+TTpfE..(q+TTp)+trTE..TTE.+HM+q~
- - - - - - - (6)

where the influence of high order terms is described by

m m-l m I 1-1 I

HM=2Lf3i~(J't+ L L f3lj(J'l(J'}+2La~i(J'4(xi)+L L a~j(J'2(xi)(J'2(Zj). (7)
i=1 i=1 j=i+l i=1 .=1 j=i+l

The proofs of equations (5) and (6) are given in the appendix.

Let bo' f!, !!., A, B, C correspond to f3o' q, f3, A, B, T in which estimates are substituted
for the regression coefficients. Then the qu~dratic forms (5) and (6) can be written as
follows:

Y(E) = ET!!. + ETBE + db

a-2(E) = ET~ + {DE + d2 ,

(8)

(9)
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where

d1 = b" + trBE. + trAE",

d2 = (kT,!!T) (~. ~,,) ( : ) + trCE"CTE. + HM + u~,

IJT = 2(bT aT) (E. 0) (2B )
- ,- 0 E" CT ,

D = (2B
T

, C) (~. ~,,) ( ~~ ) .

3 OPTIMIZATION PROCEDURES FOR QUAL
ITY IMPROVEMENT

3.1 Optimality criteria

As an optimality criterion one can use Taguchi's (1986) loss function: L = k(y-T)2, where
k is a constant and T is the target value. Denote mil = E(y) and u: = E[(y - mil?]' One
can find:

Substituting fJ and (,2 for u: one can find

(10)

fJ and (,2 can be computed by use of models (8) and (9). Then the quality improvement
problem is to find such values of Pl,P2, ... ,Pm, which minimize E(L). Similar criteria can
be used for "the smaller the better" problem and "the largest the better" problem (see
Taguchi (1986) and Kacer (1985)). For example if y ~ 0, then for "the smaller the
better" problem one can put T = 0 in (10) and to obtain E(L) = k(fJ2 + (,2). For "the
largest the better" problem following formula can be used (see Taguchi (1984)):

• k 3(,2
E(L) = 72(1 + ~).

Y Y

Another definition of the optimization problem is as follows: minimize (,2 under the
condition that fJ = T.

Signal to noise ratio can also be used as a performance characteristic (see Taguchi
(1986)) and then the optimization problem is to maximize signal to noise ratio.

For solving optimization problem one can use numerical methods. However taking into
account that (8) and (9) are quadratic forms some simple analytic solution can be found.
Further on we use the conditional optimization criterion.
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PI

Figure 1: The idea of the geometric solution

3.2 A geometric solution of unconstrained conditional opti
mization problem

The matrix D is positive definite because E. and Eo. are positive definite too. Conse
quently the contours of equal values of 0-2 are ellipses or ellipsoids. A simple solution of
the conditional optimization problem exists if the contour defined by y = T intersects the
largest axis of these ellipsoids.

The stationary point ~ of (9) can be found by putting first derivative of 0-2 equal to
zero:

80-2

- = 8+2Dp= 0
8E. - --

and
1 I

P = --D- 8.
.... 2 - (11)

The second derivative of 0-
2 is 2D. This is a positive definite matrix and consequently

the stationary point corresponds to minimum of 0-2 •

In order to take into account the condition y = T one can use a canonical form of 0-2

«3.2)). Then two solutions E.
I

and E.
2

can be found as points in which the largest axe of
0-2 contours intersects the contour defined by y= T. The final solution is this one which
is nearest to p. Note that this method does not work if y = T does not intersect the
largest axis 0{12 contours.

Denote by ~Il ~2," • I ~m the eigenvalues of D and by T- the corresponding matrix of
eigenvectors. Substituting p from (11) in (9) one can obtain the value of variance in the

-2
stationary point:

(12)
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Following canonical form of 0-2 can be written:

0-2= o-~ +{TA{,

where A = diag(,\l, A2' ... , Am) and

{ = TT(l!. -~) = T-I(l!. - ~).

Consider the value

•2 ·2 •2 tTAt \ t2 \ t2 \ t2
0'1 = 0' - o'. = ~ ~ = "1"1 + "2"2 +... + "m"m'

(13)

(14)

(15)

Denote A. = min Ai, i = 1,2, ... , m. The minimal value of o-~ is in the direction of e.
axis and is equal to

(16)

In the stationary point p = p and from (14) and (16) follows that e. = Qand o-~. = o.- ~ -
Taking into account that TT = T- I one can obtain from (14) following equation:

(17)

(19)

For any point on the e-axis only one coordinate of e. is nonzero. Denote it e. and
rewrite (17) as follows: -

1!.. = t..e. +~, (18)

where t.. is the eigenvector which corresponds to A. = Amin.

The optimal value of e. can be found by substitution of p for p in equation iJ = r. We
use for this purpose the relationships (8) and (18) . '-"-

e.t!Q +iQ +e:t!Bt.. +2e.gB~ +i B~ +dl - r = 0

This equation can be rewritten in the form:

PIe: +P2e. +Pa = 0

where

PI gBt..,
P2 eQ +2eB~ = t!(Q +2B~),

Pa d l - r +iQ +i B~.

The solution of (19) is

e - -P2 ± VP2 - 4PIPa (20)
.1,2 - 2pI .

This solution exists if and only if p~ - 4PIPa ~ O.

When p~ - 4PIPa < 0 the contour of iJ = r does not intersect the largest axis e•.
When (20) exists two solutions are possible. The smaller one minimizes the variance.

Suppose for example that I e.1 1<1 e.2 I. Then the minimal value of variance is

(21)

It can be obtained for
(22)



201

3.3 Optimization by use of Lagrange multipliers

If (20) does not exist then the solution can be found by use of Lagrange mutlipliers. Some
ideas of Myers and Carter (1973) are used in this section.

Consider following function

where JL is an undefined multiplier.

For the optimal value of l!. the first derivative of 4> must be equal to zero:

d4>
-d = H. + 2Dp - JL(Q + 2Bp) = Q

l!. - -

Consequently
(-JLB + D)l!. = (JLQ - 9)/2.

The second derivative is
tP4>

dpdpT = (-JLB + D)2.

The solution is a minimum if (24) is a positive definite matrix, i.e. -JLB + D > 0 or

JLB - D < O.

(23)

(24)

(25)

Let A = diag(>'l' >'2,' .. , >'m) be a matrix of eigenvalues of D-lB and T - a matrix of
its corresponding eigenvectors.1t is well known that

TTnT = I,

TTBT = A.

Further on we use the substitution

Multiplying (23) by TT we obtain

Taking into account (26) and (27) we can rewrite this equation as follows:

and

(26)

(27)

(28)

(29)



202

From (28) and (29) we obtain

m

E. = -T(p,A. - I)-lTT(p,l!. - fl.)/2 = -1/2 L t.tf(p,).. - It1 (p,l!. - fl.), (30)
i=l

where t. are the eigenvectors of D-1B.

The relationship (25) can be written as follows:

TT(p,B - D)T = p,A. - I < 0.

Consequently for any).. following inequality must be fulfilled:

p,).. - 1 < 0, i = 1,2, ... ,m. (31)

Denote by ).m'n and ).m.... the minimal and maximal eigenvalues of D-lB. Then we
obtain from (31)

p, > ).;;'~n if ).m'n < ).m.... < 0,

P, < ).;;.~.. if 0 < ).m'n < ).m.... '

).m'n < p, < ).;;.~.. if ).m'n < 0 and ).m.... > O.

(32)

(33)

(34)

Consequently the indefinite multiplier p, must be chosen so that to minimize 0'2 under
the conditions (32), (33), (34) and y = T. For this purpose following algorithm can be
used:

1. Compute ).m'n and ).m.... and their corresponding eigenvectors. Choose appropriate
inequality from (32), (33) and (34).

2. Using q different values of p,: p,l, P,2, . .. , p,q, which satisfy (32) , (33) or (34) one can
obtain a set of q values of p., 0'1 or O'2(p.), Y., i = 1,2, ... ,q computing these variables
by use of equations (30), (8), (9). =-<

3. Graphs of y and the components of p. as functions of 0'1 can be drawn. Putting
y = T in the first graphics one can findo'~, which corresponds to T. Then from the
second graphics one can find the values of parameters E.",t = (Poptl' Popt2 ... poptm)T.

3.4 Optimization in a spherical space of product parameters

Suppose that the region of the experiment is a sphere which is defined by the equation

m

LP~ = R2
•

i=l

(35)

If the solution is within this region, it can be found by use of the algorithms described
in (3.2) and (3.3). However if the solution is outside of the sphere (35) an additional
condition must be imposed as follows:

(36)
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Define following function:

4> = q2(~)-p.[Y(e)-Tl-6({e-R2) = eTH..+eTDe+d2-p.(eTk+{Be+dl-T)-6(eTe-R2).
(37)

where p. and 6 are undefined Lagrange multipliers.

The first derivative of 4> is:

This equation can be also written as follows:

(38)

Let A = diag(Al' A2,' .. ,Am) be a matrix of the eigenvalues of D - p.B and T be a
matrix of the corresponding eigenvector. Putting P = Te in (38) and multiplying by TT
one can obtain - -

(39)

Taking into account that TT(D - p.B - H)T = A - H one can write (39) in the form

(40)

Consequently

e = T{ = T(A - 6I)- lTT(p./!.- H..)/2 = 1/2Lt;tf{A; - 6t l (p./!.- fl). (41)
;=1

The second derivative of 4> must be positive definite if the solution (41) corresponds to
a minimum of q2:

824>-- = (- p.B + D - 6)2 > O.
8e8eT

This can also be written as follows:

Consequently the inequalities A;-6 > 0, i = 1,2, ... , m have to be fulfilled, or 6 < Amin'
where Am;n is the minimal eigenvalue.

Following algorithm can be defined:

1. Arbitrary values p. = P.i, i = 1,2, ... , r are chosen.

2. The minimal eigenvalue Amin of D - p.B and corresponding T matrix are computed.

3. A set of q values of 6 are chosen: 6;1,6;2, ... ,6;q. Using (41) , (8) and (9) the values
of Eoi' q~ and Y;j are computed, where i = 1,2, ... I r and j = 1,2, ... ,q.

