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Foreword 

This paper illustrates one of the results of a long-term cooperation of the Methodology 
of Decision Analysis (MDA) Project with several research institutes in Poland working on 
the theory, methodology and software tools for decision support systems (DSS). One of 
the principal problems of decision support is the way of specifying the preferences of the 
user of a DSS (sometimes called the decision- maker, although there are various types of 
DSS users). In a multiple- citeria decision situation, the preferences of the user are often 
vague and are modified during a decision process. The authors of this paper propose a 
novel way of an interactive specification and modification of such preferences in terms 
of fuzzy sets, related to the reference point methodology developed earlier in the MDA 
Project and supported both by theoretical analysis and by a interactive computer graphic 
implementation. A software module for such interaction, developed due to the cooperation 
with the Institute of Automatic Control of Warsaw University of Technology (where both 
authors are located) is available as public domain software in the MDA Project. 



Abstract 

The specification of reference levels in the aspiration-led methodology of multiob- 
jective decision support is usually imprecise. Such imprecision can be included in the 
mathematical formulation of a decision problem by using membership functions and fuzzy 
set theory. This approach can also be treated as a further development of fuzzy interac- 
tive methods. A method of constructing order-consistent scalarizing function based on 
membership functions is presented as well as a related, extended fuzzy interactive method. 
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Interactive Specificat ion 
of DSS User Preferences 
in Terms of Fuzzy Sets 

Janusz Granat*and Andrzej P. Wierzbicki* 

1 Introduction 

A contemporary decision support system (DSS) is a collection of tools (data,, models, 
algorithms, interfaces) which enable the decision maker - or any user of this system - to 
actively participate in the process of decision elaboration; a good DSS should help the 
user to  learn and should enhance his/her intuition about a given decision problem. 

In any decision process, the preferences of the decision maker are initially vague and 
are gradually better specified as the decision problem is analyzed. One of accepted ways 
of supporting such gradual specification is an interactive multiple criteria decision process. 
In such process, the user is supported in the formulation of a multiple criteria decision 
problem and further in the control of the process of generating and evaluating various 
options of efficient decisions ( called also vector-, or Pareto-, or multiobjectively-optimal. 
The interaction of the user with the DSS is an essential element of such a process; during 
the interaction, the preferences of the user are either explicitly or implicitly specified. In 
order to organize such an interactive procedure, it is necessary to choose what kind of 
information should or could be presented to  the user, how this information should be 
presented, how to represent the preferences of the user in the system and how the user 
should influence the decision process and guide the interaction. 

An explicit specification of user preferences takes usually the form of identifying 
his/hers utility or value function; the initial assumptions concerning the form of such 
a function are essential in such a case. An implicit specification of user preferences might 
allow him/her to control the decision process better and be more adequate to  his/hers 
needs. One possible form of such an implicit specification is the reference or aspiration 
level approach - see e.g. [ll]. In this approach, the user is asked to specify a reference 
point - called also an aspiration level point - in the criteria space. The DSS responds 
then with an efficient decision such that its outcomes are either uniformly close to or 
uniformly better than the reference point. This response is based on a maximization of a 
scalarizing function, typically of a piece-wise linear form, which can also be interpreted as 
an adjustable proxy value function, controlled by the specification of the reference point. 

The specification of a reference point is usually adjusted by the user, because his/her 
initial perception of preferences and aspirations is typically imprecise. This imprecision 

'Institute of Automatic Control, Warsaw University of Technology, 00-665 Warsaw, Poland. 



J .  Granat, A.P. Wierzbicki - 2 -  Interactive Specification of .. . 

can be included in the mathematical formulation of the decision problem by using fuzzy 
sets, as suggested originally by Zadeh [13]. We propose in this paper some further de- 
velopments of fuzzy interactive methods as proposed by Seo and Sakawa [7], [lo]. Their 
original fuzzy interactive methods assumed that the membership functions related to at- 
tainment levels for separate objectives or criteria values are specified a priori and the 
interaction is controlled by specifying reference values for given membership functions. 

