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FOREWORD 

This the third part of STATIC A N D  DYNAMIC ISSUES I N  ECONOMIC 
THEORY devoted to dynamical economies and the applications of viability 
theory. 

Section 1 is devoted to the nontitonnement model, leaving aside a fur- 
ther study of the titonnement process for its lack of viability. It relies on the 
Viability Theorem1, the dynamical analogue of the Fixed Point Theorem. 
The analogy is even stronger, since the assumptions which characterize the 
viability property, together with convexity assumptions, provide the exis- 
tence of an equilibrium! The proof of the Viability Theorem is provided, 
but can be omitted. Only the statement of the Viability Theorem will be 
used later on in the book. The recent viability theorem for stochastic dif- 
ferential equations obtained by in [4, Aubin & Da Prato] is also presented. 

Section 2 deals with the issue of selecting feedback mechanisms from the - 

regulation map, which can be regarded as planning procedures. The key tool 
here is the concept of Selection Procedure, which allows to  choose feedback 
prices associating with each allocation prices in the regulation set which are 
solutions to  (spot) optimization or game-theoretical mechanisms, involving 
then a myopic behavior. 

Section 3 takes another road. It assumes that a bound to inflation is 
set in the model, and we look for feedback prices which regulate viable 
evolutions under bounded inflation. 

These maps, characterized as solutions to  first-order systems of partial 
differential inclusions, can then be differentiated, using the calculus of set- 
valued maps2. 

Then, by differentiating the regulation law, a differential inclusion govern- 
ing the evolution of prices does emerge. 

By using selection procedures (presented in the preceding section), we 
may obtain dynamical feedbacks. Among then, the minimal selection pro- 
vides the heavy evolutions (in the sense of heavy trends), for which the prices 

'We refer to [?, Aubin] for an exhaustive presentation of VIABILITY THEORY, which 
was motivated by the dynamical behavior of economic systems and an attempt to provide 
a mathematical metaphor for Darwinian evolution of biological and cognitive systems. 
For the sake of self-countenance, some of the results of this book are reproduced here, but 
adapted to specific economic themes. 

'We refer to (5 ,  Aubin & Frankowska] for a presentation of SET-VALUED ANALYSIS, a 
mandatory tool box for mathematical economists. 



evolve with minimal velocity. Heavy evolution provides the simplest example 
of evolutions satisfying the Inertia Principle. 



1 Dynamical Economies 

Introduction 
We have introduced the nontitonnement decentralized model of alloca- 

tion of scarce resources in the last part and showed that  under convexity 
assumptions, there exists a t  least an equilibrium whenever the regulation 
map IIM(.) built from the knowledge of the set of scarce resources and the 
change functions of the consumers had nonempty values IIM(z) for every 
allocation z. 

We had also characterized this property by budgetary rules and evidenced 
that in certain cases, instantaneous Walras laws (individual and even col- 
lective ones) warrant that this condition is satisfied. 

In this section, we prove that  this condition is also sufficient (and nec- 
essary) to  imply that  the set of allocations is viable in the sense that starting 
from any initial allocation, there exists at least prices p(t) and thus, consump- 
tions z;(t) of the consumers, which constitute at each instant an allocation of 
scarce resources. 

Furthermore, we know exactly what are the prices which regulate such 
allocations: their evolution is regulated by the regulation law 

for almost all t 2 0, p(t) E I I M ( ~ ( ~ ) )  

By the way, this makes sense since we shall prove that the necessary and 
sufficient condition for the viability of this nontitonnement process is that ,  
as we have said, the images IIM(z(t)) are not empty. 

In the same way than the existence of an equilibrium of this non t i -  
tonnement model was derived from a general Equilibrium Theorem in the 
preceding part, the above viability property is inferred from a general Via- 
bility Theorem which is stated in the second section and proved in the third 
one. This proof is quite involved and can be overlooked in the same manner 
than the proof of the Brouwer Fixed-Point Theorem is often skipped by its 
users. 

Instead of describing this Viability Theorem in this most abstract form, 
we shall introduce an intermediate framework, which we call a dynamical 
economy (P, c) governing the evolution of an abstract commodity and an 
abstract price (playing the role of a regulatory control) according t o  the 



laws 

where the commodity x ( . )  ranges over a finite dimensional vector-space X 
and the price p ( . )  ranges over another finite dimensional vector-space 2. 

Here, the first equation describes how the price -regarded as an input to  
the system - yields the commodity of the dynamical economy3 - regarded 
as an output - whereas the second inclusion shows how the commodity- 
output "feeds backn to  the priceinput. The set-valued map P : X - Z 
may be called an "a priori pricing mapn. 

It describes some commodity-dependent constraints on the prices. A so- 
lution to  this system is a function t  + x ( t )  satisfying this system for some 
price t  -r p ( t ) .  

Viability or scarcity constraints are described by a closed subset4 K of 
the commodity space: These are intended to  describe the "viability" of the 
dynamical economy. 

A subset K is viable under the dynamical economy described by c and P 
if from every initial commodity xo E K starts at least one solution t o  the 
dynamical economy which is viable in the sense that 

The first task is t o  characterize the subsets having this property. To be of 
value, this task must be done without solving the system and then, without 
checking the existence of viable solutions from each initial commodity. 

An immediate intuitive idea jumps t o  the mind: a t  each point on the 
boundary of the viability set, where the viability of the dynamical economy 
is a t  stake, there should exist a velocity which is in some sense tangent to  the 
viability domain and serves t o  allow the solution t o  bounce back and remain 
inside it. This is, in essence, what the Viability Theorem states. But, first, 
the mathematical implementation of the concept of tangency must be made. 

We cannot be content with viability sets that are smooth manifolds, 
because most of the sets defined through inequality constraints which we 
need in economics would thereby be ruled out. 

'once the initial commodity is fixed. 
'One can naturally investigate the cases when K depends upon the time, the com- 

modity, the history of the evolution of the commodities. We shall also cover the case of 
solutions which improve a reference preorder when time evolves. 



We have seen already how to adapt the definition of tangent directions in 
the case of convex sets. But we can "implementn the concept of a direction 
u tangent to any subset K at x E K, which should mean that starting from 
x in the direction u, we do not go too far from K. 

To convert this intuition into mathematics, we shall choose from among 
the many ways5 that have been designed to translate what it means to be 
"not too farn the one suggested by Bouligand fifty years ago: a direction u 
is contingent to K at x E K if it is a limit of a sequence of directions u, 
such that x + h,v, belongs to K for some sequence h, 4 O+. The collection 
of such directions, which are in some sense "inwardn, constitutes a closed 
cone TK(x), called the contingent cone6 to K at x. Naturally, except if K is 
a smooth manifold, we lose the fact that the set of contingent vectors is a 
vector-space. 

We then associate with the dynamical economy (described by c and P )  
and with the viability constraints (described by K )  the (set-valued) regula- 
tion map IIK. It maps any commodity x to the subset IIK(x) consisting of 
prices p E P(x) which are viable in the sense that 

c(x,p) is contingent to K at x 

If, for every x E K ,  there exists at  least one viable price p E llK (x), we 
then say that A' is a viability domain of the dynamical economy described by 
both c and P. 

The Viability Theorem we mentioned earlier holds true for a rather large 
class of systems, called Marchaud systems: Beyond imposing some weak 
technical conditions, the only severe restriction is that, for each commodity 
x, the set of velocities c(x,p) when p ranges over P(x)  is convex7. From 
now on, we assume that the dynamical economies under investigation are 
Marchaud systems. 

'For a presentation of the menagerie of tangent cones, we refer to Chapter 4 of [ 5 ,  
Aubin & Frankowska]. 

'replacing the linear structure underlying the use of tangent spaces by the contingent 
cone is at the root of Set-Valued Analysis. 

 his happens for the class of dynamical economies of the form 

where G ( z )  are linear operators from the price space to the commodity space and when 
the pricing map P has convex images P ( z ) .  



The basic viability theorem states that  for such systems, 

a closed subset K is viable under a Marchaud dynamical economy 
if and only if K is a viability domain of this economy. 

Many of the traditional interesting subsets such as equilibrium points, 
trajectories of periodic solutions, w-limit sets of solutions, are examples of  closed 
viability domains. Actually, equilibrium points Z, which are solutions t o  

c(Z, F) = 0 for some jj E P(Z) 

are the smallest viability domains, the ones reduced t o  a single point. This 
is because being stationary states, the velocities c(f ,p) are equal t o  zero. 
Furthermore, we have seen in the preceding part that there exists a basic 
and curious link between viability theory and general equilibrium theory: the 
General Equilibrium Theorem - an equivalent version of the 1910 Brouwer 
Fixed Point Theorem, the cornerstone of nonlinear analysis - states that  

every compact convex viability domain 
contains an equilibrium point. 

I t  finds here a particularly relevant formulation: viability implies stationarity. 
The Viability Theorem also provides a regulation law for regulating the 

dynamical economy in order t o  maintain the viability of a solution: The 
viable solutions x(t) are regulated by viable prices p(t) through the regulation 
law: 

for almost all t, p ( t )  E nK(x(t ) )  

The multivaluedness of the regulation map - this means that several 
prices p(t) may exist in IIK(x(t)) - is an indicator of the "robustness" of 
the dynamical economy: The larger the set nK(x(t)) ,  the larger the set of  
disturbances which do not destroy the viability of the economy ! 

Observe that  solutions to  a dynamical economy are solutions t o  the dif- 
ferential inclusion xl(t) E F(z(t))  where, for each commodity x, F (x )  := 
c(x, P ( z ) )  is the subset of feasible velocities8. This is in the general frame- 
work of differential inclusions that the Viability Theorem is stated and 
proved. 

We conclude this section by extending t o  the stochastic case Nagumo's 
Theorem on viability properties of closed subsets with respect t o  a differen- 
tial equation. In VIABILITY THEORY, [?, Aubin], only invariance theorems 

- - 

'Conversely, a differential inclusion is an example of an economy in which the prices 
are the velocities ( c ( z , p )  = p  & P ( t )  = F ( z ) . )  



were presented. Here, we proved that under adequate stochastic tangential 
conditions, from any closed random variable EC starts a stochastic process 
which is viable (remains) in EC. 

1.1 Dynamical Allocation of Resources 

We now address the problem of finding viable allocations, i.e., solutions to  
the controlled system 

satisfying 
i)  z;(t) E L; ( i  = 1,. . ., n) 

v t z o ,  
ii) Cr=l z;(t) E M 

Recall that the regulation map I I M  is defined from the set of scarce re- 
sources M and the behavior of the consumers by 

The Viability Theorem 1.8 that we shall state and prove next implies that 
whenever this regulation map is strict, the the allocation set is viable under 
this system. This means that from any initial allocation zo = (xol,. . . , z o ~ )  
starts at least one viable allocation: 

We recall then for the convenience of the reader: 

i)  M = M - R i  is a closed convex subset 
ii) V i = 1,. . . , n, L; = L; + R: is closed and convex 

(1.2) 

iv)  M c ~ - R ~  - & V i = l ,  ..., n, L;C%+R:, 

( i)  
Graph(P) is closed and the images of P are convex 

/ n  \ I ii) V Z E  K, NM E x ;  ns' c P(x)  
li=l ) 



and 

i)  ci(z, p) := ci(z) + Gi(z)p is affine, where 
ii) Ci : Li Y is continuous 
iii) G; : Li H L(Y*,Y) is continuous (1.4) 

iv) V 2; E Li, p E Im(P), ci(zi,p) E Tt,(zi) 

As a corollary (in the case when , we obtain the "dynamical versionn of 
the Arrow-Debreu Theorem. 

  he or em 1.1 We posit assumptions (1.2), (1.3) and (1.4) of the Equilib- 
n'um Theorem. If the change functions ci obey the collective instantaneous 
Walms law 

- ~ 

i=l 

then, from any initial a1locat;on zo E K starts at least one allocation evolving 
according 

z:(t) = c;(z;(t),p(t)) ( i  = 1,. - -, n) 
Recall that under these conditions, there exists at  least a viable equilibrium 
(Z1,. . . , Zn,p) by the Equilibrium Theorem. 

As it was the case with the existence of the equilibrium, the instanta- 
neous Walras law guarantees that the images of the regulation map IIM are 
not empty, without the knowledge of the set M of resources and without the 
knowledge of the behavior of other consumers (in the case of the individ- 
ual instantaneous Walras law.) Collective instantaneous Walras law allows 
balnaced "monetary transactionsn at  each instant. 

But the existence of viable allocations from every initial allocation holds 
true under the assumption that the regulation map has nonempty values: 

Theorem 1.2 We posit assumptions (l.2), (1.4) and 

Graph(P) is closed and the images of P are convex (1.5) 

Then the three following conditions are equivalent: 

a )  V ~ E  K,  I I M ( ~ )  # 0 

b) SUPqE~y(E;=I z i )  i n f p ~ ~ ( T )  (P, ELI ~ i ( z i ,  P)) S 0 

c) V zo E K, starts one allocation evolving according (1.1) 



In this case, the viable allocations are governed by the regulation law 

for almost all t 1 0, p(t) E IIM(z(t)) (1.6) 

We recall again that  under one of these equivalent conditions, there exists 
a t  least a viable equilibrium (21,. . . , Z.,,p) by the Equilibrium Theorem. 

R e m a r k  - Naturally, we can extend this basic result in many direc- 
tions and relax some of the assumptions. 

For instance, if we are not interested in the existence of an equilibrium, 
we can dispense of the convexity assumptions. In this case, we replace the 
tangent cone t o  a convex subset by the contingent cone and assume instead 
that 

i)  M = M - R: is closed and sleek 

ii) V i = 1,. . . , n, L; = L; + R: is closed and sleek 
iii) V x E K ,  Cy=l TLi(x;) - TM(Cr.l xi) = Y 
iv) M cy-R:  - & V i = 1 ,  ..., n, L i C ~ j + + R :  

(See next Section) The first part of the theorem still holds true. 
We observe also that  condition (1.2)iv) is one among many which implies 

the compactness of K .  Again, this compactness property is needed to  obtain 
the existence of an equilibrium. For the first part of the theorem, we can 
relax it by assuming only that the functions c; : L; I+ Y has linear growth 
and G; : L; t+ L(Y*, Y)  is bounded. 

More generally, we can assume that the change functions c; are replaced 
by set-valued change maps C; : L; x S' - Y. 

Then the dynamics of the evolution of the consumption is described by 
the set-valued controlled system 

We recall that  the regulation map IIM is defined by 

Viability Theorem 1.8 implies 



Theorem 1.3 We posit assumptions (1.21, (1.5) and 

i)  Ci(z,p) is a closed convex set-valued map with respect to p 

ii) Ci is upper hemicontinuous with convex compact images 

iii) V xi E L;,  p E Im(P), Ci(x;,p) C TL,(.;) 

Then the three following conditions are equivalent: 

a) V 2 E K ,  ~ M ( z )  # 0 

b) s U ~ q ~ ~ M ( ~ ~ ,  .,) i n f p ~ ~ ( = )  OL~(.,,~)(B) 5 0 

c) V zo E K, starts one allocation evolving according (1.1) 

In this case, the viable allocations are governed by the regulation law 

for almost all t 2 0, p(t) E nM(2(t)) (1.9) 

Recall that under one these equivalent conditions, there exists at least a 
viable equilibrium (5 . . . , Z,, p)  by the Equilibrium Theorem. 

1.2 The Viability Theorem 

We now present the Viability Theorem in the general case. It can be re- 
garded as a dynamical pendant of the general Equilibrium Theorem. Con- 
trary to the Equilibrium Theorem, convexity of the viability domain K is no 
longer required, answering a long awaited demand of economists (but they 
have to forgo their demand for an equilibrium, a stationary solution. There 
is no such thing as a free lunch). This requires to adapt the definition of 
tangents to any subset. 

But convexity of the images of the set-valued map F is imperative as we 
shall see in the example below. 

1.2.1 Definition of Viability Domains 

We consider initial value problems (or Cauchy problems) associated with 
the differential inclusion 

for almost all t E [O,T], z'(t) E F(x(t)) (1.10) 



satisfying the initial condition z(0) = zo. 

Definition 1.4 (Viability and Invariance Properties) Let K be a su- 
bset of the domain of F. A function z(-) : I I+ X is said to be viable in K 
on the interval I i f  and only i f  

W e  shall say that K i s  viable under F i f  from any initial state zo i n  K starts 
at least a solution on [O, CCJ[ to differential inclusion (1.10) which is viable 

i n  K .  
The subset K is said to be invariant under F i f  starting from any initial 

state zo of K ,  all solutions to differential inclusion (1.10) are viable in K 
on [0, oo[. 

Contrary to theorems on existence of an equilibrium, we do not need to 
assume anymore that the set K is convex. However, we need to implement 
the concept of tangency. 

