
Working Paper
A penalty based simplex method

for linear programming

Artar Swigtanowski

WP-95-005
January 1995

rflIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

kmd Telephone: +43 2236 807 II Fax: +43 2236 71313 E-Mail: info@liiasa.ac.at

A penalty based simplex method
for linear programming

WP-95-005
January 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

FflIIASA International Institute for Applied Systems Analysis 14-2361 Laxenburg Austria

bud: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Abstract

We give a general description of a new advanced implementation of the simplex method for
linear programming. The method "decouples" a notion of the simplex basic solution into two
independent entities: a solution and a basis. This generalization makes it possible t o incorporate
new strategies into the algorithm since the iterates no longer need to be the vertices of the
simplex. An advantage of such approach is a possibility of taking steps along directions that are
not simplex edges (in principle they can even cross the interior of the feasible set). It is exploited
in our new approach to finding the initial solution in which global infeasibility is handled through
a dynamically adjusted penalty term.

We present several new techniques that have been incorporated into the method. These
features include:

previously mentioned method for finding an initial solution,

an original approximate steepest edge pricing algorithm,

dynamic adjustment of the penalty term.

The presence of the new crashing and restart procedures based on the penalty term make
the algorithm particularly suitable for sequential "warm start" calls when solving subproblems
in decomposition approaches. The same features may be used in post optimal analysis.

The efficiency of the new features is demonstrated when running the method on a subset of
difficult linear programs from the NETLIB collection of Gay [7].

Key words: simplex method, linear penalty, crashing, steepest edge pricing.

Contents

1 . Introduction 1

2 . The basic algorithm of the revised simplex method 2

3 . Algorithmic enhancements 3
. 3.1 Taking advantage of problem sparsity 3

. 3.2 Problem scaling 4
. 3.3 Initial basis 4

. 3.4 Pivoting strategy 4

4 . Efficient pricing techniques 5
. 4.1 Steepest edge rationale 5

. 4.2 Steepest edge simplex algorithm 6
. 4.3 Approximate steepest edge strategy 8

5 . New features 9
. 5.1 Non-basic variables no longer glued to their bounds 9

. 5.2 Search for an initial feasible solution 9
. 5.2.1 Problem reformulation and initial feasible solution 10

. 5.2.2 The pair of dual problems 11
. 5.2.3 Some properties of the reformulated problem 11

. 5.3 When is "big M" big enough? 13
. 5.3.1 Split pricing 13

. 5.3.2 Dynamic penalty control criteria 14
. 5.3.3 Required modifications to standard pricing 15

. 5.3.4 Algorithm's expected behaviour 15
. 5.4 A heuristic for infeasibility reduction 16

. 5.5 Consequences for the simplex method 17

6 . Restart of the penalty based simplex 17

7 . Numerical results 18
. 7.0.1 Infeasibility reduction heuristic 19

. 7.0.2 Three pricing techniques 19
7.0.3 Dynamic penalty control: efficiency and numerical stability 20

8 . Conclusions 2 6

9 . Acknowledgements 2 6

A penalty based simplex method
for linear programming1

Artsr SwietaaowskP

1. Introduction

We are concerned with solution of a linear optimization problem of the form

T minc x (1.1)

subject to

where A E R m x n , b E Rm, x, c, 1, u E Rn, (some Zj or uj may be inifinite).
There exists a number of comercially available high quality simplex type linear optimizers.

The revised simplex method by Dantzig ([4]) was being developed ever since its introduction in
1963 by numerous pure researchers as well as practicioners. Nevertheless, we felt compelled to
produce yet another implementation of this well-known method. There were numerous reasons,
of which we choose to name here a need for a restarting primal simplex algorithm to be later used
in a decomposition scheme (see [16]) and some new parallel approaches to linear programming
(see [20]).

We shall present a modified version of a primal simplex algorithm which we think, apart
from its general applicability, is perfectly suitable for decomposition schemes requiring efficient
restarts of the algorithm. We call our simplex code "penalty based" because the use of penalty
in objective function instead of a two-phase method is the key to method's ability to start (and
restart) from any point. The new and original techniques incorporated in our code and described
in this paper include:

1. replacing of the notion of the simplex basic solution with two separate entities: a solution
and a basis:

By dropping the requirement that each simplex method iterate has to be a so-called basic
solution (one in which all non-basic variables are kept on their bounds) we have much
more flexibility when choosing the initial solution (which we use to our advantage in the
crashing procedure) and, possibly, when forming all other iterates.

2. a consistent approach to using penalty function:

The penalty is introduced in order to deal with infeasibility of the initial solution (either
the one produced by the crashing procedure, or one provided by the user). Throughout all
iterations of the method it is kept under control and dynamically adjusted when necessary.
A possible infeasibility of the linear problem is detected and proven.

'This research was partially sponsored by the Committe for Scientific Research of Poland grant no.
PB 8 S505 015 05. Parts of it were done during author's stay in the International Institute for Applied Sys-
tems Analysis in Laxenburg, Austria.

21nstitute of Automatic Control & Computation Engineering, Warsaw University of Technology, ul.
Nowowiejska 15/19, 00-665 Warsaw, Poland.

A. ~wi~tanowski - 2 - A Penalty Based Simplex Method

3. a new and stunningly efficient approximation of steepest edge pricing:

We show that what is possibly the simplest steepest edge approximation is also a very
efficient one.

This paper is also intended to document our implementation of the revised simplex method.
Obviously, we will focus our attention on the new ideas tested in our code, but a limited de-
scription of features which were previously known will also be presented. Since the efficiency of
any modern linear optimizer is of paramount importance we outline the main algorithmic tech-
niques that make our implementation of the simplex method one of the most advanced currently
available.

In Section 2. we shortly present the textbook form of the revised simplex method algorithm.
The algorithmic and programming techniques which make the simplex method one of the most
efficient linear programming methods on the market are outlined in Section 3.. Although two
of the three pricing schemes we employ are now "classical", we decided to describe them in a
separate Section 4. in which we derive our own pricing algorithm. Section 5. presents our rather
lax approach to the notions of basic and non-basic variables and solutions as well as explains
the dynamic penalty method rationale and implementation. Our claim that the penalty-based
simplex can easily be restarted is proven in Section 6.. Finally, in Sections 7. and 8. the analysis of
numerical experiments conducted on the subset of Gay's NETLIB test problem collection (see [7])
and our conclusions regarding the practicability and usefulness of the techniques proposed are
given.

2. The basic algorithm of the revised simplex method

Let us assume that initial partition of the constraint matrix A into a non-singular basis matrix
B , B E X m x m and the non-basic part N , N E '8mx(n-m) is known. We then have

A = [B N] ,

Additionally, let us assume that an initial feasible solution

is known as well. We shall now proceed to recall a basic version of the revised simplex
method. (For an in-depth discussion of the simplex method see e.g. Dantzig [4], Nazareth [l l] ,
Murtagh [lo], Forrest and Tomlin [6] and many others.) Note that steps 3 and 5 are formulated
so as to allow the non-basic variables to be between their bounds and not on them. This is
necessary when some of the variables (called free) have two infinite bounds. Later it will be
shown t o have other uses as well.

A l g o r i t h m I: The basic algorithm of the revised simplex method

1. Compute the dual variables:

2. Compute the vector of reduced costs z:

A . ~wi~tanowski - 3 - A Penalty Based Simplex Method

3. Choose the most favourable reduced cost 2, and test optimality:

q = arg , min x; = uj,
t=m+l , ..., n

-1.ZiI 1j < ~j < U;

If ,zq 2 0 then the current solution is optimal.

4. Compute the basic variables' change direction 7:

5. Calculate a feasible steplength 0 and check for unboundedness.

If 0 is smaller than the distance between the current value of the q-th variable and the finite
bound towards which it is moving then the q-th variable is shifted towards appropriate
bound, the basis is not changed and a cheap simplex iteration is performed.

If 0 = +oo then declare the linear problem (1.1)-(1.2) unbounded.

6. Make the step and revise the basis:

Exchange columns p and q of the constraint matrix A and rows p and q of column vectors
x, c, 1, u. After such permutation the first m columns of A will again constitute a non-
singular basic matrix.

