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Foreword 

It is possible to  solve larger and larger linear programming models because of the growing 
capacity of computers and the refinement of algorithms. However, the linear programming 
models to be solved grow even harder. Therefore, it becomes even more important to  present 
the model in such a way to  the algorithm that it can be solved most efficiently. This point 
is further stressed by the fact that large models are usually generated in an automated or 
semi-automated way, which is primarily based on systematic description of the model and its 
precise formulation. In this process the quality of the formulation with respect to  the solution 
is difficult to  incorporate. Therefore, the present paper is devoted to  methods which aim at  
reformulating the original model is such a way that it is ready for the Simplex Method and 
also in methods to  translate the computatuional results back to  the original formulation. The 
presented work is largely inspired by experiences with IIASA with formulation and solving large 
linear programmiilg models. 
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Abstract 

In this paper we present a survey of methods used for analysis and simplification of a general 
single-objective linear program prior to  solving it with a simplex type optimizer. We consider 
the methods known since the early work of Brearley at al. as well as less known or appreciated 
numerical elimination methods. We then proceed to  analyze in detail the usefulness of some of 
the presolve methods. We attempt to  explain what impact each of these methods may have on 
the activity of a simplex type optimizer. 

These theoretical speculations are validated by experiments involving the discussed methods 
and an advanced implementation of the simplex algorithm: a set of very large linear problems 
analysed with different subsets of available presolve techniques are solved using the simplex 
optimizer. 

The paper is accompanied by a modular linear optimization package consisting of a stand 
alone presolver and postsolver as well as a new release of our advanced simplex optimizer with 
embedded presolve capabilities. 

l i e  y u~ords: simplex met hod, presolve analysis 
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A Modular Presolve Procedure 
for Large Scale 

Linear Programming * 

Artur Swietanowski** 

1 Introduction: The Presolve Analysis Rat ionale 

Despite advances in computer technologies, which resulted in a great increase of affordable 
computing power and equally important developments in the field of linear optimization, there 
is still demand for more efficient methods for solution of large scale linear programs (LP's). One 
of possible approaches to this problem is presolve analysis. It is based on the observation that  
most LP's are formulated inefficiently from the point of view of an optimizer (although this 
may be the result of a perfectly valid modeling process). Presolve analysis attempts to  identify 
and remove as many redundancies as possible. The analysed problem is then optimized and 
the optimal values of primal and dual variables and reduced costs of the original problem are 
recovered. 

Presolve analysis aims a t  reducing the problem solution time and perhaps, making it possible 
to solve some problems that  are too difficult in their original formulation. The goals of a presolve 
procedure are: 

1. reduction of problem dimension (i.e. the number of constraint matrix rows, columns and 
non-zeros), 

2. improving problem's numerical properties and computational characteristics (e.g., by re- 
moving linearly dependent rows), 

3. ea,rly detection of infeasibility or unboundedness, 

4. revealing of some properties of the problem that may not have been obvious during model 
generation (e.g., the fact that some variables may be fixed, some constraints are redundant, 
etc.). 

Typically used analysis methods, known since the work of Brearley et  al. [4] are heuristic 
(see also [:I.]). They are designed to eliminate simple redundancies relatively cheaply, but they 
fail to  discover more complicated relations that  might be used to reduce the problem's size. On 
the other hand there were attempts to  develop optimal methods for elimination of certain kinds 
of redundancies. Among those, an idea of McCormic [14] provided (directly and indirectly) 
some interesting results and prompted development of new techniques, like the one proposed by 
Gondzio [ lo]  and followed in this research. 

The focus of this paper is on the presentation of the impact of presolve analysis on perfor- 
illa'llce of the revised simplex method. The selection of presolve techniques that  we made is in 
our opinion perfectly suitable for application as a front end to a simplex optimizer. If an interior 
point method were to be used, then yet another preprocessing stage might be useful, or indeed, 

'This research was partially sponsored by the Committe for Scientific Research of Poland grant no. 3P40301806. 
* *  Institute of Automatic Control & Computation Engineering, Warsaw University of Technology, ul. 

Nowowiejska 15/19, 00-665 Warsaw 
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necessary to  make some problems solvable (for an in-depth discussion of presolve analysis as 
applied t o  a primal-dual interior point method the reader is referred to Gondzio [lo].) 

On the other hand, all linear optimization methods might benefit from some or all of the 
presolve techniques presented here as, surely, redundancies in LP formulation will always remain 
redundant. Therefore all effort has been made to make our presolver implementation as flexible 
as possible: the user is allowed to choose virtually any subset of presolve methods that  he or 
she wishes to use for a particular purpose, e.g., as a front-end for a different type of a linear 
optimizer. 

In section 2 the presolve methods are divided into categories, each associated with certain 
parts of Kuhn-Tucker optimality conditions. In section 3 each of the analysis methods is dis- 
cussed in detail. All optimal solution recovery procedure is given for every method in section 4. 
Section 5 covers the results of numerical experiments conducted with a linear program presolve 
procedure embedded in a simplex optimizer. Finally, the conclusions from this research are 
given in section 6. 

The contents of the linear optimization package developed in cooperation with IIASA project 
~ ~ e t h o d o l o g y  of Decision Analysis are listed in appendix A. In appendix B we give all the 
information necessary for obtaining the whole optimization package, which is intended for use 
not only a t  IIASA but also in other research institutions. The applications are presented in 
lllore detail in appendix C. Their calling syntax is defined and a number of typical examples of 
their use is given. 

2 The Kuhn-Tucker optimality conditions 

We are concerned with a linear optimization problem of minimizing the objective function 

subject to  constraints 
b A x S b  - 
x <  x < x  - - 

where A E R m x n ,  x ,  c E Rn, f E R , x  E (Ru{-CO})~,  % E ( R u  {+co})~,  b E ( R u  { - c Q } ) ~  and 
- 

b E (R U { + C O ) ) ~ .  The so-called "fixed adjustment" f usually is not included in the problem 
formulation, however in this paper it is convenient to  introduce it right now. 

Let x, y and z denote the primal and dual variables and the reduced costs, respectively. 
Their values represent an optimal solution to  the problem (1)-(2) if and only if the Kuhn- 
Tucker optimality conditions are satisfied: 

1. Primal feasibility: 
b < A x < b  - 
x <  x < x  

2. Dual feasibility: 
A ~ ~ + Z = C  
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3. Complementarity: 

( otherwise xjzj = 0 

By analogy to  the grouping of the optimality conditions, the presolve analysis methods may 
be divided into three categories. We must note, however, that such grouping is only a matter of 
presentation convenience. In most cases it is possible to derive each method from the analysis 
of both the primal and the dual problem. We add the fourth group - numerical eliminations 
performed on the constrained matrix: 

1. methods derived from analysis of the primal feasibility conditions: 

r empty constraint removal, 

r singleton row removal, 

r fixed variables removal, 

r row constraint analysis, 
It is applied t o  one row a t  a time. Attempts to  detect a limited class of redundant 
constraints (so called forcing and dominated constraints). 

r elimination of slack variables explicitly represented in the LP, 

r free singleton variable removal. 
By a free singleton we mean a variable which has infinite simple bounds and a non-zero 
coefficient in only one constraint. 

2. methods derived from the dual feasibility conditions: 

r removal of empty columns, 

r determining of finite bounds on dual variables and reduced costs. 

3. inethods derived from the complementarity conditions: 

r fixing of variables for which a positive lower bound or a negative upper bound on 
reduced cost has been computed. 

4. general linear transformations performed on a set of equalities which aim at  reducing the 
density of the constraint matrix. 

This paper shall not be directly concerned with detection of split free variables or duplicate 
constraint matrix rows or columns. They pose a serious problem for an interior point optimizer 
(see e.g., Gondzio [lo]), but the simplex algorithm can handle them easily. 

3 Presolve methods 

In addition to  the notation introduced in the previous section, from this moment on we shall 
use the following symbols: 

a;, to denote i-th row of the constraint matrix A, or all of this row except one element 
singled out in the context, 

r a,j to  denote j - th  constraint matrix column, or all of this column except one element 
singled out in the context. 

Furthermore, we shall use terms "variable" and "(constraint matrix) column" as well as "(con- 
stra.int matrix) row" and "constraint" interchangeably. 
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3.1 Simple presolve methods 

3.1.1 Empty constraint 

If the i-th row is empty, i.e. a;, = 0, then obviously scalar product a: x is equal to  zero. If 
b .  < 0  <_ 8; holds true, then the constraint is always fulfilled, and thus redundant. Otherwise -1 - 
the problem is structurally infeasible. 

3.1.2 Empty column 

Given an empty column a,j = 0 from dual feasibility (4) we have 

When we compare the value of zj with its bounds (4) we may either fix variable xj or declare 
the dual problem infeasible. The possible cases are presented in the table 1. 

