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Abstract:

In this paper we propose a new analytical model to solve a class of closed queuing networks
with general servers and with a small number of customers. This model can be applied to
analyze problems such as the machine-repairman problem and simultaneous resource
possession. Our algorithm is based on exact mean value analysis and on two-moment
approximations of GI/G/1 queues. The model gives good results for a large range of the
network parameters.

1. Introduction
1.1 Description of the problem

In this paper, we present a new analytical model for solving a class of closed queuing
networks. The networks that we consider consist, first of a first-come-first-serve single server
queue with general interarrival and service times (a GI/G/1 queue), and second of a feed-
back loop with a delay station. The delay station also has general service times. The delay
station is equivalent to a service station where the number of servers is at least as large as
the number of customers in the closed network. This type of network is shown in Figure 1.

Solving such a network has practical applications in manufacturing systems analysis, to the
so-called machine-repairman problem [Elmaghraby, 1971] and to machine-operator
interference analysis [Stecke, 1982; Stecke and Aronson, 1985; Carmichael, 1987; Kamath
and Sanders, 1990]. The solution also applies to simultaneous resource possession analysis
in computer and telecommunication systems modeling [Jacobson and Lazowska, 1982].

We consider a class of networks with a small number of customers (say 15 or less). This
consideration is motivated by current philosophies that advocate the superiority of small
human-scale systems over large systems. Practical examples can be found in manufacturing
systems where small production entities such as flexible workcells prove to be more
competitive than large workshops; similarly more and more computer systems are designed
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around small local networks (LAN’s) rather than around a large mainframe with an important
number of terminals and peripherals.

The core of our system is a queue with general service and interarrival times. To our
knowledge there exists no exact analytical solutions to closed networks with this type of
queue [Springer and Makens, 1992]. The central problem consists of estimating the mean
waiting in the queue. In order to obtain an exact solution, discrete-event simulation [Law,
1986] is the only modeling alternative. However this alternative is not always attractive due
to the time it takes to build the model, to simulate it and to analyze the results. A good
compromise between speed of getting the solution and its accuracy is to develop and use a
"good" analytical model of the system [Suri, 1987] in order to estimate the mean waiting
time. This is what we are doing in this paper.

1.2 Organization of the paper

In the second section of this paper we present previous attempts to find approximate
analytical solutions. We start by presenting the approaches based on mean value analysis
(MVA) which provides exact results for product form networks. Then we present
approaches based on network decomposition and two-moment approximation of GI/G/1
queues. We explain why these approaches, when considered independently, are not
satisfactory to solve the class of networks that we consider.

In Section 3 we describe our analytical model which combines exact MVA and the analysis
of networks of GI/G/1 queues.

In Section 4 we present our experimental results. In order to validate our analytical model,
we compare results from discrete event simulation to the analytical results. The experimental
design covers a wide range of the input parameters, namely the squared coefficient of
variation (scv) of the service times (C,%), the scv of the delay times (C.?), the ratio of the
mean service time over the mean the delay time (E[S])/E[O]), and the number of customers
in the network (N). The compared performance measure is the mean waiting time at the
queuing station (E[W]).

In the conclusion we discuss the validity of our analytical model. The experimental results
show that the accuracy of the results depends on the scv of the delay times. This scv is at
this point not incorporated in our model. The effect of the scv of the delay times is
discussed and the validity ranges of the analytical model (in terms of the different
parameters) are identified. Directions for future research to improve the performance of our
model are given.

2. Previous results

In this section we present a short historical overview of the development of analytical
solutions for closed queuing networks.
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2.1 Product form networks

The product form solution can be considered as the initial breakthrough that enabled to obtain
easily satisfactory solutions to queuing networks. The product form solution states that,
under certain conditions, the distribution of customers within the network in equilibrium is
similar to the product of the states distribution of the queues that compose the network
considered independently. Jackson proved the product form solution for open networks
[Jackson, 1957] and Gordon and Newell for closed networks [Gordon and Newell, 1967].
Baskett, Chandy, Muntz and Palacios demonstrated the validity of the product form solution
for a number of open, closed, and mixed networks [Baskett, Chandy, Muntz and Palacios,
1975]. The so-called BCMP networks are composed of stations with one of the following
characteristics: first-come-first-serve (FCFS) stations with exponentially distributed service
times and processor-sharing (PS), infinite servers (IS), and last-come-first-serve (LCFS)
stations with no restrictions on the distribution of service times, except for the existence of
a rational Laplace transform. In addition, if the network is of an open or mixed type,
external arrivals to the network should be Poisson. Solving product form networks involves,
however, the solution of a normalizing constant which can be quite tedious. For example,
for closed networks, this solution requires the summation over all possible states of the
network.

