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Sample-Pat h Optimization in Simulation 

Gul Gurkan 
A. Yonca Ozge 

Stephen M. Robinson1 

Abstract 
This paper summarizes information about a method, called sample-path optimization, for 
optimizing performance functions in certain stochastic systems that can be modeled by 
simulation. We explain the method, give conditions under which it converges, and display 
some sample calculations that indicate how it performs. We also describe briefly some 
more extensive numerical experiments on large systems (PERT networks with up to 110 
stochastic arcs, and tandem production lines with up to 50 machines). Details of these 
experiments are reported elsewhere; we give references to this and other related work. We 
conclude with some currently unanswered questions. 

1 What is sample-pat h optimization? 

In this section we explain briefly what sample-path optimization is, and give some reasons 
why it might be useful in practical situations. We also sketch the related work that has 
appeared in the literature, and give references where fuller discussions appear. 

A general model for many problems in simulation optimization is an extended-real- 
valued stochastic process {X, I n = 1,2,. . .}, where the X, are random variables depend- 
ing on parameters 8 E R ~ .  That is, for each n and each 8, Xn(8) is a random variable 
defined on the probability space (0, F, P), and it may take either real values or the value 
+m (sometimes also -m).  This is a convenient device for modeling constraints, because 
we can set Xn(8) = +m for those 8 that do not satisfy whatever constraints we have to 
work with. When a particular sample point w is fixed, we write X,(w, 8) to display the 
dependence on the sample point. 

For simulation to be of interest we generally have some a priori knowledge that there 
exists a deterministic function X,(8) such that the functions X, almost surely converge 
pointwise to X, as n + m. For example, in the case of static systems the strong law of 
large numbers provides this kind of information when Xn is the average of n independent 
replications. In the case of dynamic systems such as queues, if we think of Xn as the 
output of a simulation run of length n (e.g., n service completions), we can often infer 
the existence of X, from regeneration theorems. In this paper we assume that X, exists 
for the systems we are considering. Our interest will be to find the infimum of X, and, 
if possible, a value of 8 at which that infimum is attained (a minimizer of X,). 

Of course, in general we cannot observe X,, but only Xn(8) for particular (finite) 
n and particular 8. Therefore, we have to use such observations to approximate the 
minimizer and minimum value that we are seeking. The method that we consider here, 
which we call sample-path optimization, is particularly simple: we fix n and the sample w, 
and use deterministic optimization methods to find a minimizer 8; of X,(w, ) (assuming 
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one exists; we shall give conditions in Section 2 under which it will). We simply take this 
9; as an estimate of a minimizer of X,. 

This idea has several attractive features, as well as some that may be less attractive. 
First, in many cases we can apply very powerful methods to minimize Xn(w, . ), even if the 
constraints on 9 are numerous or complicated. The reason for this is that by using existing 
simulation methodology, such as the method of infinitesimal perturbation analysis (IPA), 
we can compute not only the value Xn(w, 9) for a given 9, but also its exact gradient (when 
the gradient exists). Therefore we can apply fast (superlinearly-convergent) methods, 
such as the BFGS algorithm and its relatives for constrained optimization, which may 
permit us to minimize Xn(w, - )  to high accuracy in relatively few function and gradient 
evaluations. See, for example, Mor4 and Wright (1993) for a description of some of these 
methods and for further references. 

The availability of very effective methods for constrained deterministic optimization 
is one reason why sample-path optimization could be effective on problems with many 
variables and/or complicated constraints, with which simple gradient-step methods may 
have difficulty. In particular, superlinearly-convergent methods enable one to be fairly 
confident of the location and accuracy of the optimizer of Xn(w, . ), and thereby to sep- 
arate the error due to the approximation of X, by Xn from the error due to inaccurate 
computation of a minimizer of Xn. With slower algorithms, such as stochastic approx- 
imation or stochastic quasigradient methods, such separation is likely to be difficult or 
impossible. 

Second, because the method separates optimization from the computation of function 
and gradient values it is well suited to modular implementation. For example, codes 
already in existence for simulating particular systems could be used as part of an imple- 
mentation (provided that they can accommodate some method of gradient evaluation, 
such as IPA), toget her with available optimization codes that call external subroutines 
for function and gradient evaluation. The simulation and the optimization codes need 
not interact with each other except through the function and gradient values that the 
first code supplies to the second. This modularity can be a substantial advantage if the 
system being simulated is large and complex, and/or if the optimization method being 
used is fairly sophisticated. 