Table 1: Variable fixing following dual problem analysis 

3.1.3 Infeasible simple bounds 

If there should exist a variable xj such that  gj > Tj then we declare the LP structurally infeasible. 

3.1.4 Fixed variable removal 

7 .  
-3 

= 0  
< O  
< O  
> o  
> O  

Whenever we fix a variable XF (i.e. we determine that g~ = XF = ?FF) we eliminate it (and 
remove the column a+F) from the problem. We also update the fixed adjustment f and modify 
vectors b and b. If the constraints before the reduction were 

- 
x j  

any 
+a 

<+a 

any 
any 

x . - 

any 
any 
any 
-00 

>-a  

then after the reduction we "shift" the constraint activity bounds b and 

a,ild upda.te the fixed adjustment 

f ' f + XFCF. 

xj E < gj, Fj > 
- 

x .  - F .  
3 -  3 
- 

xj = g .  

3.1.5 Singleton row conversion t o  variable bounds 

Note 
May be fixed on any feasible value 
Problem unbounded 

Problem unbounded 

-4 singleton row of the form 
b.  < a . . x .  < 8; 
-1 - 13 3 - (9) 

may be converted to  simple bounds on variable xj and then removed from the problem. If 
a;j > 0  the resulting bounds are 
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If nij < 0 the direction of inequality (9) changes and the implied bounds change appropriately. 
The problem is found infeasible or the singleton row is removed. 

3.1.6 Computing bounds on dual variables. 

As dual feasibility conditions (4) state, each infinite simple bound on a primal variable x j  is 
equivaleilt t o  a bound on the corresponding reduced cost z J .  Whenever we establish such bounds 
on zj, a dual constraint becomes an inequality or non-binding. Notably, singleton columns of 
the primal problem may also be singleton rows of the dual one. The analogy to  singleton row 
reduction is obvious. 

3.2 Singletoil columns 

Our approach is to view all column singletons as possible slack variables. A variable x s ,  corre- 
sponding t o  a column singleton with zero cost coefficient c s  shall be called a slack variable. 
The procedure removes a slack variable and converts it to wider bounds on row activity and, 
possibly, an update of the fixed adjustment. 

Let us note that if the variable has its only non-zero in an  equality row, it is possible to  
convert the non-zero cost coefficient to zero. Suppose the i-th row has the form 

where a is  is the singleton's only non-zero, and the objective function is 

The following equivalence 

allows to change the objective to 

with an updated fixed adjustment and singleton's cost coefficient of zero. Thus the variable x s  
may also be considered a slack variable. 

Note that: 

there may be more than one slack variable in one row, in which case they all correspond 
t o  a single "logical slack" variable, 

a singleton column may belong to  a free variable, which means that the row is non-binding, 

a set of explicit slacks and slack variables implied by an inequality row may add up to  
create a "logical free singleton", which implies that the row is non-binding. 

The second case (known as a "free singleton column" reduction) will be treated separately in 
section 3.2.2. 

3.2.1 Removal of slack variables 

Sometimes LP's are formulated using only equality constraints (non-equality rows have slack 
variables explicitly added). This hides the real nature of the variable from the linear optimizer. 
Soine efficient crashing algorithms used in the simplex method (see e.g., [2]) base their success 
on special treatment of slack variables. There are also some other new linear optimization 
inethods that  could benefit from detection of explicitly given slacks (see e.g., Gondzio [9] and 
IVierzbicki [20]). 
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A slack variable may be removed by converting its bounds to wider bounds on row activity. 
Given constraints 

b .  < a z x  + a ; s x s  < Zi -1 - 
:s < x s  < :s 

we update its activity limits 
bi + bi - SUP a s x s  
- - 1~5xsLFs 
bi + inf a s x s  

bi - is~is5as 

and obtain 
b; < aEx < 6;. 

The variable x s  is removed from the problem. It is also possible that  the above conversion will 
make the row non-binding and thus redundant. 

3.2.2 Free singleton columns 

A constraint 

in which a free singleton column (with a ; ~  as the only non-zero) appears is non-binding. It is 
removed from the problem as it does not influence the primal feasible region. 

Analogously, an equality row with a free column singleton may be removed. Let us consider 
a constraint 

T - 
ai,x + a i ~ x ~  = b;(= bi = b;).  (19) 

If the objective coefficient c~ is equal to zero, the row is removed without taking any other 
actions. Naturally, variable X F  is removed as well. 

If however c~ # 0, we modify the objective in order to bring c~ to zero. Since 

the objective 
f + cTx + C F X F  

is transformed to  

The i-th row is now removed. 
In case of non-equality rows there is one more step we have to take before the row is elimi- 

nated. Let us consider a "less than" row 

By adding a slack variable s we transform it into an equality 

and modify the objective: 

The free singleton's cost equals zero and the row is removed. 
The difference between this and the previous example is that  an empty column of the freshly 

introduced slack variable s is still left. We treat it as we would treat any other empty column 
(see section 3.1.2): 
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if (cF/aF) is positive, the problem is declared unbounded, 

otherwise s is fixed a t  its lower bound, i.e. a t  zero. 

Similar reasoning leads us to conclusions about a "greater than" row. Note tha t  slack s acts 
only as a conceptual help and is never actually introduced into the LP. 

A general constraint 
T b; < a;,x + a ; ~ x ~  I b; (26) 

is transformed to  - 
a z x  + a;FxF + s = b; 

O < s < 6 ; - b ; .  

We fix s a t  (&i - b,) (and update fixed adjustment) if c F / a ; ~  is positive, a t  zero otherwise. 
Sometimes a column singleton in doubleton equality row is treated as a special case (see 

e.g., Andersen and Andersen [I]).  If a doubleton row has one entry in a singleton column then 
bounds on the other variable may be modified so as t o  make singleton's bounds redundant. The  
singleton becomes an  implied free variable and is treated in a manner described previously. It  is 
easy to  see that  the methods described so far will eliminate such a doubleton row in two phases: 

1. first the singleton variable will be removed (converted into wider bounds on row activity) 
and the row will have only one non-zero left, 

2. tllen the siilgleton row will be converted into simple bounds on the other variable. 

As it has been shown above the row in which a free singleton column has its non-zero may 
always be removed. In some cases a slack variable is added, but its only lasting effect is a 
possible change to the fixed adjustment f .  We compute the adjustment update based on the 
type of row activity bounds and sign of (cF/aiF) (see table 2). 

Table 2: Objective adjustment update after free singleton column removal 

3.2.3 Implied free column singleton 

Row type: 

7 
b, < ... 
b; < ... < 6; 

. . . = b; (= 6; = b;) 

A variable is called "implied free" when its simple bounds may be dropped, because row con- 
straints gua,rantee that  the variable stays within limits as least as  tight as those imposed by 
the sinzple bounds. If the implied free variable is a column singleton, we may perform a very 
advantageous free column singleton reduction. 

The  coilstra,int in which the singleton column XI, gI I X I  5 TI has its non-zero 

Value of cF/ajF 
= 0 

0 
0 
0 
0 

> 0 
unbounded solution 

( ~ ~ / a i ~ ) b ;  
(cF/aiF)b; 

< 0 

( c ~ / a ; ~ ) b ;  
unbounded solution 

(cF/aiF)bi 
(cF/aiF)bi 
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implies bounds .u> and Z> on variable X I  

T a;I > 0 + (b; - sup a ; ,x) /a i~  

z: = { x < x < x  -- 
T ail < 0 + ( - inf ai,x)/a;I 

x < x < x  -- 

a;[ > 0 + ( 8  - inf a:x)/ai~ 
-I x < x < x  
X I  = { -- 

a;I < 0 + (bi - sup a z x ) / a i ~  
x < x < x  -- 

If (gz,T>) I (cI, TI) then simple bounds on the variable are redundant (we have found 
an implied free variable). If ( z > , ~ > )  n (zI,ZI) = 0, then the problem is declared infeasible. 
Otherwise the simple bounds on variable are tightened: 

3.3 Iiidividual constraint analysis 

Analysis of an individual constraint and comparison with box constraints on the variables in- 
volved may reveal that  some rows are redundant, some variables may be fixed or new variable 
bounds may be imposed. 

3.3.1 Impl ied  b o u n d s  o n  r o w  act iv i ty  

A constraint 
bi 5 aEx 5 6; 

confronted with variables' bounds 
x < x < x  - 

reveals implied limits on row activity: 

b! = inf aEx = C a i j q  + C a j i q  -a zr<x<_K a;,>O aij<O 
-I 
bi = sup aEx = C a;jZj + C ajigj  

x < x L R  -- a;,  >O a t3<0  

If (bi, z:) n (bi, zi) = 0 the problem is declared infeasible. If b: = zi or & = &:, we call the 
row "forcing7' as it forces all variables involved to their bounds. The row is removed and the 
variables are fixed on appropriate bounds. Finally, if (b:,$) _> (bi,zi) the i-th constraint is 
redundant ("dominated") and removed. 

