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NONLINEAR PROBLEMS IN 
MATHEMATICAL ECOLOGY 

Yu. M. Svirezhev 
Potsdam Institute for Climate Impact Research, 

Potsdam, Ge m a n y  

"When we study the History of Science we discover two 
mutual contrary phenomena: either behind an apparent 
complexity a simplicity is hidden or, on the contrary, an 
evident simplicity conceals within itself an extraordinary 
complexity" 

H.Poincare 



1. INTRODUCTION 

The linear world of the mathematical physics of the nineteenth and the early 
twentieth centuries was harmonious and consistent. Almost the entire evolution 
of this world proceeded in small neighborhoods of stable equilibrium where 
linearization principle held true. This was a smooth differentiable world, in 
which there was no room for instabilities, catastrophes, and other inconvenient 
phenomena. Certainly, the complete harmony did not exist and nature produced 
now and then surprise packets with unpleasant nonlinearities; nevertheless, the 
situation was saved due to the fact that those nonlinearities could be regarded 
as minor ones, so that one could manage with small nonlinear additions to the 
main linear solutions. To explain all those nonlinear phenomena, viz. jumps, 
discontinuities, catastrophes, hysteresis, etc., was the task to philosophy rather 
than mathematics. 
In contrast to many fields of mathematical physics, where linear models have 
been used very extensively and effectively (recall, for instance, the wave 
equation, the heat conduction equation, the Schroedinger equation, etc.), 
mathematical ecology (and mathematical genetics, also) are principally 
nonlinear sciences. The fact is that almost all interactions in ecology, both 
competitive and trophic, are nonlinear. Perhaps, the only linear model is the 
model of exponential growth of T.Malthus. Even the classical Volterra "prey - 
predator" model demonstrates a typical nonlinear pattern, while in more 
sophisticated models, for instance, in trophic chains, we can see nonlinear 
oscillations, "quantum" effects, and dynamic chaos[l,2]. 
Mathematical genetics is equally nonlinear in principle, because of the 
nonlinear form of Mendel's laws[3]. 
A vast variety of nonlinear problems, generated by ecology (and genetics) are 
described in books [ I  - 51, and there is no need to repeat their description in 
this manuscript; here I would like to dwell in more detail on the problems yet 
unsolved, trying to predict or, strictly speaking, to guess the potential results 
and offer their informal interpretation. 

2. MODELS AND REALITIES IN ECOLOGY 

Now many classical models of mathematical ecology, which are the basis for 
applied ecological modelling, are subject to severe revision. This process is 
going in two direction: first, a "canonization" of canonical models is taking 
place (we shall speak about it later, too), and second, new descriptions are 
proposed, using either new mathematical subjects and concepts or well have 
been forgotten ones. For instance, it would be interesting to use such a subject 
as differential inclusions. Or, there is growing interest to Lagrange stability 
concept, which is closer to intuitively understandable ecological stability [6]. 
Also, the models of mathematical ecology themselves, coming from physics 
and chemistry or elsewhere , are subject to revision. It is clear, that Lotka - 
Volterra models have their "genetic" origin in the models of chemical kinetics. 
Also, the origin of ecological models, taking into account spatial moving of 
individuals, is clear. Therefore they are called models of the "reaction - 
diffusion" type. (In spite of the fact that we are not sure that physical process 



"diffusion" is a good model for biological movements.) Constructing both 
Volterra and diffusion models, we use first of all conservation laws (matter and 
energy), and after that, knowing really nothing about the mechanism of 
behavior of individuals in the populations, use different physical and chemical 
hypotheses for their description. 
So, the "collisions" hypothesis in the Volterra models is a typical hypothesis of 
chemical kinetics about the collision of molecules. 
And what is the "diffusion" hypothesis? It is assumption about stochastic 
movement of individual on an areal, which is equivalent to the statistical 
physics hypothesis about stochastic movement of atoms and molecules. But an 
individual in the population is not a molecule; it is the complex organized 
system, having "freedom of choice", with complex behavior even in some 
average situation. Therefore, for more adequate models we should use some 
other, more realistic hypotheses about the behavior of individuals. This leads to 
more complex models. As an example we can mention "Schoedinger's 
systems" suggested for the description of self-thinning processes in plant 
communities[2]. On the other hand, even if we agree that the diffusion model is 
a fairly good approximation in the description of spatial migrations of 
individuals in populations, there are still a strong local nonlinearities in the 
processes of competition, trophics, inheritance, reproduction, etc., which 
generate such phenomena as nonlinear waves and dissipative structures in 
models of spatially distributed systems described by the reaction -diffusion 
equations [2]. 
Generally, the problem of choosing an adequate mathematical description in 
ecology is very acute; physical and chemical ways of descriptions are already 
exhausted; it is necessary to look for some new non-traditional methods, which 
can be based on already known mathematical concept and new forms of 
description for ecological realities. 
For instance, one of the main difficulties in ecological modelling is how to 
obtain discrete structures on the set of continuously changed parameters. The 
point is that all vegetation on the Earth is the mosaic of discrete forms. They 
are biogeocoenoses (having the same boundaries as phytocoenoses), and some 
larger taxonomic units like biomes (for example, taiga or steppe). Analyzing 
geographical distribution of vegetation, we can see the following: while 
temperature, moisture, precipitation, and other climatic characteristics are 
changing continuously, biological characteristics (like storage of aboveground 
and underground phytomass, etc.) change by jump from one community to 
another. Why is it so? In my opinion, the answer is either in particular 
properties of principally nonlinear functions, describing dependence of 
biological processes on abiotic parameters of the environment or principal non- 
linearity of such processes as, for instance, inter- and intraspecific competition. 
On the mathematical point of view, the first models should be the models of 
the catastrophe theory. We can hope, that namely the mechanisms with 
nonlinearities of cubic type are responsible for sudden changes of any 
biological parameter when abiotic parameters are changing continuously, and 
the task of modeller is to define these critical parameters correctly. Second type 
of mechanism, which can lead to the formation of discontinuity, is the 
destruction of some unstable equilibrium under perturbation for the systems 
possessing a hysteresis effect. How we shall show later, it can be the classical 