In this paper, another approach is presented which allows the user to  change - during 
the interaction - the form of the membership functions for separate objectives. Thus, the 
membership functions are not only elicited at the beginning of interaction, but can be 
also changed and substantially modified at further stages; their appropriate convolution 
represents the changing preferences of the user due to the learning implicit in the decision 
process. Such a convolution of membership functions can be used as an order-consistent 
scalarizing function. 

A method of constructing such order-consistent scalarizing functions based on mem- 
bership functions is presented; since the membership functions describe the satisfactioil 
of the user with the attainment of separate objectives, the aggregate function can be in- 
terpreted as a proxy value function of the user. Moreover, graphic tools of interaction in 
terms of membership functions are presented, related issues of representing the results to 
the user are addressed and some ways of such representation are proposed. Some numeri- 
cal examples and an example of using the approach in cooperative group decision-making 
are also presented. 

2 The construct ion of order-consistent scalarizing 
functions based on membership functions speci- 
fied by the user 

2.1 Basic concepts of decision making in a fuzzy environment 

The concepts and methods of decision making in fuzzy environment have long research 
tradition. After recalling basic concepts of fuzzy decision making, we shall proceed to 
their multi-objective versions and to some reasons for seeking further extensions of such 
concepts and methods. 

Bellman and Zadeh [2] defined three basic concepts for decision making in a fuzzy 
environment: fuzzy goals, fuzzy constraints and fuzzy decisions. A set of alternatives X 
is considered. A fuzzy goal is defined as a fuzzy set G in X, whose membership function 
is given by p~ : X H [O, 11; a fuzzy constraint is defined as a fuzzy set C in X, whose 
membership function is given by p~ : X H [0, 11; then a fuzzy decision is defined as a 
fuzzy set D, which is the intersection of G and C: 

The set D can be characterized by a corresponding convolution of the component mem- 
bership functions, e.g. by the typical minimal convolution operator, which results in the 
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membership function: 

The maximizing decision is then defined as follows: 

maximize p~ (x) = maximize min(pc (x) , pC (2)) 
z E X  2 E X  

(2.1) 

The minimum operator, introduced by Bellman and Zadeh [2], is only one example of a 
fuzzy convolution operator. Other examples can be found e.g. in [7]. 

These concepts have found applications also in multiobjective programming. A fuzzy 
multiobjective optimization problem can be defined by specifying several fuzzy goals [lo]: 

fuzzyminimize f;(x) or 

fuzzymaximize f,(x) or 

fuzzy -equal f ,  (x) 

s.t. x E X 

and by the following multiobjective optimization problem: 

Similarly to  (2.1) a fuzzy multiobjective decision problem can be defined by: 

When the minimum convolution operator is chosen to define fiD, then (2.3) is equivalent 
to 

maximize Z E X  1st min j m  (pj l(x) ,  ~ j 2 ( ~ ) ,  . - pjrn(x))) (2.4) 

Under additional monotonicity conditions that are discussed later in more detail, a 
solution of a fuzzy multiobjective decision problem is efficient or Pareto-optimal. However, 
when the goal fuzzy equal is included, the concept of Pareto optimal solutions cannot be 
directly applied, therefore the following concept of M-Pareto optimal solutions has been 
introduced [lo]. 

Definition 2.1 A decision x* E X is said to be a (local) M-Pareto optimal solution to 
(2.2), if and only if there does not exist another x E X n N(x*,S) such that pf,(x) > 
p j , (x f ) ,  i = 1 , .  . . , m, with strict inequality holding for at last one i (N(x*,S)  denotes the 
set {x E Rn : 112 - x* 1 1  < 6)). 