When K is a subset of X and z belongs to K ,  we recall that the contingent 
cone TK (z) to K at z is the closed cone of elements v 

v E TK(z) if andonly if 3 h, + O +  and 3 v n + v  
such that V n, z + h,v, E K 

It is very convenient to use the following characterization of this contin- 
gent cone in terms of distances: the contingent cone TK(z) to K at z is the 
closed cone of elements v such that 

lim inf d(z + hv, K )  
h 

= 0 
h+D+ 

We also observe that 

if z E Int(K), then TK(z) = X 

Definition 1.5 (Viability Domain) Let F : X ?A X be a nontrivial set- 
valued map. W e  shall say that a subset K C Dom(F) is a viability domain 
of F i f  and only i f  

V x E K, F(z)  n TK(x) # 0 



Figure 1: Example of a Map without Convex Values 

/ There is no solution starting at 0  1 

The  simplest example of a differential inclusion we can think of does not 
solutions s tar t ing from some point: 

Example 
Let us consider X := R, K := [ - 1 , + 1 ]  and the set-valued map F  : K - R 

defined by 
if z > 0  
if z = 0  
if z < 0  

Obviously, no solution to the differential inclusion z ' ( t )  E F ( z ( t ) )  can start from 0 ,  
since 0  is not an equilibrium of this set-valued map! 

We note however that 

The graph of F  is closed 

F is bounded 

K is convex and compact 

K is a viability domain of F. 

But the value F ( 0 )  of F  at 0  is not convex. Observe that if we had set F ( 0 )  := 
[- 1 ,  + I ] ,  then 0  would have been an equilibrium. 

This example shows that upper semicontinuity is not strong enough to com- 
pensate the lack of convexity. 

Therefore, we have t o  introduce the class of Marchaud maps: 



1.2.2 Marchaud Maps 

We set 

and we say that F has linear growth if there exists a positive constant c such 
that 

v z E Dom(F), llF(z)Il I ~ I 1 1 ~ 1 1 +  1) 

Definition 1.6 (Marchaud Map) We shall say that F is a Marchaud map 
if it is nontrivial, upper hemicontinuous, has compact convex images and 
linear gmwth. 

We deduce the following result: 

Corollary 1.7 If Y is a finite dimensional vector-space, to say that a non- 
trivial set-valued map F is a Marchaud map amounts to saying that 

i )  the graph and the domain of F are closed 

i i )  the values of F are convex 
i i i )  the gmwth of F is linear 

1.2.3 The Viability Theorem 

Theorem 1.8 (Viability Theorem) Consider a Marchaud map F : X - ~ t  

X and a closed subset K C Dom(F) of a finite dimensional vector space X .  
If h' is a viability domain, then for any initial state zo E K ,  there exists 

a viable solution on [O, oo[ to differential inclusion (1.10.) More precisely, 
if we set 

then every solution z( . )  starting at zo satisfies the estimates 

v t L 0,  Ilz(t)ll L (Ilzoll + l)eCK' { and 
for almost all t 2 0,  Ilz'(t)ll 5 C K ( ~ ~ Z O I I  + l)ecKt 



1.2.4 Dynamical Economy 

We have seen that our dynamical model of allocation of scarce resources 
could be written is a semi-abstract form, between the explicit description 
and its translation as a differential inclusion. 

As it was advocated in the introduction of this chapter, it would be 
convenient to choose a middle ground inspired from systems theory, more 
informational than plain differential inclusions, but simpler to handle, and 
which also contain other economical models than the one of allocation of 
scarce resources. 

We translate the viability theorems in the language of Economic Theory 
by introducing two finite dimensional vector-spaces: 

1. - the (abstract) commodity space X 
2. - the (abstract) price space Z and a pricing set-valued map 

P : X - Z associating with any commodity z the (possibly empty) subset 
P (z )  of feasible prices associated with the commodity z. In other words, we 
assume that the available prices of the system are required to obey constmints 
which may depend upon the commodity. We shall investigate later the cases 
when the prices depend also upon the time and/or the history of the solution 
to  the system. 

The dynamics of the system are further described by a (single-valued) 
change map c : Graph(P) I-+ X which assigns to each commodity-price pair 
(z ,  p) E Graph(P) the velocity c(z, p) with which the commodity evolves. 

Hence the set 
F(z)  := ( ~ ( 2 ,  P ) ) ~ E P ( ~ )  

is the set of available velocities to the system when its commodity is z. 

Definition 1.9 (Dynamical Economy) A dynamical economy (P, c) is 
defined by 

- a apricing" set-valued map P : X - Z 
- a map c : Graph(P) H X describing the dynamics of the system. 

The evolution of the commodity and of the price is governed by the dif- 
ferential inclusion 

) for almost all t ,  zt(t) = c(z(t), p(t)) 
(1.11) 

ii) where p(t) E P(z(t))  

We associate with any subset K c Dom(P) the regulation map IIK : 



K -u Z defined by 

We observe that  K is a viability domain if and only if the regulation map 
llK is strict (has nonempty values). 

It is convenient t o  introduce the following definition: 

Definition 1.10 We shall say that the dynamical economy ( P ,  c )  is a Mar- 
chaud dynamical economy if it satisfies the following conditions: 

i )  Graph(P) is closed 
i i )  c is continuous 
ii i)  the velocity subsets F ( z )  are convex 

(1.12) 

i v )  c and P have linear growth 

and that it is an affine dynamical economy if furthermore 

i )  c is affine with respect t o  p 

i i )  the images of P are convex (1.13) 

Hence Viability Theorem 1.8 can be restated in the following form: 

Theorem 1.11 Let us consider a Marchaud dynamical economy (P ,  c).  Then 
a closed subset K C Dom(P) is viableg under F if and only i f  it the regula- 
tion map I I K ( - )  is strict. 

Furthermore, any price p(-) regulating a viable solution z ( - )  in the sense 
that 

for almost all t ,  z1(t)  = c(z ( t ) ,p( t ) )  

obeys the regulation law 

for almost all t ,  p(2) E n ~ ( z ( t ) )  (1.14) 

Remark - The Filippov Measurable Selection Theoremlo actually 
allows us t o  choose price functions obeying the regulation law (1.14) which 
are measumble. We shall also provide in Chapter 5 conditions implying the 
existence of continuous prices. 

'This means that for any initial commodity zo E K, there exists a solution on [O,oo[ 
to the dynamical economy (1.11) viable in K .  

''See Theorem 8.2.10 of SET-VALUED ANALYSIS, [S, Aubin & Frankowska] for instance. 



1.3 Proof of the Viability Theorem 

We provide a (new") proof for the sake of completeness. 
It can be omitted by the non professional mathematician who is more 

interested to its applications. Like the Brouwer Fixed Point Theorem, the 
proof of the Viability Theorem is quite involved, and uses most of the the- 
orems of functional analysis. 

Since viable absolutely continuous functions z(.) : [O,T] I+ K satisfy 
zt(t) E TK(z(t)) for almost all t E [0, TI, we could be tempted to  derive 
viability theorems from existence theorems of solutions to  differential inclu- 
sion zt(t) E RK(z(t)) where we set RK(z) := F(z )  n TK(z). Unfortunately, 
this is not possible because TK(-) may be neither upper semicontinuous nor 
lower semicont in~ous~~.  For instance, it is not upper semicontinuous as soon 
as inequality constraints are involved: take for example K := [- 1, +I]. The  
graph o f  TK(-), equal t o  

is not closed, and not even locally compact. 
So we have to devise a specific proof of Theorem 1.8. 
Although the proof of the necessary condition is quite simple, we post- 

poned it at the end because it is less important naturally than the sufficient 
condition. 

As it is the case for proving many existence theorems of a solution to  a 
problem, we proceed in three steps: 

1. Construct approximate solutions 

2. Prove that these approximate solutions converge to some limit 

3. Check that this limit is a solution to  the problem 

We shall not use Euler's method to build approximate solutions, but use 
instead Zorn's Lemma (i.e., the axiom of choice) to  prove the existence of 
approximate viable solutions in a given time interval. 

Then Ascoli's and Alaoglu's Theorem will be used to make the approx- 
imate solutions and their derivatives converge. Unfortunately, contrary t o  
differential equations, the convergence of the derivatives is not obtained 

"due to H6lkne Frankowska (personal communication). 
l2See Section 4.1., p. 178 of DIFFERENTIAL INCLUS~ONS for an example of subset K 

such that TK(.) is neither upper semicontinuous nor lower semicontinuous. 
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from the convergence of solutions. We have to use a priori estimates to  in- 
fer that the derivatives of the approximate solutions converge weakly. But 
this convergence is too weak to  check easily that the limit of the approxi- 
mate solutions is a solution. To answer this question, specific to differential 
inclusions, we use the Convergence Theorem, based on Mazur's Theorem, 
permitting to  pass from weak convergence to strong convergence of "convex 
combinations of tails of the sequences", and from that, an almost everywhere 
convergence of the derivatives. 

The proof of the Viability Theorem shows at  least that Functional Anal- 
ysis is useful ! 

1.3.1 Sufficient Conditions 

Construction of Approximate Solutions We begin by proving that 
there exist approximate viable solutions to  the differential inclusion. 

Lemma 1.12 Assume that K C X is a viability domain of F : X - X .  
Then, for any E > 0, the set Sc(xo) of a continuous functions x(.) E 
C(0,l; X )  satisfying 

i) x(0) = xo 

ii)  V t E [0, I.], d(x(t), K )  5 E (1.15) 
iii) V t E [O, I.], d((x(t), xl(t)), Graph(F) 5 E 

is not empty. 

Proof - We denote by Ac(xo) the set of pairs (T,, x(.)) where T, E 
[O, 11 and x(.) E C(0, T,; X) is a continuous functions satisfying 

i)  x(0) = xo 
ii) d(x(TZ), K )  5 E T ~  
iii) V t E [0, T,], d(x(t), K )  5 E 

iv) V t E [O, T,], d((x(t), xl(t)), Graph(F) 5 E 

The set Ac(x) is not empty: take T, = 0 and x(0) XO. 

It is an inductive set for the order relation 

if and only if 

Tzl 5 Tz2 & x2(.)l[0,~tl] = XI(') 



Zorn's Lemma implies that there exists a maximal element (T,, z(.)) E 
A,(zo). The Lemma follows from the claim that for such a maximal el- 
ement, we have T, = l. 

If not, we shall extend z(-)  by a solution Z(.) on an interval [T,, S,] where 
S, > T,, contradicting the maximal character of (T,, z(.)). 

Let us take Z E K achieving the distance between z(T,) and K:  

We then choose a direction G E F(Z) n TK(Z), which exists by assumption. 
We set 

V t E [T,, 11, Z(t) := z(T,) + ((t - T,)G 

and 
a := min ( E, E ( l l l i l F ) )  

By the definition of the contingent cone, there exists h, €10, a] such that 

We then set S, := T, + h, > T,. 
We obtain 

I d(Z(S,), K )  = d(z(Tz) + hzG, K )  

< d(Z + h, Q, K )  + d(z(Tz), 2) 

I &(Sz - T') + ET, = ES, 

We observe that for any t E [T,, S,], 

from the very choice of a. 
Finally, we note that for any t E [T,, S,[, Zt(t) = 6. Therefore, for all 

t E [T,, SZI, 

Therefore, we have extended the maximal solution (T,,z(.)) on the in- 
terval [0, s,] and obtained the desired contradiction. 



Convergence of Approximate Solutions Consider now a sequence of 
E- approximate solutions xc(.), which exist thanks to Lemma 1.19. 

They satisfy the following a priori estimates: 

Indeed, the function t + Ilx,(t)(( being locally Lipschitz, it is almost 
everywhere differentiable. Therefore, for any t where xc(t) is different from 
0 and differentiable, we have 

Since there exist elements vt E &Bx and vt E aBx such that 

we obtain 
Ilx:(t>ll 5 c(llxc(t)ll + 1 + + E 

Setting p(t)  := llxc(t)ll + 1 + E*, we infer that #(t) 5 cy(t), and thus 
C 

from which we deduce the estimates (1.16). 
Estimates (1.16) imply that for all t E [0, TI, the sequence xc(t) remains 

in a bounded set and that the sequence xc(.) is equicontinuous, because the 
derivatives x:(.) are bounded. We then deduce from Ascoli's Theorem that 
it remains in a compact subset of the Banach space C(0,l; X), and thus, that 
a subsequence (again denoted) xc(.) converges uniformly to  some function 

~ ( - 1 .  
Furthermore, the sequence x:(.) being bounded in the dual of the Ba- 

nach space L1(O, l ; X ) ,  which is equal t o  Lm(O, 1; X),  it is weakly relatively 
compact thanks t o  Alaoglu's TheoremI3. The Banach space LW(O, 1; X )  is 
contained in L1(O, l ; X )  with a stronger topology14. The identity map being 

13Alaoglu's Theorem states that any bounded subset of the dual of a Banach space is 
weakly compact. 

"Since the Lebesgue measure on [O,1]  is finite, we know that 



continuous for the norm topologies, is still continuous for the weak topolo- 
gies. Hence the sequence z:(-) is weakly relatively compact in L1(O, 1; X )  
and a subsequence (again denoted) z:(-) converges weakly to  some function 
v(.) belonging to  ~ ' ( 0 , l ;  X). Equations 

imply that this limit v(.) is actually the weak derivative zl(.) of the limit 

4 . ) .  
In summary, we have proved that 

I i)  24.)  converges uniformly to  z(.) 

( ii) z:(t) converges weakly to  zl(-) in L1 (0, T ;  X )  

The Limit is a Solution Condition (1.15)ii) implies that 

i.e., that z(-)  is viable. The Convergence Theorem 1.13 below and properties 
(1.15)iii) imply that 

for almost all t E [O,T], xl(t) E F(z(2)) 

i.e., that z(.) is a solution to  differential inclusion (1.10). 

The Convergence Theorem Let a ( . )  be a measurable strictly positive 
real-valued function from an interval I C R to  R+. We denote by L1(I, Y; a )  
the space of classes of measurable functions from I to Y integrable for the 
measure a(t)dt. 

with a stronger topology. The weak topology u(Lw(O, 1; X) ,  L1(O, 1; X))  (weak-star topol- 
ogy) is stronger than the weakened topology u(L1(O, 1; X) ,  Lw(O, 1; X ) )  since the canon- 
ical injection is continuous. Indeed, we observe that the seminorms of the weakened 
topology on L1(O, 1; X ) ,  defined by finite sets of functions of Lw(O, 1; X) ,  are seminorms 
for the weak-star topology on Lw(O, 1; X)) ,  since they are defined by finite sets of functions 
of L1(O, 1; X).  



Theorem 1.13 (Convergence Theorem) Let F be a nontrivial set-valued 
map fmm X to Y .  We assume that F is upper hemicontinuous with closed 
convex images. 

Let I be an interval of R and let us consider measurable functions zm( . )  
and ym(.) fmm I to X and Y respectively, satisfying: 

for almost all t E I and for all neighborhood U of 0 in the p d u c t  space 
X x Y ,  there ezists M := M ( t ,  U )  such that 

If we assume that 

( i )  
zm(.)  converges almost everywhere t o  a function z ( . )  

i i )  ym(.) E L 1 ( I , Y ; a )  converges weakly in L 1 ( I , Y ; a )  
(1.18) 

to a function y(.) E L1 ( I ,  Y ;  a )  

then 
for almost all t E I ,  y(t)  E F ( z ( t ) )  (1.19) 

Proof - Let us recall that in a Banach space (L'(I, Y; a) ,  for instance), 
the closure (for the normed topology) of a set coincides with its weak closure (for 
the weakened topology15 

u(L'(I, Y; a),  Lm(I ,  Y*; a-I)) 

We apply this result: for every m, the function y(.) belongs to  the weak clo- 
sure of the convex hull C O ( { ~ ~ ( . ) } ~ ~ , , , . )  It coincides with the (strong) closure of 
C O ( { Y ~ ( . ) } ~ ~ ~ ) .  Hence we can choose functions 

(where the coefficients UP, are positive or equal to  0 but for a finite number of 
them, and where CEm aP, = 1) which converge strongly to  y(.) in L1(I, Y; a). This 
implies that the sequence a(.)vm(-) converges strongly t o  the function a(.)y(.) in 

l5By definition of the weakened topology, the continuous linear functionals and the 
weakly continuous linear functionals coincide. Therefore, the closed half-spaces and weakly 
closed half-spaces are the same. The Hahn-Banach Separation Theorem, which holds true 
in Hausdorff locally convex topological vector spaces, states that closed convex subsets are 
the intersection of the closed half-spaces containing them. Since the weakened topology 
is locally convex, we then deduce that closed convex subsets and weakly closed convex 
subsets do coincide. This result is known as Mazur's theorem. 



L1(I, Y), since the operator of multiplication by a(.) is continuous from L1(I,  Y; a )  
to L1(I ,Y).  

Thus, there exists another subsequence (again denoted by) urn(.) such that16 

for almost all t E I ,  a(t)vrn (t) converges to a(t)y(t) 

Since the function a(-) is strictly positive, we deduce that  

for almost all t E I ,  vm(t) converges to  ~ ( t )  

- Let t E I such that zm(t)  converges to z(t)  in X and vrn(t) converges 
to y(t) in Y. Let p E Y* be such that u(F(z( t ) ) ,p)  < +oo and let us choose 
X > u(F(z(t)) ,p).  Since F is upper hemicontinuous, there exists a neighborhood V 
of 0 in X such that 

V u E z(t) + V, then u(F(u) ,p)  < X (1.20) 

Let N1 be an integer such that 

Let I )  > 0 be given. Assumption (1.17) of the theorem implies the existence of N2 
and of elements (up,  vq) of the graph of F such that 

Therefore u, belongs to z( t )  + V and we deduce from ( 1.20) that 

''Strong convergence of a sequence in Lebesgue spaces LP implies that some subsequence 
converges almost everywhere. Let us consider indeed a sequence of functions fn converging 
strongly to a function f in LP. We can associate with it  a subsequence fn, satisfying 

/link - f l l ~ r  5 2-k; < nk < nk+l < - . -  
Therefore, the series of integrals 

is convergent. The Monotone Convergence Theorem implies that the series 

converges almost everywhere. For every t where this series converges, we infer that the 
general term converges to 0. 