3.3.2 Tigh ten ing  variable b o u n d s  

By reversing the procedure presented above we compute variable bounds implied by the row 
constraints. This process helps to provide more finite simple bounds for dominated and forcing 
coilstraint detection. 

An example of implied variable bounds computation was provided in section 3.2.3. Identical 
procedure is employed here: 

but the purpose is different: we attempt to  tighten variable bounds as much as possible. 
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Note that a, procedure for global bounds cross-checking according to  the above formula 
will involve as many bound computations, as there are non-zeros in the constraint matrix. 
Additionally, if two (or more) variables are active in two (or more) constraints, it is possible 
that a change of a bound on one variable will necessitate new computation of bound on the 
other (or others). 

This procedure is too expensive and unreliable, as it can cause infinite loops. A much more 
efficient approach to  has been proposed by Gondzio [lo] who has observed, that  bounds on row 
activity (which are calculated in forcing and dominated row detection routines) may be used to  
clleaply compute the implied variable bounds. If both i-th row activity and j - th  variable have 
at  least one finite bound each, a simple calculation may provide finite implied bounds. 

We can compute inf a z x  and sup a z x  cheaply and then calculate implied variable 
x<x<x x<x<K 

bounds efficiently. We know the follow& bounds on row activity: 

T a z x + a i j x j )  = i n f a i , x + i n f a i j x j  x x~ 

T + aijXj) = sup x ai,x + sup aijxj 
XJ 

from which it follows 
T inf ai,x = gi - inf aijxj 

X 
r r 3  

x~ 
- s u p a k x  = a; - sup aijxj. 

X XJ 

Finally for a;+ > 0 we have 

and for nij < 0 

Needless to say, the above implied bounds may still be infinite. 
A complete constraint matrix scan consists of the following computations: 

1. for each i E (1, .  . . , m} a pair of implied row activity bounds gi and i i i  is computed, 

2. for each row i with a t  least one finite activity bound and for each j E (1,. . . , n }  such that  
a;j # 0 and gj > --oo or 7 j j  < +oc, we compute implied variable bounds. 

3.3.3 Dominated and weakly dominated variables 

It is possible to  apply some of the analysis methods presented in section 3.3.1 to  the dual 
problem. This will allow us to detect and eliminate forcing and dominated variables and fix 
some variables on their finite bounds. 

Each dual constraint a,j implies bounds on associated reduced cost zj .  Whenever we are 
able to  determine that  the sign of the reduced cost zj is strictly positive of strictly negative, we 
can fix variable . ~ j  a t  one of its bounds. From 

T T 2 z! = c j  - sup a , j y  5 zj 5 c j  - inf a  . y  = 2 .  -3 ' 3  3 (40) 

and the dual feasibility conditions (4) it follows that 

'The reader may wish to  analyze a small LP example: 

in whicl~ the only feasible point is zl = 1, 22 = 0. A possibly infinite cycle of bound tightening would occur. The 
feasible intervals would slowly converge to  the solution. 
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if the bounds above are inconsistent with those previously known, then the dual problem 
is infeasible, 

if z> > 0 (7; < 0))  we say that variable xj is dominated and may be fixed a t  its finite lower 
(upper) bound, respectively; if the appropriate primal variable bound is infinite, the the 
problem is declared unbounded, 

if 2'. = 0 or F; = 0, then xj may be a so called "weakly dominated" variable. 
-9 

Andersens [I.] give a definition which enables them to treat weakly dominated variables as 
dominated ones. They require that the bounds on the dual variables y are derived from singleton 
columns and that  those singletons are not removed from the problem. 

Conversely, C:ondzio [ lo]  proposes a more general approach in which he allows to use dual 
variables' bounds of any origin and does not rely on the singletons' existence. Instead he imposes 
some requirements concerning row types of the matrix rows concerned (see Gondzio [lO] for the 
theorem as well as the proof): 

1. I f q  -j 0) gj > -q and 

then the variable xj is weakly dominated and it may be fixed a t  its lower bound. 

then the variable xj is weakly dominated and it may be fixed a t  its upper bound. 

3.4 Linear transformations 

Chang and McCormic [5] and earlier McCormic [14] have presented an algorithm for solving of 
a so-ca,lled "spa,rsity problem". Given a sparse matrix A ,  A E Smxn, a non-singular matrix 
M ,  M E Smxm is to  be found such that M A  is sparsest possible. The problem arose from 
consideratioil of possible ways of reducing time needed to solve a linear optimization problem (1)- 
(2). It was assumed that  an equivalent problem 

T min c x 
M b  5  ( M A )  x = MT; 

x 5 x 5 x  - 

will in general be solved faster by a simplex optimizer than the original one. The results reported 
by McCormic [14] were not encouraging: despite savings in optimization time, the time spent 
finding M in all cases exceeded the savings. Only more recent results of Chang and McCormic [5] 
docuilleneted an overall gain in the range of 10%. 

For this reasoil we have decided to  implement a much less time consuming heuristic algorithm 
that  would perform numerical eliminations. It has been originally described by Gondzio [lO]. 

3.4.1 Numerical elimination heuristic 

I11 a linear problem (1)-(2) transformed to equality form we find such row pairs, in which one 
row has a non-zero pattern, which is a superset of the non-zero pattern of the other. The shorter 
row is then used as a pivot row in elimination of a t  least one non-zero of the longer one. Of 
course further 11011-zero cancellations may occur. Among the main advantages of this procedure 
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are its simplicity and effectiveness, ability to reduce problem density and potential to  eliminate 
some duplicate rows. 

The main computational effort goes into non-zero pattern comparison. The data struc- 
tures should facilitate efficient access to both rows and columns of the constraint matrix. We 
found duplicate storage of the constraint matrix (row-wise and column-wise) very helpful. See 
~ w i ~ t a n o w s k i  [19] for a list of reasons why a simplex optimizer benefits from such double storage. 

4 Optimal solution recovery 

In this paper we are only concerned with recovery of the values of the primal variables x. 
Therefore we will proceed to present postsolve methods only for those presolve techniques, 
which affect their values. Primal variables are removed from the problem when they are fixed, 
found to  be free singletons or found to  be slack. 

Reader interested in recovery of dual variables and reduced costs is referred to  papers by 
Andersens [I.], Brearley et  al. [4] and Gondzio [lO]. Only [lo] presents methods for recovery of 
dual variables after linear transformations. 

4.1 Fixed variable's value recovery 

This is a trivial task. The value of the variable is known a t  the moment of fixing, therefore it 
may simply be stored and later retrieved during the postsolve phase. 

4.2 Free singleton's value recovery 

As it was shown in section 3.2.2, the free variable's value may be calculated as 

where 

and 

4.3 Explicit slack's recovery 

Recovering the values of explicitly defined slack variables is a more complex problem. However, 
the difficulty inay only arise when more than one variable in the same constraint matrix row is 
detected to  be a slack. We believe it t o  be a relatively rare case. In our implementation this 
possibility has been excluded: only one explicit slack reduction per row is allowed. 

In case of a general constraint, the variable xs may take any value which satisfies one of the 
two sets of inequalities given below: 

1 -  T 
- ( - a x )  x bi - a i * x  

Cs I xs I cs 
( T ) .  

Naturally, the recovery of explicit slack variables is not strictly deterministic. 
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Unless there is more than one explicit slack per row, any solution to the corresponding 
system of inequalities is acceptable. Otherwise, for each row with more than one explicit slack 
eliminated, we would need to find a feasible solution of a combined system of all inequalities 
resulting from separate consideration of all slacks removed from that  row. 

5 Experimental results 

I11 this section we present the results of some numerical experiments conduced with the presolve 
procedure. Each subset of the presolve methods is analysed with respect to possible gains in 
coinputation time when the presolved problem is solved with a simplex type optimizer. The 
theoretical speculations are supported by tables with computation times and iteration counts of 
a revised simplex method implementation (see ~ w i ~ t a n o w s k i  [19]). 

Thus far not all of the presolve methods described in this paper have been actually im- 
plemented. Dominated and weakly dominated variable reduction methods together with dual 
variable bound tightening procedures are still missing. Therefore, in lack of numerical evidence, 
some of the conclusions are of preliminary nature. 

The test problems chosen are the largest ones of over a hundred LP's from the extended 
NETLIB test collection initiated by Gay ([7]). The short characteristics of those problems are 
given in table 3. 