Buzen proposed a convolution algorithm to derive efficiently the normalizing constant for
closed networks and showed how to compute the network performance characteristics on the
basis of the normalizing constants [Buzen, 1973]. An alternative approach for solving closed
BCMP networks is the MVA algorithm due to Reiser and Lavenberg [Reiser, 1979; Reiser
and Lavenberg, 1980]. MVA'’s appeal is found in its formulation directly in terms of
network performance characteristics: mean queue lengths, sojourns times, and throughput.
MVA does not attempt to compute the distributions of customers at individual stations like
the product form solution does, but it provides practical performance measures that are really
what the analyst is interested in. The original MVA algorithm consists of a recursion in the
number of customers in the network. MVA is a widely used tool for solving BCMP
networks [Suri and Hildebrant, 1984], and its computation requirements can be reduced as
shown by Schweitzer and Bard [Schweitzer, 1979; Bard, 1979, 1981].

2.2 Non product form networks

A important problem with product form networks is that they assume exponentially
distributed service times at FCFS stations. This is an highly penalizing assumption when
trying to solve real systems. MVA has however been extended into approximate algorithms
to solve non product form networks. For example, to take into consideration non
exponentially distributed service times, Wijbrands incorporates the variance of the service
times in the computation of the sojourn times at the queuing station. But exponential arrivals
are assumed [Wijbrands, 1988].

Another avenue to analyze non product form networks is the network decomposition
approach. This approach consists of analyzing each queue individually as a queue with
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general arrivals and general service times. For example, Whitt uses a two-moment
approximation of the interarrival and service times distributions to analyze open and closed
networks of GI/G/1 queues with infinite calling population. A major assumption is that
arrival processes to each queue are renewal processes [Whitt, 1983]). An interesting
application of Whitt’s approach is the modeling of closed-loop flexible assembly systems as
loops of GI/G/1 queues by Kamath, Suri, and Sanders [Kamath, Suri, and Sanders, 1988].
Two-moment approximations are attractive because they usually achieve a good compromise
between mathematical simplicity and result accuracy.

3. Description of the model

To our knowledge there exists no model that is directly applicable to the solution of the
closed network described in Section 1. The solution would be trivial if the service times at
the single server station were exponentially distributed since our network would have a
product form solution (note that the delay station is our network is equivalent to an IS
station). This is not the case and an approach solely based on MVA would not be
satisfactory. Using solely network decomposition with two-moment approximations of the
GI/G/1 queue would not work well either since the network population is small and,
therefore, the assumption of an infinite calling population for the queue does not hold. The
algorithm derived by Kamath et al. [1988] is not applicable either, since our network is not
composed only of GI/G/1 queues, but also of a delay station.

To solve our network, we derive an algorithm that is an extension of the algorithm presented
by Kamath et al. [1988]. Our algorithm is a combination of pure MVA applied to the
product form equivalent of our network, and of network decomposition with two-moment
approximations of the GI/G/1 queue.

In this section, we first introduce the notation used in the paper, then present classical
approximations to the mean customer waiting time in a GI/G/1 queue, and finally describe
how this mean waiting time can be better approximated in the context of our network.

3.1 Notation

c? Squared coefficient of variation (scv) of the customer interarrival times to the
queue,

Co? Scv of the delay times,

¢, Scv of the service times,

E[O] Mean customer delay time,

E[S] Mean customer service time,

E[W] Mean customer waiting time,

E[W]l.x Mean customer waiting time with an exponential queue and with N customers

in the network,

E[Wl.. = Mean customer waiting time with an exponential queue and an infinite calling
population,

E[Wly Mean customer waiting time with a general queue and with N customers in the
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network,
E[W]., Mean customer waiting time with a general queue and an infinite calling
population,
Correction factor to account for the small network population (i.e. number of
customers),
Value of the ratio (Qy_;/N-1)/(Q\/N),
Number of customers in the network,
Delay time, the time spent by the customers at the delay station,
Expected queue length at the server station, with N customers in the
network,
Service time at the single server station,
Customer interarrival time to the queue,
Time that a customer waits in queue for service,
Network throughput rate,
Queuing station utilization.