Go back to step 1.

3. Algorithmic enhancements

The revised simplex algorithm described above creates a framework for actual implementation
of the method. After years of research and development of this algorithm virtually every step
is performed differently than straightforward mathematical formulas would suggest. Detailed
description of origin, meaning and computational gains of all the advanced techniques incor-
porated in our code is far beyond the scope of this paper. Interested reader is referred to an
excellent (and very much implementation oriented) book of Nazareth [ll] for a comprehensive
analysis of the workings of the simplex method. Our own experience with implementing simplex
was summarized in swigtanowski [17] and [18]. Other references will be given as we mention
particular techniques used.

3.1 Taking advantage of problem sparsity

In order to be able to solve practical problems with thousands (or tens of thousands) of con-
straints and variables, we exploit sparsity of the constraint matrix A by storing only the non-zero
entries of A and an LU factorization of the current simplex basis B. Our factorization is sup-
plemented with Bartels-Golub update procedure [I] with enhancements described in Reid [12].
For an excellent overview of an implementation of both LU factorization and updates see also
Suhl and Suhl [15].

Of considerable significance is the fact that in modern computers memory is plentiful and
inexpensive, especially in comparison with processing power. Therefore instead of carefully
balancing storage requirements and amount of computations we now are more inclined to use
up much more memory to gain (sometimes moderate) savings in computation time. One of the

A Penalty Based Simplex Method

ideas taking advantage of this change in computer hardware is duplicate storage of the constraint
matrix. It is now stored not only by columns (as a file of packed columns), which was suitable for
column oriented algorithms of the past. We also have an independent row-wise representation
of it. This idea is quite new indeed. It has been incorporated in our simplex code in September
1993. The same idea is put forward by Robert Bixby in his introductory article in ORSA Journal
on Computing [3]. It is used during crashing (initial basis construction) and, more importantly,
when updating reduced costs and steepest edge weights (exact or approximate).

The basic idea behind the duplicate constraint matrix representation is that reduced costs,
dual variables (as in Bixby's CPLEX [3]) or steepest edge weights may be updated much more
efficiently when using the row-wise representation. During the early phases of developing our im-
plementation (when the row-wise representation was being introduced) we have seen a reduction
of problem solution time by approximately 20% to 40%.

3.2 Problem scaling

In lack of a commonly agreed upon scaling quality criterion we have decided t o use a rather
"fuzzy" definition. Matrix A is considered poorly scaled if its non-zero entries are of vastly
different magnitudes.

In order to avoid numerical difficulties caused by poor scaling of the constraint matrix we
use a simple two pass scaling scheme followed by column equilibration. By column equilibration
we mean dividing each column of the constraint matrix by the norm of its largest non-zero.
After this operation the largest non-zero in the matrix does not exceed unity. For an overview
of some linear problem scaling techniques and assessment of their impact on the simplex method
see Tomlin [19].

The scaling technique is modified in order to assure that scaling itself does not introduce
any roundoff error. This is achieved by using only integer powers of two as scaling factors.
We compute "ideal" scaling factors and then use their approximation by powers of two (see
~ w i ~ t a n o w s k i [17]). This approach has one additional advantage: reduction of computational
effort needed t o scale the problem (and later retrieve solution for the original LP from the
solution to a scaled one). Instead of multiplying or dividing numbers by scaling factors we only
shift the binary mantissa.

3.3 Initial basis

The crashing method implemented in our program is based on an idea of Bixby [2]. We divide
the variables into so-called preference sets, and then build the basis using as many columns of
the original constraint matrix as possible. Our algorithm is simplified by requirement that a
(permuted) triangular basis always has to be found. When the process is finished without pro-
ducing a complete basis, the missing places are filled with unity columns and their corresponding
artificial variables are added.

3.4 Pivoting strategy

Last but not least, we shortly describe the rules we use for selecting the variable which leaves
the basis. Again, the standard method known from the basic version of the simplex algorithm
is modified. As it was proposed by Harris [9], we first calculate the maximum steplength in
the perturbed problem (one with slightly expanded simple bounds on basic variables). We
then choose the largest (and thus the most stable numerically) pivot which will not exceed
the steplength in original ("exact7') bounds. This technique has been shown to decrease the
likelihood of arriving a t singular bases, which is a phenomenon commonly known to appear
during solution of numerically difficult problems.

A Penalty Based Simplex Method

4. Efficient pricing techniques

Many authors have pointed out that the method for selection of the variable which enters the
basis is of crucial importance for the simplex method's performance. It has long been known
that the "most negative reduced cost" criterion of Dantzig is not always efficient. Our code
allows not only Dantzig's pricing method, but also a steepest edge algorithm of Goldfarb and
Reid [8] as well as our own approximation of it. For a survey of a number of steepest edge
algorithms consult Forrest and Goldfarb [5] .

4.1 Steepest edge rationale

The standard pricing method chooses the variable which guarantees the largest objective change
per unit move along the axis. Steepest edge (SE) approach prefers the variable wich yields
the largest objective decrease per unit move along the actual edge of the simplex. Instead of
comparing reduced costs

T zj = cj - c ~ q j

we compare normalized reduced costs

where I I - I I denotes Euclidean norm.3 Explicit computation of all (or even some) of the norms l)qjll
in each simplex iteration would be prohibitively expensive. We can however derive reccurrences
for updating the sqares of norms of direction vectors.

We now proceed to recall the basic recurrences used by Goldfarb and Reid [8] to update the
steepest edge weights 7 j = 11qj112 + 1. This will allow us to derive and explain the recurrences
used in our new approximate steepest edge algorithm.

Let T represent the expanded simplex tableau

and a - the p-th (pivotal) row of T

Note that vectors t j may be expressed using direction vectors qj of the basic simplex algo-
rithm as

The quantities with a tilde will refer to values after the exchange of basic column p and
non-basic column q. The direction vectors t j are updated according to the following formulas:

andfor j = m + l , ..., n, j f q
t . t . - t % L =
f f Paq

3Note the alternative equation used for computing the reduced cost.
4Please, note that e, always denotes a vector of appropriate dimension. When used in expression Te, it is

e, E En, later in e.g. ~ - ~ e , it is in Em.

A. ~wi~tanowski - 6 - A Penalty Based Simplex Method

The weights
2 - t T t . = r lTrl .+l , j = m+ 1, ..., n 7j=lltjll - 3 3 3 3

are updated as follows:
;Y. 3 = (t j - 6jt,)T(tj - &jtq)

= t T t - 2& .tTt + &?tTt
3 3 + 3 q 3 9 9

= 7j - 2&jtj t, + &27
= Yj-2&. 3 ~ 3 T r/q + aj7q. A q 5

The reduced costs may be updated, which is much cheaper than computation of dual variables
and reduced costs proposed in the basic algorithm of Section 2.. The update is performed
according t o a formula known from the tableau form of the simplex algorithm:

4.2 Steepest edge s i m p l e x a l g o r i t h m

We now present a simplex algorithm in which the reduced costs are updated in each iteration
(instead of being computed afresh) and optionally steepest edge pricing may be performed.

A l g o r i t h m 11: Simplex algorithm with steepest edge weights and reduced cost updates

0. Initialization of the algorithm:

Compute dual variables
T K = B- CB

and a vector of reduced costs z

Reset steepest edge weights 7 . Since it is impractical (too expensive) to compute for
all non-basic variables the exact norms of their corresponding direction vectors, we have
decided t o assume that the linear problem constraint matrix columns are scaled and equi-
librated according t o our default scaling scheme. Thus, every time we reset the steepest
edge weights, we set 7j t o be equal to the number of non-zero entries of the j- th column of
the constraint matrix plus one. This promotes shortest (sparsest) columns and encourages
construction of sparse bases.

1. Choose the most favourable weiihted reduced cost zq and check for optimality:

Identical to the standard simplex algorithm except that when steepest edge is employed
reduced costs z j are weighted (divided by square roots of weights yj).

The in-coming column number q is found or optimality of the current solution is detected.

2. Compute change direction q of the basic variables:

3. Compute zq and 7, afresh:

'For any i # j tTtj = T $ ~ , .