The numerical tests were performed on a CRAY Superserver 6400 shared memory multi- 
processor. However, since the code is entirely sequential (and portable to other platforms, e.g., 
SUN SparcStation, IBM P C  386, IBM RS6000) all the computation times are given in seconds of 
sequential CPU work. The times quoted are those measured by a Solaris operating system func- 
tion t imes ()  and always refer to entire computation time: presolving (if performed), conversion 
to standard form, scaling and solution. The reader should take into account the inaccuracy 
of time measurement (in the range of a few percentage points) resulting from different system 
loads. 

All comparative tables in this paper contain ratios expressed in per cent, e.g., percent of 
eliminated constraint matrix rows, or percent of computation time saved when a certain presolve 
technique is used. Time savings are computed according to formulas like 

time~without~presolve - time-with-presolve 
saving = . 100%. 

time~without~presolve 

All those tables also list average and average deviation for each table column. For data  xj ,  
j E (1, .  . . , n) the average 5 is 

- 1 
x = - C X j  

j=1 

and the average deviation 2 is 
, n 

Two of the test problems were not solved in their original form due to numerical difficulties, 
therefore it is impossible to calculate computation time ratios for those problems. Appropri- 
ate positions in the tables are marked with "???". Whenever these problems were not solved 
successfully with a certain presolve technique, the tables contain "num. diff." instead of the 
ratios. 

5.1 Usefullless of the simple presolve methods 

By simple presolve methods we mean those that require little or no searches, comparisons and 
floa.ting point operations. They include removal of empty rows and columns, conversion of 
singleton rows into variable bounds and removal of fixed variables. They are singled out because 
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Name 

25FV47 
80BAU3B 
BNL2 
CRE- A 
CRE-C 
CYCLE 
CZPROB 
D2QO6C 
DGCUBE 
DEGEN3 
FITlP  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN-1 1 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OSA-07 
OSA-14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
P1LOT.J A 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SHIP12S 
STOCFOR3 
TRUSS 
WOODW 

Table 3: Test problems - the summary 

Rows 

822 
2263 
2325 
3517 
3069 
1904 
930 

2172 
416 

1504 
628 

3001 
2393 
2393 
2427 

14695 
28633 
3137 
847 
663 

11 19 
2338 
4351 
2954 
1442 
2031 
941 
976 
398 

1481 
779 

1152 
1152 

16676 
1001 
1099 

Columns 

1571 
9799 
3489 
4067 
3678 
2857 
3523 
5167 
6184 
1818 
1677 

13525 
5405 
5405 
3602 

21349 
42659 
9408 
1443 
2923 

23949 
52460 

100024 
7535 
3652 
4883 
1988 
2172 
2750 
2480 
4283 
5427 
2763 

15695 
8806 
8405 

Density 

[%I 
0.86 
0.13 
0.20 
0.13 
0.15 
0.39 
0.43 
0.32 
1.71 
0.96 
1.03 
0.15 
0.24 
0.24 
0.14 
0.02 
0.01 
0.51 
0.82 
0.72 
0.63 
0.30 
0.16 
0.10 
0.82 
0.74 
0.79 
0.62 
1.04 
0.29 
0.51 
0.35 
0.34 
0.03 
0.42 
0.41 

Scaling 
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it is possible to implement them easily and efficiently and they may be embedded directly in a 
linear optimizer a t  almost no cost. 

Empty rows (or columns) are a rather rare occurrence, however most presolve methods may 
cause elimination of all non-zeros in some rows (columns). The same is true for inconsistent 
variable simple bounds: they may result form other analysis methods. On the other hand fixed 
variables and siilgleton rows are rather common (at least in the NETLIB set). It is worth noting 
that singletoil rows may result from a conversion of general linear constraints (2) to  a standard 
form, in which all variables are subject to non-negativity bounds 0 5 x in which case all finite 
lower bounds are shifted to  zero and upper bounds are transformed into singleton rows. 

We will show that  all those redundancies should not affect significantly the performance of 
the revised simplex met hod. 

Let us assume that  there is an empty column a,j = 0 in the constraint matrix. It is clear that  
it cannot be introduced into the initial basis. Its reduced cost is equal t o  its objective function 
coefficient zj = cj - c;~-'a,j = cj. If cj = 0 the variable will never become a candidate to  
enter the basis. Otherwise, the x j  will move between its bounds (if they are both finite) or the 
problem will be declared unbounded. 

If the constraint matrix contains an empty row a;,, an artificial variable (possibly fixed 
a t  zero) will be added to  i-th row in order to  construct a non-singular basis. The variable 
will never leave the basis and although it may be structurally degenerate, it will never cause 
degenerate iterations. Furthermore, most modern factorization routines (based on Bartels- 
Golub or Forrest-Tomlin algorithms - see, e.g., Reid [16]) will locate a singleton row of the 
basis matrix aad will permute it rather than use it in eliminations. Clearly, most of the analysis 
given above applies directly to  singleton rows. 

Finally, the fixed variable elimination has to  be examined. Typically, fixed variables never en- 
ter the basis, except for the initial basis creation in some crashing schemes (see, e.g., ~wietanowski 1171 
or [18]). Their presence in the basis is likely to cause degeneration, but they are the first can- 
didates t o  leave the basis. We may conclude that their impact on solution times should not be 
too great. 

It has previously been stated that the problem's difficulty is proportional not only to  the 
dimension of the constraint matrix, but also to  its number of non-zeros. It is clear that  removal 
of empty or singleton rows and columns must result in increased matrix density. 

All in all we do not expect the simple reductions to  be very advantageous by themselves. Any 
substantial changes in computation time should rather be contributed to  a change of optimization 
path followed by the simplex algorithm. These claims are substantiated by data collected in 
table 4 where solutioil times and iteration counts with and without the simple presolve methods 
are compared. 

The table lists the percentage of rows, columns and non-zeros removed from the constraint 
matrices as well as iteration and solution time savings. Ten of the problems were not reduced, 
but presolving caused only a negligible loss of time. On the average the number of iterations 
needed to  solve the problems has decreased by 1.62% and the average time was cut by 8.33%. 
Both these average reductions are rather small, which supports our speculations. The simple 
methods caused a meaningful loss of time in case of only one problem: 25FV47. On the other 
hand, sometimes they provide savings much exceeding the ratios of problem size reduction. The 
latter phenomenon is probably only an example of simplex algorithm's sensitivity to  initial basis 
choice. 

It nlay also be noted that whenever a significant portion (10% or more) of the problem's rows, 
coluinns or non-zeros is removed, a time saving is always seen. To conclude: large reductions 
are always helpful, but negligible ones only change optimization path and thus distort iteration 
counts and times. Simple presolve methods are apparently too simple to reduce many problems. 
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Table 4: Efficiency of simple presolve methods 

Name 

25FV47 
80BAU3B 
BNL2 
CRE-A 
CRE-C 
CYCLE 
CZPROB 
D2QO6C 
DEGEN3 
FITlP  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN- 11 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OS A-07 
OSA-14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
PILOT.JA 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SHIP12S 
STOCFOR3 
TRUSS 
WOODW 
Average 
Avg. dev. 

Eliminated [%I I Improvement [%I 
Rows I Columns I Non-zeros I Iter. 1 Time 

-11.94 
-3.23 
23.40 
-2.64 

5.37 
15.32 
9.64 
8.64 
0.00 
0.00 
0.00 

-3.91 
2.05 
0.58 

-0.06 
-0.72 

0.00 
3.11 
5.57 
0.00 
0.00 
0.00 

-5.14 
num. 

-8.02 
4.81 

33.63 
8.86 

19.14 
19.17 
6.1 1 

17.21 
-0.04 

0.00 
-0.02 

2.73 
11.59 
24.26 
9.20 

15.35 
-0.07 

2.91 
13.26 

-0.59 
-0.32 
-0.24 

5.45 
diff. 

? ? ? 
5.87 

- 1.48 
0.00 
0.00 

-1.82 
-4.10 
-1.73 

3.12 
0.00 
7.67 
1.62 
4.36 

13.05 
5.02 
0.00 
0.00 
7.32 

10.31 
34.25 
5.68 

-0.02 
14.98 
8.33 
7.73 
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5.2  The  advantages of column singleton reductions 

It has been shown in section 5.1 that the removal of a singleton (or empty) row does not bring 
about significant decrease in problem solution time. Similar reasoning leads us to believe that  
removal of a slack variable which is not followed by further reductions is also of very little value. 
We ougl~t  to remember that  a simplex optimizer will introduce a slack variable for every non- 
equality row prior to solving the problem. It follows that only when we manage to  remove a 
slack from an inequality row, the optimizer will actually solve a reduced problem. However, 
a free siilgleton variable removal ought to  be advantageous, because a whole constraint matrix 
row is removed. 

Table 5 suminarizes the reductions obtained by the singleton column analysis. Empty rows 
and columns are also removed. 

