
Working Paper 
A penalty based simplex method 

for linear programming 

Artar Swigtanowski 

WP-95-005 
January 1995 

rflIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

kmd Telephone: +43 2236 807 II Fax: +43 2236 71313 E-Mail: info@liiasa.ac.at 



A penalty based simplex method 
for linear programming 

WP-95-005 
January 1995 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

FflIIASA International Institute for Applied Systems Analysis 14-2361 Laxenburg Austria 

bud: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at 



Abstract 

We give a general description of a new advanced implementation of the simplex method for 
linear programming. The method "decouples" a notion of the simplex basic solution into two 
independent entities: a solution and a basis. This generalization makes it possible t o  incorporate 
new strategies into the algorithm since the iterates no longer need to  be the vertices of the 
simplex. An advantage of such approach is a possibility of taking steps along directions that  are 
not simplex edges (in principle they can even cross the interior of the feasible set). It is exploited 
in our new approach to  finding the initial solution in which global infeasibility is handled through 
a dynamically adjusted penalty term. 

We present several new techniques that  have been incorporated into the method. These 
features include: 

previously mentioned method for finding an initial solution, 

an original approximate steepest edge pricing algorithm, 

dynamic adjustment of the penalty term. 

The presence of the new crashing and restart procedures based on the penalty term make 
the algorithm particularly suitable for sequential "warm start" calls when solving subproblems 
in decomposition approaches. The same features may be used in post optimal analysis. 

The efficiency of the new features is demonstrated when running the method on a subset of 
difficult linear programs from the NETLIB collection of Gay [7]. 

Key words: simplex method, linear penalty, crashing, steepest edge pricing. 
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A penalty based simplex method 
for linear programming1 

Artsr  SwietaaowskP 

1. Introduction 

We are concerned with solution of a linear optimization problem of the form 

T minc x (1.1) 

subject to  

where A E R m x n ,  b E Rm, x, c,  1, u E Rn, (some Zj or uj may be inifinite). 
There exists a number of comercially available high quality simplex type linear optimizers. 

The revised simplex method by Dantzig ([4]) was being developed ever since its introduction in 
1963 by numerous pure researchers as well as practicioners. Nevertheless, we felt compelled to  
produce yet another implementation of this well-known method. There were numerous reasons, 
of which we choose to  name here a need for a restarting primal simplex algorithm to  be later used 
in a decomposition scheme (see [16]) and some new parallel approaches to  linear programming 
(see [20]). 

We shall present a modified version of a primal simplex algorithm which we think, apart 
from its general applicability, is perfectly suitable for decomposition schemes requiring efficient 
restarts of the algorithm. We call our simplex code "penalty based" because the use of penalty 
in objective function instead of a two-phase method is the key to  method's ability to  start  (and 
restart) from any point. The new and original techniques incorporated in our code and described 
in this paper include: 

1. replacing of the notion of the simplex basic solution with two separate entities: a solution 
and a basis: 

By dropping the requirement that each simplex method iterate has to  be a so-called basic 
solution (one in which all non-basic variables are kept on their bounds) we have much 
more flexibility when choosing the initial solution (which we use to  our advantage in the 
crashing procedure) and, possibly, when forming all other iterates. 

2. a consistent approach to  using penalty function: 

The penalty is introduced in order to deal with infeasibility of the initial solution (either 
the one produced by the crashing procedure, or one provided by the user). Throughout all 
iterations of the method it is kept under control and dynamically adjusted when necessary. 
A possible infeasibility of the linear problem is detected and proven. 

'This research was partially sponsored by the Committe for Scientific Research of Poland grant no. 
PB 8 S505 015 05. Parts of it were done during author's stay in the International Institute for Applied Sys- 
tems Analysis in Laxenburg, Austria. 

21nstitute of Automatic Control & Computation Engineering, Warsaw University of Technology, ul. 
Nowowiejska 15/19, 00-665 Warsaw, Poland. 
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3. a new and stunningly efficient approximation of steepest edge pricing: 

We show that  what is possibly the simplest steepest edge approximation is also a very 
efficient one. 

This paper is also intended to document our implementation of the revised simplex method. 
Obviously, we will focus our attention on the new ideas tested in our code, but a limited de- 
scription of features which were previously known will also be presented. Since the efficiency of 
any modern linear optimizer is of paramount importance we outline the main algorithmic tech- 
niques that  make our implementation of the simplex method one of the most advanced currently 
available. 