-~
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3.2 GI/G/1 approximations

In this section, we first recall previous approximations for the mean customer waiting time
for service by a FCFS single server station with general service times and general and
independent interarrivals (GI/G/1). We then indicate the approximation that we use in our
model.

A classical result for approximating the mean customer waiting time in a GI/G/1 queue with
infinite calling population is the upper bound derived by Kingman [Kingman, 1962]. With
our notation, Kingman’s bound is expressed as:

N (Varls]+Var(T) 1
AM="00 ¥

This bound is known as being very good in heavy traffic ( i.e. when the server utilization,
here p, is close to 1) and exact in the deterministic D/D/1 case [Marshall, 1968]. An
improved approximation is derived by Krimer and Langenbach-Belz [Krimer and
Langenbach-Belz, 1978]. This approximation has been derived heuristically by interpolating
between general heavy traffic results and results known for special systems, and then
validated by simulation [Kuehn, 1979]. The Krimer and Langenbach-Belz approximation
is expressed as follows:

2

ETWl=g(p,ccd). S5 FSlp @
: 2 1-p
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where,
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Typically, the error resulting from the above approximation is less than 10%, and is always
less than 20% for specified combinations of distribution functions [Krimer and
Langenbach-Belz, 1978]. We use expression (2) as a starting point in our analysis with the
modification that we approximate g to the value of one, for the sake of simplicity. Other
approximations have been derived for E[W] but, according to Shantikumar and Buzacott,
when C,? is larger than one, "any method may be used" [Shantikumar and Buzacott, 1980].
Since in our model we have only values of C,> above one (except in the trivial product form
case), we keep the expression for E[W] as simple as possible.

Then, by considering the queuing station independently from the rest of the network, and by
assuming infinite calling population, we can approximate the mean customer waiting time by
the following expression:

-5 Ao )
2 " 1-p

It is clear from the expression above that we need to know the value of C,> and of p in order
to estimate E[W]. These values can be determined by iteration algorithms that are not
described here, the focus of this paper being on finding a good approximation for EfW]. We
therefore assume that we know how to obtain analytically values for C,2 and p, and compute
E[W] as a function of these values. In the model validation phase, we simply use the values
of C,2 and p obtained from the simulation output report.

Up to this point we have an expression to estimate the mean waiting time in a GI/G/1 queue
with infinite calling population. In our system, however, the calling population is limited
to the number of customers within the closed network, therefore the above expression cannot
be applied directly.

3.3 Closed network approximation
To derive a closed network approximation we follow a derivation by Kamath et al. [1988]

for closed networks of GI/G/1 queues that relies on the symmetry of the network. Our
derivation differs in the sense that our network is not symmetric since it is composed of a
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queue and a delay station.

The main idea is to find a correction factor (f) that accounts for the transition from an infinite
calling population to a finite calling population in a product form network, and to apply the
same correction to our non product form network. The product form network equivalent to
our network is obtained by replacing the queue with general services with a queue with
exponential services while keeping the same level of station utilization (p).

® Derivation of the correction factor f for the product form network

An expression for the mean waiting time in front of the queue can be found using the
fundamental elements of MVA [Reiser, 1979]: Little's law and the arrival theorem.
Applying Little’s law to the queuing station we can write:

0,=(ETW],,+ETSD-\ ©)

where, E[W].y is the mean waiting time in front of the queuing station if service times are
exponential with N customers in the network, E[S] is the mean customer service time, A is
the station throughput rate, and Qy is the mean number of customers at the station (waiting
in queue and being served) if there are N customers in the network. The arrival theorem
states that in a closed product form network an arriving customer to a queue sees the queuing
station in equilibrium with one less customer in the network. Therefore, and because of the
memoryless property of the exponential distribution, we can write:

ETW] y=0Qy.,-E1S] @

In order to continue our derivation, we need to obtain an expression for Qy, as a function
of Qn. A simple approximation would be to apply (as done in Kamath et al. [1988]) the
Schweitzer-Bard heuristic:

Oy.(/N-1_

1 t.)
QN

which has been used to make MVA computations easier [Suri and Hildebrant, 1984]. This
heuristic is exact for closed symmetric exponential networks. With our non-symmetric
network, using this heuristic does not give satisfactory results. However it is clear that by
applying the MVA algorithm, we can find a value (not necessarily equal to one) to the ratio
in equation (8) for any value of N, the number of customers in the network. Therefore, we
can write:

Q,./N-1

— _=k(N. o) ®
OJN (N,ETS),ETO))

where E[O] is the mean delay time, the mean time that a customer is delayed at the delay
station. Or, for the sake of simplicity:
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The derivation of the factor k is detailed in appendix.