The avenge reductions (1.51% in terms of iteration number and 4.12% in terms of time) are 
indeed negligible. Both these reductions are highly problem-dependent (which is highlighted by 
significant average deviation factors). Eleven problems were solved more than 5% faster and 5 
LP's lost more than 5% of computation time. Time gains are typically noted when the number 
of free (and implied free) column singletons removed is over 0.5%, 

Surprisingly, we note that  removal of explicit slack variables (listed in the table under the 
heading "relaxed constraints") almost always coincides with iteration and time losses. We are 
unable to present any satisfying explanation for this phenomenon. 

5.3 Usefullless of row constraint analysis 

The simplex method should not be affected greatly by presence of a number of dominated 
constraints. They are always fulfilled and so they never cause degeneration. Their only impact 
is on the size and density of the subsequent simplex bases, but their presence in the optimal 
basis will be limited to  slack variables (they are inactive at  the optimum). Elimination of a 
dominated row will probably give way to further reductions (e.g., by producing new column 
singletons). 

The forcing constraints - if left undetected - are structurally degenerate and thus much 
more damaging to simplex method's efficiency. A forcing constraint is eliminated together with 
all its variables, which is yet another benefit. 

These elimination methods rely on presence of the simple presolve techniques as well as on 
bound tightening, which makes some of the reductions possible. Table 6 summarizes the results 
gathered when using those techniques. 

The overall gains are quite impressive: 7.10% of iterations and 18.88% of computation time. 
Only three problems lost more than 2% of time. It must be noted, that  whenever any forcing 
constraints are eliminated from the problem, both iteration counts and times are improved (often 
by as much as 20, 40 or even 60%). On the other hand, dominated row elimination may still 
lead to computation time loss (see e.g., problems OSA-30 and SCTAP3). 

5.4 Advantages of numerical eliminations 

\,Ve expect that decreased sparsity of the constraint matrix will be reflected by reduced average 
simplex basis density. This in turn should allow faster factorizations and linear system solution 
(with the right hand side vectors also sparser). We thus predict an overall better efficiency when 
solving reduced problems. 

Table 7 presents the results obtained when numerical elimination was applied, supported 
by empty row and column removal and singleton row elimination, which were included because 
numerical eliminations are likely to create empty rows and columns as well as singleton rows. 

The table shows small average improvements (1.22% loss in iterations and 6.64% time gain) 
with large average deviation. Nine problems were not reduced at  all, 19 cut the time by more 
than 5% and 3 lost more than 5%. Again, it seems that large reductions (10% or more) guarantee 
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Table 5: Efficiency of singleton column analysis 

Name 

25FV47 
80BAU3B 
BNL2 
CRE-A 
CRE-C 
CYCLE 
CZPROB 
D2QOGC 
DEGEN3 
F I T l P  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN-11 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OSA-07 
OSA-14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
PILOT.JA 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SIIIP12S 
STOCFOR3 
TRUSS 
WOODW 
Average 
Avg. dev. 

Rows 

0.61 
1.68 

16.17 
0.00 
0.00 
7.04 
2.15 
1.38 
0.00 
0.00 
0.00 
0.96 
0.92 
0.00 
0.00 
0.00 

31.37 
4.72 
0.00 
0.00 
0.00 
0.00 
0.00 
0.62 
1.33 
4.25 
7.38 
0.00 
0.00 
6.42 
6.68 
6.68 
7.68 
0.00 
0.36 
3.10 
3.85 

Improvement 
Iter. 

-11.59 
1.11 

21.15 
0.00 
0.00 

20.41 
19.21 
6.06 
5.37 

-9.92 
-6.88 

-13.51 
4.63 
2.46 

-0.76 
0.82 

-3.73 
-1.71 
-2.44 

0.00 
0.00 
0.00 
0.00 

Columns 

1.72 
1.80 

12.55 
0.00 
0.00 
9.28 
0.57 

15.79 
0.55 

37.39 
22.18 

0.70 
0.68 
0.69 
0.25 
0.17 

43.79 
7.42 

10.95 
0.00 
0.00 
0.00 
0.00 
0.49 
0.70 
7.04 
8.79 
0.22 

25.00 
1.17 
1.42 
2.79 
8.16 
0.05 
2.00 
6.41 
7.51 

[%] 
Time 

-10.09 
5.95 

33.47 
-0.05 
-0.06 
17.52 
21.11 

3.98 
7.69 

-1.69 
-1.93 

-13.06 
14.35 
4.26 

-10.19 
-2.16 

8.28 
2.43 

-2.49 
-0.59 
-0.68 
-0.18 
-0.11 

??? 
??? 

Relaxed 
constr. 

2.68 
0.31 
2.41 
0.00 
0.00 
5.93 
0.00 

36.19 
0.66 

99.84 
99.97 

0.59 
0.59 
1.03 
0.36 
0.25 

68.60 
6.85 

48.27 
0.00 
0.00 
0.00 
0.00 
0.62 
0.34 

10.63 
10.45 
1.51 

41.86 
0.00 
0.00 
0.00 
0.00 
0.40 

13.83 
12.98 
18.16 

Eliminated [%] 
Non-zeros 

0.44 
0.83 
6.89 
0.00 
0.00 
4.77 

25.84 
4.75 
0.04 
5.76 
4.94 
0.59 
1.43 
0.21 
0.08 
0.05 

30.78 
5.93 
2.29 
0.00 
0.00 
0.00 
0.00 
0.08 
0.42 
3.27 
4.96 
0.05 
5.78 

18.62 
19.55 
19.83 
12.81 
0.01 

16.20 
5.63 
6.06 

-3.83 
-0.23 

-11.59 
-8.38 
23.55 
10.05 
17.66 
5.44 

-5.85 
-7.64 

1.5 1 
7.23 

Free 
singl. 

0.32 
0.32 
9.29 
0.00 
0.00 
4.69 
0.57 
0.56 
0.00 
0.00 
0.00 
0.43 
0.41 
0.00 
0.00 
0.00 

10.46 
2.77 
0.00 
0.00 
0.00 
0.00 
0.00 
0.25 
0.55 
2.01 
3.31 
0.00 
0.00 
1.17 
1.42 
2.79 
8.16 
0.00 
0.05 
1.41 
1.84 

-4.61 
0.00 

-3.02 
-8.14 
27.64 
14.43 
23.29 
19.92 

-6.15 
-3.33 

4.12 
9.00 
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Name 

25FV47 
80BAU3B 
BNL2 
CRE-A 
CRE-C 
CYCLE 
CZPROB 
D2QO6C 
DEGEN3 
F I T l P  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN-1 1 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OSA-07 
OSA- 14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
PILOT.JA 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SHIP12S 
STOCFOR3 
TRUSS 
WOODW 
Average 
Avg. dev. 

Improvement 
Iter. 

-11.94 
6.73 

15.92 
3.08 

14.94 
16.29 
20.22 

9.00 
0.00 
0.00 
0.00 

17.07 
30.15 

2.78 
-0.55 

3.39 
0.00 

15.03 
5.57 

-1.90 
2.83 

-5.74 
1.14 

Rows 

5.35 
10.83 
9.29 

15.21 
24.89 
23.48 
30.97 
3.36 
0.00 
0.00 
0.00 

28.83 
28.79 
40.75 
3 1.36 
21.30 
0.00 

26.56 
2.41 
3.31 
1.58 
0.85 

12.90 
5.41 
2.76 

14.98 
12.40 
0.00 
4.86 

53.66 
52.95 
67.53 
0.35 
0.00 

70.34 
17.35 
15.76 

[%:I 
Time 

-9.48 
17.92 
27.89 
15.05 
35.34 
33.38 
37.22 
14.67 

-0.04 
0.00 

-0.02 
31.93 
46.21 
39.34 
31.43 
24.39 

-0.11 
28.16 
16.57 
10.98 
7.98 

-3.62 
11.01 

??? 

Columns 

1.65 
6.16 
1.63 
3.17 

11.66 
11.45 
21.37 

0.19 
0.00 
0.00 
0.00 

23.52 
23.72 
27.46 
21.59 
14.29 
0.00 

26.40 
6.26 
0.00 
0.00 
0.00 
4.82 
7.37 
5.35 

19.97 
12.20 
0.00 
0.00 

26.48 
22.17 
27.76 
0.20 
0.00 

36.29 
10.38 
9.75 

num. diff. 
6.75 
7.07 
0.00 

-37.60 
28.48 
21.70 
14.08 
4.46 
0.00 

45.43 
7.10 
9.88 

Eliminated 
Non-zeros 

1.38 
3.52 
2.67 
4.16 

10.71 
24.83 
16.45 
0.27 
0.00 
0.00 
0.00 

21.66 
21.85 
20.12 
14.98 
10.40 
0.00 

28.44 
1.67 

33.08 
32.77 
32.43 
3.99 
5.53 
3.57 

22.77 
9.12 
0.00 
2.60 

20.23 
16.96 
21.52 
0.42 
0.00 

38.24 
12.18 
10.49 

15.35 
16.81 
0.00 

-37.21 
47.15 
40.72 
49.32 

8.40 
-0.02 
66.37 
18.88 
16.64 

[%] 
Forcing 
constr. 