Volterra model for two competing species imbedded into slowly changing 
environment. 
And finally, a few words about dynamic chaos in population dynamics. Using 
differential (and difference) equations for the description of population 
dynamics, we use the hypothesis about unlimited divisibility of the biomass. 
On the other hand discreteness is natural for living organisms: biomass exists 
only as individuals. For instance, we can speak about the biomass of half - 
individual, but we can not imagine that this half-individual is able to 
reproduction, for this we need a whole organism (or pair of them). As a rule 
we ignore this contradiction, as Newton - Leibnitz formalism of continuos 
description, created for classical mechanics, given satisfactory results for the 
population dynamics as well, if the number of individuals is large and slowly 
changing. Although these criteria are not sufficiently accurate, they allow us to 
use differential (and difference) equations in the models of population 
dynamics in cases, when this dynamics is more or less regular. Whiteout taking 
into account these general problems, we used the models of this type for the 
description of dynamic chaos in populations and communities. It seems 
intuitively that also in these cases the models will be quite adequate, but some 
doubts appear in this case, which should be discussed. 
As a matter of fact, for chaotic dynamics described by the Ricker equation 

there are some intervals when N is close to zero, but after that due to 
t 

exponential growth the N becomes very large. After non-regular periods of t 
time this situation repeats. The question arises: if there is a lower critical level 
of biomass (for instance, biomass of one individual), then the model which 
takes this into account will be able to demonstrate chaotic behavior or not? 
The natural generalization for the Ricker's model can be presented as follows: 

Nt+l = E{rNt exp(-XN t )I, 
where E{x) is an integer part of x x ,  and biomass is scaled. As the chaos on a 
denumerable set is impossible, the generalized model will not give chaotic 
dynamics. In other words, introduction of natural discreteness excludes the 
theoretical probability of chaos. Moreover, while degradation of the population 
was principally impossible in the classic Ricker model, it becomes possible in 
the generalized model, However, while the pure chaos excluded in this model, 
there are still regimes practically chaotic, with wide spectrum of oscillations. 

3. CANONICAL MODELS CLASSIFICATION IN MATHEMATICAL 
ECOLOGY 

If we consider any (more or less) complex simulation model of ecosystem, we 
can see that it contains some elementary blocks (submodels). Let us call them 
Canonical Models, These can be 
a) prey - predator model, 
b) model for two competing species, 
c) model of two populations connected by migration (linear or nonlinear), 



d) model of an isolated population with a complex law of population growth 
(for instance, the Alle's principle), 
e) demographic model (one of the version of Leslie's model), 
f) chemostat model. 

All these models can be both with overlapping generations (continuous-time 
models), and non-overlapping generations (discrete-time models). It is clear 
that the general dynamic properties (dynamic behavior) of the "big" model can 
be determined both by its general structure (so-called emergency properties) 
and the specific dynamic properties of its components , i.e. by the dynamics of 
canonical models. 
Unfortunately, the history of mathematical ecology and ecological modelling is 
such that ecological modellers use the canonical (elementary) models as laws 
(like in physics). However these models are not laws; they are only 
"phenomenological descriptions" having a very narrow field of 
implementation. For instance, whereas in mechanics we have Newton's laws to 
derive equations of motion from the general conservation laws, in ecology we 
have no such laws (or, to be more accurate, their analogs). What are the energy 
expenses to competition? What is the relation between energy utilized in 
reproduction and energy consumed for the individual specimen life? The list of 
these questions may be continued. Clearly, so long as we do not know the 
mechanisms governing the processes of interaction between specimens in the 
ecosystem and the quantitative expressions for them, all the attempts to moving 
global energy and matter properties of the ecosystem to its local behavior will 
be speculative. Notice that this is the case not only in mathematical ecology, 
but, say, in mathematical economics too. Attempts to introduce some global 
energetic characteristics there also did not pay off. 
Though in some special cases we managed to look at the results of stability 
analysis of dynamic models of communities from the viewpoint of extreme 
principles. And what is more, we can use some optimal general principle in 
order to complete a definition of the input balance equations up to complete 
system. For instance, instead of to use some allocation principle, which must 
describe the energy allocation among various species in the community (and 
which is very often unknown), we use the adaptation principle, which, as a 
rule, has a very "scientific" formulation (though in most cases teleological 
principles in biology have this formulation). 
Discussion of the role of teleological principles in biology and about their 
acceptability date from very long ago and now they are heated as before. 
However, we are still very far away from the lucidity achieved, say, in classical 
mechanics. 
And finally I should quote just one statement ascribed to von Briikke, in which 
teleology is characterized as "a lady no biologist can live without, but whose 
company seems shameful in society". 
The usage of phenomenology was very often leading to special (interesting 
from theoretical viewpoint) dynamic effects in complex models, which did not 
reflect reality, being in fact consequences of either the usage of wrong 
elementary models, or their non-motivated expansion beyond the field of their 
validity. For instance, how we shown above, the usage of population models 
with the biomass as a continuous state variable for low densities where the 
discrete allocation of the biomass (among individuals) becomes important. 



