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Preface 

Understanding and accounting for uncertainty is extremely important in environmental 
management. Unlike electrical or mechanical engineering where most outcomes can be 
computed, natural systems often react to human interference in unexpected and unpre- 
dictable ways. Data uncertainty is in many cases only part of the reason, the other being 
lack of full understanding and knowledge about the processes generating response in nat- 
ural systems such as rivers and lakes. Therefore mathematically handling uncertainty 
was, and still is, a major challenge in water quality management. 

Several mathematical theories have been developed and used in uncertainty calcu- 
lus. Some are based on probability concepts, others use fuzzy set theory, still others 
use axiomatization of upper and lower probabilities to extend Bayesian inference rules 
(Dempster-Schaffer theory of evidence). It is not yet clear which methodology is superior 
and what are the merits and shortcomings of each of them from the practical point of 
view because real-life applications and case studies are still lacking. The present work in- 
troduces an attempt at yet another axiomatization for handling uncertainty, based on the 
author's extension to existing theory of Bayesian belief networks. The theoretical presen- 
tation is followed by an illustration in the application to a river water quality management 
problem. 

The methodology proposed by the author is quite new and so far received little testing 
in either applied or theoretical studies. It is rather an invitation for both experts in 
mathematical theory of decision making and for water quality specialists to  discuss and 
evaluate the practical feasibility and theoretical grounds of this technique and to  help 
find its proper place among well-known and emerging instruments of analysis in decision 
making field. 



Abstract 

This study presents an approach to use Bayesian belief networks in various optimiza- 
tion tasks in resource and environmental management. A belief network is constructed 
to work parallel to a deterministic model, and it is used to update conditional 
probabilities associated with different components of the model. The propagation of 
probabilistic information occurs in two directions in the network. The divergence 
between prior and posterior probability distributions at model components can be used 
as indication on inconsistency between model structure, parameter values, and other 
information used. An iteration scheme was developed to force prior and posterior 
distributions to become equal. This removes inconsistencies between different sources 
of information. The scheme can be used in different optimization tasks including 
parameter estimation and optimization between various management alternatives. Also 
multiobjective optimization is possible. The approach is illustrated with two numerical 
examples and with a hypothetical example on cost-effective management of river water 
quality. 
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1. Introduction 

Uncertainty is evidently among the most discussed topics in environmental and resource 
management. Interest in probabilistic assessment, risk analysis, and related techniques has 
grown rapidly in the recent years (WCED 1987, De Jongh 1988, USEPA 1989, ADB 1990). 
Probabilistic and risk analysis types of approach are increasingly accepted in practical as- 
sessment work by international organizations and by national authorities in several countries. 
Modem decision theory, together with various recently developed computational techniques 
for processing uncertain information, provide a wide base for novel, potential approaches to 
applications in the field. At present, these opportunities are far from being properly known and 
hlly utilized. 

The concept of uncertainty has several facets in this context. From a decision-theoretic 
view, uncertainty can be grouped in three clusters (cf, Howard 1968, Varis et al. 1994): 

Acquisition, presentation, and propagation of information available. 
Preferences and objectives of a given problem. 
Structural issues. 

Pearl (1988) divides the computational techniques used into two groups: logic-based ap- 
proaches (monotonous logic and its applications; for example, rule-based systems, etc.) and 
probabilistic approaches (Bayes, Dempster-Shafer, fbzzy set theory, etc.). In this study, the 
focus is on Bayesian calculus due to its many favorable properties (Howson & Urbach 1991). 

Within environmental and resource management, the applications of Bayesian analysis 
have been largely dominated by classical Bayesian inference, i.e., parameter estimation, in 
which the Bayesian analysis is restricted to the parameter space. In decision theory, the idea of 
considering the entire model as a construct subject to uncertainty and subjectivity stem from 
the game theory of the 1930s and '40s (Shafer 1990). Games evolved into sequential games 
against uncontrolled 'nature', and abstractions such as decision trees were developed. 
Bayesian decision theory - in contrast to Bayesian inference - gained increasing notice and 
emphasis (Wald 1950). These theoretical concepts were developed into more applicable ones 
until the late 1960s (Howard 1968, North 1968, Raiffa 1968). 



Further development has been linked with advances in related computational mathe- 
matics (Shafer & Pearl 1990). Artificial intelligence has had a rapidly growing impact within 
the last ten years. A set of probabilistic, Bayesian-type approaches applicable or potentially 
applicable to decision analysis under high uncertainty has emerged (Horwitz et al. 1988, Pearl 
1988, Shafer 1990, Szolovits & Pauker 1993). Characteristic of these techniques - known as 
belief networks, causal networks, Bayesian nets, qualitative Markov networks, or constraint 
networks - is the principle of networking nodes representing conditional, locally updated 
probabilities. The local-updating principle allows construction of large and densely coupled 
networks without excessive growth in computation. Furthermore, networks can easily be 
constructed to operate interactively and on-line. In recent years, they have spread quickly to 
many application areas, including fault diagnosis, reliability theory, medicine, and pattern 
recognition. 

According to Bobrow (1993), a particularly successful networking technique has been 
the belief network approach by Pearl (1986a, 1988), which was also used in the present study. 
A review by Szolovits & Pauker (1993) stated that '... Pearl's formulation has had a revolu- 
tionary impact on mzrch of A[rtrJicial] I[ntelligence]'. As is usual in such techniques, the en- 
tire model - the hypothesis space - is subjected to Bayesian analysis, not only the parameter 
space (cf. Gordon & Shortliffe 1985, Pearl 1986b, Shenoy & Shafer 1986). In contrast to 
classical probability theory, different sets of outcomes are allowed for related nodes, yielding 
an evident violation of the Kolmogorov axiomatization of the Bayes formula, yet Pearl 
(1986a) strongly argues against this very axiomatization: 'It is not hard to see that this 
textbook view of probability theory presents a rather distorted view of human reasoning and 
misses its most interesting aspects.' Many decision analytic approaches have also been in line 
with these ideas (see, for instance, Shachter 1986, 1988). 

A recent study by Varis (1994) examined the belief network methodology of Pearl 
(1986a, 1988), and offered suggestions for making the approach more suitable for decision 
analysis in resource management and environmental studies. The suggested methodology has 
borrowed ideas particularly from Bayesian decision analysis and from some common practices 
within the field. The most essential suggestion was that nodes can be linked in two layers: ( I )  
the probabilities can be propagated using belief-function calculus; and (2) the outcome values 
of the nodes can be linked using deterministic equations (algebraic or logical). This implies 
that the network is understood as an approximate, numerical approach to updating the 
uncertainty in different parts of the model, making probabilistic simulations (such as Monte 
Carlo analysis) useless. This updating works instantly and does not require off-line simulation 
runs; in other words, uncertainty is not considered as an externality, introduced off-line to 
certain model components such as parameters, as in Monte Carlo analysis, but rather it is 
included as an intrinsic property of the structure of the model. 

As far as the handling of uncertainty is considered, all three categories of uncertainty 
listed above (i.e., propagation and presentation, objectives and preferences, and structure) are 
supported. Uncertain information is propagated using discrete belief-function calculus. A spe- 
cial, very valuable property of the approach is the ability to submit information in two di- 
rections, i.e., from variable A to variable B, and vice versa. Our information on A can be used 
to update our information on B, and vice versa. As far as the presentation and analysis of un- 
certainties in objectives and preferences are concerned, the discrete probabilistic domain al- 
lows the use of many of the basic concepts of expected utility theory, including risk-attitude 
analysis and value-of-information analysis. Structural uncertainty is handled in the two-layered 
network in the following manner: above, the variables can be linked by deterministic 
equations, and below by a network of conditional probabilities. This structure allows a degree 
of belief to be assigned to a deterministic dependency between variables. The approach was 



also shown to facilitate a number of possibilities to use model elements from different 
modeling traditions. 