Let us fix N 2 max(Nl, Nz), multiply the above inequalities by the nonnegative 
a% and add them up from q = 1 to m. We obtain : 

< P, orn(t) >5 A + rlllpll* 

By letting m go to infinity, it follows that 

< P, Y(t) >I A + rlllpll* 

Letting now A converge to u(F(z(t)), p) and q to 0, we obtain: 

Since this inequality is automatically satisfied for those p such that 

it thus holds true for every p E Y*. Hence, the images F ( z )  being closed and convex, 
the Separation Theorem implies that y(t) belongs to F(z(t)).  The Convergence 
Theorem ensues. 

1.3.2 Necessary Condition 

Actually, the tangential condition is necessary for K to be viable under F. 

Propos i t ion  1.14 (Necessary Condit ion)  Let us assume that 

i) F : X - X is upper hemicontinuous 

i i )  the images of F are convez and compact 

If K is viable under F ,  then it is a viability domain. 

P r o o f  - Let z(.) be a solution to the differential inclusion starting a t  zo. Ac- 
tually, it is enough to assume that there exists a sequence t, -+ O+ such that 
z(t,) E K. 

Since F is upper hemicontinuous at zo, we can associate with any p E X* and 
E > 0 an qp > 0 such that 

By integrating this inequality from 0 to tn ,  setting v, := z(tn) - and dividing 
t n 

by t, > 0, we obtain for n larger than some Np 



Therefore, u, lies in a bounded subset of a finite dimensional vector space, so that 
a subsequence (again denoted) u, converges to some u E X satisfying 

By letting E converge to 0, we deduce that u belongs to the closed convex hull of 
F(z0). 

On the other hand, since for any n, z(t,) = zo + t, u, belongs to  K,  we infer 
that u belongs to the contingent cone TK(zO). The intersection F(zo)  n TK(zO) is 
then nonempty, so that the necessary condition ensues. O 

1.3.3 Upper Hemicontinuity of the Solution Map 

We shall also need some continuity property of the solution map S(.) or by 
SF(.) associating with any initial state xo the (possibly empty) set S(xo) or 
SF(xo) of solutions to  differential inclusion (1.10.) 

Theorem 1.15 Let us consider a Marchaud map F : X .u X. The graph 
of the restriction of SIL to any compact subset L of Dom(F) is compact 
in L x C(0, m; X ) ,  where C(0, oo; X )  is the space of continuous functions 
supplied with the topology of uniform convergence on compact intervals. 

Therefore, the solution map S is upper hemicontinuous with compact 
images. 

Proof - We shall show that the graph of the restriction Sir, of the solution 
map S to a compact subset L C Dom(F) (assumed to be nontrivial) is compact. 

Let us choose a sequence of elements (zo,, z,(.)) of the graph of the solution 
map S .  They satisfy: 

A subsequence (again denoted) zom converges to some zo E L because L is compact. 
Then inequalities 

d 
for almost all t 2 0, -llzn(t)ll 5 IIzL(t)II 5 c(IIzn(t)II + 1) dt 

imply that 

Therefore, by Ascoli's Theorem, the sequence z,(-) is relatively compact in the 
Frkchet space C(0,oo;X) and by Alaoglu's Theorem, the sequence z;(.)e-" is 
weakly relatively compact in Lm(O, oo; X). 



Let us take b > c. Since the multiplication by e-("-~)~ is continuous from 
LDO(O, oo; X )  to L1(O, oo; X),  it remains continuous when these spaces are supplied 
with weak topologies17. 

We have proved that the sequence zk(-) is weakly relatively compact in the 
weighted space L1(O, oo; X ;  e-"dt). 

We thus deduce that a subsequence (again denoted) z n  converges t o  z in the 
sense that: 

i) zn(-)  converges uniformly to z(.) on compact sets 

( ii) zh(.) converges weakly to z'(.) in ~ ' ( 0 ,  oo; X; e-*'dt) 

Inclusions 
V n > 0, (zn(t), zh(t)) E Graph(F) 

imply that 
for almost all t > 0, z'(t) E F(z(t))  

thanks to the Convergence Theorem 1.13. 

We thus have proved that a subsequence of elements (zol,  zn(.)) of the graph of 
SIL converges to  an element (zo, z(.)) of this graph. This shows that it is compact, 
and thus, that the solution map S is upper hemicontinuous with compact images. 
0 

1.4 Stochastic Viability Theorem 

Let us consider a u-complete probability space ( R , 3 ,  P), an increasing fam- 
ily of a-sub- algebras Ft C 3 and a finite dimensional vector-space X := Rn. 

We shall study a stochastic differential equation 

the solution of which is given by the formula 

"If un converges weakly to u in Lw(O, oo; X), then e-(b-c) t~n converges weakly to 
e-(b-c) '~ in L1(O, oo; X), because, for every Q E Lm(O, oo; X )  = L1(O, oo; X)*, the values 

converge to 

since e-(b-c)tcp(.) belongs to L1(O, oo; X). 



when one of the following conditions is satisfied: 

f and g are Lipschitz functions 

f and g are uniformly continuous and monotone 

We say that  a stochastic process ((t) is a solution t o  the stochastic differen- 
tial equation (1.21) if the functions f and g satisfy: 

for almost d l  w E 0, f (((.)) E ~ ' ( 0 ,  T ;  X )  & g(((.)) E L2(0,Ti X )  

1.4.1 Stochastic Tangent Sets 

The constraints are defined by closed subsets K, C X, where the set-valued 

map 
K : w E R H K , c X  

is assumed t o  be 6- measurable (which can be regarded as a random set- 
valued variable). 

We denote by h: the subset 

h: := {u E L'(R,F, P) ( for almost all w E R, u, E K,) 

For simplicity, we restrict ourselves to scalar Ft-Wiener processes W(t). 

Definition 1.16 (Stochastic Contingent Set) Let us consider a F t -m-  
ndom variable x E K (i.e., a Ft-measurable selection of K). 

Definition 1.17 We shall say that a stochastic p m e s s  x(-) is viable in K 
if and only if 

V t  E [O,T], x(t) E h: (1.22) 

i.e., if and only if 

V t E [O,T], for almost d w  E R, (,(t) E K, 

We shall say that K enjoys the (stochastic) viability property with respect 
to the pair (f, g)  if for any random variable z in K ,  there exists a solution 
( to the stochastic differential equation starting a t  z which is viable in K .  



In order to chamcterize this stochastic viability property, we define the 
stochastic contingent set T K ( t ,  x )  to K at x (with wspect to F t )  as the set 
of pairs (y, v )  of Ft-random variables satisfying the following property: For 
any a,  p > 0, thew exist h €]O,a[ and 3t+h-mndom variables ah and bh 
such that 

i) E(llahl12) I p2 
i )  E(llbhl12) 5 p2 
iii) ~ ( b ~ )  = 0 

i v )  bh is independent of Ft 

and satisfying 

For instance, this condition means that for every Ft-random variable x 
viable in K 

when K is a vector subspace, 

when K is the unit sphere 

when K is the unit ball. 

We mention that an elementary calculus of stochastic tangent sets to 
direct images, inverse images and intersections of closed subsets can be found 
in [3, Aubin & Da Prato]. 



1.4.2 Stochastic Viability 

Theorem 1.18 (Stochastic Viability) Let K be a closed subset of X .  
W e  assume that either 

the maps f and g are Lipschitz 

the maps f and g are uniformly continuous and monotone in  the sense 
that there exists v E R such that 

Then the following conditions are equivalent: 
1. - Fmm any initial stochastic p m e s s  to E EC starts a solution to 

the stochastic differential equation which is viable in  EC.  
2. - for every Ft-random variable x in  E C ,  

Sufficient Condition We begin by constructing approximate viable so- 
lutions to  the stochastic differential equation. 

Lemma 1.19 Let K be a closed subset of X .  W e  assume that the maps 
f and g are uniformly continuous. Then, for any E > 0,  the set S,( to)  of 
stochastic processes t(.) on [O,1.] satisfying ( ( 0 )  = to and 

i )  V t E [ O ,  11, E ( d 2 ( t ( t ) ,  0) I E 2  { ii) v t E [o, 1-1, ( l l t ( t )  - t ( 0 )  - .fi f ( t ( s ) ) d s  - .fj g ( t ( S ) ) d w ( S ) ~ r )  5 
(1.26) 

is not empty. 

Proof - Let us fix E > 0. Since f and g are uniformly continuous 
with concave uniform continuity m o d ~ l u s ' ~  w ,  we choose 77 €10, E ]  such that 

"Set w ( t )  = supl,,-,ll~st 11 f(z) - j ( y ) J J 2 .  Then w is a non decreasing, subadditive con- 
tinuity modulus of j .  One can check that the concave envelope of w is still a uniform 
continuity modulus. 



We denote by the set of pairs (T€, [(-)) where T€ E [o, :I.] and ((.) 
is a stochastic process satisfying ((0) = to and 

i) V 2 E [O, T(1, Ed2(t(T€), K : )  < v 2 q  
i )  V t E [0, T€], Ed2(((t), K : )  5 q2 

iii) V t E [O, Tt], E ( ( ( ~ ( t )  - RO) - I,' f (((s))ds - I,' g ( < ( s ) ) d ~ ( s ) ~ r )  < E~ 

(1.27) 
The set Ac(() is not empty: take Tt = 0 and ((0) G (0. 

It is an inductive set for the order relation 

if and only if 

T € ~  5 T€2 & (z(.)~[o,T~,] = ( I ( . )  

Zorn's Lemma implies that there exists a maximal element (Tt,((.)) E 
&(to). The Lemma follows from the claim that for such a maximal ele- 
ment, we have T€ = 1. 

A 

If not, we shall extend ((.) by a stochastic process ((.) on an interval 
[T(, St] where St > T€, contradicting the maximal character of (TE, ((-)). 

Since Kw and tu(T€) are FTt measurable, the projection map llK, (tw(T()) 
is also FTt-measurable (see [5, Theorem 8.2.13, p. 3171). Then there exists a 
FTt-measurable selection yw E llK,((w(T€)), which we call a projection of the 
random variable ((To onto the random set-valued variable K. For simplicity, 
we set x = ((Tf) and thus choose a projection y E lTn(x). 

We take 

p := ~lP==i>~ 2 

and we set 
c2 := ~ = ( E ( I I ~  ( Y ) ~ I ~ ) ,  ~( lk7(~)11~))  < +O0 (1.28) 

We then introduce 

a := min ( q,  (i;'y) > o 

which is positive whenever T€ < 1. 
We know that (f(y),g(y)) belongs to the stochastic contingent set TK(T,, y): 

There exist h, €]O,a] and 3T=+hs-randorn variables ah= and bhs such that 



i )  E(llahsl12) I p2 
i i )  E(IJbhsJ12) 5 p2 
i i i )  E(bhl)  = 0 (1.29) 

i v )  bhs is independent of Ft 

and satisfying 

We then set S, := T,  + h, > T ,  and we define the stochastic process 
t ( t )  on the interval [T,, S,] by 

f ( t )  := 2 + ( t  - T = ) f ( y )  + ( W ( t )  - W ( T = ) ) g ( y )  

Therefore, setting h := t - T,, 

I d t )  - d ( ( ~ , ) )  5 112 - y - hah - fibhIl2 - IIx - yJIZ =: 

We take the expectation in both sides of this inequality and estimate 
each term of the right hand-side. First, we use estimate 

because 

E ( I l l  d s l d s 2 )  i t ~ ( l l ~ ( s ) l l ' ) d s  

and 

Next, 

and we observe that 



since bh is independent of z - y and E(bh) = 0. 
We obtain, by the very choice of p, 

by (1.27)): 
Hence [(.) satisfies (1.27)) for S,. 
We observe also that for any t E ITx, S,], 

d:(f(t)) i I I ~  - yIl2 

and that 

I - I = 11% - Y + (t - Tx)f(y) + (W(t) - W(Tx))9(Y)Il2 

By taking the expectations, we obtain 

Therefore, since max(E(1lf (y) [I2), E( I lg(~) l (~) )  = c2 by (1-28), we deduce 
that 

A 

E(ll<(t) - yI12) 5 q2Tx + (1 - Tx)(q2Tz + 4c2) i q 2 ~ ,  + a(q2 + 4c2) i q2 
(1.31) 

since, by the choice of a, we have a(q2 + 4c2) 5 (1 - T,)q2. Therefore, 

~ ( d i ( f ( t ) ) )  I E ( I I ~ ( ~ )  - yl12) I q2 



Hence t ( - )  satisfies (1.27)ii) for S,. 
We also observe that 

Since the functions f and g are uniformly continuous, we deduce from the 
concavity of the continuous modulus w(.) that 

since we have already proved that 

E ( I I ~ ( ~ )  - yIl2) < v2 
so that t(.) satisfies (1.27)iii). Therefore, we have extended the maximal 
solution (T( ,  ((.)) on the interval [0, S,] and obtained the desired contradic- 
tion. Hence the proof of Lemma 1.19 is completed. 

It remains now to prove that the limit of the sequence of approximate so- 
lutions to a viable stochastic process exists and is a solution to the stochastic 
differential equation. 

Let us choose for every E an approximate solution f ,  which can be written 
in the form 



where E(ll(c(t)112) 5 E' .  Then for any ~ , r ,  > 0, 

E(l l€c(t )  - €v(t)l12) 

It follows that  

Lipschitz case 

Gronwall's Lemma implies that  

2 4121 
E ( I I C . ( ~ )  - G ( ~ ) I I ~ )  5 2 ( ~ ~  + 1) )e 

In both cases we deduce that the above Cauchy sequences converge t o  
some [(-): 

v t  E [O, 11, lim E ( l ( t C ( t )  - t ( t ) l12)  = 0 
r-rO 

Monotone case We use Ito formula for the function - ( q 1 1 2  t o  obtain 

Furthermore, inequalities (1.26)i i )  imply that  

< 

so that  the solution is viable in K. 0. 

' E (ll€c(t) - €v(t)l12) 

5 E (I,' ( ( t C ( s )  - t v ( s ) ,  f ( C c ( t ) )  - f ( 6 ( s ) ) )  + Ils(Cc(t)) - g ( € ~ ( s ) ) I l ~ )  d ~ )  

+2(E2 + q 2 )  

, 5 u2 I,' E (II€c(s) - Cv(s)1I2) ds + 2(E2 + v 2 )  
Gronwall's Lemma implies that  

2 v2t 
E (116(t) - C ~ ( ~ ) I I ~ )  5 2 ( r 2  + r, )e 



Necessary Condition Let K be a set-valued random variable. 

Theorem 1.20 If the random set-valued variable K is invariant by the pair 
( f ,  g ) ,  then for every Ft-random variable z viable in K ,  

Proof - We consider the viable stochastic process ( ( t )  

which is a solution to the stochastic differential equation (1.21) starting at 
2. 

We can write it in the form 

where 
a ( s )  = f ( t ( 3 ) )  - f ( € ( O ) )  
b (s )  = g ( € ( s ) )  - g ( t ( 0 ) )  

converge to 0 with s .  
We set 

and 

and we observe that 

converges to 0 because E (11~: ds )ds1 l2 )  I t 1: ~ ( l l ~ ( s ) l l ~ ) d s .  

In the same way, 



2 
also converges to 0 because E ( 1 1 ~ :  +o(s)d~(s)II ) = J,' ~ ( ( 1  +o(s)~~~)ds .  

The expectation of bh is obviously equal to 0 and bh is independent of 
Ft. Since [(h), belongs to Kw for almost al l  o, we deduce that the pair 
( f (z), g(2)) belongs to 7~ (t,z). 0 

2 Myopic Behavior 

Introduction 
Consider a dynamical economy (P, c) described by 

We have associated with each viability domain K the regulation map 
llK c P associating with every state z E K the set 

of viable prices. We did prove that under adequate assumptions on P and c 
that K is a viability domain if and only if the images llK(z) of the regulation 
map are not empty for all z E K. In this case, the price functions p( . )  which 
regulate viable solutions obey the regulation law 

for almost all t 2 0, p(t) E IIK(z(t)) 

But how can one find prices p(t) E IIK(z(t))? 
We then borrow to systems theory the concept of "feedback" prices1g, 

i.e., single-valued maps w(.) which are selections of the regulation map in 
the sense that w(z) E l lK(z) for all z E K. 

They can be regarded as planning mechanisms, since they associate prices 
to commodities. Since the prices chosen this way depend only upon the com- 
modities in a timeless manner, involving neither the pastZ0 nor the future 
(and this seems highly reasonable), one can say that such mechanisms de- 
scribe a myopic behavior of the economic agents. 

''The terminology comes from systems theory. 
''that is a flaw of this model which ca be corrected by using hystory-dependent models 

later on. 



Then the solutions to  the differential equation 

(when they exist) are viable since the implemented prices p(t) := m(x(t)) 
obey the regulation law by construction. Existence is guaranteed when 
w(.) is continuous, but may still holds true for discontinuous, but explicit, 
feedback feedbacks. 

