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Foreword 

Classification analysis is one of the most widely-used statistical decision mak
ing tools. While traditional, normality-based parametric classification meth
ods play an important role in classification, the distributional properties of 
many data sets in practice do not satisfy normality. Linear and quadratic 
parametric classification methods have shown to be fairly robust with re
spect to deviations from normality. However, it is well-known that their 
performance is sensitive to, for instance, outlier observations and high de
grees of skewness. To address this issue, an important class of nonparametric 
classification methods has been recently developed that use the absolute er
ror criterion in estimating the optimal linear classification function. Several 
studies have shown that these methods can yield effective and robust classi
fiers if the data contain outlier observations. Previous absolute error-based 
methods were limited to linear classifiers, which limited their application as 
in many situations nonlinear classification fucntions are better able to sepa
rate the groups. The current paper extends the framework of linear absolute 
error-based classification methods to the case of nonlinear (e.g., second or
der, quadratic, and polynomial) classifiers, and clearly shows through several 
simulation experiments that nonlinear classification rules based on the ab
solute error criterion can yield excellent results, thus providing a valuable 
contribution to nonparametric classification. 
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Abstract: This paper introduces a nonparametric formulation based on mathematical programming (MP) 
for so lving the classification problem in discriminant analysis. which differs from previously proposed 
MP-based models in that, even though the final discriminant function is linear in terms o f the paramete rs 
to be estimated, the formulation is quadratic in terms of the predictor (attribute) va riahk s. Including 
second order (i .e., quadratic and cross-product) terms o f the attribute var iabl es in th e mode l is simil ar in 
concept to the usual treatment of multiple predictor va riables in statistical metho(b such as Fish e r 's 
linear discriminant analysis. and allows an analysis of how including nnnlinear te rms and interaction 
effects affect the predictive ability o f the estimated classification functi o n. Using simulation experiments 
involving data conditions for which nonlinear class ifiers arc appropriate. the cla-.sificatnry performance 
of this class of second order MP mode ls is compared with th at of existing stati s ti cal (linear and quadratic) 
and first order MP-based formul a tions. The results of these experime nt -. show th a t the prnpo-.ccl 
formulation appea rs to he a very attractive alternative to previous ly introduced lin ea r and quadratic 
statistical and linea r MP-based classification methods. 

Keywords: Linear prog ramming; Nonparametric stat isti cs; Linear stati st ica l mod els; Di-.crirninant analy
sis 

I. Introduction 

The classification problem in di sc riminant analysis is co ncerned wi th cu rrect h cla" if\ ing oh-.en·ati1rn-. 
into well-defined groups or classes, when group me mbe rship of th e-.c !lb-.enati"n' i-. ei th er known or 
unknown (Huberty, 1984). The usu a l procedure is to estimate clas-.ification rule, \\hich cla-.sify the 
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observations in the trammg sample for which the group membership is known, based on known 
characteristics of these observations. Once established, the appropriate classification rules are subse
quently used to predict group membership of future observations for which the group membership is 
unknown. Discriminant analysis has been applied in various different disciplines, including medical 
disease diagnosis (Spiegelhalter and Knill-Jones, 1984), the social sciences, psychology (Huberty, 1984) 
and business disciplines including accounting, marketing, finance (Eisenbeis, 1977), bond rating, corpo
rate bankruptcy, new product success, credit granting, and personnel management. 

Existing parametric statistical methods include Fisher's linear discriminant function (LDF) (Fisher, 
1936) and Smith's quadratic discriminant function (QDF) (Smith, 1947). The LDF and QDF are based 
on the assumption that for each group the attribute variables follow a multivariate normal distribution, 
with equal and unequal variance-covariances across groups, respectively. However, it has been shown 
that the LDF and QDF, albeit fairly robust with respect to mild violations of the normality assumption, 
may not accurately predict class membership if the normality assumption is violated to a considerable 
extent, for instance in the presence of outlier observations (Eisenbeis, 1977; Glorfeld and Kattan, 1989; 
Stam and Ragsdale, 1992). 

Inspired in part by the apparent weaknesses of existing classification methods, a number of different 
nonparametric mathematical programming (MP) formulations for solving the classification problem in 
discriminant analysis have been proposed the recent years. In the presence of outliers, and for several 
non-normal data conditions, MP-based methods have proven to be viable alternatives to the LDF and 
QDF (Glorfeld and Olson, 1982; Stam and Joachimsthaler, 1989; Stam and Ragsdale, 1992). Several 
researchers have indicated that in business-related problems outlier-contaminated data conditions are 
not uncommon (Glorfeld and Kattan, 1989; Mahmood and Lawrence, 1987), and that as much as ten 
percent of typical financial data may consist of outliers (Hample et al. , 1986). Therefore, it is not 
surprising that MP-based methods have attracted considerable attention from business-related research 
areas. 

The most commonly used MP formulations are the minimize the sum of deviations (MSD) method 
(Freed and Glover, 1981b; Hand, 1981), the minimize the maximum deviation (MMD) method (Freed 
and Glover, l 98la), the minimize the number of misclassifications (MIP) method (Bajgier and Hill, 1982; 
Gehrlein, 1986; Rubin, 1990a), and Hybrid methods (Freed and Glover, 1986; Glover, Keene and Duea, 
1988; Glover, 1990) which, among others, combine ideas of the MSD and MMD methods. A concise 
review of MP formulaiions is provided by Erenguc and Koehler (1990). A number of studies have 
compared these methods with each other and with statistical methods such as the LDF and QDF in 
terms of their classification performance, using either real or simulated data (Bajgier and Hill, 1982; 
Freed and Glover, 1986; Joachimsthaler and Stam, 1988; Koehler and Erenguc, 1990; Mahmood and 
Lawrence, 1987; Markowski and Markowski, 1987; Rubin, 1989, 1990a; Stam and Joachimsthaler, 1989, 
1990; Stam and Jones, 1990). 

