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Foreword 

The research described in this Working Paper was performed a t  the Institute of Informatics, 
Warsaw University (IIUW) as part of IIASA CSA project activities on "Methodology and Tech- 
niques of Decision Analysis". While earlier work within this project resulted in the elaboration 
of prototype decision support systems (DSS) for various models, like the DIXAS system for 
multiobjective transshipment problems with facility location developed in IIUW, these systems 
were closed in their architecture. In order to  spread the scope of potential applications and 
t o  increase the ability t o  meet specific needs of users, in particular in various IIASA projects. 
there is a need to  modularize the architecture of such DSS. A modular DSS consists of a col- 
lection of tools rather than one closed system, thus allowing the user t o  carry out various and 
problem-specific analyses. 

This Working Paper describes the MOhlIP optimization solver for middle-size mixed integer 
programming problems, based on a modified branch-and-bound algorithm. It is designed as part 
of a wider linear programming library being developed within the project. 



Abstract 

This Working Paper documents the Modular Optimizer for Mixed Integer Programming MOMIP 
version 2.1. MOMIP is an optimization solver for middle-size mixed integer programming prob- 
lems, based on the branch-and-bound algorithm. It is designed as part of a wider linear pro- 
gramming modular library being developed within the IIASA CSA project on "Methodology 
and Techniques of Decision Analysis". The library is a collection of independent modules, im- 
plemented as C++ classes, providing all the necessary functions of data  input, da ta  transfer, 
problem solution, and results output. 

The paper provides the complete description of the MOMIP module. Methodological back- 
ground allows the user t o  understand the implemented algorithm and efficient use of its control 
parameters for various analyses. The module description provides the information necessary t o  
make MOMIP operational within a user application program. 

MOMIP is also available as a standalone executable program with built in all the necessary 
auxiliary modules. User's manual for the MOMIP program is included in this paper. It is 
additionally illustrated with a tutorial example. 
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1 Introduction 

MOMIP is an optimization solver in Cf + (Stroustrup, 1991) for middle-size mixed integer 
linear programming problems, based on the branch-and-bound algorithm. It  is designed as part 
of a wider linear programming modular library being developed within the MDA project. T h e  
library is a collection of independent modules, implemented as C f +  classes, providing all the 
necessary functions of da t a  input, da ta  transfer, problem solution. and results output .  The  
PROBLEM class (Swietanowski, 1994) is a communication kernel of the library. It provides 
d a t a  structures t o  store a problem and its solution in a standardized form as well as  s tandard 
input and output  functions. All the solver classes take the problem data from the PROBLEM 
class and return solutions t o  this class. Thus for straightforward use one can configure a simple 
optimization system using only the PROBLEM class with its standard input/output functions 
and an appropriate solver class. More complex analysis may require use of more than one solver 
class. Moreover. for complex analysis of real-life problems, a more convenient way may be to 
incorporate the library modules in the user program. This will allow the user t o  proceed with 
direct feeding of the PROBLEM class with problem data  generated in the program and direct 
results withdrawal for further analysis. 

hIOMIP is implemented as the MIP class. It is a typical solver class taking problem data 
from the  PROBLEM class and returning the solution to  this class. It is presumed. however. that  
the problem has been solved earlier (not necessarily in the same run) by the linear programming 
solver and that  the linear programming solution is available as  a starting one in the search of 
integer solution. With the  specification of various control parameters, the user can select various 
strategies of the branch-and-bound search. All these parameters have predefined default values. 
thus the  user does not need t o  define them for a straightforward use of the MOhIIP solver. The  
MIP class constructs implicitly all the auxiliary computational classes used in the branch-and- 
bound search. One of these classes, the DUAL class that provides the dual simplex algorithm. 
may be useful in some other analyses. Therefore, despite its implicit use in hIOhlIP, the DUAL 
class is made explicitly available for other applications and its description is included in this 
manual. 

Comparing t o  MOMIP version 1.1 (Ogryczak and Zorychta, 1993) several extensions and re- 
finements have been implemented. The  following capabilities are the most important extensions 
of MOMIP version 2.1: 

Special Ordered Sets processing and scanning. 
strenghtened penalties on the branching variable. 
cuts generation, 
priorities for branching variable selection, 
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built in primal simplex algoritl m,  
standardized d a t a  transfer (DIT-LP communication). 

The  manual is organized as follows. Chapter 2 deals with methodological backgrounds of the 
MOMIP solver. It  specifies the  algorithm implemented in MOMIP and meanings of the control 
parameters t ha t  can be used in advanced applications. Chapter 3 describes in details the MIP 
class. Similarly, Chapter  4 contains detailed description of the  DUAL class. It is addressed t o  
the users interested in using this class outside the  MOMIP solver and i t  can be skipped by users 
of the MIP class. MOMIP is also available a s  a standalone executable program with built in 
all t he  auxiliary modules. Chapter  5 describes the  MOMIP program, thus i t  can be considered 
a s  a basic user's manual. It  is accompanied by Chapter 6 describing details of the  input da ta  
file. Chapter  7 presents an illustrative example of the mixed integer model analysis with the 
MOMIP solver, thus it can be considered as a tutorial. 

T h e  MOMIP solver was designed and mainly developed by the  authors of this manual. 
However, it could not have been completed without the  help of Janusz Borkowski, Krzysztof 
Studzinski and Tomasz Szadkowski. Moreover, MOMIP has built in the  INVERSE class de- 
veloped by Artur  Swietanowski for his SIMPLEX module (Swietanowski, 1994). We want t o  
express our  sincere gratitude t o  them. 

2 Methodological background 

2.1 Mixed integer linear programming problems 

A mixed integer linear programming problem (referred t o  thereafter as  MIP problem) is a linear 
problem with two kinds of variables: integer variables and continuous variables. Integer vari- 
ables can take only integer values, whereas continuous variables can take any real number as 
a value. Classical linear programming problems only have continuous variables. In tlie absence 
of continuous variables, we get the so-called pure integer linear programming problem. It call be 
considered as a marginal case of the MIP problem and solved with the  same software although 
specialized algorithms are, usually, more efficient for these types of problems. 

The  possibility of introducing integer variables into linear programming models allows for 
tlie analysis of many very important problems which are not covered by the classical linear 
programming. In many models, some of the given variables represent entities which cannot be 
partitioned. hduch more important,  many logical relations can be formulated as linear relatioris 
with integer (binary) variables. Moreover, many nonlinear and nonconves models can be refor- 
mulated as linear programming problems with integer variables (see Mrilliams, 1991: Kernhauser 
and M1olsey. 1988; and references therein). These problems cannot be solved or approximated 
with the classical linear programming. 

T h e  efficiency of the  solution procedure for MIP problems strongly depends on tightness of 
linear constraints on integer variables. For instance, the set of constraints 

defines the same integer solutions as the set of constraints 

0 . 8 ~ 1  + 0.622 < 1.3, 0 < X I  L 1,  O 5 2 2  I 1, x l ,x2  are integers 

The  former provides, however, tighter linear constraints on integer variables than the  lattes. 
If we drop the integrality requirements, the  former set of constraints defines the convex hull 
of integer solutions, whereas the latter defines a larger set. In Appendix C we provide some 
recommendations for efficient modeling of the most typical integer programming structures. For 
more reading about  efficient MIP problems formulation we recommend the book by LVilliams 
( 1991 ) and references therein. 
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The order in which integer variables are processed during the search for integer solut,ion is 
important for the efficiency. In some situations, this order depends on the original order of 
integer variables in the problem. Therefore, it is recommended to  introduce integer variables 
in decreasing order of importance in the model or to define appropriate priorities for integer 
variables. 

2.2 Branch-and-bound basics 

Branch-and-bound is, in practice, the only technique allowing t o  solve general MIP problems. 
Land and Powell (1979) found that  all the commercial MIP codes used the branch-and-bound 
technique. This observation still remains valid with broad selection of MIP software packages 
available now on the market (Saltzman, 1994). However, a wide variety of additional techniques 
has been applied t o  minimize the total effort involved in the branch-and-bound process. 

The branch-and-bound technique solves the MIP problem by successive optimizations of 
linear programming problems. It is assumed that  the continuous problem, i.e. the MIP problem 
without integrality requirements, has been first solved. If all the integer variables have integer 
values in the optimal solution to  the continuous problem, there is nothing more to  do. Suppose 
that  an integer variable, say x,, has a fractional (noninteger) continuous optimum value x:. T l ~ e  
range 

[.:I < XT < [x:] + 1 

cannot include any integer solution. Hence, an integer value of x, must satisfy one of two 
inequalities 

5, < [x:] Or I T  1 [z:] + 1 

These two inequalities. when applied to the continuous problem, result in two mutually exclusive 
linear problems created by imposing the constraints x, < [I:] and x, > [x:] + 1. respectively. 
on the original feasible region. This process is called branching and integer variable a, is 
called branching variable. As a result of branching the original problem is partitioned into 
two subproblems. Now each subproblem may be solved as a continuous problem. It call be 
done in an efficient way with the dual simplex algorithm. If in optimal solution of a subproblem 
some integer variable fails the integrality requirement, the branching process ma? be applied 
on the subproblem thus creating a tree of subproblems. Due to this structure the subproblenls 
are referred to as nodes (nodes of the subproblems tree). The original continuous problem is 
assumed t o  be node 0 (root of the tree) and the other nodes get subsequent numbers when 
created. 

A node does not need to  be further branched if its optimal (continuous) solution satisfies all 
the integrality requirements. Such a node, called integer node, is dropped from the further search 
while its solution is stored as the best integer solution so far available and its objective value 
becomes the cutoff value. A node may also be dropped from further analysis if it is fathomed. 
i.e., there is evidence that  it cannot yield a better integer solution than that available so far. 
A node is, certainly, fathomed if it is infeasible and thereby it cannot yield any solution. Since 
a node optimal value is a bound on the best integer solution value that can be obtained from the 
node, nodes with noninteger optimal solutions may be fathomed by comparison of its optimal 
(continuous) value versus the current cutoff value. The importance of acquiring good bounds 
to fathom nodes a t  the early stages of the search process cannot be overemphasized. Therefore, 
in advanced implementations of the branch-and-bound techniques, additional penalties are used 
in fathoming tests. The general idea of the penalties is to  estimate the deterioration in the 
objective value caused by enforcing additional inequalities in branching. 

While making the branch-and-bound technique operational, it is necessary to  introduce some 
order in the branching and solving of nodes. For this purpose, the so-called waiting list containing 
all the nodes in need of further analysis, is usually introduced. It can be arranged in two ways. 
If constructed but unsolved nodes are stored on the waiting list we get the so-called single 
branching. where a node selected from the list is first solved and next branched if not fathomed. 



W. Ogryczak, K. Zorychta - 4 -  MOMIP 2.1 

If sclved nodes are stored on the list, we have the so-cal;ed c'ouble branching, where a node 
selected from the list is first branched and the next both new subproblems are solved and stored 
on the list if not fathomed. For larger problems, double branching is recommended and therefore 
it is implemented in the MOMIP solver. 

The process of branching continues, where applicable, until each node terminates either by 
generating an integer solution, or by being fathomed. Thus the branch-and-bound search is 
completed when the waiting list becomes empty. During the course of the branch-and-bound 
search one may distinguish three phases: search for the first integer solution, search for the best 
integer solution and optimality proof. Computational experiments show (see, Benichou et  al., 
1971) that for typical MIP problems, the first two phases are usually completed in a relatively 
short time (only few times longer than the time of continuous problem solution), whereas the last 
phase may require extremely long time. Therefore MOMIP is armed with control parameters 
allowing t o  abandon the search if it seems to  be in a long optimality proof phase. Unfortunately, 
whereas the end of the first phase is clearly defined (the first integer solution has been found). 
the end of the second phase and the beginning of the optimality proof is never known for sure 
until the entire search is completed. 

Having defined the waiting list there are still many ways to  put into operation the branch-and- 
bound search. The most important for algorithm specification are two operations: branching 
variable selection and node selection (for branching). Both the operations may be arranged 
in many different ways resulting in different tree sizes and search efficiency. Specification of 
these two selection operations, called branch-and-bound strategy, is crucial for the algorithm 
efficiency on a specific MIP problem. Unfortunately, there is no definitely best strategy for all 
the problems. Therefore, like most advanced MIP solvers (compare. Land and Powell. 1979; 
Tomlin and W'elch, 1993), MOMIP, despite providing some default branch-and-bound strategy. 
allows the user to  adjust the strategy to the specificity of the MIP problem. 

2.3 The algorithm 

The branch-and-bound algorithm implemented in the MOMIP solver can be roughly summarized 
in the following steps: 

Step 1. Define node 0 by the continuous problem and the available optimal continuous solution. 

If all integer variables in the solution satisfy the integrality requirements, the search is 
completed. 

If not, set the number of examined nodes n = 0, set the starting cutoff value. choose node 0 
as branched node k (k  = 0) and select a branching variable. 

Step 2. Define nodes n $ 1 and n $ 2 as subproblems of node k according to the preselected 
branching variable (n = n + 2). 

Step 3. Optimize node n + 1. 

If the node is fathomed drop it. 

If the optimal solution satisfies the integrality requirements, store it as the best integer 
solution so far, modify the cutoff value and use it to  eliminate fathomed nodes from the 
waiting list. 

If the optimal solution fails the integrality requirements, select a potential branching vari- 
able and add the node to  the waiting list. 

Step 4. Optimize node n $ 2 .  

If the node is fathomed drop it. 

If the optimal solution satisfies the integrality requirements, store i t  as the best integer 
solution so far, modify the cutoff value and use it to  eliminate fathomed nodes from tlle 
waiting list. 
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If the optimal solution fails the integrality requirements, select a potential branching vari- 
able and add the node to  the waiting list. 

Step 5. If the waiting list is empty, the search is completed. The best integer solution is the 
optimal one. 

If there is no integer solution, the entire problem has no integer solution. 

Otherwise, select the next branched node k from the waiting list and remove it from the 
list. Return to  Step 2. 