On the other hand, such modularity has some apparent disadvantages. For example, 
at this time we do not know how to apply sample-path optimization to multistage (dy- 
namic) stochastic optimization problems in such a way as to take advantage of the time 
structure of such problems. This is an area of current research; several others are men- 
tioned in Section 4. With numerous open questions such as these, the overall effectiveness 
of sample-path optimization is yet to be determined. Numerical experience to date is 
quite encouraging, but there is still much that we do not know about the method and its 
behavior. 

In the rest of this section we give a brief survey of some existing literature related 
to this method. The method as described here has been analyzed and applied in three 
papers, two by Plambeck et al. (1993, 1994) and the other by Robinson (1994). The 
second of these gave extensive computational results, to which we return in Section 3 
below; the third presented a convergence analysis. We shall extract parts of that analysis 
in Section 2 immediately following this one. 

A method very similar in concept, but different in execution, is the technique of 
retrospective optimization proposed by Healy and Schruben (1991). Healy and Xu (1994) 
later analyzed this technique and gave some additional computational results. A key 
difference between the method we treat here and that studied by Healy and Xu (1994) 



is that in their computational method they propose to store the information generated 
during a simulation run, then operate on that stored information to compute a minimizer. 
By contrast, we do not envision storing the information, but rather making repeated 
simulation runs using the method of common random numbers to ensure that we observe 
the same function X, (w, . ) on each run. Chen and Schmeiser (1994) applied retrospective 
optimization methodology to  the problem of stochastic root finding. 

King and Wets (1991) studied a method of this type applied to  solution of stochastic 
programming problems, and in particular to linear recourse problems. They imposed 
additional technical requirements, suitable to the class of problems they considered, and 
obtained convergence results and related information. Their problem class was somewhat 
different from that considered here; on the other hand, Shapiro and Wardi (1994) and 
Rubinstein and Shapiro (1990, 1993) considered simulation optimization problems using 
likelihood ratio (LR) methods of gradient estimation. In these cases one of the main 
operational differences is the method of computing gradients: for many of the problems we 
envision solving by sample-path optimization, the easiest and cheapest way of computing 
gradients is by IPA. 

This section has briefly described the sample-path optimization method and has out- 
lined connections with existing literature. In the next section we look at conditions under 
which the method can be shown to be a priori convergent: that is, under which as we 
lengthen the sample path indexed by n, the computed optimizer 8: could be expected to 
approach the set of optimizers of the limit function X,. 

2 When does it work? 

This section summarizes the conditions under which we can prove that the sample-path 
optimization method will converge. We do not give any proofs, but we indicate where 
these can be found. 

It is clear that the problem of convergence in sample-path optimization is that of 
determining when, and how quiclcly, a sequence of optimizers of X,(w, . ) will converge 
to  an optimizer of X,. The situation is complicated by the fact that ordinary pointwise 
convergence of a sequence of functions is well known to be insufficient for convergence of 
their optimizers to  optimizers of the limit function. What is needed, generally speaking, 
is epiconvergence, which we now define. 

Definition 1 A sequence f, of extended-real-valued functions defined on R~ epiconverges 
to an extended-real-valued function f, defined on Rk if for each 8 E Rk the following hold: 

a. For each sequence (8,) converging to 8, f,(8) 5 lim inf,,, fn(8,). 
b.  For some sequence (8,) converging to 8, f,(8) 2 limsup,,, fn(8,). 

In (b) we actually have f, (8) = lim,, fn(8,), because of (a). 
It is known that epiconvergence is independent of pointwise convergence. For a very 

readable elementary treatment of relationships among various notions of convergence, see 
Kall (1986); a comprehensive treatment of epiconvergence and related issues is in Attouch 
(1984). The forthcoming book of Rockafellar and Wets (1994) will treat this area from 
the perspective of optimization. 

A rough (and incorrect) summary of the convergence properties of this method would 
be the statement that if the functions X, almost surely epiconverge to the function X,, 
then local minimizers of the X, almost surely approach local minimizers of X, as n + m. 
Unfortunately, things are not quite so simple. To state the conditions precisely we need 



more terminology, in particular the concept of complete local minimizing set (Robinson 
1987), which extends the idea of isolated local minimizer to cases in which the set of 
minimizers might not be a singleton. The symbol "cl" denotes the closure of a set. 