Taking stock of the empirical evidence published to date, a recent survey article (Joachimsthaler and 
Stam, 1990) concludes that the classification performance of MP-based methods appears to rival that of 
the LDF and QDF, and note that these methods were in fact found to perform better under certain 
conditions. The evidence, however, is not uniformly supportive of the MP-based methods (see, e.g., 
Rubin, 1990b), and claims to the effect that these methods are clearly superior appear unwarranted given 
the empirical results. Nevertheless, there is a fair amount of support for the statement that the MSD and 
MIP methods have classified surprisingly well in the presence of outliers in training (and validation) 
samples, whereas the MMD results are very sensitive to the presence of outliers and tend to yield 
classification results which are inferior to the MSD and LDF (Freed and Glover, 1986; Markowski and 
Markowski, 1987; Stam and Joachimsthaler, 1989). 

One drawback of the MP-based methods developed to date is that without exception the classification 
functions under consideration are linear. This choice of functional form is more likely due to limitations 
of MP packages and algorithms in terms of the types of functions which can be handled, than to a 
rigorous analysis of the nature of the data. In several recent comparative studies, linear classification 
functions were estimated (using MSD, MIP or MMD) and their classificatory performance evaluated, 
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Figure I. Two-group discriminant problem with two attribute variables for which a nonlinear classification function is clearly 
appropriate 

even though a nonlinear (quadratic) function was clearly appropriate given the data conditions (Koehler 
and Erenguc, 1990; Stam and Joachimsthaler, 1990). For example, Figure 1 illustrates for the two-group 
discriminant problem with two attribute variables X 1 and X 2 , that if the variance-covariances are 
strongly heterogeneous across groups, the linear function indicated by FL is clearly incapable of correctly 
separating the two groups, while the quadratic function F0 yields much better classification results. 

A second drawback is that none of the MP-based methods proposed to date take interaction effects of 
the attributes into account explicitly, even though it has been demonstrated that these methods can 
provide efficient classifiers in the presence of correlation (Freed and Glover, 1986). As a result, only part 
of the information contained in the data set is used. Note that both the LDF and QDF methods do 
include the estimated variance-covariance structure of the predictor variables in their analysis (Ander
son, 1984; Morrison, 1990). Therefore, while in situations where the null hypothesis of independently 
distributed variables cannot be rejected, it is reasonable to use previously proposed MP-based estimation 
methods, this may not always be the case if the variables are strongly correlated. 

In the current paper, we propose to include quadratic and cross-product terms of the attribute 
variables (as well as the usual linear te~ms) in the classification rule, after which the analyst can proceed 
with solving the problem in modified form using the MP method of his/her choice. Within the 
framework of our model formulation it is possible to include other more general nonlinear terms, but in 
the current paper we limit ourselves to the quadratic case. Although our model is nonlinear in terms of 
the attributes, it still has a linear objective function and constraints which are linear in terms of the 
parameters to be estimated. In the remainder of the paper we will refer to our modified formulation as 
the second order MP model, in contrast with first order models which contain constraints which are 
linear in the attribute variables as well as the parameters to be estimated. 

As alluded to above, the second order model addresses some of the weaknesses associated with 
previous MP formulations, while preserving the potential advantage of estimating robust classification 
rules using the appropriate MP criterion. In fact , the objective function in the second order formulation 
is the same as that in the corresponding MP model with a linear classification function . The second order 
formulation appears attractive in situations where a nonlinear classification function - in particular a 
quadratic function - is appropriate, rather than a linear classifier. We recommend that in general the 
decision of which terms (linear, quadratic or other) to include in the modified MP formulation be based 
on a preliminary analysis of the data at hand. Conducting a rigorous preliminary data analysis is common 
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practice in applied statistics, constitutes a natural and essential step in the process of data analysis, and 
should not present an unreasonable additional burden to the statistical analyst. 

In general, depending on the nature of the data and the interrelationships of the attribute variables, a 
number of different types of functions and cross-products of the attribute variables can be included in 
the second order MP formulation. Our choice of analyzing models with second order terms, as opposed 
to including other functional forms, appears of particular interest, because it is consistent with the types 
of terms considered by parametric statistical procedures for analyzing the discriminant problem, such as 
the QDF. We view the contribution of our proposed formulation to be that it enables the analyst to 
analyze a larger class of data conditions in a meaningful way using existing MP procedures, without a 
significant increase in the modeling effort. 

The remainder of our paper is organized as follows. In Section 2, the MSD and Hybria formulations 
of the discriminant problem are reviewed. Section 3 introduces the corresponding second order model 
formulations. Simulation experiments were conducted to show how the inclusion of quadratic terms in 
the classification function can improve the classification accuracy of several previously introduced MP 
formulations. The design and results of these experiments are presented in Section 4. The paper 
concludes with final remarks in Section 5. 