A Penalty Based Simplex Method

4. Confirm that move in direction 77, is profitable:

Since the vector of reduced costs z is updated, it accumulates roundoff errors. Therefore
we need to verify the sign of z,. If the verification fails we go to step 0.

5 . Calculate steplength B and check for unboundedness:

Identical as in the basic algorithm. Stop if problem unbounded. Determine pivot row
number p and store separately the pivot element rl, (which is equal to a,).

6. Make the step:

7. Calculate work vector /3 (needed only for steepest edge pricing):

8. Update the basis representation:

B = B + e,(a, - a,) T

9. Compute the value of the pivot row p of the simplex tableau for the next iteration:

10. Update the reduced costs:

5, = z,/a,
5. - z . - .* - ,, j = m + l , ..., n a n d j f q

11. Update the steepest edge weights:

12. Go back to step 1.

Note that steps 6 and 8 may be performed more efficiently if row-wise representation of the
constraint matrix is available. Vector K may be quite sparse and vector 6 (which is a row of the
basis matrix inverse) is almost certainly very sparse. Our experience indicates that regardless of
the problem's dimension, it usually has only a few non-zeros. If we use the row representation we
may scan only those rows of the constraint matrix A which correspond to non-zeros in vectors 6
and K respectively. The reduction in computation time is impressive (especially when only the
reduced costs are updated and steepest edge pricing is not performed).

Emphasis should be given to the fact that steepest edge pricing is in principle more expensive
than standard (Dantzig7s) pricing, especially if the latter is either performed as partial or multiple
pricing (see e.g. Nazareth [I l l) or when reduced costs7 or dual variables7 updates are done. This
setback is partially compensated by decrease in the avarage number of iterations needed to solve
a linear problem when a superior pricing technique is used.

Let us now examine additional operations needed to compute and update steepest edge
weights. The computation of the steepest edge weights needs the following arithmetic operations:

A . ~wi~tanowski - 8 - A Penalty Based Simplex Method

A division of reduced costs by the weights during pricing.

Computation of /?. To this end one BTRAN and then a single pass through the matrix A
are needed. The latter is fairly expensive since the intermediate result K may be dense.

Weights update according to formula 4.6. It requires neither a pass through the constraint
matrix nor a linear system solution.

From the foregoing it is clear that computation of vector /? (needed to calculate $qq) is the
single most expensive task performed.

4.3 Approximate steepest edge strategy

Recall the formula we use to calculate exact weights:

We can reduce the computational effort, avoid computing vector /? and use approximate weights
4 instead. Observe that vectors tj, j = m + 1,. . . , n are the columns of the expanded tableau T
while vector a is its row (compare with formula (4.1)). We already know one non-zero of each
qj. Thus the product

77% = ajaq + C (7j)dqq)i

may be (very roughly) approximated by

if we assume that the vectors q j are quite sparse and thus most of the products are
zero. At the same time we know a lower bound on exact weight y j

Therefore we may update the approximate weights 4j for j # q

2 2 $j = max ($j, &;a: + 1) - 2Gjaq + 5;yq

and we may still use the exact formula for j = q

Note that we know the exact value of y, and a,.
In the light of the above equations, it is apparent that the update will never produce weight

4j smaller than unity. Indeed, from equation (4.7) it follows that

The method of weight updates proposed above is clearly just a rough approximation of
steepest edge pricing. It has the advantage of eliminating the single most expensive phase of
update of exact weights. The results of numerical experiments (presented in Section 7.) have
shown that in most cases it compares favourably with the Dantzig's pricing method both in
terms of computation time and the number of iterations. It also seems to be more efficient than
the steepest edge strategy.

A Penalty Based Simplex Method

5 . New features

Development of a decomposition type method (see Ruszczy6ski [13], [14] and ~ w i ~ t a n o w s k i [16])
based on the primal simplex algorithm as well as experiments with new parallel approaches to
linear programming (see Wierzbicki [20]) triggered emergence of a few new ideas concering the
revised simplex method itself. A fresh look at the use of penalties in objective function instead
of a two-phase method or composite objective, a notion of semi-basic solution and separation
of solution vector and the basis are the most prominent new features of the implementation
resulting from this research.

5.1 Non-basic variables no longer glued to their bounds

We have already shown in Section 2. that the simplex method can easily be generalized to accept
the non-basic variables that are not fixed on their bounds. This relatively minor change has
several interesting consequences. It is now possible t o start the simplex algorithm with any XN

satisfying box constraints IN I XN I UN. Of other interesting consequences we will now only
mention the impact this may have on degeneracy.

Definition 1. (semi-basic feasible solution) A vector

such that

where

and B is non-singular, is a semi-basic feasible solution of a linear problem (1.1)-(1.2).

Recall that a degenerate iteration occurs when the out-going p-th basic variable is already
on its finite bound before the step is made. The direction of the step 77 pushes the basic variable
to its bound. Thus only a step of zero length may be made and q-th non-basic variable replaces
the p-th in the basis. No progress (measured by objective function value decrease) is achieved.
In standard simplex method the incoming variable is necessarily on it's bound and thus the
degeneracy level (the number of basic variables which are on their bounds) remains unchanged.

Let us now assume that some of the non-basic variables are between their bounds. In
such situation a degenerate step would still be performed, but if the introduced q-th variable
was between its bounds rather than on one of them, then the degeneracy level would decrease
and chances of a non-zero step in the next iteration would increase. Numerical test results
from experiments with the most degenerate problems of the Netlib test collection proved this
reasoning t o be right. In particular, some difficult and highly degenerate problems could only
be solved when using this technique.

Dropping the requirement that the non-basic variables always be on their bounds has many
other simple yet, perhaps even more interesting consequences which will be enumerated in the
following sections.

5.2 Search for an initial feasible solution

The penalty method for finding initial feasible solution (sometimes called "the big M method")
has often been unduly criticized (see e.g. Nazareth [l l]) . The critics pointed out the difficulty

A. ~ w i ~ t a n o w s k i - 1 0 - A Penalty Based Simplex Method

of finding appropriate value of the penalty term M. If M should be too large in comparison
with other non-zero entries of the objective vector c, then numerical difficulties would occur.
Other non-zeros in c would appear as insignificant disturbances when compared to the penalty
term. A problem which has little to do with the original one would be solved. On the other
hand, too small a value of M would allow the algorithm to produce an infeasible solution. In
case of an ill-formulated problem which is actually infeasible it would be difficult to detect this
infeasibility.

Indeed, the attempts a t assessing a priori the value of penalty M by rough estimation of
spectral norms of all possible simplex bases are bound to produce huge, and thus impractical
values of M. We claim that in our approach in which penalty M is dynamically adjusted all
the above mentioned difficulties have been successfully dealt with. We solve a problem with a
well-scaled objective function vector. Throughout almost all iterations the objective does not
have to be changed, which is advantageous whenever reduced costs' or dual variables' update
scheme is employed. We propose a method for precise calculation of penalty M as well as a
criterion for determining problem's actual infeasibility.

What is important, the algorithmic overhead imposed by dynamic control of the penalty
value has proven in the series of tests to be negligible (see Section 7.).

5.2.1 P r o b l e m re fo rmula t ion a n d init ial feasible solut ion

Let us now restate the linear problem (1.1)-(1.2). We are concerned with minimizing

T min c x (5.1)

subject to constraints

-n -
where 1, u E % , % = ?fZ U (-00, +m). Additionally let us define index sets IL and Iu as
IL = {i : li > - m) and Iu = {i : u; < + m) respectively.