Thus, when we come across an unexpected dynamics in a complex model, we 
should consider three possibilities: 
1. This dynamics is a direct consequence of the dynamic properties of 

canonical (elementary) submodels. 
2. This dynamics is an emergent property of the whole model. 
3. This is a "false dynamics", or an artifact of modelling. 

In order to make the right choice, one has to know in detail: 
- dynamic properties of canonical models, 
- domains of their validity, 
- dangerous effects of parametrization, 

when we attempt to approximate some phenomenological relations by 
empirical formulas ("parametrization traps1'). 
In other words, a canonizing procedure (canonization) for canonical models is 
needed. This procedure would provide a tool for testing reliability of ecological 
modelling. Unfortunately, up to date nothing systematic is done in this 
important way. The "canonization" would allow the modellers to choose the 
elementary (canonical) model blocks basing on some regular rules rather than 
traditions. It would also be a filter for wrong interpretations of the results that, 
to the first glance, seem unexpected. 

4. PREY-PREDATOR SYSTEM AS A CLASSICAL SUBJECT OF 
MATHEMATICAL ECOLOGY 

Starting with the works of V.Volterra, the prey-predator system has been a 
classical subject of mathematical ecology. Let ~ ( t )  and y ( t )  be the number 
of preys and the number of predators respectively. Then a sufficiently general 
(so-called "Kolmogoroff") model of this system takes on the form: 

where a ( ~ )  is the Malthusian function of the pray, V ( X )  is the trophic 
function (functional response), m is the natural mortality rate of the predator, 
k is the efficiency in converting the prey biomass into the reproductive 
biomass of the predator. The most widespread types of the functions a ( x )  and 
V ( X )  are represented in Fig.l,2. For different parametric representations of 
these functions, the existence of one or several limit cycles in this systems was 
proved [1,2,6]. Some results of this kind were also obtained for a more general 
representation of those functions, but comprehensive investigation of the 
topology of phase space has not yet been carried out for this model. We shall 
try to give a brief description of the results which may be expected here. 
In the first place, we may expect the birth of a cycle (and not the only one) as a 
result of the Andronov-Hopf bifurcation. The system has a non-trivial 
equilibrium, which is defined from the conditions: 



The eigenvalues of the Jakobi matrix at this point are 

= o f i  J k y * ~ ( x * ) ~ ( ~ * ) - ~ 2 ,  (4.2) 

where 
1 

o ( x * )  = - x * [ a l  ( x * )  - W' ( x * ) Y * ] ,  W ( X )  = V ( X )  1 X .  
3 
L 

If we now consider p = rn / k as the bifurcation parameter, or x* instead p 
since V ( X )  depends monotonically on X ,  it is necessary to detect whether 

* 
there exists an X* such that G(X  ) = 0. 

C C 

The second condition, 0 ' ( x : )  # 0, as a rule (except non-robust cases), is 

fulfilled here. The answer to this question can be obtained from studying the 
behavior of the function Y  = a ( x )  / W ( x ) .  It is easy to see that in those 

point x* where the derivative dy / dt = 0, the function O ( X )  is also equal 
to zero. 
In the second place, relaxation oscillations are possible in the system. Indeed, if 
we assume the characteristic time of changes in the size of prey population to 
be much smaller than the characteristic time of the predator response to those 
changes - a situation, which is quite common in the nature,- then the dynamics 
of this system will be determined by the topology of the equilibrium manifold 
y  = a ( x )  / W ( X ) .  Thus, the study of relaxation oscillation also reduces to 
investigating this manifold. 
Let us consider the following case, when the Malthusian function a ( x )  is a 
monotone decreasing function, of the density-dependent type (Type I), and let 
the trophic function belong to Type 11, let it be S-shaped. Then it may be 
shown that if, for instance, the parameter x ( U ( X  ) = o), the carrying m m 
capacity of the environment for the prey, changes, then the form of function 
y  = a ( x )  / W ( X )  changes in the following manner (see Fig.3). Type B, to 

which we pass as X increases, is of the greatest interest to us. What do we get 
rn 

here? 
As long as the curve belongs to Type A, there exists no cycles of any kind in 
the system: neither Andronov-Hopf, nor relaxation ones. But as soon as, with 
parameter x changing continuously, we pass over to Type B ("cusp" 

m 
catastrophe), both kinds of oscillations may arise in the system. 
We shall now continuously increase the parameter x * :  from XI * to X * (see 