2. Existing MSD and Hybrid model formulations 

We will focus our paper on two of the most successful MP formulations for analyzing the discriminant 
problem, the MSD (Freed and Glover, !981b; Hand, 1981) and Hybrid (Freed and Glover, 1986; Glover, 
Keene and Duea, 1988; Glover, 1990) methods. The adaption of other MP formulations to the second 
order case is very similar. For reasons of simplicity we will restrict ourselves to the two-group case. The 
extension to more than two groups is conceptually straightforward, but notationally cumbersome (Freed 
and Glover, 1981b). Suppose the training samples consist of n, observations in group r (r = 1,2), for a 
total of n = n 1 + n 2 observations in both groups combined. Let k be the number of predictor variables 
(attributes), and denote the attribute values for observation i by A ;= (a; 1, .. . , a;k)T. The MSD model 
may be expressed as Problem I. 

(Problem I) 

Minimize z 1 = E d;~ + E d ;?_ 
i E G 1 i EG 2 

subject to L:a;;X;- d;~ +d;~ s; c , i = 1,. . ., n,, 
j 

Lll;;X; -dii + d;?_ > c , i = 1, ... , n 2 , 

L:x; + c =l , 

d;~ , d;~ 2. 0, i = 1,. . ., n, , r = 1, 2, 

X;,c unrestricted, j = 1, ... , k 

(!) 

(2) 

(3) 

(4) 

(5) 
( 6) 

where the d;~ and d;~ (i = 1, ... , n, ; r = 1,2) are deviational variables, c is the cut-off value, and the x ; 
represent the attribute weights. Constraint (4) is a normalization constraint which serves to ensure that 
the trivial solution is not selected as the optimal classification rule. It is impossible to use linear 
programming techniques such as the simplex method to solve Problem I with the strict inequality in (3). 
In practice, some have relaxed this constraint to include the equality. Technically, doing so introduces 
some ambiguity into the classification scheme, as it is not clear into which group those observations with 
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a classification score of exactly c should be classified. Others have avoided this problem by using weak 
inequalities, while adding a small value £ to the right-hand side c in (3). This formulation, however, has a 
different drawback in that it requires additional analysis in order to determine the classification of those 
observations with classification scores between c and c + £. Since constraint sets (2) and (3) in Problem I 
are expressed as inequalities, and the d;! and d;; do not contribute to the objective function in (1), these 
terms can be omitted from the formulation. These last two remarks apply to Problem III as well. 

Suppose the optimal solution to Problem I is given by d~*, d;~*, xf, c*, so that the optimal 
classification rule for which z 1 is minimized is to classify an observation A;= (a ;i , ... , a ik)T into group 1 
if f.;a;;Xf ~c* , and into group 2 otherwise. The hyperplane defined by f.;a;;Xf =c* divides the mk 
space into two half-spaces, and is called the classification function or separating hyperplane. 

The objective in the MSD formulation is to minimize the sum of the absolute values of all undesirable 
deviations from the separating hyperplane , i.e., the extent to which values from one group intrude into 
the half-space of the other. One rationale for using the absolute value objective in MSD, rather than a 
least squares criterion, is that the former is less sensitive to the presence of outlier observations. 
However, in spite of its appeal, Problem I suffers from several potential problems. One problem is that 
even though the normalization constraint in (4) guarantees that the trivial solution is not selected as the 
optimal solution , it also precludes any classification rule from passing through the origin. In our 
simulation experiment below, this never presented a problem due to the nature of the data generated. 
Another problem is that it may be necessary to solve Problem I twice, with the groups reversed. For a 
detailed discussion of the problems associated with various MSD formulations, the reader is referred to 
Koehler ( 1989, 1990). 

The MSD formulation only considers undesirable deviations from the separating hyperplane of the 
misclassified observations. Such deviations are called external deviations , as opposed to desirable internal 
deviations, which are the deviations from the hyperplane for the correctly classified observations. Several 
researchers have proposed models which simultaneously consider both the external (to be minimized) 
and internal (to be maximized) deviations (Bajgier and Hill , 1982; Freed and Glover, 1986; Glover, 
Keene and Duea, 1988; Glover, 1990). One of these models, the Hybrid formulation, originally proposed 
by Freed and Glover (1986), has been found to be one of the most effective MP-based classifiers. The 
Hybrid model also considers maximum distances from the separating hyperplane (see d 0 and e 0 below) 
and can be represented as follows: 

(Problem II) 

Minimize z 2 = w0 d 0 + L w; d;~ + L w;d,]. - k 0 e0 - L k ;d ;I - L k ;d;; 
i e G 1 i e G ! iEC1 

subject to L;a ;; Xi - d 0 - d;~ + e0 + d;I = c, i = 1, ... , n 1, 

L;a;ixi+d0 -d;;-e0 +d,].=c, i= l , . . . , n 2 , 

j 

(-n 2 LA; +n, L A;)x = 1, 
i eG 1 t EG! 

d0 ,e 0 ,d 1~, d,~ ~O, i= l , ... ,nr , r= 1,2 , 

xi, c unrestricted , 

iEG 2 

(7) 

(8) 

(9) 

( 10) 

(II) 

