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Foreword 

This paper gives the methodological complement to  a contribution by the authors to  a 
special issue of the Theory and Decision Journal titled Systems Support for International 
Negotiation: Implications for Application. The special issue will contain contributions to 
the Scoping Conference on Systems Analysis Techniques for International Negotiations 
held at IIASA in Laxenburg on October 9-10, 1991. The paper gives a good overview 
of the developments of multi-objective analysis with a strong emphasis on its practical 
applicability. 



Abstract 

The paper reviews the methodology of multi-objective modeling and optimization used in 
decision support based on computerized analytical models (as opposed to logical models 
used in expert systems) that represent expert knowledge in a given field. The essential 
aspects of this methodology relate to its flexibility: modeling and optimization methods 
are treated not as goals in themselves but as tools that help a sovereign user (an analyst 
or a decision maker) to interact with the model, to generate and analyze various decision 
options, to learn about possible outcomes of these decisions. Although the application of 
such methods in negotiation and mediation support is scarce yet, their flexibility increases 
essentially the chances of such applications. Various aspects of negotiation and mediation 
methods related to multi-objective optimization and game theory are also reviewed. 
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Multi-Ob jective Optimization in 
Negotiation Support 

Andrzej P. Wierzbicki: Marek Makowski 

1 Introduction 

We are living at the turn of an epoch of civilization variously characterized as the transi- 
tion to the post-industrial, service or information society. One of the main features of this 
transition relates (see e.g. Toffler (1980) or Wierzbicki (1983)) (1987)) to the change in the 
basic concepts of understanding time, space, cause and effect relationships, of understand- 
ing uncertainty and chaos, of computer processing of information and representations of 
knowledge, of the nature of human decisions and of the possibilities of supporting them 
by computers. While the change of these basic concepts originally resulted from devel- 
opments in physics (the relativity of space and time), telecommunications and automatic 
control (the concept of feedback that made the mechanical understanding of cause and 
effect obsolete), further elements of this change are related to the challenges of the in- 
formation age and have resulted in developments in systems and decision sciences. For 
example, we understand today that various models can be used to  represent uncertainty 
and the probabilistic models used, e.g in physics, are by no means absolute, because de- 
terministic nonlinear models of sufficient complexity can also be used for this purpose, 
and can result in chaotic behavior or even in order emerging out of chaos (as in fractal 
geometry - see e.g. Gleick (1987)). Thus, much of the philosophical discussions from the 
first half of our century about the indeterminism of the universe seem to be based on 
insufficient conceptual premises. 

Together with this change, a significant development of the methodology of decision 
analysis and support can be observed in the past decades. Today we understand that a 
decision support system should never replace a human, sovereign decision maker; even 
in operational, repetitive decision situations, computerized decision support can at most 
relieve us from standard calculations and fill in the details of a suggested decision. In 
strategic decision situations, typical for negotiations, decision support systems can play 
a different role: they can represent the knowledge of specialized analysts about the sub- 
stantive aspects of a decision situation and thus provide a laboratory ground, a proxy of 
the real world for studying various impacts of selected decisions as well as possible de- 
velopments of the negotiation process. Although their informational or educational role 
can be considerable, their value depends crucially on the validity of knowledge represen- 
tation contained in them. Knowledge is represented in decision support systems in the 
form of computerized models, either of the logical (in expert systems), or analytical (in 
analytical systems) or procedural type (expressing e.g. the knowledge about a rational 
organization of the decision or negotiation ~rocess) .  Today, we also know a lot about the 
art and science of mathematical modeling - see e.g. Wierzbicki (1984) - which combines 
the knowledge in modeling methodology (properties of various types of models, methods 
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of model validation and parameter estimation, sensitivity analysis etc) with expertise in 
a given substantive field that is actually crucial for the value of the model. 

However, even a model that represents the best knowledge in a given field has two 
important limitations. One limitation is that the model must be always simplified to 
some extent, and never represents all of the pertinent aspects of a given decision situation. 
And we cannot make such models more adequate by increasing their complexity, because 
this might also increase their sensitivity, make the parameter estimation less reliable, or 
introduce unintended chaotic effects. We can usually select sufficiently simple models 
that represent the most salient aspects of operational, repetitive decision situations. But 
even in such cases we replace human judgment by automated decisions only in well- 
tested cases and with sufficient safeguards (e.g. in technical automatic control systems 
with negative feedback that is a strong safeguard principle against various inadequacies of 
models). In strategic decision situations, however, the intuition of a human decision maker 
remains irreplaceable and the knowledge representation by a computerized model can 
only help to enhance this intuition by allowing the decision maker to learn about possible 
consequences of various hypothetical actions. The fact that master experts in a given field 
(including especially international negotiations) make their decisions intuitively, by using 
the subconscious parts of their brains, is sufficiently well documented experimentally - see 
e.g. "Mind over Machine" by H. and S. Dreifus (1986), a book intended as a critique of the 
concepts of artificial intelligence, but actually opening a road to a rational understanding 
and even research of the intuitive, subconscious human decision making. This does not 
mean that decision support systems based on computerized models are useless, for they 
can be used, for example, to train master experts. 

Another important limitation of computerized models is (paradoxically) that they are 
constructed by expert analysts in a given substantive field of knowledge. Such experts 
are usually sufficiently familiar with the art and science of model building (at least, for 
classes of models typically used in their field), but their expertise seldom extends to 
the relatively new methodology of using such models in decision support, which in turn 
significantly influences the way the models should be formulated, validated and used. 
Thus, the cooperation of a team of specialists (in a given substantive field, of model 
building, of decision support) is necessary in order to construct a good decision support 
system. Moreover, such cooperation is not sufficient yet: the value of a decision support 
system is in the eyes of its user, hence the system must be "user-oriented" - the ultimate 
user must also decisively cooperate in the development of the system. 