The efficiency of the branch-and-bound algorithm strongly depends on tightness of linear 
constraints on integer variables. Current version of MOMIP allows to  tighten linear constraints 
by generation additional inequalities (cuts) that are satisfied by all integer solutions but are 
not satisfied by the optimal solution to  the continuous problem. Exactly, the Gomory's mixed 
integer cuts (compare Nemhauser and Wolsey, 1988) may be generated as additional constraints 
for node 0 and thereby for all subsequent nodes. Cuts generation is controlled in MOMIP witli 
the parameter DOCUTS. With this parameter the user may specify the required number of cuts 
to  be generated and added to  the problem. MOMIP reoptimizes the continuous problem (with 
the dual simplex algorithm) after having generated each cut prior t o  generation of the next one. 
We do not recommend t o  generate more than a few cuts. The Gomory's cuts tighten the linear 
constraints, but on the other side, they increase the density of the coefficients matrix. Therefore 
while generating many cuts the increasing of the efficiency caused by constraints tightening may 
be less important than the decreasing of efficiency caused by solving denser subproblems at  all 
nodes of the tree. 

The initial cutoff value is defined in MOMIP by default as INFINITY in case of minimizatioii 
and - INFINITY for maximization. The user can define another starting cutoff value with param- 
eter CUTOFF. The search is then restricted to  integer solutions with objective value better than 
CUTOFF. M'hen an integer solution is found the cutoff value is reset according to  the formula: 

CUTOFF = V - M l N M A X  x OPTEPS x (VI 

where: 

1' denotes the objective value of the integer solution, 

OPTEPS is the relative optimality tolerance (by default OPTEPS= 0.0005). 

M l N M A X  is 1 for minimization and -1 for maximization. 

Thus, if the default value OPTEPS is used, whenever an integer solution is found, MOhlIP will 
continue search for the next integer solution with functional value better by 0.05'2 at least. 

In the current version of MOMIP, branching variable is selected depending on the predefined 
order of priorities for variables and the integer infeasibility of variable values in the optimal 
solution. A variable value is considered to  be integer infeasible (fractional) if it differs from tlie 
closest integer by INTEPS a t  least. Thus an integer variable x, with value x: = [x:] + f, is 
integer infeasible if 

min(f,, 1 - f,) > INTEPS 

The value min( f,, 1 - f,) is called integer infeasibility of variable x,. The default value of 
INTEPS is set to  0.0001. Branching variable is selected among integer infeasible variables witli 
the highest priority. By default all the integer variables have assigned the same priority equal 
to  0. The user may specify higher priorities for some variables in the problem data file. 

By default. the variable with minimal integer infeasibility (i.e., the variable closest to  an 
integer but not closer than INTEPS) is selected as branching variable until the first integer 
solution is found and later the variable with maximal integer infeasibility (i.e.. the variable wit11 
maximal distance to  an integer) is selected. The user can force hlOhlIP to  use always maximal 
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or minimal integer infeasibility selection rule, respectively, by spccification of the parameter 
BRSW. The minimum integer infeasibility selection rule may lead more quickly to a good first 
integer solution (as it works like a rounding heuristic) but may slower completing of the entire 
branch-and-bound process. The maximum integer infeasibility rule forces larger changes earlier 
in the tree, which tends usually to  produce faster overall times to  find and prove the optimal 
integer solution. 

Nodes are optimized in MOMIP with the dual simplex algorithm. Optimization can be abail- 
doned if during the course of the algorithm it becomes clear that  the node cannot have better 
optimal value than the current cutoff value (and thereby it will be fathomed). When a noninte- 
ger optimal solution is found, a potential branching variable is selected and the corresponding 
penalties calculated. Exactly, the strenghtened SUB and Gomory's penalties based on the La- 
grangean relaxation (see, Zorychta and Ogryczak, 1981) are computed. If the penalties allow to  
fathom both potential subproblems, the optimized node is fathomed. If the penalties allow t o  
fathom one of the potential subproblems, the constraints of the optimized node are tightened 
to  the second subproblem and the optimization process is continued without explicit branching. 
Thus a noninteger node is added to  the waiting list only if both its potential subproblems cannot 
be fathomed by the penalties. 

In the current version of MOMIP, there are two basic node selection rules: LIFO and BEST. 
In addition, a mixed selection rule is available, where LIFO rule is applied until the first integer 
solution is found and later BEST rule is used. By default LIFO rule is used in all the searcli 
phases. The user can force MOMIP to  use BEST rule in one or in all the search phases, by 
specification of the parameter S E LSW. 

BEST rule depends on a selection of the best node (node with the best value bound). LIFO 
rule, after Last In First Out,  depends on the selection of the latest generated node. This mealis 
that ,  if the branched node has a t  least one subproblem to be optimized, then one of these 
subproblems (the one with the better value bound, if there are two) will be selected. If both 
the subproblems are fathomed or integer, the latest node added to  the waiting list is selected. 
Thus with LIFO rule the waiting list works like a stack. LIFO rule implies narrow in-deep tree 
analysis with the small waiting list. It is a very efficient node selection strategy while lookiilg 
for the first integer solution. In MOMIP default strategy, it then works together with minimal 
integer infeasibility branching rule, thus creating a heuristic search for an integer solution close 
to  the continuous one. 

Both basic node selection rules are implemented in MOMIP as parameterized strategies to  
prevent from uncontrolled growth of the waiting list. For this purpose all the waiting nodes 
are classified in two groups: candidate nodes and postponed nodes that can be selected only 
if the group of candidate nodes is empty. If the most recently branched node has at least 
one subproblem to be optimized and the corresponding node is not postponed, then it will be 
selected (the one with better value bound if there are two). If both the subproblems are integer, 
fathomed or postponed, then the appropriate selection rule is applied. i.e., the best node on the 
waiting list is selected in the case of BEST,  and the latest generated not postponed node is 
selected in the case of LIFO. 

Let BEST denote the best value bound (optimal value modified by penalty) among the 
waiting nodes and CUTOFF be the current cutoff value. All the waiting nodes have value bounds 
within the range defined by BEST and CUTOFF. Within this range ure distinguish a subrange of 
postponed nodes as defined by CUTOFF and the parameter POSTPONE given by the following 
formula: 

POSTPONE = CUTOFF - MINMAX x POSTEPS x IBEST - CUTOFF1 

where: 

POSTEPS is the relative postpone tolerance (by default POSTEPS= 0.2),  

MINMAX is 1 for minimization and -1 for maximization. 
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Thus BEST rule p~ovides very elastic node selection strategy controlled with the parameter 
POSTEPS. If using POSTEPS= 1 all the waiting nodes are postponed and thereby one gets the 
classical best node selection rule. On the other hand, for POSTEPS= 0 one gets similar to LIFO 
in-deep search strategy where subproblems of the most recently branched node are selected as 
long as they exist. The only difference to  LIFO rule is in backtracking. Namely, if there is no 
recent subproblem to  optimize, the best node on the waiting list is selected whereas the latest 
one would be selected with LIFO. For POSTEPS taking various values between 0 and 1 one gets 
strategies that  implement various compromises between the strict in-deep search and the open 
search based on the best node selection. It provides balance between the openness of the search 
and the low waiting list growth. Similarly, LIFO rule controlled with the parameter POSTEPS 
allows to  suspend the search on not promising branches. In order t o  get the pure LIFO rule 
one needs to  specify POSTEPS= 0. 

When the selected node is branched, two of its subproblems have t o  be optimized. The 
order of these optimizations can affect the efficiency of the algorithm in two ways. First, if 
the subproblem optimized as the second is later selected for branching, then the optimization 
process can be continued without any restore and refactorization operations. Therefore, we 
are interested to  optimize the subproblem which seems to  be more likely selected for future 
branching, as the second one. Moreover, if while optimizing the first subproblem an integer 
solution is found, then it can ease fathoming of the second one making its optimization short 
or unnecessary. In MOMIP, the subproblem associated with larger integer infeasibility on the 
branching variable is usually optimized as the first, presuming that the second will have better 
value bound and therefore will be selected for future branching. There is, however, an exception 
to  this rule when the branched node is a so-called quasi-integer node. A node is considered to 
be quasi-integer if all integer variables have values relatively close to integer. Exactly, if all the 
integer infeasibilities are less than specified parameter QINTEPS (equal to  0.05 by default ). In 
the case of quasi-integer branched node the subproblem associated with smaller (in fact less than 
QINTEPS) integer infeasibility on the branching variable is optimized as the first one. hopefully 
to  get an integer solution quickly. 

2.4 Special Ordered Sets 

In the great majority of real-life mixed integer programming models. most of integer variables 
represent some multiple choice requirements (Healy, 1964). A multiple choice requirement is 
usually modeled with a generalized upper bound on a set of zero-one variables, (Kernhauser 
and Wolsey. 1981; Williams, 1991) thus creating the so-called Special Ordered Set (SOS).  For 
instance, the multiple choice requirement 

where aj represent several options (like facility capacities), may be modeled as follows: 

xj 2 0, xj integer for j = 1 , 2 , .  . ., r 

where the x, are zero-one variables corresponding to  several options a,. The x, variables create 
the SOS being an algebraic representation of the logical multiple choice requirement. 

Problems with the SOS structure may, of course, be solved by using the standard branch- 
and-bound algorithm for mixed integer programming. However, the standard branching rule 

applied on a SOS variable leads to the dichotomy 
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thus creating an extremely unbalai~ced branching on the set of the original alternatives (an;. 
option different from ak is selected or option ak is selected). It causes a low effectiveness 
of the branch-and-bound algorithm. Therefore Beale and Tomlin (1970) (see also, Tomlin, 
1970) proposed a special version of the branch-and-bound algorithm to  handle SOS'es. A SOS 
was there treated as a single entity and branched into two smaller SOS'es. After developing 
additional techniques for large-scale problems, like pseudocosts (Forrest et al., 1974), the SOS 
branching rule has become a standard technique implemented in large mainframe mixed integer 
programming systems (compare, Beale, 1979; Land and Powell, 1979; Powell, 1985; Tomlin and 
Welch, 1993). 

MOMIP, like other portable mixed integer programming codes, is not equiped with the 
special SOS branching rule. However, MOMIP can emulate the SOS branching rule due to  
a special technique of automatic model reformulation. While using the reformulation technique, 
the standard branching rule applied on integer variables representing the multiple choice is 
equivalent to  the special SOS branching developed by Beale and Tomlin (1970) thus increasing 
efficiency of the branch-and-bound search. 

To explain the reformulation technique let us consider a multiple choice requirement modeled 
with the SOS. One may introduce new integer zero-one variables defined as the corresponding 
partial sums of xj ,  i.e., 

31 = 5 1  

yj = yj-1 + x j  for j = 2 , 3  ,..., T 

Note that  the standard branching on a yk variable 

implies the dichotomy 

thus emulating the special SOS branching rule and generate a complete analogy with binary 
branching on the set of original options 

Variables x, no longer need to  be specified as integer ones and, in fact. they shouid not 
be specified as integer t o  avoid inefficient branching on them. Moreover, they can be simply 
eliminated replacing the SOS model of the multiple choice with the following: 

< 1 Y1 5 Y2 I . - .  < Yr-1 - 

y j > O ,  yj integer for j = l , 2  ,..., T - 1  

where the original values of x, are defined as the corresponding slacks in the inequalities. The 
variables y, will be refered to  as Special Ordered Inequalities (SOI). 

Note that use of SO1 instead of SOS does not increase the number of variables (neither 
integer nor continuous). SO1 modeling increases the number of constraints, but these are very 
simple, and this does not cause a remarkable increase of data entries. Reformulatioil of SOS'es 
into SOI'es is controlled in MOhlIP with the parameter DOSOS. 
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2.5 Control parameters 

The following is the complete list of MOMIP control parameters effecting the branch-and-bound 
search. All these parameters have predefined default values. The user may define other values 
within the MIP-PAR structure (Section 3.2) while using the MIP class or within the specification 
file while using the standalone MOMIP program (Chapter 5). Note that  CUTOFF is not included 
in the list, as it is considered rather as a piece of problem data  than an algorithmic control 
parameter. Value of CUTOFF may be specified while calling MOMIP. 

NODELIMIT - maximal number of nodes to be solved during the search. If the number of solved 
nodes exceeds NODELIMIT, further search is abandoned and the entire solution process is 
treated as completed (the best integer solution found so far is available in the PROBLEM 
structure, etc.). By default NODELIMIT= 100000. The parameter may be used to prevent 
unexpectedly long computations in experimental runs while looking for the most efficient 
branch-and-bound strategy. Legal NODELIMIT value cannot be less than 1. 

NOSUCCLIMIT - maximal number of nodes to  be solved (without success) after the last integer 
solution has been found. It is ignored during the search for the first int.eger solution. If 
the number of nodes solved after the last integer solution has been found, exceeds NOSUC- 
CLIMIT, further search is abandoned and the entire solution process is treated as completed 
(the best integer solution found so far is available in the PROBLEM structure, etc.). By 
default NOSUCCLIMIT= 100000. The parameter may be used to  control unexpectedly 
long last phase of the branch-and-bound search (optimality proof). Legal NOSUCCLlMlT 
value cannot be less than 0. 

SUCCLlMlT - maximal number of integer solutions searched. If the number of integer solution 
found exceeds SUCCLlMlT further search is abandoned and the entire solution process is 
treated as completed (the best integer solution found so far is available in the PROBLEM 
structure, etc.). By default SUCCLIMIT= 100. The parameter may be used to control the 
branch-and-bound search if the user is interested in a specified number of integer solutions 
better than some threshold (specified with CUTOFF) or simply feasible solutions rather 
than the optimal solution. Legal SUCCLlMlT value cannot be less than 1. 

TREELIMIT - maximal size of the waiting list. Despite the available memory size the waiting 
list should not exceed TREELIMIT nodes. N'hen it happens the search is continued but 
the node selection strategy is automatically switched to pure LIFO (i.e., SELSW= 2 and 
POSTEPS= 0.0). By default TREELIMIT= 1000. The parameter may be used to control 
unexpected growth of the waiting list in experimental runs while looking for the most 
efficient branch-and-bound strategy. Legal TREELI M IT value cannot be less than 1. 