Hence, we have t o  find selection procedures of the regulation map which 
provide either continuous selections or discontinuous selections for which the 
above differential equation still has solutions (section 1.) 

We shall provide in next section a class of such feedback prices obtained 
as solutions of system of first-order partial differential inclusions in the case 
of evolution under bounded inflation, and even other type of feedbacks, 
c d e d  dynamical feedbacks. 

In this Section, we concentrate on feedback prices obtained by selection 
procedures of the regulation map. 

The first one, turning out continuous selections, is obtained in a noncon- 
structive way, and thus, has no economic relevance. 

But, by assuming a myopic behavior of price-takers in some models, 
we can assume that  she chooses prices in the regulation map with minimal 
norms, or, more generally, minimizing a given function on the subset IIK(x) 
or solving a game on such a subset. By doing that, we obtain discontinuous 
feedback prices. But we shall overcome this difficulty by observing that  
such selections can be obtained from the subset IIK(x) by "slicing out" the  
piece we desire with a selection procedure SnK(x), where the map SnK(.) 
has Ugood" properties that  the selection does not have2'. This is the topic 
of the  first section. 

We shall see that  some explicit selection procedures based on optimiza- 
tion and game theory require that  the regulation map should be lower semicon- 
tinuous with convex values. Providing sufficient conditions for the regulation 
map to  be lower semicontinuous is thus the second preliminary task. 

Observe that  this is not at  all desperate, since we know that  the set- 
valued map z - TK(x) which is involved in the definition of the regulation 
map is lower semicontinuous with convex values whenever K is convex. A 
nonconvex subset K satisfying this property will be called sleek. Then, if we 
add the assumption that  pricing map P(.) is also lower semicontinuous, one 

"The ideal of introducing and using these selection procedures is due to HClene 
Frankowska. 



can expect IIK to be lower semicontinuous as well. This statement is true 
under further adequate assumptions (constraint qualification or transversal- 
ity), as we show in the lower semicontinuity criteria that we prove in the 
second section. 

Finally, we build feedback prices in the third section. Michael's Continu- 
ous Selection Theorem provides the existence of continuous feedback prices, 
but, being proved in a nonconstructive way, does not furnish algorithmic ways 
to construct them. 

On the other hand, we can think of explicitly selecting some prices of the 
regulation map, for instance, the price mO(z) E IIK(z) with minimal norm. 
Viable solutions obtained with this feedback price are called slow viable so- 
lutions. Unfortunately, lower semicontinuity of the regulation map is not 
sufficient for implying the continuity of this minimal norm feedback price. 
But since the minimal selection can be obtained by selection procedures, as 
well as other selection procedures involving optimization or game theoretical 
mechanisms, we can provide many instances of evolution obtained under a 
myopic behavior of the price-takers. 

Section 4 provides examples when the set K is defined through explicit 
constraints. It recalls the calculus of contingent cones to  closed sleek subsets 
and Section 5 studies the regulation maps in these more explicit cases. 

The actual computation of slow solutions involving minimization of quadratic 
norms, we then devote the last section to the presentation of pseudo-inverses 
and quadratic minimization problems. These tools are recalled in Sectin 6. 

2.1 Selections of the Regulation Map 

A selection S(F(-))  of a set-valued map F is a set-valued map contained in 
F. We consider the class of selections obtained through a selection procedure 
SF(-), which allows to  obtain the desired selection of F by "cut piecesn out 
of its images F(z).  

Definition 2.1 (Selection Procedure) A selection procedure of a set-valued 
map F : X ?A Y is a set-valued map SF : X ?A Y satisfying 

i )  Vz E Dom(F), S(F(z))  := SF(z) n F(z )  # 0 
ii) the gmph of SF is closed 

The set-valued map S ( F )  : z .u S(F(z))  is called the selection of F. 



Then the selection is a single-valued map denoted s (F( . ) )  whenever 

V z  E Dom(F), s ( F ( z ) )  := S F ( z )  n F ( z )  is a singleton 

We derive from the Equilibrium Theorem selection procedures yielding 
equilibria in F ( z ) .  

Proposition 2.2 Let us assume that a set-valued map F : X -A Y has 
nonempty compact convez values. Let us consider an upper semicontinuous 
set-valued map E with nonempty compact convez values from Graph(F) to 
Y satisfying: 

Then the set-valued map SF defined by 

S F ( Z )  := { y  € Y ( 0 E E ( z ,  y ) )  

is selection p&edum of F. The selection map S ( F )  associates with any z E 
Dom(F) the set 

of equilibria of E ( z ,  -) in F ( z ) .  

We shall provide other examples of selection procedures of lower semi- 
continuous in the next section. 

Theorem 2.3 Consider a Marchaud dynamical economy (P,  c )  and suppose 
that K is a viability domain. Let SnK be a selection of the mgulation map 
I I K .  Suppose that the values of SnK am convez. Then, for any initial com- 
modity zo e K ,  them exist a viable solution starting at zo and a viable price 
to dynamical economy (1.11) which am mgulated by the selection S ( I IK)  of 
the mgulation map I I K ,  in the sense that 

for almost all t 2 0,  
p(t)  E S ( ~ K ) ( Z ( ~ ) )  := I I K ( ~ ( ~ ) )  n S n K ( z ( t ) )  



Proof - Since the convex selection procedure Sn, has a closed graph 
and convex values, we can replace the dynamical economy (1.11) by the 
dynamical economy 

i )  z ' ( t )  = c ( z ( t ) , p ( t ) )  
(2.1) 

ii) for almost all t ,  p( t )  E P ( z ( t ) )  fl S n K ( z ( t ) )  

which satisfies the assumptions of the Viability Theorem 1.11. It  remains 
to  check that  K is still a viability domain for this smaller system. But by 
construction, we know that for all z E K, there exists p E S ( l l K ) ( z ) ,  which 
belongs t o  the intersection P ( z )  n S n K ( z )  and which is such that  c ( z , p )  
belongs t o  T K ( z ) .  

Hence the new dynamical economy (2.1) enjoys the viability property, 
so that ,  from all initial states zo E K starts one viable solution and a viable 
price to  the dynamical economy (2.1) which, for almost all t 2 0, are related 
by 

i )  ~ ( t )  E P ( z ( t ) )  n SnK ( z ( t ) )  

i i )  c ( z ( t ) ,  ~ ( t ) )  E T K  ( z ( t ) )  

Therefore, for almost all t 2 0, p(t)  belongs to  the intersection of l l K ( z ( t ) )  
and S n K ( z ( t ) ) ,  i.e., t o  the selection S ( l l K ) ( z ( t ) )  of the regulation map l lK. 

When the selection is single-valued, we derive from Theorem 2.3 the 
existence of single-valued feedback prices: 

Theorem 2.4 Consider a Marchaud dynamical economy ( P ,  c )  and suppose 
that K is a viability domain. Let SnK be a selection procedure of the reg- 
ulation map l lK.  Suppose that the values of SnK are convez and that the 
selection map 

s ( l lK  (-)) := SnK( . )  n llK (.) is single-valued 

Then the selection s ( l l K ) ( . )  is a feedback price regulating viable solutions of 
the dynamical economy (1.11). 

As a first example, we state: 



Proposition 2.5 Consider a Marchaud dynamical economy (P,  c)  and sup- 
pose that the images of the regulation map are nonempty, convez and com- 
pact. Let us consider an upper hemicontinuous set-valued map E with 
nonempty closed convez values from Graph(P) to Z satisfying: 

Then, for any initial commodity zo E K ,  there ezists a viable solution 
z ( - )  to the dynamical economy (1.11) regulated by an open loop price p(-) 
satisfying for almost all t _> 0, 

Proof - We apply Theorem 2.3 and Proposition 2.2. 

In order to  provide other examples of selection procedures, and in par- 
ticular, continuous selections or minimal selections, we have t o  assume (and 
thus, to  check) that  the regulation map nK is lower sernicontinuous. 

Next section is devoted to  present lower semicontinuous maps, their se- 
lections and lower semicontinuity criteria which we need to  provide more 
examples of myopic behavior. 

2.2 Lower Semicontinuous Maps 

2.2.1 Definitions and Example 

To proceed further, we need the regulation map to be lower semicontinuous 
with convex compact values. 

Definition 2.6 A set-valued map F : X Y is called lower sernicontinuous 
at z E Dom(F) i f  and only i f  for any y E F(z )  and for any sequence of 
elements zn E Dom(F) converging to z ,  there ezists a sequence of elements 
yn E F(zn)  converging to y. 

It is said to be lower sernicontinuous if it is lower semicontinuous at every 
point z E Dom(F). 

We refer to  SET-VALUED ANALYSIS, [5, Aubin & Frankowska] for more 
details, although we provide some of the proofs for the convenience of the 
reader. 

Example: Parametrized Set-Valued Maps 



Let us consider three finite dimensional vector-space X ,  Y and Z, a 
set-valued map 

P : X  .u Z 

and a single-valued map 

We associate with these data the set-valued map F : X .u Y defined by 

Proposition 2.7 Assume that c is continuous fmm Graph(P) to Y. If P 
is lower semicontinuous, so is F. 

Proof - Let us consider a sequence z, E Dom(F) converging to 
z E Dom(F) and take y := c(z, p) belonging to F(z) ,  where p E P(z).  Since 
P is lower semicontinuous, there exists a sequence p, E P(z,) converging to  
p. Then the sequence q, = c(z,, p,), where q, belongs to F(z,), converges 
to y because c is continuous. Hence F is lower semicontinuous. 

Definition 2.8 (Marginal Functions) Let us consider a set-valued map 
F : X .u Y and a function c : Graph(F) I+ R. We associate with them the 
marginal function g : X I+ R U {f oo) defined by 

Theorem 2.9 (Maximum Theorem) Let a set-valued map F : X .u Y 
and a function c : Graph(F) I+ R be given. If c and F are lower semicontin- 
uous, so is the marginal function. 

Proof - Let us consider a sequence z, converging to z ,  ~ L X  X < g(z) 
and choose y E F(z )  such that X 5 c(z, y). Then there exist elements 
qn E F(z,) converging to y (because F is lower semicontinuous) and we 
know that c(z,, q,) 5 g(z,). Since c is lower semicontinuous, we infer that 

X 5 c(z, y) 5 liminf c(zn,qn) 5 liminf g(z,) 
n--roo n--roo 

By letting X converge to g(z), the claim ensues. 



2.2.2 Selections of Lower Semicontinuous Maps 

If the values of a set-valued map F are closed and convex, we can take, for 
instance, the minimal selection defined by 

The upper semicontinuity of F, even when it is closed convex valued, is 
not strong enough t o  imply the continuity of the minimal selection22. 

However, we can still prove the following 

Proposition 2.10 Let us assume that F : X .u Y is closed and lower 
semicontinuous with convez values. Then the gmph of the minimal selection 
is closed23. 

Proof - The projection of 0 onto the closed convex set F ( z )  is the 
element u  := m(F(z))  E F(z )  such that  

1 1 ~ 1 1 ~  + u(-F(z), u )  = sup < u  - 0 ,  u  - y >< 0 
arEF(z) 

(2.3) 

(It is actually equal t o  0). Let us introduce the set-valued map SF : X .u Y 
defined by 

u E SF(z) if and only if J J u ( ( ~  + a(-F(z),  u) 5 0 (2.4) 

Therefore, the graph of the minimal selection is equal to: 

Since F is lower semicontinuous, the function (z, u )  H u(-F(z),  u) is 
lower semicontinuous, so that the graph of SF, and thus, of m(F(-)), is 
closed. 

22Consider the set-valued map F : R - R defined by 

It is  upper semicontinuous with compact convex values and its minimal selection is obvi- 
ously not continuous. 

"If moreover F is upper hemicontinuous, then the minimal eelection is continuous. See 
Theorem 9.3.4 of SET-VALUED ANALYSIS, [5, Aubin & Frankowska]. 



The set-valued map defined by (2.3) is naturally a selection procedure 
of a set-valued map with closed convex values which provides the minimal 
selection. We could also have used the selection procedure SF defined by 

We can easily provide other examples of selection procedures through 
optimization thanks to  the Maximum Theorem. 

Proposition 2.11 Let us assume that a set-valued map F : X -u Y is lower 
semicontinuous with compact values. Let V : Graph(F) w R be continuous. 
Then the set-valued map SF defined by: 

SF(z) := ( y E Y I V(z, y) < inf V(z, z) 
z€F(z) 

is a selection procedure of F which yields the selection S (F )  equal to: 

Proof - Since F is lower semicontinuous, the function 

is lower semicontinuous thanks to  the Maximum Theorem. Our proposition 
follows from : 

G r a p h ( S ~ )  = 
{(z, Y) 1 V(z, Y) + s u ~ ~ € f ( z ) ( - v ( z ,  1)) 5 0) 

Most selection procedures through game theoretical models or equilibria 
are instances of this general selection procedure based on Ky Fan's Inequality 
(Theorem ??). 

Proposition 2.12 Let us assume that a set-valued map F : X n~ Y is lower 
semicontinuous with convex compact values. Let cp : X x Y x Y w R satisfy 

i) cp(z, y, z) is lower semicontinuous 

ii) V(x, y) E X x Y, z w cp(z, y, z )  is concave 
iii) V(z, y) E X x Y, cp(z, Y, Y) l 0 



Then the map SF associated with cp by the relation 

is a selection procedure of F  yielding the selection map x  w S ( F ( x ) )  defined 

Proof - Ky Fan's inequality states that the subsets S F ( z )  are not 
empty since the subsets F ( x )  are convex and compact. The graph of SF is 
closed thanks to the assumptions and the Maximum Theorem because it is 
equal to the lower section of a lower semicontinuous function: 

( x ,  Y )  I sup cp(x, Y ,  2 )  5 0 
z € F ( z )  1 

Proposition 2.13 Assume that Y  = Yl x Y2, that a set-valued map F  : 
X - Y is lower semicontinuous with convex compact values and that a : 
X x Yl x Yz + R satisfies 

i )  a is continuous 

i i )  V  ( x ,  yz) E X x Y2, yl w a(x ,  y l ,  y2) is convex 
i i i )  V  ( x ,  yl)  E X x Yl ,  y2 w a(x ,  yl, y2) is concave 

Then the set-valued map SF associating to any x  E X the subset 

S F ( X )  := { ( y l ,  y2) E Yl x Y2 such that 
V(z1, 2 2 )  F ( x ) ,  a(x,y1,z2) l a(z,z1,y2)) 

is a selection procedure of F  (with convez values). The selection map S ( F ( . ) )  
associates with any x  E X the subset 

S ( F ) ( x )  := { ( y l ,  y2) E F ( x )  such that 
V(z i ,  2 2 )  E F ( x ) ,  ~ ( X , Y I ,  a )  1 4 2 ,  Y I ,  Y Z )  5 a(x , z l ,  Y Z ) )  

of saddle-points of a ( x ,  -, .) i n  F (x ) .  

Proof - We take 

and we apply the above theorem. 0 



2.2.3 Michael's Selection Theorem 

We shall now state the celebrated Michael's theorem stating that lower semi- 
continuous convex-valued maps do have continuous selections. 

Theorem 2.14 (Michael's Theorem) Let F be a lower semicontinuous 
set-valued map with closed convez values from a compact metric space X to 
a Banach space Y .  It dws have a continuous selection. 

In particular, for every jj E F(z )  there ezists a continuous selection f of 
F such that f (z) = jj. 

We refer to Section 9.1 of SET-VALUED ANALYSIS for the proof of this 
Theorem. 

2.2.4 Sleek Subsets 

The main example of lower semicontinuous set-valued maps is provided by 
the map z - T K ( z )  associating with any z belonging to a closed convex set 
K its tangent cone T K ( z )  at z .  

This "regularity property" of a set K at a point z E K is not always 
true for any subset. It is convenient to  introduce the following definition: 

Definition 2.15 We shall say that a subset K of X is sleek at z E K if 
the set-valued map 

K 3 zt  - T K ( z t )  is lower semicontinuous at z 

and that it is sleek i f  and only if it is sleek at every point of K .  
We define the (Clarke) tangent cone (or circatangent cone) C K ( z )  by 

C K ( z )  := { v  I lim 
h+O+,K3z1+z h 

Therefore, with this definition, we obtain: 

Theorem 2.16 Any closed convez subset of a finite dimensional vector- 
space X is sleek. 

We refer t o  Theorem 4.2.2 of SET-VALUED ANALYSIS for the proof of 
this Theorem. 

We see at once that C K ( z )  c T K ( z )  and that if z belongs to  Int(K), 
then C K ( z )  = X. 



It is very convenient to observe that when z belongs to r, 
v E C K ( z )  if and only if V h,  -t 0+, V K 3 z ,  -r z ,  
3 vn -+ v such that V n,  zn + hnvn E K 

The charm of the tangent cone C K  at z is that it is always convex24. 
Unfortunately, the price to  pay for enjoying this convexity property of  the 
Clarke tangent cones is that they may often be reduced to  the trivial cone (0). 

For convex subsets K ,  the Clarke tangent cone and the contingent cone 
coincide with the closed cone spanned by K - z ,  the tangent cone of convex 
analysis. 