( 12) 

where d;~ ,d;]. represent external deviational variables, and d ;! , d,~ a re internal deviations. In addit ion to 
the absolute values of the deviations, variables which represent the maximum external deviation (d0 ) and 
the maximum internal deviation (e0 ) across all observations if the other deviational variables equa l zero 
are included in the Hybrid formulation. The variable c is the cut-off value. The coefficients w 0 , W;, k 0 

and k ; in the objective (7) are nonnegative relative weights. Glover (1990) indicates that necessary 
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conditions for bounded optimality and (certain) nonzero coefficients require wm ~km for all m, 
L; e c, u c,w; > k 0 and L; e c, u c,k; < w0 . Glover (1990) has shown that the originally proposed normaliza
tion schemes in Freed and Glover (1986) and Glover, Keene and Duea (1988) are flawed, and proposes 
(10) as a normalization constraint. In our simulation study below we have found this normalization 
scheme to work quite well . As before, x=(x 1,. • • ,xk)T is the vector of weights (to be estimated) 
associated with the k attributes, and A;= (a;i, ... , a;k)T denotes the vector of attribute values for 
observation i. Glover, Keene and Duea (1988) and Glover (1990) have proven that the above Hybrid 
formulation is guaranteed to yield a bounded optimal solution minimizing (7), regardless of the nature of 
the data, and that this solution is invariant to linear transformations of the data. 

3. Second order formulations 

We next introduce the modified formulations of the MSD and Hybrid models, including the second 
order terms. A similar modification to other existing MP models, such as the mixed-integer programming 
(MIP) approach which directly minimizes the number of misclassifications in the training sample and the 
minimize the maximum deviation (MMD) method, is possible as well , but will not be discussed in this 
paper. Denoting the vector of attribute values for observation i by A;= (a;i , . .. , a;k )T as before, the 
vector of squared attribute values is given by Af = (a f1> ... , afk)T, and the cross product of the values for 
attributes h and m (h * m) is given by a ;1,a;.,,· The second order MSD formulation is given in Problem 
III. 

(Problem III) 

Minimize z 1 = L d ,~ + L di?. 
ieG

1 
i EG~ 

subject to L,a;1x 1L + L,af1x 10 + L, a; 11 a;,,,x1i,,,+di""j-d;~ sc, i= 1, ... ,n 1, 

j h:F-m 

[a 1ixiL+ [aJ1x10 + [ a111 a ;mx 111,,+ d1;- d?z >c, i=l, ... ,n 2 , 

j 1 h*-m 

d1:,d1~ ~O, i = l , .. . , n 0 r= 1,2, 

L (x1L +x10 +x1,,,, ) +c= I , 
j, ;/1¢111 

x1L ,x10 ,x1,,,,,c unrestricted, h,j ,m = l , ... ,k, h 1"m, 

( 1) 

(13) 

( 14) 

(5) 

(15) 

( 16) 

where the general terminology is the same as before. The attribute weights to be estimated are now 
defined by x1L and x10 for the linear and quadratic terms of attribute j, respectively, and by xh,,, for the 
cross-product term involving attributes h and m . Indicating the solution which minimizes z 1 in (1) of 
Problem III by a superscript star, the optimal classification rule associated with Problem III is to classify 
an observation i into group I if [ 1a;1x/L + [ 1af1x/0 + [ 11 ,,,,,a 0 ,a;,,,x/;,,, s c*, and into group 2 otherwise. 
It is important to realize that , even though the second order MSD model in (Ill) is still linear in terms of 
the objective z 1 and still has linear constraints in terms of the parameters to be estimated ( x ~ ), the 
constraints are nonlinear in terms of the attribute variables a .1, j = I, ... , k. We also remark once more 
that , while we will not analyze the second order MIP formulation in our paper, this formulation is 
straighforward, and would involve modifying merely equation (I) in Problem III , including zero-one 
binary variables which indicate either misclassification or correct classification of each observation. 
rather than distances from the estimated separating hyperplane . 
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Similarly, the second order Hybrid formulation is given in Problem IV. 

(Problem IV) 

Minimize z 2 = w0 d 0 + L, w;d;~ + L, w;dii. - k 0 e0 - L, k;d;! - L, k;d;~ (7) 
ieG 1 ieG 2 i EG 1 ieG 2 

subject to L,a ;1x1L+L,a f1x10 + L, a ;h a imx,,,,.- d0 - d;~+e0 + d;! =c , i=l , .. ., n 1 , (17) 
j j hl'm 

L,a ;1x1L+ L,af1x10 + L, a ;h a ;,,,x,,m+ d0 -d;~-e0 + d;]. =c, i = l , .. ., n 2 , (18) 
j h'Fm 

(-n 2 L, B( +n 1 L, B/)y= 1, 
ieG 1 i eG 2 

d0 ,e0 , d,~, di-,_~O, i=1, .. . , nr , r=l,2 , 

x1L,x10 ,xhm•c unrestricted, 

( 19) 

(11) 
(20) 

where B is the matrix of attribute values {a ;) augmented by the squared and cross-product terms, such 
that the i-th row of Bis of the form B;=(an ,. -., a;k• a f1,. • .,afk, a; 1a;2 ,. • ., aik - ia;k), and YT = 
(x IL • . .. , xku x 10 , .. . , xkO• x 12 , ... , x lk• x23 , ... , xk - i .k ) is the vector of all weights to be estimated. The 
restrictions on the objective function weights are the same as for Problem II . Note that the objective 
function (7) of Problem IV is the same as that of the first order Hybrid formulation of Problem II (z2 ) . 

The optimal classification rule for Problem IV has the same form as that of Problem III , and includes 
both linear, quadratic and cross-product terms of the attribute variables. 