INTMAGN - maximal integer magnitude. Each integer variable must be bounded and its 
magnitude cannot exceed INTMAGN. By default INTMAGN= 65535. Any value ranging 
from 1 to  65535 is a legal INTMAGN value. 

DOCUTS - number of Gomory's cuts to be added to the linear problem formulation. By default 
DOCUTS= 0 which means no cuts are generated. Any nonegative integer value may be 
specified thus forcing MOMIP to generated the specified number of cuts. More cuts usually 
reduces the so-called integrality gap which may effect in a shorter optimality proof. On 
the other side, the Gomory's cuts make the LP subproblems denser thus increasing the 
solution time for several nodes. 

DOSOS - level of SOS processing. By default DOSOS= 1, which means that only marked SOS 
constrai~lts are reformulated. One may set DOSOS= 0 to  avoid any SOS constrailits refor- 
mulation or DOSOS= 2 to  reformulate all the SOS contraints found with the automatic 
SOS scanning. 
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DOPEN - penalties switch. By default DOPEN= 1 thus causing that  the penalties on branching 
variables are calculated in all branched nodes. One may abandon these calculations by 
setting DOPEN= 0. However, it usually significantly increases the number of solved nodes. 

OPTEPS - relative optimality tolerance used in the dynamic formula for cutoff value after first 
integer solution has been found (see Section 2.3). If an integer solution with objective 
value VAL has been found, MOMIP is looking for the next solution which is better by 
OPT EPS x (VAL1 a t  least, while all smaller improvements are ignored. Therefore, when 
the entire branch-and-bound search is completed the best integer solution found is proven 
to  be optimal with the relative tolerance OPTEPS. By default OPTEPS= 0.0005. This 
parameter may be used to implement a rough search for a good integer solution. Any 
value between 0 and 1 is a legal OPTEPS value. 

INTEPS - integrality tolerance. A variable value is considered to  be noninteger (integer in- 
feasible, fractional) if it differs from the closest integer by INTEPS a t  least. By default 
INTEPS= 0.0001. Any value between 0 and 1 is a legal INTEPS value. 

BRSW - branching strategy switch for definition of the branching variable selection rule (com- 
pare Section 2.3). By default BRSW= 0 which means AUTOMATIC rule. The minimal 
integer infeasibility (i.e., the variable closest to  an integer but not closer than INTEPS) is 
then selected until the first integer solution is found and later the maximal integer infea- 
sibility (i.e., the variable with maximal distance to  an integer) is selected. The user by 
putting BRSW= 1 can force MOMIP to use always maximal integer infeasibility selection 
rule. Similarly, BRSW= 2 causes the minimal integer infeasibility rule to  be used in all 
phases of the branch-and-bound search. Only values 0, 1 or 2 are accepted as legal BRSW 
values. 

SELSW - node selection rule switch for definition of the branched node selection rule (compare 
Section 2.3). SELSW= 0 means AUTOMATIC rule. The LIFO (Last In First Out)  rule is 
then used until the first integer solution is found and later the BEST (selection of the best 
waiting node) rule is applied. The user, by putting SELSW= 1, can force MOhlIP t o  use 
always the BEST selection rule. By default, SELSW= 2 which causes the LIFO rule t o  be 
used in all phases of the branch-and-bound search. Only values 0, 1 or 2 are accepted as 
legal SELSW values. Note that the node selection strategy is define by the selectiorl rule 
and the relative postpone parameter POSTEPS. 

POSTEPS - relative postpone parameter. The control parameter for the branched node se- 
lection strategy. POSTEPS dynamically defines the subrange of postponed nodes within 
the waiting list (compare Section 2.3). Using this parameter the user may define the most 
appropriate for the problem compromise between the wide open search and the narrow 
in-deep search strategy. By default POSTEPS= 0.2. Any value between 0 and 1 is a legal 
POSTEPS value. 

QINTEPS - quasi-integrality tolerance. A node is considered to  be quasi-integer if all integer 
variables have values relatively close to integer. Exactly, if all the integer infeasibilities 
are less than QINTEPS. Quasi-integrality of the branched node affects the order in which 
two subproblems are optimized (compare Section 2.3). By default QI NTEPS= 0.05. Any 
value between 0 and 1 is a legal QI NTEPS value. 

NODREPFRQ - node report frequency. Every NODREPFRQ node solved MOhlIP issues the 
node report (see Section 3.3 for details). By default NODREPFRQ= 100. Any value no 
less than 1 is a legal NODREPFRQ value. 

TOLFEAS - ~ r i m a l  feasibility tolerance. While node solving with the dual simples algorithm. 
any computed variable value is treated as if it were feasible. if the magnitude of the amount 
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by which it violates the limit is no greater than TOLFEAS. By default TOLFEAS= 1.0e-~.  
Any nonnegative value is a legal TOLFEAS value. 

TOLDJ - dual feasibility tolerance. While node solving with the dual simplex algorithm, any 
computed reduced cost is treated as if it were 0, if its magnitude is no greater than TOLDJ. 
By default TOLDJ= 1.0e-~.  Any nonnegative value is a legal TOLDJ value. 

TOLPIV - pivot tolerance. While node solving with the dual simplex algorithm, any potential 
pivot element is treated as if it were 0, if its magnitude is no greater than TOLPIV. By 
default TOLPIV= 1.0e-~.  Any nonnegative value is a legal TOLPIV value. 

INVFREQ - refactorization frequency. While node solving with the dual simplex algorithm, the 
refactorization function is called every INVFREQ simplex steps. By default INVFREQ= 50. 
Any value no less than 1 is a legal INVFREQ value. 

ITERLl M l T  - maximal number of simplex steps per node. While solving a node, with the dual 
simplex algorithm, the solution process is abandoned and the node classified as unsolved, 
if the number of simplex steps has exceeded ITERLIMIT. By default ITERLIMIT= 500. Any 
value no less than 1 is a legal ITERLl M IT  value. 

PPRICE - partial pricing size for the primal simplex algorithm. PPRICE= 0 means full pricing 
is carried out. In the case of some positive value of PPRICE, during the course of the 
primal simplex algorithm pricing is abandoned after identification of PPRICE candidate 
columns t o  enter the basis. By default PPRICE= 4. 

EPSPERT - primal anticycling perturbation. If cycling is detected during the course of the 
primal simplex algorithm, bounds on basic variables are shifted by the value of EPSPERT. 
By default EPSPERT= 1.0c-'. 

3 MIP class 

3.1 Straightforward use 

hlOMIP is implemented as the MIP class. It is a typical solver class taking problem data  from 
the PROBLEM class and returning the solution there. The MIP class constructs implicitly all the 
auxiliary computational classes used in the branch-and-bound search. Thus for straightforward 
use of the MOMIP solver one only needs to  declare the MIP class and call its solvernip function. 

The MIP class constructor must be called with one parameter: a pointer to  an Ip-prob- 
tern class. The constructor, when called, builds the MIP class and assigns its functions to  the 
specified PROBLEM class where data will be taken from and solution written to. For instance 
the statement: 

MIP(&MYPROBLEM) MYMIP; 

causes construction of a MIP class called MYMIP and assigns its computational functions to 
the class MYPROBLEM of type PROBLEM. The MIP class constructor may be used anywhere 
within the scope of the PROBLEM class used as the parameter. The PROBLEM class does not 
need t o  contain any problem data  while the MIP class constructor is called. It may be filled out 
with a problem data  and used for other solvers either prior to  the MIP constructor call or having 
already MI P class constructed. Certainly, the corresponding PROBLEM class must be filled out 
with the problem data prior to  any use of the solvernip function. 

The user does not need to  fill out any MIP class data structure to  solve the problem. In 
fact, all its data structures and most computational functions are not directly accessible to 
the user (declared as private). The solvernip function constructs implicitly all the necessary 
auxiliarv classes like C-LIST class for the waiting list handling. DUAL class for nodes solving. 
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and IN'IERSE class for LP basis factorization handling. The solvernip function manages the entire 
branch-and-bound algorithm calling all the necessary computational functions. It provides also 
all the necessary da ta  transfer between the MIP class and the corresponding PROBLEM class. 

Essentially, for larger problems it is presumed that the problem has been earlier solved (not 
necessarily in the same run) by the linear programming solver and the linear programming 
solution is available as a starting one in the search for integer solution. However, MOhfIP has 
its own primal simplex algorithm which is activated in the case of numerical difficulties in the 
dual algorithm or invalid primal solution provided as the starting one. Therefore, for simple 
use there is a possibility t o  call solvernip function without parameters, and the MOMIP primal 
algorithm is then used t o  find the initial (continuous) solution. Thus the following is the simplest 
solvern ip call: 

solvern ip(); 

The solvernip function can be simply called the user application program like in the following 
example: 

... 
PROBLEM MYPROBLEM; 
MIP MYMIP(&MYPROBLEM); 

However, the MOMIP primal algorithm is designed as an auxiliary tool and it can solve 
effectively only relatively small problems. Therefore, we do not recommend such a simple call 
for larger problems. 

3.2 Advanced use 

For advanced use of the MOMIP solver, the solvernip function can be called with one to three 
optional parameters: A2B, CUTOFF and PAR. Thus, all the following are legal solvernip calls: 

solvern ip(A2B); 
solvernip(A2B,CUTOFF); 
solvernip(A2B,PAR); 
solvernip(A2B,CUTOFF,PAR); 
solvern ip(); 
solvernip(CUT0FF); 
solvern ip( PAR); 
solvernip(CUTOFF,PAR); 

However, the last four calls are not recommended for use with larger MIP problems. Note that 
if two or three optional parameters are used, CUTOFF must precede PAR, and A2B (whenever 
used) must be the first parameter. 

A2B is a pointer to an integer vector describing the basic continuous solution found with 
a linear programming solver. A2B vector should contain n + m (where n is the number of 
structural variables and m denotes the number of constraints) coefficients representing the basic 
solution structure. The continuous solution is assumed to be coded within A2B according to tlle 
following rules: 

for k = 0 ,1 , .  . . , n - 1 (structural variables) 

A2B[k] = -1 if variable k is nonbasic at  its lower limit, 

A2B[A-] = -2 if variable A- is nonbasic at  its upper limit. 

A2B[k] = i 2 0 if variable k is in basis at  position i :  
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for T = 0 , 1 , .  . . , m - -  1 (constraints) 

A2B[n + T ]  = -1 if constraint T is nonbasic a t  its RHS limit, 

A2B[n + T ]  = -2  if constraint T is nonbasic at  its range limit, 

A2B[n + T ]  = i 2 0 if constraint T is in basis a t  position i;  

where the basis positions are numbered from 0 through m - 1. 

The above structure of A2B vector is consistent with that  used in modular linear programming 
solver by Swietanowski (1994). There is no need for any operations on A2B vector while using 
this solver. Thus, the user only needs to  pass the vector pointer as the parameter, like in the 
following example: 

... 
PROBLEM MYPROBLEM;  
M I P  MYMIP(&MYPROBLEM);  
... 
[ linear programming processing with A2B generation ] 
... 
M Y M  IP.solvemip(A2B); 

If the continuous solution has been generated during earlier independent computation (or 
with different linear programming solver) the user is obliged to take responsibility for a proper 
filling of the corresponding PROBLEM structure and A2B vector. Instead of using the parameter 
A2B the LP optimal basis may be loaded from a file by calling the function 
setinvin(char* FILENAME); 
prior t o  the call of solvemip. MOMIP may save the optimal LP basis (for node 0) ,  if before the 
call of solvemip the function 
setinvout(char* FILENAME); 
is called. 

CUTOFF is a float type parameter defining the initial cutoff value for the branch-and-bound 
algorithm. If this parameter is used the search is restricted t o  integer solutio~ls wit11 functional 
values better than CUTOFF.  When some integer solution is already known, use of this param- 
eter allows t o  make the search shorter. In the absence of the CUTOFF parameter. the initial 
cutoff value is defined, by default, as INF INITY in case of minimization and - I N  FIN I T Y  for 
maximization. 

PAR is a pointer to  a MIP-PAR structure with MOMIP control parameters. It allows the 
input of nonstandard values for MOMIP control parameters. MIP-PAR is a predefined structure 
type containing all the control parameters as members. It is provided with the constructor 
assigning default values to  all the members (parameters). Thus the user having declared his/her 
own MIP-PAR structure only needs define the values for these parameters he/she wish t o  change. 

The MIP-PAR structure has the following (public) members: 
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Real-T I N T M A G N ;  / /  maximal integer magnitude 
Int-T T R E E L I M I T ;  / /  max number of nodes in CList 
Long-T N O D E L I M I T ;  / /  rnax number of nodes to  be generated 
Long-T NOSUCCLIMIT;  / /  max number of nodes without success 
Int-T SUCCLIMIT;  / /  max number of integer solutions 
Int-T D O C U T S ;  / /  number of cuts to  generated 
Int-T DOSOS; / /  level of SOS remodeling 
Short-T D O P E N ;  / /  level of penalties calculated 
Real-T Q INTEPS;  / /  quasi-integer tolerance 
Real-T POSTEPS; / /  relative postpone parameter 
Real-T O P T E P S ;  / /  relative optimality tolerance 
Real-T INTEPS;  / /  integer tolerance 
Short-T BRSW; / /  branching strategy 
Short-T SELSW; / /  node selection strategy 
Long-T NODREPFRQ;  / /  node report frequency 
Real-T TOLFEAS; / /  primal feasibility tolerance 
Real-T T O L D J ;  / /  dual feasibility tolerance 
Real-T T O L P I V ;  / /  pivot tolerance 
Int-T INVFREQ; / /  invert frequency 
Int-T PPRICE; / /  primal partial pricing 
Real-T EPSPERT;  / /  anticycling perturbation 
Unsigned-T I T E R L I M I T ;  / /  iteration limit 

So, values of all the MOMIP control prameters may be defined within the structure MIP-PAR.  
For instance, if one wants t o  use the BEST node selection rule during the entire search and 
abandon the search after identification of ten integer solution, it can be done with the follo\iing 
sequence of statements: 

... 
MIP-PAR rnypar; / /  MIP-PAR construction 
rnypar.SUCCLIMIT=lO; / /  only 10 integer solutions 
rnypar.SELSW=l; / /  BEST node selection strategy 
. . . 
solvern ip(rnypar); 

The MIP-PAR structure provides also two convenient utility functions: 

void check par(); 
int read(char* F N A M  E); 

Function checkpar verifies if all the control parameters satisfy their formal requirements. If 
some parameter value is illegal, the corresponding warning message is issued and the default is 
assumed. Function read allows to  read values for the control parameters from a specified file 
( F N A M E )  instead of dealing with direct assignments. It returns the value 0 if the specified file 
has been successfully read and 1 if otherwise. 