4. For any p.; three graphs can be drawn: ii, q2 and components of p as functions of R.
The graphs are used these values e",l = (Plop!> P20pl ... Pmoptf, ;hich ensure iI = T

while P is on a sphere with a radius equal to R. This value of P I corresponds to
'-<>pI '-<>P

minimal variance under these conditions.
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========================== ===================================
N> N>

,.
G -

Pl P2 P3 xl x 2
y Pl P 2 P 3 Y Y S

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
========================== ===================================

1 0 -1 1 1 0 14.43 1 0 -1 1 7.29 3.09 7.21 3.10
2 1 1 -1 1 0 -0.48 2 1 1 -1 - 3. 11 2.07 -3.06 2.06
3 0 1 1 1 - 1 27.77 3 0 1 1 14.83 5. 18 14.49 5.1 5
4 0 - 1 - 1 1 -1 - 5.2 4 0 -1 - 1 7.48 3.75 7.61 3.44
5 0 1 - 1 - 1 - 1 1 1 • 61 5 0 1 -1 3.27 1. 4 5 3.36 1. 71
6 - 1 0 1 1 1 14.82 6 - 1 0 1 3.96 2.27 4.05 2.37
7 1 0 1 - 1 1 -3.57 7 1 0 1 11 .92 5.58 12.43 5.80
8 1 - 1 0 0 - 1 -1 .68 8 1 - 1 0 .87 2.95 .97 2.67
9 1 0 1 1 - 1 24.06 9 1 0 1 11 .92 5.58 1 1 • 8 1 5.70

10 - 1 0 1 -1 - 1 7.06 10 - 1 0 1 3.96 2.27 4.16 2.32
1 1 - 1 1 0 1 1 10.31 1 1 -1 1 0 5.08 1. 69 5.13 1 .86
1 2 1 1 0 - 1 1 -7.14 1 2 1 1 0 4.77 4.26 4.67 4.35
1 3 - 1 - 1 0 -1 1 11. 17 13 - 1 -1 0 5.65 2.65 5.70 2.74
14 1 1 0 1 0 13.8 14 1 1 0 4.77 4.26 4.79 4.29
1 5 - 1 0 0 1 - 1 -0.7 1 5 -1 0 0 3.21 1 .29 3.17 1 . 4 1
16 - 1 1 0 -1 -1 13.48 16 -1 1 0 5.08 1. 69 5.17 1 .92
1 7 - 1 1 1 0 1 6.66 1 7 -1 1 1 8.77 3.70 8.71 3.49
18 1 - 1 1 0 1 13.33 18 1 -1 1 9. 19 4.74 8.97 4.76
19 1 1 1 0 - 1 24.44 19 1 1 1 18.96 6.82 19.26 6.79
20 - 1 - 1 1 0 - 1 3.03 20 - 1 -1 1 3.46 1 .79 3.42 1. 79
21 - 1 1 - 1 0 - 1 8.81 21 - 1 1 -1 7.72 2.55 7.67 2.66
22 1 - 1 1 1 0 21. 67 22 1 -1 1 9.19 4.74 9.10 4.85
23 - 1 - 1 - 1 1 0 5.52 23 -1 -1 - 1 14.16 5.03 14.37 4.87
24 1 1 1 - 1 0 4.43 24 1 1 1 18.96 6.82 19.00 6.80
25 -1 - 1 1 -1 0 0.74 25 -1 -1 1 3.46 1 .79 3.53 1 .92
26 1 - 1 -1 -1 0 -0.74 26 1 -1 -1 -1. 1 3 3.07 -1 .06 2.35
27 0 0 1 - 1 1 - 2.51 27 0 0 1 8.91 3.86 8.81 3.75
28 0 - 1 0 -1 - 1 5.17 28 0 -1 0 4.23 2. 14 4.28 2.01
29 0 1 - 1 0 1 5.86 29 0 1 - 1 3.27 1 .45 3.25 1. 51
===============================================================

Table 1: Experimental data, Table 2: Results of simulation

4 EXAMPLE

4.1 Estimation of y and a-2

Consider a simulated example. Let the true value of the performance characteristic is

y = 2.5 - 1.2Pl + 0.9p2 + 2.6p3 - 0.7p~ + 1.3PIP2 + 5.3pIP3 + 2.1p~ + 2.8p2P3 + 3.2p~ +
+2.8z1 + 1.2z2 + 0.6z~ + 4.1z1z 2 + 2.4z~ + 4.3pIZl + 0.2PIZ2 + 1.5P2Z1 -

-3P2Z2 + 6.2p3Z1 - 2.1p3z3 + v.

Data corresponding to a sequentially generated D-optimal design are given in Table
(1). They were simulated with E(v) = 0 and u" = 0.4.

Column 7 shows the simulated values of the performance characteristic without errors
in!!. and ~. Stepwise regression is used to compute regression model coefficients. The
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predicted model is

ii = 2.22 - 1.27p1 + 0.83p2 + 2.84p3 - 0.97p~ + 1.12P1P2 + 5.26p1P3 + 2.15p~ + 2.94p2P3 +

+3.16p~ + 2.94z1 + 1.38z2 + 0.89z~ + 4.24z1Z2 + 2.49z~ + 4.29p1Z1 + 0.09p1Z2 +
+1.48p2Z1 - 3.02p2Z2 + 6.05p3Z1 - 2.17p3 z 2

The coefficients of this model are used for computation of the predicted value iJ and
standard deviation iT with errors in parameters P and random noise factors ZI and Z2'
Formulae (8) and (9) are applied for this purpose. -Following moments of noises were used:

The results are given in columns 5 and 6 of Table (2). Columns 7 and 8 show the
values fj and S of the performance characteristic and its standard deviation obtained by
100 repeated simulations in each design point. One can see that the coincidence between
y and fj as well as between iT and S is good enough.

4.2 Optimization by use of algorithm of Section 3.2

Assume first that the target value is T = 1. Using the estimates of regression coefficients
we found that equation (19) can be written as follows:

-1.6038~~ + 1.2401~. + 2.2544 = O.

The discriminant p~ - 4P1P3 = 16,00039 > 0 and the solutions of this equation are
~_I = 0,8642 and ~_2 = 1,6336. The minimal eigenvalue is ~_ = 1,5683 and the variance,
computed by use of equation (21) is (T~ = 1.1711. The optimal values of parameters are
computed by use of equation (22). They are as follows: Ph = -1.4183, P2- = -0.1814,
P3_ = 0.6211.

4.3 Use of Lagrangian multipliers

Change the target value to T = 4. Then the equation (19) becomes

-1.6083~~ + 1.2401~_ - 0.7456 = O.

Its discriminant is negative (p~ - 4P1P3 = -3.2456) and the method of Section (3.2)
can not be used. The minimal and maximal eigenvalues of D-1B are ~min = -7.1847 and
~ma", = 1.0380. Then using (35) one can see that JI. must be in the interval -0,1392 <
JI. < 0,9633. Several values of JI. were given in this interval to obtain the plots on Fig. (2).
For y = T = 4 one can obtain the variance from Fig. (2), which is (T~ = 1.2051. Then the
values of P1, P2 and P3 can be found from Fig. (2): Ph = -0.6482, P2_ = -0.5639 and
Pa. = -0.2595.
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1.4 0-2
PI P2

1.3

1.2

1.1

1.0

iJ P1>P2,P3

4 a) 3 -0.8 -0.6 -0.4 -0.2 o b) 0.2 0.4 0.6 0.8 1

Figure 2: Plots of variance as a function of (a) mean value iJ and of (b) values of parameters

PI, P2, P3·

4.4 Optimization in a spherical region of interest

Assume that the target value is T = 1 and pT P < R2 = 1. The solution of Section (4.2)
is inappropriate in this case, because for it p1'""p = 2.43 > 1. That is why we apply the
method of Section (3.4). For this purpose we-g;ve three values of IJ: IJ = -0.2, IJ = -0.3
and IJ = -2 and computed following minimal eigenvalues of D - IJB:

~min(1J = -0.2)

~min(1J = -0.3) =
~min(1J = - 2)

-0.1149,

-0.3113,

-3.9963.

Plots of R as function of P, iJ and 0-2 respectively are drawn for IJ = -0.2, IJ = -0.3
and IJ = -2. They are given-on Figures (3), (4) and (5) respectively. For iJ = T = 1 one
can find the values of variance and corresponding parameters. One can see from Fig. (3)
that the variance is smallest for IJ = -0.2, and 0-2 = 1.1711. However this solution does
not satisfy the condition that R = 1, because for it R = 1.559. The optimal solution can
be found from Fig. (4) for IJ = -0.3. For iJ = 1 and R < 1 one can find that the variance
is 0-2 = 1.5917. The optimal values of parameters are Ph = 0.2728, P2. = 0.3435 and
P3. = -0.6749.

For IJ = -2 the variance is 0-2 = 2.178, which is larger than for IJ = -0.3 (Fig. (5».
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Figure 3: Plots of R as function of y, 0-2 and E. for p. = -0.2.

1.2 R R1.2

1.0 1.0

0.8
P3

P2 0.8

0.6 0.6

0.4 0.4

0-2 Pl,P2,P3 iI

2 1 -1.0 -0.5 0 0.5 1 2 3

Figure 4: Plots of R as function of ii, 0-2 and E. for p. = -0.3.
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1.2 R
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1.0 1.0

0.8 0.8

0.6
Pa P2 PI

\ I / 0.6
I"

0.4 \ I / 0.4 ~
ir2 iI
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Figure 5: Plots of R as function of ii, ir2 and :e for Jl. = -2.
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Appendix

Equation (4) can be rewritten in the form:

Y(:e,~) = /30 + fiT:e + :eTB:e + 'T/. + 'T/z + 'T/.z + v

where

'T/. fiT f +2{Bf +fTBf'

'T/z Q.T~+~Tk+:eTT~,

1/.z fTT~.

(42)
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1. Proof of equation (5)

Taking expectations of (42) with respect to §. and ~ and having in mind that §. and
~ are independently distributed with E(§.) = E(~) = Q, E(v) = 0, one can write

Equation (5) follows from (43) because E(§.TB~) = BE(eeT) = tr BE. and E(~T~) =
AE(zzT) = trAE",.

2. Proof of equation (6)

Taking into account (42) one can write

u 2(p) var[Y(E, ~)] = var(77.) + var(77",) + var(77.",) + var(v) + 2[cov(77., 77",) +

+cov(77.,77.",) + COV(77""77.,,,)] + 2coV[(77. + 77", + 77.",), v). (44)

Compute the terms of (44) under following conditions:

• The elements of ~ are independent of each other. The same is true for the
elements of ~.

• ~, ~ and v are independent of each other.

• E(~) = Q.,., E(~) = !h, E" = 0, where Qm and ~ are vectors of m and I elements
equal to zero.