5 
Fig.4). When x*= X *, there exists a stable equilibrium in the system (an 1 
unstable cycle may also exist). But as soon as X* passes through x2 * , at least 

two stable cycles arise in the system: an Andronov-Hopf cycle with the 
amplitude h = x * - X  * in the neighborhood of point x * , and the I r F  2 
relaxation cycle AlA2A3A4 with the finite amplitude. While the first cycle 
arises according to the soft self-excitation type, the second cycle is the 
consequence of hard self-excitation conditions. As X* increases further, this 



pattern remains until X* has passed through x4 *; after that the relaxation 

cycle disappears, the stable Andronov-Hopf cycle disappears as well, and this 
disappearance may be accompanied by the birth of an unstable cycle, which, 
however, becomes quickly destroyed. Again a non-trivial equilibrium alone 
(for instance, with x  * ) remains in the system. 5 
Let now the parameter X* t(= x * be fixed; we shall now diminish the carrying 3 
capacity for the prey (parameter x ). In this case the amplitude of the 

m 
relaxation cycle will diminish amplitude of the Andronov-Hopf cycles will be 
saved, but the stable cycle (in the neighborhood of X 2 * )  will approach the 

unstable one (in the neighbourhood of x  *). And finally, at the point of the 
4 

catastrophe, the relaxation cycle disappears and the Andronov-Hopf cycles 
merge. It is difficult to say what happens in this case: an additional fine 
investigation of the non-robust case is required. 
Let us suppose now that the bifurcation parameters X* and xm are random 

functions of time. Intuitively it may be supposed that parametric resonances 
may appear here due to splitting the cycles up. In [6] it is shown that this 
actually occurs, at least for systems close to the Volterra ones, for which a ( x )  
and V ( x )  are linear functions. 
Let now a ( x )  = const. 
It corresponds to the case, when there are not the self-regulation mechanisms in 
the prey population; it is controlled only by predator. For the trophic function 
we use the very popular parametrization: 

If n=l,  then we have the trophic function of Type I; if n=2,3, ... then the trophic 
function belongs to Type 11. 
Replacing the variables: 

a t a t , x / x * a x , y I y * a y ,  
V I V  00 a V , m / a a p ,  

we obtain from (4.1): 

The type of equilibrium ( x * ,  Y * )  is determined by the value v = V ' ( I )  . 
This equilibrium is a topological knot; if v < 1 then it is unstable, and if 
v > 1, stable. When we pass through v = 1 we have an Andronov-Hopf 
bifurcation and in "general position" case a limit cycle is born out of this 
equilibrium. It seems there is not any problem here. 



On the other hand if we shall use the description of the trophic function in the 
form (4.3), we can prove that the system (4.4) has not limit cycles. We consider 
this problem for n=2. although the final results are valid for any 0 2 .  
For n=2 in new variables we have 

n 

1 
The bifurcation value for b is bC = ;. Hence the trophic function which 

- 

2 2 
gives the equilibrium of "center" type, is V = 2 ~  / ( 1  + x  ). In this case 

C 

the system (4.4) is reduced to the Abel equation of second type and it has the 
integral: 

Therefore the limit cycle can not arise out of equilibrium (existence of the 
integral of Abel equation is a sufficient condition for this). We can show that 
the periodic regime can not also arise out of closed trajectories of center. But if 
we deform (&-deformations) the trophic function, for instance, it will be 
presented in the form 

where F ( x )  is a finite function, 

F ( l )  = 0,  F ( 0 )  < - ( I +  x 2 ) ,  F ( m )  < x 2  
(see Fig.5), that we can organize the birth of cycle out of closed trajectories. 
Let 

then we can create the cycle by the choice of A. 
1 

Note that the factor ( b  - -) at F ( x )  was introduced in order to save the Abel 
2  

integral. If this factor would be changed, i.e. the Abel integral would be 
destroyed, we can realize the birth of (1-1) cycles out of equilibrium by means 
of the Andronov-Hopf bifurcation. In other words, after the &-deformation of 
trophic function (4.3) the system (4.4) becomes robust and structurally stable, 
while this system with the trophic function (4.3) is structurally unstable (non- 
robust). In robust system the bifurcation of parameter b can provide limit 



cycles both out of equilibrium and out of closed trajectories, and so much as we 
desire. 
It is very interesting that the parametric form (4.3) for trophic function 
generates the whole class of structurally unstable phase pictures. Really the 
probability to get into a "non-robust" situation is very low, but we has got into 
it. Note when we use some asymptotic methods (for instance, Krylov- 
Bogolubov method) for finding of the periodic solutions of (4.4), it leads to the 
destruction of "non-robust" situation, and, as a rule, we obtain more or less 
successful results [I,,]. 
Thus, the system (4.1) (or (4.4) with the trophic function (4.3) is structurally 
unstable. My question is: this structural instability is either the principal 
emergent property of the prey-predator system, which ensures the high degree 
of adaptation and the high lability in relation to changes of environment for this 
system, or an artifact of parametrization, i.e. the effect, which we can call the 
"parametrization trap"? 
Let us suppose that the first answer is true and the following 
Gedankenexperiment would be carried out. 
a) we imbed the structurally unstable system "prey-predator" into a stochastic 
media, i.e. we consider the system behavior under impact of random 
perturbations. In this case the perturbations destroy this non-robust structurally 
unstable situation and as a result the dynamics can be presented by the whole 
system of (stable and unstable) stochastic limit cycles. In other words we can 
predict the behavior of the deterministic, but structurally unstable system in the 
principally unpredictable stochastic environment. 
b) we imbed this system in the periodically changing predictable environment 
and, for some values of parameters, we get the dynamic chaos, i.e. the 
principally unpredictable behavior in the predictable environment. 
Now I would like to formulate the following speculative hypothesis: may be 
the structural instability is the evolutionary mechanism, which allow to predict 
the own future in stochastic environment 

5. HYSTERESIS IN THE SYSTEM OF COMPETING SPECIES 

"Struggle for Life is a permanent reality 
in the Nature and the Society." 