One obvious potential advantage of the second order formulation over previous linear MP methods 
and Fisher's linear classification method is that it facilitates the analysis of discriminant problems 
requiring a nonlinear classification function . An advantage of the second order method over quadratic 
statistical methods, such as Smith's quadratic method, is that the optimization criteria in Problems III 
and IV are still based on minimizing the sum of absolute deviations. Hence, in the second order 
formulations the robustness of the solution with respect to outlier observations, which is one of the 
attractive properties of previously proposed MP methods, is preserved. The following section reports on 
three simulation experiments designed to compare the classification performance of the second order 
formulations with other existing discriminant methods. 

4. Simulation experiment 

4.1. Design 

We conduct three simulation experiments with different data conditions to verify the classification 
performance of the second order MP formulations . All three data conditions were based on linear 
transformations of exponentially distributed random variates. Our rationale for selecting this kind of data 
condition was that the data are skewed to the right, with the mean value greater than the median, 
representing a substantial violation of the multivariate normality assumption. Of course, if the data 
closely follow a multivariate normal distribution, either the LDF or QDF would be the appropriate 
discriminant technique. 

It can be shown that for the first data condition selected (see Experiment A below) the optimal 
Bayesian classification rule is linear, so that the first order (linear) methods should perform well, while in 
the second and third experiments (8 and C) the classification rule of choice is nonlinear, so that the 
second order MP formulations (and the QDF) should perform better than linear classifiers. In addition, 
while in the first and second data condition the attribute variables generated are independent, the 
variates used in the third experiment were highly correlated. In each experiment the training samples 
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Table I 
Distributions and parameter values for the simulation experiments 

Experiment Distribution a Mean Standard deviation 

Group 1 Group 2 Group 1 Group 2 

A Exponential, A = 1 1.0 2.0 1.0 2.0 
B Exponential, A = 1 10.0 11.0 1.0 3.0 
c Exponential, A = 1 10.0 11.0 1.0 b 3.0 b 

• The data sets are linear transformations of variables following this distribution. 
b The attributes for this experiment are correlated. The values reported here represent the conditional standard deviation of 

a;) a;_ 1, ••• , ai.j- I (j = l, . .. , k -1). The variance-covariance matrices 1: 1 and 1:2 are given by (21) and (22) in the text. 

consist of nt = 100 observations in group 1 and n 2 = 100 in group 2, for a total of n = 200 observations in 
both groups combined. The validation sample size was 500 observations for each group. Forty replica
tions were generated and analyzed for each data condition. In each experiment, observations were 
generated on five attributes. The simulation experiments were performed using the SAS statistical 
package (SAS, 1982) on an IBM 3090 mainframe computer. A summary of the data conditions in the 
three simulation experiments is provided in Table 1. 

In Experiment A the values on the five attributes were generated as linear transformations of 
independent, identically exponentially distributed random variates. After applying a linear transforma
tion Aii = Y;j for i E Gt and Aii = 2Y;J for i E G 2 (j = 1, .. . , k), where Y;J and Y;J follow the 
exponential with A= 1, the mean vectors were µt = (1.0, ... , 1.0)T and µ 2 = (2.0, ... , 2.0)T, and the 
variance-covariance matrices .!: 1 = 1.0/ and .!:2 = 4.01, where I is the 5 x 5 identity matrix. Using 
Bayes' rule, it can be shown that the optimal classification rule for this data condition is linear. A typical 
scatter diagram of two variates generated in Experiment A is shown in Figure 2. 

The data in Experiment B were also generated from an exponential distribution with parameter A = 1. 
As in Experiment A, the variates in Experiment B were independent and identically distributed. Let Y;J 
and Y;J be defined as in Experiment A. The value on attribute j of observation i E Gt was calculated as 
A;j = 9 + Y;J (j = 1, ... , k). Similarly, the observations in group 2 were determined by the transformation 
A;j = 8 + 3Y;J (j = 1, ... , k), yielding mean vectors for the attribute values in groups 1 and 2 of 
µ 1 =(10.0, . . . , 10.0)T and µ 2 = (11.0, ... , 11.0)T, respectively, with variance-covariance matrices equal to 
.!:1 = 1.0/ and .!:2 = 9.01. In contrast to Experiment A, in Experiment B the domain of group l lies in the 
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Figure 3. Typical scatter diagram for two out of five attributes of training sample data set for Experiment B: Linear transformation 
of exponential distribution (A = 1), µ. 1 ,,;, 10, µ. 2 = 11 , u 1 = 1, u 2 = 3, independent attributes 

interior of the domain of group 2. The optimal classification rule for this data condition can be shown to 
be nonlinear. Figure 3 shows a representative plot of two attributes A 1 and A 2 from the data condition 
analyzed in Experiment B. 

Finally, in Experiment C the attribute values within each group were generated to be correlated, in 
the following way. Let Y,: and Yd again be exponentially distributed with parameter A = 1. The values 
on the first attribute were taken equal to A; 1 = 9 + Y,: for all i E G 1, and Ail= 8 + 3Y,~ for all i E G 2. 