The goal of this study was to formulate and test the use of this approach in optirniza- 
tion and parameter estimation. The basic concept - stemming from the idea of using a belief 
network 'below' a deterministic model in to handle uncertainties in different parts of the model 
- is to look at inconsistencies between the model outcomes and external information such as 
management targets (cost levels, environmental indices, etc.) or observations to which the 
model should be fitted. Inconsistencies are shown by diverging prior and posterior prob- 
abilities in certain parts of the model. An iteration scheme was developed to adjust the model 
using two types of variables to attain consistency between various information sources. These 
two variable types are control variables (such as parameters or wastewater treatment levels) 
and network link properties. 

The approach is illustrated by two simple numerical examples, and with a more ex- 
tensive example of a water quality management model of a river basin. The hypothetical river 
example is based on recent river water quality studies for Central and Eastern European 
countries (e.g., Somlyody et al. 1994). The problem is to find cost-effective wastewater 
treatment solutions on a river basin scale. 



2 The Uncertainty Balance Approach 

Assume that we must solve a complex control and/or diagnosis problem with high uncertain- 
ties. The available information comes from diverse sources and is contradictory. We need a 
balanced view of the problem based on all the information sources. 

2.1 Structure, targets, and uncertainty balance 

Assume that we have or construct a model to describe the crucial elements of the problem. 
We want to use the structure provided by the model as a basis for our reasoning. In addition, 
we have information that is external to the model (knowledge, experience, data, goals, etc.). 
All the information is uncertain. We want to put our diverse, uncertain, and contradictory in- 
formation into an analytic framework in which a reasonable compromise and balance between 
different pieces of information can be found. 

In the approach presented in this study, the model is deterministic, relatively simple 
management oriented tool. There are observations, target levels, and/or some other pieces of 
external information that can be used together with the model. Technically, the approach di- 
vides the model into two layers in communication with one another. The deterministic equa- 
tions of the model constitute the outcome layer. The term 'outcome' is used because from that 
layer, one can get numerical values for the model variables (e.g., oxygen levels in a river). The 
other, probabilistic layer, consists of a network of approximate, conditional distributions for 
different outcome values of the model. The network is based on belief network methodology 
(Pearl 1988, Vans 1994). 

The terms 'outcome' and 'associated probability' can be somewhat conhsing. The 
following simple example should clari@ these terms. A baby is to be born. There is prior 
evidence of an equal probability that the baby will be either a boy or a girl. Formally: 

Now, boy and girl are outcomes, and 0.5 and 0.5 are their probabilities, respectively. These 
probabilities are often called evidence, since they typically are based on experience, data, 
logical reasoning, or other information giving evidence of reasoning and which is external to 
the model used. 

2.2 Non-informative network inlplies full balance 

Now we return to the two-layered model framework. The major issue of this study is how to 
use belief networks to assist in parameter estimation and, more generally, when optimizing 
other control variables to hlfill the targets defined. The key proposition is that the prior and 
posterior probability distributions of the target variables (observations, management targets, 
constraints, etc.) should become equal. This implies that the joint distributions of the external 
information (prior) should be equal to the modeled distributions of these variables (posterior) 
and assures that the prior information is properly utilized in the analysis. The above is done by 
finding optimal values for the control variables (including parameters) by iteration. 

The belief network is constructed so that if there is no target information diverging 
from the model prediction, then all the discrete probability distributions in the network are 



uniform distributions. In Bayesian terminology, a non-informative prior probability distribution 
of a quantity is defined as a distribution in which there is an equal probability of occurrence for 
each possible outcome of the variable. Clearly, this is a rather contradictory concept because a 
uniform distribution is as informative as any other probability distribution. In the approach 
proposed, a model with no external information defines a probabilistic layer in which all 
probability distributions are uniform. These uniform distributions now, indeed, define an exact 
probability distribution - namely the distribution of the corresponding variable in the 
outcome layer - and the above-mentioned problem is avoided. 

A discrete approximation of a distribution in the outcome layer is made, and a prob- 
ability distribution with a number of outcomes with equal probabilities of occurrence is ob- 
tained. In the present study, three outcomes are used, but without the loss of generality the 
number need not be three. The concept of three-point approximation of continuous variables is 
well-studied and widely applied (Keefer and Bodily 1983, Miller and Rice 1983), and the 
benefits of using a higher number of outcomes - giving slightly more accuracy to computa- 
tions - should be compared with the increased computational effort needed and the accuracy 
of the external information available. Evidently, the biggest problems due to inaccurate ap- 
proximations are the tails of the distributions. The more extreme events are under considera- 
tion; the more important is the role of these inaccuracies. 

In summation, if the probabilistic layer consists of uniform distributions only, this tells 
us that no information is available other than that provided by the model, or, if there is external 
information, it is in full agreement with the model. 

2.3 New information induces a need to re-establish the balance using control variables 
and network links 

Include now a piece of external, probabilistic information (target: observation, management 
goal, etc.) in the analysis. Its probability distribution is approximated with a discrete distri- 
bution in which the outcome values are the same as in the corresponding model component, 
but in general the probability values become different. As an example, assume that an ex- 
periment at a hospital has shown a probability of 0.8 that the baby will be a boy. Now, the 
outcomes have remained the same (boy, girl), but their probabilities have changed. 

The probabilistic layer is used to propagate this new information throughout the 
model. Evidently, all distributions deviating from the uniform distribution indicate that the 
model and the external information do not match completely. A controversy exists and it needs 
to be analyzed, and a proper balance should be found. 

This can be done by looking more carefully at certain parts of the model, these parts 
are the variables with which the model can be controlled, i.e., the decision/control variables. 
They can be, for instance, model parameters used to fit the model to data (match targets), or 
wastewater treatment plants along a river which can be upgraded to various purification levels 
to control (improve) water quality in the river (again a target). In the latter, another set of 
targets may be due to the costs involved, and a balance fulfilling these targets should be found. 

According to the proposition made in the previous section, the balance can be found by 
forcing the distributions calculated by the probabilistic layer (posterior distributions) to be 
uniform. This implies that the joint distributions ofthe external information are equal to that of 
the modeled information. This can be achieved by changing the outcome distributions of the 
control variables under consideration, until this goal is attained. The form of the posterior 
distribution gives a clear indication of how these distributions can be found. Another set of 
components that can be controlled to achieve the balance are the parameters describing how 



strongly two variables in the model are interlinked. If, for instance, a link strength corre- 
sponding to a deterministic model equation = 1, then we assume that this equation is 100% 
adequate in describing the phenomenon it should describe. If the link strength = 0, then we 
assume that the equation tells nothing on the phenomenon. Moreover, these link strengths 
clearly influence the model uncertainty calculated at the outcome layer. The lower the link 
strength is, the fhrther the error bounds are from the expected behavior of the system. The 
reason for this is that link strengths enable us to take into account the structural uncertainty of 
the model. 

2.4 Iteration for balance 

We want to achieve a situation in which the joint probability distributions of all probabilistic, 
external information propagated into control variables equal the prior distributions of these 
variables. The search is done by iteration, and the probabilistic layer is used as a numerical 
solution to that problem. Figure 1 shows the outline of the uncertainty balance iteration. An 
intrinsic component of the analysis is the analyst herhimself, because much of the benefit of 
such analyses in non-trivial problems comes from the learning from and interaction with the 
information available. Therefore, the approach has been designed to be as interactive as pos- 
sible and to be operated on-line. 

Decision / Control Variables Model (other components) 

Control and adjust the model Propagate information 
to meet the targets 

Outcome layer 
(e.g., state 1. Give a new outcome value 2. Outcome layer is updated 
equations) 
- - - - - - - - - - - - - - -  

( (non-informative prior distribution) I I 

Figure 1. Outline of the uncertainty balance iteration. 