T.Malthus 

The second classical model in mathematical ecology is the model of a system 
comprising two species competing for one resource: 

dx 
- = x(c1 - a, ,x - a,,y), 
dt 



where ~ ( t )  and ~ ( t )  are the population sizes (or biomass) of the species. 
After scale transformations 

the model (5.1) may be rewritten in the form: 

This system has been investigated in detail, no limit cycles are here, and the 
equlib;ia have the form: 

0, = (0,O); 0, = (1,O); o2 = (0.1); 

Their stability depends on the relationships between Y l  and Y 2  . In Fig.6a 

their stability domains are shown in the plane r = { Y l ,  Y2}; phase portrait 

corresponding to these domains are shown in Fig.6b. 
Suppose now that Y l  and Y2 evolve slowly in the positive quadrant of the 

plane r = {Yl  , Y 2 )  (slowly as compared with fast changes of X and y) .  To 

describe the dynamics of the system in this case we must add to (5.2) two 
equations for slow variables: 

and consider the behavior of the system in the extended phase space 
U X r, U = {x, y; x, y 2 0). What will take place here? 

Let the system move along a phase curve 5 which passes through an arbitrary 

point 6(to) = Go.  After the initial fast movement the point G E 5 gets into 

the neighborhood of an equilibrium manifold and then slow movement occurs 
in this neighborhood corresponding to changes of parameters Y l  and Y 2  



within a domain Wi. When the curve f ( c ) ,  the projection of 5 onto r ,  

crosses the boundaries between the domains W the equilibrium to which x i' 
and y are close may disappear or become unstable, and the phase trajectory 
may leave the area of applicability of the Tikhonoff theorem. In such a case, 
however, the system immediately gets into the layers above other stable points, 
whereto it will pass immediately and quickly, to move again slowly in the 
neighborhood of another equilibrium manifold. Let us consider this situation 
by analyzing the following example (see Fig.7). 

Let the system move from point (Y;, Y;) E W2 into Wl along the path el 
(f (el ) being its projection onto r ) .  At the moment of crossing the boundary 

AB between W2 and U1 the point (3 losses stability, simultaneously (3 a 1 3' 
new stable point (at the boundary when Y = 1, (TI = (3 ) separates from it. 2 3 
The transition from one equilibrium to another occurs without fast movement 
taking place and the change of the ecosystem structure proceeds smoothly. The 
change of the equilibrium (3 by the equilibrium (3 proceeds in a similar way 3 2 
when f (el ) crosses the boundary BC between the domain W and W The 1 4' 
entire transition + O3 -+ O2 is reversible in the sense that if the system 

f f i a  performs a reversible transition from (y I  , Y2 ) to ( Y I ,  Y;) and 
- - - - 

f (5, ) = f ( e l ) ,  then trajectories el and el are close in the phase space U. 

The situation will be quite different when f (c ) passes through the domains 2 
W2, W3, W . Upon crossing the boundary BE, equilibrium (3 retains its 4 1 
stability, but at the same time the point (3 becomes unstable and the unstable 2 
saddle point (3 separate from it. The part of phase trajectory which is 3 
projected into W is in the neighborhood of the equilibrium manifold 2 ' 
corresponding to (3 the part which is projected into W remaining to be 1' 3 
found in the same neighborhood. However, upon crossing the boundary BD the 
equilibrium (3 losses its stability and slow movement along this manifold 1 
changes into fast one, which leads the trajectory c2 into the neighborhood of 

the equilibrium manifold corresponding to (3 In this case the observed 2' 
variables x and Y change quickly, the ecosystem structure changes in a jump, 

and the transition (3 + (3 is irreversible. The irreversibility is understood in 1 2 - 

the sense that if there exists a trajectory c2 leading in a reverse direction (from 
- 

f f (Y 7 Y2 ) to ( ~ f ,  ')': )), such that f (E2) = f (c2 ), then fast movement 
- 

along c2 will take place at the point E rather than D, i.e. the trajectories c2 
- 

and c2 will no longer be close. This is the hysteresis phenomenon, typical for 

non-linear systems. 



We have considered the simplest model of a two-species competitive 
community. It is clear that hysteresis effects and some other catastrophes will 
take place in the case of multi-species competitive communities. Stratification 
of phase space, typical for these systems, will result in different characteristic 
times (different time-scales) for different groups of species: while the 
population sizes of some species will be almost constant, the population sizes 
of other species will change quickly and sharply. Slow evolution of parameters, 
caused, for instance, by genetic processes, or changes of environment, will 
generate various structural ecological reconstructions, the non-linear effects of 
hysteresis type ensuring irreversibility of these evolutionary reconstructions. 