• E(eeT) = E., E(zzT) = E",.

• ~ and ~ are normally distributed and E(en = E(z1) 0, 1,2, ... ,mj

j = 1,2, ... , I, while E(et) = 3ut and E(zt) = 3u4 (z;).

2.1 var(77.)

var(77.) = varUX~ + 2{B~ + ~TB~) = var((l~) + 4 var(ETB~) + var(§.TB~) +
2 cov(~T§., 2ETB~) + cov(~T~, ~TB~) + cov(2ETB~, ~TB~). (45)

Consider any of terms of (45)

•

•

•
m m-l m m-l m

var(~TB~) = var(L ,B;;e~+ L L ,B;je;ej) = L,B~ var(e~)+L L ,B!; var(e;ej )+5,
i=l ;=1 j=l ;=1 ;=1 j=i+1

(48)
where 5 includes all possible covariances between the pairs of errors, for example
e e and e e for i,j,r,8 = l,2, ... ,m and i, j not coinciding with r, 8.
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For the first two terms of (48) one can write

var(en = E(et) - (E(em 2 = 2o{ (49)

var(e;ej) = E(e~eD - E[(e;ejW = E(enE(e~) - 0 = 0'~0'j. (50)

For computation of 5 take into account that four combinations of indices are
possible. For the first three combinations one can write

For the fourth combination of indices following equation exists:

Consequently 5 = O. Putting (49) and (50) in (48) one can obtain

•

m m-l m

var(eTBe) = 2 '" a~.O'~ + '" '" a~.O'~O'~.- - L.J IJ", L.J L.J IJ'J , J
;=1 ;=1 j=;+1

(51)

•

•

The term E(f!.TeeTB~) is third order moment and is equal to zero for normally
distributed errors.

(54)

The proof of (54) is similar to that of (53). Substituting (46) - (54) in (45) one
can obtain

m m-l m

var(l1e) = (f!. + 2B~lEe(f!. + 2B~) + 2 LI3;~O't + L L I3ljO'lO'~. (55)
;=1 ;=1 j=i+l

2.2 var(l1.. )

var(qT~ + ~Tk + pTT~) = var(qT~) + var(~Tk) + var(pTT~) +- -
+2cov(qT~,~Tk) + 2cov(qT~,~TT~) + +2cov(~TA~,~TT~). (56)

Consider the terms of (56):

•
(57)
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• / /-1 /

var(~Tk) = 2L 0:,0'4(Z,) + L L 0:j0'2(z,)0'2(Zj). (58)
.=1 .=1 j=i+l

The proof of (58) is the same as for (51).

•

•

because the third order terms of normally distributed vector ~ are equal to zero.

•

•
cov(~TA~,~TT~) = E(~TA~TT~) - E(~TA~)E(~TT~) = O. (62)

Substituting (57) - (62) in (56) one can obtain

/ /-1 /

var(17",) = (!! + TT~)TE",(!!+ TT~) + 2 L 0:.0'4(Z.) + L L 0:j0'2(z.)0'2(Zj) .
•=1 '=1 j=i+l

(63)

var(17.",) = E(!lTzzTTT~) - [E(~TT~W = E[tr(TzzTTTeeT)] = trTE",TTE•.
(64)

2.4 var(v)

var(v) = O'~ (65)

Taking into account that ~ and §. are independent one can write this equation as
follows:

(66)
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2.7 2 COV(l1"" 11.",)

COV(l1""l1.",) = E(l1",!lT~) - E(l1",)E(~TT~) = E(l1",~TTT~) = E(l1",ZTTT)E(~) = o.
(68)

(69)

In a similar way one can see that

(70)

Substituting the obtained results in (44) one can obtain the result (6) .



STATISTICAL METHODS FOR QUALITY CONTROL

-BEYOND THE ANALYSIS OF VARIANCE-

Chihiro Hirotsu
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1. INTRODUCTION

There are all sorts of statistical or nonstatistical data processing procedures, which

should be properly used in various phases of experiments. Among them we discuss

here some beyond analysis of variance (BANOVA) techniques which should be useful for

explanatory or confirmatory experiments. In particular we propose

(1) some multiple comparisons procedures for modelling the generalized interaction

effects, and

(2) a method for testing and/or modelling ordered parameters.

It should be noted that these two topics have many applications. The generalized

interaction covers a very wide range of statistical inferences including the usual two-way

interaction in the analysis of variance model, the association in a contingency table, the

canonical correlation and the non-parametric regression analysis. The second takes a

prior knowledge on parameters into statistical inferences, where the omnibus statistics

such as F and X2 are inapropriate and one degree of freedom (1 df) statistics such as t

and linear rank sum are too restricted.

2. PHASES OF EXPERIMENT

There are all sorts of data processing procedures including statistical data analysis,

exploring data analysis (EDA), Taguchi's parameter design and so on. They are some

times called to be opposing procedures. I should, however, stress that they are by no

means in rivalry with but are complementary each other. They should respectively be

useful in some of the four different phases of experiments.

(1) Exploring

This is the first phase of an experiment to find out some promising hypotheses. Var

ious techniques of EDA are used, including cause and effect diagram, quality deployment

and Box-whiskey plot. Analysis of variance and regression analysis can also be applied
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but too much confidence should not be given to the results obtained by data dredging.

They should be confirmed by the later phases of the experiment.

(2) Explanatory

A rigid statistical analysis is applied to prove the hypothesis under the well defined

condition.

(3) Confirmatory

It is necessary to prove the accepted hypothesis by the phase 2 (laboratory) exper

iment to be also valid in the actual field. For the purpose Taguchi's idea of parameter

design should be useful, where possible noises expected to occur in scaling up are taken

into the experiment. The factor has been called a noise factor by Taguchi (1986) but

we prefer to call it a variation factor distinguishing it from the pure measurement error

which is brought about in a repetition. This is a sort of the interaction analysis between

the controllable and the variation, or environmental, factors.

(4) Follow-up

Even if the earlier three phases are taken very carefully, the sample size is usually

far from enough to foresee all the possibilities that may occur in actual field. So the

follow-up analysis after marketing is an inevitable process and the obtained information

should be immediately fed back to the first phase. In some sense this might be the first

step of an experiment.

3. CLASSIFICATION OF FACTORS

In analyzing data the character of a factor plays an important role. We define here

five factors and explain how they are incorporated in analyzing data.

(1) Controllable factor: Reproducible and can be specified by the experimenter.

The purpose of the experiment will be to determine the optimal level of this factor.

(2) Indicative factor: Reproducible but uncontrollable by the experimenter. A

typical example is the region in the adaptability experiment of the rice varieties.

(3) Concomitant factor: Reproducible but observable only after the experiment.

(4) Variation factor: Reproducible in the laboratory but not in the actual field of

application. Individuals in a clinical trial give a typical example.

(5) Block factor: Nonreproducible factor introduced to reduce a systematic back

ground variation.

The controllable, the indicative and the concomitant factors are considered to be of

fixed effects. The variation factor may be treated as a fixed indicative factor within an

experiment but works as if it were a random noise on extending the result to the actual

field. The block factor can be treated either as fixed or random and may not either way

cause serious effects excepting the recovery of interblock information since no interaction
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is assumed in the relation with other factors in the experiment (see Hirotsu 1965, for

example).

4. ANALYSIS OF INTERACTION EFFECTS

It seems that too less attention has been given to the analysis of interaction as

compared with its importance. First the all-or-nothing procedure represented by F or

X2 test is often not useful in an application since the degrees of freedom for interaction

are usually large. The multiple comparisons procedure for interaction elements with 1

df is also often too conservative and not easy to interpret. Further, more importantly

the characteristic of a factor seems not necessarily to have been well reflected upon the

analysis.

In case of the controllable x controllable, the purpose of the experiment will be

to determine the optimal combination of the levels of the two factors and some simple

interaction models such as Mandel (1971) and Johnson & Graybill (1972) should be useful

to point out it. If one factor is indicative the purpose will be to select the optimum level

of the controllable factor for each level of the indicative factor. Then the procedure of

grouping the homogeneous levels of the indicative factor is desirable so that a single level

of the controllable factor can commonly be applicable to as many levels of the indicative

factor as possible. If a variation factor is involved the purpose will be to find out an

optimal level of the controllable factor which make the objective characteristics robust

against the possible environmental variations. In all these situations the row-wise and/or

column-wise multiple comparisons procedure for modelling interaction effects should be

useful.

5. MODELING THE INTERACTION EFFECTS IN A TWO-WAY LAYOUT

Suppose that we are given two-way observations with replications and assume the

model

Yijk = J.Lij + Cijk (i = 1,'" ,a; j = 1,"', b; k = 1,···, r),

where the Cijk are independently distributed as N(O,(T2). The J.Lij may be modelled

simply by J.Lij = J.L + (li + {3j if the hypothesis of no interaction is accepted. When it

is rejected, however, we are faced with a more complicated model and it is desirable to

have a simplified interaction model with a less degrees of freedom.

Reparameterize the J.Lij as



216

where P is the column vector of Il-ij 's arranged in dictionary order, P+ the additive part

of p with Pi. + p.j - p.. as its b(i - 1) + jth element and 'Y = (P~ \:9 Pb)p the interaction

part. We use the usual dot and bar notation to denote the sum and the average over

the suffix replaced by the dot, \:9 denotes the Kronecker product and P~ is an (n - 1)

by n orthogonal matrix satisfying PnP~ = In - n- l jnj~, I being an identity matrix, j
a vector of 1's.

The contribution of two particular rows, the mth and the nth, say, to 'Y is given by

where Pi = (Il-il,'" ,Il-ib)" This is called an interaction element between the two rows

(Hirotsu 1973). If it is known to be zero, one can take into consideration only those

contrasts which are orthogonal to it. Thus if by any means one can classify rows into

homogeneous subgroups so that in each of them all interaction elements are zero, one

can have a much simplified model. We can deal with the columns symmetrically.

The resulting model may be expressed in terms of nonzero elements of 'Y. The

contribution of two subgroups of rows G 1 = (1, ... ,pd and G2 = (PI + 1,'" ,PI + P2)

to 'Y is, for example, defined by

A more convenient expression of the model is, however,

Il-ij = Pi. + p.j - p.. + (Ci{3)ij (5.1 )

with (Ci{3)i. = 0, (Ci{3).j = 0 and (Ci{3)ij = (Ci{3)i'j' if i, i' E G u and j, j' E lv, where

G u, u = 1,···, A, and lv, v = 1,···, B, denote the homogeneous subgroups of rows and

columns, respectively. The model (5.1) may be called the block interaction model.