Several interactive methods have been proposed for fuzzy multiobjective programming. 
A short survey can be found in the book [lo] by Seo and Sakawa. The augmented minimax 
method in fuzzy programming, proposed for fuzzy problems by Sakawa and Yano [8], is 
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in a sense similar to  the aspiration-led methodology of multiobjective decision support, 
presented in the next subsection. In this method the DSS user determines the membership 
functions for each of the objectives and then specifies reference levels for membership 
functions. Thereafter, the following augmented maximin problem is solved: 

Further concepts of an intelligent DSS have been introduced by Seo and Nishizaki 
[9]. Such a system gives possibilities of a deeper insight into the problem being solved, 
especially in fuzzy environment. 

However, there are reasons to seek further extensions and improvements of fuzzy in- 
teractive methods. One of arising problem is that the aggregated membership functions 
jlD(pj(x)), e.g. the functions maximized in (2.4) or (2.5), might have a constant value 
on subsets of X, if all pjt  = 0 or all pj, = 1. Therefore, the solution of (2.4) or (2.5) can 
be nonunique and not efficient (not Pareto-optimal), see Figure 1, where the dashed area 
shows the set of optimal solutions of the problem (2.4). Similar problems appear in other 
fuzzy optimization formulations; in order to achieve unique solutions, the membership 
function corresponding to  the solution should belong to the range 0 < p < 1. In a further 
subsection, we propose an extension that eliminates such problems. 

Another extension is related to the specification of the membership function by the 
user at the beginning of the interactive process. When practical problems are solved, 
the DSS user might not know exactly how to specify this function, and should have a 
possibility to change it during the process of interaction. 
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O c y c l  

+ 

Figure 1: Level sets of the aggregated membership function, where q1 = f l (x ) ,  92 = f2(x) 
are fuzzy maximized goals, simplest piece-wise liner membership functions pj ,  (x),  pj,  (x) 
and the minimum convolution operator were assumed. 

2.2 Basic concepts of an aspiration-led methodology of multi- 
objective decision support systems 

The methodology of aspiration-led decision support systems, developed by one of the 
authors and many other researchers - see [6] ,  relates to a multi-objective programming 
problem defined as: 

where 
X = {x E Rn : g(x) = (g l (x ) ,g2(~) ,  . . . , g _ ( ~ ) ) ~  5 0) 

V m a x  - denotes multi-objective optimization in the Pareto sense: 

q = f (x)  - is the vector of objectives, 
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X - is the set of admissible decisions 
x - is the vector of decision variables 

Suppose q;,,;, q; 5 qiPmax for all i = 1, .  . . , p. An order-consistent achievement 
scalarizing function can be defined as: 

with 

{ 
~ ( q i  - Qi)/(Vi - %,min) if qi,min L Qi L Qi 

zi = (9; - Vi)/(Ti - Q;) - if Q, < q; < 7, 
P(q; - yi)/(qi,max - Q;) + 1 if Ti !i qi I Qi,max 

where 

P > O ,  Y > O  
- qi - a reservation level, q;,,;, < Q, < q;,,,, 
- - 
q, - an aspiration level, q;,,;, < ?ji < ; < Qi,maz: 

p - a weighting coefficient, 0 < p 5 p 
p - the number of objectives 

By solving the problem: 

Pareto-optimal or efficient solutions can be obtained; more precisely, the solutions of 
the above problem are properly efficient with a priori bound l+p/p on trade-off coefficients 
for the rescaled objectives z;, see Wierzbicki [12]. During the process of interaction, the 
user specifies aspiration and reservation levels and the DSS responds with a solution which 
outcomes are either uniformly close to or uniformly better than the specified aspiration 
or reservation levels. After several steps of interaction, the user either has learned enough 
about possible decisions and their outcomes to choose the best solution, or he/she can 
continue the interactive process. 

2.3 Order-consistent scalarizing function 

In this subsection, we propose the background for further developments of fuzzy inter- 
active methods, including experiences and theory developed in fuzzy interactive methods 
as well as in aspiration-led methodology. 