For instance the branch-and-bound strategy defined above directly in the program may be 
defined with a specification file built of two lines: 

S U C C L I M I T  10  / /on ly  10 integer solutions 
SELSW 1 / /  BEST node selection strategy 

The corresponding program should then include the following statement's: 
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MIP-PAR mypar; 
mypar.read("MYFILE"); 

mypar.checkpar(); 
... 
solvem ip(m ypar); 

where MYFILE is the name of the specification file. 
The solvemip function returns the number of integer solutions found during the course of 

the branch-and-bound algorithm. Thus it returns 0 if no integer solution has been found. This 
value may be used t o  control further processing in the user application program. 

3.3 Messages 

The MOMIP module generates MOMIP.LOG file where all the messages issued by the M I P  
functions are available. There are two kinds of messages: 

info messages providing the user with information about the current status of the MIP analysis 
and changes in that  status; 

warning messages providing the user with information about any errors or irregularities in the 
process. 

At the beginning of the analysis, MOMIP issues the message containing values of the co~ltrol 
parameters and the problem characteristics. It has the following form: 

M O M  l P - Modular Optimizer for Mixed Integer Programming 
version 2.1 (1994) 

Institute o f  Informatics, Warsaw University 

M I P  SETTINGS 
Max  no. o f  nodes t o  be examined . . . . . . . . . . . . . .  NODELIMIT  
Max  no. o f  nodes after last integer . . . . . . . . . . . .  NOSUCCLIMIT 
Max  no. o f  integer nodes . . . . . . . . . . . . . . . . . . . . . .  SUCCLlMlT 

Max  no. o f  simplex steps per node . . . . . . . . . . . . . . . .  ITERLIMIT  
Max  no. o f  wait ing nodes . . . . . . . . . . . . . . . . . . . . .  TREELIMIT  
Node report frequency . . . . . . . . . . . . . . . . . . . . . . .  NODREPFRQ 
Relative opt imal i ty tolerance . . . . . . . . . . . . . . . . . . . . . .  OPTEPS 
Maximal  integer magnitude . . . . . . . . . . . . . . . . . . . . .  INTMAGN 

Integrality tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  INTEPS 
Quasi-integrality tolerance . . . . . . . . . . . . . . . . . . . . . . .  Ql NTEPS 
Relative postpone tolerance . . . . . . . . . . . . . . . . . . . . . .  POSTEPS 
Branching variable selection strategy . . . . . . . . . . . . . . . . . .  BRSW 
Node selection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . .  SELSW 
Number o f  cuts t o  be generated . . . . . . . . . . . . . . . . . .  DOCUTS 
SOS preprocessing level . . . . . . . . . . . . . . . . . . . . . . . . . . .  DOSOS 
Penalties on branching variable . . . . . . . . . . . . . . . . . . . .  DOPEN 
Pr imal  feasibility tolerance . . . . . . . . . . . . . . . . . . . . . . .  TOLFEAS 
Dual feasibility tolerance . . . . . . . . . . . . . . . . . . . . . . . . . .  TOLDJ  
Nonzero pivot tolerance . . . . . . . . . . . . . . . . . . . . . . . . . .  TOLPIV 
Refactorization frequency . . . . . . . . . . . . . . . . . . . . . . . .  INVFREQ 
Pr imal  partial pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PPRICE 
Pr imal  anticycling perturbation . . . . . . . . . . . . . . . . . . .  EPSPERT 

10000 
5000 
100 
500 
10000 
.lo 
0.005 
65535 
0.0001 
0.05 
0.2 
AUTOMA-TIC 
AUTOMA-TIC 
0 
0 
YES 
1e-07 
lE-O7 

lE-O7 

100 
4 
I E - O s  
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PROBLEM:  'small.1 ' 

0 bjective: 'rO ' ( M A X )  Rhs: 'supp ' 

'first Bounds: 
I Ranges: 'rg I 

4 (4 )  constraints with 5 (5)  structurals including 5 (5) integer 
Cutoff value: -100 

The message gives current values of all the control parameters (compare Section 2.5) that 
can be changed by the user. The problem characteristic contains the names of the problem and 
of its data  groups (i.e., objective, RHS, bounds and ranges). There is also reported the current 
C U T O F F  value and dimensions of the problem: number of constraints, number of all structural 
variables, and number of integer variables; original and after MIP preprocessing (shown in 
parentheses). 

During the analysis MOMIP automatically issues info messages when any important event 
occurs. Namely, when an integer solution is found, or the cutoff value is changed, or  the best 
still possible value of the integer solution is changed. These event messages have the following 
forms: 

* INTEGER S O L U T I O N  with functional 7 at node 8 and iter. 16 
Nodes dropped if functional beyond 7.035 

* A F T E R  node 10 and iter. 18 
Any further solution cannot be better than 7.5 

where iter. denotes the total of the simplex iterations from the MOMIP start till the event has 
occurred. 

Additional node report messages are controlled by the user with the parameter NODREP-  
FRQ. Such a message is issued whenever the number of examined nodes becomes a multiple of 
NODREPFRQ (note, that  the first node has a number 0 thus causing issue of the message). The 
node report message takes one of the following form depending on the node type: 

* N O D E  5 noninteger (2) Functional 7 .75 (7.5) Iter. 11 (1) 
* N O D E  7 INTEGER Functional 6 (6)  Iter. 13 (1) 
* N O D E  9 infeasible Iter. 17  (1) 
* N O D E  19  UNSOLVED Iter. 15237 (5001) 

The message begins with the node number and its type (noninteger, integer, infeasible. or un- 
solved), where unsolved node means that  the simplex solver could not overcome some numerical 
difficulties, or simply the limit of simplex iterations for the node has been reached (parameter 
I T E R L I M I T ) .  In the case of a noninteger node, the number of variables failing the integrality 
requirements is shown in parentheses. Value of the functional a t  the node is followed by the 
value bound on integer solution calculated with the penalties. The total of the simplex itera- 
tions, from the MOMIP start till the node has been solved, is followed by the number of sin~ples 
iterations a t  the node (shown in parentheses). 

After any event message or node report MOMIP issues an additional status message with 
information about current number of waiting nodes. It takes the following form: 

1: A F T E R  node 8 and iter. 16 - 3 waiting nodes 

At the end of MIP analysis the resume message is issued. Its first line specify why the analysis 
terminates. When all the waiting nodes have been examined the following appears: 

* M I P  analysis completed 

In other cases it takes one of the following form: 

* SUCCLlMlT  encountered - M I P  terminated prematurely! 
* NOSUCCLlMlT  encountered - M I P  terminated prematurely! 
* N O D E L I M I T  encountered - M I P  terminated prematurely! 
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The next line specifies the number of integer solution found during the analysis. It has the 
following form: 

2 integer solutions found 

If a t  least one integer solution has been found the following message appears: 

t B E S T  S O L U T I O N  with functional 7 at node 8 and iter. 16 

It provides the user with functional value of the best integer solution found during the analysis 
and information when it was found. 

Further lines of the resume report provides the user with information about the best possi- 
ble solution (cutoff value a t  end of analysis), number of examined nodes, total of the simplex 
iterations, and maximal size of the waiting list during the analysis. They have the following 
form: 

Best possible value: 7 .035 
1 4  nodes examined 
2 5  simplex iterations 
M a x  list size: 3 

Warning messages provide the user with information about any errors or irregularities in the 
process. All the warning messages are related to the events when MOMIP finds some error and 
automatically corrects it. However, to  inform the user about the error processing and the wax 
of error correction, an appropriate warning message is then issued. All the messages are listed 
below. 

* W A R N I N G :  Invalid P A R A M E T E R  - default assumed 

The pointed parameter (within the MIP-PAR structure) has an invalid value. It is ignored 
and the default value is taken. 

t W A R N I N G :  N O  primal solution - M O M I P  called from scratch 

MOMIP is called without specification of optimal basis for the continuous problem. hlOhlIP 
uses its internal primal simplex algorithm to  solve the problem from scratch. 

t W A R N I N G :  lnvalid primal solution - M O M I P  primal called 

The first parameter (A2B)  of the function solvemip specifies invalid optimal solution to  the 
continuous problem and MOMIP is forced to  use its internal primal simplex algorithm. 

t W A R N I N G :  Not  bounded integer variable 'x11-10 ' 

The pointed integer variable is specified as not bounded. It is assumed to  be bounded. 

t W A R N I N G :  Variable ' ~ 1 1 1 0  ' has too large integer magnitude! 

The pointed integer variable has too large difference between its upper and lower limit. It is 
reduced to the maximal integer magnitude. 

t W A R N I N G :  Lower bound on variable 'co15 ' forced up t o  integer 

The pointed integer variable has noninteger lower bound. It is tightened ( u p )  t o  tlie closest 
integer value. 

t W A R N I N G :  Upper bound on variable 'col5 ' forced down t o  integer 

The pointed integer variable has noninteger or too large upper bound. It is tightened (doivn) 
to  the closest acceptable integer value. 
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+ W A R N I N G :  Explicit infeasibility on variable 'co15 ' 

The problem is infeasible as for the specified variable its upper bound is less than the lower 
one. 

+ WARN1 NG:  Explicit unboundness on variable 'col5 ' 

The problem is unbounded as the specified variable has no coefficients in the constraints. 

+ W A R N I N G :  Wait ing list is full - node 596 lost 

There is not enough memory to  extend the waiting list. The specified node is dropped 
although it could generate a better integer solution. 

+ W A R N I N G :  5 unsolved nodes 

The specified number of nodes has been left unsolved due to  numerical difficulties encountered 
by the simplex solver or too small I T E R L I M I T  value. 

3.4 Compilation 

MOMIP is programmed in the standard C++ language (Stroustrup, 1991). It can be made 
operational in both UNIX and MS-DOS environments, thus allowing use of many various hard- 
ware platforms. It was tested with Borland C++ 3.0 (Borland, 1991) compiler in the hlS-DOS 
environment and with GNU CC (Stallman, 1992) compiler in the UNIX environment. 

To make it possible to  build in the MOMIP solver into some application programs. it is 
provided as a set of ANSI source files. There are six main source files: mip.cc, tree.cc, dl.cc, 
stdmip.cc, iomip.cc and t i m e ~ n t . c c  They include functions of the M I P  class, C-LIST class, D U A L  
class and MOhlIP extensions to  P R O B L E M  class, respectively. They are accompanied by the fol- 
lowing header files: mip.h,  dl.h, tree.h, probmip.h, trealloc.h, mipalloc.h, t i m e 1 n t . h  and mip2ype.h.  
The last among them contains da ta  types definition which can be adjusted to  the specific com- 
puter architecture ( In t -T ,  Real-T, e t ~ . ) .  The header files are implicitly included into appropriate 
source files during compilation. A special header file m0mip.h is also provided. which. if included 
in an application program. causes the implicit inclusion of all the header files necessary for the 
M I  P class declaration and use. 

During compilation of the 14OA.IIP files, the following header files from the linear program- 
ming module (Swietanowski, 1994) should be available: hashpp.h, array. h, myalloc. h, inverse.h, 
invaux.h, err0r.h and std-tmp1.h. 

While linking the program using the hlOMIP solver, the following source files from the linear 
programming module (Swietanowski, 1994) have to be compiled and linked: hash.cc, inverse.cc, 
invaux.cc, invfact.cc, invsolve.cc, invupd.cc and error.cc, even if the linear programming solver is 
not directly used within the program. 

If the LP-DIT da ta  transfer capability is intended to use, two additional files dit-mip.cc 
and Ip-t0mip.c have to  be compiled with the header file dit-mip.h and the LP-DIT header files 
(Makowski, 1994). 

4 DUAL class 

The M I P  class constructs implicitly all the auxiliary computational classes used in the branch- 
and-bound search. However, the D U A L  class that provides the simplex algorithms, may be used 
for some other analyses. Therefore, despite its implicit use in hlOhZIP, the D U A L  class is made 
explicitly available for other applications and its description is given in this chapter. 

The D U A L  class constructor must be called with three parameters: a pointer to  an P R O B L E M  
class, a pointer t o  an INVERSE class and pointer to a DUAL-PAR structure. The constructor. 
when called, builds the D U A L  class, assigns its functions to the specified P R O B L E M  and IN-  
VERSE classes: and transfers the control parameters from the specified DUAL-PAR structure. 
For instance the statement: 
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DUAL(&MYPROBLEM,&MYLU,&MYPAR) MYDUAL; 

causes the construction of a DUAL class called MYDUAL, assigns its computational functions 
t o  the class MYPROBLEM of type PROBLEM and to  the class MYLU of type INVERSE, and 
transfers the control parameters from the structure MYPAR of type DUAL-PAR. 

The DUAL class constructor may be used anywhere within the scope of the classes used as 
the parameters but the specified PROBLEM class must be filled out with the main problem 
data  prior t o  the DUAL constructor call. Moreover, the problem should be transformed into the 
standard form, i.e. it should be the minimization problem with shifted bounds and added slacks. 

DUAL-PAR is a predefined structure type containing as members all the control parameters. 
It is provided with the constructor assigning default values t o  all the members (parameters). 
Thus the user having declared his/her own DUAL-PAR structure needs t o  define values for only 
those parameters he/she wishes to  change. 