With all of the above reservations, this paper concentrates on a part of the modern 
methodology of decision support based on computerized models, in particular, on models 
of analytical or possibly also the procedural type. When using models of the analytical 
type, we can often exploit the optimization techniques for tentatively selecting decision 
options. However, optimization in such cases should always be treated as a flexible tool of 
model analysis and decision support, never as a goal in itself, since attempts to  model the 
preferences of individual decision makers by a single objective function (value or utility 
function) are never fully adequate and should be treated as rough approximations only: 
the reservations concerning substantive models that represent knowledge in a given field 
apply doubly to preferential models that represent human preferences. When treated as 
a tool, the flexibility of optimization techniques can be increased considerably through 
multi-objective formulation. Thus, the paper attempts to describe in simple (though hope- 
fully not too simplistic) terms the basic concepts of multi-objective optimization, some 
selected results from the corresponding mathematical theory, their relations to represent- 
ing knowledge by analytical modeling and to decision support, the related ~ossibilities of 
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analyzing multi-objective games, negotiation and mediation processes. 
This paper was presented at the Systems Analysis Techniques for International Ne- 

gotiations, Scoping Conference, held at IIASA on October 9-10, 1991. However, due to 
the space limitations for the proceedings of this Conference (to be published in a special 
issue of the Theory and Decision Journal in 1992), only part of the presented paper has 
been submitted for the proceedings. This Working Paper aims primarily a t  presenting 
a short overview of multicriteria optimization (this part has not been included for the 
proceedings). An updated and extended description of a prototype of a multi-objective 
mediation support system MCBARG, will be published as a separate Working Paper. 

2 Multi-ob jective modeling and simulation. 
While single-objective mathematical optimization models are in a sense closed and distinct 
from simulation models that are typically used for analytical representations of knowledge 
in a given substantive field, multi-objective optimization models can be formulated as a 
natural, open extension of simulation models. If we admit that a decision maker in the 
real world can have multiple objectives and then we simulate a part of this world by a 
model, we can simply treat various quantities represented by variables of the model as 
measures of possible objectives, while the final selection of the objectives will be made 
by the user - the analyst or the decision maker. The model might not be complete in 
the sense that it might not represent all concerns of the user, but then either it must be 
reformulated even for simulation purposes, or its incompleteness must be overtly admitted 
and accounted for in the analysis. 

Thus, an analytical model of the substantive aspects of a decision situation typically 
contains: 

actions or decisions represented by decision variables; 

potential objectives represented by outcome variables; 

various intermediate variables (state variables, balance variables etc.) that are es- 
sential for a flexible model formulation; 

parametric variables or parameters that might remain constant during model sim- 
ulations but are essential for model validation and alternative model variants; 

constraining relations (inequalities, equations etc.) that determine the set of admis- 
sible decisions and are usually divided into direct decision constraints that involve 
only decision variables and indirect constraints that involve also outcome and inter- 
mediate variables; 

outcome relations that determine how the outcome variables depend on the decision 
variables (often not directly, with the help of intermediate variables and equations 
such as state equations in dynamic models, often with the help of recursive or even 
implicit formulae); 

a representation of model uncertainty (in probabilistic, fuzzy set, set-valued etc. 
terms); if such a representation is not explicit, we often call such a model "deter- 
ministic" and assume that it  represents average situations. 
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While the typical models for single-objective optimization specify only one optimized 
outcome ("the" objective function) and treat all constraints inflexibly, multi-objective 
modeling and optimization allows a flexible choice of objective variables between the 
outcome variables (if necessary, also between decision variables) and a much more elastic 
interpretation of constraints. 

It is well known that (particularly indirect) constraints that are represented in single- 
objective optimization with a standard form, say, of an inequality, intend to model two 
quite different classes of phenomena of the real world. One of these classes contains 
balances that must be satisfied such as the balance of energy in a physical model, or 
domains of model validity such as the edges of a table for a model of motion of a ball; 
these are so-called hard constraints. The other class contains balances that we would like 
to satisfy, such as the balance in a budget sheet; these constraints can be violated (at an 
appropriate cost) and are called soft constraints. Soft constraints can be modeled even in 
single-objective optimization by appropriate penalty terms in the objective function; but 
then the question what are their permissible violations calls for additional judgment. In 
multi-objective modeling and optimization, soft constraints are most naturally interpreted 
as additional objectives and their evaluation is thus included in the overall evaluation of 
a multi-objective solution. 

Having formulated a multi-objective model, one has to estimate its parameters and 
validate it - that is, check whether the model represents adequately not only the formal, 
but also the intuitive side of expert knowledge in a given substantive field. While there 
are many methods of parameter estimation and formal model validation, depending on 
particular model type and described in a broad literature, the intuitive model validation 
relies usually on repetitive simulation: the model must be run many times by experts 
in the field of knowledge under changing assumptions about decisions (or their scenarios 
in case of dynamic models) or even parameters, and the obtained outcomes (or their 
trajectories in the dynamic case) must be compared against the formal knowledge and 
the intuition of the experts. It has often been stressed that most valuable are models that 
can produce also counter-intuitive results; but the experts must be able to internalize 
such results, that is, explain to themselves why these results are obtained and check with 
their intuition (also by additional research and experiments) whether these results can 
also occur in the real world; otherwise, counter-intuitive results are useless in learning. 