Definition 2 Let Z be a topological space and let f be an extended-real-valued function 
on Z .  A nonempty subset M of Z is a complete local minimizing (CLM) set for f with 
respect to an open set G > M, if the set of minimizers o f f  on cl G is M. 

We say a function is proper if it never takes -00 and does not always take +oo. We 
also use the notation e(S, T) for the excess of a set S c Rk over a set T C Rk: that is, 

e(S, T) = sup d(s,  T); d(s, T) = inf 11s - tll. 
sES t ET 

If e(S, T) is small, then each point of S is close to some point of T, even though T may 
be much larger than S. 

The following theorem summarizes the convergence properties of this method. It does 
not give the most general statement possible, but rather tries to strike a balance between 
generality on the one hand and simplicity on the other. For more general results see 
Robinson (1994); the theorem here is a combination of Theorem 3.7 and Propositions 3.8 
and 3.9 of that paper. 

Theorem 1 Suppose that the following assumptions hold: 
a. X, is a proper deterministic function whose infimum is p, and whose set of 

minimizers M, is nonempty and compact. 
b. With probability one, each X, (1 5 n < oo) is lower semicontinuous and proper. 
c. With probability one, the X, epiconverge to X, as n -, oo. 
Let G be any open bounded subset of Rk containing M,. Then there is a subset I? of 

fl having measure zero, with the following properties: suppose that w $ I?, and define for 
l < n < o o  

jin(w) = inf Xn(w, - ), 
6 ~ ~ 1  G 

and 
M,(u) = {e E CI G I x,(~,e) = jr,(~)}. 

One then has 
1. lim,,, ji,(w) = p,, and p, is finite. 
2. There is a finite positive integer Nw such that for each n > Nw, ~ , ( w )  is a 

nonempty, compact CLM set for Xn(w, . )  with respect to G. 
3. lim,,, e ( k ( w ) ,  M,) = O. 
If in addition X, is convex and for each n X, is almost surely convex, then the above 

conclusions hold with G = Rk. 

Theorem 1 describes exact minimization, but it is also possible to obtain results for 
approximate minimization; these can be useful in connection with numerical methods 
that compute points near, but not equal to, the actual minimizer. For these results we 
refer to Section 4 of Robinson (1994). 

A key hypothesis of Theorem 1 is that the X, almost surely epiconverge to X,. It 
would be of interest to have general results, for classes of stochastic optimization prob- 
lems arising in applications, to guarantee such epiconvergence. However, we give here a 
particular set of assumptions that, while rather special, will cover the examples of Section 
3. This result is a specialization of Proposition 2.5 of Robinson (1994). The effective 
domain of an extended-real-valued function f ,  written dom f ,  is the set of points 6 E Rk 
at which f (e) < +oo. 



Proposition 1 Suppose that the following hypotheses hold: 
a.  X, is a deterministic closed proper convex function whose eflective domain has a 

nonempty interior. 
b .  For each n, X, is with probability one a closed proper convex function. 
c.  There is a countable dense subset O of Rk such that whenever 9 E O ,  then with 

probability one Xn(9) converges to X,(9) as n --t oo. 
Then with  roba ability one the X, epiconverge to X, as n --t oo. 

The requirement that dom X, have a nonempty interior does not prevent us from 
dealing with problems in which the presence of linear constraints may cause the effective 
domain of X, to have an affine hull A of dimension less than k, provided that the effective 
domains of the X, also lie in A. We then simply apply Proposition 1 to the restrictions 
of the functions X, and X, to the set A; the technique is described in more detail in 
Section 2 of Robinson (1994). 

We have summarized briefly the known results about when the method of sample-path 
optimization converges, in the sense that minimizers of the approximating functions X, 
almost surely approach the set of minimizers of the limit function X, as n --t oo. In 
the process, we saw that a key requirement was that the X, epiconverge to X,, and we 
showed that for the particular case of convex functions, this epiconvergence hypothesis 
held under mild assumptions. We now turn from the question of theoretical convergence 
to that of actual numerical convergence: that is, does the method work? The following 
section presents a few numerical results to indicate what the method can do, and refers 
to much more comprehensive numerical experiments reported in Plambeck et al. (1994). 

3 How well does it work? 

In this section we summarize the available computational evidence for the effectiveness 
of sample-path optimization. We illustrate some interesting aspects of the method's per- 
formance by giving numerical results for small problems, and we describe the results of 
applying the method to much larger problems of different types. 