Probability layer 
(belief network) 

4. Posterior distribution is updated 
(iterate until it is non-informative) '1 3. Probabilsitic layer is updated 



3. Computational Solution 

The procedure outlined above is described in detail below as four subsequent steps. A list of 
repeatedly used mathematical symbols is given in Appendix 1. 

3.1 Propagation in outcome layer (deterministic equations) 

If the state equations are nonlinear, as is very often the case in practice, the analytical propa- 
gation of uncertainty is usually too laborious. There is a myriad of approximate approaches to 
propagation of uncertainty in deterministic equations (see, for instance, Korn and Korn 1968, 
Morgan and Henrion 1990). One of the most widely used approaches is the Taylor series 
expansion. The more accuracy required for the approximation, the more terms can be included 
in the analysis. We consider here the first-order approximation, which, in many cases (such as 
those shown in the examples later) is sufficiently accurate. For equations expressing the 
deviations in output y from its nominal value, caused by deviations of XI, ... x, from their 
nominal values, the first-order approximation for the variance ofy  is 

There are two specific cases in which rather practical equations for expected value and uncer- 
tainty o f y  can be derived: the weighted sums of components and products of powers of the 
components. In the case of weighted sums 

the mean and the variance can be obtained by 

Accordingly, for product and power equations 

the mean and the variance are 



The variance equation can be processed in a more convenient form by using the coefficient of 
variation 

hence, 

OAen, the state equations of models, especially when they are analytical solutions of differ- 
ential equations, contain an exponential hnction, whose uncertainty can be propagated in the 
following approximate manner. The uncertainty of the exponent can be obtained by Equation 
(5). Denote this augmented exponential hnction as 

Using now the general, first-order approximation equation (7), we obtain 

Since e'x? is close to 1, but always below it if the sign of the exponent is negative, we are safe 
in approximating the variance as 

var[xi] = var[x,*] ( 1 1 )  

Above, it was assumed that the model is structurally correct. In the present approach this does 
not need to be the case. As will be shown later, an uncertainty estimate can be given of the 
model structure, expressed as link strength 7, a parameter defining a link matrix in the 
probabilistic layer. Details are given in step 3.3 .  The link strength can be augmented to the 
outcome layer in the following approximate manner: 

CV[Y I cv' [y] = - 
J;; 

where cv'b] is the coefficient of variation of the model prediction when the model structural 
uncertainty is included. In cvkv] it is excluded. 

3.2 Information from outcome layer to probabilistic layer 

As was discussed in Section 2.2, the terminology of Bayesian statistics refers to a uniform 
distribution used as the prior distribution as a non-informative prior. It is well known that this 



distribution describes an exact probability distribution. The use of non-informative priors has 
been widely criticized, and ways of avoiding the need to use an exactly defined probability 
distribution as the prior have been developed. One such is the Dempster-Shafer approach 
(Caselton & Luo 1992). 

In this study, uniform prior probability distributions are used. Yet, they are not defined 
as non-informative, but instead represent an exact distribution as described below, thus 
avoiding the problem mentioned above. The model prediction yi at point i is a normally dis- 
tributed variable (Figure 2), whose probability distribution is approximated by a discrete one 
with n equally likely intervals. Hence, in a network with no measured information, all distri- 
butions are uniformly distributed. This does not mean that there is no information, as the 
Bayesian concept of non-informative priors would suggest, but instead, implies, that the net 
contains no information that would contradict the information propagated by the outcome 
layer of the model. If any external information (measured information, target level, etc.) dif- 
fering from the model prediction is included, then non-uniform distributions are indications of 
it in the net. 

A fbrther, practical rationale for using uniform distributions in the probabilistic layer in 
the sense mentioned above is that a vector product of two discrete uniform distributions is a 
uniform distribution. This feature is important when propagating information in the probabil- 
istic layer, as will be shown later. 

Since the outcome layer uses continuous distributions and the probabilistic layer is in 
discrete form, discrete approximations of the continuous random variables are needed when 
taking them as priors to the probabilistic layer. The following approximation is used. 

First, define yl  and y2 such that 

These values can be obtained by, e.g., using standard normal deviates (for instance, z-tables 
from statistics): 

In other words, the model prediction is approximated with a discrete distribution with three 
equally likely intervals. These values can then be used to find the discrete approximation e for 
e*. This will now be made using the intervals obtained above. 

These values are used as the evidence vector in the probabilistic layer 



Outcome layer 

from data 

0.4 

0.2 

0 

3 Equally likely intervals Probabilistic layer 

I I 

from model 

Figure 2. Discrete approximation of an observation. 

3.3 Propagation in probabilistic layer (belief network) 

In the propagation of information in the probabilistic layer, the belief network approach by 
Varis (1994) is used. It is based on the approach by Pearl (1988) with a set of modest exten- 
sions. Varis (1994) provides some examples and more details of the approach itself and its 
potential applicability in environmental and resource management modeling. Here, an outline is 
given. 

The probabilistic layer (belief network) consists of nodes connected with links. Those 
properties of nodes, links, and networks that are relevant to this study are described. 

Nodes. Each node i in a network contains 
A vector of possible (discrete) outcomes yi that can be defined as inputs, or they may 
depend on the outcome values of other nodes. 
An evidence vector ei, with probabilities e l ,  ..., ek assigned to k outcomes. In the present 
study, the number of outcomes is three. The evidence vector transmits external in- 
formation (data, targets, etc.) to the model. 
A posterior probability distribution Beli. 

The prior probabilities assigned to the outcomes are updated with information linked from 
other parts of the network, yielding the posterior probability distribution. 

Links. A probabilistic link (uncertainty link) transfers information from one node to another. It 
is defined as the link matrix Mili between two variables i and j, denoting the conditional 
probability of i given j. In the simplest case of a unidirectional chain, the link matrix equals a 
Markov chain state transition matrix. 

Since the probabilistic layer parallel to the deterministic equations describes their 
structural uncertainty, the distribution of i should have all the other properties of the distri- 
bution of j except variance, which is changed intentionally. These other properties are the 
moments of the distribution: expected value, skewness, and kurtosis. The variance should be 
increased correspondingly to the amount of structural uncertainty. It is often practical, for 
instance in the present study, to give the strength of each link using a single parameter instead 
of inserting values for each link matrix component separately. The following approach, as 
shown in Appendix 3, fklfills the moment requirements stated above. 



The link strength parameter is denoted as qjJi, i f j. qjJi E 1-1, I]. A symmetric, k x k 
link matrix Mjli is constructed as a function of Tjl i  q is now used as an input. For 77 2 0, the 
diagonal elements of M are obtained by 

and the off-diagonal elements by 

For 77 < 0, 

For instance, the link-strength parameter value 1 implies an identity matrix, 0 implies a non- 
informative link matrix, and 0.7 implies the following matrix, which is a 3 x 3 matrix for 
demonstration purposes: 

Network Propagation. The algorithm for propagating uncertain information in the probabilistic 
layer (Varis 1994) is based on Pearl's (1988) polytree algorithm. Two independent messages 
(likelihoods) are computed, and the updated belief is obtained as the convolution product of 
these messages and the prior belief. The nodes are linked with link matrices that can be 
direction-specific. The polytree approach does not update messages in cases where the propa- 
gation direction is changed. 

As was mentioned above, two information propagation directions can be distinguished 
in the network: top-down and bottom-up. The calculation is performed symmetrically, but di- 
rections up and down are used for verbal convenience. 

When propagating messages downwards in a network, all messages coming to a node, 
say j, from an another node, say i, are denoted by pjli and messages leaving node i are denoted 
by xi. For any node j, preconditioned by any node i (i < J):  

The likelihood vectors Pjli and X i  consist of the following elements: 



For elements r, the xi' message is the scaled vector product (joint distribution) of the message 
nirll..i-l and the evidence ei'. 