However, we shall show that the Clarke tangent cone and the contingent 
cone do coincide at those points z where K is sleek: 

Theorem 2.17 Let K be a closed subset of a finite dimensional vector-space 
X .  Consider a set-valued map F : K 'U X satisfying 

i )  F is lower semicontinuous at z 

i i )  3 6 > 0 such that V z E B K ( z , 6 ) ,  F ( z )  C T K ( z )  

Then F ( z )  C C K ( ~ ) .  
In particular, if K is sleek at z E K ,  then T K ( z )  = C K  ( z )  is a closed 

convex cone. 

Before proving this theorem, we need to establish Lemma 2.18 We in- 
troduce the following notation: 

D t d K ( z ) ( v )  := liminf 
d ~ ( z  4- h v )  - d ~ ( z )  

h+O+ h 

which will be justified later2'. We observe that when z E K ,  a direction v 
is contingent to K at z if and only if D t d K ( z ) ( v )  5 0. 

'.Let ul and u2 belong t o  CK(Z). To  prove that  vl +u2 belongs t o  this cone, let us choose 
any sequence h, > 0 converging t o  0 and any sequence of elements z, E K converging 
t o  z .  There exists a sequence of elements v l ,  converging t o  ul such that the  elements 
zl, := z, + hnuln d o  belong t o  K for all n. But since zl, does also converge t o  z in K, 
there exists a sequence of elements u2, converging to u2 such that 

This implies that ul + u2 belongs t o  CK(z)  because the sequence of elements uln + u2, 
converges t o  ul + v2. 

25this is the contingent epiderivative of the distance functions d ~ .  See SET-VALUED 
ANALYSIS, [5, Aubin k Frankowska]) for further details. 



L e m m a  2.18 Let K be a closed subset of a finite dimensional vector-space 
and n K ( y )  be the set of projections of y onto K ,  i.e., the subset of z E K 
such that J J y  - z ( J  = dK(y) .  Then the following inequalities: 

hold true. Therefore, 
T K ( ~ K ( Y ) )  C T K ( Y )  

Proof  - Choose z E I I K ( y )  and w E TK(2). Then 

Since z belongs to  K and w E T K ( z ) ,  the above inequality implies that 

P roo f  of  Theo rem 2.17 

Let us take z E K and v E F ( z ) ,  assumed to be different from 0. Since 
F is lower semicontinuous at  z ,  we can associate with any E > 0 a number 
77 €]0,6[ such that d(v ,F( z ) )  5 d(v,  F ( z ) )  + E = E for any z E B K ( z ,  7) 
(because d(v, F ( z ) )  = 0).  Therefore, for any y E B ( z ,  77/4) and T I 77/411v(l, 
the inequality 

implies that 

We set g ( r )  := dK(y  + T V ) .  By Lemma 2.18, we obtain 

lim infh,o+ ( g ( 7  + h )  - g ( 7 ) )  / h  = D T ~ K ( Y  + ~ v ) ( v )  
I d(v, T K ( ~ K ( Y  + T V ) ) )  I L 



The 
that 
0 to 

function g being Lipschitz, it is almost everywhere differentiable, so 
gl(t) 5 E for almost all t small enough. Integrating this inequality from 
h, we obtain 

for any y E B(z, q/4) and r < q/4(l vll. This shows that v belongs to CK (z). 
By taking F(z)  = TK(z), we deduce that TK(z) c CK(z) whenever K 

is sleek at z E K,  and thus, that they coincide. 0 

2.2.5 Lower Semicontinuity Criteria 

In order to prove that the regulation map lTK, we can always assume that 
the pricing map P is lower semicontinuous and we know that the set-valued 
map TK(-) is lower semicontinuous whenever the viability set is sleek (and, 
in particular, smooth or convex). 

We thus need lower semicontinuity criteria to derive that the regulation 
map nK(-)  is lower semicontinuous. 

Proposition 2.19 Consider a two set-valued maps T and P from X to Y 
and Z respectively and a (single-valued) map c from X x Z to Y satisfying 
the following assumptions: 

i) T and P are lower semicontinuous with convex values 
ii) c is continuous 
iii) V z ,  p H C(Z, p) is affine 

We posit the following condition: 
V X E X ,  3 7 > 0 ,  6 > O ,  c >  0, r>Osuch tha t  V z l €  B(z,6) we have 

Then the set-valued map II : X w Z defined by 

is lower semicontinuous with nonempty convex values. 

Proof - Let us fix p E II(z) and a sequence z, converging to z. Since P and T 
are lower semicontinuous and c is continuous, there exist sequences p, E P(z,) and 



qn E T(xn) converging t o p  and c(x,p) respectively. Let us set E, := I l c ( ~ , , p ~ ) - ~ ~ I )  
and 8, := 7 + c  1- n ~ ] 0 , 1 [ .  Then E, converges to 0. Since 

we deduce that 

Therefore, there exist Fn  E P(zn)  n rBz and Cn ;, T(zn) such that 

This implies that 
qn := enpn + (1 - On)pn 

belongs to P(xn) and that 

because l l & l l  5 r, llpnll is bounded, P(xn) and T(xn) are convex and c is affine 
with respect to p. Hence the elements qn E II(zn) converge to p given in II(x). 

We state now another condition which is less symmetric. 

Proposition 2.20 Consider a metric space X ,  two nonned spaces Y and 
Z ,  two set-valued maps T and P from X to Y and Z respectively and a 
(single-valued) map c from X x Z to Y such that 

i )  P is lower semicontinuous with convex values 
ii) f is continuous 
i i i )  V z ,  p H C ( Z ,  p) is  affine 

i v )  V z ,  T ( z )  is convex and its interior is nonempty 
v )  the graph of the map z G In t (T(z ) )  is open 

We posit the following condition: 

V z E X ,  3 p E P ( z )  such that c(z ,p)  E In t (T ( z ) )  (2.6) 

Then the set-valued map ll defined by (2.5) is lower semicontinuous with 
convex values. 



Proof 
1. - We introduce the set-valued map S : X - 2 defined by 

Assumption (2.6) implies that S(z) is not empty. We claim that S is lower 
semicontinuous. Indeed, if z, -r z and if p belongs to S(z) C P(z) ,  there exists 
pn E P(zn) which converges to p because P is lower semicontinuous. Since 

by continuity of c and since the graph of Int(T(.)) is open, the elements c(zn, p,) 
belong to  Int(T(zn)) for n large enough and thus, the elements pn belong to S(z,) 
and converge to  p. 

- 
2. - Convexity of P (z )  and T(z) implies that S(z) = II(z). Indeed, let 

us fix p E n(z)  and po E S(z). Then qe := Bpo + (1 - B)p belongs to  S(z)  when 
B €10, I[, because T(z)  is convex and c(z,po) belongs to  the interior of T(z), so 
that for every 6 €]O,l[, 

~ ( 2 ,  P) + B(c(z, PO) - c(z, P)) = ~ ( z ,  u + Bpo - Bp) = C(Z, 90) 

belongs to  the interior of T(z). Then p is the limit of qe when 6 > 0 converges to 
0. 

3. - The theorem ensues because the closure of any lower semicontinuous 
set-valued map is still lower semicontinuous. 

2.2.6 Lower Semicontinuity of the Pricing Map 

We are now able to  proof that the regulation map is lower semicontinuous: 

Theorem 2.21 Assume that the dynamical economy is afine and that K  
is a closed sleek viability domain. Then the regulation map I I K  has compact 
convez values. 

Let us assume furthermore that the set-valued map P  is lower semicon- 
tinuous and that 

V z  E K ,  37 > 0,6 > 0 such that Vz' E BK ( z , 6 ) ,  
7 B  c c(z l ,  ( P ( z l )  n cK B )  - T K ( z l )  

or that the interior of the contingent cones are not empty and 

Then the regulation map is lower semicontinuous. 



2.3 Myopic Behavior of Price-Takers 

2.3.1 Continuous Feedback Controls 

Viable solutions to the dynamical economy (1.11) are regulated by the prices 
whose evolution is governed by the regulation law (1.11). 

Continuous single-valued selections WK of the regulation map nK are 
viable feedback prices, since the Viability Theorem states that the differential 
equation 

xt(t) = c(x(t), WK(X(~)) )  

enjoys the viability property. 
Indeed, by construction, K is a viability domain of the single-valued 

map x E K H c(x,wK(x)). Hence, when the regulation map is lower 
semicontinuous with convex values, we deduce from Michael's Theorem 2.14 
the existence of viable continuous feedback prices. 

Proposition 2.22 Consider a Mamhaud dynamical economy (P, c). If its 
regulation map is lower semicontinuous with nonempty convex values, then 
the dynamical economy can regulate viable solutions in K by continuous feed- 
back prices. 

2.3.2 Slow Viable Solutions 

This result is not useful in practice, since Michael's Selection Theorem does 
not provide constructive ways to find those continuous feedback prices. 

Therefore, we are tempted to use explicit selections of the regulation map 
nK, such as the minimal selection WE (see (2.2)). Unfortunately, since there 
is no hope of having continuous regulation maps IIK in general (as soon as 
we have inequalities constraints), this minimal selection is not continuous. 
But the minimal selection WE being obtain through a selection procedure, 
the differential equation 

has viable solutions. 

Definition 2.23 The solutions to differential equation (2.7) are called slow 
viable solutions to dynamical economy (1.11). 

We derive from Theorem 2.4 the existence of slow viable solutions: 



Theorem 2.24 Consider a Marchaud dynamical economy (P,  c).  If the reg- 
ulation map is lower semicontinuous with nonempty convez values, then the 
dynamical economy (1.11) has slow viable solutions. 

We can now multiply the possible corollaries, since we have given several 
instances of selection procedures of set-valued maps. 

2.3.3 Other Examples of Myopic Behavior 

We shall just mention some of the examples. We begin by selecting viable 
solutions through minimization procedures: 

Proposition 2.25 Consider a Marchaud dynamical economy (P ,  c)  and sup- 
pose that the regulation map is lower semicontinuous with nonempty convex 
images. Let us consider a loss function 

be continuous and convez with respect to p. Then, for any initial commodity 
zo E K ,  there ezists a viable solution z(.) to the dynamical economy (1.11) 
regulated by an open loop price p ( - )  satisfying for almost all t 2 0 ,  

Proof - This is a consequence of Theorem 2.3 and Proposition 2.11. 

When the price space Z := Z1 x Z2 is the product of two price spaces, 
viable prices can be required to  be saddle-points of two-person games: 

Proposition 2.26 Consider a Marchaud dynamical economy (P ,  c),  whe- 
re P ( z )  = Pl(z )  x P2(z)  is the product of two price sets and c(z,p)  := 
c ( z )  + gl(z)pl + g2(z)p2. Assume that the regulation map 

is lower semicontinuous with nonempty convez values. Let a : X x Zl x Z2 
R satisfy 

i )  a is continuous 

i i )  V ( z ,  p2) E X x Y2,  p1 ++ a(z ,  pl,  p2)  is convez 
iii) V(z ,p i )  E X x Yl ,  p2 ++ a(z,pl,pz) is concave 



Then, for any initial commodity xo E K ,  thew exist a viable solution x( . )  
and open loop prices pl(.) & p2(-) satisfying for almost all t 2 0 ,  

1 x'(t) = c ( z ( t ) )  + g l ( x ( t ) ) ~ l ( t )  + g2(x(t))p2(t) 
i i )  Pl(t)  E P l ( ~ ( t ) )  & ~ 2 ( t )  E P2(z(t)) 
iii) V(91,92) E U K ( ~ ) ,  

a ( ~ ( ~ ) , P l ( t ) ,  92) a (x ( t ) ,~ l ( t ) ,P2( t ) )  5 a ( z ( t ) ,  91 ,~2( t ) ) )  

Proof - The proof follows from Theorem 2.3 and Proposition 2.14. 

2.4 Calculus of Contingent Cones 

Tangent cones to sleek subsets enjoys almost the same calculus than the 
tangent cones to closed convex subsets. The results are proved in [5, Aubin 
& Frankowska], chapter 4. 

2.4.1 Contingent Cones to Closed Sleek Subsets 

We summarize in Table 1 the calculus of contingent cones. Formulas ( 1 )  to 
(4 )  are straightforward. The other properties are valid when K is sleek, and 
are a consequence of the Constrained Inverse Function Theorem, which we 
shall prove later26. 

Proposition 2.27 Assume that the wsource set is closed and sleek and the 
consumption sets satisfy 

Then 

"We mention that transversality condition of formula (5) implies the constraint quali- 
fication assumption 0 E Int(f(L) - M )  and that the stronger transversality condition 

3 c > 0 I V z E K, BY c f l ( z ) ( T ~ ( z )  n cBx)  - TM(Az) 

implies that if L and M are sleek and f is continuously differentiable, then K is also sleek. 



Table 1: Properties of Contingent Cones to Sleek Subsets. 

(1) D If K c L and z E r, then TK(z) c T L ( ~ )  
(2) D I fKiCX,  ( i = l , . - - , n ) a n d z E U i K i , t h e n  

TU?=,K~(~)  = uiCl@TKi(z) 
where I(z) := {i I z E K;) 

(3) D If Ki c Xi, (i = 1, , n) and z; E F, then 

Tn:.l Ki(zl,.-. ,zn) c nZlTKi(zi) 
(4) D Ifg E C1(X,Y), if K C X, z E r a n d  M C Y, then 

S I ( ~ ) ( T K ( ~ ) )  C Tg(~)(g(z)) 
Tg-1(M)(z) C g l ( z ) - l T ~ ( ~ ( z ) )  

(5) D If L C X and M C Y are closed sleek subsets, 
f E C1(X, Y) is a continuously differentiable map 
and z E L n f-'(M) satisfies the transversality condition 

f l ( ~ ) T L ( ~ )  - TM(f(2)) = Y ,  then 
T ~ n f  -l(M)(z) = TL(z) n f '(z)- 'TM(~ (z)) 

(5)a) D If M c Y is a closed sleek subset, 
f E C1 (X, Y) is a continuously differentiable map 
and z E f-'(M) satisfies Im(fl(z)) - TM( f(z)) = Y, then 

Tf -~(M)(z) = fl(z)-"(f (4) 
(5)b) D If K1 and K2 are closed sleek subsets contained in X 

and z E K1 n K2 satisfies TK, (z) - TK2(z) = X, then 
TKlnK2 (z) = TKl (z) n TK2(z) 

(5)c) D If K; C X, (i = 1,. . . , n), are closed sleek 
and z E ni K; satisfies 
Vvi=J.,-..,n, nzl(TKi(z)-vi)#Q) 

then, T~Y=~K;( ' )  = n ? = l T ~ i ( ~ )  



2.4.2 Inequality Constraints  

We also state the following example of the contingent cone to  a set defined 
by equality and inequality ~onstraints*~: 

Theo rem 2.28 Let us consider a closed subset L of a finite dimensional 
vector-space X and two continuously differentiable maps g := (gl , .  . . , g p )  : 
X H R P  and h := ( h l , .  . . , hq) : X H RQ defined on an open neighborhood 
of L. 

Let K be the subset of L defined by the constmints 

We denote by I ( z )  := {i = 1,. . . , p  ( g;(z)  = 0) the subset of active con- 
straints. 

We posit the following tmnsversality condition at a given z E K :  

i )  h l ( z )CL(z )  = RQ 

i i )  3 vo E C L ( z )  such that hl(z)vo = 0 

and V i E I ( z ) ,  < g!(z),  vo >> 0 

Then u belongs to the contingent cone to K at z if and only if u belongs 
to the contingent cone to L at z and satisfies the constraints 

Unfortunately, the graph of TK( . )  is not necessarily closed. However, 
there exists a closed set-valued map T i ( . )  contained in TK( . )  introduced by 
N .  Maderner. Set 

9 i ( ~ )  r K ( z )  := min - ;ex(.) llg:(z)Il 
E 10, +ool 

We observe that Y K  is upper semicontinuous whenever the functions g; are 
continuously differentiable. Indeed, let z ,  E K converge to  zo and a, <_ 
r K ( z n )  converge to  ao. Since g;(zo) > 0 whenever i 4 I ( z o ) ,  we infer that 
i 4 I ( z n )  for n large enough. Hence inequalities anllg;(~n)ll 5 gi(zn)  hold 
true for any i 4 I ( zo)  and imply at the limit that a0 5 r K ( z o ) .  

"See Proposition 4.3.6 of SET-VALUED ANALYSIS, [5, Aubin k Frankowska]. 
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The growth of  the function y ~  is linear whenever we assume that there 
exists a constant c > 0  such that 

Theorem 2.29 (Maderner) We posit the assumptions of Theowm 2.28. 
Then the set-valued map T g ( . )  : K I* X defined by: 

u  E Tji(x)  if and only if u  E TL(z )  and 

is contained in the contingent cone T K ( z )  and satisfy 

Its gmph is closed whenever the gmph of z I* T L ( z )  is closed. 

Proof - Let u belong to  Tg(x ) .  Then, when i E I ( z ) ,  we see that 
(g:(z) ,  u )  = g ; ( z )  + (g l ( z ) ,  u)  L 0 ,  so that u  E T K ( ~ ) .  

Conversely, let us choose u in T K ( z )  satisfying llull I yK(x ) .  Then either 
i E I ( z )  and g ; ( z )  + (g:(x),  u)  = (g:(z) ,  u )  2 0  or g i ( x )  > 0  SO that 

because 1 ) ~ ( (  I Y K ( Z )  _< gi(z)/))g!(z)11. Thus, in both cases, gi(z)+(gi(z) ,  u )  2 
0,  so that u  belongs to  T g ( z ) .  