6. BORDER BETWEEN TWO VEGETATION ZONES 

"Revenons B nos moutons" we show how we can use the simplest model of two 
competing species for description of such a sufficiently complex phenomenon 
like the border between two different vegetation zones. 
Let us suppose in the model (5.1) that its coefficients depend on some spatial 
coordinate s , moreover only the total productivities E and E depend on this 1 2 
coordinate, the coefficients y .. are constant and do not depend on s .  We 

IJ 
suppose that the E and E change continuously along s , as it shown at Fig.7. 1 2 
After replacing 

we get - 

Let a a < 1, i.e. the interspecific competition is very weak in comparison 1 2  
with the intraspecific one. Then the movement along the axis s corresponds to 
the movement along the curve f (E , E ) (see Fig.8a) from the point A up to 1 2  
the point D. For the quasi-stationary movement when the steady-state 
equilibria are not broken, the transition zone with continuous change of 
biomass is at the interval BC. This is so-called the "soft" border when the 
biomass of first species decreases up to zero level at that time the biomass of 
second species increases as we are going into the region more and more 
favorable for the second species (see Fig.8b). Domain I, shown at the Fig.8a1 
corresponds to the areal of only the first species; domain I1 corresponds to the 
transition zone, where the areal occupied by first species pass over 
continuously to the areal of second species; domain I11 corresponds to the areal 
of second species. 



When a a > 1,  i.e. the interspecific competition is stronger then intraspecific 1 2  
one, the transition is existing also. But inside this zone the continuous 
transition from one species to another is absent. Either the first species or the 
second one can exist in dependence on the initial conditions. At the Fig.9b it is 
shown by the doubling (solid and dotted) bars. The species can not coexist, 
equilibrium biomass x * (s) and y * (s) are changed by jump with the 

transition from one point to the next one along s E [BC]. This is so-called the 
"hard" border (see Fig.9a,b). 
Let us suppose now, that the picture drawn at the Fig.7, slowly moves to the 
left with the constant velocity v ,  then E = El (S + vt), E2 = E2 (S + vt). 1 
When the border is "soft" we can see the slow evolution of the transition zone 
following climate change: the zone is moving to the left (but not explicitly with 
the same velocity), the picture itself is remaining the same (to within the 
displacement). When the border is "hard", then this evolution is discontinuous. 
Despite of worsening of local climatic conditions (decreasing of E ), the first 1 
species survives ("waits") at this point. Then it is replaced by the second 
species very quickly (in comparison with the characteristic time of climate 
change). 

7. COMPETITION AND SELECTION IN THE POPULATION OF CLOSED 
TROPHIC CHAINS: ECOSYSTEM EVOLUTION 

The motive force of Darwinian evolution are competition and natural selection 
at the level of the population of individuals. The competition and natural 
selection at the level of macromolecules is the main cause of the origin of life 
(according to Eigen [7]). In his studies Eigen considers a mathematical model 
in which the hypercycles, i.e. special mathematical objects to some extent 
similar to the macromolecules, replicate, compete, and perish. In our study we 
shall try to consider the competition and selection at the level of the simplest 
ecosystems. Mathematical models of these ecosystems may be closed trophic 
chains; these objects have been studied adequately in [1,2]. They compete for a 
common resource and the outcome of the competition, i.e. the result of 
selection, is determined by stability of the proper stationary states. 

Suppose an ecosystem is specified, closed in terms of a substance, whose 
structure is of the trophic-chain type. The amount of free resource (of the 
matter found outside of consumers) is equal to No, this resource is consumed 

by a species of the biomass N , the biomass N , in its turn, is consumed by a 1 1 
species of the biomass N etc., to N . All biomass are measured in the 2 ' n 
same units as the resource. Dead biomass is decomposed quickly (compared 
with the characteristic times of the species making up the chain) and the 
corresponding substance returns without losses to the resource level, so that the 
entire system is overall closed in terms of this matter, i.e. the conservation law 
takes place: 

n 



If now assume that all trophic functions are linear, of the Volterra type, then 
the model equations can be written down as 

Let there exist and be stable a solution to (7.1)-(7.2) of the form * * * * 
{ N o , N l  ,..., N  ,0 ,..., 01, N .  >O, i=O, l ,  ..., q;  O S q S n ;  then 

4 1 

we shall say that there exists a trophical chain of the length q .  
Consider now the case where the same resource supports several trophic 

chains. The equations of the corresponding model take on the following form 
(here j = I,. . . , m is the number of the chain): 

This model describes the competition of m trophic chains for common resource 
N  . Equations (7.3)-(7.4) may have stationary solutions of the form 

0 



j * where all N .  are positive. A problem is posed concerning the existence and 
1 

stability of these solutions, depending on parameters Cti a!' and on the 0 '  1 

parameter C ,  the total amount of matter in the system. If we consider the 
selection among the trophic chains competing for the common resource (i.e. 
among the ecosystems) to result in a steady-state distribution of biomass, this 
process can be interpreted as the evolution at the ecosystem level and the 
conditions ensuring stability of this distribution as the criteria for the evolution. 
From the mathematical standpoint, it would certainly be very attractive to 
investigate this problem further in the general form. It is unlikely, however, 
that descriptive and easily interpretable results can be obtained by going along 
this lines. Therefore, we choose the inductive way of investigation and consider 
first the simplest but still sufficiently meaningful situation: the trophic chains, 
of which one comprises two species and the other comprises one species 

Let 

Then, substituting these variables and parameters into (4.3) and excluding N 
0 

by using of the conservation law, we get 

dx. 

We assume what A # B ,  i.e. the species in different chains are different. 
Let us set five all possible eqilibria in (7.6) and their existence conditions. 