The DUAL-PAR structure has the following (public) members: 

TOLFEAS - primal feasibility tolerance. During the course of the dual simplex algorithm any 
computed variable value is treated as if it were feasible, if the magnitude of the amount 
by which it violates the limit is no greater than TOLFEAS. By default TOLFEAS= 1.0&-'. 
Any nonnegative value is a legal TOLFEAS value. 

TOLDJ - dual feasibility tolerance. During the course of the dual simplex algoritllm ally 
computed reduced cost is treated as if it were 0 , if its magnitude is no greater tllaii 
TOLDJ. By default TOLDJ= 1.0e-'. Any nonnegative value is a legal TOLDJ value. 

TOLPIV - pivot tolerance. During the course of the dual simplex algorithm, any potential 
pivot element is treated as if it were 0 , if its magnitude is no greater than TOLPIV. By 
default TOLPIV= 1 . 0 t - ~ .  Any nonnegative value is a legal TOLPIV value. 

INVFREQ - refactorization frequency. During the course of the dual simplex algorithm, tlle 
refactorization function is called every l NVFREQ simplex steps. By default I NVFREQ= 100. 
Any value no less than 1 is a legal INVFREQ value. 

ITERI-IMIT - maximal number of simplex steps. During the course of the dual simplex algo- 
rithm, the solution process is abandoned and the problem classified as unsolved, if number 
of simplex steps has exceeded ITERLIMIT. By default ImrERLIMIT= 500. Any value no less 
than 1 is a legal ITERLIMIT value. 

PPRICE - partial pricing size for the primal simplex algorithm. By default PPRICE= 0. which 
means full pricing is carried out. In the case of some positive value of PPRICE during the 
course of the primal simplex algorithm pricing is abandoned after identification of PPRICE 
candidate columns t o  enter the basis. 

EPSPERT - primal anticycling perturbation. If cycling is detected during the course of the 
primal simplex algorithm, bounds on basic variables are shifted by the value of EPSPERT. 
By default EPSPERT= l.oe-'. 

Most of the DUAL class data  members are implicitly assigned by the constructor to  the 
corresponding data  structures of the specified PROBLEM structure. Five following data members 
must be assigned directly by the user: 

char * typevar; //pointer to  vector of variable types 
Int-T * status; //pointer t o  basic solution description 
Int-T * hreg; //pointer to  basic variables 
Real-T * xb; //pointer t o  basic solution vector 
Real-T * value; //pointer to return objective value 
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Member typevar must have assigned a pointer to  the vector of variable types. It must be 
a vector of n+m chars filled out according to  the following codes: 

0 - free structural variable or unconstrainted row, 

1 - nonnegative structural variable or inequality, 

2 - bounded structural variable or ranged row, 

3 - fixed structural variable or equation. 

Member status must have assigned a pointer to  the starting basic solution description. It 
must be a vector of n + m variables (of the predefined integer type Int-T) filled out according 
to the following rules: 

for k = 0,1 ,  . . . , n - 1 (structural variables) 

status[k] = -1 if variable k is nonbasic at  its lower limit, 

status[k] = -2 if variable k is nonbasic a t  its upper limit, 

status[k] = -3 if fixed variable k is nonbasic, 

status[k] = i 2 0 if variable k is in basis at  position i; 

for T = 0 , 1 , .  . . , m - 1 (constraints) 

status[n + T] = -1 if constraint T is nonbasic a t  its RHS limit, 

status[n + r]  = -2 if constraint r is nonbasic at  its range limit, 

status[n + r ]  = -3 if equat,ion T is nonbasic, 

status[n + T] = i 2 0 if constraint r is in basis at  position i ;  

where the basis positions are numbered from 0 through m - 1. 
Member hreg must have assigned a pointer to the starting basic variables description. It 

must be a vector of m variables (of the predefined integer type Int-T) filled out according to  the  
following rules: 

for i = 0 , 1 :  . . . .  n z - 1  

hreg[i] = k if variable k is in basis at  position i,  

hreg[i] = n + k if constraint k is in basis a t  position i. 

Member xb must have assigned a pointer to a vector for values of basic variables. It must be 
a vector of nz variables (of predefined float type Real-T) and it does not need to  be filled out. 

Member value must have assigned a pointer to  a variable of the predefined float type Real-T 
for objective value. 

To solve a linear programming problem with the dual simplex algorithm, one needs to  declare 
the DUAL class, assign necessary class members (typevar, status, hreg, xb and value), and call 
its Solve function. The Solve function is declared within the DUAL class with the header of the 
form: 

char Solve(Real-T CUT, char CONT); 

Thus it must be called with two parameters. Parameter CllT specifies the cutting off value 
for optimization. If, during the course of the dual algorithm, a current objective value exceeds 
the CUT value, the optimization is abandoned and the problem classified as semi-infeasible. 
If CONT=O, full refactorization is made prior to the dual algorithm start.  If CONT=l, the 
dual algorithm starts using the current factorization data available in the INVERSE class. If 
CONT=-1, the primal simplex algorithm is used instead of dual. 

Solve function returns the solution status coded as follows: 
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1 - optimal solution found, 

-1 - problem unsolved (numerical difficulties or ITERI-IMIT encountered), 

-2 - problem infeasible, 

-3 - problem semi-infeasible (CUT bound encountered), 

-4 - problem unbounded (returned only by primal algorithm). 

If Solve has returned code 1 the optimal solution can be read from the data structures assigned 
to  the DUAL class. The optimal value is given with the variable value. The optimal values of 
the basic variables are given in vector xb, and the entire solution vector can be restored using 
information from vectors status and hreg. 

5 Program MOMIP 

MIP class has been used to  build standalone MOMIP program. The complete text of the 
corresponding main file is provided in Appendix A.  MOMIP program is called with the command: 
rnornip [options] probname 
where all the used options must start  with the minus sign and probnarne is the name of an input 
data file. As all the options have predefined default values, for simple use MOMIP can be called 
without options. However, in such a case the name of the input file must include one of the 
standard extensions (rnps, txt or dit), i.e. 
rnornip probnarne.id 

In the case of extension id=rnps MOMIP reads the input file as an MPS file (compare Chapter 
6) and generates the solution in the standard text output file named probnarne.sol. 

As reading of RIPS files for large problems may be time consuming, MOhlIP may save the 
processed problem data  in the simplified TXT file. Such a file can be quickly read by MOIIIP 
in the case of need to  repeat computations with modified control parameters. The T X T  file is 
recognized by MOMIP due to  extension id=txt. In this case, similarly as with hlPS file input, 
the standard text output file named probnarne.sol is generated. 

In the case of extension id=dit (not available under MS-DOS operating system) RlOhlIP 
reads the input file as a binary file in the LP-DIT format (hlakowski, 1994) and generates the 
solution in the L P D I T  format. 

M'ith default options MOMIP searches for possible basis file (describing the LP optimal 
solution) named probnarne.inv. If there is no such a file, MOhlIP starts to solve the problem 
from scratch using its internal primal simplex algorithm. 

MOMIP can read values of the control parameters (Section 2.5) from the special specification 
file. By default MOMIP searches for the specification file named rnornip.spc. In the specification 
file each line starts with name of the parameter and contains the specified value. For instance, if 
one wants to  use the BEST node selection rule during the entire search and abandon the search 
after identification of ten integer solution, it can be done with a specification file built of two 
following lines: 

SUCCLlMlT 10 / /  only 10 integer solutions 
SELSW 1 / /  BEST node selection strategy 

MOMIP program generates the log file (by default named rnomip.log) where all the messages 
are available. In addition to the MOhlIP solver messages (Section 3.3) the following warnings 
connected with da ta  readings may occur there 

t WARNING: Expected ROWS after N A M E  instead of ... 

Unrecognized line after NAME line. The line is ignored. 
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t WARNING: Expected L, E, G, N ,  or COLUMNS instead of ... 

Unrecognized line in the ROWS sections. The line is ignored. 

t WARNING: Unrecognized bound type ... 

Unrecognized line in the BOUNDS sections. The line is ignored. 

t WARNING: Row label ... from COLUMNS section missing in ROWS section 

Row name used in the COLUMNS section does not match any name listed in the ROM'S 
section. The corresponding coefficient is ignored. 

t WARNING: Row label ... from RHS section missing in ROWS section 

Row name used in the RHS section does not match any name listed in the ROWS section. 
The corresponding coefficient is ignored. 

* WARNING: Row label ... from RANGES section missing in ROWS section 

Row name used in the RANGES section does not match any name listed in the ROIYS 
section. The corresponding coefficient is ignored. 

* WARNING: Column label ... from BOUNDS section missing in COLUMNS section 

Column name used in the BOUKDS section does not match any name listed in the COLUhlSS 
section. The corresponding coefficient is ignored. 

* WARNING: Objective function not found 

Name of the specified objective function not found in the ROMTS section or there is no N 
type row. All the objective coefficients are equal to 0. 

* WARNING: ENDATA not found 

The ENDATA line not found in the MPS file. MPS file is assumed to  be complete. 

* WARNING: Cannot open basis file ... 

The specified basis file is not available. MOMIP will use its internal primal simplex algorithm 
to  solve the problem from scratch. 

* WARNING: Invalid basis file ... 

The specified file does not contain a correct basis description. MOhlIP will use its internal 
primal simplex algorithm to solve the problem from scratch. 

+ WARNING: N O T  OPTIMAL basis file ... 

The specified file contains a correct basis description but the basis is not optimal. hlOMIP 
will use its internal primal simplex algorithm to reoptimize the problem. 

MOMIP program may be called with the following options: 

Option -h causes that  a short options help is issued and no problem is processed. The same 
effect is caused by calling MOhlIP with no parameters. 
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Option -iext causes that  the format of input file is recognized according to  its extension. Th:s 
option is set by default. 

Option -imps causes that  the input file is treated as an MPS file even if its name has no 
extension or different extension. When this option is used, any extension is treated as a 
part of probnarne. Thus under MS-DOS operating system this option can be used only 
when the name of input file has no extension. 

Option -itxt causes that  the input file is treated as an TXT file even if its name has no extension 
or different extension. When this option is used, any extension is treated as a part of 
probnarne. Thus under MS-DOS operating system this option can be used only when the 
name of input file has no extension. 

Option -idit causes that  the input file is treated as an  LP-DIT file even if its name has no 
extension or different extension. When this option is used, any extension is treated as a 
part of probnarne. Thus under MS-DOS operating system this option can be used only 
when the name of input file has no extension. 

Option -onul supprdses default output of the solution. Its use is necessary if one wants to  
redirect solution output. 

Option -osol causes that  the solution is placed in the standard text file named probname.sol. 
This option is default in the case of input options -imps and -itxt as well as option -iext and 
the input file with extension rnps or txt. Use of this option does not suppress the default 
output. Thus for a redirection of the default output it should be used together with optioil 
-onul. 

Option -odit causes that  the solution is placed in the LP-DIT file. This option is default in the 
case of input option -idit or option -iext and the input file with extension dit. ITse of this 
option does not suppress the default output. Thus for a redirection of the default output 
it should be used together with option -onul. 

Option -cval allows to define nonstandard value of CUTOFF parameter (compare Sectioil 2.3). 
When this option is used CUTOFF=val. 

Option -sfilename forces MOhlIP t o  read the specification file filename instead of the file 
rnornip.spc. 

Option -1filenanze allows to  redirect the log file from mornip.log to  the file filename. 

Option -bfilename forces MOMIP to  read the basis file (with the LP optimal solution) filename 
instead of the file probnarne.inv. 

Option - t  forces MOMIP t o  generate TXT file for the current problem. By default the file is 
named probnarne.txt. Another name may be specified with option -tfilename. 

Option -n forces MOMIP to  generate basis file for the current problem. By default the file is 
named probname.inv. Another name may be specified with option -nfilename. Note that 
MOMIP generates the basis file depending on the node 0 solution. i.e., for the preprocessed 
LP problem. Such a basis may not be accepted in future runs for the same problem, if tllc 
level of preprocessing (especially DOSOS) will be decreased. 

6 MPS file 

As the standard data input hlOMIP uses MPS file. hlIPS (after Mathematical P r o g r a m m i ~ l ~  
System) input format was originally introduced by IBM to  define LP data and become. in fact. 
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the standard recognized by all the commercial LP packages (see Nazareth, 1987; for more about 
the MPS format modeling philosophy). Unfortunately, there is no so clearly defined standard 
for specification of integer variables in MIP problems. Therefore our MPS file is an extension 
of the MPS format that  allows t o  indicate integer variables in various ways to  cover the most 
common formats used in MIP solvers. Moreover, the standard MPS format is, essentially, a 
description of an  LP model (not a problem instance) allowing to define several right-hand side 
vectors, objective functions, etc. Therefore our extension of the MPS format includes additional 
problem specification to  indicate the optimized objective function and the optimization sense 
(minimization or maximization) as well as to indicate specific for the problem data  vectors. MPS 
file used by MOMIP consists of two parts: the problem specification and the MPS data  file. The 
problem specification may be skipped in the case if the default problem setting is accepted. If 
the problem needs t o  be specified in a nonstandard way, the problem specification must precede 
the MPS da ta  file. However, for better understanding, we describe the problem specification 
format after the MPS da ta  file format. In the MPS data  format a problem (or rather a model) is 
depicted as a tableau of numbers, in which the objective functions and constraints correspond to 
rows, and the variables and the right-hand sides correspond to  columns. Each row and column is 
given a unique name and each nonzero element of the matrix is defined by a triple: column name. 
row name and value of the element. The problem data  are specified by five groups of information. 
called sections: ROWS section provides the list of all row names and their corresponding type 
of constraints; COLUMNS section provides values of all nonzero matrix elements grouped by 
columns; RHS section provides values of all nonzero right-hand sides elements grouped by RHS 
columns; RANGES section provides existing ranges on constraints grouped by range vectors: 
BOUNDS section provides bounds on variables grouped by bound vectors. 

MPS data  file is built of lines containing fields in fixed columnar positions. So, care has to be 
taken that  all the information is placed in the correct columns. There are two principal types 
of lines in MPS file: indicator lines and data lines. 