Consider a continuous vector valued objective function f : Xo I+ RP, where Xo C Rn is 
the compact set of admissible decisions. Hence the set of attainable outcomes Qo = f (Xo) 
is compact. The partial ordering in the objective space is implied by a positive cone D, 
given by 
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The outcomes 1 , .  . . , p' are minimized, the next p' + 1 , .  . . , p" are maximized and the 
last + 1,. . . , p are kept a t  some given levels. 

Definition 2.2 The decision i E X such that 4 = f(i) is called D,-eficient if belongs 
to the set: 

Q; = ( 4  E Qo : Q; n (4 + int D,) = 0) 
int D, = {q E RP : dist(q, D) < c11q11) 

where c is a given small number. 

It can be shown that D, - efficient solutions are properly efficient with a prior 
bound 1 + 1 / c  on trade-off coefficients, see Wierzbicki [12]. The definition (2.2) allows to  
consider as well "fuzzy equal" goals, thus including the concept of M-Pareto optimali ty. 

The specification of the reference levels in the aspiration-led methodology is usually 
imprecise. Such imprecision of the specification of aspirations by DSS users can be in- 
cluded into the scalarizing function by following means: 

a Instead of stating aspiration and reservation levels the user can specify fuzzy num- 
bers which represent those levels, and then the fuzzy linear or nonlinear mathemat- 
ical programing problem can be solved: 

where 
G - is the reservation level treated as a fuzzy number 

- is the aspiration level treated as a fuzzy number 

a An order-consistent scalarizing function can be found that depends on the mem- 
bership functions of satisfactory values of objectives or fuzzy goals. This approach 
would combine fuzzy interactive methods and aspiration-led methodology. 

We shall consider the second possibility, looking for a scalarizing function of the 
form: 

where p is the vector of membership functions of satisfactory values of objectives or 
fuzzy goals. We assume the following classes of membership functions for fuzzy maximized 
goals, proposed e.g. by Seo and Sakawa [lo], [7]. 

Denote, as before 

qi = f;(x), 
qi - is a (least acceptable) reservation level of q;, 
q, - is an (desirable) aspiration level of q;, 
h1 - is a class of functions defined below: 
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linear 
p,, (x)  = [q; - Q;]/[Q, - q,] for q; I qi I q, (2.11) 

piece-wise linear 

pq,(x) = pi,j-1 (pij - p,,j-1) * (q, - qi,j-l)/(qi,j - '%,j-1) 

< . < - . .  . for - 1  - -  3 = 1 , - - . , N ,  

where 

exponential 
pq, = 1 - e x ~ [ - ~ i ( q i  - &)/(q; - q,)] (2.13) 

with Q; = - ln(1- F , )  > 0, where Fi s an assumed value of the membership function 
(a  quantile) for q; = qi 

hyperbolic 
pq, = 0.5(tanh(~;(q;  - P,)) + 1) (2.14) 

with Q; = (a, - ai)/(qi - q;); pi = (a,q; - iii)qi/(ai - a;); a, = a r t a n h ( 2 ~ ;  - 1); 
a; = artanh(2F; - l), where again F ,  and Pi are assumed membership function 
values (quantiles) for qi and @. 

The membership function for a fuzzy goal can be interpreted as a function which 
specifies the preferences of the user as well as a function which implies an ordering in the 
decision or objective space. A contour of such a function for two objectives has been is 
shown in Figure 1. A common disadvantage of the linear and piece-wise linear functions 
(as well as the exponential one if q; I q, ) is that they are equal to 0 or 1 below q; or 
above qi. 

In order to distinguish alternatives such that f,(x) < @ or f i(x)  > qi ,  we have to 
relax the traditional interpretation of a membership function as a (multi-valued) logical 
expression and to admit as well values p,, (x)  < 0 for f,(x) < or p,,(x) > 1 for fi(x) > q;. 
This can be done for the linear function (2.11) or the piece-wise linear one (2.12) in the 
following way, analogous to (2.8): 

where 77, is an extended-valued membership function. Similar extensions can be 
made for other forms of membership functions. An order-consistent scalarizing function 
has then the usual form: 
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Figure 2: An extended-valued membership function 

and can be as well interpreted as an extended-valued convolution of membership func- 
tions, since its values are also between 0 and 1 if q; 5 qi 5 q, for all i = 1,. . . , p .  