XI = xI ; I  ... ; = aelxj;,...;-, ( 20 ) 

where a is a scaling constant, scaling the sum of the k vector elements of xi to unity. The in- 
coming message xill..i-l is the joint distribution of all the messages, Pill to p;li-1, from the 
node's i - 1 predecessors: 

Starting from the first node, the pilo = 1 and 7cl = el, p210,1 = M211x1, and so on. 
Bottom-up propagation is quite similar to top-down propagation. Only the direction is 

reverse. All messages coming to node i from node j are denoted by lib and messages leaving 
the node j are denoted by 1,. For any node i, preconditioned by any node j, with i < j. 

The $ message is the joint distribution of the message $b+l..n and the evidence e,. 

where p is a scaling constant. The incoming message hjb+l..n is a convolution of all the mes- 
sages, Vli+l to $In, from the node's n - j successors: 

For each node j ,  the posterior belief distributions Bel) can now be calculated on the 
basis of the prior distribution e,, updating it with the information from the sub-network above 
and below the node, i.e., vectors 'lcj1l.j-1 and hjb+l..n, respectively: 

where y is a scaling constant. The same equation can be written as a vector product of the two 
likelihood messages and the evidence vector: 



3.4 Information from probabilistic layer to outconle layer 

In the approach proposed, there are two different paths of information from the probabilistic 
layer to the outcome layer: 

The link strength parameter q is involved in the propagation of uncertainty (cf Equa- 
tion 12). 
The deviations between model prior distributions and posteriors Beli give important 
diagnostic information about the model. In parameter estimation or other adjustment of 
the model to fblfill given targets, the posteriors are iterated to make them uniform dis- 
tributions. 

A suggested quadraticllinear iteration scheme (Equation 26) providing rapid convergence is 
based on comparison of the probabilities of the different outcome values of a control variable. 
They are iterated to be equal to one another. 

where a and 6 are convergence parameters, Belry is the posterior probability of outcome r, k is 
the number of outcomes, pi is the mean of the prior distribution of node i (a control variable), 
qi is the estimated link strength, and * refers to an updated iteration value. This iteration 
scheme was found to be essentially more rapid and practical than parametric approaches such 
as t-test based iteration. 



4. An Example of Two-Directional Propagation 

The purpose of this simple example is to demonstrate the two-directional uncertainty scheme 
used in belief networks. The model used contains only the probabilistic layer; the outcome 
layer and the use of decision variables have been left to other examples to ensure simplicity of 
this example. 

The example comes from fisheries management. A rapidly increasing number of the 
world's commercially utilized fish stocks are under risk of being overexploited, due to growth 
in markets and improvement of equipment. Fish stock assessment is one of the major tasks in 
fisheries management, and is needed for reasonable fisheries restriction policies to safeguard 
the threatened stocks. Data collection from nature is most often out of the question due to 
high costs, and indirect data are typically used. This type of data tends to be corrupted by 
many types of biases. Decisions on allowable catches are needed regularly, often on an annual 
basis. 

The simplest possible model for the system is one in which there are two mutually 
dependent variables: fish stock and fish catch per fishing unit (e.g., one fishing night; Figure 
3). This dependency is usually used in assessment of both variables. There are several ways of 
obtaining independent information on the variables. In the present example, fish stock as- 
sessment is based on catch estimates and the number of returned taggings, and the catch as- 
sessment on stock estimates and taxation records of professional fishermen or enterprises. The 
outcomes of both variables are a 30% decrease from the previous year, unchanged level, and a 
30% increase from previous year. 

A methodologically interesting question arises from the fact that, in the scale under 
consideration, fish stock can be understood as the cause and fish catch as the effect. Assess- 
ment from cause to effect and vice versa is clearly a strength in any environmental and re- 
source management task. In a longer time frame, over several years, there is also a feedback 
from fish catch to fish stock. 

Fish Stock Fish Catch 
A A 

Link 
w 0 Node 

Figure 3. Structure of the example model. 

The following notation is used: eslock is the information from returned taggings, eca,h is the 
information from taxation records, x is the likelihood message from fish stock to fish catch, h 
is the message from fish catch to fish stock, M is the link matrix which is equal in both di- 
rections, q is the corresponding link strength parameter, and a and p are scaling parameters. 
Now, we obtain the posteriors of the elements r of variables BelmCk and BelCakh by 

The messages x and h are 



Examine now the propagation of information in this model with several subsequent numerical 
cases. First, assume that the link strength is 0.6 and the information from returned taggings 
can be expressed as e,,,,k = [0.1, 0.3, 0.6IT, which tells us that the stock is likely to be 
increased. No other information is available (Figure 4). Using Equations 28 and 27, we obtain: 

0.33.0.19 

~ e ~ c u f c h = ~ ~ c u f c h ~ ~ = 3  0.33 0.31 = 3  0.33.0.31 = 0.31 [::::I [ J [0.33.0.4d [::::I 
FISH STOCK FISH CATCH 

Y e B e  X I  M , B e l l e ,  Y 
Decreased by 30% 0.1 0.1 0.33 0.73 0.13 0.13 0.19 0.19 0.33 Decreased by 30% 

Unchanged 0.3 0.3 0.33 0.13 0.73 0.13 0.31 0.31 0.33 Unchanged 
Increased by30% 0.6 0.6 0.33 0.13 0.13 0.73 0.49 0.49 0.33 Increased by30% 

q 0.6 
Cause Effect 

Figure 4. Propagation of fish stock information to fish catch. 

Second, assume that we have information, instead of stock, on catch only. Now ecatch = [0.8, 
0.15, 0.051T. The propagation of this information proceeds as in the above case (Figure 5). 

FISH STOCK FISH CATCH 

Y , e l B e l  k l  I M , B e l l e ,  Y 
Decreased by 30% 0.33 0.61 0.61 0.73 0.13 0.13 0.33 0.8 0.8 Decreased by30% 

Unchanged 0.33 0.22 0.22 0.13 0.73 0.13 0.33 0.15 0.15 Unchanged 
Increasedby30% 0.33 0.16 0.16 0.13 0.13 0.73 0.33 0.05 0.05 Increasedby30% 

Figure 5. Propagation of fish catch information to fish stock. 



Third, assume that we can use together the information that was available in the above cases 
separately. Figure 6 shows, that this controversial information forces both the belief vectors 
closer to non-informative ones than the values of the respective evidence vectors are. 

FISH STOCK FISH CATCH 

y l e l B e l  

M l l x  3 ,  

B e l l e l  Y 
Decreased by 30% 0.1 0.27 0.61 0.73 0.13 0.13 0.19 0.68 0.8 Decreased by 30% 

Unchanged 0.3 0.3 0.22 0.13 0.73 0.13 0.31 0.21 0.15 Unchanged 

Figure 6. Impact of controversial information on posterior beliefs. 

Increased by 30% 

In the fourth case, the evidence vectors are no longer contradictory, but supporting one an- 
other. This results (Figure 7) a higher belief on increasing stocks and catches than the evidence 
vectors would alone indicate. 

FISH STOCK FISH CATCH 

q 0.6 
0.6 1 0.43 0.16 1 1 0.1 3 0.13 0.73 1 1 0.49 0.11 1 0.05 

Y e Bel 3, M x Bel e Y 
~ e c r e a s e d b ~ 3 0 % 1  0.1 1 0.07 0.25 1 1 0.73 0.13 0.13 1 1 0.19 0.1 1 0.2 I~ecreased by30% 

Increased by 30% 

Figure 7. Impact of mutually supporting information on posterior beliefs. 