The way that various constraints are treated during the simulation of a model is also 
essential for its validation. Typical approaches to simulation and existing simulation 
languages usually allow only for direct decision constraints that can be represented by ad- 
missible ranges of decision variables; they do not allow to include indirect constraints nor 
to distinguish hard and soft constraints. Moreover, expert users of simulation models are 
often interested in inverse simulation, in which desirable trajectories of model outcomes 
are specified by the user and decision variables should be chosen during the simulation to 
result in model outcomes close to the specified trajectories. Inverse simulation is particu- 
larly useful in scenario generation. Moreover, good simulation techniques should make it 
possible to perform sensitivity analysis of simulated solutions along with simulation runs. 
All these issues of simulation under constraints, inverse simulation, scenario generation 
and sensitivity analysis can be included in sufficiently sophisticated methods of simulation 
that use optimization techniques and multi-objective approaches as tools of simulation 
support. IIASA has contributed considerably to the development of such methods, see e.g. 
Kallio et al. (1980), Grauer et al. (1982), Makowski and Sosnowski (1984), Kurzhanski 
(1986). 
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Basic concepts of multi-objective optimization. 

After or during the simulation of a model, its multi-objective analysis and optimization 
can also be performed to  help in understanding the model and in selecting decision options 
that are interesting for the user. The basic concepts of multi-objective optimization are 
well described in several monographs (see e.g. Sawaragi et al. (1985), Yu (1985), Steuer 
(1986), Seo and Sakawa (1988)). However, we review them here shortly. 

These concepts start with the set of admissible decisions Xo in the decision space 
X. The decisions x E X can be of various character: simple logical decisions yes or no, 
quantitative decisions represented by elements of Rn, decision scenarios represented by 
sequences of decisions of the previous types, decision strategies represented by probability 
distributions of decisions or even by their dependence on observed decision outcomes. 
The admissible decisions x E Xo are such elements of the decision space that satisfy the 
(direct and hard indirect) constraints incorporated in a given model. 

The outcomes of decisions are represented by outcome variables y E Y, where Y is 
the outcome space; in dynamic models, we often interpret the elements of Y as entire 
sequences or trajectories of outcomes. The outcomes are determined by outcome (and 
intermediate) relations of a given model, denoted shortly by h : Xo -+ Y thus y = h(x); 
the set Yo of attainable outcomes contains such outcomes that can be results of admissible 
decisions, Yo = h(Xo). One should not be misled by the deceptive simplicity of this 
notation: the function h represents here a model that can be quite complicated, thus 
the set is usually not known explicitly, we can only obtain its elements y by running 
a simulation of the model for some admissible decision x; additionally, an assessment 
of admissibility of a decision may be also a complex task. However, it is convenient to 
explain the concepts of multi-objective optimization as if the set Yo were known; usually, 
we know only some of its general properties. 

General properties of the set of attainable outcomes Yo are actually decisive for a 
basic classification of model types. If this set is a convex polyhedron (defined by a set of 
linear inequalities), then the model is linear - or piece-wise linear that might be reduced 
to linear; if not, then the model is nonlinear, convex or nonconvex depending on the 
convexity of Yo. If the set Yo is discrete (consists of separate elements), then the model is 
discrete. Dynamic models - that include dynamic relations such as state equations - can 
be subdivided into two classes: essentially dynamic models in which the set Yo contains 
outcome trajectories, and dynamic models with static outcomes in which the elements 
of the set Yo correspond to  outcomes in a chosen time-instant. If the set Yo consists 
of outcome trajectories that can occur with some probability, then the model is called 
stochastic, etc. 

Between the outcome variables y of a model, the selection of objectives (objective 
outcomes, objective variables, criteria) z and thus the determination of the space of 
objectives 2 should be left to the user. Therefore, Z is a subspace of Y, Z Y, z = f (x),  
where f : Xo 4 Z is the corresponding restriction of the function h : Xo -+ Y, and 
the set of attainable objectives Z0 = f(Xo) is the corresponding projection of Yo on 2. 
This point is usually omitted in classical presentations of multi-objective theory, where no 
distinction between the space of outcomes and the space of objectives is made; but this 
distinction is essential for multi-objective simulation and decision support. It should be 
also the model user who determines what to do with the objectives: whether to maximize 
them, or minimize, or either stabilize or softly constrain a t  a user-prescribed level. This 
specifications define a so-called partial preordering of the objective space - a partial model 
of the preferences of the user, flexible enough to be further modified and/or specified. 
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Because the objective space Z can have a rather general nature (it can even be infinite- 
dimensional; precisely speaking, we only need to  assume it to be a Banach space, while 
the set Xo should be compact and the function f continuous to obtain a compact Zo), it 
is useful to  assume that the partial preordering specified by the user is represented by a 
positive cone Q C Z. The positive cone can be simply interpreted as the set of objectives 
improving when compared to  the origin of the space Z; in case, say, of two scalar objectives 
each to be maximized, the cone Q = R: is the positive quarter of the plane Z = R2. 

The basic difference between single-objective and multi-objective optimization is that 
while we look for a uniquely determined "best" outcome and the corresponding decisions in 
the single-objective case, the multi-objective case eliminates only such decisions that result 
in outcomes which can be improved in the sense of the positive cone. Such decisions and 
outcomes that cannot be improved in a specified sense are called non-dominated (or also 
Pareto-optimal if all objectives are to be maximized or minimized, or generalized Pareto- 
optimal in other cases). However, there are usually many non-dominated outcomes and 
decisions for a given model, there is no single solution for the multi-objective formulation, 
and we reserve for the user (an analyst or the decision-maker) the right to select between 
them. 