Between q and q the values of the function 7 coincide with the membership function and 
can be used to  represent a (multivalued) logical expression as well as to  order alternatives, 
but for q < q or for q > q we use the values of 7 only to order alternatives. If we choose 
the linear membership function, then the convolution s is the same as (2.7). 

An order-consistent scalarizing function is defined generally by two properties: 

the sufficiency property 
For each p, from (suitably extended) class M 

the necessity property 
For each 4 E Q;, there exist such an extended membership function f i ,  from (ex- 
tended) class M 

4 E Argmaxs(9, f i g )  (2.16) 
9EQo 
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Figure 3: Level sets of an extended-valued membership function 

To obtain these general properties, two basic concepts are needed: monotonicity and 
separation of sets. The following theorem shows the importance of monotonicity: 

Theorem 1 (Wierzbicki [11],[12]) Let a function r : Qo H R1 be strongly monotone, 
that is, let q' > q" (equivalent to q' E q" + D ,  D = D \ { 0 } ,  imply r (q l )  > r (q f ' ) .  Then 
each maximal point of this function is eficient. Let this function be strictly monotone, 
that is, let q' >> q" (equivalent to q' E q"+ in tD)  imply r (q l )  > r(ql'). Then each maximal 
point of this function is weakly eficient. Let this function be E-strongly monotone, that 
is, let q' E q" + int D, imply r (q l )  > r(ql'). T h e n  each maximal point of this function is 
properly eficient with bound E .  

Definition 2.3 A function r : RP H R1 strongly separates two disjoint sets Q1 and Q 2  
in RP, if there is such ,f3 E R1, that r (q )  > ,f3 for all q E Q1 and r ( q )  < ,f3 for all q E Q 2 .  

The strong separation property by a function with conical level sets is used in the 
following definition of a F-order-consistent achievement function: 

Definition 2.4 F-order-consistent achievement function is defined generally as such con- 
tinuous junction s (q ,  p, ) ,  which is E-strictly monotone as a junction o f q  E Qo for any p, 
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from the class M and moreover posses the following property of order approximation: 

q + D g c { ~ ~ R P : ~ ( ~ , p q ) ~ O } c q + D ,  

for all p, from the class M, with 6 > Z 2 0. 

We need yet the definition of F-properly efficient decisions with bound 6: 

Definition 2.5 An  F-properly eficient decision with bound 6 is such an eficient decision 
that the trade-ofl coeficients between the values of component membership functions p,, 
and p,,, for any i # j 5 p, are bounded by 1 + I/€.  

Similarly as in [ll], [12], the following theorems can be proved: 

Theorem 2 Let s(q,p,) be an F-order-consistent achievement function. Then for any 
p, from the class M each point that maximizes s(q, p,) over q E Qo is eficient. 

Theorem 3 If 4 is F-properly eficient with bound 6, then there is such a p, from the 
class M that the maximum of s(q,pg) with q = 4 over q E QO is attained at 4 and is equal 
to 0. 

It is easy to check that the achievement function is F-order-consistent; however, it is 
also nondifferentiable. In the (piece-wise) linear case, its maximization can be rewritten 
as a linear programming problem. Otherwise, the NOAl solver (developed by Kiwiel and 
Stachurski [4]) for nondifferentiable optimization can be used. We can also approximate 
this function by a smooth function and then use a standard nonlinear solver. 

Until now, we dealt primarily with objectives to be fuzzy maximized. However, all 
results either directly relate also (as indicated by the definition of D, efficiency) or can 
be generalized to the cases of objectives which are fuzzy minimized and fuzzy equal. 