6. ROW- AND COLUMN-WISE MULTIPLE COMPARISONS FOR INTERACTION

To obtain such a classification we propose simultaneous tests of the hypotheses

for any subgroups G1 , G2 E (1,···, a) based on the squared distances between G 1 and

G2

where the L(G1 ; G2 ) are obtained from the L(G1 ; G2 ) with p replaced by fI, the vector

of cell means. This may be called the row-wise multiple comparisons procedure.
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For every choice of G I and G2 the statistic S(G I ; G2 ) is bounded above by the

maximum of 1'11(a' Q\J Pt)1I11 2 with respect to a subject to the condition that Iiall = 1,

a'; = 0, which is, under the null hypothesis of interaction, distributed as the maximum

roof of the Wishart matrix W(0-2 Iv" V2) where VI = min(a -1, b-1) and V2 = max(a

1, b - 1) (see Hirotsu 1983a, for details).

To cancel out the unknown 0-2 , we divide the S(G I ; G2 ) by the unbiased variance

with the df v = n - ab, then S(GI ; G2)/&2 is bounded above by

(6.1)

where >'1 (VI, V2) is the maximum root of W(IVl! V2) and the X2
v is the chi-squared

variable independent of the >.).
We explain the row-wise multiple comparisons procedure by an example.

Example 1. The data summarized in Table 1 are taken from Davies (1954).

TABLE 1 Averaged corrosion resistance of aluminum alloys (1' = 4).

Alloys
Sites 1 2 3 4 5 6 7 8 9

1 5.50 5.50 5.25 5.00 6.50 5.00 2.25 6.00 7.00
2 8.00 8.00 7.25 7.50 6.00 5.00 5.50 5.75 6.50
3 3.25 3.75 5.00 3.25 4.50 3.00 1.00 5.50 6.25
4 4.25 4.00 6.00 4.75 6.00 4.50 3.75 7.00 6.00

1,3,4 4.33 4.42 5.42 4.33 5.67 4.17 2.33 6.17 6.42
2 8.00 8.00 7.25 7.50 6.00 5.00 5.50 5.75 6.50

The data relate to the testing of nine Aluminum alloys for their resistance to corro

sion in a chemical plant atmosphere. Four typical sites in the factory were chosen, and

at each of them a plate made from each alloy was exposed for a year. The plates were

then submitted to four observers, who assessed their condition visually and awarded

marks to each from 0 to 10 according to the degree of resistance to attack. Thus the

data were originally of a 9 x 4 x 4 experiment. We can, however, treat them as a two-way

table like Table 1 averaged over the observers since there is no evidence of interaction

of observers with sites and alloys. According to Davies the unbiased estimate of the

variance to assess the interaction involved in Table 1 is [,2 = 0.90 with the df 105.

The purpose of the experiment is to choose an appropriate alloy for each of four

sites which are considered to be an indicative factor. Then it is preferable if an alloy

is suitable for as many sites as possible since it would be inconvenient to have to use
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different alloys in different sites in a factory. So this is the problem of the row-wise

multiple comparisons for interaction.

The squared distances between rows divided by &2 are 5(1; 2)/&2 = 42.62,

5(1;3)/&2 = 9.48, 5(1;4)/&2 = 19.66, 5(2;3)/&2 = 58.61, 5(2;4)/&2 = 55.12, and

5(3; 4)/&2 = 12.99, which should be evaluated by the distribution of (6.1). In this case,

however, the df for &2 is large enough so that we can approximate the distribution by

that of AI(3,8) and obtain critical values 22.62 (a = 0.05) and 27.52 (a = 0.01). Thus

the site 2 is proved to behave very differently from the other sites and there is no evidence

of inhomogeneity among sites 1,3 and 4. The squared distance between the two groups

G I = (1,3,4), and G2 = (2) is found to be 5(GI ; G2)/;2 = 71.16, which is very highly

significant elucidating 71.7% of the total sum of squares for interaction.

The mean responses of alloys averaged over the sites in each subgroup are shown

in the lower half of Table 1. From it we can derive a tentative conclusion that for sites

represented by 1,3 and 4 the alloy 9 or 8 would be suitable and the alloy 1 or 2 for those

sites for which the site 2 is the representative.

7. PROCEDURE FOR A TWO-WAY LAYOUT WITH EXACTLY ONE

OBSERVATION PER CELL

When r = 1 we do not have the unbiased variance &2 derived from the within cell

sum of squares. We therefore divide the between groups sum of squares by the total

sum of squares for interaction

Then for every choice of subgroups G I and G2 , S(G I ; G2 )/T is bounded above by the

ratio of the largest root Al (VI, V2) of the Wishart matrix to its trace. The null distribution

of the ratio is given in Johnson & Graybill (1972) by which we can evaluate S(G I ; G2 )/T.
In this situation it is very important to have an estimate of (72. It is obtained if the

block interaction model (5.1) fits the data well.

First the least squares estimator of the model and its variance are obtained for

general case as

P.ij = Yi .. + Y-j. - y... + [L L Yij./{n(Gu)n(Jv)}
iEG. jEJ.

- L Yi ..jn(Gu) - L Y.j./n(Jv) + y .. ],
iEG. jEJ.
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where n(Gu ) and n(Jv ) denote the number of rows and columns contained in the sets

G u and J v , respectively. Then in case r = 1, an estimator of (12 is given by

;,2 = L L(Yij - /lij? / f = {T - 11i'11 2
} / f,

j

where f = (a - 1)(b - 1) - (A - 1)(B - 1) with (A - 1)(B - 1) being the number of

orthogonal interaction contrasts remaining in the model.

An example of 7 x 3 two-way table without replication is given in Hirotsu (1983a),

where the 3x2 block interaction model is successfully fitted to the data. Another example

given in Hirotsu (1976) is a two-way layout examining the adaptability of 18 varieties

of rice (the controllable factor) to 44 combinations of regions and years (the indicative

factor). The procedure succeeded in classifying varieties into four types, Formosan type,

Indian type, Japanese and Korean type and the special variety called Hybrid. Regions

were also classified properly into six groups, Korea and the northern part of Japan,

southern part of Japan, tropical regions, Nepal, Egypt and Mexico.

8. GENERALIZED INTERACTION

The previous notion is extended to the analysis of the generalized interaction. The

analysis of generalized interaction covers a very wide range of statistical inference.

As_an example consider the rank data from one-way layout, Yij = J-li +Cij. They are

summarized as in Table 2 and the treatment differences are reflected upon the pattern

of 0,1 occurrences. If the J-li is large then for the treatment 1's occur more often in the

right side than left. So this is the problem of interaction analysis with ordered column

categories.

TABLE 2 Rank data.

Rank
Treatment 1 2 3 n-2 n-l n Total

1 0 0 0 0 1 0 0 0 0 1 1 nl

2 1 0 1 0 0 1 0 1 0 0 0 n2
3 0 1 0 1 0 0 1 0 1 0 0 n3

Total 1 1 1 1 1 1 1 1 1 1 1 n

It should be noted that linear rank tests with 1 df such as Wilcoxon-Mann-Whitney,

Fisher-Yates, Savage, and so on are by no means powerful enough for a wide range of

alternative models if they are criterion robust. So we recommend to apply the statistics

with more than 1 df such as the cumulative chi-squared statistic.
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Table 3 taken from Bradley, Katti & Coons (1962) gives another example of a similar

kind.

TABLE 3 Taste testing data.

Rating
Foods I.Terrible 2 3 4 5.Excellent Total R i

1 9 5 9 13 4 40
2 7 3 10 20 4 44
3 14 13 6 7 0 40
4 11 15 3 5 8 42
5 0 2 10 30 2 44

Total Cj 41 38 38 75 18 210

For these ordered categorical data, the ordinal regression models such as propor

tional odds model are usually applied, see McCullagh & NeIder (1989), for example.

There can also be applied the block interaction model derived from the row- and column

wise multiple comparisons based on the cumulative chi-squared statistic.

9.TESTING AND MODELLING ORDERED PARAMETERS

Two examples given in the previous section prove also the necessity of testing and

modelling the ordered parameters. If the underlying distributions have monotone likeli

hood ratio in those examples then the one- and the two-sided alternatives HI : III < 112

and H 2 : III i- 112 correspond to the ordered alternatives (9.1) and (9.2), respectively,

where the Pij denote the occurrence probability of the ith treatment in the jth column.

Pll > Pl2 > . . . > PI n

P21 - P22 - - P2n'

Pll > Pl2 > ... > PI n

P21 P22 - p2n
or Pll < Pl2 < ... < PIn

P21 - P22 - - P2n

(9.1)

(9.2)

The data in Table 4 were taken for comparing the efficacy of two sleeping drugs.

After the dosage the brain wave of each subject was observed every second for eight

hours and the total hours spent in each of the four levels of the depth of sleep were

recorded. Then the efficacy of a drug was evaluated by the relative length of hours spent

in the deeper level against the lighter level. So the superiority of drug A 2 over Al is

suggested by the decreasing trend of the mean differences along with the levels of B. The

main effects have no information on the efficacy of the drug and this again demonstrates

the necessity of testing ordered alternative for interaction like



K 2 : 1l2j - Illj - (1l2j+1 - 1l1j+1) ~ 0 (j = 1,2,3), or

1l2j - Illj - (1l2j+1 - Illj+d :::; 0 (j = 1,2,3).
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(9.3)

TABLE 4 Total hours spent in stage Bj of depth of sleep.

DrugA I Drug A 2
Subject B I B 2 B 3 B 4 fh.k Subject B I B 2 B 3 B 4 fhk

CI 3.2 1.6 0.8 2.4 2.0 CI 2.8 4.4 0.4 0.4 2.0
C2 2.0 1.6 3.2 1.2 2.0 C2 3.2 3.2 0.8 0.8 2.0
C3 2.4 3.2 1.2 1.2 2.0 C3 1.6 6.0 0.4 0.0 2.0
C4 1.6 2.0 2.8 1.6 2.0 C4 2.8 1.2 3.6 0.4 2.0
Cs 1.2 2.4 2.4 2.0 2.0 Cs 2.4 2.8 2.4 014 2.0
C6 0.8 2.8 1.6 2.8 2.0 C6 2.8 2.4 1.2 1.6 2.0
Ylj. 1.9 2.3 2.0 1.9 Y2j. 2.6 3.3 1.5 0.6

Degrees of depth of sleep B I , B 2 , B 3 , B 4

Mean differences Ylj. - Y2j. : -0.7, -1.0, 0.5, 1.3.