Then, we have:

N-1
QN-l=k'T'QN

therefore,

-1
ETW], k.~ 2.0, EIS]

or, by applying expression (6),

ETW]=k. 2 (B LW, +EISD A B1S]

or, since the station utilization p equals (A. E[S]),

EW, =k 2L (EIW),, 1510

therefore,

(10

(11)

12)

(13)

(14)

(15)

It is well known that the mean customer waiting time in an M/M/1 queue with infinite calling

population is:

We can now define the correction factor f(E[W].,,) as:

ETW],y

SEIW,,) =Eﬁ:

(16)

an
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Thus,
ETW]
™ ___E[S]
N-1  EIW] ,+EIS] 1
=k . e : (18)
SREIW),.) =k — | N-1 EWL, CEW,
- N EIW],_+ETS]
or,
_, N-1 1
e e - i S (19)
1+ < (1-k.220)
ETS] N

® Application to the original network

We can now compute the mean waiting time for the queue with general service times of our
original closed network. This is done as follows:

ETW1,=REIW],).ETW],, (20)

where E[W],, is computed applying equation (5) and where
N-1 1
N EW, . N-1 @1)

1+ (k.=
ELS] ( N

REIW],)=k.

® e (Case when the server utilization p is equal to 1

Note that equation (5) can be applied only if the server utilization is different of one. A
general queue with infinite calling population is unstable if the server utilization is equal to
one. In a closed network, however, a server utilization can be equal to one and the network
still be stable, because the network population is finite. Since expressions (20) and (21)
cannot be applied if p=1, a different expression must be derived, this is done in the
following.

If we combine expressions (20) and (21), we can write:

. N-1 1
S

< 1+

N_l 'E[W]cp (22)
(-2
ETS] N

If p=1 we know that the mean waiting time for the open queue (E[W],,) becomes infinite.

-9.-
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Then,
lim,_, ETW],=limg,, . EIW], (23)
Since,
- - ElS]
e, ELWI=—— 4
T
then, when p=1,
___ ES]
ETW], (N—l)—l (25)
N-1'k

4. Experimental results

In this section we describe the experimental design used in order to validate our analytical
model, and we present the experimental results.

4.1 Experimental design

A simulation model of the closed network shown on Figure 1 was built and run over the
following ranges of network parameters:

- Ratio of the mean service time over the mean delay time: 0.05 < E[S]/E[O] < 20,

- Number of customers in the closed network: 2 < N < 15,

- Scv of the service times: 1 < C? < 20,

- Scv of the delay times: 0 < C? < 5.

Three experiments were performed; the first one was done varying only the ratio E[SJ/E[O],
the second one varying only N, and the third one varying only the two scv’s. The simulation
model was written using the SIMAN language [Pedgen, 1987]. A gamma distribution was
chosen to model the general distributions of the service and delay times. The gamma
distribution was chosen because it enables with only two parameters (o and ) to set easily
desired values for the means and the scv’s (C? = 1/o, mean = «.8). All simulation runs
were 65,000 time units long (1 time unit represents 1 minute of the network actual operation
time). In order to eliminate network start-up effects the first thousand time units of each run
were truncated. For most of the runs the simulated operation time corresponded to a number
of services at the single server station comprised between 18,000 and 24,000. For the first
experiment performed with a varying ratio of service times over delay times, the number of
services performed varied from approximatively 6,700 (with the smallest ratio) to
approximatively 29,000 (with the largest ratio). Since long, the runs were not replicated
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[Pedgen, 1987].

The output statistics were directly read from the simulation output report generated by
SIMAN. The parameters used in comparing simulation results to analytical results were
computed directly from the output report ( for example, C,%, C,2 and p, necessary to compute
the mean waiting in front of the equivalent GI/G/1 queue (equation (5))). In computations
using the input parameters E[S] and C,?, output values read from the output report were also
considered rather than the input values set through the parameters of the gamma distributions.
In general the discrepancy between input values and output values was small (5% or less for
E[S] and 6.5% or less for C,2).