0.00 
0.18 
0.26 
0.37 
2.31 
3.78 
5.1Ei 
0.00 
0.00 
0.00 
0.00 

10.41 
10.28 
0.00 
0.00 
0.00 
0.00 
6.97 
0.00 
0.00 
0.00 
0.00 
1.12 
1.73 
0.89 
3.40 
1.64 
0.00 
0.00 

20.54 
12.67 
3.82 
0.00 
0.00 

35.12 
3.45 
4.44 

Dominated 
constr. 

0.00 
0.71 
0.99 
0.00 
0.00 
7.93 
0.00 
0.00 
0.00 
0.00 
0.00 
0.42 
0.42 
0.00 
0.00 
0.00 
0.00 
1.18 
0.00 
3.31 
1.58 
0.85 
0.14 
0.55 
0.25 
4.04 
3.59 
0.00 
4.86 
1.03 
0.43 
0.43 
0.00 
0.00 
0.00 
0.93 
1.15 
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Table 7: Efficiency of numerical eliminations 

Name 

25FV47 
80BAU3B 
BNL2 
CRE-A 
CRE-C 
CYCLE 
CZPROB 
D2QO6C 
DEGEN3 
F I T l P  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN- 11 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OSA-07 
OSA- 14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
PILOT.JA 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SHIP12S 
STOCFOR3 
TRUSS 
WOODW 
Average 
Avg. dev. 

Rows 
5.35 
9.72 
7.66 

12.48 
14.40 
7.83 

20.65 
3.41 
0.00 
0.00 
0.00 
3.18 
3.26 

40.75 
31.36 
21.30 
0.00 
4.13 
2.41 
0.00 
0.00 
0.00 

10.12 
0.55 
0.74 
2.23 
5.53 
0.00 
0.00 

11.55 
27.17 
59.46 
0.35 
0.00 
0.09 
8.73 
9.31 

Improvement 
Iter. 
-3.67 
-3.23 
16.88 

-0.38 
-6.94 

8.82 
9.64 

-32.17 
1.83 
0.00 
0.00 

- 19.41 
-8.6 1 

0.58 
-0.06 
-0.72 

0.00 
-12.12 

5.57 
0.00 
0.00 
0.00 

-5.14 

[%I 
Time 

5.71 
5.09 

26.45 
10.43 
5.65 

15.86 
22.78 

-34.01 
5.29 
0.00 

-0.40 
-16.99 

2.28 
35.74 
30.82 
19.22 

-0.76 
-15.05 

17.68 
-0.59 
-0.32 
-0.14 

6.11 
??? 

Eliminated 
Columns 

1.65 
5.70 
0.97 
0.15 
0.73 
3.82 

11.89 
0.21 
0.00 
0.00 
0.00 
3.26 
3.52 

27.46 
21.59 
14.29 
0.00 
3.60 
6.26 
0.00 
0.00 
0.00 
3.94 
5.61 
4.61 

15.85 
10.73 
0.00 
0.00 
0.56 
3.76 

20.85 
0.20 
0.00 
0.00 
4.89 
5.22 

[%I 
Non-zeros 

2.73 
3.06 
3.00 
3.91 
4.21 
5.78 
8.83 
1.55 
1.08 
0.00 
0.00 
3.25 
3.48 

20.12 
14.98 
10.40 
0.00 
3.33 
1.67 
0.00 
0.00 
0.00 
2.85 
4.88 
3.40 

20.72 
7.98 
0.00 
0.00 
0.42 
2.83 

15.79 
0.42 
0.00 
0.16 
4.31 
4.04 

? ? ? 
8.38 

-0.69 
0.00 
0.00 

-1.82 
-4.10 

12.94 
-0.22 
-0.38 

0.00 
5.69 
7.73 

-1.73 34.25 

10.65 
- 1.22 6.64 

10.03 
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time savings, while small ones may only change the route the simplex algorithm takes on its 
way to  optimum. Insignificance of small reductions may partially be explained by the fact that  
the LIT factorization scheme would perform most of them. 

6 Conclusions 

The ultimate results obtained by our presolve procedure are presented in table 8. The total gain 
measured by average decrease in computation time is smaller than might be expected after the 
partial results from the previous sections, especially after the row analysis methods. 

Apparently, the result of all presolve techniques working together is not much better than 
the row analysis methods supported only by simple presolve techniques. Both the average 
time gain and its deviation are almost 20%, which points out again that each linear problem 
reacts differently to presolve analysis. This time all problems were reduced, even if the smallest 
reduction was in the range of 0.01% of non-zeros (problem TRUSS) and caused a 9% time loss. 
The encouraging result is that 24 problems benefited from analysis (and 23 of them by at  least 
10%) while only 5 lost more than 5% of time. The results already quoted in section 5 could be 
used as a guideline as to which presolve procedures are worth implementing by themselves and 
which may only prove advantageous when used in conjunction with a whole set of other analysis 
methods. Again, as in section 5.2, we notice that constraint relaxation usually coincides with 
iteration and time losses. 

Other general conclusions that may be drawn from the results are: 

the presolve analysis methods may significantly reduce solution time of linear problems 
and 

the impleinentation described in this paper gives very encouraging results, even though it 
is still incomplete, 

addition of dominated variable detection procedure may still allow us to  provide even more 
reliability (measured by the ratio of problems that benefit to those that  do not). 
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Table  8: Global efficiency of presolve analysis 

, 

Name 

25FV47 
80BAU3B 
BNL2 
CRE-A 
CRE-C 
CYCLE 
CZPROB 
D2QO6C 
DEGEN3 
F I T l P  
FIT2P 
GREENBEA 
GREENBEB 
KEN-07 
KEN-11 
KEN-13 
MAROS-R7 
MAROS 
NESM 
OSA-07 
OSA-14 
OSA-30 
PDS-02 
PILOT 
PILOT87 
PILOT.JA 
PILOTNOV 
SCSD8 
SCTAP3 
SHIP08L 
SHIP12L 
SHIP12S 
STOCFOR3 
TRUSS 
WOODW 
Average: 
Avg. dev.: 

Rows 

5.96 
12.28 
25.63 
15.21 
24.89 
29.15 
32.90 

6.91 
0.07 
0.00 
0.00 

28.79 
28.83 
41.16 
31.53 
21.35 
31.37 
31.17 
2.41 
3.31 
1.58 
0.85 

12.90 
7.35 
3.84 

18.81 
15.47 
0.00 
4.86 

60.08 
59.64 
74.22 
8.03 
0.00 

70.70 
20.32 
16.38 

Improvement 
Iter. 

-17.55 
6.42 

20.74 
3.30 
8.77 

11.64 
25.35 

-22.78 
4.61 

-9.92 
-6.88 
15.79 
30.13 

4.93 
0.27 
1.74 

-3.73 
12.07 

-25.16 
-1.90 

2.83 
-5.74 

1.14 
? 

Columns 

4.01 
6.50 

14.42 
3.17 

11.66 
19.18 
21.88 
16.12 
0.55 

37.39 
22.18 
24.74 
25.00 
27.90 
21.79 
14.43 
43.79 
32.99 
20.80 
0.00 
0.00 
0.00 
4.82 
8.35 
5.98 

26.86 
18.55 
0.22 

25.00 
27.64 
23.59 
30.55 
8.37 
0.05 

38.14 
16.76 
10.64 

[%] 
Time 

-11.66 
15.21 
41.12 
16.10 
29.21 
33.79 
43.89 

-33.13 
10.92 

-1.69 
-0.31 
30.84 
45.85 
41.97 
34.98 
24.62 
10.43 
33.50 

-19.61 
12.15 
7.77 

-4.30 
13.41 

? ? 

Non- 
zeros 
3.27 
4.25 

11.36 
6.20 

12.20 
32.43 
36.44 
5.85 
1.12 
5.76 
4.94 

22.84 
23.17 
24.34 
19.17 
12.26 
30.78 
35.84 
4.71 

33.08 
32.77 
32.43 
3.99 
5.89 
3.79 

26.01 
12.68 
0.05 
8.38 

33.37 
32.13 
35.69 
13.22 
0.01 

47.70 
17.66 
12.32 

num. diff. 
13.59 
9.75 

-11.59 
-36.17 

39.72 
32.96 
36.52 

8.27 
-5.85 
45.53 

5.72 
14.03 

Eliminated 
Free 
singl. 