3 Interaction by changing membership functions and 
the interpretation of solutions in terms of fuzzy 
sets 

An achievement scalarizing function that characterizes the set of F-properly efficient so- 
lutions was constructed in the previous section. However, such a function is an internal 
feature of a DSS. The user of a DSS is more interested in interactive tools which can help 
him in knowledge acquisition during a decision process and in reaching a proper decision. 
The scenarios of interaction with the user depend on how many membership functions 
have been changed as well as on the kind of changes of a membership function. Four 
types of changing membership functions can be considered: 

moving q 
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- 

moving q 

moving q and 

changing the character (or other characteristic points) of the membership function 

Three graphs of membership functions for given objectives are presented on the left 
side of the Figure 4. Points P:, Pl, Pi denote the solutions for specified membership 
functions. If e.g the user changes a membership function, as it is shown on the right side 
of Figure 4, the solution will change. The thick lines show the sensitivity of the solution 
to the changes of the membership function for the objective q l .  If the value of function 
7, < 0 or 7; > 1 then the solution point is projected on the line 7; = 0 or 7, = 1, as it is 
shown on the graph for objective 92. 

- 

q 3  q 3  =I3 =I3 =I3 =I3 

Figure 4: The prototype of an interaction screen 
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Workstation A Workstation A Workstation C 

Ethernet 

Mainframe 

Figure 5:  A hardware configuration for group decision making 

4 Extensions for the case of group decision making 

The approach presented above can be also extended for group decision making. It can 
be assumed that each decision maker in the group is responsible for some decision goals 
- which can be of the types fuzzy min, fuzzy max and fuzzy equal. Then each decision 
maker can specify and subsequently modify his membership function for each of these 
goals. These membership functions can be used to build an aggregated function: 

where: 
i -is the index of the objective function 
j -  is the index of the decision maker. 

The specific way of aggregations might use minimum, maximum or linear convolutions 
of membership functions; its choice might express various assumptions about the nature 
of cooperation within the group. The interactive decision process can also be organized 
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variously. If we assume team-like behavior of the group with full information sharing, each 
decision-maker in the group could have access to the displays of membership functions 
specified by each other decision-maker, together with the corresponding decision outcomes 
and their changes. 

Advanced computer technology makes it possible today to  build distributed decision 
support systems. For developing graphical user interfaces in such systems, X Window 
system is especially interesting. This system allows to run a X client on one computer and 
display graphic information on another computer. Additionally, the UNIX mechanisms 
makes it possible to  organize the inter-process communication over the network (Transport 
Layer Interface or Berkeley Sockets). An example of hardware configuration is shown in 
Figure 5. The tasks in fuzzy group decision making can be divided in the following 
way: there is one X client for each of the decision makers. This X client is responsible for 
interaction with help of membership functions and for the presentation of the results to the 
user. Another process, which can be run on the mainframe, can perform all optimization 
calculations. 

5 A numerical example 

A simple example with real data is presented in this section. The data and main idea of 
this example come from the RAINS model which was developed at IIASA. We consider 
here three countries: Poland, Germany and (treated jointly because of the availability of 
historical data) Czecho-Slovakia. Germany is represented by two parts (one including the 
region of old FRG an the other the region of old GDR, because of differences in the levels 
of emissions SO2).  Cost functions of emission reduction and formulae for calculating 
deposition of SO2 are given for each of these countries. The cost functions assumed are 
approximations of the National Cost Curves published by Amann and Kornai [I]. The 
transfer coefficients are based on the work of Eliassen and Saltbones [3]. It should be 
pointed out that this example and data are rather rough approximations of real situation 
and are used only to illustrate the applicability of the proposed method. The problem is to 
minimize cost and minimize deposition in each of countries considered. The multicriteria 
optimization problem is defined as follows: 