In the last two cases, the third case is revisited, but the link strength is changed, first to 0.4 
and then to 0.8 (Figure 8). The former implies weaker association and the latter implies 
stronger association between the two variables, in comparison to the nominal case, in which 
the link strength is 0.6. 

FISH STOCK FISH CATCH 

Y , e l B e l  M 

3 , 1  l x  

B e l l e l  Y 
Decreased by 30% 0.1 0.2 0.52 0.6 0.2 0.2 0.24 0.73 0.8 Decreased by 30% 

Unchanged 0.3 0.3 0.26 0.2 0.6 0.2 0.32 0.18 0.15 Unchanged 

FISH STOCK FISH CATCH 

Increased by 30%1 0.6 1 0.5 0.22 1 1 0.2 0.2 0.6 1 1 0.44 0.08 1 0.05 

Y e B e  , M l l x  B e l l e ,  Y 
Decreased by 30% 0.1 0.37 0.71 0.87 0.07 0.07 0.15 0.62 0.8 Decreased by30% 

Unchanged 0.3 0.29 0.19 0.07 0.87 0.07 0.31 0.24 0.15 Unchanged 
Increased by30% 0.6 0.34 0.11 0.07 0.07 0.87 0.55 0.14 0.05 Increased by 30% 

q 0.8 

Increased by 30% 

Figure 8. Impact of different link strengths on posterior beliefs. 

q 0.4 



The model was as simple as possible to demonstrate the two-directional propagation scheme 
in belief networks (probabilistic layer). In practice, fish stock assessment models are usually 
age-structured population models, which allow forecasting of stocks from one year to several 
years ahead. The basic problem setting, the simultaneous use of both stock and catch infor- 
mation, remains basically the same. An example of using belief networks, particularly the 
uncertainty balance approach, in fish stock assessment is given by Varis et al. (1993) for Baltic 
salmon. 



5. An Example of Parameter Estimation by Uncertainty Balance 

In the previous example, the model consisted only of two nodes in a probabilistic layer. In this 
example, we also include the outcome layer, targets (observations), and decision variables 
(parameters) in the analysis. To define the outcome layer, consider the following linear model 

where yi is the model prediction of an observed variable e*i at point i, and a is a parameter. 
All these variables are normally distributed. The tasks are: 

To estimate the expected value of parameter a.  
To estimate the structural uncertainty of the model (link strengths). 

These estimates are based on the three observations e*l, e*2, e*? Figure 9 presents the struc- 
ture of the model. 

Estimated link 

Other link 

Decision node 

parameter 0 Other node 

Figure 9. Structure of the example model. 

5.1 The model without external inforination 

In the following, the estimation procedure is illustrated with a numerical example, and the 
propagation scheme is calculated step-by-step. In the first step, a model is present with no 
observations. As it now includes the outcome layer and the probabilistic layer, it takes the 
form shown in Figure 10. 

e*, cv, e', cv, e*, cv, 
0.3 1 Observation 0.3 1 0.3 1 

Figure 10. The model with no external information. 



Due to the discrete approximation principle described earlier (Figure 2), all the distributions 
are uniform by definition if no external information is included in the analysis. Due to this defi- 
nition, changes introduced in parameter values or initial states of the model do not introduce 
changes in the probabilistic layer. Changes in link strength values change only values in the 
link matrices, but do not influence any of the probability distributions. 

5.2 One observation is included 

When adding an observation at any node - say, node 1 as an example - the continuous 
distribution of the observation e*l is approximated with a discrete distribution having the same 
outcome values as were used in the discrete approximation of the model output distribution at 
node 1 (Equations 13-1 5). 

The information in el is included in the 7c message, and is now propagated through the 
network (Figure 11). Note that the posterior distributions (Bels) now equal the 7c messages, 
because there is no information coming up to the h system. The non-uniform distributions in 
the probabilistic layer imply that there is also other information available besides the model, 
the posterior of the parameter Be14 is also non-uniform. This feature will be used later in 
parameter estimation. 

e*, cv, ee2 cv,, e*, cv, 
1 2.5 0.3 1 Observation 0.3 1 0.3 1 

Figure 11. Propagation of the observation e*l. First, a discrete approximation (evidence vec- 
tor el) is made, and then it is propagated through the 7c system. 

5.3 More than one observation 

Now, add an observation into node 3 (Figure 12). A discrete approximation is made to the 
distribution of e*3 and the information is propagated through the network. Correspondingly, 
we can add an observation to node 2 (Figure 13). Note that the Bels are no longer equal to 
either the 7c or the h messages, but their scaled vector product. The posterior of parameter 
Be14 is again updated. 



e', cv, e', cv, e', cv, 
( 2.5 0.3 1 Observation 0.3 1 I 1 0.3 1 

a cv, 

Figure 12. Propagation of the observation e*3. First, a discrete approximation (evidence vec- 
tor e3) is made, and then it is propagated through the h system. 

e', cv,,, e', cv,. e., cvau 
1 2.5 0.3 1 Observation 1 2.2 0.3 1 I 1 0.31 

a cv, 

~...t.~,&.&'f i L ! L n b j l  'd2, ~arameferbf,j 
1 2 3 

Figure 13. Propagation of the observation e*2. First, a discrete approximation (evidence vec- 
tor e2) is made, and then it is propagated through the n: system to the direction of node 1, and 

through the h system to the direction of node 3. 

5.4 Parameter estimation 

This step estimates (I) a value to the parameter and (2) the link strengths between nodes 1 and 
2, and nodes 2 and 3 (Figure 9). The principle used can also be applied to many other 
optimization tasks, as will be shown in the river water quality example later on. The idea is to 
obtain such values to the parameter and the link strength that Be14 becomes uniform. In Figure 
14, this iteration has been done. Figure 15 gives a set of examples of possible distributions of 
Be14, and of the inference that can be made on the basis of such distributions. Note that when 
either a parameter value, link strength value, or observed value is changed, the probability 
values in the evidence vectors are also changed, because the model outcome distributions 



change. Evidently, the initial value of the model can also be defined as a control variable 
(parameter). Its value would then be iterated in a way similar to any other parameter 
(Equation 26). 

e', cv,, e- ,  cv- 
1 2.5 0.3 1 Observation 1 2.2 0.3 1 I 1 0.3 1 

Figure 14. The model after iteration of Be14 to be a uniform distribution. 

Figure 15. Some example posterior distributions of the parameter (Be14) and the inference 
based on these types of distributions. 
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5.5 Simplrbing the configuration of the probabilistic layer 

Clearly, the configuration of a belief network relates to the use of the model. In general, a 
network offers a very flexible way of defining nodes to decision variables, but the same nodes 
do not need to be decision variables throughout the analysis. An illustration of this feature is 
given in the river water quality example below. First, parameters and link strengths are 

E(paran1eter) 

too low 

too high 

too low 

OK 

OK 

OK 

Link strength 

too high 

too high 

too high 

too low 

too high 

OK 



estimated, i.e., they are the decision variables. Thereafter, wastewater treatment levels at 
various treatment plants were used as decision variables. 

The above example can be simplified considerably, if we have no any other purpose for 
the modeling task but model calibration. The same parameter and link strength values as 
above, with high accuracy, can be obtained directly as the joint distribution of evidence vectors 
el, e2 and e3 (Figure 16). This configuration of the net is much less computation intensive and 
is thus remarkably faster in updating, yet it offers remarkably fewer options and possibilities 
for fbrther studies with the model. 

e-, cv,, e., CV- 

Observation 1 2.2 0.3 1 I 1 0.31 1 2.5 0.3 ( 
I I 

e, ?I, Bel, pl, e, e, e, 
10.3310.33 0.34 0.34 0.55 0.14 0.32) 

Figure 16. A simplified configuration of the probabilistic layer. Be14 is calculated as a vector 
product of evidence vectors el to e3. 