Actually, there are several variants of defining non-dominated or Pareto-optimal solu- 
tions; we explain only those of them that are important for applications. A Pareto-optimal 
decision for the case of maximizing two objectives is such that we cannot improve one 
objective without deteriorating the other one; equivalently (but more generally for other 

Figure 1: An example of the set & of Pareto-optimal objective outcomes ( l a )  and the 
set 2; of properly Pareto-optimal objective outcomes ( lb) .  

cases) this means that the positive cone Q when shifted to a nondominated objective out- 
come 2 does not intersect with the set of attainable objectives Zo except a t  2, see Fig. la .  
Note, that Pareto-optimal solutions are located on the curve ABCDE: the segment BC 
contains properly Pareto-optimal solutions, whereas segments AB, CD and DE contain 
non-properly Pareto-optimal solutions. 
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However, Pareto-optimal decisions and outcomes can also include such that have infi- 
nite (or very large) trade-off coefficients - that is, coefficients defining how much should we 
deteriorate one objective in order to improve another one by a unit. Thus, more important 
in applications are properly Pareto-optimal (more generally, properly non-dominated) de- 
cisions and outcomes, for which trade-off coefficients are bounded. There are several ways 
of defining properly non-dominated outcomes; a useful one - see Wierzbicki (1977), (1986) 
- is to enlarge slightly the positive cone Q to a cone Q,  (with a small parameter 6 that is 
related to the bound - approximately 1 1 6  - on trade-off coefficients and defines how much 
the cone Q is enlarged), then to define the properly nondominated outcomes as before but 
with respect to  the cone Q,  (see Fig. :lb). Note, that the set of properly Pareto-optimal 
solutions represented in Fig. l b  by the segment DC is for the slightly enlarged cone Q,  
smaller than the corresponding set BC for the cone Q (see Fig. la) .  

The essential question in multi-objective optimization is how to compute properly 
nondominated outcomes and decisions for a given model - not randomly selected ones, 
but such that correspond to somehow specified preferences of the user. Historically, many 
ways of such computations have been proposed, differing in assumptions about the spec- 
ification of user preferences and about basic properties of the model. The oldest and 
simplest assumptions for the case of Pareto optimization of n objectives in models with 
convex Zo were that the user should specify multipliers or weighting coefficients a; > 0 
for all objectives to be maximized (or minimized, while changing only the signs of the 
multipliers). Then a corresponding weighted sum of the objectives: 

should be single-objectively maximized with respect to x E Xo (under all constraints) in 
order to obtain a Pareto-optimal outcome and the corresponding decisions. This tech- 
nique, presented in most textbooks as "the way" of dealing with multiple objectives, 
creates the unfortunate impression that there is nothing more to multi-objective opti- 
mization than specifying weighting coefficients; but this technique is possibly the worst 
one because the function s l ( z ,  a) - that constitutes the simplest example of the so-called 
scalarizing functions - has many drawbacks. 

The most important drawback of this technique is that the user cannot effectively 
control the selection of Pareto-optimal outcomes when changing the weighting coefficients 
CY which in the function s l (z ,  a )  should be treated as controlling parameters at the disposal 
of the user. If we consider the simplest case of a linear model with two objectives to be 
maximized - see Fig. 2a - the user can only select the vertices A and B by changing 
the weighting coefficient value from a' to a" and cannot select any of the points on the 
Pareto-optimal edge joining these vertices. Moreover, this technique results in skipping 
many Pareto-optimal outcomes in most nonconvex cases (see Fig. 2b for an example of a 
discrete model) and becomes rather complicated in applications to dynamic models: the 
intuition of the user can deal effectively with trade-offs and weighting coefficients only for 
a small number of objectives. 

Another technique of communicating with the user and computing nondominated 
outcomes consists in the identification of the value or utility function of the user: we 
maximize the following function : 

with respect to x E Xo,  where u( f (x),  a) is an assumed form of the multiattribute util- 
ity or value function, with parameters a that must be identified by questioning the user 
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Figure 2: The impossibility of selecting all Pareto-optimal outcomes by maximizing a 
weighted sum of objectives: the cases of a linear model (2a) and of a discrete model (2b). 

about his preferences. Although very well theoretically developed - see Keeney and Raiffa 
(1976) - this technique has turned out to be impractical in interactive sessions of users 
with analytical models. Expert users rely on their intuition and thus expect to learn dur- 
ing such interactive sessions; therefore, they are apt to change their preferences, hence the 
identification of their value functions u should be repeated many times which would sim- 
ply be too time-consuming. Moreover, many experienced decision-makers - particularly 
practitioners of negotiations - dislike revealing too much about their preferences. 

The preferences of a decision-maker could be much more simply indicated - while 
not fully revealed - by specifying some desirable levels of objective outcomes. There 
are several techniques of multi-objective optimization using this way of communication 
with the user, see Salukvadze (1971), (1974), Zeleny (1973), Haimes et al. (1974). Many 
practical applications are related to a group of techniques called goal programming (see 
Charnes and Cooper (1977), Ignizio (1978)), based on the following general idea: a goal 
vector w in the objective space Z is specified by the user and a distance function 

is minimized with respect to x E Xo, thus resulting in an objective outcome that is in 
some sense the closest one to the specified goals. This technique can be refined in various 
ways - by an appropriate selection of the norm ( 1  1 )  defining the distance, by using 
weighting coefficients as additional controlling parameters. However, this technique has 
one basic drawback: it can give misleading, dominated results when the set of attainable 
objective outcomes is nonconvex or even in convex, linear cases when the user specifies 
attainable objective goals (in which case z = f (x )  = w obviously minimizes the norm, 
but z can be dominated by other elements of 2 0 ) .  