In order to be able to use easily any starting point xO, 1 < x0 5 u we reformulate the
problem (5.1)-(5.2) by adding a vector of non-negative artificial variables t:

min cTx + PTt (5.3)

where J E ? f Z m x m is a diagonal matrix such that J,,; E (-1, +I) , i = 1 , . . ., m and vector p ,
p E Sm is a penalty term

in which M > 0.
The problem (5.3)-(5.4) has a feasible solution

where to is a vector representing the xO's infeasibility in terms of constraints (5.2) of the original
problem:

ty = I(b - ~ x O) ~ e ; l

A. ~ w i ~ t a n o w s k i

and

A Penalty Based Simplex Method

5.2.2 The pair of dual problems

Let us state dual problems for both (5.1)-(5.2) and (5.3)-(5.4) as

subject to

and

subject to

max bTy + C wili - C viu;

T A Y + W - v = c
w , v > 0

W ; = 0 for i $ IL
v; = Ofor i $ Iu.

max bTy + C wili - C viu;
i€Ir. i€Zu

A T y + w - v = c
JY I P

w , v > _ 0
W ; = 0 for i $ I L
v; = 0 for i $ Iu

respectively.
This re-statement of the problem pair offers one interesting insight into the real meaning

of the penalty method (also commonly known as the "big M" method). Penalizing artificial
variables which represent infeasibility is equivalent to imposing an upper bound of M on the
dual variables. This effectively means that if fulfilling i-th row constraint of the original problem
should cost us M or more per unit violation, then the constraint does not have to be satisfied.

5.2.3 Some properties of the reformulated problem

It is quite obvious that the reformulated problem (5.3)-(5.4) is either unbounded or has an
optimal solution. We will not be concerned with the first case - unboundedness. Let us only
note that the reformulated problem is a relaxation of the original one, and as such is unbounded
if the original one is. This property may easily be proven.

Observation 5..1 (preservation of unboundedness) If the original linear problem (5.1)-
(5.2) is unbounded then so i s the reformulated problem (5.3)-(5.4).

Proof: Unboundedness of (5.1)-(5.2) means that there exists a feasible solution x0 and an
extreme ray d such that:

d ; > O i E I L
d ; I O i E I U
d; E 8 otherwise

Ad = 0 and

A. ~ w i ~ t a n o w s k i - 1 2 - A Penalty Based Simplex Method

Therefore for every E > 0 x0 + ~d is a feasible solution to problem (5.1)-(5.2). Furthermore, for
E ' +00

T O cTx = c (x + ~ d) + -00.

- Clearly a pair (xO, 0) is then a feasible solution to problem (5.3)-(5.4) and there exists a ray
d = (d l 0) for which:

-
d; 2 0 i E I L u { n + 1, ..., n t m } -
d; '5 o i E IU -
d; E % otherwise

[A J] [i] = Ad = 0 and

Thus the reformulated problem is unbounded as well. I

L e m m a 1. (op t imal solut ion equivalence) If the original problem (5.1)-(5.2) is not un-
bounded and has an optimal solution x then there exists a finite positive number Mo such that
for every M 2 Mo vector (k , 0) is an optimal solution to problem (5.3)-(5.4).

Proof: Let us consider the optimal solution y to original problem's dual (5.5)-(5.6). Existence
of finite x implies existence and finiteness of y. Let ymax denote the largest optimal dual variable

Ymax = . max 6;.
z = l , ..., m

A pair (x , 0) is a feasible primal solution to the reformulated problem (5.3)-(5.4). Let
Mo = Ymax and M = Mo + E, E > 0. For such M y defines an optimal solution to (5.7)-(5.8).
Thus from the complementarity conditions for dual slack variables associated with (5.8) one gets

The definition of M ensures = 0. Consequently, the solution (jc, 0) and 9 is both primal and
dual feasible (and optimal). I

The next observation specifies our requirements concerning the solution of the reformulated
problem. If the original problem is feasible, we may demand that the artificial variables in the
optimal solution to (5.3)-(5.4) all be equal to zero.

Observa t ion 5..2 (op t ima l solut ion exis tence) If the original linear problem (5.1)-(5.2) is
not unbounded and has a feasible solution then there exists a finite positive number Mo such that
for every M 2 Mo problem (5.3)-(5.4) has a feasible and optimal solution (jc,O) such that jc is
an optimal solution to (5.1)-(5.2).

Proof: If the original problem (5.1)-(5.2) is not unbounded and has a feasible solution then it
also has a finite optimal solution. This and lemma 1. proves the observation. I

The following observation is the most important one. It shows (although indirectly) how
infeasibility of the original problem can be proven. It is a direct consequence of observation 5..2.

Observa t ion 5..3 (infeasibility de tec t ion) If there does not exist a finite number M > 0
for which (x, 0) is an optimal solution of (5.3)-(5.4) then the original problem (5.1)-(5.2) is
infeasible.

A. ~wi~tanowski - 13- A Penalty Based Simplex Method

Proof : Let us assume that (5.1)-(5.2) has a feasible solution x0 > 0. According to the
observation 5..2 this implies existence of a finite M for which problem (5.3)-(5.4) has a feasible
and optimal solution (x , 0) which contradicts the assumption. I

The theoretical results of this section may be summarized as follows:

1. if the original problem has a solution, we can find it by solving the reformulated problem
with sufficiently large value of M ,

2. we need to reduce the artificial variables to zero,

3. if we prove that it cannot be achieved by further increases of the value of M then we know
the original problem is infeasible.

5.3 When is "big M" big enough?

When i = 0 then the reformulated problem is exactly equivalent to the original one and x is the
latter one's optimal solution. If, however, the original problem is infeasible, the reformulated
one still has an optimal and feasible solution (2 , i) . The task of distinguishing between these
two situations is the subject of this section. This problem may also be put differently: when is
M big enough for us to be sure, that non-zero optimal value o f t corresponds to the infeasibility
of the original LP (5.1)-(5.2) (see also observation 5..2).

Note that the optimal basis of the problem (5.3)-(5.4) is also a feasible basis of its dual
problem and a feasible solution to the above is also a feasible (but not necessarily optimal)
solution to original problem's dual.

Let us assume that we have an optimal solution (2, i) to the reformulated problem (5.3)-
(5.4) such that there exists i for which ti > 0. From now on (as long as the optimality criterion
is satisfied and artificial variables are not equal t o zero) we will use a different pricing technique.

5.3.1 Spl i t pr ic ing

Constraints (5.8) may also be written as

where z, = w - v and z t are reduced costs for the original and artificial variables respectively.
We now compute reduced cost for non-basic artificial variable t; as

T zt; = M - y e; = M - y; for J;,; = +1 and
zti = M - yT(-e;) = M + y; for J;,; = -1

where e; denotes i-th row (or column) of the identity martix I.
Since we would like to decrease t; from its current positive value (and possibly to zero), we

want zt; t o be positive. In other words we want M t o be greater than the current value of y;.
If there are no artificial variables in the basis then y = B - ~ c ~ does not depend on M and it is
sufficient to increase M by E > 0 to make the reduced cost positive.

It is, however, possible that y; = y;(M). Then we have t o find such M that would allow
introduction of ti into basis. In order to find out the dependency between y and M we split the
basic cost vector c g into two parts: cg, and c g t corresponding t o variables x and t respectively.

We have

c B = ['El = [' ? I + [.:,I

A. ~wi~tanowski

and

- 14 - A Penalty Based Simplex Method

Since

we may extract the subgradient yt of y t

Note that yt is simply a sum of those rows of the basis inverse, to which the basic artificial
variables correspond.

It goes without saying that

And so we conclude, that

zt ; = M - yx ; - M E ; for J;,; = +1 and
z t ; = M + y x ; + M y t , for J;,, = -1.

5.3.2 D y n a m i c p e n a l t y con t ro l c r i t e r i a

We need zt ; to become non-zero. We shall distinguish the following cases:

1. if J,,, = +1 then

a if yti = 1 then the value of zt ; is independent of M , so an increase of M can not
produce a non-zero reduced cost,

a if yt; < 1 then an increase of M so that

will result in positive reduced cost zt ; and possibly with decrease of t i in the subse-
quent simplex iteration,

a if yt, > 1 then
zt ; = M - yx; - M E ;

= M(1- yt;) - Yxi

and obviously y x ; is already negative:

This means that if we increase M it will make increasing t ; profitable. We use the
same formula as before:

Y x , M > -
1 - y t ;

2. if J;, , = +1 then

a if yt; = -1 then z t ; is independent of M ,

a otherwise we state that penalty M should be greater than

A . ~wi~tanowski - 15 - A Penalty Based Simplex Method

Similarly for variable x j the reduced cost zxj (which we want to become non-zero) is com-
puted as

zxj = cj - (y, + ~ y t) ~ a ~ .