2.5 Scarcity Constraints 

We consider the case when the viability domain K := h-'(M) is defined by 
more explicit constraints through a map h from X to a resource space Y: 
we introduce three finite dimensional vector spaces: 

1. - the commodity space X 
2. - the resource space Y 
3. - the price space Z 
and we define the viability subset by the constraints 



where we assume that the production map h satisfies 

i )  h is a C1-map from X to  Y 

1 i i )  V z  E K ,  Y = Im(hl (z ) )  - T ~ ( h ( z ) )  

Let us recall that in this case28: 

The  regulation map I I K  can be written: 

By replacing K by M ,  G ( z )  by B ( z )  := h l ( z )G(z )  and c ( z )  by b ( z )  := 
h l ( z ) c ( z ) ,  we obtain the following corollary: 

Corollary 2.30 Assume that the dynamical economy is afine and that the 
constmints satisfy 

i )  M is a closed sleek subset of Y 
i i )  h is a C1-map from X to Y 
i i i )  V z  E K ,  Y = Im(hl (z ) )  - T M ( h ( z ) )  
i v )  V z  E h- ' (M) ,  3p E P ( z )  such that 

h l ( z )G(z )p  E TM(h( z ) )  - ht (z )c (z )  

Then the regulation map I I K  has compact nonempty convez values. Let us 
assume furthermore that the set-valued map P is lower semicontinuous and 
that2' 

V z  E K ,  37 > 0,6 > 0 such that Vzl  E B K ( z ,  6 ) ,  
7 B  c h l ( z I ) c ( ~ ~ )  + ~ I ( Z ~ ) G ( Z I ) ( P ( Z I )  n c K B )  - T M ( h ( z l ) )  

Then the regulation map is lower semicontinuous and its support function is 
equal to: 

o ( I IK( z ) ,  T )  = inf  ( o ( P ( z ) ,  r - G(z)*hl(z)*q)- < q, h l ( z ) c ( z )  >) 
9 E N & ( h ( 4 )  

"If we assume furthermore that there exists a positive constant c such that 

v z € h - ' ( ~ ) ,  BY C hf(z)(cBx) - T ~ ( h ( z ) )  

then h-'(M) is also sleek. 
"or that the interior of the contingent cones are not empty and 

Vz E K, 3p € P(z )  r l  CKB such that hf(z)(c(z) + G(z)p) E I n t T ~ ( h ( z ) )  



We also remark that  checking whether h- ' (M)  is a viability domain 
amounts t o  solving for all z E K the inclusions 

find p E P ( z  ) satisfying 0 E h f ( z ) c ( z )  + h f ( z )G(z )p  - T M ( h ( z ) )  

Hence we can use the general Equilibrium Theorem to  derive sufficient con- 
ditions for h- ' (M)  t o  be a viability domain. 

Proposition 2.31 Let us assume that the dynamical economy is afine, that 
the values of the feedback map P arv compact and that 

i )  M is a closed sleek subset of Y 
i i )  h is a C1-map from X to Y 
i i i )  Vz E K ,  Y = Im(h f ( z ) )  - T M ( h ( z ) )  
i v )  h- ' (M)  C Dom(P) 

Assume furthemorv that 

there ezists a continuous map B : Graph(P) I+ L ( Z , Y )  
such that Vz E K ,  Vp E P ( z ) ,  
h f ( z ) ( c ( z )  + G ( ~ ) P )  E TM(h(z) )  + B ( z ,  ~ ) T P ( Z ) ( P )  

Then K := h- ' (M)  is a viability domain. 

Let us emphasize the fact that in this statement, the map B : Graph(P) -+ 
L ( Z ,  Y )  is a parameter. It thus provides many possibilities for checking 
whether a given subset is a viability domain. 

2.5.1 Duality Criterion 

Definition 2.32 Let z belong to K C X .  We shall say that the (negative) 
polar cone 

is the subnormal cone to K at z .  

We see a t  once that  

The subnormal cone is equal t o  the whole space whenever the tangent cone 
T K ( z )  is reduced t o  0. 



W e  shall now characterize viability domains through a dual formulation. 
For that purpose, we associate with any subset K C Dom(P) the sub- 

normal cone N k ( z )  and the function PK defined by: 

V ( z ,  p) E Graph(Ni) ,  PK ( z ,  p) := inf < p, G(z )q  + c ( z )  > 
q€P(z) 

Theorem 2.33 Assume that the set-valued map F : K -., X is upper serni- 
continuous uith convez compact values. Then the three following properties 
are equivalent: 

i )  V z E K ,  F ( z ) f l T K ( z )  # 0 

i i )  V 2 E K ,  F ( z )  f l  i% ( T K ( z ) )  # 0 (2.10) 

i i i )  V z E K ,  V p E N k ( z ) ,  a ( F ( z ) ,  -p) 2 0 

We  deduce from Theorem 2.33 the following: 

Proposition 2.34 Let us assume that the dynamical economy is afine and 
that the values of the feedback map P are compact. Then a closed subset K 
is a viability domain if and only if 

If we assume in particular that 

i )  M is a closed subset o f  Y 
i i )  h is a C1-map from X to Y 
i i i )  Vz  E K ,  Y = Im(hl(z))  - T M ( h ( z ) )  

then K := h m l ( M )  is a viability domain if and only if 

For instance, this condition holds true when the following abstract Walras 
law holds true: 



2.5.2 Decoupling the Regulation Map 

Finally, let us mention that the calculus of the contingent cones can be transferred 
to a calculus of regulation maps. For instance, a quite common type of viability 
constraints are of the form K := L n h- ' (M)  where we assume that 

i) L C X and M C Y are sleek 
i i )  h  is a C1-map from X to Y 
iii) V z  E K := L fl h- ' (M),  Y = hl(z)TL(z)  - T M ( h ( z ) )  

Indeed, K is the inverse image of the product L x M by the map 1 x h  from X to  
X x Y. 

This a particular case of a more general situation when both X ,  Y and Z are 
product spaces. It may then be convenient to provide once and for all the explicit 
formulas of the regulation map when this is the case. Let us assume namely that 

( iii) Z  := D : , ~ Z ~ ,  P ( z )  := n:,lPk(z) 

and that 

i )  V z  E X, G(z)p  := ( g l  ( z ) u ,  . . - , gm(z)u) & gi(z)u := ~k.1 g! ( ~ ) ~ k  

i i )  c ( z )  := ( c l ( z ) ,  . . . , cn(z))  
iii) V z  E X, h ( z )  := (hl ( z ) ,  . . . , h,(z)) where 

h j ( z )  := CyZl h) ( z i )  
(2.12) 

Therefore, K is the intersection of the subsets Kj  defined by: 

Let us introduce the matrix B ( z )  := hl(z)G(z)  of operators 

and the vector b(z) := hl(z)c(z)  of components 



Corollary 2.35 We posit the assumptions (2.11), (2.12) and (2.13). W e  assume 
also that 

i )  V k ,  Graph(Pk) is closed and the images of Pk 
are convez 

ii) Vi ,  ci : Dom(P) w Xi is continuous 
iii) V k ,  i ,  9: : Dom(P) w t ( Z k ,  X i )  is continuous 
i v )  V k , i ,  ci and 9: are bounded and Pk 

have linear growth 

and that 
i )  the subsets Mj are closed and sleek 
ii) the maps hi are C1 
iii) Vuj E 5 (j 7 1, . . . , n) ,  3pi E Xi  such that 

(2.14) 

V j  E Cy=, hj ( z i ) p j  + TM (C:=i h j ( z i ) )  

Then the regulation map nK is defined by 

i )  ~ K ( z )  = njm=l n K , (  where 

ii) n K , ( z )  = { p  = ( p l , .  . . , P I )  E n:=, Pk(z )  such that (2.15) 

C:Zl B ; ( Z ) P ~  E TM,(CY=~ hj (2,) - b j ( z ) )  

and has compact values. If it is strict, then K is a viability domain of the system, 
and thus, for any initial commodity zo E K ,  there ezist viable solutions z i ( . )  on 
[0,  oo[ starling at zo to the system of differential equations 

1 

v = I , . .  . ( t )  = c i ( z ( t ) )  + C g : ( z ( t ) ) ~ k ( t )  
k=l  

and open loop controls regulating this viable solution z( . )  in the sense that the 
regulation laws 

V j  = 1, . . . , m, for almost all t ,  p(t) E n K ,  ( ~ ( t ) )  

are satisfied. 

Proof - Assumptions (2.14) imply that the subsets 

m 

K, and K := K j  are sleek 
j=1 

and that 

i )  T K  (2 )  = TK, (21, 

ii) TK, (2)  = 
{ V  E X I h f ( t i ) ( v i )  E TM,(CY=, hj ( z i ) )  

Th i s  implies obviously formulas (2.15). O 



Definition 2.36 (Decoupled Regulation Map) W e  posit the assumptions (2.11) ,  
(2 .12)  and (2.13) .  W e  shall say that the regulation map i s  decoupled if 

Z = Y and V j  # k ,  B;(z) = 0 

Corollary 2.37 
map i s  decoupled, 
component of the 

W e  posit the assumptions of Corollary 2.35.  If the regulation 
, then each upartial" viability domain K j  is regulated by the i th 
price in the sense that 

2.6 Pseudo-Inverses 

2.6.1 Orthogonal Right Inverses 

We shall begin by defining and characterize the orthogonal right-inverse of a 
surjective linear operator and then, the orthogonal left-inverse of an injective 
linear operator. These concepts depend respectively upon scalar products 
1 and m defined on the finite dimensional vector-spaces X and Y, which 
are then given once and for all. We shall denote by L E C(X,X*) and 
M E C(Y,Y*) their duality mappings defined respectively by 

(The matrix (l(ei, eJ);,j=l,...,,) of the bilinear form 1 coincides with the matrix 
of the linear operator L). 

We shall denote by 

the norms associated with these scalar products. 
The bilinear form 1,(pl,p2) :=< pl, L-lpz >= l(L-'pl, L-lp2) is then a 

scalar product on the dual of X*, called the dual scalar product. 

It  is quite important t o  keep options open for the choice of a scalar 
product. The choice of the Euclidian scalar product is not always wise 
despite its simplicity. We shall see later that  we can associate with a scalar 
product and a linear operator initial and final scalar product. 

Another instance of a choice of a scalar product is to  make a given basis 
ort honormal. 



Lemma 2.38 Assume that {el,. . . ,en) be a basis of a finite dimensional 
vector-space X and B E L(Rn, X )  the associated opemtor defined by 

Then 
I(Z, Y) := (B-lz, B - ~ Y )  

is a scalar product for which the basis {el,. . . ,en) is orthonormal. The 
associated duality mapping is equal to L = (BB*)-'. 

Proof - Indeed, to say that the sequence {el,. . . ,en) is linearly inde- 
pendent amounts to  saying that the associated linear operator B is bijective 
and maps the canonical basis of Rn onto the basis {el,. . . ,en).  Hence the 
bilinear form 1 defined above is a scalar product satisfying 

Let us consider a surjective linear operator A E L(X,Y). Then, for 
any y E Y, the problem Az = y has at least a solution. We may select 
the solution 3 with minimal norm X(z), i.e., a solution to the minimization 
problem with linear equality constraints 

A3 = y & A(?) = min X(z) 
Ax=u 

'The solution to this problem is given by the formula 

Indeed, for any v E Ker(A) and h, we have A(?) _< X(3 + hv) so that, 
taking the limit when h - 0 of (X(5 + h ~ ) ~  - X ( ~ ) ~ ) / 2 h ,  we infer that 
l(3,v) =< Lf ,v  >= 0 for any v E Ker(A). This means that L3 belongs 
to the orthogonal of Ker(A), which is the image of A*. Thus there exists 
some q E Y* such that LZ = A*q so that A3 = AL"A*q = y. But AL-lA* 
is positive-definite because A* is injective (A being surjective): Indeed, for 
all q E Y*, 

is equivalent to 
A * q = O - q = O  

We thus infer that q = (AL-'A*)-'y. 



Definition 2.39 If A E C ( X , Y )  is surjective, we say that the linear oper- 
ator A+ := L"A*(AL-'A*)-' E C ( Y , X )  is the orthogonal right-inverse of 
A (associated with the scalar p d u c t  1 on X ) .  

Indeed, A+ is obviously an right-inverse of A because AA+ y = y for any 
y E Y .  We observe that 1 - A + A  is the orthogonal projector onto the kernel 
of A. 

2.6.2 Quadratic Minimization Problems 

Hence, we can write explicitly the solution 3 to the quadratic optimization 
problem with linear equality constraints 

Proposition 2.40 Let us assume that A E C ( X ,  Y )  is surjective. Then the 
unique solution 3 to the above quadratic minimization problem is given by 

( where (:= (AL-'A*)-'(AU - y )  is the Lagrange multiplier 

i.e., a solution to the dual minimization problem 

We observe easily that ( ( 9 )  := u - L-'A*(q) minimizes over X the 
function z I+ $X(z  - u ) ~ +  < q , A z  > and that the Lagrange multiplier 
minimizes q I+ $ X * ( C ( ~ ) ) ~ +  < q, y >. 

2.6.3 Projections onto Cones 

Let us consider now a closed convex cone Q C Y ,  regarded as the cone of 
non negative elements of the partial ordering associated with Q (z _< y ++ 
y - z E Q ) .  We supply the dual Y *  of Y with the scalar product defined by 
l,(A*ql, A*q2) whose duality mapping is AL-' A* E C(Y* ,  Y ) .  

Let us consider now the quadratic optimization problem with linear in- 
equality constraints 

1 1 
AT+ 2 y & -X(Z+ - u ) ~  = min -A(z - u )  2 

2 A z z y  2 



We observe that the dual problem can be written 

So the solution Z+ of the minimization problem with inequality constraints 
and the solution ij- E Q- of its dual problem, the Lagrange multiplier, are 
defined by 

X+ = u - L - ' A ~ -  
where <?j-,AT+- y > = O  

Since AZ+ - y E Q, then < AT+ - y, q >< 0 for all q E Q-, so that we can 
write 

Therefore, we have proved that the Lagrange multiplier q- E Q- of the 
minimization problem with inequality constraints is the orthogonal projection 
onto Q- of the Lagrange multiplier i j  E Y* of the minimization problem with 
equality constraints by the formulas. Hence the solution it+ to the minimiza- 
tion problem with inequality constraints is given by the formulas 

2.8.4 Projections onto Inverse Images of Convex Sets 

< 

Consider now a closed convex subset M c Y and the minimization problem: 

- ' x+ = u - L-'A*q- where 

q- is the orthogonal projection onto Q- of the Lagrange multiplier 

ij := (AL-'A*)-'(Au - y) of the problem with equality constraints 

when Y* is supplied with the scalar product l,(A*ql, A*q2) 

inf X(x - u) 
AZE M 

When A E C(X,Y) is surjective, we can supply the space Y with the 
final scalar product 



its associated final normm 

:= A(A+~)  = inf X(x) 
Ax=y 

Its duality mapping is equal to (ALV1A*)-I E C(Y,Y*). 
In this case, we denote by .rr& the projector of best approximation onto 

the closed convex subset M when Y is supplied with the norm pA. 

Proposition 2.41 Assume that A E C(X,Y) is surjective and that M c 
Y is closed and convex. Then the unique solution Z to the minimization 
problem 

inf X(z - u) 
AxEM 

is equal to 
5 = u - A+(AU - K&(Au)) 

Proof - Indeed, we can write 

' x(3 - U) = infAxEM X(X - U) 

- - infyEM infAXzy A(x - u) 

= infYEM X(A+(y - Au)) 

(thanks to  Proposition 2.40) 

, = x ( A + ( T ~ ( A u ) )  - Au) 

Hence 5 = u - A+(Au - n&(Au)). 

2.6.5 Orthogonal Left Inverses 

Let us consider now an injective linear operator B E L(X,Y). Since the 
problem Bx = y may not have a solution (when y does not belong to  the 
image of B), we shall project y onto this image and take for an approximated 
solution the inverse of this projection. In other words, the approximated 
solution to this problem is the element 5 E X defined by 

''which may also be denoted by := A - p by contrast with the initial norm X - A. We 
observe that p . A = X - A'. 



Since the derivative of the convex function ip(.)2 a t  y is equal to  < My,.  >, 
the Fermat rule states that 3 is a solution t o  the equation 

The self-transposed operator B*MB is positive-definite for B is injective 
(because < B*MBz,z  >= ~ ( B z ) ~  = 0 if and only if B z  = 0, i.e., if and 
only if z = 0). Therefore B*MB is invertible and we derive that  3 is equal 
t o  (B*MB)-I B*MY. 

Definition 2.42 If B E C(X, Y) is injective, we say that the linear operator 
B- := (B*MB)-'B*M E C(Y,X) is the orthogonal left-inverse of B. 

Indeed, B- is obviously a left-inverse of B because B-Bz = z for any z E X 
and BB- is the orthogonal projector onto the image of B. 