Indicator lines announce the sections of the MPS file. They contain only a single word that 
begins in column 1. It specifies the type of data that follows. The indicator lines are: 

NAME Begins the MPS data file and specifies the problem name. 
This line, unlike the other indicator lines, contains data (the problem name) in 
columns 15-22. 

ROWS Begins the ROWS section. 

COLLIMNS Begins the COLUMNS section. 

RHS Begins the RHS section. 

RANGES Begins the RANGES section. 

BOUNDS Begins the BOUNDS section. 

ENDATA Signals the end of the data file. 

All sections and the corresponding indicator lines are obligatory in the MPS data file except 
BOUNDS and RANGES. The BOUKDS section is, in fact, also obligatory for MOMIP as it 
requires all integer variables to be bounded. In the area between the NAME and ENDATA lines 
any line begining with * in the first column is treated as a comment and ignored. 

Data lines contain the actual data values. All data lines have the same general format. They 
are divided into six fields: 

Field 
Columns 
Contents 

3 
15-22 
Name 

1 
2-3 

Indicator 

2 
5-12 

Name 

6 
50-61 
Value 

4 
25-36 
Value 

5 
40-47 
Name 
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Not all six fields are used within each section of the MPS file. Data  outside of the designated 
fields are ignored. Names in the fields 2, 3, 5 should be left adjusted. 

ROWS section data lines specify the name and type of constraint for each row. They contain: 

Field 1: a single letter designating the type of the constraint: 

N - free row 

G - "greater than or equal to" row 

L - "less than or equal to" row 

E - equality row 

Field 2: TOW name 

Field 3: optional 'SOSROW' marker to  indicate the SOS row 

Fields 4-6: not used in this section 

Format of the ROWS section data  lines is: 

COLUMNS section data lines specify the names to  be assigned to  the columns in the matrix. 
and define, in terms of column vectors, the actual values of the matrix elements. They contain: 

Field 1: not used in this section 

Field 
Columns 
Contents 

Field 2: column name 

Optional 

2 
5-12 

Row Name 

1 
2-3 

Row Type 

Field 3: TOW name 

Field 4: value of the matrix element from row specified in the Field 3 and column specified 
in the Field 2 

3 
15-22 

'SOSROW' 

Field 5: optional and used as Field 3 is used 

4 1 5 1 6  

Not used 

Field 6: optional and used as Field 4 is used 

The martix elements must be specified by columns, that is, when one element is given, all other 
nonzero elements in that column must also be entered before another column is mentioned. 
Format of the COLUMNS section data lines is: 

In the COLUMNS section marker lines may be placed to indicate the start and the end of 
a group of integer variables. Several separate groups of integer variables may be indicated in 
this way. Each marker line is given a unique name, which must differ from the preceding and 
succeding column names. 
The marker line preceding a group of integer variables contains: 

Field 1: not used 

6 
50-61 
Value 

O ~ t i o n a l  

Field 
Columns 
Contents 

2 
5-12 

Column Name 

1 
2-3 

Not used 

5 
40-47 

Row Name 

3 
15-22 

Row Name 

4 
25-36 
Value 
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Field 2: marker name 

Field 3: 'MARKER' 

Field 4: optional priority level for the indicated integer variables 

Field 5: ' INTORG' 

Field 6: not used 

The marker line succeeding a group of integer variables contains: 

Field 1: not used 

Field 2: marker name 

Field 3: 'MARKER' 

Field 4: not used 

Field 5: ' INTEND'  

Field 6: not used 

Format of the marker lines is: 

I Columns I 
I I I I I I 

2-3 5-12 15-22 / 25-36 1 40-47 1 50-61 1 
1 Field 1 1 2 

I I I I Contents 1 Not used 1 Marker Name 1 'MARKER' 

RHS section data lines specify the names of the right-hand side constraint vectors. They 
also define, in terms of column vectors, the actual values of these elements. RHS section data 
lines have precisely the same format as COLUMNS section data  lines. Several RHS colun~ns 
can exist. However, only one of them is selected when problem is read. 

RANGES section data lines specify the names and values of ranges. The set of ranges is 
defined as a column vector. When no range is defined in the problem, the RAKGE section is 
omitted. The data  lines contain: 

Priority 
Optional 

5 
40-47 -- 

' INTEND'  Not used 

Field 
Columns 
Contents 

Field 1: not used in this section 

6 3 

I 

' INTORG' I Kot used 

Field 2: name of ranges vector 

1 
2-3 --- 

Not used 

Field 3: row name to  which the range is t o  be applied 

4 

Field 4: value of range in ranges column specified in the Field 2 to  be applied to  row 
specified in the Field 3 

5 

1 2 
5-12 

Marker Name 

Field 5: optional and used as Field 3 is used 

Field 6: optional and used as Field 4 is used 

3 

15-22 
'MARKER' 

Several range vectors can exist but, as with RHS vectors, only one of them is selected when 
problem is read. 
Format of the RANGES section data lines is: 

4 
25-36 

Not used 
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BOUNDS section data lines specify bounds on the values of structural variables. When no 
structural variable is to  be bounded, the BOUNDS section is omitted. Bounds are defined in 
terms of row vector. BOUNDS section data lines contain: 

Field 1: type of the bound: 

, 

Field 
Columns 

Contents 

LO - lower bound 

UP - upper bound 

FX - fixed value 

FR - free variable (-00, +oo) 

MI - lower bound = -oo 

PL - upper bound = +x 

BV - binary variable, upper bound = 1 and integer variable indicator 

LI - lower bound and integer variable indicator 

U I  - upper bound and integer variable indicator 

Optional 

Field 2: name of bounds vector 

1 
2-3 

Not used 

Field 3: column to  be bounded name 

3 
15-22 
Row 

Name 

2 --- 
5-12 

Ranges 
Column Name 

Field 4: value of the bound, if type of the bound specified in the Field 1 is LO: UP, LI .  UI 
or FX, otherwise this field is not. used 

Field 5-6: not used in this section 

4 
25-36 
Range 
Value 

Several vectors of bounds can exist. However, entries must be specified by rows, that is. when 
one value is specified in a given bound row vector, all other values for that row should be entered 
before another row is mentioned. Only one bound vector is selected when problem is read. Loiver 
bounds equal to  0 and infinite upper bounds are defaults in MOMIP. Therefore, one does not 
need to  specify explicitly such bounds in the BOUKDS section. 
Format of the BOUNDS section data lines is: 

40-47 
Row 

Name 

MOMIP requires all integer variables to  be bounded. That means, each integer variable 
should appear in the BOUNDS section with a bound of type UP, U I  or BV. Indication of integer 
variables in the BOUNDS section (with BV, U I  or L I )  is an alternative t o  the use of marker lines 
in the COLUAINS section. Thus the user is free to  choose whether to  indicate integer variables 
in the COLUMNS sections or in the BOUNDS section. Double indications of integer variables 
as well as mixed techniques of indication are accepted by MOMIP. Kote. however. that  only 
marker lines in the COLUMNS section allows us to  define priorities for integer variables. 

MPS data file may be preceded with the optional problem specification lines. Kote that .  as 
the problem specification lines are located before the N A M E  line, they are simply ignored by 

50-61 
Range 
Value 

Field 
Columns 1 
Contents 

2 
5-12 

Bound 
Vector Name 

1 
2-3 

T Y  pe 
of Bound 

3 
15-22 --- 

Column 
Name 

5 
40-47 

4 
25-36 
Bound 
Value 

6 
50-61 

Not Used 1 
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other solvers while reading the  MPS file. Specification hnes can appear in any order but  they 
must comply with the  following format: 
OBJ name 
MIN 
MAX 
RHS name 
RANGES name 
BOUNDS name 
ZEROTOL value 
IN FTOL value 
NlNT value 

OBJ specifies t he  name of a row t o  be identified as  the problem objective function. By default 
t he  first row of type N is taken as the objective function. 

MIN specifies optimization sense as minimization. I t  is t he  default specification. 

MAX specifies optimization sense as maximization. 

RHS specifies the  name of a column t o  be identified as  the  problem right-hand side. By default 
the  first column found in the  RHS section is taken as the  right-hand side. 

RANGES specifies t he  name of a vector t o  be identified as  the  problem ranges. By default the  
first vector found in the  RANGES section is taken as the  problem ranges. 

BOUNDS specifies t he  name of a vector t o  be identified as  the  problem bounds. By default the 
first vector found in the  BOUNDS section is taken as the  problem bounds. 

ZEROTOL specifies t he  zero tolerance for the  MPS data.  Any coefficient with absolute value 
less than  ZEROTOL will be replaced with 0. By default ZEROTOL= 1.0e-~'. 

INFTOL specifies the  infeasibility tolerance for the  MPS data.  Any variable with the  difference 
between i ts  upper and lower bound less than INFTOL will be treated as fixed a t  its lower 
bound. An; range coefficient with absolute value less than INFTOL will be treated as 0 
and the  corresponding row will be treated as equation. By default INFTOL= 1.0e-'. 

NlNT specifies the number of integer variables. By default NINT= 0 which causes tha.t the 
integer variables are identified according t o  the markers lines in the COLUklKS section 
and integer bounds (UI, LI or BV) in the BOUNDS section. U'hen NlNT has a positive 
value, the first NlNT variables (columns) are considered to  be identified as integer and all 
the  other integer indicators are ignored. 

7 Tutorial example 

To illustrate the  use of MOMIP for a MIP problem analysis, let us consider a simplified distribu- 
tion problem with warehouses sizing. The AC Auto Company wants t o  expand its distribution 
network on a new market. AC produces two different models of cars, which we refer to,  for 
simplicity, a s  M 1  and M2. The cars are assembled in two plants A1 and A2. In the A1 plant 80 
M 1  and 40 M 2  cars are assembled monthly, whereas the monthly production capacities of the  
plant A2 are 30 and 60 cars of the  models M 1  and M2, respectively. The  cars are transported by 
rail t o  t he  distribution centers then by trucks t o  individual dealers. For simplicity we consider 
only four dealers denoted as D l ,  D2, D3 and D4. Monthly demands of the  dealers on the specific 
models are given in the  following table. 
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AC operates one distribution center W1 in the area. To meet increasing demands they 
consider creating one or two additional centers W2 and W3. Current capacity of the center W1 
is 50 cars but it can be increased to  80 cars. The distribution center W2 can be created in two 
possible versions with the capacity for 50 or 100 cars, respectively. Similarly, W3, if created, 
can have the capacity for 60 or 130 cars. Operating costs of the distribution centers depends on 
their capacities rather than their current throughput. These costs in hundreds of dollars are as 
follows: 

200 for capacity 50 or 60, 
250 for capacity 80, 
300 for capacity 100 or 130. 

The company wants to  minimize the total of operating and transportation costs. The unit 
transportation costs are the same for both car models. They depend only on the distance and 
their values in hundreds of dollars are summarized in the following tables: 

To build an algebraic model of the problem, we introduce the following decision variables: 

m r  : ak-wi - the number of Mr cars transported from Ak to  Wi, 

m r  : w i d j  - the number of Mr cars transported from Wi to Dj, 

wi - the size (capacity) of distribution center Wi, 

where r =  1,2;  k =  1,2;  i =  1 , 2 ? 3 ; j =  1 ,2 ,3 ,4 .  
All such defined decision variables must be nonnegative and integer. Moreover, the variables 

wi can only take specific values. To model this requirement we introduce auxiliary bjnary 
variables w i-vl and equa,tions: 

To guarantee the proper modeling of the capacity selection, they must be accompanied by the 
SOS constraints: 

Furthermore, we introduce the transportation balance constraints. The quantities t o  be sent 
from each assembly plant and from each distribution center cannot exceed the quantities being 
available. Similarly, the quantities received by the dealers have to  meet their demands and tile 
quantities received by the distribution centers cannot exceed their capacities. 

Finally, we define the objective function which is the sum of transportation and operating 
costs. The transportation cost is defined as the total of variables mr  : ak-u,i and m r  : wi-dj 
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multiplied by the corresponding unit costs. The operating cost is defined as the totai of variables 
wi-vt multiplied by the operating cost of the corresponding version of the center. 

Essentially, all the decision variables must be integer. One can easily notice, however, that  
integer values of variables wi-vt imply integer values of variables wi .  Thus, we need not impose 
explicit integrality requirements variables wi .  