The values of the remaining j = 2, ... , 5 attributes were given by A ii =A i,i- 1 - 1 + Y,) for all observa
tions i E G 1 and A i.i = Ai.i - I - 3 + 3Y,J for all i E G 2 , so that the respective mean vectors are 
µ 1 = (10.0, ... , 10.0)T and µ 2 = (11.0, ... , 11.0)T. The variance-covariance matrices 2' 1 for group 1 and 
.l'2 for group 2 are defined by (21) and (22). l 10 

1.0 1.0 1.0 1.0 
2.0 2.0 2.0 2.0 

2'1 = 3.0 3.0 3.0 , , 
4.0 4.0 

5.0 

(21) 

9.0 9.0 9 .0 9.0 9.0 
18.0 18 .0 18.0 18.0 

2'2= 1 27.0 27.b 27.0 (22) 
36.0 36.0 

45.0 

The within-group correlation structure of the attributes in Experiment C is the same for both groups, 
and is given by matrix R in (23), indicating that the five attributes within each group are highly 
correlated, with correlation coefficients between 0.447 and 0.894. 

1.000 0.707 0.577 0.500 0.447 
1.000 0.816 0.707 0.632 

R = I 1.000 0.866 0.775 1- (23) 
1.000 0.894 

1.000 
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Figure 4. Typical scatter diagram for two out of five attributes of training sample data set for Experiment C: Linear transformati o n 
of exponential distribution (A= I). µ 1 = 10, µ 2 = 11. correlated attributes 

The data condition in Experiment C with correlated attribute variables is of special interest, because it 
can be used to test the relevance of the cross-product terms in the second order MP formulations. A 
typical scatter plot of two variables from the data condition in Experiment C is given in Figure 4. 

Ten different discriminant methods were compared based on their classification performance, as 
measured by the percentage of misclassified observations. The linear classification methods under 
evaluation inducted Fisher's LDF, the MSD and the Hybrid formulation. Smith's quadratic discriminant 
method was included in the analysis, since the optimal Bayesian classification rule is nonlinear for two 
out of the three simulation experiments. Following an approach often used in statistics, Smith's quadratic 
method was applied not only to the original data (QDF), but also to the natural logarithms (QDFL) and 
the square roots (QDFS) of the original data. The second order methods evaluated in this study consist 
of the MSD formulation with second order terms including cross-products (MSDQl) and excluding 
cross-products (MSDQ2), as well as the second order Hybrid method with (HYBQ I) and without 
(HYBQ2) cross-products. Including cross-product terms in the second order formulation is appropriate if 
the attributes are correlated. Analogous to the case of parametric statistical methods, for reasons of 
parsimony it may be preferable to omit the cross-product terms from the model if the attributes are 
uncorrelated. A complete list of the methods analyzed in our study is provided in Table 2. 

As mentioned before when discussing the Hybrid formulations of Problems II and IV, there are 
several restrictions on the coefficients used in the objective function (6). The optimal classification rule 
will depend in part on the relative magnitude of these coefficients. In our simulation experiments, 
w0 = I .Sn = 300, W; = 2 (for all i E Gt U G2 ), k 0 = n = 200, k; = 0.5 (for all i E G 1 U G 2) were selected. 
This choice of coefficient values is consistent with Glover's recommendations (Glover, 1990). 

4.2. Results 

The nature of the differences between the misclassification rates across the various methods is 
assessed by (a) pairwise T-tests of the mean difference between all combinations of methods, (b) an 
analysis of variance (ANOV A) to test for the significance of two factors, the classification method and 
the training sample used to fit the classification rule, and (c) Tukey's studentized range test, which 
simultaneously tests for differences between the misclassification rates across methods. 
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Table 2 
Abbreviations and descriptio n of methods evaluated in the simulation experiments 

Method 

LDF 
QDF 
QDFL 
QDFS 
MSD 
MSDQI 

MSDQ2 

HYB 
HYBQI 

HYBQ2 

Description 

Fisher 's Linear Discriminant Function applied to original data 
Smith 's Quadratic Discriminant Function applied to original data 
Smith's Quadratic Discriminant Function applied after natural logarithmic transformation of the data 
Smith's Quadratic Discriminant Function applied after square root transformation of the data 
MSD formulation with linear (first order) discrimin ant function applied to the original data 
MSD formulation with quadratic (second order) 

discriminant function (including cross-products) applied to the original data 
MSD formulation with quadratic (second order) 

discriminant function (excluding cross-products) applied to the original data 
Hybrid formulation with linear (first order) discrimin·ant function applied to the original data 
Hybrid formulation with qu adrat ic (second order) 

discriminant function (including cross-products) applied to the original data 
Hybrid formulation with quadratic (second order) 

discriminant function (excluding cross-products) applied to the original data 

It is well-known that , when performing several independent statistical tests at the same time, such as 
multiple paired T-tests, the probability of making a type I error a, i.e., erroneously rejecting the null 
hypothesis, may be different from (and is usually higher than) the specified significance level. Tukey's 
multiple comparison test overcomes this problem by testing several hypotheses simultaneously, assuring 
that the probability that none of the null hypotheses is rejected erroneously is at least 1 - a. Hence, 
using Tukey's test one can safely infer several conclusions at the same time, providing a relevant means 
of verifying the results obtained using the paired T-tcsts. However, Tukey's method tends to be very 
conservative, and may not detect significant differences even though these are present in the data. 
Therefore, it is useful to report the results of both the paired T-test analysis and Tukey's studentized 
range tests for differences between the various classification methods. 

The two-factor ANOVA model without interactions is given in (24). Note that since we have only one 
observation per cell, a model with interaction effects would result in zero degrees of freedom . Represent 
the misclassification proportion for method j and training sample i by Pif . In order to stabilize the 
variances, we apply the following transformation to the original dependent variable Pif : P;j = 2 arcsin 
<jP;;) (see Joachimsthaler and Stam, 1988; Neter, Wasserman and Kutner, 1985). 