To overcome this drawback, Salukvadze and Zeleny used goals that are sufficiently 
far away from the nondominated frontier of the set Zo (at least as far as the so-called 
ideal point obtained by maximizing all objectives separately); Haimes used other ways 
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of dealing with this drawback while only using attainable goals. However, there is an 
effective way of overcoming this drawback while allowing for arbitrary (attainable or not) 
goals: we must abandon the use of a simple norm and use instead special scalarizing 
functions (often constructed with the help of a norm) that remain monotone in the sense 
of the positive cone Q even if goals are attainable. 

This group of techniques has been developed by Wierzbicki (1977), (1982), Steuer and 
Choo (1983), Nakayama and Sawaragi (1984), Korhonen and Laakso (1986) and many 
others, in close cooperation with IIASA. Because attainable and dominated goals should 
not be actually treated as goals (it is better then to improve them), the desirable levels w; 
of objective outcomes are called aspiration levels, while w = (wl, .  . . , wi, . . . , w,) is called 
aspiration level point or reference point in these approaches. There are many forms of 
scalarizing functions that use reference points w as controlling parameters; to be useful 
in applications to various types of models with possibly a complicated structure of the 
space of objective outcomes Z and of the positive cone Q,  they should have two general 
properties (see Wierzbicki (1986)): 
a) the scalarizing functions s(z,  w) should have appropriate monotonicity properties with 

respect to z in the sense of the positive cone Q or the slightly enlarged cone Q,; 
b) if the reference point w happens to coincide with a nondominated attainable outcome 

2 ,  then the scalarizing function s(z, w) should (nonlinearly) separate - see e.g. Fig. 3a 
- the set Zo from the positive cone Q (or the slightly enlarged cone Q,) shifted to the 
point w = i. 
Scalarizing functions that posses these two general properties are called order-consistent 

achievement functions and can be applied to multi-criteria analysis and optimization of 
linear and nonlinear, even nonconvex, discrete or dynamic models, even with infinite- 
dimensional objective outcome spaces. The nondominated objective outcomes obtained 
by maximizing such achievement functions have the following properties: 

(i) if the user has overestimated the outcomes of admissible decisions (as defined by 
the analytical model) and there are no admissible decisions with outcomes equal to 
or better than the reference point w, then the nondominated, attainable objective 
outcomes obtained by maximizing an achievement function are (uniformly in some 
sense) as close to the point w as possible; 

(ii) if the user has underestimated the outcomes of admissible decisions and there are such 
decisions with outcomes better than the reference point w, then the nondominated 
outcomes obtained by maximizing an achievement function are uniformly better (as 
much as possible while remaining attainable) than the point w; 

(iii) if the user - by a chance or as a result of learning - is just right and there is an 
admissible and nondominated decision with outcomes equal to the reference point, 
then the nondominated outcomes obtained by maximizing an achievement function 
just coincide with the point w (in this case, these techniques do not try to correct the 
user, but only tell him which detailed decisions should be used to obtain the desired 
out come). 

For the case of maximization of n objectives, the following basic form of an order- 
consistent scalarizing function has been widely used: 

where Z = (Zl ,  ..&, ..Z,) is a point sufficiently far away from the nondominated frontier 
(an approximation of the so-called ideal or utopia point, whereas the reference points are 
restricted by w 5 z"), p > 0 is a small parameter related to c (e.g. p = €In).  The func- 
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Figure 3: The results of maximization of function (4) for a linear model with two max- 
imized objective outcomes: (3a) the separation property (b) and the properties ( i ) ,  (ii), 
(iii); (3b) the continuous controllability of the selection of nondominated outcomes; (3c) 
the possibility of obtaining weakly nondominated outcomes if p = 0. 
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tion (4) is maximized with respect to x E Xo to obtain properly Pareto-optimal objective 
outcomes that have the above properties (i), (ii), (iii). This function is nondifferentiable 
at such x that f (x) = w; but it can be shown (see Wierzbicki (1986)) that this nondif- 
ferentiability is an essential property of this function, related to the general property b). 
Precisely because of this property the maxima of this function are parametrically con- 
trollable: the user can continuously influence his selection of nondominated outcomes by 
changing the reference point w, even if the desired outcomes are located on a linear edge 
of the attainable set, see Fig. 3b. This function also has been used often in its simpler 
form with p = 0, but such simplification is not advisable: the maxima of such a simpli- 
fied function are only weakly Pareto-optimal, that is, it might happen that some of the 
objective outcomes can be improved without deteriorating other objectives, see Fig. 3c. 

In the case of linear models, the maximization of a nondifferentiable function such 
as (4) can be equivalently restated as a linear programming problem with special structural 
properties that can be exploited when solving it numerically. Special forms of such a 
function have also been developed (Wierzbicki (1986), Ogryczak et al. (1989) and others) 
for the case when, instead of using only one reference point, a separate reservation point 
and an aspiration point are used as controlling parameters by the user. 