* * * 
1. x  = x = y = 0. This solution corresponds to the absence of life in 1 2 

the system, all the mass of matter is concentrated in the resource block. * * * 
2. x = A; x = y = 0. There may exist only one trophic chain of the 1 2 

length 1, but for the existence it is necessary that 
1 1  1 * A > 0, i. e. C > ml / a. = Cl . In other words, for a trophic chain having 

at least the minimal length to arise in the system, it is necessary that the total 
amount of matter in the system should exceed a certain non zero threshold 

c;* . 
* * * 

3. x  = x = 0. y = B. Again there may exist only one trophic chain, 1 2 
also of the length 1, but with the other species. The existence condition is 

2 2 2 * B>O,i.e.C>ml / a O  = Cl . 
The threshold effect exists again, but this threshold is defined by characteristics 
of the other species. * * * 

4. x  = p2; x2 = (A  - p2) / a, ; . y = 0. There may exist one trophic 
1 

chain but now of the length 2. For the existence it is necessary that 

In other words, the total amount of matter in the system must increase still 

further (c:* > c:* ). 
* * A-B * a2B-A 

5 . X  = p  ' X  = 
1 2 '  2 ;y = - P2. 

a, -1 a, -1 
All species constituting two trophic chains may coexist in the systems. For this 
to take place, it is necessary that 

2 1 
ml ml . a) A > B,orT > 1, 
a. a. 

(7.7) 
b) a 2 B - A > p 2 ( a 2  -1)' or 

The expression for c::* can be rewritten in the form 



Whereby in view of (7.7a), it follows that 
11" 1 * C > C . This means that for two chains to coexist, the total amount of 
2 1 2 

matter in the system must increase again (as compared with the amount of 
matter necessary for the existence of one chain of the length 2. 
Now we analyze the stability of these equilibria. * * * 

1. The solution x = X2 = y = 0 is stable if 
1 

1" 2" A < 0, B < 0, i. e. C < min[Cl , Cl 1. In other words, as long as the 

total amount of matter in the system is lower than a definite threshold, then life 
is impossible in such a system. Even if any one of the species appears in the 
system, it will of necessity be eliminated. * * * 

2. The solution x = A; x = y = 0 is stable if A > B, p2 > A > 0. 1 2 
From the first inequality, which coincides with (7.7), it follows that the 
inequality must true: 

c;* < c;*. 

From the second inequality it follows that 

* * * 
3. The solution X = X2 = 0. y = B is stable if A < B, B > 0. From 1 

the first inequality it follows that the inequality holds which is inverse to (7.9): 

(7.1 1) 
from the second inequality it follows that 

(7.12) 
4. The solution * * * 

xI = p2. x2 = (A - p2) 1 a2;.Y = 0 is stable if 
3 

1 * C2 < C < c::*. As follows from (7.8), these inequalities can be fulfilled 

2* < c;*. only if Cl 
5. Finally, the solution 

* * A-B * a,B-A 

* 
is stable if A > B, Y > 0, i.e. inequalities (7.7) and (7.8) must hold. Here the 
existence conditions of the equilibrium ensure its stability as well. 
If we now compare the stability conditions with thosk of the existence of 
biologically meaningful stationary solutions (equilibria) for all other cases (1- 
5), it can be seen that when a solution is stable, it always exists and is 
biologically meaningful. 
The above-formulated conditions of the existence and stability show that the 
transition from one stable equilibrium to another occurs as the parameter C 
changes, therefore it may be regarded as a bifurcation parameter, the 

1" 2" 1" 11" 
bifurcation points coinciding with the critical values C , Cl , C2 , C21 . 1 



Generally speaking, it may be thought that as the total amount of matter in the 
system increases, the latter becomes more complicated; but this is not always 
so, and the real picture is more sophisticated. Let us consider this issue in more 
detail. 
Let the growth of the parameter C proceed slowly, so that upon each small 
change of C an equilibrium has time to become established, i.e. the process is 
quasi-stationary. From the preceding it is obvious that, depending on the 

relationships between the values c l*and  c:*, the pathways of system 1 
evolution are different. The values themselves can be interpreted as certain 
indices of adaptability of the primary species in each trophic chain to the 
environment, the state of which is described by the concentration of the 
resource. 

1 1  2 2 
Let c l *  > ~ ~ * , i . e . m  / Ct > m / Ct . This inequality means that the 

1 1 1 0  1 0 
mortality rate of the primary species in the first chain is higher than the 
mortality rate of the primary species in the second chain, whereas the per capita 
rate of resource consumption by the primary species of the first chain is lower 
than the respective value for the second chain. In other words, the primary 
species of the first chain is adapted to the resource less than the primary species 
of the second chain. As follows from the analysis in this case, when C has 

2 * 
exceeded the threshold Cl , only the second chain (comprising one species) 

will exist in the system. This chain wins the competition, and further increase 
in the total amount of matter will not be accompanied by any complication in 
its structure: only one chain (the second one) will exist, as before. 
A much more interesting picture is observed if 

1 * 2 * 1 1  2 Cl < Cl , i. e. ml / CtO < ml / C t t  . In other words, if the primary 

species of the first chain is more adapted to the resource than that of the 

second. In this case, when C surpassed the threshold c:*, the first-species 

chain of the length 1 arises in the system. As C grows further, when 
1 * C > C , the length of the first-species chain increases to 2. This result may 
2 

seem to be symmetrical to the preceding one, the difference being only in that 
the first chain wins the competition. However, this is not so, and when 