6. An Example of River Water Quality Management 

The previous examples illustrated the different propagation features, the two-layers concept, 
and the uncertainty balance iteration principle. The third example is more comprehensive, and 
it has been constructed to correspond to a real-life resource management problem. 

6.1 The management problem and the watershed 

The example deals with cost-effective upgrading of wastewater treatment plants in a water- 
shed on the basis of ambient water quality criteria. It is intended to represent a typical river 
basin management problem, particularly in conditions of Central and Eastern Europe. The 
formerly socialist countries of the region are in the midst of a very rapid and profound tran- 
sition process, affecting almost all conceivable sectors of the society. Clearly, this also includes 
water quality management (Somlyody et al. 1994). Previously, the integration of ambient and 
effluent monitoring has been low. At present, the industry is undergoing considerable change, 
and past water quality data are of limited validity, yet there is a pressing need for improving 
water pollution control. The scarcity of capital suggests the policy of gradual upgrading of 
wastewater treatment on a cost-effective basis (Somlyody 1993). 

A hypothetical watershed is used with ten municipal wastewater treatment plants 
which should be upgraded to improve the river water quality. Each plant discharges the ef- 
fluent into a different tributary. The impact of different ambient water quality criteria and di- 
verse investment levels should be studied under the precepts of cost-effective prioritization of 
upgrading levels at different plants. The hypothetical data are presented in Appendix 2. A 
variety of treatment alternatives is available (Tables A3-A5), ranging from no treatment (0) 
and biological treatment (1) to more advanced solutions (cf. Somlyody et al. 1994). Initially, 
all the plants are at level 1. 

6.2 A probabilistic river nzodel 

Based on the results of the comprehensive water quality management study of the Nitra River 
Basin, Slovakia (Masliev and Somlybdy 1994, Somly6dy et al. 1994), an extended Streeter- 
Phelps model with three state variables was chosen for this study. The state variables are dis- 
solved oxygen (DO), and carbonaceous and nitrogenous biological oxygen demand (BOD and 
NH4, respectively). Three parameters are estimated, including BOD oxygenation rate, 
reaeration coefficient, and NH4 oxygenation rate, which are not stretch-specific. The state 
equations of the model constitute the outcome layer of the system. When calculating the total 
costs of upgrading the treatment plants, an interest rate of 6% and an economic life of 20 
years for the project were assumed. A standard capital recovery rate factor was used when 
transforming investment costs to annual costs. 

The probabilistic layer is based on a series of parallel, coupled probability trees based 
on the river topology (Figure 17), which describe the steady-state evolution of the state vari- 
ables. State variables and parameters are represented as belief network nodes. Evidential in- 
formation for states is obtained from data (Appendix 2). 

The analysis is divided into two subsequent phases, at both of which the uncertainty 
balance iteration approach is used. The same model including the two layers is used, but the 
targets, decision variables, and estimated link strengths are different (Table 1, Figures 18 and 
19). First, the parameter estimation is performed, in which the mean values at the outcome 



layer are iterated to equal the posteriors. The link strengths of the links shown in Figure 18 are 
estimated; their values show the structural uncertainties of the state equations. 

The second phase consists of finding the most cost-effective solutions for river water 
quality management, taking into account the water quality targets for the river and the costs 
involved. Now, different treatment levels are used as decision variables (instead of parameters 
at the previous phase), link strengths are not estimated, and water quality targets together with 
the target cost level are used as targets (vs. observations at the previous phase). 

BOD 

DO 

NH4 

Total costs 

Figure 17. Configuration of the probabilistic layer. 

The definition of variables can be changed in the course of the analysis due to the two-direc- 
tional uncertainty propagation in the probabilistic layer. At the diagnostic phase, both down- 
stream and upstream (n and h, respectively) messages are used (in the same manner as in the 
second example; Figures 10-12). In the management support phase, only the h message going 
upstream is used. A clear logical explanation exists on the use of these propagation principles. 
In the diagnosis, all the data and model predictions are iterated to meet a balance, hence both 
propagation directions are used. In the management support phase, the targets influence only 
the treatment plants downstream of the point at which a target is set. When detecting a 
deviation between target and model prediction, the message induced is propagated upstream 
all the way to the posterior distributions of the treatment plant purification levels. This pro- 
vides a basis for iteration similar to that in parameter estimation. 

Table 1. Definition of decision (control) variables and targets in the diagnostic and in the 
management support parts of the study. 

Diagnosis Management model 
Decision variables Parameters Dischargers 
Targets Observed water quality Water quality targets 

Target Costs 
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Figure 18. Probabilistic layer in diagnostic phase. The targets are now the observations, and 
the control variables are the model parameters. 

............................ Non-informative link 
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Decision node 

Other node 

Cost-effective purification level 

Figure 19. Probabilistic layer in management support phase. The targets are now the ambient 
water quality criteria and the total costs, and the control variables are the purification levels. 

6.3 Model vs. data: illustration of the approach 

The hypothetical data in Appendix 2 define our nominal case. For illustrative reasons, it was 
constructed so as not to excessively contain any features discussed below. The model cali- 
bration for the hypothetical data is shown in Figure 20. 



40 
BOD *. . 

E(ki) Links 
BOD 0.209 0.826 
DO 0.414 0.869 
NH4 0.258 0.807 

Figure 20. The nominal case. 

We take an example of the propagation of evidential information (observations) in one of the 
model equations, say BOD (Figure 21). We are interested in knowing how well the model is 
modeling our system and we want the model/system correspondence to be as good as possi- 
ble. The system reference consists, in this case, of observations. In case A, there are no ob- 
servations, and the probabilistic layer consists of uniform distributions, and we have no infor- 
mation on the success in our modeling task. In case B, there is one observation available, and 
its probability distribution is discretized according to the procedure described in subsection 3.2 
(cf. Figure 2., Equations 13-15). This vector is used as an evidence vector, and this infor- 
mation is propagated throughout the net as Figure 21 shows. Case C includes one more ob- 
servation, which is again discretized and fed into the net. Case D includes a series of obser- 
vations. In cases B, C, and D, the parameter estimation is based on the iteration of the joint 
distribution (scaled vector product) of the Bels to a uniform distribution. The more differences 
there are in the column heights on the right-hand figures, the more misfit there is between 
model and data. Clearly, the better the model fit, the lower is its structural uncertainty. 

We next demonstrate the influence of prior uncertainties and model fit on posterior un- 
certainties (Table 2, Figure 22). The data may have a low uncertainty, but the model fit is 
poor. In such a case (case A), the link strengths become low, structural uncertainty of the 
model becomes high, and the model prediction highly uncertain. If the data have high uncer- 
tainty and the fit is poor, the link strengths may still be high, but model prediction remains 
uncertain (case B). If the data have low uncertainty and the model fit is good, then the link 
strengths are high and model prediction has low uncertainty (case C). If the data have high 
uncertainty and the model fit is good, then the link strengths are high and model prediction has 
high uncertainty (case D) 



Outcome layer Probabilistic layer 
-- 

I 

Figure 21. Propagation of observed information in the probabilistic layer. Each observation is 
discretized to be an evidence vector which is then fed into the probabilistic layer. The columns 
on the right show the posterior distributions (Bels) of the model prediction at different points. 



Table 2. Different typical combinations of prior information and their influence on posterior 
information (cf. Figure 22). 

Case Priors Posteriors 
E(data) vs. Uncertainty(data) link strengths Uncertainty 
E(mode1 prediction) (model prediction) 

A low accordance low low high 
B low accordance high high high 
C high accordance low high low 
D high accordance high high high 

A: cv(B0D) = 0.28, Links = 0.36 

B: cv(B0D) = 0.42, Links = 0.68 

I I 

C: cv(B0D) = 0.28, Links = 0.8 1 

D: cv(B0D) = 0.42, Links = 0.86 

Figure 22. Example with the BOD equation: The influence of uncertainties and controversies 
in prior information on uncertainties in the posterior information (cf. Table 2). 