P;j = U + T; +Mi+ e,i, (24) 

where U is the overall mean of P; j, T, is the effect of training sample i , Mi is the effect of classification 
method j , and the e;i are independent normally distributed error terms with a constant variance. 

Experiment A. The mean misclassification rates for Experiment A are presented in Table 3. The paired 
T-values for this experiment are given in Tables 4-5. A positive /-value in position (i, j) of the table 
indicates that the mean misclassification rate of method i is higher than that of method j , while a 
negative /-value implies that the reverse is true. Tukey's multiple comparison test results for Experiment 
A are reported in Table 6, while the two-factor ANOVA results for all three experiments are 
summarized in Table 7. Since the optimal classification rule for this experiment as determined using 
Bayes' rule is linear, it is not surprising that the mean misclassification results for Experiment A in Table 
3 indicate that the first order MSD method (24.9% ) and the first order hybrid method HYB (25.2% ) 
have the lowest misclassification rate in the validation sample analysis. The I-values in Table 5 suggest 
that the performance of MSD in the validation sample analysis is significantly better than that of HYB 
and QDFS (significant at the one percent level), but Tukey's multiple comparison test groups these three 
methods together (see Table 6). 

In the training sample analysis, the three MSD formulations clearly give the best classification results, 
MSDQl yielding a slightly better misclassification rate (18.4% ) than the MSD and MSDQ2 methods 
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Table 3 
Classification results, simulation Experiment A 

Method Percentage of misclassified observations 

Training samp le Validation sample 

Mean STD Mean STD 

LDF 27.4 4.2 31.1 2.5 
QDF 22.8 3.3 26.6 1.2 
QDFL 25.3 3.6 29.4 1.6 
QDFS 20.8 3.3 25.4 1.0 
MSD 20.1 2.6 24.9 0.8 
MSDQI 18.4 3.1 28.9 1.4 
MSDQ2 20.1 3.2 26.2 I.I 
HYB 21.3 5.5 25.2 I.I 
HYBQI 22.0 8.6 30.3 3.0 
HYBQ2 23.2 5.4 28.6 2.6 

Table 4 
Pairwise T-tests J of mean difference in classification performance , training sample, Experiment A 

Method Method 

QDF QDFL QDFS MSD MSDQl MSDQ2 HYB HYBQl HYBQ2 

LDF 8.94 3.72 13.69 15.99 15.90 17.50 13.14 6.94 7.58 
QDF - 3.91 7.32 7.09 9.39 5.52 3.90 1.24 -0.71 
QDFL 8.97 11.99 13.16 11.99 9.08 4.58 3.58 
QDFS 2.67 5.70 1.93 -1.47 -1.75 -5.48 
MSD 4.77 -0.15 -5.33 -3.05 -7.51 
MSDQI -4.25 -7.14 -5.70 -8.86 
MSDQ2 -3.56 -3.02 -6.89 
HYB -1.04 -4.61 
HYBQI -1.75 

" A positive (negative) 1-value in position (i. j) of the table indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. The critical values for o ~ 5% and a~ 1 % are 2.023 and 2.709, respectively. 

(20.1%). The t-values associated with pairwise comparing MSDQ1 with each of the other methods in 
Table 4 are all significant at the one percent level. Tukey's test confirms that in this case the MSDQ1 
method classifies significantly better than any of the other methods. 

Table 5 
Pairwise T-tests" of mean difference in classification performance. validation sample, Experiment A 

Method Method 

QDF QDFL QDFS MSD MSDQI MSDQ2 HYB HYBQI HYBQ2 

LDF 11.68 4.63 15.25 16.62 4.71 12.63 14.52 1.82 6.45 
QDF -8.48 6.21 8.66 -8.36 1.50 6.57 - 13.55 -6.73 
QDFL 14.24 15.96 1.29 J0.56 13.43 -2.41 1.86 
QDFS 3.64 -13.99 -3.78 J.28 - 15.58 - 10.41 
MSD -17.06 -8.80 -3.31 -15.84 -11.49 
MSDQI 12.56 15.41 -3.83 0.93 
MSDQ2 5.19 -11.68 -6.87 
HYB -15.23 -10.58 
HYBQI 5.33 

' A positive (negative) r-value in position (i. j) of the table indicates that the mean mi sclassification rate of method i is higher 
(lower) than that of method j. The critica l val ues for a~ 5% and a~ 1% are 2.023 and 2.709. respe.ctively. 
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Table 6 
Tukey's studentized range test for significant difference between methods, Experiment A 

Training sample Validation sample 

Method Mean Tukey grouping ' Method Mean Tukey grouping ' 

LDF 1.1000 A LDF 1.1832 A 
QDFL 1.0531 B HYBQI 1.1657 A B 
HYBQ2 1.0018 c QDFL 1.1447 c B 
QDF 0.9944 c D MSDQI 1.1357 c 
HYBQI 0.9693 c D E HYBQ2 1.1272 c 
HYB 0.9567 F D E QDF 1.0825 D 
QDFS 0.9461 F E MSDQ2 1.0748 D E 
MSDQ2 0.9272 F QDFS 1.0571 F E 
MSD 0.9270 F HYB 1.0525 F 
MSDQI 0.8831 G MSD 1.0435 F 

' Determined based on a significance level of a= 5%; the minimum significant difference in mean is 0.0386 for the training 
sample and 0.0220 for the validation sample. 