For the case of nonlinear models, the use of a nondifferentiable function such as (4) 
might cause some difficulties; nondifferentiable optimization techniques (see e.g. Kiwiel 
and Stachurski (1989)) can be used in such a case. Another way out of this difficulty - 
used in the decision analysis and support system DIDAS-N for nonlinear models, see e.g. 
Kreglewski et al. (1989) - is to develop differentiable approximations of function (4). One 
of such approximations can be constructed with the help of the 1, norm concept1 of the 
difference f (x) - w: 

Modifications of the function (4) are especially important for the case of linear dy- 
namic models (see e.g. Kallio et al. (1980), Makowski and Sosnowski (1984), Lewandowski 
et al. (1989)). One of the main advantages of the reference point techniques is that ref- 
erence trajectories can be used to indicate preferences of the user in the case of dynamic 
outcomes of a model. An experienced user is perfectly at ease when evaluating intuitively 
outcome trajectories and specifying reference trajectories for them, while he would be 
lost when evaluating trade-offs and specifying weighting coefficients for such trajectories. 
Therefore, reference trajectories have found applications from the very beginning of the 
development of reference point techniques (Kallio et al. (1980)), have been used to gener- 
ate dynamic scenarios for expert evaluation (Messner and Strubegger, (1985)) and found 
implementation in various model-based decision support systems or multi-criteria model 
analysis and optimization systems (DIDAS, see e.g. Rogowski (1989), or HYBRID, see 
e.g. Makowski and Sosnowski (1989)). Moreover, reference trajectories turned out to be 
particularly useful when applied with dynamic stochastic models, in which case they re- 
sult in an essential generalization of the classical formulations of stochastic optimization 
(see Ruszczynski (1991), Karbowski et al. (1991)). 

As an example, we present here the main ideas of the multi-criteria modelling and 
optimization system HYBRID (cf Makowski and Sosnowski (1989)). HYBRID can be con- 
sidered as a mathematical programming package which includes all the functions necessary 
for the solution of multicriteria LP problems and single-criteria linear-quadratic problems. 

'But it is not, precisely speaking, the I, norm. 
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HYBRID is oriented towards an interactive mode of operation in which a sequence of prob- 
lems is to be solved under varying conditions (e.g., different objective functions, reference 
points, values of constraints or bounds). Criteria for multiobjective problems may be 
easily defined and updated with the help of the package. Besides that HYBRID offers 
many options useful for diagnosis of a problem being solved. HYBRID is developed in two 
versions: one for UNIX (implemented on Sun Sparc 1+ and on VAX 6210) and one for a 
PC compatible with IBM PC. 

HYBRID, like any mathematical programming package, should not be used directly as 
a tool in a real decision making situation (cf e.g. a discussion of problems of design and 
implementation of decision support systems by Makowski (1991)). Specialized software 
should be developed for each real-life case. HYBRID can however be used as a basis for 
such an application. HYBRID-FMS (cf Makowski and Sosnowski (1991)) is an example 
of a specialized DSS - based on the HYBRID system - for the problem of designing 
flexible manufacturing systems. It is composed of a specialized editor that allows for the 
modification of data (extracted from a data base) that define a particular instance of the 
problem. The specialized problem generator is used for the creation of a corresponding 
multicriteria optimization problem in a form suitable for a solver. The optimization 
problem is nonlinear, therefore a specialized solver has been designed and implemented in 
order to allow for the efficient solution of sequences of optimization problems. All modules 
of software are controlled by a driver and a uniform user interface (which also includes 
a context sensitive help) is implemented. Thus the software is easy to be used also by a 
user who has little computer experience. 

One of the implementations of HYBRID (cf Makowski and Sosnowski (1988)) is spe- 
cially useful for dynamic problems; this covers a wide area of applications of operation re- 
sea.rch. Many optimization problems in economic planning over time, production schedul- 
ing, inventory, transportation, control of dynamic systems can be formulated as linear 
dynamic problems. Such problems are also called multistage or staircase linear program- 
ming problems. A dynamic problem can be formulated as an equivalent large static LP 
and any commercial LP code may be used for solving it, but application of a specialized 
package has two advantages: first, a specialized algorithm exploits the structure of a dy- 
namic problem and therefore is much more efficient, second, the user has the advantage 
of handling a problem as a dynamic one which results in an easy way of formulation of 
criteria and of interpretation of results. Since the first argument is of more technical 
nature, let us give an illustration of the second one. 

Consider a problem of controlling, in order to prevent a flood, a water system (Kre- 
glewski et al. (1985)) which consists of three general purpose reservoirs supplying water 
to the main river reach. The model consists of water balance equations for selected points 
and for each time period. The capacities of reservoirs are also constrained. The goal of the 
system dispatcher is to operate the reservoirs in such a way that the flood peaks on the 
main river do not coincide. If we use a static model we would have to deal with different 
variables for every point and time period, i.e. xit would be an i-th variable (such as flow or 
storage) for the t-th period of time. However, in many situations it is more practical for 
a user to consider a whole trajectory as one variable, i.e. xi = {xit), t = 1,. . . , T, where 
T is the number of periods. Criteria zk of the following types (defined in the i-th point) 
have been chosen for evaluation of different control strategies: 

FOL which corresponds to following a given reference (desired) trajectory of water flow: 

zk = max (abs(xit - f i t ) )  + min 
t=1, ..., T 
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where xi is a selected state or control variable, 5; -its reference trajectory 

S U P  which corresponds to minimization of the maximal (over time) difference between 
the flow and a corresponding reference trajectory: 

zk = max (xjt - 
i=1, ..., T 

ifit) + min 

DER which corresponds to minimization of the water flow changes (in consecutive time 
periods) 

z k  = max ( a b ~ ( x , ~  - x ; , ~ - ~ ) )  + min 
t=1 ,..., T 

Obviously, a user does not enter the above formulae. All what he has to do is to select a 
relevant criterion type for a given point and to specify a reference trajectory for a variable 
selected at this point. Criteria values give (for each point separately) the corresponding 
values of a maximum (over time) difference between the actual and reference trajectories. 
Such information, in this case, is sufficient to assess a strategy of controlling the system of 
reservoirs for a given reference point2. Such a strategy may be either an optimal solution 
computed by the package or any strategy given by a user (in the latter case also its 
feasibility is assessed by the package). A reference point in this case is interpreted as the 
maximum (over time) difference between actual and desired values of flows and should 
not be confused with a corresponding reference trajectory. 