Proposition 2.43 Let us assume that B E C(X,Y) is injective. Then 

i)  (B-)* = (B*)+ 
ii) B = (B-)+ 
iii) (B*MB)-' = B-M-'(B-)* 

iv) If V E C(Z, X )  is invertible, then (BV)- = V-'B- 

If A E C(X, Y) is surjective, then 

i)  (A+)* = (A*)- 
ii) A = (A+)- 
iii) (AL-'A*)-' = (A+)*LA+ 

iv) If W E C(Y, 2)  is invertible, then(WA)+ = A+ W-' 

Example Orthogonal Projector 

Let P := [bl,. . . , bn] be the vector space spanned by n linearly inde- 
pendent vectors b' of a finite dimensional vector-space Y, supplied with the 
scalar product m(yl, y2). If we denote by B E C(Rn,Y) the linear operator 
defined by Bz := CT=l zibi, which is injective because the vectors bi are in- 
dependent, we infer that BB- is the orthogonal projector on the subspace 
P = Im(B). 

The entries of the matrix of B*MB are equal t o  m(bi, u )  (i, j = 1,. . . , n). 
Let us denote by gij the entries of its inverse. We infer that  B-y = 



(Cy=l gijm(y, P));=l, ...,, and therefore, that 

When the vectors are m-orthogonal, the formula becomes 

In particular, we can regard an element y E Y different from 0 as the 
injective linear operator y E C(R, Y) associating with a the vector ay .  I t  
transpose y* E t (Y*,  R )  = Y is the map p I+ ( p ,  y) and its left-inverse 
y- E C(Y, R )  = Y* is equal to 

Let us consider now any linear operator C E C(X,Y). It can be split as 
the product C = BA of a surjective linear operator A E C(X, Z )  and an 
injective linear operator B E C(Z, Y): we can take for instance Z := Im(C), 
A := C E C(X, Z )  and B := I E C(Z,Y). 

Take now two decompositions C = BIAl = B2A2 where Ai E C(X, Zi) 
is surjective and where Bi E C(Z;, Y) is injective ( i  = 1,2). Then the images 
of the B;'s are equal t o  Im(C) and the kernels of the A;'s are also equal to  a 
vector subspace ker(C) C X .  Let cp E C(X, X /  ker(C)) denote the canonical 
surjection from X to  the factor space X /  ker(C). Hence the surjective oper- 
ators A; split as A;cp where 2; E C(X/ ker(C), 2;) are invertible (i = 1,2). 
Then V := A1&' is invertible and we have the relations 

We thus deduce that A t B y  = A ~ B ;  does not depend upon the decompo- 
sition of C as a product of an injective operator and an surjective operator 
because A t  Bc = A ~ V - ' V B ~  = A~B;. 

Definition 2.44 Let C = BA E C(X, Y) be any linear opemtor split as the 
p d u c t  of an injective opemtor B and a su jective opemtor A. Then the 
opemtor Cel := A+B- E C(Y, X )  is called the pseudo-inverse of C. 



I f  y E Y is given, we can regard 3 = C e l y  as the closest solution with 
minimal norm. Indeed, by taking A = C and B = I, we see that Z = Atij 
where := I - ( y )  is the projection of y onto the image of C and that 5 is 
the solution with minimal norm to the equation C z  = i j .  0 

Naturally, if C is surjective, the pseudo-inverse Cel  = C t  coincides with 
the orthogonal right-inverse, if C is injective, the pseudo-inverse Cel  = C- 
coincides with the orthogonal left-inverse and if C is bijective, the pseudo- 
inverse Cel  = C-' coincides with the inverse. 

We list below the (obvious) properties of the pseudo-inverses. 

1 i i )  C C ~ ' C = C  

I i i i )  Cel  C is the orthogonal projector onto the orthogonal of 
Ker(C) 

( i i i )  CCel is the orthogonal projector onto Im(C) 

We also observe that 

( i) (Ce l )e l  = C 

( i i i )  (C2C1)e1 = c~)'c?' 

2.6.7 Slow viable solutions on smooth subsets 

When K := h-I ( 0 )  is smooth, one can obtain explicit differential equations 
yielding slow viable solutions. 

Corollary 2.45 Let us assume that h : X I+ Y is a continuously differen- 
tiable map and that the viability subset is K := h-'(0), that P ( z )  Z is 
constant, and that the system is afine, so that 

Then there ezist slow solutions viable in K ,  which are the solutions to the 
system 



P r o o f  - The element go E n (z )  of minimal norm is the solution of 
the quadratic minimization problem under equality constraints 

and is given explicitly by the formula 

Slow viable  solut ions  i n  affine spaces. Consider the case when 
K := {z E X I Lz = y) where L E L(X,Y)  is surjective. Then the 
differential equation yielding slow viable solutions is given by 

When Y := R and K := {z E X I < p , z  >= y) is a hyperplane, the above 
equation becomes 

3 Bounded Inflation and Heavy Evolution 

Introduction 

Let us still consider the problem of regulating a dynamical economy 

( i )  for almost all t 1 0, z'(t) = c(z(t),p(t)) where p(t) E P(z( t ) )  

where P : K - Z associates with each commodity z the set P ( z )  of feasible 
prices (in general commodity-dependent) and c : Graph(P) I+ X is the 
change function. 

For simplicity, we take for allocation set the domain K := Dom(P) of 
p31. 

We have seen in the preceding section that viable price functions (which 
provide viable solutions z(t) E K := Dom(P)) are the ones obeying the 
regulation law 

- - - 

310r we replace P by its restriction to K. 



where 

But, as we have seen in the simple example of the Introduction, heavy 
evolutions (evolutions with constant price) have to be switched instantate- 
neously when the boundary of the set of allocations is reached. 

In order to avoid the use of such impulses (which are however observed 
in real economic systems in times of crisis), we may impose a bound'on the 
velocity of the prices, i.e., a constraint of the form 

and start anew the study of the evolution of the dynamical economy under 
this new constraint. 

Therefore, in this section, we are looking for systems of differential equa- 
tions or of differential inclusions governing the evolution of both viable com- 
modities and prices, so that we can look for 

- heavy solutions, which are evolutions where the prices evolve with 
minimal velocity 

- punctuated equilibria, i.e., evolutions in which the price jj remains 
constant whereas the commodity may evolve in the associated viability cell, 
which is the viability domain of z H c(z, p), 

The idea which allows us to achieve these aims is quite simple: we dif- 
ferentiate the regulation law. 

This is possible whenever we know how to differentiate set-valued maps. 
Hence the first section is devoted to the definition and the elementary prop- 
erties of the contingent derivative32 DF(z, y) of a set-valued map F : X - Y 
at  a point (2, y) of its graph: By definition, its graph is the contingent cone 
to the graph of F at (z,  y). We refer to Chapter 5 of SET-VALUED ANALYSIS 
for further information on the differential calculus of set-valued maps. 

In the second section, we differentiate the regulation law and deduce that 

(ii) for almost all t > 0, p'(t) E DUK (z(t), p(t))(c(z(t),p(t))) 

whenever the viable price p(-) is absolutely continuous, 
This is the second half of the system of differential inclusions we are 

looking for. 

32We set D f(z)  := D f(z, f (2)) whenever c is  single-valued. When f is  FrCchet differ- 
entiable at z, then D f(z)(v) = fl(z)v is reduced to the usual directional derivative. 



Observe that this new differential inclusion has a meaning whenever the 
commodity-price pair (z(-),p(-)) remains viable in the graph of nK. 

Fortunately, by the very definition of the contingent derivative, the graph 
of IIK is a viability domain of the new system (i), (ii). 

Unfortunately, as soon as viability constraints involve inequalities, there 
is no hope for the graph of the contingent cone, and thus, for the graph 
of the regulation map, to be closed, so that, the Viability Theorem cannot 
apply. 

A strategy inspired from economic motivations to overcome the above dif- 
ficulty is to bound the inflation, for instance 

(iii) for almost all t 2 0, Ilp'(t)ll 5 (p(z(t),p(t)) 

In this case, we shall look for graphs of closed set-valued maps II contained 
in Graph(P) which are viable under the system of differential inclusions. We 
already illustrated that in the simple economic example of Introduction. 

Such set-valued maps II are solutions to the system of first-order partial 
differential inclusions 

satisfying the constraint 

Since we shall show that such closed set-valued maps II are all contained in 
the regulation map IIK, we call them subregulation maps associated with the 
economy with bounded inflation i ) ,  iii). In particular, there exists a largest 
subregulation map denoted II9. 

In particular, any single-valued w : K o Z with closed graph which is a 
solution to the partial differential inclusion 

satisfying the constraint 

provides "feedback prices" regulating smooth allocations of the dynamical econ- 
omy. 



Set-valued and single-valued solutions t o  these partial differential in- 
clusions are studied in Section 6 of Chapter 8 of VIABILITY THEORY, [?, 
Aubin]. 

Let us consider such a subregulation map II. Viability Theorem 1.8 
implies that whenever the initial commodity zo is chosen in Dom(ll)) and the 
initial price po in n(zo) ,  there exists a solution to the system of differential 
inclusions (i), (iii) viable in Graph@). The regulation law for the viable 
commodity-prices becomes 

(iv) ~ ' ( t )  E D n ( z ( t ) , ~ ( t ) ) ( c ( z ( t ) , ~ ( t ) ) ) n  cp(z(t),p(t))B 

We call it  the metaregulation law associated with the subregulation map 
n. 

This is how we can obtain smooth viable commodity-price solutions t o  our 
pricing problem by solving the system of differential inclusions (i), (iv). 

Section 3 is devoted t o  selection procedures of dynamical feedbacks, which 
are selections g(., .) of the metaregulation map 

They can be obtained through selection procedures introduced in the preced- 
ing section. 

Naturally, under adequate assumptions, we shall check in Section 4 that 
Michael's Theorem implies the existence of a continuous dynamical feedback. 
But under the same assumptions, we can take as dynamical feedback the 
minimal selection go(.,') defined by l l !?O(z,~)((  = minv~~II(x,p)(c(x,p)) I I v I I ,  
which, in general, is not continuous. 

However, we shall prove that this minimal dynamical feedback still yields 
smooth viable price-commodity solutions to the system of differential equa- 
tions 

z'(t) = c(z(t),p(t)) & ~ ' ( t )  = gO(z(t),p(t)) 

called heavy viable solutions, (heavy in the sense of heavy trends.) They are 
the ones for which the price evolves with minimal velocity. 

Heavy viable solutions obey the inertia principle: "keep the prices constant 
as long as they provide viable allocations". 

Indeed, if zero belongs t o  DIT(z(tl), p(tl))(c(z(tl), p(tl ))), then the price 
will remain equal t o  p(tl) as long as  for t 2 tl ,  a solution z(-)  t o  the differen- 
tial equation z'(t) = c(z(t), p(tl)) satisfies the condition 0 E DII(z(tl ), p(tl))(c(x(tl), p ( t l ) ) ) .  

If a t  some time t i ,  p(tf)  is a "punctuated equilibrium", then the solution 
enters the viability cell associated to  this price and may remain in this 



viability cell forever33 and the price will remain equal to this punctuated 
equilibrium. 

3.1 Contingent Derivatives 

By coming back to the original point of view proposed by Fermat, we are able 
to geometrically define the derivatives of set-valued maps from the choice of 
tangent cones to the graphs, even though they yield very strange limits of 
differential quotients. 

Definition 3.1 Let F : X .u Y be a set-valued map from a normed space 
X to another norrned space Y and y E F(z).  

The contingent derivative DF(z,y)  of F at (z,y) E Graph(G) is the 
set-valued map from X to Y defined by 

When F := f is single-valued, we set D f (z) := D f (z,  f (2)). 
We shall say that F is sleek at (z ,  y) E Graph(F) if and only if the map 

(z', y') E Graph(F) .u Graph(DF(z1, Y')) 

is lower semicontinuous at (2, y) (i.e., if the graph of F is sleek at (z,  y).) 
The set-valued map F is sleek if it is sleek at every point of its graph. 

Naturally, when the map is sleek at (z, y), the contingent derivative DF(z ,  y) 
is a closed convex process. 

We can easily compute the derivative of the inverse of a set-valued map 
F (or even of a noninjective single-valued map): The contingent derivative 
of  the inverse of  a set-valued map F is the inverse of  the contingent derivative: 

If K is a subset of X and f is a single-valued map which is Frdchet 
differentiable around a point z E K ,  then the contingent derivative of  the 
restriction of  f to  K is the restriction of  the derivative to  the contingent cone: 

These contingent derivatives can be characterized by adequate limits of 
differential quotients: 

j3as long as the set of available resources does not change for external reasons which 
are not taken into account here. 



Proposition 3.2 Let (z,  y) E Graph(F) belong to the gmph of a set-valued 
map F : X --r Y from a normed space X to a normed space Y. Then 

v E DF(z ,  y)(u) if and only if 

fiminfh+o+,,,~+,, d (,, E q h )  = 0 

If x E Int(Dom(F)) and F is Lipschitz around z ,  then 

v E DF(z ,  y)(u) if and only if lim inf d 
h+O+ h 

If moreover the dimension of Y is finite, then 

Dom(DF(z, y)) = X and DF(z ,  y) is Lipschitz 

Proof - The first two statements being obvious, let us check the 
last one. Let u belong to  X and 1 denote the Lipschitz constant of F on a 
neighborhood of z.  Then, for all h > 0 small enough and y E F(z) ,  

y E F ( z )  c F ( z  + hu) + IhlluJJB 

Hence there exists yh E F ( z  + hu) such that vh := (yh - y)/h belongs t o  
111uJ(B, which is compact. Therefore the sequence vh has a cluster point v, 
which belongs to  DF(z,y)(u).  

Remark - Lower Semicontinuously Differentiable Maps The 
lower semicontinuity of the set-valued map 

a t  some point (zo, yo, uo) is often needed. Observe that it implies that F 
is sleek a t  (zo, yo). The converse needs further assumptions. We derive for 
instance the following criterion: 

Proposition 3.3 Assume that X and Y are Banach spaces and that F is 
sleek on some neighborhood P of (zo, yo) E Graph(F). If the boundedness 
property 

V u E X ,  SUP inf 1 1 ~ 1 1  < t o o  
(z ,u )~pnGraph(~)  vEDF(t*u)(u) 

holds true, then the set-valued map 

(2, Y, u) E Graph(F) x X - DF(z ,  Y)(u) 

is lower semicontinuous on ( P  n Graph(F)) x X 



3.2 Bounded Inflation 

3.2.1 Subregulation and Metaregulation Maps 

Let us consider a dynamical economy (P, c) defined by a set-valued pricing 
map P : X ?A Z and a single-valued change map c : Graph(P) I+ X ,  where 
X is regarded as the commodity space, Z the price space. The evolution of 
a commodi ty-price solution (x(.), p( -)) viable in Graph(P) is governed by 

We shall look for viable solutions in K := Dom(P) which are smooth in the 
following sense: 

Definition 3.4 (Smooth Commodity-Price) We say that the pair (x(.),p(.)) 
is smooth if both x(-) and p(-) are absolutely continuous. 

It is said to be cpsmooth if in addition for almost all t 2 0, Ilpl(t)(( 5 
cp(x(t), p(t)), where cp : X x Z I+ R+. 

We obtain smooth viable solutions by bounding inflation, i.e., setting 
a bound t o  the growth to  the evolution of prices, as we did in the simple 
economic example of the Introduction. 

For that  purpose, we associate to this dynamical economy and t o  any 
nonnegative continuous function p + cp(z,p) with linear the sys- 
tem of differential inclusions 

Observe that any solution (x(.),p(.)) t o  (3.2) viable in Graph(P) is a 
cp-smooth solution t o  the dynamical economy (3.1). 

Therefore, we are looking for closed set-valued feedback maps ll con- 
tained in P whose graphs are viable under the system (3.2). 

We thus deduce from the Viability Theorem 1.8 applied t o  the system 
(3.2) on the graph of P the following 

''which can be a constant p, or the function (z,p) --. pllpll, or the function (z,p) -, 
p((JpI( + 1 1 ~ 1 1  + 1). One could also take other dynamics E @(z,p) where CJ is a Marchaud 
map. 



Theorem 3.5 Let us assume that the dynamical economy (3.1) satisfies 

i )  Graph(P)  is closed 
ii) c is continuous and has linear growth (3.3) 

Let ( z , p )  -, cp(z,p) be a nonnegative continuous function with linear growth 
and II : Z - X a closed set-valued map contained in  P .  Then the two 
following conditions are equivalent: 

a)  - II  regulates cp-smooth viable solutions i n  the sense that from 
any initial commodity zo E Dom(II) and any initial price po E I I (zo)  starts 
a cp-smooth commodity-price solution ( z ( . ) , p ( - ) )  t o  the dynamical economy 
(3.1) viable i n  the gmph of II .  

b) A II  is a solution to the partial differential inclusion 

satisfying the constmint: V z E K ,  I I ( z )  c P ( z ) .  
I n  this case, such a map II is contained i n  the regulation map I I K  defined 

by 

and is thus called a cpsubregulation map of  P or simply a subregulation map. 
The metaregulation law regulating the evolution of commodity-price solutions 
viable in the gmph of II takes the form of the system of differential inclusions 

where the set-valued map Gn defined by 

is called the metaregulation map associated with I T .  

Remark - One can also prove that  there exists a largest cpsubregulation 
map denoted IIV contained in P~~ O 

S5The graph of DV is the viability kernel of Graph(P) for the system of differential 
incluaions (3.2)). See VIABILITY THEORY, [?, Aubin]. 