0.25 
0.30 
9.43 
0.00 
0.00 
3.89 
0.51 
0.50 
0.00 
0.00 
0.00 
0.70 
0.70 
0.00 
0.00 
0.00 

10.46 
2.56 
0.00 
0.00 
0.00 
0.00 
0.00 
0.71 
0.49 
1.46 
1.43 
0.00 
0.00 
1.17 
1.42 
2.79 
8.16 
0.00 
0.05 
1.34 
1.69 

23.14 
22.27 
-2.26 

-36.05 
57.72 
52.06 
65.75 
23.34 
-9.05 
66.81 
19.36 
20.72 

[%I 
Relaxed 
constr. 

4.01 
0.22 
2.54 
0.00 
0.00 
5.88 
0.00 

36.60 
0.66 

99.84 
99.97 
2.05 
2.13 
0.66 
0.29 
0.20 

68.60 
6.85 

64.10 
0.00 
0.00 
0.00 
0.00 
0.76 
0.44 

11.90 
11.07 
1.51 

41.86 
0.00 
0.00 
0.00 
0.00 
0.40 

13.83 
13.61 
18.83 

Forcing 
constr. 

0.00 
0.18 
0.26 
0.37 
2.31 
2.52 
5.16 
0.00 
0.00 
0.00 
0.00 
9.40 
9.32 
0.00 
0.00 
0.00 
0.00 
6.85 
0.00 
0.00 
0.00 
0.00 
1.12 
1.66 
0.79 
3.08 
0.72 
0.00 
0.00 

20.54 
12.67 
3.82 
0.00 
0.00 

35.12 
3.31 
4.37 

Dom. 
constr. 

0.00 
0.66 
0.95 
0.00 
0.00 
9.09 
0.00 
0.00 
0.00 
0.00 
0.00 
0.42 
0.42 
0.41 
0.16 
0.05 
0.00 
1.42 
0.00 
3.31 
1.58 
0.85 
0.14 
0.76 
0.25 
4.14 
3.59 
0.00 
4.86 
1.03 
0.43 
0.43 
0.00 
0.00 
0.00 
1.00 
1.20 
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A The software 

It is now quite common for the suppliers of professional optimization packages (e.g. Cplex 3.0, see 
Bixby [3] or [6]) as well as advanced research codes (e.g., Gondzio [ll.]) to  provide the customer 
with an option to  perform presolve analysis prior to  applying an optimization method. On the 
other hand it may be convenient for the user to be able to perform such analysis and then decide 
on the optimization software to use or to reformulate a problem. Therefore we have decided to 
provide both an embedded implementation and a stand alone presolve/postsolve package. 

Thus the presolve procedure has become a new feature of our simplex optimizer (see 
~ w i ~ t a n o w s k i  [19] for description of the unique features of this implementation of the revised 
simplex method). At the same time two programs: presolve and postsolv2 are provided, 
which enable the user to perform presolve analysis of a linear problem, solve it with any lin- 
ear optimizer (provided it can produce the solution in one of the formats understood by the 
postsolver) and recover the solution of the original problem using the postsolv. 

B Software availability 

The optimization software package consisting of simplex, presolve and postsolv is made freely 
available for scientific non-commercial use in teaching and research institutions only. Researchers 
who want to obtain a binary executable version of some or all files of the package should contact 
Dr. Marek Makowski, Methodology of Decision Analysis project, IIASA, A-2361 Laxenburg, 
Austria. Then a license agreement form under the title "Request for Software" will be mailed 
back. When the completed form is received by Dr. Makowski, the software will be transferred 
by ftp or by other means together with documentation in form of IIASA working papers. You 
may also e-mail Dr. Makowski. The address is: marekQiiasa . ac . at. 

The binary versions of the program are available for the following system platforms: 

1. SparcStation running Solaris operating system; code compiled with GNU C++ ver. 2.6.3 
or later, or SunPro C++ compiler ver. 3.0.1, 

2. CRAY Superserver 6400 running Solaris operating system; code compiled with GNU C++ 
ver. 2.7.0, 

3. IBM P C  AT compatible with 386, 486 or Pentium processor; code compiled with GNU 
C++ ver. 2.6.0 or Watcom C++ compiler ver. 10.0; a 32-bit DOS executable with extender 
allowing to  use the entire physical memory and, in case of the GNU compiler, also virtual 
memory. 

If this should be necessary, the code may be recompiled for any other platform under a separate 
agreement with the code's author. Other platforms that we know our code to be compatible 
with are IBM RS 6000 with AIX and DEC workstations running Ultrix operating system. 

This report and other IIASA working papers (including those referenced in this paper) are 
a.vailable via W W W  at  http: //www. iiasa. ac. at/docs/IIASAPublications .html. 

In case of any problems with the software or questions regarding it's applicability in non- 
standard applications feel free to contact the author using the address given on the title page 
or e-mail a.ddress: swietano0ia.p~. edu.pl. 

C User's guide to using the presolve analysis 

I11 this section we shall present the calling syntax of all three applications. It was our intention 
to make their user interfaces as similar, consistent and easy to use as possible. Therefore we 

'This is not a t,yping error. For compatibility with MS-DOS the names of the programs have been limited to  
eiglit characters, thus the 'e' a t  the end of the word 'postsolve' had to be omitted. 
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shall first give a general description, which applies to all the programs, then we shall proceed to  
define the options available in each of them. Finally, a number of typical usage examples will 
be given for each of the programs in the package. 

C.1 Batch processing 

All three applications (simplex, p reso lve  and pos t so lv )  work non-interactively, taking a num- 
ber of input files and when required producing some output files. At runtime the programs may 
output a report to the standard output (normally the screen). When called without any argu- 
ments they print out a short reminder of the calling syntax. All the directives concerning the 
activity of a program have to be given as command line arguments. 

C.2 The  common characteristics 

The common, most general calling syntax is: 

where <programname> (one of simplex, p reso lve  or pos t so lv )  is followed by any number of 
options. Each option consists of a keyword (beginning with a dash '-') and an argument, e.g., 
-mps-in af i r o  .mps. The options may be given in any order, but may not be repeated (except 
wheil repetition is specifically allowed). 

Whenever the option's argument refers to a file name, no extensions are assumed or added. 
In particular input and output file formats are not recognized by file name extensions. 

Any error detected during argument parsing causes a runtime error message to appear on 
standard error device (usually the screen) and the program terminates. In particular, each of 
the programs requires that one or two input files always be given. 

The programs input and output data in the following formats: 

1. Fixed or free MPS text file for linear problem input and output. 

MPS format wit11 mixed integer programming extensions is described in IBM's MPSX 
linear algebra package manuals [12]. 

Warning: Mixed integer extensions are understood in input files, but are not present in 
the output files. 

2. A text format for optimal basis output. 

It is defined in the user's guide to the previous release of the simplex optimizer (see 
~ w i ~ t a n o w s k i  [18]) and is accepted by the MOMIP mixed integer optimizer of Ogryczak 
and Zorychta [15]. 

3. A solution in text format identical to the format provided by the previous release of 
simplex. 

Since the postsolve procedure does not recover the values of the dual variables or reduced 
costs of the original problem, those values are not available in the solution whenever 
presolving is performed. Similarly, after presolving the row activities are unavailable. 

4. A text file containing the log of all presolve actions. 

This file is only to be used for data interchange between p reso lve  and pos t so lv .  The 
format is not published and subject to change without notification. 

5. A binary LP-DIT format for linear problem input and output (see Makowski [13]). 

6. A binary LP-DIT format for problem solution input and output. 



Modular Presolve Procedure 

C.3 The options of the p r e s o l v e r  

Program p r e s o l v e  accepts the following options: 

This is the only mandatory option. It defines the name of the input file in appropriate 
format. Exactly one input file must be given. In case of an MPS file the keyword -mps-in 
may be omitted. 

-mps-out < f i l e  name> and -di t -out  < f i l e  name> 

The reduced LP may be output in either MPS format, or LP-DIT format or both. 

There is no default output name. 

- a c t i o n  < f i l e n a m e >  

Defines the name of a file to  which the presolve actions will be written. 

By default (i.e., when this option does not appear in the command line) the presolver will 
be invoked with all presolve techniques a ~ t i v e . ~  The argument following the option must 
consist of one or more abbreviations of specific presolve methods (flags) separated only 
by plus ("+") characters (and not by whitespace). For example, to  specify all presolve 
inethods irxcluding the explicit slack conversion you need to write: -mode a l l + e s .  See 
Table 9 for a full list of available flags. 

This option may be repeated. 

-v [none l low l high] 

The amount and detail of the report that the optimizer produces when it solves a problem 
is decided by this option. The verbosity level none causes the program to  operate silently; 
only the possible error messages are output to standard error. 

The default setting is low. 