J. Granat, A.P. Wierzbicki - 15 - Interactive Specification of ... 

Formulae : 
-------- - ------- 

cost-cze := 0.0006 * SQR ( er-cze ) + 0.9 * er-cze 

cost-ger := 0.0001 * SQR ( er-e-ger ) + 0.9 * er-e-ger + 
0.0009 * SQR ( er-w-ger ) + 1.5796 * er-w-ger 

cost-pol := 0.0007 * SQR ( er-pol ) + 0.0001 * er-pol 

dep-cze := 0.386 * ( i-em-cze - er-cze ) + 
0.1199 * ( i-em-e-ger - er-e-ger ) + 
0.1088 * ( i-em-w-ger - er-w-ger ) + 
0.076 * ( i-em-pol - er-pol ) + 649.6 

dep-e-ger := 0.0448 * ( i-em-cze - er-cze ) + 
0.298 * ( i-em-e-ger - er-e-ger ) + 
0.0562 * ( i-em-w-ger - er-w-ger ) + 
0.0184 * ( i-em-pol - er-pol ) + 151.8 

dep-w-ger := 0.03884* ( i-em-cze - er-cze ) + 
0.0707 * ( i-em-e-ger - er-e-ger ) + 
0.371 * ( i-em-w-ger - er-w-ger ) + 
0.0144 * ( i-em-pol - er-pol ) + 531.2 

Variables: 
--------- --------- 

Name 

er-cze 
er-e-ger 
er-w-ger 
er-pol 

:= 0.1088 * ( i-em-cze - er-cze ) 
0.1277 * ( i-em-e-ger - er-e-ger ) 
0.0529 * ( i-em-w-ger - er-w-ger ) 
0.425 * ( i-em-pol - er-pol ) 

Units UpperB Value 
----- ------ ----- 
tysTS02 2.350E+0003 1.266E+0003 
tysTS02 4.900E+0003 3.379E+0003 
tysTS02 2.850E+0003 1.462E+0003 
tysTS02 4.100E+0003 2.515E+0003 

LowerB 
------ 
0.0 
0.0 
0.0 
0.0 

Parameters : 
---------- ---------- 

Name Units UpperB Value LowerB 
- - - - ----- ------ ----- ------ 
i-em-cze tysTS02 2.350E+0003 
i-em-e-ger tysTS02 4.900E+0003 
i-em-w-ger tysTS02 2.850E+0003 
i-em-pol tysTS02 4.100E+0003 
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Outcomes : 
-------- -------- 

Name 
--- - 
cos t - cze  
cos t -ge r  
cos t -po l  
dep-cze 
dep-e-ger 
dep-w-ger 
dep-pol 

U n i t s  
----- 
mln-DM 
mln-DM 
mln-DM 
tysTSO2 
tysTS02 
tysTS02 
tysTS02 

LowerB 
------ 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Goals : 
----- ----- 

minimize cos t -cze  
minimize cost-e-ger  
minimize cost-w-ger 
minimize cos t -po l  
minimize dep-cze 
minimize dep-e-ger 
minimize dep-w-ger 
minimize dep-pol 

where: 

costsr - cost of emission reduction in region x 
depsr - deposition in region x 
i - em3 - initial emission in country x 
ersr - emission reduction in country x 
cze - Czecho-Slovakia 
e-ger - east part of the Germany 
w-ger - west part of the Germany 
pol - Poland 

The calculation has been performed by DIDAS-N system [ 5 ] ,  to which fuzzy interactive 
possibilities were added. The first interaction screen - Figure 6 - presents cost functions 
and a current solution. Then it is assumed that the DSS user moves the reservation level 
q value for the cost in the Czecho-Slovakia. The results are presented in Figure 7. 

6 Conclusions 

Experiments with the proposed, extended fuzzy interactive method show that it can 
be useful in solving practical problems. In further research, a nondifferentiable solver 
will be used for optimization computations; moreover, the distributed version for group 
decision making will be further developed. 
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Figure 6: First interaction screen 
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Figure 7: Second interaction screen 
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