Depending on the bound on which the non-basic structural variable x j is we decide on further
action:

1. if x j is a t its finite lower bound and ytTaj > 0 or

2. if x j is a t its finite upper bound and ytTaj < 0 or

3. if x j is between its bounds and @aj # 0

we demand that

Note that since for any linear programming problem there is only a finite number of possible
simplex bases, it is in principle (but not in practice) possible to compute appropriately big value
of M (by search of all possible simplex bases) or detect problem's infeasibility without actually
solving it. This is a direct proof of observation 5..3.

5.3.3 R e q u i r e d modifications to s t a n d a r d pricing

Some applications in decomposition schemes (see [16]) require all non-zero artificial variables
present in the optimal solution to the modified problem to be in the optimal basis. To this end
we need to modify slightly the pricing method used in the primal simplex algorithm.

Typically we only consider variables with reduced cost zj which guarantees a minimum profit
of b0 per unit change of non-basic variable xj , where b0 > 0 is called optimality t ~ l e r a n c e . ~ In
our case we want all non-zero artificial variables to be present in the optimal basis. In case of
artificial variables we treat reduced costs of zero as profitable. Of course, if some other variables
have non-zero and profitable reduced costs, they are chosen as candidates to enter the basis.

The result of this procedure is such that

the algorithm introduces into the basis the same columns as it would otherwise, until no
more variables have favourable reduced costs and

when some non-zero artificial variables remain outside of basis in the optimum, thay are
"forced" into the basis.

5.3.4 Algor i thm's e x p e c t e d behav iour

In case of a feasible problem (5.1)-(5.2) we are only able to predict that all artificial variables
will be reduced to zero. Some of them may be in the optimal basis, some may be not. But this
is not the most interesting case.

We are more concerned with a solution process of an infeasible problem. We expect that
after the reformulated problem (5.3)-(5.4) is solved and some artificial variables are found to
be non-zero, the penalty M will be increased (unless it s found to be pointless - according to
the formulas presented before). The algorithm will then tend to put more and more non-zero
artificial variables into the basis. In general (especially in case of infeasible problems) we must
take into account presence of artificial variables in the final (optimal) basis of the reformulated
problem (5.3)-(5.4).

As it was mentioned before, if we initially assign a very large value to M we are likely to
cause unnecessary numerical difficulties as soon as the first artificial variable is introduced into

61n the steepest edge algorithm we compare objective function value decrease per unit move along the edge of
the simplex.

A . ~wi~tanowski - 1 6 - A Penalty Based Simplex Method

the basis. If M is very large (compared to other cost vector coefficients of the basic variables),
it will dominate the shadow prices (dual variables) used during pricing. Since we now know
exactly "how big should the big M be", we may start the algorithm with a relatively small
penalty M (e.g. M = pmaxj cj, p 2 1) and increase it when necessary to e.g. ten times the
minimum value that would allow us to make a step. We recommend using a t least a factor of two
in order to avoid unnecessarily many adjustments to the penalty term. Indeed, our experience
(see Section 7.) shows that p = 2 is perfectly satisfactory. Note that in case of dual variable or
reduced cost update methods, the updated vectors would have to be computed afresh after each
change of the penalty factor M.

5.4 A heuristic for infeasibility reduction

The method for finding a feasible initial solution presented in this paper may in general produce
a dense residual vector

r0 = b - AX'

before the artficial variables are added. We developed a simple yet efficient heuristic which
(whenever possible) tries to shift variables x j from their initial positions xy, j = 1,. . . , n so that
the residual vector is reduced. We want to decrease a number of non-zero residuals r: as well
as Euclidean norm of the vector rK, where K denotes the last step of the algorithm - the one
in which the reduction stops.

We scan the whole constraint matrix cl times, cl > 0 or until llrkll reaches zero. In each
pass we change only one variable x j , j = 1 , . . . , n at a time so that

(a) the norm of the current residual vector rk decreases and

(b) no more than c2, c2 2 0 new non-zeros appear in the residual vector.

For every variable x j for which its corresponding column aj has no more than c2 non-zeros
a t positions a t which rk has zero entries, we solve a simple optimization problem:

min d(xjk)
' I <"I <"I

where

T k k k T k = a T a j (~ j k) ~ - 2aj r x j + (r) r .

Clearly d(x$) is a convex quadratic function of variable x;. It reaches its global minimum a t

If 2; should be infeasible, we project it onto interval (Ij, uj):

If x;+' # x; then
k + l - yk+l = I' - aj (x . xf) ,

otherwise rk+' = rk. This ends k-th step; k is incremented, j is moved to point to the next
column (or the first one if j = n) and the algorithm continues until there are no more residuals
or cl passes have been completed.

A. ~wi~tanowski - 1 7 - A Penalty Based Simplex Method

The computational effort required is rather moderate. We could rely entirely on updates of
the residual vector, but a t the beginning of each pass we compute it afresh. In this manner we
prevent excessive build-up of round-off errors. We need to compute the norms of all columns
of matrix A only once. In every step k we calculate a scalar product a?rk. It is inexpensive
because aj is a sparse vector (typically it has no more than 5 to 10 entries).

Note that it is possible that after the initial basis is chosen, some of the non-basic variables
will be between their bounds. As it was explained before this is advantageous, because it helps
to avoid performing degenerate iterations.

5.5 Consequences for the simplex method

The whole Section 5. has been devoted to the description of a new version of the revised simplex
algorithm. We reiterate the consequences our approach has for the method:

1. The basis and solution are now two seperate entities no longer bound together into a "basic
solution". This allows us to start (or restart) the algorithm with any combination of a
feasible solution x and a non-singular basis B.

2. Any point x E ?Rn is a legitimate starting point. The penalty method will take care of
x's infeasibility. Of course very large values of some x j will cause huge residuals and later
numerical difficulties. But so would any other unnecessarily large numbers (e.g. constraint
matrix coefficients) in the formulation of the problem.

3. An inexpensive tool allowing to reduce degeneration was proposed.

In the future some features of our implementation will allow us to try even more interesting
approaches to linear programming. For example it might become possible t o perform non-
simplex steps, i.e. steps not along the edges of the simplex, but across its facets or even through
the interior. Methods for finding non-simplex directions are beyond the scope of this paper (but
certainly not beyond imagination).

6. Restart of the penalty based simplex

Let us assume that an initial solution x0 and a non-singular initial basis B0 are given. The
following algorithm may be used t o start the penalty-based simplex from this solution and
basis:

Algorithm 111: Restart of the penalty-based primal simplex method

0. An initial solution x0 and a non-singular initial basis BO are given.

1. The non-basic variables which violate their simple bounds are projected on those bounds:

I 1 ~ j x L j < l N j

x N j = U N j x L j > u N j

GI j in all other cases

2. The basic variables are calculated:

A . ~ w i ~ t a n o w s k i - 1 8 - A Penalty Based Simplex Method

3. The infeasible basic variables are projected on intervals delimited by their box constraints:

B x B j < l B j

XB j = U B j x B j > u B j

x i in all other cases.

4. The residuals are computed:
r = b - NxN -BxB.

If r = 0 the algorithm terminates.

5. Residuals are decreased by means of shifting some variables from their current positions
(see Section 5.4 for a description of a heuristic used). If the residuals are reduced to zero
the restart algorithm terminates.

6. Artificial variables t are added to the problem in order to remove the remaining infeasibility.
Their non-zero values are penalized. For details consult Section 5.2.

7. A linear problem t o which a feasible solution is known has thus been formulated. The
restart algorithm terminates.

One remark concerning the initial basis B0 is in order. As it has been stated in Section 5. it
is in general possible that the final (perhaps optimal) basis will contain some artificial variables.
When we use this basis as a starting basis for another problem, the same artificial variables have
to be used again, even if the non-zeros in their corresponding columns have now different value.

7. Numerical results

The numerical results that are presented in this section will not surprise the reader. Perhaps
the choice of test problems requires more explanation then the tables themselves. We used about
50 of the problems included in the NETLIB test LP collection of Gay [7], which is probably
quite familiar to readers who encountered other papers concerned with linear programming
implementations. An overview of about 90 of those problems (listing their dimensions, optimal
solutions and other details) is presented in [2].