C.4 The options of the p o s t s o l v e r  

The p o s t  s o l v  program reads the following options: 

This (1na.ndatory) option informs the program of the name of the linear problem solution 
in LP-DIT format. 

- a c t i o n  < f i l e n a m e >  

The presolve actions are read from the given file. This option is also mandatory. 

- t x t - s o l  < f i l e  name> or - d i t s o l  < f i l e  name> 

Solutioil output in either text or LP-DIT format or both may be requested. If the problem 
is not solved (e.g., when it is found to  be infeasible) the solution will not be produced. 

There is no default solution file. 
- 

3Since removal of explicit slack variables is suspected to worsen simplex optimizer's performance, this presolve 
technique has to  be invoked explicitly. 
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-mps-lp < f i l e  name> or - d i t l p  < f i l e  name> 

After presolving, the solution file (either in LP-DIT or MPS format) contains only the 
values of the primal variables. If, however, the user should wish to obtain the row activities 
as well, he or she must provide the original linear problem to the postsolver  using either 
one of the above options. 

The program reads in the original constraint matrix and multiplies it by the solution 
vector. The dimensions of the vector and the matrix must match. Additionally, p o s t s o l v  
checks whether the primal solution is feasible. Any infeasibility over 1.OE - 8 is reported 
but no other actions are taken (the row activities are calculated regardless of possible 
infeasibility). 

Flag 
on, a l l  
o f f ,  none 

s r 
f s c  
f d r  
d  c  
n  e  
e s  
min 

simple 
pr imal  
dua l  

-v [none l low l high] 

Meaning identical to defined in appendix C.3. 

Meaning 
all presolve techniques, except explicit slack removal 
no presolving (has no effect when preceded or followed 
by other flags) 
singleton row removal 
free and implied free singleton column elimination 
forcing and dominated row elimination 
dominated and weakly dominated constraint detection 
numerical eliminations 
explicit slack removal 
empty row and column and fixed variable elimination 
(added by default to all other options except o f f  /none) 
same as min+sr 
same as min+f dr+f  s c  
same as min+dc 

C.5 Using the p r e s o l v e r / p o s t s o l v e r  pair: e x a m p l e s  

Presolver and postsolver are to be used together. Therefore the example here would present the 
whole processing cycle: from presolving through external optimizer to postsolving. In the exam- 
ple simplex will be used, but of course the reader would use an optimizer of his or her choice. 
For a description of the command line arguments of the simplex optimizer, see sections: C.6 
and C.7. 

p reso lve  l.mps - a c t i o n  a c t  -d i t -out  l . d i t  

simplex -presolve  o f f  - d i t - i n  l . d i t  - d i t - s o l  s o l  

p o s t s o l v  s o l  - a c t i o n  a c t  - t x t - s o l  1 . ~ 0 1  -mpslp  l.mps 

This example starts with presolving an MPS file 1 .mps to an LP-DIT file 1. d i t  with presolve 
actions written to  file a c t .  Then the simplex optimizer comes in. It is explicitly told not do 
any presolving ( -presolve  o f f ) .  It reads the presolved LP and writes an LP-DIT solution to 
s o l .  Finally, the postsolver is told to read in the presolved problem's solution s o l ,  the presolve 
a.ctions a c t  and the original linear problem 1 .mps. From this it produces the solution to the 
original problem containing the primal variables and the row activities: a text file 1. s o l .  If the 
option -mps lp  I .mps was absent, the solution would only contain the primal variables. 
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C.6 The options of the  s i m p l e x  optimizer 

The simplex optimizer accepts the following command line options: 

-mps-in < f i l e  name> or - d i t - i n  < f i l e  name> 

Meaning identical to  defined in appendix C.3. In particular, exactly one input file is 
required. 

- t x t - s o l  < f i l e  name> and -d i t - so l  < f i l e  name> 

Meaning identical to  defined in appendix C.4. 

- b a s i s  < f i l e  name> 

Tlle optimal basis will be output to a file when this option is present. If the optimal 
solution is not found, the basis file contents will inform the MOMIP optimizer that  the 
problem was infeasible. When basis output is requested, presolve analysis is disabled. 

By default the optimal basis is not stored. 

-p reso lve  x{+y{+z. . .)) 
Meaning identical to  presolver 's  option mode (see appendix C.3). 

- p r i c  Crc l se lase l  

It is possible to  specify the simplex pricing scheme. Available schemes are: 

- r c  for minimum reduced cost selection (Dantzig's criterion), 

- s e  steepest edge (see Goldfarb and Reid [a] or Swietanowski [19]) and 

- a s e  our own efficient steepest edge approximation (see ~ w i ~ t a n o w s k i  [19]), which is 
the default mode. 

- s c a l e  [on lo f f l  

Allows to  turn on or off the linear problem scaling. By default: on. 

-v [none l low l high1 

Meaning identical to  defined in appendix C.3. 

C.7 Using the s i m p l e x  optimizer: examples 

We shall now provide a number of basic examples of using simplex. In those examples we shall 
assume that  we have two linear problems: 1 .mps in MPS format and 2 . d i t  in LP-DIT format. 

1. simplex 1 .mps - t x t - s o l  1. s o l  

This directs simplex to read 1 .mps (assuming it's in MPS format), solve it using all the 
default options (including default presolving) and store the solution in a text file 1. s o l .  

2. simplex -mps-in l.mps - t x t - s o l  1 . ~ 0 1  -v none 

The difference between this and the previous example is such, that there will be no on- 
screen report. The keyword -mps-in does not change anything here. 

3. s implex - d i t - i n  2 . d i t  -presolve  min+ne -d i t - so l  2 . ~ 0 1  

This time the simplex optimizer will read an LP-DIT file (keyword - d i t - i n  must be given), 
perform presolving consisting of numerical eliminations (ne), empty row and column re- 
ductions and fixed variable removal (min). The min presolve flag could be omitted. An 
LP-DIT solution will be written to  file 2 .  s o l .  

4. s implex l.mps - b a s i s  l . i n v  

The simplex optimizer is used here to produce the optimal basis for MOMIP mixed integer 
optimizer. The problem is not presolved (because the - b a s i s  option was used). 
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C.8 Using the  smip companion application 

This applica,tion works on a slightly different principle than the other ones. While from user's 
perspective it appears to  be a stand alone mixed integer optimizer, it is actually no more than 
a client application to  a number of other stand alone programs. It calls simplex and MOMIP 
and possibly, some other external applications providing them with necessary input files and 
command line arguments. Each of the applications takes its input, provides some output data  
(e.g., for further processing), reports its activity and perhaps produces some error messages. 

To make the process of running two or more applications at  a time manageable and easy to  
understand, smip takes the burden of streamlining the applications off the user's back. Instead, 
it operates silently and writes a common activity log file and possibly also an error log. N o  
screen output is produced. Because of the long time that integer optimization usually takes we 
decided that  background operation will quite likely be the most useful one. On exit the error 
log (by default smip. e r r  is removed if it is empty. The log file (by default smip. log)  always 
remains. 

At runtime smip creates in the current working directory a number of temporary files used for 
communication between the applications and for some housekeeping chores. Those temporary 
files are removed when the computations are finished. 

The smip integrator accepts the following command line options: 

-mps-in < f i l e  name> or -d i t - in  < f i l e  name> 

Meaning identical to defined in appendix C.3. In particular, exactly one input file is 
required. 

- tx t - so l  < f i l e  name> and -di t -sol  < f i l e  name> 

Meaning identical to defined in appendix C.4. 

- log < f i l e  name> 

By default smip produces a log file called smip. log. This name can be changed to  any 
other file name by using the above option. 

- log < f i l e  name> 

By default smip produces an error log file smip . e r r .  A different name may be given here. 
If the error log is empty upon completion of all computations it is not stored a t  all. 

-v  [none l low l high] 

Similar to the meaning defined in appendix C.3, but this time (as smip writes it's reports 
to a file rather than to a stream) the verbosity level refers the file output. 

C.9 Using the  smip integrator: examples 

The following two examples demonstrate the uses of smip: 

1. smip l.mps - tx t - so l  1 . ~ 0 1  

This coinnland line will cause smip to: 

a) convert the MPS input file 1 .mps to  LP-DIT format, 

b) solve the LP-DIT problem using the simplex optimizer and produce an optimal basis 
for MOMIP, 

c) invoke MOMIP which will read in the problem in LP-DIT format, solve it starting 
from the optimal basis produced by simplex and write the text solution to  file 1. so l .  

2. smip -d i t - in  1 . d i t  - log 1 . l og  - tx t - so l  1 . ~ 0 1  -d i t - so l  1 .d s l  

This time smip takes an LP-DIT input file (thus no conversion is necessary), writes the 
log file in 1. l og  and stores two solution files: one in text and one in LP-DIT format. 