Mult i-ob ject ive games and bargaining; simulat- 
ing multi-objective negotiation processes. 

It is well known (see e.g. Rapoport (1989)) that normative game theory, while very far 
developed theoretically both for noncooperative and cooperative solution concepts, does 
not sufficiently well represent the complexity of practically observed behavior of decision 
makers in gaming, bargaining or negotiation situations. This observation stimulated re- 
search on modifications and extensions of game theory to obtain more practical tools 
for studying decision situations in which multiple decision makers might have conflicting 
interests. Especially interesting results in this direction, useful for understanding nego- 
tiating behavior, are connected to the concept of evolution of cooperation (see Axelrod, 
(1984)). 

However, the practical use of computerized models of substantive aspects of a decision 
situation with conflicting interests has until now been restricted almost entirely to simu- 
lated gaming. Users (students, analysts, decision makers) participating in such a gaming 
exercise can play the roles of decision makers by entering their decisions to the simulation 
model and then observe the simulated results of these decisions. While very valuable 
as learning exercise, such simulated gaming has one essential drawback: users must rely 
on their individual intuition only, are usually denied more advanced decision support - 
whereas in real life any important, strategic decision is based on decision support provided 
by analysts, by discussions a t  executive boards, etc. This creates the challenge of introduc- 
ing decision support tools into simulated gaming - see e.g. Wierzbicki (1989). Similarly as 
more advanced model simulation should include today multi-objective optimization tools, 
simulated gaming should include game-theoretical tools. However, such tools must not 

'But a user may request information about a variable value for any time instance. 
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be treated as normative prescriptions, they should help only in analyzing the simulated 
game; therefore, they should also take into account possible multi-objective formulations 
of the game. Unfortunately, while game theory from its very beginning admitted multiple 
objectives of the players, it almost always assumed the possibility of aggregating them 
by value or utility functions. The basic solution concepts in game theory - starting, say, 
with the Nash noncooperative equilibrium concept - were not sufficiently generalized to 
the multi-objective case; only recently (see e.g. Wierzbicki (1990)) such extensions are 
attempted. 

Multi-objective equilibria in a game are necessarily not uniquely defined, there might 
be many of them. Unilateral selection of such equilibria by players can lead to  conflict 
escalation. If one player selects an equilibrium that seems rational to  him, but another 
player aims a t  a different equilibrium, and both pursue strategies that should lead to  
the outcomes desired by them, this usually results in non-equilibrium outcomes that are 
much worse - even disastrous - for both the players. This fact is well known even in single- 
objective game theory for cases with multiple equilibria, as for example the so-called game 
of chicken (see e.g. Axelrod (1984)). However, since conflict escalation processes occur 
also in real life, the multi-objective formulation of a game can help in understanding such 
processes. For example, during a gaming simulation, appropriate conflict coefficients can 
be computed to  inform the participants how far they are from a noncooperative or even 
cooperative equilibrium. 

Together with game theory, bargaining theory has been developed (see e.g. Roth 
(1979)) concentrating on certain cooperative solutions to  bargaining games which could 
be useful in supporting negotiations, in particular mediation and arbitration. Multi- 
objective aspects of bargaining have been also studied, (see e.g. Krus et al. (1990), Krus 
and Bronisz (1991)) which has led to the development of a prototype multi-objective 
mediation support system MCBARG. 

Although there exists already notable methodological reflection on the art and science 
of negotiations (see e.g. Raiffa (1982)), the development of the methodology of using 
analytical models of substantive aspects of a multi-actor decision situation for supporting 
negotiations, mediation and arbitration is still in the beginning stages; however, some 
applications are known - see e.g. the multi-objective analysis of multilateral gas trade 
by Messner (1985) - and some conclusions can be already drawn. Such models can be 
used in many modes, corresponding to  various procedural assumptions about negotiation 
situations: 

a) Analytical models, combined with role-playing and gaming simulation, preferably in 
multi-objective formulation and supplemented with various decision-support tools, 
can be used by one side team preparing for negotiations. While such preparation 
might be very valuable, extreme caution should be exercised when preparing the 
substantive analytical model and when playing the role of the opposite side. The 
experts and analysts of one side are apt to  misperceive the concerns and objec- 
tives of the opposite side; thus, the substantive model prepared by them might not 
include objective outcomes of the opposite side and not be adequate for gaming 
simulation. When role playing, ideological indoctrination of one side can lead to 
serious misrepresentation of the behavior of the opposite side (this was observed 
by one of the authors during an international conference on gaming; it should be 
noted that ideological indoctrination is not restricted to  totalitarian societies, even 
more dangerous is a subconscious ideological bias in representatives of democratic 
societies which are convinced that they are free of such biases). 
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b) Analytical models representing internationally accepted knowledge in a given field, 
validated by experts from various sides, can be much more useful in supporting both 
the preparation for and the actual conduct of negotiations. This, however, assumes 
quite a different procedural model of negotiations: the sides in the conflict must be 
prepared for "getting to yes" (see Fisher and Ury (1981)), accept a mediating (at 
least in terms of gathering relevant knowledge and information) role of an impartial 
institution, preferably international, send their experts to participate in validating 
the model, be prepared to take seriously the outcomes simulated by the model. If 
these prerequisites are met, then the resulting model can have profound impact on 
the course of negotiations, such as in the known case of negotiating the law of the 
sea agreements; even more profound effects in terms of influencing the attitudes 
of high-level decision-makers had the (actually not computerized, only generally 
formulated) model of nuclear winter agreed upon by American and Soviet experts. 