In our tests we used a subset of those 90 LP's. We rejected the smallest problems (those with
no more than 2000 non-zeros in the constraint matrix). The reason for this omission is rather
obvious: we are concerned with large and sparse linear problems and we think that the solution
process of small (and consequently relatively dense) linear programs does not offer much insight
into the possible performance of our code in real-life situations.

We present a number of tables; each demonstrates one of the features of our code. Table 1
shows the results of applying our infeasibility reduction heuristic to the initial solutions obtained
from a basis creation technique similar to this of Bixby [2]. In Tables 2 and 3 a comparison of the
performance of three pricing algorithms is given. Finally, dynamic penalty control is cofronted
with large static penalty in Table 4. Unless otherwise noted, the code was run with dynamic
penalty factor control and employed full pricing with reduced cost updates and approximate
steepest edge calculation. All the computations were performed on the same 40MHz SPARC
Station 2 computer. Computation times are measured in CPU seconds as reported by the Solaris
operating system.

A Penalty Based Simplex Method

7.0.1 Infeasibility reduction heuristic

Table 1 presents the reports of the infeasibility reduction routine described in Section 5.4 with
cl = 2 and c2 = 1. That means that a t most two passes of the constraint matrix were per-
formed and only one non-zero creation in the residual vector per variable shift was allowed (see
Section 5.4 for details). We have selected those numbers after some initial experiments which
proved them to be reasonable, but not necessarily the best. It is likely that more "fine tuning"
of those parameters would help. Each table row corresponds to one linear problem. First the
name of the problem and the number of rows of its constraint matrix are given. Infeasibility
before reduction (denoted by Initial infeas. in the table) is expressed by the number of non-zeros
in the residual vector (no.) and the euclidean norm of this vector (norm). The same data after
the reduction is presented under the heading Final infeas.. The number of reduction passes is
specified in the next column (Pass.). Finally, infeasibility reduction in terms of the number of
non-zeros of the residual vector (Number red.) as well as its norm (Norm red.) are expressed in
percent and calculated as

number-afterreduction - number-beforereduction
reduction =

number-beforereduction
loo[%].

Naturally, negative number corresponds to an increase in the number of non-zeros (the increase
in the norm of the vector by our algorithm is not possible).

It is easy to see that the behaviour of the algorithm depends highly on the problem. We can
see three major patterns:

the initial solution found by crashing is feasible or

the initial solution is not feasible, but the reduction routine is unable t o reduce the residuals
and terminates after one pass or

the reduction progresses and two passes are completed.

On some smaller problems or with different values of the parameters cl and c;! the reduction
heuristic has sometimes managed to find a feasible primal solution, however in general this may
be considered a rather rare occurence. In case of 6 problems the method increased the number
of non-zeros. The infeasibility of 7 LP7s remained unchanged (and therefore the reduction
necessarily caused a nett loss of computation time). In general, though, most of the initial
solutions benefited from applying the reduction algorithm. Additionally, it is worth remembering
that this technique increases the number of non-basic variables placed between their bounds and
thus may have beneficial impact on solution process of highly degenerate problems.

While the average gains produced by our algorithm are encouraging (30% decrease in the
euclidean norm of the initial residual vector), we see that its application should be decided upon
on a problem-by-problem basis.

7.0.2 Three pricing techniques

Papers by Goldfarb and Reid [8], Forrest and Goldfarb [5], Harris 191, Bixby [3] and many others
have discussed the practicability, efficiency and implementation of different pricing techniques
for the modified simplex method. The most important of those are

(i) full, partial and/or multiple pricing,

(ii) DEVEX pricing (currently recognized as an approximation to steepest edge),

(iii) steepest edge and

(iv) hybrid approaches (typically used in commercial codes because of efficiency considera-
tions).

A. ~ w i ~ t a n o w s k i - 20 - A Penalty Based Simplex Method

It is now common knowledge that (i) is cheapest per iteration (especially when implemented
in a reasonable manner, e.g. with dual variables' or reduced costs7 updates) and offers reasonable
overall efficiency. On the other hand (iii) adds some extra workload to each simplex iteration,
but usually results in a significant decrease in the number of iterations. It is especially well
suited for numerically difficult and highly degenerate problems, where the simpler methods may
fail. DEVEX is one of the possible compromises between the former and the latter. In terms
of computation time it seems superior both to steepest edge and minimum reduced cost pricing
criteria. Finally, so-called hybrid approaches employ two or more of the basic techniques and
switch between them when it seems that the solution process might benefit (see e.g. Bixby [3]
for a description of such a hybrid method).

Our results gathered in Tables 2 and 3 conform to the findings of the above mentioned
papers. In the tables we present the number of iterations (Iter.) needed t o solve each problem
with each of the three methods implemented in our code and the CPU time taken (Time). The
compared methods are:

most negative reduced cost criterion of Dantzig (Reduced Cost or RC) ,

steepest edge (also denoted by S E) and

our approximate steepest edge (Approx. SE and ASE).

While Table 2 lists the numbers of iterations and CPU times, Table 3 compares the methods by
listing improvements in terms of solution times as well as the numbers of iterations measured
in percent.

Steepest edge compared to the most negative reduced cost criterion almost always reduces
the number of iterations (on the average by 15%) and quite as often increases the solution
time (34%). Approximate steepest edge cuts down the average of 17% of iterations and 13% of
time needed by the Dantzig's method. Both those results come as no surprise. What is quite
interesting though, is the fact that approximate steepest edge is usually as good in terms of the
number of iterations as the exact version! And, naturally, it is much faster.

7.0.3 Dynamic penalty control: efficiency and numerical stability

We shall present the impact of the dynamic penalty control method derived in Section 5. on
the solution times and numbers of iterations of the simplex method employing Dantzig7s pricing
strategy. The comparison is shown in Table 4. As previously, the number of iterations and
problem solution times are shown. Then the improvement offered by dynamic penalty control
is computed (under the heading Comparison). Additionally, for dynamic penalty method the
number of necessary penalty factor adjustments is given (Pen. adj.). In this experiment we used
the initial dynamic penalty factor M computed as

Dynamic penalty method is definitely not a performance booster. In fact, on two problems,
namely SCSDG and SCSD8 it performed very badly. In most cases it reduces solution time
by a tiny fraction, but sometimes the improvement reaches over thirty percent. The avarage
improvement is negligibly small (and remains small, but positive if we disregard the two LP's
mentioned above). What the table does not show is the impact of the dynamic penalty method
on numerically difficult problems. The poorer is the scaling of the problem's objective function,
the more disastrous effects may the large static penalty method have. We have observed that
the dynamic penalty tends to solve numerically difficult problems, for which the static penalty
method fails.

Now just a word about the penalty adjustments. From the description given in Section 5.3 it
might seem that the penalty adjustments are a rather costly operation. When standard pricing

A. ~ w i ~ t a n o w s k i - 21 - A Penalty Based Simplex Method

discovers the need for penalty adjustment, up to two linear systems with basis transpose have
to be solved, and then a "duplicate" pricing step is performed. The reader might be discour-
aged by possible excessive costs of such operations. The experiment proved those fears to be
unsubstantiated. Only six problems needed penalty adjustments and it was always needed only
once. In other experiments (with different initial penalty values or with other linear problems)
we never observed more than two penalty adjustments.

The method may be thus seen as an inexpensive way of making the penalty method work
without causing numerical difficulties. The obvious advantage of penalty method is the fact
that it does not require a two phase simplex algorithm (in the first phase we cannot perform
steepest edge pricing or reduced cost updates). It may be viewed as an alternative t o a two-phase
algorithms.

It has one additional feature that may be seen to be an advantage or a problem - depending
on one's standpoint. The solver produces a solution even when the problem is not feasible.
It may be seen as a waste of precious computation time or as a way of obtaining interestig
information about the problem. The optimal solution to the modified problem may be used to
reformulate the infeasible LP. And after necessary problem modifications the solution process
may be restarted from the point in which the infeasibility was d i s~overed .~

7This feature was already successfully tried in a decomposition scheme, but its description is far beyond the
scope of this work.