The example problem we chose for the numerical illustrations was a closed queueing 
network with four servers. Customers move through Server 1, then go either to Server 
2 (with probability .3) or to Server 3 (with probability .7). After this they go through 
Server 4, and then return to Server 1. Service time at Server i is exponentially distributed 
with parameter 9; (a decision variable). Calculations presented here are for this system 
with 20 customers, and we assumed that the buffers at each server could accommodate 
all customers, so that blocking did not occur. The quantity of interest for optimization 
is the steady-state throughput T(9) consisting of service completions at  Server 4 per unit 
time. The decision variable is the vector 9 consisting of the four service rates. 

The numerical results reported in this section were obtained using the deterministic 
nonlinear optimization code NLPQL (Schittkowski 1985186). We thank Prof. Dr. K. 
Schit tkowski, Universitat Bayreuth, Germany, for making this code available to us. The 
code determined the total number of simulation runs to make, one run being required 
each time either one or both elements of a functionlgradient pair were to be computed. 
This decision was controlled by the accuracy parameter ACC in the code, which we set 
to 

In order to use NLPQL one must be able to compute both the objective function 
value and its gradient. To compute the gradients we used the IPA method for closed 
queueing networks described in Suri (1989) and Leung (1990). IPA enabled us to obtain 



the gradients in a single simulation run. The effort expended in the IPA calculations 
was negligible compared to the effort required for the simulation, and the only storage 
requirement was for a 4 x 4 matrix. 

Table 1 shows the results from unconstrained minimization of the function 

We chose this functional form to model a problem in which one wants to maximize 
throughput, but in which there is some cost (in this case, I.) for increasing the service 
rate of a server. The optimization problem then is to find the best tradeoff of cost against 
throughput . 

Table 1: Unconstrained, Closed Queueing Network 

Each row of this table shows the final result of optimizing X ,  for a distinct n ,  including 
the simulation run length n (consisting of the total number of service completions at Server 
4, with the notation a + b for a x lob), the total number i of simulation runs of length n 
required, the final values of the O;, and the quantity z consisting of the objective function 
value less its integer part (which was 73). In each case the starting point was 0; = 10 for 
all i. We also ran the optimization code starting from 0; = 1; the number of iterations 
was larger, as would be expected. 

We also experimented with a constrained version of the same problem, in which we 
minimized 400T (0)-' subject to the three inequality constraints 

The results are shown in Table 2, in which the quantities shown are the same as those 
shown in Table 1 except that z is the objective function value reduced by a different integer 
part (29 instead of 73). The starting point and the tolerance ACC for these computations 
were the same as for those of Table 1. 

We suspected that the number of iterations required for this constrained optimization 
would be less than that required for the unconstrained problem, because of the well known 
dimensionality reduction produced by active constraints (with four variables and three 
active constraints one is effectively minimizing in a subspace of dimension 1). This was 
in fact the case, as one can see by comparing the values of i in the two tables. This 
phenomenon, incidentally, provides another argument for handling constraints directly, 
rather than by devices such as unconstrained minimization combined with projection. 



Table 2: Constrained, Closed Queueing Network 

One of the ~articularly interesting aspects of these two tables is the rather small change 
in the solution produced by a large increase in computational effort. For example, in Table 
1 the solutions produced using a total of 2 million and 80 million service completions are 
not very different (2nd and 7th lines of table). Similarly, in the first and third lines of 
Table 2 one sees that an increase from 100,000 to 9 million service completions produced 
relatively little change. This suggests that even a fairly small computational effort may 
produce a solution accurate enough for practical purposes. As we note below, a similar 
phenomenon appeared in the numerical experiments carried out, on much larger systems, 
by Plambeck e t  al. (1994). 

These computational examples may help to give some insight into how the method 
behaves in particular cases; however, they do not demonstrate that it will be useful in 
solving larger or more complex problems. Solution of such problems was the object of the 
work reported in Plambeck e t  al. (1993, 1994), which we now briefly describe. 