The issue becomes more complex when more than one state equation is included in the model, 
as is the case with our river model. Here, the state equations are inter-linked so that the 
parameters for the BOD and NH4 equations must be estimated first, and thereafter the DO 
equation is in turn. Success in the BOD prediction is strongly dependent on success in 
predicting the BOD and NH4 concentrations along the river. However, it may often happen 
that the uncertainties within the BOD and NH4 data are much higher than those within the DO 
data, due purely to analytical accuracy and variability of different substances in nature. Under 
such conditions, the uncertainties of the BOD and NH4 predictions become high and are 
propagated throughout the state equations (outcome layer) to the DO prediction, which also 
becomes highly uncertain (Figure 23). This occurs despite good empirical evidence. In such a 
case, our model structure might no longer be as efficient and another model configuration 
could be considered, for instance, an empirical model based more strongly on high-quality 
empirical evidence. 

Often, for different reasons, a prefixed set of parameter values is used in the analysis. 
These values might be used in standard fashion or -vhen the use of literature values would be 
considered more adequate than that of empirical 1;;rameters. In such a case, the link strength 
becomes lower than it would be if empirical parameter values were used, unless they were 
equal. Accordingly, we pay a price for using standard parameter values under conditions of 
higher uncertainty in prediction. 

At the management analysis phase, there can also be analogous cases as above. The 
largest difference in our example is, however, that link strengths are not estimated at this 
phase. An interesting phenomenon occurs if the target economic level is set too high compared 
with the ambient water quality targets. The approach does not find a single solution, because 
there is looseness in the targets. Either the economic targets should be set lower or the 
ambient targets should be higher, or bo.th should be done to find a single solution. 

Figure 23. The DO prediction remains highly uncertain even though DO observations are very 
accurate, but if BOD andor NH4 predictions have high uncertainty. 



6.4 River water quality managenlent scenarios 

The model is now used to produce scenarios with diverse targets for ambient water quality 
and varying economic targets. Support for prioritization of the upgrading of wastewater 
treatment plants is required. 

There are many ways of setting ambient water quality targets. The widely applied 
principle of equity is usually understood as an equal purification level for all plants, for in- 
stance, as equal effluent quality criteria, disregarding ambient standards. Equity can also be 
understood as a requirement for improving the water quality equally in all parts of the river, 
although this is not a common interpretation. An often used and perhaps the most typical 
concept is to set a minimum target level for DO. One can also set site-specific targets, for in- 
stance, at a location important as recreational site or water intake area. With a probabilistic 
model, levels which are not the expected value scenarios can also be considered. It may 
sometimes be more important to strive to keep DO concentrations above a certain level in 
90% vs. 50% of the critical cases. In summation, Figures 24-28 show examples of five sets of 
scenarios: 

Equal purification level (equity: dischargers). 
Equal improvement (equity: river). 
Minimum concentration level. 
Target(s) at specific point(s) (city, outflow, water intake, recreational area, protected 
site, etc.). 
Target probability levels (frequencies of occurrence). 

In these scenarios, five different target levels of costs were used (Table 3). 

Table 3. Target levels for total costs due to upgrading of the wastewater treatment plants. 

Cost range E&I cost equivalent treatment level 
5 initial, all 1 

6.5-6.7 all 2 
8.5-8.7 intermediate between 2 and 3 
9.3-9.8 all 3 

15.6 all at maximum level 

The most important feature seen in these scenarios is that normative, equal treatment level at 
all plants is the most costly way of improving ambient water quality among the studied op- 
tions, which clearly justifies the problem setting. Another issue is whether the prioritization is 
workable institutionally and juridically in the countries of the region. 

Despite the rather divergent results of the different scenarios, there appear to be cer- 
tain plants that tend to gain high priority and also those that systematically have low priority. 
The former feature is shared by Plants 6, 3, and 7, and to a certain extent also by Plant 1. The 
study would suggest prioritization of these plants compared with the others. A rather interest- 
ing observation is that despite a rich variety of different ambient water quality criteria and a 
wide range of target cost levels, the results show that there is no cost-effective basis for up- 
grading Plants 4, 9, and 10 in any case. Despite the fact that setting ambient water quality 
targets is often rather ambiguous, a promising result as far as water treatment prioritization is 
concerned, is that the results show certain common features regardless of targets used. 



Scenario Actual costs 
Present state 4.9 

Scenario 1- Actual costs 
Upgrade all to 2 1 6.6 

1 2 3 4 5 6 7 8 9 1 0  

Ambient targets ( min [P(target met)] 
Improve 1 mgll 1 0.07 

- -  

Ambient targets I min [P(target met)] 
Improve 1 mdl  0.29 

1 2 3 4 5 6 7 8 9 1 0 4  
3  

1  .o 2 
0.5 1 
0.0 0  

Figure 24. Example scenarios on equal treatment level at all plants, and scenario for maximal 
treatment level at all plants. 

scenario 

1 2 3 4 5 6 7 8 9 1 0  

Ambient targets 1 min [P(target met)] 
Improve 1 mgll 1 0.31 

1 2 3 4 5 6 7 8 9 1 0  

- -  - 
Actual costs I ~mbient targets 1 min [P(target met)] 

Scenario Actual costs 

Upqrade all to MAX I 15.6 

Upgrade all to 3 1 9.3 

Improve 1 mgll 0.32 



11.0 , Pttaraet met) 

Figure 25. Example scenarios on equal improvement level at all parts of the river. 

Scenario 

Scenario 

Scenario Actual costs I Ambient targets I min [P(target met)] 1 
Minimum level 1 I 8.7 min 3 mgA 0.41 

I I I 

Actual costs Ambient targets I min [P(target met)] 

Actual costs I Ambient targets I min [P(target met)] 

Equity in river 1 I 6.5 Improve 1 mg/l 

Figure 26. Example scenarios on minimum concentration level over the whole river. 

0.29 

Scenario I Actual costs 
Minimum level 2 1 9.8 

0.32 Equity in river 2 1 8.6 Improve 1 mgll 

Ambient targets I min [P(target met)] 
min 4 mgll 0.17 



Scenario Actual costs ( Ambient targets ( min (P(target met)] 
Site specific 4 8.6 1 min 7 mgA at point 10 ( 0.48 

Ambient targets 1 min [P(target met)] 
min 4 mg/l at point 7 1 0.03 

Scenario 1 Actual costs 

lo 
5  

0  
1 2 3 4 5 6 7 8 9 1 0 4  

3  
1 .o 2 

0.5 1 
0.0 0  

Figure 27. Example scenarios on site specific ambient water quality targets. 

Site specific 1 

1 2 3 4 5 6 7 8 9 1 0  

Scenario 1 Actual costs 
Site specific 2 8.6 

6.5 

1 2 3 4 5 6 7 8 9 1 0  

Ambient targets 1 min [P(target met)] 
min 4 mg/l at point 7 1 0.13 
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Figure 28. Example scenarios on the use of different risk levels in ambient water quality 
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targets. 
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7. Discussion and Conclusions 

An approach to using belief networks for probabilistic modeling in resource and environmental 
management is presented. The approach enables updating of uncertainties in different model 
components interactively. It is therefore remarkably rapid, particularly when compared with 
conventional approaches requiring off-line simulation runs. Such approaches as Monte Carlo 
or Latin Hypercube simulations, although practicable in many cases, are time-consuming, non 
interactive, and have been criticized as being rather inaccurate (e.g., Morgan & Henrion 
1990). The major disadvantage of the proposed approach is the relatively labor-intensive 
computer implementation when compared with conventional simulation approaches, at least at 
the pilot-study phase documented here. 