The detailed analysis of Table 4 is given in Hirotsu (1978).

10. CUMULATIVE CHI-SQUARED STATISTIC

Two major approaches for testing the equality of the ordered parameters are the

likelihood ratio test represented by Bartholomew (1959) and Kudo (1963) and the score

test represented by Abelson & Tukey (1963) and shaafsma (1966). The former is, how

ever, sometimes too complicated to apply to such a two-sided alternative like (9.2) or

(9.3) for two-way data. Although the latter is easily applicable to many situations, it

does not necessarily keep high powers against the wide range of the ordered alternatives.

In those circumstances the cumulative chi-squared statistic (CCS) defined below will

give a good compromise.

First consider the one-way analysis of variance model

Yij = Ili + €ij, €ij E NID(O, 0'2) (i = 1"", k; j = 1,"" r),

Then the essentially complete class for testing Ho : III = ... = Ilk against the

ordered alternative K I : III ~ 112 ~ ... ~ Ilk , with at least one inequality strict, is

given by all the tests that are increasing in every element of (D~Dk)-1D~fI (Takeuchi
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1979, Hirotsu 1982), where 1i is the vector of averages Yi. arranged in dictionary order

and

D, ~ [:
Then the CCS defined by

-1
1
o

o
-1
o

o
o
1

0]o
-1 k-1xk

-1
k-2

1

(10.1 )

-1 ]-2

-(k - 1)

• Pi = i(k - i)/k (normalizing constant)

is proved to be useful for the two-sided version of the ordered alternative

K 2 : J-l1 2:: J-l2 2:: ... 2:: J-lk or J-l1 ~ J-l2 ~ •.• ~ J-lk (Hirotsu 1979b). Note that the

two sided version is useful for two-way data with natural ordering only in columns (say),

where the problem is essentially two-sided since then the rows are permutable.

The CCS of (10.1) is well characterized by the expansion

where the xli) denote the chi-squared components with 1 df for the Tshebycheff's ith

order orthogonal polynomials. This suggests that the CCS is useful not only for test

ing ordered alternatives but also for testing goodness of fit of a model against some

systematic departure, mainly but not exclusively linear. The two-step procedure, first

detecting some systematic departure without being affected by short term deviations

and then' detecting the short term deviations by the follow-up analysis of residuals will

give a good strategy for statistical modelling (Hirotsu 1986, 1990).

The CCS is generalized to testing the homogeneity of the parameters H o : 131 =

.. , = 13k (= 130) against K 2 : 131 2:: .. , 2:: 13k or 131 ~ ••• ~ 13k in a general model

with the likelihood L(j3, T), where T is the vector of nuisance parameters. Define the

efficient score vector evaluated at H o as

where So and T denote the maximum likelihood estimators. Then the CCS is defined by

(10.2)

where the pi are the normalizing constants (Hirotsu 1982).
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Applying the general fonnula (10.2) to testing K2 (9.3) for the two-way (a x b)
analysis of variance model we obtain

Similarly for testing the two-sided alternative like K 2 (9.2) for two-way contingency table

we obtain

where y is the vector of the observed cell frequencies and R1 and C·' are defined anal

ogously to p~ and Pt each row of which are orthogonal to r = (,;1[;" . " Vlf:y and

c = (vel, ... -../Cby, respectively, where the Ri and Cj are row and column totals (refer

to Hirotsu 1982, for details).

The mull distribution of the X· 2 is well approximated by the distribution of the

constant times the chi-squared variable dX;, adjusted for the first two moments (refer

to Hirotsu 1979a, for details).

11. ROW-WISE AND/OR COLUMN-WISE MULTIPLE COMPARISONS

FOR TWO-WAY DATA WITH ORDERED COLUMN CATEGORIES

The method of §6 is extended to modelling the two-way data with natural ordering

only in columns. It should be noted that in this case the procedures for rows and columns

cannot be symmetrical.

For the analysis of variance model the squared distance between two rows is defined

by

S· = rll{(O, ... ,0, 1/v'2, 0, ... ,0, -1/v'2, 0, ... ,0) 0 pt}yl1 2

and is naturally extended to the squared distance S·(G 1 ; G2 ) between two subgroups of

rows. Similarly for the contingency table we define

S ·(·· ") - II( /R· /R· )-1/2{0 R- 1
/

2 ° R- 1
/

2 ° ) C·'} 11 21,1 - 1 I +1., , ... ,0, i " ... ,0, - i' " ... ,0 0 y

and also S·(G 1 ; G2 ) as given in Hirotsu (1983b). Then for every choice of subgroups G 1

and G2 the maximums are bounded above by

max. rll(a' 0 pt)Y11 2 for the ANOVA model, and
lI a ll=l,a']=o

max II(al 0 C·1)yI12 for the contingency table,
lIall=l,a'r=o

respectively. It is proved that when a ~ band under the null hypothesis of interaction the

maximums are distributed as the maximum root of W(Pt p;, a-I) and W( C·'C·, a-I)
(asymptotically), respectively (see Hirotsu 1983b).
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Taking the natural ordering into the consideration it should be reasonable to restrict

the statistics for comparing colmuns to

x? = rll(P~ 181 pi')yl1 2 for the ANOVA model, and

X? = II(R' 181 ci')yl1 2 for the contingency table,

where Pi' and ci' are the jth row of pt and C*', j = 1, ... , b-1, respectively. The joint

null distribution of X? and xi~ is proved to be the bivariate chi-squared distribution

with the correlation Pi'pj or cj'c; (Hirotsu 1983b). It has been exploited to evaluate

the significance level of the maximum of X? by the Bonferroni inequality, which gives

the exact result for b = 3 in the ANOVA model. Very recently we obtain an exact

formula for a general case (paper under preparation).

12.TWO-STEP PROCEDURE FOR MODELLING THE ORDINAL DATA

The multiple comparisons procedure of the previous section is applied for modelling

the data of Table 3. The data have been analyzed by several authors. Snell (1964)

among others, fitted logistic distributions with a common scale parameter to get the

goodness of fit chi-squared 50.3 with the df 12. McCullagh (1980) allowed the logistic

distributions to have different scale parameters and reduced the chi-squared value to

21.3 with the df 8. Although his estimates of the location and scale parameters seem

to well explain the data, the chi-squared value is still relatively large for its degrees of

freedom.

Now the between rows sums of squares are obtained as in Table 5, where the rows

are rearranged so that the larger the elements according as the more they are apart from

the diagonal.

TABLE 5 Square distances between rows.

Foods:
3
4
1
2
5

3
o

4
12.27

o

1
18.61
9.74
o

2
36.62**
23.07*

3.18
o

5
78.17**
60.47**
23.59**
10.17

o

The critical values from the maximum root of the Wishart matrix are approximately

22.01 (a = 0.05) and 30.81 (a = 0.01). They suggest the homogeneous subgroups
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G 1 = (3,4), G2 = (1,2) and G 3 = (5). The between groups sums of squares are

S*(G1 ; G2 ) = 60.67, S*(G 1 ; G 3 ) = 87.40, S*(G 2 ; G3 ) = 87.40, and

amounts to approximately 86 % of the total cumulative chi-squared statistic 110.78

obtained by (10.2).

As for columns we get the maximum

by the partition J1 = (1,2) and J2 = (3,4,5), at the significance level 0.00015. Thus we

obtain the block interaction model

Pij =Pi.p.j>"l'lI, (i E Gu,u = 1,2,3,i = 1, ... ,5;j E Jv,v = 1,2,j = 1, ... ,5). (12.1)

.The standardized block interaction effects are given in Table 6, from which we

conclude that Food 5 is rated high, 3 and 4 are low, and 1 and 2 are intermediate.

TABLE 6 Estimating block interaction pattern.

Subgroupes of foods
(1,2)
(3,4)
(5)

Subgroups of rating
(1,2)
-2.21
6.47

-5.09

(3,4,5)
2.21
-6.47
5.09

The fitted value by the model (12.1) are given in Table 7.

TABLE 7 Fitted value to the data of Table 3.

Rating
Foods 1 2 3 4 5

1 5.931 5.497 8.288 16.358 3.926
2 6.524 6.047 9.117 17.994 4.318
3 13.418 12.436 4.104 8.099 1.944
4 14.089 13.058 4.309 8.504 2.041
5 1.038 0.962 12.183 24.046 5.771

The goodness of fit chi-squared statistic is, however, 24.9 and is still somewhat large

for its df 14, suggesting the need to analyze the residuals. The standardized residuals

from the fitted model (12.1) are given in Table 8. There are three eminent values, 4.64
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from cell (4,5) and 2.25 and -2.05 from cells (5,4) and (5,5). The observation 8 from

cell (4,5) seems too large since Food 4 is rated low by the global analysis. On the other

hand the observation 2 from cell (5,5) seems too small since Food 5 is rated high by the

global analysis. The residual analysis detects these phenomena very well.

TABLE 8 Standardized residuals from the fitted block interaction model.

Foods
1
2
3
4
5

1
1.62
0.24
0.25

-1.29
-1.49

2
-0.27
-1.60
0.24
0.83
1.49

Rating
3

0.32
0.38
1.10

-0.74
-0.90

4
-1.28
0.75
-0.51
-1.61
2.25

5
0.04

-0.19
-1.54
4.64

-2.05

13.CONCLUDING REMARKS

The BANOVA techniques discussed here are widely applicable to various kinds of

statistical problems. In particular the two-step procedure, first analyzing the systematic

effects by the cumulative chi-squared statistic and then analyzing the residuals to detect

the short tenn deviations seems to give a good strategy for modelling ordered parameters.
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MODEL BUILDING AND PARAMETER ESTIMATION OF PROCESSES WITH
SIGNAL-DEPENDENT PARAMETERS

K.Velev, I. Vuchkov, V. Tsochev

Department of Automation
Higher Institute of Chemical Technology
1156 Sofia, BUlgaria

1. INTRODUCTION

A lot of dynamic processes work under significant changes
in the operational conditions due to different causes - set
point changes, load changes, different raw materials, etc. In
such cases the liearization conditions are violated and linear
models with constant parameters commonly used in applications
describe the process behaviour quite inaccurately.

Best results in terms of the accuracy of model building
can be obtained by using analytical approach. Its application
requires deep knowlege of the mechanism of the investigated
processes. However, it is often difficult or even impossible
to obtain the necessary phenomenological relations because of
the considerable complexity of the process and lack of knowle~~e

of its basic mechanism. Then the only possible approach is to
use approximations.