A Penalty Based S implex Method

Table 1: A test of the infeasibility reducing heuristic
Problem 1 1 Rows I Initial infeas. I Final infeas. I Pass. I Number red.

name I I

Averaee:

agg2
agg3
bandm
beaconfd
bnll
boeingl
brandy
czprob
degen3
e226
etamacro
fffff800
finnis
fitld
f i t lp
fit2d
fit2p
for plan
ganges
gfrd-pnc
grow7
israel
nesm
pilot4
scfxml
scfxm2
scfxm3
scrs8
scsdl
scsd6
scsd8
sctap2
sctap3
seba
shell
ship041
ship04s
ship081
ship08s
ship121
shipl2s
sierra
standata
standgub
standmps
stocfor2
tuff
woodw
80bau3b

Norm r e d 1
no. I norm I no. I norm

517
517
306
174
644
352
221
930

1504
224
401
525
498

25
628

26
3001

162
1310
617
141
175
663
41 1
33 1
66 1
991
491

78
148
398

1091
1481
516
537
403
403
779
779

1152
1152
1228
360
362
468

2158
334

1099
2263

I r%l

A Penalty Based Simplex Method

Table 2: Pricing methods - absolute performance

Problem
name

a&
agg3
bandm
beaconfd
bnll
boeingl
brandy
czprob
degen3
e226
etamacro
fffff800
finnis
f i t ld
f i t lp
fit2d
fit2p
forplan
ganges
gfrd-pnc
grow7
israel
nesm
pilot4
scfxm 1
scfxm2
scfxm3
scrs8
scsdl
scsd6
scsd8
sctap2
sctap3
seba
shell
ship041
ship04s
ship081
shipO8s
ship121
shipl2s
sierra
s tandata
standgub
standmps
stocfor2
tuff
woodw
80bau3b

Reduced
Iter.

180
211
771
47

2725
748
388

1286
11739

691
1131
1305
903

2079
842

39695
10144

422
441
517
178
287

4652
1252
463
934

1445
561
460

1224
3048

872
1251
222
276
236
185
487
304
913
484
767

86
86

265
1975
270

2040
8223

Cost
Time

2.7
3.4

15.0
0.3

99.8
11.7
6.7

58.4
1190.9

11.0
20.7
35.9
15.6
63.3
41.0

14409.1
5330.9

7.3
14.0
8.1
4.8
4.1

242.1
59.7

6.2
22.9
52.1
14.0

5.0
21.1

116.3
33.3
62.8

1.3
5.7
4.9
3.2

21.4
9.5

52.3
19.0
30.1

1.4
1.4
4.5

150.7
6.2

210.1
923.6

Steepest
Iter.

202
217
447

39
1970
697
324
996

5067
416
717
890
676

1363
539

20761
9974

288
477
512
203
220

3605
1153
377
775

1305
427
223
895

2220
995

1271
218
318
242
178
499
299
901
485
691

79
79

274
1644
207

1528
7053

Edge
Time

4.7
5.3

14.6
0.4

122.6
18.6
8.8

84.1
932.6

10.2
19.2
41.9
17.6
78.9
52.4

12263.5
5342.4

8.5
27.6
16.0
8.4
5.5

262.4
88.3

8.1
31.0
72.3
15.9
4.1

28.4
148.4
49.0
83.8

1.8
10.3
7.1
4.4

34.1
14.1
72.8
28.3
34.2

1.9
2.0
8.2

188.2
9.0

325.2
1050.8

Approx.
Iter.

208
216
459

39
1725
651
343

1108
4104

370
729
759
675

1279
790

21345
9672
248
404
540
206
184

2808
983
373
800

1254
477
317
668

1279
843

1032
218
346
239
178
539
324
907
485
713

90
90

257
1672

143
1474
7140

SE
Time

3.3
3.7
8.8
0.2

70.7
10.6
5.2

54.2
372.2

5.8
13.0
20.0
12.5
37.5
35.9

6356.5
2904.3

4.5
13.0
9.9
5.6
2.7

141.4
55.2
5.2

20.2
47.6
13.5
4.3

12.6
47.1
33.7
51.3

1.5
7.8
5.4
3.1

26.8
11.3
59.0
20.1
26.5

1.6
1.7
4.6

132.9
4.7

171.3
837.3

A Penalty Based Simplex Method

Table 3: Pricing methods - relative performance

Problem
name

agg2
agg3
bandm
beaconfd
bnll
boeingl
brandy
czprob
degen3
e226
etamacro
fffff800
finnis
fit ld
f i t lp
fit2d
fit2p
forplan
ganges
gfrd-pnc
grow7
israel
nesm
pilot4
scfxm 1
scfxm2
scfxm3
scrs8
scsd 1
scsd6
scsd8
sctap2
sctap3
seba
shell
ship041
ship04s
ship081
shipO8s
ship121
shipl2s
sierra
s tandata
standgub
standmps
stocfor2
tuff
woodw
80bau3b
Average:

S E vs.
Iter.

-12.22
-2.84
42.02
17.02
27.71

6.82
16.49
22.55
56.84
39.80
36.60
31.80
25.14
34.44
35.99
47.70

1.68
31.75

-8.16
0.97

-14.04
23.34
22.51

7.91
18.57
17.02
9.69

23.89
51.52
26.88
27.17

-14.11
-1.60

1.80
-15.22

-2.54
3.78

-2.46
1.64
1.31

-0.21
9.91
8.14
8.14

-3.40
16.76
23.33
25.10
14.23
15.13

RC
Time

-74.07
-55.88

2.67
-33.33
-22.85
-58.97
-31.34
-44.01

21.69
7.27
7.25

-16.71
-12.82
-24.64
-27.80

14.89
-0.22

-16.44
-97.14
-97.53
-75.00
-34.15

-8.38
-47.91
-30.65
-35.37
-38.77
-13.57

18.00
-34.60
-27.60
-47.15
-33.44
-38.46
-80.70
-44.90
-37.50
-59.35
-48.42
-39.20
-48.95
-13.62
-35.71
-42.86
-82.22
-24.88
-45.16
-54.78
-13.77
-34.27

ASE vs. S E
Iter.

-2.97
0.46

-2.68
0.00

12.44
6.60

-5.86
-11.24

19.01
11.06

-1.67
14.72
0.15
6.16

-46.57
-2.81

3.03
13.89
15.30

-5.47
- 1.48
16.36
22.11
14.74

1.06
-3.23

3.91
-11.71
-42.15

25.36
42.39
15.28
18.80
0.00

-8.81
1.24
0.00

-8.02
-8.36
-0.67

0.00
-3.18

-13.92
-13.92

6.20
-1.70
30.92
3.53

-1.23
2.18

ASE
Iter.

-15.56
-2.37
40.47
17.02
36.70
12.97
11.60
13.84
65.04
46.45
35.54
41.84
25.25
38.48

6.18
46.23

4.65
41.23

8.39
-4.45

-15.73
35.89
39.64
21.49
19.44
14.35
13.22
14.97
31.09
45.42
58.04
3.33

17.51
1.80

-25.36
-1.27

3.78
-10.68

-6.58
0.66

-0.21
7.04

-4.65
-4.65

3.02
15.34
47.04
27.75
13.17
17.03

vs. RC
Time

-22.22
-8.82
41.33
33.33
29.16

9.40
22.39
7.19

68.75
47.27
37.20
44.29
19.87
40.76
12.44
55.89
45.52
38.36

7.14
-22.22
-16.67

34.15
41.59

7.54
16.13
11.79
8.64
3.57

14.00
40.28
59.50

-1.20
18.31

-15.38
-36.84
-10.20

3.13
-25.23
-18.95
-12.81
-5.79
11.96

-14.29
-21.43
-2.22
11.81
24.19
18.47
9.34

13.48

A Penalty Based Simplex Method

Table 4: Dynamic penalty control vs. large static penalty

Problem
name

agg2
agg3
bandm
beaconfd
bnll
boeingl
brandy
czprob
degen3
e226
etamacro
fffff800
finnis
fitld
f i t lp
fit2d
fit2p
forplan
ganges
gfrd-pnc
grow7
israel
nesm
pilot4
scfxm 1
scfxm2
scfxm3
scrs8
scsdl
scsd6
scsd8
sctap2
sctap3
seba
shell
ship041
ship04s
ship081
shipO8s
ship121
shipl2s
sierra
standata
standgub
standmps
tuff
woodw
80bau3b
Average:

Static
Iter.