C > c;:*, the second chain also becomes fixed in the system. Two chains 

competing for one resource may coexist! It is fundamental that the coexisting 
chains have different lengths. 
If now we consider this process from the standpoint of the system structure 
becoming more complicated, it can be concluded that complication of the 
horizontal, competitive structure is possible only on the condition that the 
vertical, trophic structure is complicated beforehand. The competing chains 
(ecosystems) must have different levels of complexity in the vertical structure 
(in our case the chains must be of different length). 
This result leads us away from the simple logic of the Gause exclusion 
principle and shows that competition at the ecosystem level may be a factor 
which increases the diversity of a united ecosystem. Naturally, a sufficiently 
large amount of resource is required for this diversity to be maintained, i.e. the 



environment should be rich enough. Of interest is the evolution pathway itself: 
through an increase in the diversity of the united ecosystem, wherein the 
individual ecosystems coexist, competing for the resource in common. 
In conclusion of this section we present two Figures which illustrate different 
evolution pathways of the whole system as the total amount of matter increases 
(Fig. lOa,b). 
Here we have considered the simplest case which, nevertheless, preserves the 
features of the phenomenon under concern. It would be interesting to see how 
the relationship between the lengths of competing chains influences the 
outcome of competition. It is intuitively clear that the behavior of the system 
will become more complicated if we consider more realistic trophic functions, 
What new effects will it bring about? So far these questions remain 
unanswered. 

8. DYNAMIC CHAOS IN CLOSED TROPHIC CHAIN 

"Chaos had arisen in the Universe, before all 
things." 

Hesiodus 

In mathematical ecology dynamic chaos turned out to be a rule rather than an 
exotic exception[2,6], the problem is how to make up the adequate model. For 
instance, a closed, three-level trophic chain with non-linear trophic functions 
can be considered, perhaps, as the simplest object which demonstrates dynamic 
chaos. A model of this system can be represented in the form: 

a . N .  
Let VO = aoNo, V. = 1 1  , i = 1,2,3. If now we choose as 

K . + N  
I i 

bifurcation parameters the total amount of matter in the system, C ,  and the per 
capita rate of resource consumption by the species of the first trophic level, 
CX , it turns out that there exists a curve C(a ) such that moving along it 0 0 
generates the behavior of the system that varies from the regular ( doubling 



cycles) to the stochastic one. The transition does not occur directly: there exists 
a "pre-stochasticity" domain, in which there are both regular and stochastic 
trajectories[6]. 
On the other hand, in the open chains, where neither dead biomass is 
decomposed and returned to the resource level, there exist only regular 
trajectories (cycles) [2]. Naturally, it is assumed that there exists a constant 
flow of an external resource into the system (for closed chain it is equal to 
zero). Suppose now that the chain is partly closed, i.e. a certain part of matter 
contained in the dead biomass returns into the resource level. A model of such 
a system can be represented, for instance, in the form: 

It would be of interest to find out whether in the plane of bifurcation 
parameters {Q, k )  there exist domains within which dynamic chaos arises in 
the system (8.2). 
Naturally, other formulations are also possible. I believe that the models of 
mathematical ecology constitute a favorable field to look for different strange 
attractors and dynamic stochastic behavior corresponding to them, but it is 
necessary do not forget about biological adequacy of the model, which being 
used. 

9. CONCLUSION 

We have tried to show what are non-linear effects that exist in the models of 
mathematical ecology. Note that linear systems are devoid of such properties 
as, for instance, catastrophes, and this circumstance, in the methodological 
aspect, may be interpreted in favor of non-linear models as adequate tools to 
describe ecological processes and systems. 
In general, the problem to choose an adequate mathematical description is very 
urgent in ecology. Borrowed from other, more "mathematized" sciences, 
methods of description have exhausted their potentialities to a considerable 
extent. It is necessary to look for new unconventional approach which, 
nevertheless, could rely securely upon the mathematical concepts already 
known. 
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Figure 1. Malthusian functions for the prey population: 
I - density-dependent regulation type; 
I1 - Alle type. 



Figure 2. Types of the trophic function (a) and corresponding 
functions W(x) (b). 



Figure 3. Types of the equilibrium manifold in the "prey-predator" system. 



Figure 4. Bifurcations and the emergence of the relaxation cycle 
in the "prey-predator" system. 



Figure 5. The "&-deformation" of trophic function: 
- before; ------- - after. 



Figure 6. Stability domains and types of the phase portrait for 
system (5.2) 



Figure 7. Growth functions E, and E . 



Figure 8. Case al.a2 >l ; "soft" border. 
a) Movement in the parametric space, corresponding to the movement 
along the axis s . 
b) Quasi-stationary border between two vegetation zones. ( The case of 
continuous transition from first species to the second one; inside the transition 
zone the ratio of first species decreases while the second one ratio increases as 
coming right along the axis s). 



Figure 9. Case a, . a, > 1 ; "hard" border. 
a) Movement in the parametric space, corresponding to the movement 
along the axis s. The domain I1 corresponds to bistable situation: either 
the first species exists or the second one exists at any point s E [BC]. 
b) Spatial allocation of two species. Inside the transition zone BC the 
biomass of each species can be discontinuous as we more from one 
point to the neighboring one. 



Life absent : 

: 2nd trophic chain of length 1 

Life absent 1: Lmm 1 
L ' 1st trophic chain . 

of length 1 (qJ A ,  
1 1st trophic chain 1 1st trophic chain of length 2 + 
' of length 2 2nd trophic chain of length 1 

Figure 10. Changes in the system structure due to increase in the total 
quantity of substance, C: 