When the variations of the proces variables are large,
an appropriate description can be obtained using functional
series representation of nonlinear systems. The most commonly
used are the Volterra series (Hung and Stark, 1977). Despite
their generality in describing smooth nonlinearities, they are
connected with a large number of parameters to be estimated and
they are not too expressive for the practice.

Blocx-oriented nonlinear dynamic models can bring about
some simplification of the model presentation, the most popular
being the Hammerstein and the Wiener ones. A good survey of
different possibilities of these models is made by Haber and
Keviczky (1976). The advantages of the block-oriented models
are their simplicity (fewer parameters to be estimated and more
obvious structure) and the possibility to obtain exact descrip
tion of some special nonlinearities. Unlike the Volterra series
models, however, they are not always applicable and require a
suitable structure of the model and a specification of the
order of the nonlinearities, for which preliminary information
must be available.

Another possibility of modelling such processes is provided
by the approximation of the nonlinear dependence by a linear
model, the parameters of which vary according to the changes of
the operational conditions. Diekmann and Unbehauen (1985) sug
gest the use of a discrete set of linear models with constant
parameters corresponding to different operational conditions.
A recursive procedure for the estimation of the set of parame
ter vectors ia developped applying least-squares and instrumen
tal variables methods. The approach is relatively simple, but
can only be applied if the operational conditions are well
defined and their number is not too large.
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Haber and Keviczky (1985) propose the use of quasilinear
difference models with constant parameters l'lhen the gain or
the time-constant of the system depend lineary or hyperbolical
ly upon some measurable variable. Further development of this
approach is provided by Vuchkov et al. (1985, 1936). They pro
pose the use of linear difference models with parameters depen
ding on the variation of some measurable external signals which
specify the working conditions. The parameter changes are app
roximated by a linear combination of functions of the measurab
le signals and a generalized quasilinear model with constant
parameters follows. The parameter estimates are obtained by a
nonlinear estimation procedure minimizing the output error.

The estimation of the parameters of the generalized diffe
rence model can be accomplished also by method minimizing the
equation error, for example linear least-squares, instrumental
variables and correlation analysis as proposed by Velev (1986)
and Velev and Vuchkov (1986).

Another approach to the modelling of the above mentioned
class of processes consists in the use of continuous models
represented by convolution integrals with weighting function
(kernel) depending on the operational conditions. Parametriza
tion of the kernel is obtained using expansion in orthogonal
functions series (Velev, 1988).

The present paper is an overview of the main results of
the authors concerning model building and parameter estimation
of processes with operational conditions dependent dynamics.

2. PROBLEM FORMULATION AND MAIN MODELS

Consider a process with one input u(t) and one output
n(t), the dynamic properties of which depend on the vector of
external variables x specifying the operational conditions. In
general the operator

n = A /u,x/
elucidating the relationship between x(t), u(t) and "1 (t) is
nonlinear. If we assume, however, that the changes of x(t) are
stepwise and seldom in comparison with the process dynamics and
the input u(t) varies in narrow limits around some working point,
the output net) can be described by a linear model with parame
ters depending on vector x.

Two main classes of models are proposed. The first one is
the class of linear difference models with signal-dependent pa
rameters:

Ax(q). "1 (x, t) = Bx(q). u(t), (1)

where
Ax(q) = 1 - a 1 (x)q - .•. - ana(x)qna,

Bx(q) = b1 (x)q + ••• + bnb(x)qnb

are polymomials the coefficients of which depend on the vector x
value, q is the backward shift operator: qy(t) = y(t-1) and t is
time variable which takes integer values. For simplicity we shall
assume further on na = nb = n.

The output of the process in disturbed by a stationary
noise E(t) with zero mean and uncorrelated with the input u(t),
so that the available output data are:

y(x,t) = n(x,t) + E(t)
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+ E(t),

obtain the following two type of nxxiels:From (1) and (2) we

Bx(q)
y(x,t) =~ u(t)

"x,q)

where E(t) is the output error, and

Ax(q) y(x,t) = Bx(q) u(t) + e(t), (4)
where e(t) is the equation error, or residual.

Assume that the dynamic properties of the process depend
continuously on the external variables xl' x2 ' "" x . Then
the parameterH1 a i (x)and bi (x) in(1)can be appro"ximated by a iblymr.ri.al:

a.(x) = 1: c·· r.(x), i = 1,2, ... ,n, (5)
1 j=l 1J J

b.(x) = 2 d .. f ... (x), i = 1,2, ... ,n, (6)
1 j=l 1J J

where f. (x) are product of the degrees of xl' x2 ' ••• , x
D

'
EqUations (3), (5) and (6) foom the generalized output

error difference model and (4), (5) and (6) - the generalized
equation error difference model.

The second class of models can be expressed by the convolu
tion integral:

n(x,t) = joog(x,T.) u(t-T.) d T., (n
where g(x,T.) i~ the weighting function of the process which
depends on the vector x value. If the process is stable, its
weighting function is absolutely, hence square integrable in
the interval (0,00):

f;g2(X,t)dt <00 Vz.

Consequently the weighting function can be expanded into
Lagguerre series of orthonormal functions:

(8)

(10)

00 '

= ~ ai (x) L i (t) ,
1=1

-at/2
e

g(x,t)

where
~ i! (-at) j

j=oU=J)I(JI)2

The coefficient a in (9) is a scale factor and in terms of
mean squares its appropriate choice will provide for the best
approximation of g(x,t) by means of finite number of terms n of
the series (8). Our investigations shows that the accuracy of
approximation is not too sensitive to the choice of a and

a = (0 1 T )-1
, s '

where Ts is the setteling time of the process, can be a good
choice. Usually not more than 4-6 terms in (8) are needed.

Taking also into consideration (7), (2) and (8), the
process model can be written in the form:

y(x,t) =I
OO

.~ ai(x) Li(T.) u(t-T.)dT. + e(t) =
o 1=0
n

= ~ ai(x) zi(t) + e(t),
i=o
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(12 )

(11 )

where by

zi (t ) =Joo Li (T) u(t-T)dT
o

the output of linear filters are denoted and the weighting
function L. (T) are the orthonormal Laguerre functions. In 00)
e(t) repre§ents the noise and the approximation error.

The polynomial expansion
m

a.(x) = L b .. f.(X)
1 j=l 1J J

can be used again, so that sUbstituting (12) in (10) the follo
wing generalized integral model i:?, obtained:

n m
y(x,t) = L L b·. f.(x) z.(t) + e(t) (13)

i=l j=l 1J J 1

3. PARAMETER ESTIMATION OF THE GENERALIZED OUTPUT ERROR
DIFFERENCE MODEL

(14 )

(18 )

y(x(k) ,t-i) -

y(x(k),t) =
n m (k)
L L c .. f.(x )

i=l j=l 1J J

m (k)
L d· .f.(x ) u(t-i)

j =1 1J J

n
L

i=l

y(x,t)

where (k)
e(x ,t)

Let us consider the output error model (3). Given the
estimates Bx(q) and Ax(q) the predicted output can be presented
as Bx(q)

y(x,t) = ----- u(t)
Ax(q)

or in more detailed form:
n n

y(x,t) = .L ai(x) y(x,t-i) + L b.(x) u(t-i)
1=1 i=l 1

Replacing (5) and (6) in (15) we obtain the following gene
ralized output error difference model:

n m n m
L L coof.(x) y(x,t-i)+ L L d .. f.(x)u(t-i)(16)

i= 1 j =1 1J J i= 1 j =1 1J J

that can be used to predict the output behaviour of the process
for some initial conditions and given input u(t) and vector x.
The total number of unknown parameters in (16) is 2 nm. They can
be estimated by minimizing the following functional:

M Nk
J(c,d) = L L e 2 (x(k) ,t),

k=l t=l

y(x(k),t)

y(x(k),t)

is the output error. In (11) M denotes the number of different
operational conditions while Nk denotes the number of samples
for each realization.

A numerial procedure has to be used for minimization of
(17) because the output error (18) is nonlinear in parameters
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(via model (16)). This is a difficult computional problem due
to the large number of parameters L = 2.nm and the complexity
of the surface (17).

It is much easier to solve the estimation problem in two
stages. In the first stage an appro~,iate procedure for the
estimation of the parameters a· (x' ) and b. (x(k)) in 15 is. l l _. .
applled. For example, Gauss-Newton or Marquardt s lteratlve
procedures (see Himmelblau (1970)) can be used. In the second
stage the parameters c·· and d·. in (5) and (6) are estimated.
As a result M nonlineafJestimaeion problems of 2n parameters
and a linear estimation problem of 2 nm parameters are solved.
A considerable reduction of computational efforts can be
obtained due to the fact that n is usually small (n ~ 3), while
m is large (for some problems M ~ 10).

The algorithm of the parameter estimation procedure can be
summa:ised as follows: (k) (k) _ .

l) Take the data u (t) and y(x ,t), k - 1,2, ... , M,
t = 1,2, ••. , Nk and fOir'm the corresponding data matrices.

ii) Choose the order n of model (15) by using some test
for order determination (see, for example, the matrix rank
determination test in Golub et al. (1976)). (k)

iii) Estimate the parameters a.(k)and bi in (15) for
x = x(k), k = 1,2, "" M, using Mar~uardt's method. Estimate
also the covariance matrices V(k)of the estimates which are
obtained at the last iteration of the Marquardt's procedure.

iv) Plot the predicted by model (15) curves y(x(k),t)
together with the experimental ones y(x(k),t) and decide if
the order of model (15) is properly chosen. If not, go back
to ii).

v) Choose the kind and number m of functions f.(x) in the
relationships (5) and (6). J

vi) Estimate the parameters c·. and d. " i = 1,2, ..• , n;:
j = 1,2, ... , m, using muluiple lifiJar reg~~siory procedure
with covariance matrix formed by the matrices vt k ) obtained
in iii).

vii) Verify the accur~cy of the generalized model (1~*)
plotting the predicted y(x\,k/,t) and the experimental y(x ,t)
curves and decide if the model approximates the process behav
iour under different operational conditions in a satisfactory
way. If not, go back to v).