Similarly, HYB classifies slightly better than the second order variants (HYBQ l and HYBQ2). 
Compared to the other methods, the second order Hybrid methods do not perform very well on the data 
condition in Experiment A, suggesting that these methods in general may not be well-suited for this 
particular data condition. The LDF method also fares poorly, both in the training sample (27.4% 
misclassified, on average) and validation sample analysis (31. l % misclassified), which may be explained 
by the asymmetric nature of the exponential distribution used to generate the data for this experiment. 

Not surprisingly, given the fact that the attributes are uncorrelated and the optimal classification rule 
is linear in Experiment A, the second order methods generally do not perform as well as the first order 
methods, especially on the validation samples. As indicated by the I-test scores and Tukey's studentized 
range values (Table 4 and 6), the second order MSD (MSDQl and MSDQ2) methods classify signifi
cantly better than their counterpart second order Hybrid formulations (HYBQJ and HYBQ2). The 
performance of the QDF methods is very similar to that of the second order MSD and Hybrid methods. 

Experiment 8. From Tables 8-11 we see that, as anticipated, in Experiment B the linear methods LDF, 
MSD and HYB classify considerably worse than most of the statistical quadratic and second order 
methods on both the training and validation samples, with average misclassification rates of close to or 
over 30%. This finding is not surprising, given that a nonlinear classification function is appropriate for 
this data condition. It is interesting, nevertheless, to note the significant difference in classification 
performance between the linear and nonlinear classifiers in Experiment B (and below in Experiment C), 

Table 7 
Analysis of variance results for Experiments A, B and C 

Experiment Overall significance Training sample Classification 
of the model effect method effect 

F-value DF ' ?-value F-value DF' ?-value F-value DF' ?-value 

Training sample: 
A 24.17 48, 351 0.0000 16.85 39, 351 0.0001 55.92 9, 351 0.0001 
B 103.17 48, 351 0.0000 10.37 39, 351 0.0001 505.30 9, 351 0.0000 
c 145.60 46, 273 0.0000 1.58 39, 273 0.0206 948.02 7, 351 0.0000 

Validation sample: 
A 23.65 48, 351 0.0000 4.14 39, 351 0.0001 108.18 9, 351 0.0000 
B 175.33 48, 351 0.0000 1.74 39, 351 0.0054 927.55 9, 351 0.0000 
c 295.32 46, 273 0.0000 1.10 39, 273 0.3297 1934.54 7, 273 0.0000 

' DF = degrees of freedom (numerator, denominator). 
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Table 8 
Classification results, simulation Experiment B 

Method Percentage of misclassified observations 

Training sample Validation sample 

Mean STD Mean STD 

LDF 30.9 4.4 32.2 3.5 
QDF 17.5 3.1 17.1 0.8 
QDFL 14.8 3.0 14.8 0.9 
QDFS 16.3 3.2 15.9 0.9 
MSD 28.2 4.4 28.8 1.6 
MSDQI 15.7 4.4 24.6 2.7 
MSDQ2 36.3 5.7 39.9 3.9 
HYB 30.0 4.8 30.l 2.3 
HYBQl 8.2 4.2 14.2 3.2 
HYBQ2 9.7 2.6 12.3 0.9 
---

Table 9 
Pairwise T-tests a of mean difference in classification performance, training sample, Experiment B 

Method Method 

QDF QDFL QDFS MSD MSDQI MSDQ2 HYB HYBQl HYBQ2 

LDF 20.34 22.91 20.90 5.17 19.38 -7.97 1.69 29.31 30.32 
QDF 9.89 7.37 -18.11 3.73 -23.32 -20.14 21.96 19.99 
QDFL -8.29 -21.59 -1.50 -25.31 -23.05 15.77 13.84 
QDFS -19.58 1.16 -24.64 -21.64 18.78 16.81 
MSD 16.16 - 18.02 -8.05 27.06 27.19 
MSDQl -21.80 -18.17 14.40 11.20 
MSDQ2 13.10 28.68 28.90 
HYB 29.67 30.00 
HYBQI -4.58 

' A positive (negative) I-value in position (i, j) of the table indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. The critical values for a= 5% and a= 1 % are 2.023 and 2.709, respectively. 

Table 10 
Pairwise T-test ' of mean difference in classification performance, validation sa mple, Experiment B 

Method Method 

QDF QDFL QDFS MSD MSDQl MSDQ2 HYB HYBQl HYBQ2 

LDF 25.80 30.35 28.31 5.74 11.67 - 11.77 3.72 30.58 33.32 
QDF 18.53 12.78 -38.26 -19.74 -33.58 -37.84 11.74 29.32 
QDFL - 14.87 - 47.16 - 23.74 -36.72 - 42.70 2.14 12.98 
QDFS -44.02 -21.24 -34.91 - 40.34 6.23 19.11 
MSD 8.70 - 18.28 -5.58 36.39 51.76 
MSDQl -21.12 - 10.86 25.40 28.96 
MSDQ2 16.00 38.90 44.43 
HYB 35.86 48.57 
HYBQl 7.28 

' A positive (negative) I-va lue in position (i, /)of the table indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. The critical values for a= 5% and a= 1 % are 2.023 and 2.709, respectively. 

because in several previous studies linear methods have been used as a benchmark for the performance 
of other linear classifiers, even under data conditions which clearly favor nonlinear functions. From our 
results it is clear that using linear classifiers for nonlinear data conditions similar to our study can lead to 
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