The proposed approach can be used to detect inconsistencies among different pieces of 
information in different model components. Possible inconsistency appears as a difference 
between Bayesian prior and posterior distributions, in a given model component. This feature 
was used to develop an optimization approach in which prior and posterior distributions of 
objective functions are iterated to become equal. This can be done by changing the values of 
control variables and adjusting linking properties in the belief network. 

The uncertainty balance approach can handle more than one objective function simul- 
taneously. For instance, in the river basin example, the management optimization included two 
objectives: target costs and target ambient water quality. The approach finds a compromise 
(trade-off) between these targets, and can thus be used as a multiobjective optimization 
approach. 

Within environmental and resource management sectors, common practical manage- 
ment models are relatively simple constructs that often can be analytically solved. Apparently, 
the use of relatively simple and well-known or easily comprehendable, conceptual models is a 
great advantage in practical assessment and management modeling. Transparency and quality 
assurance are often critical points when striving for the proper, critical attitude and utilization 
of modeling results. The proposed approach allows consideration of such models as uncertain 
constructs. The structural uncertainty can be estimated empirically, and the models can be 
linked and fused with other pieces of probabilistic information. 

In the management of natural resources and the environment, the uncertainties are 
often very high or extreme. In the case of probabilistic models, this means that the main con- 
cern of the modeling work should be in the tails of probability distributions. Yet, when using 
parametric distributions, the tails are very sensitive to distribution assumptions and to distri- 
bution parameters. In the case of discrete distributions without assumption of the form of the 
distribution, the assessment of tails is still more difficult. These problems are common to all 
probabilistic approaches, and there have been innumerable attempts to overcome these prob- 
lems by fuzzy set theory, rule-based systems, and many other approaches. However, the 
probabilistic approach (i.e., in risk analysis) is apparently becoming increasingly accepted in 
practice by administrative bodies and policy makers, and there is an apparent demand for ef- 
ficient techniques for handling probabilistic information. 

The belief network approach has, in different versions, been adopted in many fields 
(Bobrow 1993). It remains to be seen whether the same will occur in the natural resource and 
environmental sector. There are strong reasons for anticipating that there will be further 
studies using belief networks, which may include the possibility of performing two-directional, 
probabilistic computation on-line with apparently reasonable effort and accuracy, compatibility 
with Bayesian decision analysis and expected utility theory together with compatibility with 
deterministic management models, and of performing calculations from causes to effects and 
vice versa (Shachter & Heckerman 1987). 



If a question were posed whether the proposed approach should replace state-of-the- 
art modeling approaches in cases such as the river water quality management example, our 
answer would be not immediately. In the study by Somlyody et al. (1994), the used ap- 
proaches include, for parameter estimation, Bayesian estimation and the Hornberger-Spear- 
Young approach (generalized sensitivity analysis). Both are well-tested and widely used ap- 
proaches. For optimization of wastewater treatment plants, dynamic programming was used. 
It would be naive to propose that a novel, modestly investigated approach would immediately 
replace the existing methodology. For practical recommendations, robust, well-known ap- 
proaches have many advantages. However, the importance of developing and testing novel, 
innovative approaches lies in the potential of finding completely new paths to solve problems 
within a discipline. The development of such paths is evidently a process likely to require more 
than just one case study. Even so, the proposed approach definitely has the potential for 
successful practical applications in near future. 
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APPENDIX 1 

List of Symbols 

The symbols used repeatedly in the text have been collected into this table. 

e *i 

ei 
Y i 
1 
h 
P 
K 

Beli 
Mib 
' l i b  
P(a> 
E(a) 
Pa 
Ua 
CVa 
o2a 
var(a) 
cov(a, b) 
BOD 
DO 
NH4 

evidence (normal distribution) to node i 
evidence vector (discrete distribution) to node i (one element: ei) 
outcome vector of node i (one element: yi)  
non-updated h message vector (one element: I )  
updated h message vector (one element: 2) 
non-updated n message (one element: p) 
updated n message (one element: n) 
posterior distribution (belief) 
link matrix from node i to node j 
link strength from node i to node j 
probability of a 
expected value of a 
mean of a 
standard deviation of a 
coefficient of variation of a 
variance of a 
variance of a 
covariance of a and 6 
Biological oxygen demand (a water quality indicator) 
Dissolved oxygen (a water quality indicator) 
Nitrogeneous BOD (a water quality indicator) 



APPENDIX 2 

Table Al.  Hypothetical data on water quantity and water quality on the watershed. 
Ranch . .---. . -- -- 

initial 1 2 3 4 5 6 7 8 9 10 
Length (m) stream 16500 8700 8100 10200 3900 3400 7100 25500 17800 41300 

tributary 10700 8200 1000 10100 1000 1000 6400 40000 20000 18400 
-- 

Velocity ( d d )  stream 25000 26146 28199 37337 35758 23799 35913 29973 6108 7424 25909 - .  . 
tributary 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 

Flow lm3/d) stream 100000 1 2 7 0 0 ~ 5 0 0 0 0  175000 268700 270000 3121 00 345000 391 000 404800 457000 
3 ,  

tributary -- 23000 25000 93700 1300 42100 32900 46000 13800 52200 50000 
BOD (mgl) stream 13 11 13 11 15 11 18 17 8 9 5 . - .  

tributary 7 12 8 10 6 5 4 20 15 5 
DO (man) stream 10 6 7 2.5 4 5 4 1.5 2.5 3 7 . " a  

-- tributary 10 9 6 10 7 9 8 5 7 4 -- 
NH4 (mgl) stream 4 3.7 2.5 8 3.5 4 7 6 5 3 2.2 

tributary 1 0.4 0.5 1 0.1 0.3 2 9 6 2 

Table A2. Hypothetical data on investment costs due to different upgrading level alternatives of treatment plants (US$ 107. 
Treatment Plant --- 
alternative 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 

Table A3. Hypothetical data on operation and maintenance costs due to different upgrading level alternatives (US$107. 
Treatment -- Plant 
alternative 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 

Table A4. Hypothetical data on BOD loads (kgld) with different upgrading level altematives. 
Treatment Plant 
alternative 1 2 3 4 5 6 7 8 9 10 

0 1020 130 4250 2400 2808 3999 7824 1400 460 680 

Table A5. Hypothetical data on NH4 loads (kg/d) with different upgrading level alternatives. 
Treatment Plant 
alternative 2 3 4 5 6 7 8 9 10 

0 204 30 1000 480 390 619.2 1564.8 268.8 60 153 



APPENDIX 3 

Definition A3. For a belisf network link pnlm = Mnlm xm between two variables m and 
n, a link strength parameter qnhc [-I, 11 defines a k x k link matrix Mnh so that the 
first, third, and fourth moments of pnlm and x, are equal. The second moment of pnh 
is obtained as o2(pnIm) = ,q:lmd(nm). 

Theorem A3. The link strength parameter that fulfills the Definition A3 can be used 
to construct a link matrix Mjli in the following way. For 2 0, the diagonal elements 
of M are obtained by 

and the off-diagonal elements by 

For 77 < 0, 

Proof. For simplicity, let us denote pi,, = Mj,xj A p = Mx and q n h  A q. For 2 0: - 

where a = l lk+ (1 - llk)q, and b = (1 - a)l(k- 1) 





Appendix 3 

3' Third moment a 3(p) 

=> c? ( p )  = a 3 ( n )  

The proof is analogical to that in lo 

4' Fourth moment a 4(p) 

=> a4 ( p )  = a4 ( n )  

The proof is analogical to that in l o  

For 77 < 0, 

where a = l lk + (1  - l l k ) ~ ,  and b = (1  - a)/(k - 1 )  

The proofs are analogical to 77 2 0. 