4. PARAMETER ESTIMATION OF THE GENERALIZED EQUATION ERROR
DIFFERENCE MODEL

A ver";f essential computat ional improvement can be obtJ.ained
if the estlmation of the parameters c i · and d·. in (5) and
(6) is fUlfilled on the basis of the eauat ionl~rror model (4).
The generalized model can be written in the form:

n m n m
y(x,t) = I I C •• f.(x)y(x,t-i)+ ~ Id.. f.(x)u(t-i)+e(t),

i=1 j=1 lJ J i=1 j=-1 lJ J (19)

",here e (t) is the equation error due to the no.ise and to model
ling errors. The unknown parameters c·· and d .. enter lineary
in (19). To estimate them ordinary le~~t-squaf~s can be applied
given the experimental data x(t), u(t) and y(x,t).
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For this purpose the following overdetermined system of
linear equation is formed:

where
y = <1JS + e, (20)

(22)

f1ty(t-n) ... fmty(t-n):

f1tu(t-n) .. ·f'mtu(t-n)]

<1J = [cp(n+1 ). cp(n+2). cp (N)] T.

cpT (t) = (fity (t -1 ) . .. f mt y (t -1 )
f lt u(t-l) ... f mt u(t-1)

fit = fi(x(t)),

ST = [cU' .. clm ••• cn1· .. cnn ~1" '~m ... dn1 · ..~] •

yT = [y(n+l), y(n+2), ••• , y(N)J.

The least-squares estimate, minimizing the equation error,
is

.•• fit v(t-n) .•. f mt v(t-n))

••• fltu(t-n) ••• fmtu(t-n)]
vector cp(t) and the only
the output y(t) by the

1
vet) = ~gl u(t) = r 1q + ... + r1q u(t)

P(q) 1-p q- •.• -Plql
One very simle way to fbrm the in~trumental variables is

to take delayed values of the input:
vet) = qlu(t),

where 1 > n.
The following expression can be used as an estimate of

vector S:

. T (T -1 TSLS = argmln e e = <1J <1J) <1J y (21)
Unfortunately the equation error e(t) are correlated with

the regressors y(x,t-i) so we obtain biased estimates of the
parameters of model (19).

This drawback can be avoided if some modifications of the
method are used. One of them is the instrumental variable
method. An instrumental vector

IjIT(t) = [f1tv(t-l) .•• f mt v(t-1)

f ltu(t-l) ••• f mt u(t-l)

is formed with the same structure as
difference is in the SUbstitution of
output of a linear stable filter:

SIV = (lpT<1J)-l lpTy , (24)

where
IjIT = (ljI(n+1). ljI(n+2) •...• IjI(N)]

Consistency conditions for the estimate (24) are given in
Velev (1986).

If the input u(t) is stationary and the process is stable,
i.e. the zeroes of A(q) are outside the unity cirCle, the least
squares can be combined with correlation analysis. As the output
of the process is nonstationary because of the changes in pro
cess dynamics due to the external variables variation, some
constraints on the experimental conditions have to be imposed.
We shall consider further the case when vector x does not vary
in a random manner but according to some experimental design.
Then the estimation of the unknown parameters in model (19) can
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be fulfilled according to the following al~orithm;
i) Design an experimenta ~tth M m dlfferent values of

vector x: xO ), x(2J, ... , x(. . (k) (k)
ii) Measure the t~me series u (t) and y (t),t=1,2, ... ,

N for each vector x( ,k=1,2, ... ,M. (k)
if~)Calculate the correlation function estimates Ru (T)

and R k)(T), T = '1+1, ..• , L; l~O, L-l> 3.n.
uy
iv) Form the matrix

r-f1 (l)R~~)(l+n)•.. f~l)R~)(l+n) ... fil)R~~)(l+l)... f~l)~~~(l+l)

R = •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
---------------------------------1
fiM)R~)(l+n) .• .f~M)R~~)(l+n) ..• fiM)R~)(l+l)... f~M)R~~)(l+1) I

. . ... . .. . .. . . .. . .. . . . . . . . . . .. . . . . . . . . . . . . .. . . . . .. . . .. . . . . .. .. . . .. I

fiM)R~)(L-l) .•• f~M)R~~)(L-l) .•• fiM)R~~)(L-n)••. f~M)R~)(L-n) I

I fi 1)R~1) (l+n) ... f~l)Ru( l+n) .•. fi1)R&1) (1+1) ... f~1)R~1) (1+1)

I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

I f
1
(1)R(1)(L-l) .•• f(l)R(l)(L-1) •.. f

1
(1)R(1)(L-n) ... f(l)R(l)(L-n)

u m u u m u
1--------------------------------
. . .
1 --------------------------

I fl(M)R(M)(1+n) .•• f(M)R(M)(l+l) ..• f
1
(M)R(M)(l+1) ... f(M)R(M)(l+1)

u m u u m u...............................................................
I f(M)n(M)(L-l) f(M)R(M)(L-l)
11 u ···m u

wrere f ~ i) = f. ( x ( i )) and
J J

r T = [R(l)(l+n+l) .•• R(1)(L)-lly uy

v) The estimate of the unknown
ned by the well known formula

R~~(l+n+l),...R&i) (L)] .

parameters vector is obtai-

(25)( T )-1 TBC1S = R R R r.

The assymptotic properties of the estimate (25) are shown
in Velev and Vuchkov (1986).

A very short comparison between the output and equation
error methods of parameter estimation shows that the equation
error method is superior for its computational simplicity and
the lack of convergence problems (as a batch procedure).
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However, the use of least-squares is constrained to the noise
free case. The correlation analysis with least-squares gives
better results in the noisy case but can be applied only for
stable processes with stationary random input. The instrumen
tal variable method is the less restricted equation error one
but its efficiency is very low especially when the number of
data sets is not much higher than the number of parameters.

5. PARAMETER ESTIMATION OF THE GENERALIZED CONVOLUTION
INTEGRAL ]\1ODEL

The parameter estimation of model (13) is similar to the
previous cases. The two-stage estimation procedure is used
again.

In the first stage the paramet ers in (8) are estimated,
Le. the parameters.

a(k) = argmin Ilk), k = 1,2, .", M,

are determined, where
Nk

I(k) = ~
1 1=1

In the second stage the parameters b .. , forming a matrix
B, of phe generalized model (13) are esti~~ted:

B = arg min 12 ,

where M
I = ~ [a(k)-Bf(x(k))]TH(k)[a(k)_Bf(X(k))] (28)

2 k=1
The structure of H(k)depends on the noise characteristics

and the shape of the input signal.
The algorithm of the parameter estimation procedure is

given below:
(k) i) For M dif£)rent ope:ational C~?di~ions take the data

u (t l ) and y(x ,t l ), k - 1,2, ..• ,,1, l-1,2, •.. ,Nk .
ii) Form the matrices

-
z(k) (t ) z(k)(t) z(k)(t )

I
!

o 1 1 1 n 1
z(k) = z(k)(t ) z(k) (t ) z(k)(t )

o 2 1 2 n 2. . . . . . . . . . . . . .
Z(·k)(t

N
) z1(k)(t

N
) ••• z(k)(t

No k k n k

where z1 k )(t) are computed according (11), and the vectors

y(k) = [y(k)(t
1

) y(k)(t
2

) ••• y(k)(t
N

)JT

iii) By minimization of criterion (26)kobtain the following
least-squares estimate of the parameters of model (10):

a(k) = [(z(k))T z(k)J-1 (Z(k))T y(k).

iv) Form the matrices

H(k) = (Z(k))T Z(k)
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v) Obtain the estimates of the parameters b .. in the
. Ll

generalized model (13) using the generallzed leas~-squares

method:

H =

(30)

b. = [-b o

l lO

(a (1) )TJT,

(F(M))TJT ,

vi) Check up the adequacy of the model

a = Bf( x) + e

by using the X2 -test, proposed by Vuchkov et al.(1985)

X2 = (a - Fb) TH(a - Fb)

with degrees of freedom v = (n+1)(M-m-1).

6. CONCLUSIONS

An approach for model bUlding and parameter estimation of
a class of nonlinear processes with signal-dependent dynamics
was described in this paper. Two main types of models were
proposed: parametric models in the form of difference equations
and nonparametric mode ls in the form of convolution integral.
The changes in process dynamics due to variations in the ope
rationaluontlitions were described by the dependency of the
parameter$ of the difference equation (the weighting function
of the convolution integral) on the operational conditions
determined by the values of several external signals. In order
to parametrize the second type of models, the weighting func
tion was expanded in Laguerre orthonormal functional series
with parameters depending on theexternal signals. In both cases
generalized models with constant parameters follow. A two-stage
estimation procedure was proposed. In the first stage the para
meters of a linear-in-variables models corresponding to diffe
rent operational conditions were estimated and then they were
approximated by polynomials of the external signals.

Comparing the two types of models and their estimat±on
procedures the following conclusions can be made. Difference
equation type of models i~ usually more parsimonial in the
number of parameters to be estimated. It is also more convenient
for both optimization and control applications. The drawbacks of
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these models consist in the necessity of model order determina
tion which is not a trivial task, the nonlinear estimation pro
cedure when using the most general output error method and the
possibility to obtain unstable generalized models due to subse
quent approximations in the cases when for some operat ional
conditions t'he roots of the characteristics equation a close
to the unity circle.

The convolution integral type of models with expansion
of the weighting function in Laguerre functional series gives
always stable models. In both stages the estimation procedure
is linear which is a very essential computational advantage.
The number of estimated parameters, however, is usualy larger
because of the use of relatively high number of terms in the
functional series expansion in order to get a satisfactory
approximation for different operat ional condit ions.
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Gaussian independent random variables,

The detection problem is to test the

ASYMPTOTIC CHARACTERISTICS OF THE LIKELIHOOD RATIO TEST FOR
DETECTING RECTANGULAR CHANGE IN MEAN OF GAUSSIAN RANDOM

VARIABLES

Anatoly A. zhigljavsky
Mathematical Department, Leningrad University,
Bibliotechnaya sq., 2, Leningrad 198904, USSR

The nonsequential detection problem of a rectangular change
in mean of independent Gaussian random variables is considered
for the case when values of all parameters are known. An
invariance theorem is proved which states that asymptotically
the power function of the likelihood ratio test may be
approximated by a family of boundary crossing probabilities for
the Gaussian random process with triangular covariance function.
Explicit formulae for these probabilities are presented. The
Bahadur efficiency of the likelihood ratio test is also
established.

Let Xl ' ... , x
H

be

EX\ =J,LI' and var (XI) =u
2

•

hypothesis

H
O

: J,LI=O for all i=1, ... ,N

versus the alternative

H : there exists 1:, O<1:<N-T such that
I

{ 0 for i=1, ••. ,1: and i=1:+T+1, ..• ,N
J,L= A>O for i=1:+1, ... ,1:+T\

(1)

(2)

The problem of testing the hypothesis (1) versus (2) has
been considered in a number of works, see in particular
Bhattacharya and Brockwell (1976), Hogan and siegmund (1986),
Siegmund (1986,1988). This is a classical problem in the
stochastic radiotechnics as a problem of signal detection
occuring at an unknown moment in time. It also occurs in
medicine, quality control, and some other engineering problems.