193
231
764
47

2676
742
468

1479
14505

776
1183
1163
815

2079
842

39695
10144

44 1
439
513
178
287

4085
Not
454
989

1512
560
441
770

1272
953

1221
224
276
236
185
487
303
919
484
772

86
86

271
270

1916
8930

penalty
Time

2.7
3.5

14.3
0.3

99.9
10.7
7.6

68.1
1671.2

16.6
28.8
46.1
19.6
86.9
61.1

14401.0
5166.6

7.0
13.5
7.7
4.7
4.0

199.0
solved!

5.9
23.5
52.4
13.1
4.8

14.2
50.8
35.0
59.5

1.4
5.5
4.8
3.0

20.9
9.3

51.1
18.5
30.9

1.3
1.4
4.4
6.1

187.6
957.3

Iter.

180
211
771

47
2725

748
388

1286
11739

691
1131
1305
903

2079
842

39695
10144

422
441
517
178
287

4652
1252
463
934

1445
561
460

1224
3048

872
1251
222
276
236
185
487
304
913
484
767

86
86

265
270

2040
8223

Comparison
Iter.

[%I
6.74
8.66

-0.92
0.00

-1.83
-0.81
17.09
13.05
19.07
10.95
4.40

-12.21
-10.80

0.00
0.00
0.00
0.00
4.31

-0.46
-0.78

0.00
0.00

-13.88
-

-1.98
5.56
4.43

-0.18
-4.31

-58.96
-139.62

8.50
-2.46

0.89
0.00
0.00
0.00
0.00

-0.33
0.65
0.00
0.65
0.00
0.00
2.21
0.00

-6.47
7.92

-3.00

Dynamic
Pen.
adj .

0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Time

[%I
0.00
2.86

-4.90
0.00
0.10

-9.35
11.84
14.24
28.74
33.73
28.12
22.13
20.41
27.16
32.90

0.00
0.00

-4.29
-3.70
-5.19

0.00
0.00

-21.66
-

-5.08
2.55
0.57

-6.87
-4.17

-48.59
-128.94

4.86
-5.55
14.29
0.00
0.00
0.00
0.00

-1.08
0.00
0.00
2.59
0.00
0.00
0.00
0.00

-11.99
3.52

-0.23

penalty
Time

2.7
3.4

15.0
0.3

99.8
11.7
6.7

58.4
1190.9

11.0
20.7
35.9
15.6
63.3
41.0

14401.0
5166.6

7.3
14.0
8.1
4.7
4.0

242.1
59.7

6.2
22.9
52.1
14.0
5.0

21.1
116.3
33.3
62.8

1.2
5.5
4.8
3.0

20.9
9.4

51.1
18.5
30.1

1.3
1.4
4.4
6.1

210.1
923.6

A Penalty Based Simplex Method

8. Conclusions

We have presented several issues of an advanced and efficient (but still experimental) imple-
mentation of the revised simplex method for linear programming. The most important of its
original features include:

a new approximate steepest edge pricing method,

efficient, numerically stable and reliable penalty method for finding an initial feasible
solution,

equal treatment of basic and non-basic variables (they are both allowed to take any feasible
values) which facilitates avoiding degeneracy,

ability to restart easily and reliably (as well as start from any combination of initial solution
and basis8),

ability to provide information useful in tracking down the source of infeasibility,

a heuristic which reduces the infeasibility of the initial solution.

The results of numerical experiments presented in Section 7. have proven practicability,
usefullness, robustness and reliability of our algorithms. The tests confirmed the theoretical
speculations concerning the performance of some of our techniques. Some of the ideas presented
here, specifically those regarding simplex method's restarts, were already put to the test of
sequential solution of thousands and tens of thousands of middle and large scale linear problems
arising in a certain stochastic program decomposition scheme[l6]. We hope to be able t o use
this method successfully in many other novel and non-standard approaches t o linear program
solution (e.g. method of Wierzbicki [20]).

9. Acknowledgements

This work has benefited greatly from help and guidance of Prof. Andrzej Ruszczy6ski, who
first introduced the idea of a simple approximation to steepest edge pricing. Thanks are due
to Dr. Jacek Gondzio for sharing his invaluable expertise in the field of linear programming
implemenation techniques. He also made many helpful comments during the preparation of this
report. Last but not least, I would like to thank Prof. Andrzej Wierzbicki for encouragement
and support of my research.

'It is possible to specify only an initial basis or only the solution - the algorithm will take care of finding the
missing part of initial solution information.

A Penalty Based Simplex Method

References

[I] R. H. Bartels and Gene H. Golub. The Simplex method of linear programming using lu
decomposition. Communication of ACM, 12:266-268, 1969.

[2] Robert E. Bixby. Implementing the Simplex method: the initial basis. ORSA Journal on
Computing, 4(3):267-284, 1992.

[3] Robert E. Bixby. Progress in linear programming. ORSA Journal on Computing, 6(1):15-
22, 1994.

[4] George B. Dantzig. Linear Programming And Extensions. Princeton, 1963.

[5] John J . Forrest and Donald E. Goldfarb. Steepest-edge Simplex algorithms for linear pro-
gramming. Mathematical Programming, 57:341-374, 1992.

[6] John J . Forrest and J . A. Tomlin. Implementing the Simplex method for the optimization
subroutine library. IBM Systems Journal, 31(2):11-25, 1992.

[7] David M. Gay. Electronic mail distribution of linear programming test problems. Mathe-
matical Programming Society COAL Newsletter, 1985.

[8] Donald E. Goldfarb and John K Reid. A practicable steepest-edge Simplex algorithm.
Mathematical Programming, 12:361-371,1977.

[9] Paula M. J . Harris. Pivoting selection methods of the DEVEX LP code. Mathematical
Programming Study, 4:30-57, 1975.

[lo] Bruce Murtagh. Advanced Linear Programming, Computation and Practice. McGraw-Hill,
New York, 1981.

[I l l J . L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, 1987

[12] John K. Reid. A sparsity-exploiting variant of the bartels-golub decomposition for linear
programming bases. Mathematical Programming, 24:55-69, 1982.

[13] Andrzej Ruszczy@nski. A regularized decomposition method for minimizing a sum of poly-
hedral functions. Mathematical Programming, 35:309-333, 1986.

[14] Andrzej Ruszczy@nski. Regularized decomposition of stochastic programs: algorithmic
techniques and numerical results. Working Paper WP-93-21, International Institute for
Applied Systems Analysis, 1993.

[15] Uwe H. Suhl and Leena M. Suhl. Computing sparse lu factorizations for large-scale linear
programming bases. ORSA Journal on Computing, 2:325-335, 1990.

[16] Artur @Swi@etanowski. Efficient solution techniques for two stage stochastic linear prob-
lems. Working paper, International Institute for Applied Systems Analysis. (in preparation).

[17] Artur @Swi@etanowski. A modern implementation of the revised Simplex method for
large scale linear programming. Master's thesis, Institute of Automatic Control, Warsaw
University of Technology, Warsaw, 1993. (in Polish).

[18] Artur @Swi@etanowski. SIMPLEX v. 2.17: an implementation of the simplex algorithm for
large scale linear problems. user's guide. Working Paper WP-94-37, International Institute
for Applied Systems Analysis, 1994.

[19] J. A. Tomlin. On scaling linear programming problems. Mathematical Programming Study,
4:146-166, 1975.

A. ~ w i ~ t a n o w s k i - 28 - A Penalty Based Simplex Method

[20] Andrzej P. Wierzbicki. Augmented Simplex: a modified and parallel version of Simplex
method based on multiple objective and subdifferential optimization approach. Working
Paper WP-93-059, International Institute for Applied Systems Analysis, 1993.