4.2 Variable ratio of the service times over delay times

The graphs on Figure 2 show the results of the comparison between the analytical and the
simulation model when the ratio of the mean service time over the mean delay time
(E[SVE[Q]) varies from 0.05 to 20. In this experiment, the following parameters were kept
constant: the number of customers in the network (N = 5), the scv of the service times (C,?
= 10), the scv of the delay times (C,2 = 2), and the mean service time (E[S] = 2.22 min.).
The mean delay time (E[O]) was therefore varied from 44.40 to 0.11 min. Figure 2a) shows
the mean waiting time E[W] in minutes as computed with the analytical model and as given
by the simulation model. Figure 2 b) shows the corresponding relative error in the mean
waiting time. The relative error is computed as follows:

Error = (Analytical result - Simulation result)/Simulation result

In Figure 2 b) the vertical scale goes from -0.5 (-50%) to +0.5 (+50%). From the graphs
on Figure 2, it is clear that the model is robust within the tested range. For values of the
ratio beyond 4, the error is close to zero. For values of the ratio between 0.1 and 4, the
absolute value of the error is at most equal to 15% which can be considered good.
According to this first set of results, the performance of the analytical model is good for all
values of the ratio within the tested range, and excellent when the mean service time is larger
than the mean delay time.

4.3 Variable number of customers in the network

The graphs on Figure 3 show the results of the models comparison when N, the number of
customers in the closed network, varies from 2 to 15. In this experiment, all other network
parameters are kept constant (C,> = 10, C.2 = 2, E[S] = 2.22, E[O] = 8.5). Figure 3 a)
shows the compared mean waiting times and Figure 3 b) the relative error. These graphs
show that the accuracy of the model decreases as the number of customers in the network
increases. This is not a surprise or a problem since our approximation is aimed at networks
with a small number of customers. Still, even with fifteen customers, the relative error is
still less than 20% which can be considered good. Below seven customers, the error is less
than 10%.

- 11 -
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4.4 Variable service time and delay time scv’s

The graphs on Figures 4 and 5 show the results of the models comparison when the scv’s of
the service times and of the delay times vary (1 < C.2 < 20and 0 < C? < 5) and the rest
of the parameters are kept constant (E[S] = 2.22, E[O] = 8.5, N =5). Figures 4 and 5
show the same results presented differently: in Figure 4, the variation in the scv of the delay
times is represented on the horizontal axis and the variation in the scv of the service times
is represented by the different curves; conversely in Figure 5. We analyze first the results
in the product form case (C;2 = 1) and then in the non product form case.

® Product form case

When the scv of the service times is equal to one, the service times are exponentially
distributed and the network has, therefore, a product form solution. In this case the value
of the scv of the delay times should not have any effect on the mean waiting time. This is
verified on Figure 4 by both the analytical model results and the simulation model results
(curves corresponding to C,> = 1). Note, however, in Figure 4 ¢) that the error between the
analytical results and the simulation results is not zero. We know that for product form
networks, the MVA algorithm gives an exact solution, and since our algorithm is based on
MVA, one could expect the results to be exact when C.> equals one. The reason why this
is not the case is because our algorithm uses an approximation for the waiting time in front
of a general queue with the scv of interarrival times (C,2) as a factor (in equation (5)).
Within the tested range of the scv of the delay times (C.2), the scv of the interarrival times
(C.) is less than one. Therefore, our analytical model underestimates the waiting time in
front of the queue by a small percentage (up to 6%). Note that our attempt is not to solve
the product form case for which MVA is a better tool than our algorithm. Our aim is to
solve the non product form case.

® Non product form case

The simulation results shown in Figure 4 a) clearly indicate that, when the network does not
have a product form solution (C,2 # 1), the mean waiting time in front of the single server
station decreases as the scv of the delay times (C.?) increases. In addition, Figure 4 a)
confirms that the mean waiting time increases with the scv of the service times (C,?). The
analytical results on Figure 4 b) also show the increase in mean waiting time as C,? increases.
However, it is clear from this figure that the scv of the delay times (C,2) has no influence
on the mean waiting time computed by the analytical model. This is not surprising since C,?
is not a parameter of the analytical model. Figure 4 c) shows the relative error between the
analytical and the simulation results. The error decreases as C.? increases.