Unlike the above mentione~ works we consider the case when
the values of parameters T,A,u are known but may depent on N.
We also suppose that T=T, T IN ->r where r is some known

H H
positive number. This particular problem has some specific
properties which do not hold for more general setups. It was
thourougly studied in Zhigljavsky and Kraskovsky (1988). Below
we mention some results from this work but the main sUbject
matter of the present work is to establish the Bahadur
efficiency of the likelihood ratio test. In doing this we shall
follow the approach which was developed in Haccou, Meelis, and
van de Geer (1988).
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The loglikelihood ratio for testing Ho versus Hl under the

supposition ~=k can be written in the form

where X= (Xl' ... , xN) is the sample. Thus, the likelihood ratio

test can be written in the form: reject Ho if UN>H and accept Ho
otherwise where H is some threshold and

k+ T

(3)= max
O<k<N-T

U
N Xi

l=k + 1

is the test statistics.
Let

be the first kind error probability of the likelihood ratio test
and

be the second kind error probability of the test under the
condition that the first change of the level occurs at time k.
We approximate these probabilities by the corresponding passage
probabilities of the continuous time stationary Gaussian process
with triangular covariance function, namely, of the process set)
given on [0,1] for which

Es(t)=O, Es(t)s(v)= max{O,l-lt-vl} (4)

Theorem 1. If N->""

HCT-lT-l/2->h>0 then
T=T ->'"

N '
T/N->r>O, H=H ->'"

N '

~N(H) -> ~(h,1/r-1) (5)

where

~(h,a) = Pr{ set) > h for some t, O~t~a }

Proof. Introduce the statistics

k+T
N

U(N ,k) =CT-lN- l
/2 L Xi

l=k + 1

and note that
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a (HU-
1N- 1/2

) --> Pr{ max U(N,k»h} as N-->mN O~k~l-T/N

and that

U(N,k)= S(N,k+TN) - S(N,k),

where
k

S(N,k)=u- 1N- 1/2 L xi
1= 1

Consider the random process

k=l, ... ,N-TN

~N(t)=S(N,k) for (k-1)/N<t~k/N, k=l, ... ,N

According to Billingsley (1986) there exist a sequence of random
processes vN(t) on [0,1] that have the same finite-dimensional

distributions as ~N and weakly converge to the standard Brownian

motion process wet), i.e.

as N-->m (6)

for any c>O.
We shall now prove that the process

W(t+r) - wet), O~t~l-r,

is the limit process for the sequence of processes

Estimate the probability analogous to the left-hand side of (6):

Pr{ O~~~~-T A (vN(t+TN/N) - vN(t»-(w(t+r) - W(t»l!:c}~
N

Pr{ O~~~~-T A (vN(t+T/N) - W(t+TN/N) I!:C/3}+
N

+Pr{ O~~~~-T A vN(t) - wet) l2:c/3}+
N

+ Pr{ O~~~~-T A W(t+T/N) - W(t+r) l!:c/3}
N

The first and second terms tend to zero due to (6), and the
third is asymptotically negligible since W(t) has continuous
trajectories a.s. Thus, we obtain

= pr{O~~~l_T/V(N,k»h} --> Pr{ o~~~~_rIW(t+r) - wet) I>h}

as N-->m. changing the time of the limit process by u=t/r we
obtain s(t)=W(U+1)-W(U), 0~u~1/r-1. This implies the aseertion
of the theorem.

Explicit formulas for the passage probabilities a(h,a)for
the process set), 0~t~a=1/r-1~1, in the case of constant
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boundary h were firstly obtained by Slepian (1961). In
particular, for the case a=l this passage probability is equal
to

where

h

~(h) (2rr)-1/2f exp{-t2/2}dt.
-CD

The case a>l is more complicated. Explicit formulas for passage
probabilities in this case were derived by Shepp (1971). They
are very complicated and instead of them we shall use the
asymptotic equality

a(h,a)=(1+o(1»ah(2rr)-v2 exp{-h2/2}, h->CD (7)

which was proved in Revesz (1980) and holds for every a>O.
Formulas for the second kind error probabilities of the

likelihood ratio test are not needed for investigating
efficiency of the test and so we only mention the way of their
derivation. (A thorough their investigation was done by
Zhigljavsky and Kraskovsky (1988).)

Set

~(h,v,a,7) = Pr{ set) < h-7max{0,1-lt-vl} for all t, ostsa}

~(h,a,7) = sup ~(h,v,a,7)

osvsa

Analogously to Theorem 1 ~e can prove ~hat if N->CD, T->CD,
T/N->r, k->CD, k/N->v, HlT- T-1/2_>h, AT-v /IT->7 then

~N(H,k) -> ~(h,v,a,7).

In these formulas 7 is the signal/noise ratio and v is the first
change-point moment for the limit model.

Thus, the problem of computation of the second kind error
probability for the likelihood ratio test is also approximated
by a boundary crossing probability computation problem for the
stationary process s (t). Unlike the preceding case we have
broken line boundary here which makes our problem more
difficult. Explicit formulas for ~(h,v,a,7) in the case as1 were
obtained in Zhigljavsky and Kraskovsky (1988). They are too
complicated and we present only one of them, namely

~(h,1,7)=~(h,O,1,7)=~(h,1,1,7)=

=~ (h) ~ (h-7) - (2rr) -1/27-1[~(h) exp{- (h-7) 2/ 2 }-~ (h-7) exp{ _h2/2} ]

Consider now the problem of Bahadur efficiency of the
likelihood ratio test for testing (1) versus (2). Let us derive
first the weak slopes c(r) determined from the asymptotic
relation



lim N-1L = - !. c (r)
N 2N->OI

(8)
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where the limit is considered under the supposition that HI is

true and LN=aN(UN) is the random value known as the level

attained by the test statistic.
Theorem 2. The weak Bahadur slope of the likelihood ratio

test statistic for testing (1) versus (2) equals

c (r) =rA2
/CF

2 (9)

Proof. Divide the problem of evaluating c(r) into two more
simple problems and compute the limits

and

lim N-1U = b(r)N->OI N

lim N-1 log a (Nt) = get)N->OI N

( 10)

( 11)

According to Bahadur (1967), if the limits (10) and (11) exist
and get) is continuous at points t=b(r) then

c(r)=2g(b(r»

First prove that the limit (10) exists and equals

b(r)=rA

(12)

(13)

Let £:>0 be arbitrary. It is easy to see that the inequality

k+T
N

P <N- 1 max L x ~ < rA - £: } ::s
H 03"k:s"I-T/N ...

1 I=k+l

- 1
::s PH <N

1

L+T
N

LXi < rA - £: }
1 =L+l

(14)

where L=LN is the true first change-point.

By the strong law of large numbers

L+T
N

N-
1 L x i-> rA a.s.

I =L+l

as N->OI. Thus, the right-hand side of (14) converges to zero as
N-->OI.The same is true for the left-hand side of (14).

Next, using the formula of complete probability, we have
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- 1
PH <N UN > rA + c }

1

k+T
N

- 1
PH <N 0~~~1-T/NL Xi> rA + c }

1 l=k+1

N-T
= L N P N- 1

k =0 qk H <
1

where

k+T
N

L XI
l=k+1

> rA + c } (15)

I +T k+T N-TN N N
q = PH <0~?'~1-T/NL X i L X )~O , L qk l.k I

1 I = I +1 1= k+1 k=O

The maximal probability in the right-hand side of (15) is

1:+T
N

LXi < rA + c }
1=1:+1

which tends to zero as N--> m due to the Chebyshev inequality.
Since the right-hand side of (14) is upper estimated by (15) it
tends to zero as well. This completes the proof of (13) and
existence of the limit in (10).

To compute the limit in (11) we use the asymptotic
equalities (5) and (7) which give

. -1 -1 2 -1/2 2 2 2g(t)= -l.lmN log«r -1)(21TTNlT) Ntexp{-Nt/(2lTTN)}=
N->m

This function is positive and continuous. Thus, we can
apply (12) which gives (9). This completes the proof.

Consider the problem of the Bahadur efficiency of the
likelihood ratio test statistic. It is well known in the case of
independent identically distributed observations that the
Bahadur slope of a statistic can not exceed the Kullback-Leibler
information of observations mUltiplied by 2 and if the equality
holds then the statistic is Bahadur efficient. In the present
case observations are not identically distributed under the
validity of H1 and so we shall use some generalization of this

technique.
Theorem 3. The likelihood ratio test for testing the

hypothesis (1) versus (2) is Bahadur efficient in the class of
test statistics for which either limits (10) and (11) exist and
function (11) is continuous or Bahadur slope is infinite.

Proof. Let log A
H

/H be the loglikelihood ratio,
1 0
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CN(t)={w: N-1log AH /H ::st},
1 0

and

K = inf {t: lim PH (CN(t» = 1 }.
N->lll 1

(16)

So defined value K is the generalization of the Kullback-Leibler
information.

Theorem 2.1 of Bahadur, Zabell, and Gupta (1980) asserts
that if {AN} is a sequence of events such that AN depends only

on {X1, ... ,XN} and

lim inf N-1 pr{ANIHo} ~ K. (18)
N-)lll

Analogously with the proof of Theorem 2 we obtain

K= rA2
/ (2cr2 ).

then

lim inf pr{ANIH1} > 0
N->0:1

(17)

the sequence of the test

theorem follows from the

for the seguence of the

Now let VN be an arbitrary test statistic which depends on

{X1, ... ,XN} and for which limits (10) and (11) exist and assume

where q is defined as the limit

PH - lim
1 N-)lll

The validity of (17) follows from the definition of AN and so

(18) holds with the limit -gv(q-c) in the left-hand side of (18)

where gv is the limit (11) for the sequence of statistics {VN}.

Since (18) holds for any c>O and gv is continuous we have

(19)

where Cv is the weak Bahadur slope of

statistics {VN}. The assertion of the

fact that there is equality in (19)
likelihood ratio statistics.

The author is acknowledged to Dr. E.Razumovskaya for fruitful
discussions and interest to this work. It is worthwile to
mention also that recent work of Prof. David Siegmund in the
field changed the author's view on the sUbj ect and had a
stimulating effect.
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