The entire MPS-file for the problem takes the following form: 
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MI N 
OBJ cost 
RHS 1/1993 
NAME AC-Model 
ROWS 

N cost 
L m1:al 
L ml :a2  
L m2:a l  
L m2:a2 
E m1:dl  
E ml :d2  
E ml :d3 
E m2:d2 
E m2:d3 
E m2:d4 
L b w l  
L bw2 
L bw3 
G m1 :w l  
G rn l :w2 
G rnl:w3 
G m2 :w l  
G rn2:w2 
G rn2:w3 
E ver-wl 
E ver-w2 
E ver-w3 
E sel-wl 
E sel-w2 
E sel-w3 

COLUMNS 
sizes 
w l - u l  
w l - u l  
wl -u2 
w l 4 2  
w2-u1 
w2-u2 
w2-u2 
w2-u3 
w 2 ~ 3  
w3-ul 
w 3 ~ 2  
w 3 ~ 2  
w3-u3 
w 3 4 3  

'SOSROW' 
'SOSROW' 
'SOSROW' 

'MARKER' 2 'INTORG' 
ver -w 1 50 cost 200 
sel-wl 1 
ver -w 1 80 cost 250 
sel-wl 1 
sel -w2 1 
ver-w2 50 cost 200 
set-w2 1 
ver-w2 100 cost 300 
sel-w2 1 
sel-w3 1 
ver-w3 60 cost 200 
sel-w3 1 
ver -w3 130 cost 300 
sel-w3 1 
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esizes 
flows 
rn1:al-wl 
rn1:al-wl 
rn1:al-w2 
rn1:al-w2 
rn1:al-w3 
rnl:al-w3 
rn l :a2-wl  
rn l :a2-wl  
rnl:a2-w2 
rnl:a2-w2 
r n l : a 2 ~ 3  
rn l:a2-w3 
rn2:al-wl 
rn2:al-wl 
rn2:al-w2 
rn2:al-w2 
rn2:al-w3 
rn2:al-w3 
rn2:a2-wl 
rn2:a2_wl 
rn2:a2-w2 
rn2:a2-w2 
rn2:a2-w3 
rn2:a2-w3 
r n 1 : w l d l  
r n 1 : w l d l  
r n l : w l d 2  
r n l : w l d 2  
r n l : w l d 3  
r n l : w l d 3  
rn l :w2d1  
r n l : w 2 d l  
rn l :w2d2  
rn l :w2d2  
rn l : w 2 d 3  
rn l : w 2 d 3  
r n l : w 3 d l  
r n l : w 3 d l  
rn l : w 3 d 2  
rn l :w3d2  
rn l : w 3 d 3  
rn l : w 3 d 3  
rn2:wld2 
rn2 :w ld2  
rn2:wld3 
rn2:wld3 
rn2:wld4 
rn2:wld4 

'MARKER' 
'MARKER' 1 
cost 2 
bw 1 1 
cost 5 
bw2 1 
cost 3 
bw3 1 
cost 9 
b w l  1 
cost 4 
bw2 1 
cost 7 
bw3 1 
cost 4 
b w l  1 
cost 7 
bw2 1 
cost 9 
bw3 1 
cost 6 
bw 1 1 
cost 1 
bw2 1 
cost 2 
bw3 1 
cost 7 
rn 1 :w l  - 1 
cost 1 
rn1:wl  - 1 
cost 6 
rn 1 :w l  - 1 
cost 14 
rn l :w2 - 1 
cost 3 
rn l :w2 - 1 
cost 5 
rn l :w2 - 1 
cost 2 
rn l :w3 - 1 
cost 7 
rn l :w3 - 1 
cost 9 
rnl:w3 - 1 
cost 1 
rn2:wl - 1 
cost 6 
rn2:wl - 1 
cost 4 
rn2:wl - 1 

'INTEND' 
'INTORG' 
rn1:al 1 
rn1:wl 1 
rn1:al 1 
rnl:w2 1 
rn1:al 1 
rnl:w3 1 
rn l:a2 1 
rn 1:wl 1 
rnl:a2 1 
rnl:w2 1 
rn l :a2 1 
rn l:w3 1 
rn2:al 1 
rn2:wl 1 
rn2:al 1 
rn2:w2 1 
rn2:al 1 
rn2:w3 1 
rn2:a2 1 
rn2:wl 1 
rn2:a2 1 
rn2:w2 1 
rn2:a2 1 
rn2:w3 1 
m1:dl  1 
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m2:w2d2 
m2:w2d2 
m2:w2d3 
m2:w2d3 
m2:w2d4 
m2:w2d4 
m2:w3d2 
m2:w3d2 
m2:w3d3 
m2:w3d3 
m2:w3d4 
m2:w3d4 
eflows 
w l  
w2 
w3 

RHS 
1/1993 
1/1993 
1/1993 
1/1993 
[ / I 993  
1/1993 
1/1993 
1/1993 
1/1993 
[ / I 993  
1/1993 
1/1993 
1/1993 

BOUNDS 
UP B D  
UP B D  
UP B D  
UP B D  
UP B D  
UP B D  
UP B D  
U P  B D  
UP B D  
UP  B D  
UP  B D  
UP B D  
UP  BD 
UP B D  
UP B D  
UP  B D  

cost 
m2:w2 
cost 
m2:w2 
cost 
m2:w2 
cost 
m2:w3 
cost 
m2:w3 
cost 
m2:w3 
'MARKER'  
b w l  
bw2 
bw3 

'INTEND' 
ver-wl 
ver-w2 
ver-w3 
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UP BD rn2:al_w3 200 
UP BD rn2:a2_wl 200 
UP BD rn2:a2_w2 200 
UP BD m2:a2_w3 200 
UP BD rn1:wldl 200 
UP BD m l : w l d 2  200 
UP BD m l : w l d 3  200 
UP BD m l : w 2 d l  200 
UP BD ml:w2d2 200 
UP BD ml:w2d3 200 
UP BD m l : w 3 d l  200 
UP BD ml:w3d2 200 
UP BD ml:w3d3 200 
UP BD m2:wld2 200 
UP BD m2:wld3 200 
11 P BD m2:wld4 200 
UP BD m2:w2d2 200 
UP BD m2:w2d3 200 
UP BD m2:w2d4 200 
UP BD m2:w3d2 200 
11 P BD m2:w3d3 200 
UP BD m2:w3d4 200 

EN DATA 
In the MPS-file, with the problem specifications before the NAME line we have pointed out 

that  the objective function row is cost and it should be minimized. We have also specified 
1/1993 as the active righ-hand side column. All these specification could be, in fact, omitted, as 
they comply with the defaults. In the ROWS section all the constraints and objective fuction 
have specified their names and types. For the last three equation we have attached markers 
'SOSROW' to  indicate them as the SOS constraints. Next in the COLUMNS section, all the 
variables with their coefficients are listed. The integer variables have been indicated, by groups. 
with the marker lines. Note that to  guarantee better efficiency of the branch-and-bound search, 
the variables wi-vt have assigned higher priority as they represent the distribution center location 
and sizing decisions and thereby they have the greatest impact on the model. Another order 
of priorities for integer variables may cause longer solution process. In fact, in-deep analysis of 
the model leads to  the conclusion that with integer values of variables wi and integer data. all 
the transportation variables mr : ak-u~ i  and mr : wi-dj will take integer values in the optimal 
solution (compare, Nemhauser and Wolsey, 1988). Thus, the integrality requirements need t o  
be imposed only on 8 variables wi-vt. However, as it requires some experience with the integer 
optimization theory, we have omitted this opportunity in the model formulation. 

When solving the problem with MOMIP, the following log report has been received: 

MOMIP - Modular Optimizer for Mixed Integer Programming 
version 2.1 (1994) 

Institute of Informatics, Warsaw University 
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MIP SETTINGS 
Max no. o f  nodes t o  be examined . . . . . . . . . . . . . .  NODELIMIT 
Max no. o f  nodes after last integer . . . . . . . . . . . .  NOSUCCLIMIT 

. . . . . . . . . . . . . . . . . . . . . .  Max no. of integer nodes SUCCLlMlT 
. . . . . . . . . . . . . . . .  Max no. o f  simplex steps per node ITERLIMIT 

. . . . . . . . . . . . . . . . . . . . .  Max no. o f  waiting nodes TREELIMIT 
. . . . . . . . . . . . . . . . . . . . . . .  Node report frequency NODREPFRQ 

. . . . . . . . . . . . . . . . . . . . . .  Relative optimality tolerance OPTEPS 
. . . . . . . . . . . . . . . . . . . . .  Maximal integer magnitude INTMAGN 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Integrality tolerance INTEPS 
. . . . . . . . . . . . . . . . . . . . . . .  Quasi-integrality tolerance QINTEPS 
. . . . . . . . . . . . . . . . . . . . . .  Relative postpone tolerance POSTEPS 

. . . . . . . . . . . . . . . . . .  Branching variable selection strategy B RSW 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Node selection strategy SELSW 

. . . . . . . . . . . . . . . . . .  Number of cuts t o  be generated DOCUTS 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  SOS preprocessing level DOSOS 

. . . . . . . . . . . . . . . . . . . .  Penalties on branching variable DOPEN 
. . . . . . . . . . . . . . . . . . . . . . .  Primal feasibility tolerance TOLFEAS 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Dual feasibility tolerance TOLDJ 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Nonzero pivot tolerance TOLPIV 
. . . . . . . . . . . . . . . . . . . . . . . .  Refactorization frequency INVFREQ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Primal partial pricing PPRICE 
. . . . . . . . . . . . . . . . . . .  Primal anticycling perturbation EPSPERT 

100000 
100000 
100 
500 
1000 
10 
0.0005 
65535 
0.0001 
0.05 
0.2 
AlITOMA1-IC 
LIFO 
0 
0 
YES 
le-07 
le-07 
le-07 
100 
4 
16 -08 

PROBLEM: 'AC-Model' 
Objective: 'cost ' (MIN) Rhs: '1/1993 ' 

'BD Bounds: 
I Ranges: ' I 

25 (25) constraints with 41  (41) structurals including 38 (38) integer 
Cutoff value: 1.797693e+308 

NODE 0 noninteger (6) Functional 1565.769231 (1635) lter. 0 (0) 
AFTER node 0 and iter. 0 
Nodes dropped if functional beyond 1.797693e+308 
AFTER node 0 and iter. 0 
Any further solution cannot be better than 1635 
AFTER node 2 and iter. 8 
Any further solution cannot be better than 1670 
AFTER node 2 and iter. 8 - 2 waiting nodes 
AFTER node 4 and iter. 11 
Any further solution cannot be better than 1693.333333 
AFTER node 4 and iter. 11 - 3 waiting nodes 
INTEGER SOLUTION Functional 1700 at node 5 and iter. 13 
Nodes dropped if functional beyond 1699.15 

t MIP analysis completed 
1 integer solutions found 

t BEST SOLUTION with functional 1700 at node 5 and iter. 13 
Best possible value: 1699.15 
5 nodes examined 
13 simplex iterations 
Max l ist size: 2 

One can read from the  log report tha t  the  optimal solution t o  the  continuous problem (Node 0 )  
has t he  functional value 1565.769231 (in hundreds of dollars) but the  calculated penalties show 
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that integer solution cannot have functional value better than 1635. This bound on the functional 
value of the integer solution increases during the solution process (1670 after two and 1693.33 
after four nodes solved). Finally, at node 5, the first integer solution with the functional value 
1700 is found, which turns out t o  be optimal. The integer solution generates the cutoff value 
1699.15 which allow to  fathom all the remaining nodes, thus completing the branch-and-bound 
search. 

From the resume of the report one may read that only one integer solution has been found 
during the entire branch-and-bound search. It was found a t  node 5 after 13 simplex steps. If 
there exists another integer solution, its functional value cannot be better than 1699.15 (best 
possible value). Thus, due t o  the model specificity (integer cost coefficients), we can be sure that 
the strict optimal solution has been found. In general, if the achieved optimization accuracy is 
not enough, the relative optimality tolerance OPTEPS should be decreased. The entire branch- 
and-bound search required solution of 5 nodes (apart from the original continuous problem) and 
it took 13 simplex steps. 

Using the standard output function of the PROBLEM class one gets the following solution 
report: 

MIP problem - AC-Model 
MOMIP v.2.1 

SOLSTATUS: IP-OPTIMAL Nodes: 5 Iters: 54 Value: 1.70000000e+03 

COLUMNS SECTION 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2 5 

label 



W. Ogryczak, K. Zorychta - 37-  MOMIP 2.1 

ROWS SECTION 

index label row-value dual-value 
0 cost 1.70000000et03 - 1.00000000et00 
1 m1:a l  8.00000000et01 -4.00000000et00 
2 ml :a2 2.50000000e+01 0.00000000et00 
3 m2:a 1 3.50000000et01 0.00000000et00 
4 m2:a2 6.00000000et01 -6.66666687e-01 
5 m1:dl  6.00000000e+01 9.00000000et00 
6 m l :d2  3.00000000et01 8.66666698et00 
7 ml :d3 1.50000000et01 1.36666670et01 
8 m2:d2 3.00000000et01 6.66666651et00 
9 m2:d3 2.50000000e+01 1.16666670et01 

10 m2:d4 4.00000000et01 3.66666675et00 
11 b w l  0.00000000et00 -1.66666663et00 

12 bw2 0.00000000et00 -5.00000000et00 
13 bw3 -1.00000000et01 0.00000000e+00 
14 m 1:wl  0.00000000e+00 7.66666651e+OO 
15 m l:w2 0.00000000et00 8.66666698et00 
16 ml :w3 0.00000000et00 7.00000000et00 
17 m2:wl  0.00000000et00 5.66666651et00 
18 m2:w2 0.00000000et00 6.66666651e+OO 
19 m2:w3 0.00000000et00 2.66666675et00 
20 ver-wl 1.42108547e-14 1.66666663et00 
21 ver-w2 0.00000000e+00 5.00000000e+00 
22 ver-w3 0.00000000et00 0.00000000et 00 
23 sel-wl 1.00000000et00 1.16666664et02 
24 sel-w2 1.00000000e+00 0.00000000et00 
25 sel-w3 1.00000000et00 0.00000000et00 

From the  solution report one can read tha t  t o  minimize the total  operating and transportation 
costs the AC company should expand the distribution center W 1  t o  capacity 80 and operate 
the  center W3 with capacity 130 whereas the center W2 should not be used. Values of the  
transportation variables mr : ak-wi and m r  : wi-dj depict details of the optimal distribution 
scheme. 
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8 Software availability 

MOMIP is available for UNIX (currently implemented for Sun OS 4.1.2 and Ultrix v. 4.3) and 
for MS-DOS on IBM compatible PC. It has been already installed in IIASA (on Sun Sparc 2) 
and in IIUW (on DEC 5000/240). For details on these installations one may contact Marek 
Makowski (marekOiiasa . a c  . a t )  a t  IIASA or Wlodek Ogryczak (ogryczakOmimuw . edu . p l )  a t  
IIUW. 

Executable form of MOMIP is available free of charge t o  educational and research institutions 
(or to  individuals working in this area), assuming that  this product will not be used for any 
commercial application. Inquiries for executable code should be addressed to the Methodology 
of Decision Analysis Project a t  IIASA. Inquiries for linkable library should be addressed directly 
to  the authors. 
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A Sample program 

This appendix provides the complete text of the main file used to setup the standalone MOMIP 
program (Chapter 5). 