Proof - Indeed, to  say that 11 is a regulation map regulating cp- 
smooth solutions amounts to  saying that its graph is viable under the system 
(3.2). 

In this case, we deduce that for any (zo,po) E Graph(II), there exists 
a solution (z(.),p(.)) viable in the graph of P, so that z(.) is in particular 
viable in K. Since z'(t) = c(z(t),p(t)) is absolutely continuous, we infer 
that c(zo, po) is contingent to  K at zo, i.e., that po belongs to  IIK(zo). 

The regulation map for the system (3.2) associates with any (z ,p)  E 
Graph@) the set of pairs (z', p') E {c(z,p)) x cp(z,p)B such that (z',p') 
belongs to  the contingent cone to the graph of II a t  (z,p),  i.e., such that 

We can be particularly interested in single-valued regulation maps w : 
K H 2, which are feedback prices regulating cpsmooth viable solutions and 
then be interpreted as planning mechanisms: 

Proposition 3.6 A closed single-valued continuous map w is a feedback 
price regulating cp-smooth viable solutions to the price problem if and only if 
w is a single-valued solution to the inclusion 

satisfying the constmint 

Then for any zo E K, there ezists a solution to the differential equation 
z'(t) = c(z(t), w(z(t))) starting at zo such that 

and 
for almost all t 1 0, Ilp'(t)ll I cp(z( t ) ,~(z( t ) ) )  

Remark - We observe that any cp-subregulation map remains a $- 
subregulation map for $ 2 cp. 0 



Example: Equality Constraints Consider the case when h : X I+ Y 
is a twice continuously differentiable map and when the viability domain is 
K := hml(0) .  

Since T K ( z )  = kerhl(z)  when h l ( z )  is surjective, we deduce that the 
regulation map is equal to 

Proposition 3.7 Assume that h l (z )  E l ( X ,  Y )  is surjective whenever h ( z )  = 
0, that the gmph of P is sleek and that for any y E Y and v E X ,  the subsets 

DP(z ,p ) (v )  n (hl(z)c;(z,P))- '(y - h"(z)(c(z ,p) ,v)  - h1(z)c:(z,p)v) 

are not empty. Then the contingent derivative D f l ~ ( z , p ) ( ~ )  of the regula- 
tion map is equal to 

DP(z ,p ) (v )  n -(hI(z)c;(z,~))-~(h"(z)(c(z,P), v )  - hl(z)c:(z,P)v) 

when h l (z )v  = 0 and DIIK(z,  v )  = 0 i f  not. In particular, i f  P ( z )  2, then 
it is suficient to assume that h1(z)c6(z,p) is surjective and we have in this 
case 

1 h" 
D ~ K  ( z ,  P ) ( U )  = -(hl(z)c;(z,p))- ( ( z ) ( c ( z ,  P ) ,  v )  - hl(z)c:(z,p)v) 

when h l (z )v  = 0 and DIIK(z,  v )  = 8 i f  not. 

Proof - The graph of IIK can be written as the subset of pairs 
( z , p )  E Graph(P) such that C ( z , p )  := ( h ( z ) ,  h l ( z )c(z ,p) )  = 0. Since the 
graph of P is closed and sleek, we know that the transversality condition 

implies that the contingent cone to the graph of P is the set of elements 
( v ,  w )  E Graph(DP(z, p)) such that 

But the surjectivity of h l ( z )  and the nonemptiness of the intersection 
imply this transversality condition. 

Therefore, the right-hand side of the metaregulation rule is equal to 



Example: Inequality Constraints Consider the case when 

is defined by inequality constraints (for simplicity, we do not include equality 
constraints.) 

We denote by I (z )  := {i = 1,. . . , p  I gi(z) = 0) the subset of active 
constraints and we assume once and for all that for every z E K ,  

3 vo E CL(z) such that V i E I(z),  < g:(z), vo >> 0 

so that, by Theorem 2.28, 

We set g(z) := (gl(z), . . . , gp(z)). 
We have seen that the graph of the set-valued map z - IIK(z) is not 

necessarily closed. However, we can find explicit subregulation maps by 
using Theorem 2.29. We thus introduce the set-valued map : X - Z 
defined by 

We can regulate solutions viable in K by smooth open-loop prices by 
looking for solutions to the system of differential inclusions (3.2) which are 
viable in the graph of llg. 

We thus need to compute the derivative of in order to characterize 
the associated metaregulation map: 

Proposition 3.8 Assume that the stronger viability condition36 

is satisfied. We set 

I ( ~ , P )  := {i = 1,. . . ,P I gi(z) + (gI(z), c ( ~ , P ) )  = 0) 

3 6 ~ h i ~ h  holds true whenever K is a viability domain for the dynamical economy and 

V z E K, 3 p E P(z )  such that IIc(z,p)ll 5 YK(E) 

where the function y~ is defined by (2.9) in Section 5.1. See Theorem 2.29. 



Assume that P is sleek and closed and that for every ( z , p )  E Graph(IIk),  
there ezists pb E D P ( z ,  p)(zb) satisfying 

Then the contingent derivative D l l k ( z , p ) ( v )  of the subregulation map IIg 
is defined by: p' E Dllk(z ,p) (z ' )  if and only i f  p' E DP(z ,p ) ( z1 )  and 

If P ( z )  r 2, then it is suficient to assume that g'(z)cb(z,p) is surjective. 
We then have in this particular case 

DIIk(z ,p) (z ' )  := {p' E Z 1 V i E I ( z , p ) ,  

(g:(z)? c;(z,p)pt) L -(g:(z),  zt  + c:(z,p)z') - g:(z)(c(z,p),z?} 

Proof - By Theorem 2.28 applied to L := Graph(P) and to the con- 
straints defined by & ( z , p )  := g,(z) + (g;(z) ,c(z ,p)) ,  we deduce that p' E 
DIIg ( z ,  p)(z') if and only if p' E D P ( z ,  p)(z') and 

We then deduce from the above Proposition and the Regularity Theorem 
the following consequence: 

Proposition 3.9 We posit the assumptions of Proposition 3.8. If for any 
( z , p )  E Graph(IIg), there ezists p' such that IJpt(l 5 cp(z,p), then for any 
initial commodity zo and any po E l l k ( z o ) ,  there ezists a solution ( z ( - ) , p ( . ) )  
to the dynamical economy (3.2) such that z( . )  is viable in the set K defined 
by inequality constraints. The metaregulation law can then be written 

where the metaregulation map G associated to IIg 

defined by: 
w E G ( z , p )  if and only i f  w E D P ( z ,  P ) ( c ( ~ , P ) )  n cp(z, P ) B  and 



Naturally, the graph of the metaregulation map G is not necessarily 
closed. However, we can still use Theorem 2.29 to obtain a "submetareg- 
ulation map" of this system of differential inclusions. We introduce the 
set-valued map Go defined by: p' E GO(z, p) if and only if llp'll 5 cp(z,p) 
and 

Hence the system of differential inclusions 

regulates cp-smooth solutions which are viable in K. 

3.2.2 Punctua ted  Equilibria 

The case when the inflation bound cp is equal to 0 is particularly interesting, 
because the inverse No of the 0-growth regulation map 11° determines the 
areas regulated by constant price p. 

One could call NO(p) the viability cell or niche of p. A price p is called a 
punctuated equilibrium if and only if its viability cell is not empty. Naturally, 
when the viability cell of  a punctuated equilibrium is reduced t o  a point, this 
point is an equilibrium. 

So, punctuated equilibria are constant prices which regulate the dynam- 
ical economies (in its viability cell): 

Proposition 3.10 The viability cell of a price p is the viability kernel of 
P-'(p) for the diflemntial equation zf(t) = c(z(t),p) pammetn'zed by the 
constant price p. 

Proof  - Indeed, viability cells describe the regions of Dom(P) which 
are regulated by the constant price p because for any initial commodity zo 
given in there exists a viable solution z(.) to the differential inclusion 

i) zf(t) = c(z(t),p(t)) 
ii) pl(t) = 0 

starting at (zo,p), i.e., of the differential equation zf(t)  = c(z(t),p) which is 
viable in the viability cell NO(p) because p E Iio(z(t)) for every t 2 0. 



3.3 Dynamical Feedbacks 

Let us consider a dynamical economy (P, c), a regulation map II C P which 
is a solution to the partial differential inclusion (3.4) and the metaregulation 

map 
(3, P) - Gn(z, P) := DWx, p)(c(z, PI) n cp(z, P)B 

regulating smooth commodity-price solutions viable in the graph of II through 
the system (3.5) of differential inclusions. 

The question arises as to whether we can construct selection procedures 
of the price component of this system of differential inclusions. It is conve- 
nient for this purpose to introduce the following definition. 

Definition 3.11 Let II be a cp-growth subregulation map of P. We shall say 
that a selection g of the metaregulation map Gn associated with II mapping 
every (z,p) E Graph(II) to 

is a dynamical closed loop of II. 
The system of diflemntial equations 

is called the associated feedback differential system. 

Clearly every solution to (3.9) is also a solution to (3.5). Therefore, a 
dynamical feedback being given, solutions to the system of ordinary differ- 
ential equations (3.9) (if any) are smooth commodity-price solutions of the 
initial price problem (3.1). 

In order to obtain dynamical feedback prices, we shall use selection pro- 
cedures (See Definition 2.1) of the metaregulation map Gn(z, p). 

Theorem 3.12 Let us assume that the dynamical economy (9.1) satisfies 

i)  Graph(P) is closed 
ii) c is continuous and has linear growth 

(3.10) 

Let (x,p) -r cp(z,p) be a nonnegative continuous function with linear growth 
and II : Z - X a closed set-valued map contained in P. 



Let Sc, : Graph(II) .u X be a selection procedure with convex values 
of the metaregulation map Gn. Then, for any initial commdity (zo,po) E 
Graph(II), there exists a commodity-price solution to the associated feedback 
system 

2' = c(x,P), P' E GR(x, P) n ScR(x, P) (3.11) 

defined on [0, m [  and starting a t  (xo,po). In particular, if for any (x,p) E 
Graph(II), the intersection 

is a singleton, then there exists a commodity-price solution defined on [0, m [  
and starting a t  (zo,po) to the associated feedback system 

Proof - Consider the system of differential inclusions 

subject t o  the constraints 

Since the selection procedure Sc, has a closed graph and convex values, the 
right-hand side is an upper semicontinuous set-valued map with nonempty 
compact convex images and with linear growth. On the other hand Graph(II) 
is a viability domain of the map {c(z,p)) x (ScR(z,p) x cp(z,p)B). There- 
fore, the Viability Theorem can be applied. For any initial commodity-price 
(xO,po) E Graph(II), there exists a solution (x(-),p(-)) to  (3.12) which is 
viable in Graph(II). Consequently, for almost all t 2 0, the pair (xt(t),p'(t)) 
belongs t o  the contingent cone to the graph of II a t  (x(t),p(t)), which is the 
graph of the contingent derivative DII(x(t),p(t)). In other words, for almost 
all t 2 0, Pt(t) E Dn(x(t ) ,  P(t))(c(z(t) ,~(t)))-  Since (IPt(t) ( 1  5 ~ ( z ( t ) ,  ~ ( t ) ) ,  
we deduce that pt(t) E GR(x(t),p(t)) for almost all t _> 0. Hence, the 
commodity-price pair (z(-),p(.)) is a solution t o  (3.11). 

3.4 Heavy Viable Solutions 

3.4.1 Continuous Dynamical Feedback 

Such solutions do exist when g is continuous (and if such is the case, they 
will be continuously differentiable.) But they also may exist when g is no 



longer continuous. This is the case for instance when g(z,p) is the element 
of minimal norm in Gn(z,p). 

In both cases, we need to assume that the metaregulation map Gn as- 
sociated with II is lower semicontinuous with closed convex images. By 
Proposition 3.3, it will be sufficient to assume that: 

i)  II is sleek 

ii) sUP(z,p)EGraph(n) I lDn(~,  p)ll < -koo 
Indeed, assumptions (3.13)) and ii) imply that the set-valued map (z,p, v) - 

DII(z,p,v) is lower semicontinuous. Since cp is continuous, we infer from 
Proposition 2.20 that the metaregulation map Gn is also lower semicontin- 
UOUS. 

We thus begin by deducing from Michael's Theorem 2.14 the existence 
of continuously differentiable viable commodity-price solutions. 

Theorem 3.13 Assume that P is closed and that c, cp are continuous and 
have linear growth. Let II(-) C P(-)  be a cp-growth subregulation map satis- 
fying assumption (3.13). Then there exists a continuous dynamical feedback 
g associated with II. The associated feedback diflerential system (3.9) reg- 
ulates continuously diflerentiable commodity-price solutions to (3.1) defined 
on [0, oo[. 

3.4.2 Heavy Solutions and the Inertia Principle 

Since we do not know constructive ways to build continuous dynamical feed- 
backs, we shall investigate whether some explicit dynamical feedback pro- 
vides feedback differential systems which do possess solutions. 

The simplest example of dynamical feedback price is the minimal selec- 
tion of the metaregulation map Gn, which in this case is equal to the map 
g& associating with each commodity-price pair (z,p) the element g&(z,p) 
of minimal norm of DII(z,p)(c(z,p)) because for all (z,p), 11gi(z,p)ll 5 
cp(z,p) whenever Gn(z,p) # 0. 
Definition 3.14 (Heavy Viable Solutions) Denote by g&(z, p) the ele- 
ment of minimal norm of Dll(z,p)(c(z,p)). We shall say that the solutions 
to the associated feedback diflerential system 



are heavy viable solutions to the dynamical economy (P, c) associated with ll. 

Theorem 3.15 (Heavy Viable Solutions) Let us assume that P is closed 
and that c, cp are continuous and have linear growth. Let II(.) c P(-) be 
a rp-growth subregulation map satisfying assumption (9.19). Then for any 
initial commodity-price pair (zo,m) in Gmph(lI), there ezists a heavy viable 
solution to the dynamical economy (9.1). 

Remark - Any heavy viable solution (z(.),p(.)) to the dynamical econ- 
omy (3.1) satisfies the inertia principle: Indeed, we observe that if for some 
tl, the solution enters the subset Cn(p(tl)) where we set 

the price p(t) remains equal to p(tl) as long as z(t) remains in Cn(p(tl)). 
Since such a subset is not necessarily a viability domain, the solution may 
leave it. 

If for some.tf > 0, p(t f )  is a punctuated equilibrium, then p(t) = pt, for 
all t > t j  and thus, z( t )  remains in the viability cell Nlo(p(tf)) for all t 2 t f .  

Proof of Theorem 3.15 - 
The reason why this theorem holds true is that the minimal selection is 

obtained through the selection procedure defined by 

By the Maximum Theorem 2.9 the map (z,p) ++ ((gi(z,p)l( is upper semi- 
continuous. It has a linear growth on Graph(ll). Thus the set-valued map 
(z,p) - 119;; (z,p)(J B is a selection procedure satisfying the assumptions of 
Theorem 3.12. 

Since we know many examples of selection procedures, it is possible to 
multiply examples of dynamical feedbacks as  we did for usual feedbacks. We 
shall see some examples in the framework of differential games in Chapter 14. 

3.4.3 Heavy Viable Solutions under Equality Constraints 

Consider the case when h  : X - Y is a twice continuously differentiable map, when 
the viability domain is K  := h-'(0) and when there are no constraints on the prices 
( P ( z )  = Z for all z E K ) .  We derive from Proposition 3.7 the following explicit 
formulas for the dynamical feedback yielding heavy solutions. 



Propos i t ion  3.16 We posit assumptions of Theorem 3.7. Assume fudher that 
P ( z )  Z ,  that the regulation map 

has nonempty values, that h ( z )  is su jective wheneverz E K and that h t ( z )$ ( z ,p )  E 
C(Z ,  Y )  is su jective whenever p E II(z). 

Then there ezist heavy solutions viable in K ,  which are the solutions to the 
system of diflerential equations 

i) z' = c(z,  p )  

. . i s )  p'= -dp(z,p)*h'(z)*k(z,p) where 

k ( z l p )  := (~'(z)c~(~,P)c~(~,P)*~'(~)*)-~~'(~)c~(~~P)~(~,P) 

Proof - The element g(z ,  p) E G ( z ,  p) of minimal norm, being a solution to  
the quadratic minimization problem with equality constraints 

is equal to 

because the linear operator B := ht(z)ck(z,p) E C(Z ,  Y )  is surjective. 

Example:  Heavy  solutions viable in affine spaces. Consider the case 
when K := { z  E X I Lz = y) where L E C ( X ,  Y )  is surjective. 

Let us assume that 

V z E K ,  n ( z )  := { p  E Z such that Lc(z,p) = 0) # 0 { i!) V z E K ,  v p E ~ ( z ) ,  ~ c ' , ( z , p )  is surjective 

Then, for any initial commodity zo E K and initial velocity po satisfying Lc(zo, po) = 
0, there exists a heavy viable solution given by the system of differential equations 

When Y := R and K := { z  E X I < p,z >= y) is an hyperplane, the above 
assumption becomes 

V z E K ,  II(z) := { p  E Z such that < p, c(z ,p)  >= 0) # 0 { ) V z  E K ,  V p E  I l (z ) ,  $(z .p)*pf  0 



and heavy viable solutions are solutions to the system of differential equations 

') z' = c ( z , p )  



See Part I for a list of references. 
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