c) Perhaps not the contemporary generation of negotiators, but future generations 
more exposed to concepts and techniques of the information society might accept 
further extensions of the procedural role of knowledge formalized in models and de- 
cision support systems in negotiations and mediation. To achieve this, the following 
conditions should be satisfied: 

(i) The principle of user sovereignty should be particularly stressed and strictly 
observed when constructing decision support for negotiations (diplomats quite 
rightly stress the role of their intuition and negotiating skills; thus, a decision 
support system must only augment and enhance these skills). 

(ii) Prototype negotiation and mediation support systems - including various pro- 
cedural variants, such as support in unilateral decisions, support in evaluation 
of multilateral role-playing, support in mediation and arbitration according to 
various procedural schemes - should be introduced as a part of training young 
negotiators. 

(iii) The methodology of developing and using analytical models that represent 
substantive aspects of multi-actor decision situations with conflicting interests 
should be further advanced, along with appropriate developments of multi- 
objective, multi-actor decision support. IIASA can play a considerable role in 
this development, particularly when concentrating on models in such substan- 
tive fields in which the Institute has a tradition of excellence (e.g. international 
environmental studies) and combining this with further methodological devel- 
opments. 

Conclusions. 

At the beginning of the information age, one of the main challenges is to combine human 
expertise and intuition with more formalized knowledge, while preserving the strengths 
of both parts. In our increasingly more complex and fastly changing world, there are also 
increasingly more problems whose analysis might profit from knowledge formalization in 
the form of computerized models; but we also need more flexible tools of eliciting pertinent 
aspects of such formalized knowledge if we wish to combine them with human intuition. 

Can multi-objective modelling, optimization and decision support be really useful for 
negotiations and mediation ? The answer to this question is positive. For this purpose, 
the use of multi-objective model formulation, optimization and game theory treated not 
as goals or normative prescriptions, but as flexible tools, might be especially useful. Using 



A.P. Wierzbicki, M. Makowski - 1 6 -  Multi-Objective Optimization in ... 

this methodology one can design and implement rather flexible tools (further on referred 
to as DSS) that can be tailored to specific needs. However, to make a successful im- 
plementation of a DSS, many conditions should be met. Below we list only few critical 
conditions (for a more complete discussion see e.g. Makowski (1991)): 

A DSS should serve as a tool for making a fast, but reliable analysis of large amounts 
of data and logical relations in order to provide results that can support experts or 
decision makers. However, such an analysis is problem specific and covers only a part 
of the issues related to  negotiations or mediations. Therefore, for each case a careful 
study should be made for identification of that part, for which it is possible and desired 
to design and implement a DSS. 
We must be humble before the power of human expertise and intuition. Therefore, a 
DSS should clearly be only a supportive tool, under the full control of a user. The user 
should be aware of its function (especially about its limitations) and of the underlying 
mathematical model. A user must be convinced that a DSS is not aimed at replacing 
his/her knowledge or experience, but be sure that it is just a tool for performing so- 
phisticated or cumbersome calculations and analysis of a problem that is specified with 
a user. A user should be sure that a DSS provides him/her with a useful analysis thus 
allowing him/her to concentrate on that part of the negotiations or mediation that is 
not formalized and covered by a DSS. 
We must be modest in claims of usefulness of a DSS for any application. However, the 
usefulness of a DSS, particularly in the negotiation field, can be improved only through 
real-life applications. 
A team which develops a DSS should work in close cooperation with future user(s) of a 
specific DSS. As observed by many authors, this is a critical condition for any real-life 
application of any DSS. Case studies for applications of DSS have to be carefully chosen. 
They should contain a subproblem that is complicated enough to justify development 
of a DSS and that is simple enough to be covered by a DSS. 

One can ask why such applications have not been already made. We think that the 
reason is twofold. First, the proposed methodology is fairly new. It is still not well rep- 
resented in text-books. Many applications of multi-objective optimization use techniques 
that have many drawbacks (some of them are discussed in Section 3),  thus spreading a 
misleading judgement that such techniques are not useful. Second, "serious" applica- 
tions of computers used to be restricted to specialists well trained in operating systems. 
This second argument is now vanishing. Rapid development of computer hardware will 
result, in about five years, in a palm-top type personal computer that has a computa- 
tional power of nowaday's workstation. Usage of networks and sharing of data, together 
with technology of cellular communication, will become universal, thus making collabora- 
tive computing and computing on the move also popular. Development of so called user 
friendly software (which includes multi-media presentation and communication) together 
with powerful but relatively cheap hardware will result in proliferation of computers to 
many new areas and applications thus making - in a perspective of just few years - the use 
of computers by almost anyone natural. However, it should be stressed that specification, 
estimation and verification of a mathematical model (which underlies any DSS) must be 
left to specialists, who should work together with future users. 

To test usefulness of this perspective, interdisciplinary cooperation, research and real- 
life (or at least realistic) testing applications are needed. The authors of this paper 
are convinced that the PIN Project at IIASA can play a key role in organizing such 
activities. What can be prepared methodologically and experimentally today, might be 
applied tomorrow by new generations of people of the information age. 
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