#include "momip. h" 
/ /momip.h header file 

PROBLEM problem; 
/ /PROBLEM class constructor 

MIP-PAR m ippa r ;  
/ /MIP-PAR class constructor 

M IP mip(&problem); 
/ /M IP class constructor 

main( in t  argc, char **argv ) 
{ 

if( argc < 2 ) printhelp(); //help call 
//initializations 

in t  iscutoff=O, ipar; 
double cutoff=O; 
char *parptr; 
char spcnarne[dO]; 
strcpy(spcnarne, "rnornip.spc"); 
char lognarne[dO]; 
strcpy(lognarne, "mornip.log"); 
in t  istextout=O; 
char txtnarne[dO]; 
int  isinvname=O; 
char invnarne[dO]; 
in t  isnodeout=O; 
char nodename[dO]; 
in t  insel=ext; 
in t  isout=l ;  
int  issolout=O; 
char solnarne[60]; 
char innarne[dO]; 
int  isditout=O; 

//options reading 
for (ipar=l;ipar<argc;ipar++) { 
parptr=argv[ipar]; 
if (*parptr!='-') break; 
else switch (*(++parptr)) { 

case 'b': isinvnarne=l; strcpy(invnarne,++parptr); break; 
case 'c': cutoff=atof(++parptr); iscutoff=l; break; 
case 'h': printhelp(); 
case 'i': switch (*(++parptr)) { 

case 'e': insel=ext; break; 
case 'rn ' :  insekrnps; break; 
case ' t ' :  insel=txt; break; 
case 'd': i nsekd i t ;  break; 
default: cerr<< "Invalid i-option!\nW ; 

1 
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break; 
case '1': strcpy(logname,++parptr); break; 

case 'n': isnodeout=l; strcpy(nodename,++parptr); break; 
case '0': switch (*(++parptr)) { 

case 'n': isout=O; break; 
case 's': issolout= 1; break; 
case 'd': isditout=l; break; 

default: cerr< < "Invalid o-option!\nn; 

1 
break; 

case 's': strcpy(spcname,++parptr); break; 
case 't': istextout=l; strcpy(txtname,++parptr); break; 

default: cerr< < "invalid option\nM; 

1 
1 

//file names setting 
char base-name[60]; 
strcpy(base-name,argv[ipar]); 
strcpy(inname,basename); 
parptr=base-name; 
char *dinv= ".inv"; 
char *dsol= ".sol" ; 
char *frommps = ".mps"; 
char *fromdit = ".ditW ; 
char *fromtxt = ".txt" ; 
int ext-name] = strlen(frommps); 
int file-name] = strlen(base-name); 
int base-name] = file-name] - ext-name]; 

if (insel==ext) { 
if (! strncmp(&parptr[basename]], frommps, ext-name]) ) { 

if (isout) issolout=l; 

1 
else if (! strncmp(&parptr[base-name-I], fromtxt, ext-name]) ) { 
insel=txt; 
if (isout) issolout=l; 

1 
else if (! strncmp(&parptr[base-name]], fromdit, ext-name]) ) { 
insel=dit; 
if (isout) isditout=l; 

else printhelp(); 
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if (istextout && txtname[O]=='\O1) { 
strcpy(txtname, basename); 
strncat(txtname,fromtxt,4); 

1 
J 

if (isnodeout && nodename[O]=='\O') { 
strcpy(nodename, basename); 
strncat(nodename,dinv,4); 

1 
//starting log file 

ofstream logfile(logname); 
if (!logfile) {cerr<< "\nCANNOT open logfile!\nM; exit(1);) 
else mip.initlog(&logfile); 

if (insel==mps ) { / /data reading f rom MPS file 
if(problem.readmip( inname )<0) exit(1); 

) else if(insel==txt) { / /data reading f rom T X T  file 
problem.loadmip( inname ); 

) else if(insel==dit ) { //data reading f rom LP-DIT 
~rob1em.dit-t o-mip( inname ); 

) else printhelp(); 
/ / T X T  file output 

if (istextout) problem.writelp(txtname,O); 
problem .writelp( "problem.txt" ); 

//specification file reading 
mippar.read(spcname); 
mippar.checkpar(); 

//setting LP basis file 
mip.setinvin(invname); 

//setting LP basis output 
if (isnodeout) mip.setinvout(nodename); 

//solvernip call 
if(iscutoff) 

mip.solvemip(cutoff,&mippar); / /w i th  CUTOFF 
else 

mip.solvemip(&mippar); / /no CUTOFF 

//solution output 
//solution t o  DIT 

if (isditout) prob1em.mip-t o-dit(); 
//solution t o  text file 

if (issolout) problem.writesol(solname,problem.lp->name, "MOMIP v.2.1" ); 
/ / l og  closing 

logfile. close(); 
return(0); 
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B Computational tests 

The MOMIP solver was tested on a variety of available problems. For detailed testing, the 
problems reported by Haldi (1964) and some MIPLIB (Bixby et al., 1992) problems were used. 
The problems represent a variety of different applications. In tables' reporting the results of 
testing, problems are described with three parameters: number of constraints - m, total number 
of variables - n and number of integer variables - int. 

The test results on Haldi's problems are summarized in Table 1. The computations have 
been made on a PC-AT microcomputer. The table provides for each problem the total number 
of examined nodes (in the entire branch-and-bound process) and the corresponding number 
of simplex iterations (pivots). There are also reported: the number of node generating the 
optimal solution and the maximal number of waiting nodes (list size). One may notice that  
some problems (like IBM5) have required a large number of nodes t o  complete the branch-and- 
bound process, but in all the problems the optimal solutions have ben found in no more than 
35 nodes. Moreover, the waiting list was quite small (no more than 33 waiting nodes). 

Problem 
, at  node Name 

FIX 
JOB1 
JOB2 
JOB3 
JOB4 
JOB5 
JOB6 
IBMl 
IBM2 
IBM3 
IBM4 
IBhl5 
IBM6 
IBM7 
IBM8 
IBM9 

Total List 
size nodes 

8 
10 
4 

36 
5 

62 
67 

1 
10 
6 

2 1 
1277 
613 
59 
67 

115 

Table 1. Results of tests for Haldi's problems 

m 
10 
21 
21 
21 
21 
21 
21 

7 
7 
3 

15 
15 
31 
12 
12 
50 

pivots 
29 

189 
96 

349 
104 
453 
986 

8 
25 
11 
72 

3015 
4023 

124 
99 

586 

Table 2 presents performances of MOMIP on the MIPLIB (Bixby et al., 1992) test problems. 
The computations have been made on DEC 5000/240 workstation. All the problems have been 
solved with MOMIP from scratch and the corresponding CPU time includes the initial LP 
solution process. Most problems have been solved in a reasonable time. A few problems turns 
out t o  be difficult for MOMIP. However, they are known to  be very hard discrete problems. 

n 
12 
56 
56 
56 
56 
56 
56 

7 
7 
4 

15 
15 
31 
50 
37 
15 

int 
12 
36 
36 
36 
36 
36 
36 
7 
7 
4 

15 
15 
31 
50 
37 
15 
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Table 2. Results of tests for MIPLIB problems 

MOMIP has been also initially tested on real-life problems originated from the water quality 
management (Berkemer et  al., 1993). The problems consist of 1041 constraints, 852 continuous 
variables and 94 binary variables. The optimal solutions have been found and proven very 
quickly. Table 3 shows the MOMIP performances on these problems. All the computations 
have been made on Sun Sparc 2 workstation. Table 3 reports for ea,ch problem: number of 
solved nodes and total of simplex iterations (Pivots) required t o  solve these nodes, pure MIP 
analysis CPU time (excluding solution of the continuous problem) and CPU time used to  solve 
the continuous problem. One may easily notice that  on these problems the MIP analysis time 
does not exceed 44% of the CPU time needed to solve the continuous (LP) problem. 

Total 
CPU sec. 

2.20 
0.78 
5.82 
0.05 
0.62 

66.38 
5519.22 

51.97 
3.38 

567.82 
124.58 
133.68 
61.20 

56066.30 
863.95 

6589.73 
5229.97 

Optimal 
a t  node 

237 
97 

327 
7 

18 
2 9 

2730 
5 1 
15 

922 
8 

59 
4 1 

37482 
107 

1161 
- 

Table 3. Results of tests for water quality management problems 

Total 
nodes 

340 
167 
42 1 

16 
119 

5200 
80295 

513 
38 

4177 
10 

679 
182 

157477 
35474 

>>500000 
>>500000 

name 
bm23 
sample2 
sentoy 
stein9 
stein15 
stein27 
stein45 
rniscol 
miscO2 
misc03 
misc04 
misc05 
misc06 
misc07 
bell3a 
bell3b 
be114 

Problem 
t l  
t 2  
t 3  
t4 
t 5  
t6 
t 7  

In order to  show how the penalties effects on the branch-and-bound process, we have solved 
all the Haldi's problems twice. In both runs we have deactivated SOS processing and cuts 
generation (DOSOS= 0 and DOCUTS= O), and have set the automatic branching and node 
selection strategies (SELSW= 0, BRSW= 0 and POSTEPS= 0.2). The only difference between 
the runs depends on use of penalties in the second run (DOPEN= 1). The results of this 
comparison are presented in Table 4. Use of penalties, usually, decreases remarkably the total 
number of examined nodes. 

Problem 
m 
20 
45 
30 
13 
36 

118 
331 

54 
39 
96 

1275 
300 
820 
212 
123 
123 
105 

Nodes 
1 

13 
24 
25 

5 
11 
2 

n 
27 
67 
60 

9 
15 
27 
45 
83 
59 

160 
4897 

136 
1808 
260 
133 
133 
117 

Pivots 
3 

128 
176 
281 

26 
116 

2 

int 
27 
21 
60 

9 
15 
27 
45 
82 
58 

159 
30 
74 

112 
259 

71 
71 
64 

MIP sec. 
0.05 
1.64 
2.65 
3.68 
0.35 
1.20 
0.08 

LP sec. 
9.78 
8.27 
8.23 
8.52 
9.33 
9.32 
9.15 
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Table 4. Results of tests for use of penalties 

Problem 

FIX 
JOB1 
JOB2 
JOB3 
JOB4 
JOB5 
JOB6 
IBM 1 
IBM2 
IBM3 
IBM4 
IBM5 
IBM6 
IBM7 
IBM8 
IBM9 

Provided in MOMIP techniques of SOS processing and cuts generation on small and easy 
problems may not speedup remarkably the solution process and sometimes even may make 
it longer. However, on hard problems they may generate a dramatic improvement of solver 
performances. Table 5 summarizes results of such tests on hard problems built on the basis of 
the water quality management model (Berkemer et al., 1993). The problems are really hard 
for standard MIP solvers. For instance, while solving problem tlOpO with CPLEX (CPLEX, 
1993) it required to  examine 734491 nodes and took 60858.90 seconds of the CPU time on Sun 
Sparc 2 workstation. For smaller problem t7p0 CPLEX needed to examine 29650 nodes in 
381.80 seconds. For each problem we have executed three MOMIP runs using the default node 
selection strategy. In Run 1 we have not used SOS reformulation (DOSOS= 0) neither cuts 
generation (DOCUTS= 0). In Run 2 we have used SOS reformulation technique (DOSOS= 2) 
leaving cuts generation switched off (DOCUTS= 0). Finally, in Run 3 we have used both SOS 
reformulation (DOSOS= 2) and cuts generation (DOCUTS= 5). All the computations have 
been made on DEC 5000/240 workstation. In Run 1 the branch-and-bound process for larger 
problems has not been completed within 1000000 nodes. In Run 2 we have noticed a dramatic 
improvement and all the problems have been solved with less than 10000 examined nodes. In 
Run 3 we have got further improvement and the most difficult problem t20p0 has been solved in 
about 2 minutes. whereas all the other problems in less than 16 seconds. In particular, problem 
tlOpO has been completely solved in less than 1 second. 

DOPEN=O DOPEN=l  
Tot 

nodes 
36 
33 
16 
90 
15 
95 
86 

2 
28 
24 
21 

4190 
1144 
526 
781 
260 

Optimal 
a t  node 

8 
33 
16 
35 
15 
95 
29 
1 

10 
22 
21 
29 
25 

515 
781 

13 

a1 
pivots 

42 
468 
466 
662 
278 
513 
526 

8 
37 
22 
72 

4582 
4333 
531 

1339 
579 

Tot 
nodes 

12 
32 

3 
40 

5 
62 
67 
1 

10 
6 

21 
1649 
930 
421 
533 
115 

List 
size 

4 
11 
7 

11 
4 

13 
14 
0 
4 
4 

10 
224 
66 
66 
64 
31 

Optimal 
at  node 

8 
32 
3 
5 
5 

35 
34 
1 

10 
5 

21 
31 
25 

387 
533 

13 

a1 
pivots 

36 
339 
119 
478 
104 
453 
986 

8 
25 
11 
72 

3550 
5383 

815 
1432 
586 

List 
size 

3 
7 
1 
5 
2 

17 
14 
0 
4 
2 

10 
122 
49 
90 
45 
12 
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Table 5. Results of tests for DOSOS and DOCUTS parameters 

Problem 
int 
25 
25 
35 
35 
50 
50 
75 
75 

100 
100 

name 
t5p0 
t5np0 
t7p0 
t7np0 
tlOpO 
tlOnpO 
t15p0 
t l5np0 
t20p0 
t20np0 

Number of nodes CPU seconds 
Run 1 

260 
42 

5253 
203 

129821 
3734 

>>1000000 
154900 

>1000000 
Bl000000 

Run 1 
0.60 
0.10 

14.50 
0.65 

578.35 
16.05 

B5710.60 
865.72 

B6955.24 
B7429.50 

m 
21 
21 
29 
29 
41 
41 
61 
61 
81 
81 

n 
41 
41 
57 
57 
81 
81 

121 
121 
161 
161 

Run 2 
14 
10 
30 
34 

226 
114 

1310 
590 

8894 
8043 

Run 2 
0.05 
0.07 
0.18 
0.26 
2.35 
1.13 

24.18 
8.71 

252.15 
176.00 

Run 3 
1 
9 
9 

12 
43 
44 

979 
238 

6311 
610 

Run 3 
0.01 
0.07 
0.07 
0.12 
0.42 
0.53 

15.50 
3.68 

129.00 
12.40 