Figure 5 shows the same results, this time with the scv of the service times (C?) being on
the horizontal axis, and for three different values of the scv of the delay times (C2 = 0, 2,
5). The g}aphs on Figure § a), b), and c) show the mean waiting time comparison, and
Figure 5 d), the relative error. It is clear from this figure that the results given by the model
are better when C_? is large (larger or equal to 2), the value of the error being then less than
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15%, even for large values of C2. When C? is smaller than 2, the analytical model
underestimates the mean waiting time in front of the single server queue (by more than 20%
when C.2 = 0, for value of C.? above 5).

® Violation of the independence assumption

An explanation that can be given to the behavior of our model is the violation of the
independence assumption. In a GI/G/l queue, interarrival times are assumed to be
independent of the service completion times. However, when the scv of the delay times
decreases, this independence decreases as well. A limit case is when C? is equal to zero,
then every arrival occurs exactly after a fixed time interval from the service completion.
Interarrival times are, therefore, more or less correlated to the service times depending on
the scv of the delay times. Computation of this correlation from the simulation results shows
that, effectively, the value of the correlation is high (close to one) when C.? is equal to zero,
but only in this case. When C,2 becomes larger than zero (even only equal to 0.5), the value
of the correlation drops below 0.5 and remains steady as C.? increases.

® Violation of the renewal assumption

Another cause for the discrepancy with the analytical model results is the violation of the
renewal assumption for the interarrival times. For example, when a long service time
occurs, all customers can be waiting in front of the station and, therefore, no arrival can
occur. Then, when the service is completed, a series of arrivals with short interarrival times
might occur. As the scv of the delay times increases, the violation of the renewal assumption
becomes less important.

5. Conclusion
5.1 Discussion of the model validity

We have proposed a new analytical model that enables to analyze a class of closed queuing
networks composed of a FCFS GI/G/1 queue and of a delay station. The analytical model
results are good for large values of the scv of delay times (C,2 > 2) and for a small number
of customers in the network (N < 15). Result quality increases as the number of customers
decreases.

The limit on the number of customers is not the most constraining, since we have limited the
scope of our model to small systems. The limit on the scv of the delay times is more
constraining. For example, our model cannot be applied to study a system in which
machines (the customers) would require services from an operator (the single server) at
constant or almost constant intervals (C,> small or equal to zero).

5.2 Directions JSor improvement of the model

The scv of the delay times (C.%) is not considered in the analytical model described here.

-13-
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Therefore our model could be improved by considering C,? as a parameter. A first possible
improvement would be to consider the correlation between service times and interarrival
times at the single server queue. An analysis similar to the study of correlated GI/G/1
queues by Venkateswar and Sanders [Venkateswar and Sanders, 1990] could be applied to
adjust the value of the mean waiting time when correlation exists. Our simulation results
show that this correlation, however, is significant only for values of C? very close to zero,
which is only the case when the delay times are deterministic or almost deterministic. This
improvement would then have limited application. A second possible improvement is to
incorporate C,2 in the model by performing a regression analysis over a wide range of the
values of C.2. The error curves shown in Figure 4 c) seem to have a regular pattern when
C,? is not equal to one, and such an analysis could prove successful.

Appendix: Derivation of the factor k

The factor k is derived by applying the original recursive MVA algorithm [Reiser, 1979].
When applying this algorithm, the network performance characteristics are computed as
follows:

® Sojourn times:

At the single server queuing station:

T(n)=£[S5].(1+Q, ) (A.1)

where n is the number of customers in the network at the current iteration of the algorithm
(n=1,...,N), and where Q_, is the mean number of customers at the queuing station (being
served or waiting for service) with n-1 customers in the network.

At the delay station:

T,=E[O] (A.2)
® Network throughput rate:
An)=—_" A3
n) T T, (A.3)

® Mean number of customers at the queuing station:

0,=T,(n). \(n) A.9)

- 14 -
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or, by combining expressions (A.1) through (A.4):

EIS]-(1+0, ) A5

" HS1.(-0,) ET0]

k is the value of the ratio (Qy.;/N-1)/(Qn/N). In order to derive the value of this ratio we
apply the following algorithm:

1) Input:
E[S], E[O], N.

2)Initialization:
Q,=0.

3) Iteration loop:
Forn=1 to N:

ES.(1+0,)
"ET51.(1+0, ) +E10]

4) Output:

Q.=

_Quy /N-1)
0, /N

k

Note that the number of iterations is proportional to N, the number of customers in the
network. Since N is small (say 15 or less), the above algorithm described in this appendix
is very fast when implemented on a computer.
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Figure 2. Experimental results for different values of E[S)/E[O] ratio
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