This work dealt with two different types of problems: tandem queues, modeling man- 
ufacturing lines, and stochastic PERT (Program Evaluation and Review Technique) net- 
works, modeling complex projects in which some activities must be completed before 
others can begin. The tandem queues consisted of servers running at deterministic speeds 
but subject to breakdowns. The volume of product processed until breakdown and the 
time to repair after a breakdown were random. The servers were separated by buffers of 
fixed sizes, and the presence of these buffers subjected the servers to blockage and/or star- 
vation resulting from the behavior of the servers downstream or upstream, respectively. 
The authors of Plambeck e t  al. (1993, 1994) optimized lines with up to 50 servers, so that 
simulation time was an important issue. To increase the speed of the simulations, they 
employed continuous flow models instead of discrete models, using methods described by 
Suri and Fu (1991, 1994). The objective function to be minimized was the reciprocal of 
throughput, the decision variables were machine cycle times (reciprocals of speeds) and 
these were subject to linear equation and/or inequality constraints. 

The PERT networks studied in Plambeck e t  al. (1994) contained up to 70 nodes 
and 110 stochastic arcs. Each stochastic arc had a duration specified by a probability 
distribution that was either uniform (with variable mean) or triangular (with a variable 
scale factor in the maximum, minimum, and mode). The problem was to minimize the 
sum of (1) expected project duration and (2) a cost term of the form k;zrl, where 
the k; were specified numbers and the z; were the variable quantities in the probability 
distributions just described. The z; were also subject to linear inequality constraints. 

As both the limit function X ,  and the approximating functions X,, in problems of 
these types are convex but may be nonsmooth, it was necessary to use a method designed 
for nondifferentiable convex optimization; in this case, the bundleltrust region method 
of Schramm and Zowe (Zowe 1989, Schramm and Zowe 1990). Some heuristic modifica- 
tions were also made to the basic sample-path optimization method in order to re-use 
information from past simulations. 



Complete numerical results for these systems appear in Plambeck et al. (1994); how- 
ever, we note that in these computations, as in the small examples illustrated above, 
substantial increases in computation time resulted in fairly small relative changes in the 
decision variables. In most of these problems no analytic formulas for the optimal solu- 
tions are known, so one cannot tell for sure whether this means that the earlier solutions 
(those with smaller computation times) were fairly accurate or that none of the computed 
solutions was accurate. However, in the one case (2-server tandem queues) for which ana- 
lytic formulas were available, the solutions computed using sample-path optimization were 
very accurate (errors ranging from 1.8 x to 1.4 x 10-15), and this is an encouraging 
sign. 

This section has presented computational results using sample-path optimization for 
some small queueing networks, and has briefly summarized much more extensive results 
available elsewhere in the literature. In the concluding section we discuss some of the 
areas where we think more information about this method would be very helpful. 

4 Some unanswered quest ions 

Here we list a number of questions about the sample-path optimization method to which 
we currently lack answers. Research is currently underway which we hope will answer 
some of these questions. 

First, consider the question of whether the method works at all: that is, whether 
optimizers of Xn converge to optimizers of X, as n becomes large. We dealt with this 
question in Section 2; recall that a key hypothesis of Theorem 1 in that section was that 
the Xn almost surely epiconverge to X,. As we indicated above, it would be of great 
interest to have general results, for classes of stochastic optimization problems arising in 
applications, to guarantee such epiconvergence. 

Second, if the method in fact converges then one can reasonably ask how fast the 
convergence is likely to be. This means that we would like to have some indication 
of the rate of convergence of an optimizer 8: of X, to the set of optimizers of X, as n 
increases. There is a considerable amount of recent work on asymptotic analysis applicable 
to stochastic programming, some of which may help to answer this question; for example, 
King (1989), King and Rockafellar (1993), Shapiro (1993). However, since this work 
focuses on the convergence in distribution of solutions to stochastic optimization problems, 
and since we are interested in the behavior of the solutions along a single sample path, 
we do not yet know whether these results can yield rate information of the kind we need. 

Finally, quite apart from the theoretical questions of convergence and rate of conver- 
gence, there is the practical question of whether this method can contribute, over the 
long run, to the solution of significant problems that otherwise could not be solved at 
all, or could not be solved so well. Clearly, we do not know the answer to this question 
now, and no mathematical investigation will provide it. It will be necessary to have more 
computational experience, on a wide selection of problems from applications, before we 
have an indication of the method's overall usefulness. 

Nevertheless, as we argued in Section 1 above, we think this technique has very attrac- 
tive aspects for - in particular - the solution of constrained problems. It makes available 
for stochastic optimization problems the immense amount of work invested over the past 
50 years in learning how to  deal with constraints in numerical optimization. We hope 
that further work, both numerical and theoretical, will clarify the question of whether 
that availability can be translated into a broadly effective family of solution methods for 



important stochastic optimization problems. 
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