In Section 2. we shortly present the textbook form of the revised simplex method algorithm. 
The algorithmic and programming techniques which make the simplex method one of the most 
efficient linear programming methods on the market are outlined in Section 3.. Although two 
of the three pricing schemes we employ are now "classical", we decided to  describe them in a 
separate Section 4. in which we derive our own pricing algorithm. Section 5. presents our rather 
lax approach to  the notions of basic and non-basic variables and solutions as well as explains 
the dynamic penalty method rationale and implementation. Our claim that  the penalty-based 
simplex can easily be restarted is proven in Section 6.. Finally, in Sections 7. and 8. the analysis of 
numerical experiments conducted on the subset of Gay's NETLIB test problem collection (see [7]) 
and our conclusions regarding the practicability and usefulness of the techniques proposed are 
given. 

2. The basic algorithm of the revised simplex method 

Let us assume that  initial partition of the constraint matrix A into a non-singular basis matrix 
B ,  B E X m x m  and the non-basic part N ,  N E '8mx(n-m) is known. We then have 

A = [ B  N ] ,  

Additionally, let us assume that  an initial feasible solution 

is known as well. We shall now proceed to  recall a basic version of the revised simplex 
method. (For an in-depth discussion of the simplex method see e.g. Dantzig [4], Nazareth [ l l ] ,  
Murtagh [lo], Forrest and Tomlin [6] and many others.) Note that  steps 3 and 5 are formulated 
so as to  allow the non-basic variables to be between their bounds and not on them. This is 
necessary when some of the variables (called free) have two infinite bounds. Later it will be 
shown t o  have other uses as well. 

A l g o r i t h m  I: The basic algorithm of the revised simplex method 

1. Compute the dual variables: 

2. Compute the vector of reduced costs z: 
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3. Choose the most favourable reduced cost 2, and test optimality: 

q = arg , min x; = uj, 
t=m+l ,  ..., n 

-1.ZiI 1j < ~j < U; 

If ,zq 2 0 then the current solution is optimal. 

4. Compute the basic variables' change direction 7: 

5. Calculate a feasible steplength 0 and check for unboundedness. 

If 0 is smaller than the distance between the current value of the q-th variable and the finite 
bound towards which it is moving then the q-th variable is shifted towards appropriate 
bound, the basis is not changed and a cheap simplex iteration is performed. 

If 0 = +oo then declare the linear problem (1.1)-(1.2) unbounded. 

6. Make the step and revise the basis: 

Exchange columns p and q of the constraint matrix A and rows p and q of column vectors 
x, c, 1, u. After such permutation the first m columns of A will again constitute a non- 
singular basic matrix. 

Go back to  step 1. 

3. Algorithmic enhancements 

The revised simplex algorithm described above creates a framework for actual implementation 
of the method. After years of research and development of this algorithm virtually every step 
is performed differently than straightforward mathematical formulas would suggest. Detailed 
description of origin, meaning and computational gains of all the advanced techniques incor- 
porated in our code is far beyond the scope of this paper. Interested reader is referred to  an  
excellent (and very much implementation oriented) book of Nazareth [ll] for a comprehensive 
analysis of the workings of the simplex method. Our own experience with implementing simplex 
was summarized in swigtanowski [17] and [18]. Other references will be given as we mention 
particular techniques used. 

3.1 Taking advantage of problem sparsity 

In order to  be able to  solve practical problems with thousands (or tens of thousands) of con- 
straints and variables, we exploit sparsity of the constraint matrix A by storing only the non-zero 
entries of A and an LU factorization of the current simplex basis B. Our factorization is sup- 
plemented with Bartels-Golub update procedure [I] with enhancements described in Reid [12]. 
For an excellent overview of an  implementation of both LU factorization and updates see also 
Suhl and Suhl [15]. 

Of considerable significance is the fact that  in modern computers memory is plentiful and 
inexpensive, especially in comparison with processing power. Therefore instead of carefully 
balancing storage requirements and amount of computations we now are more inclined to  use 
up much more memory to  gain (sometimes moderate) savings in computation time. One of the 
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ideas taking advantage of this change in computer hardware is duplicate storage of the constraint 
matrix. It is now stored not only by columns (as a file of packed columns), which was suitable for 
column oriented algorithms of the past. We also have an independent row-wise representation 
of it. This idea is quite new indeed. It has been incorporated in our simplex code in September 
1993. The same idea is put forward by Robert Bixby in his introductory article in ORSA Journal 
on Computing [3]. It is used during crashing (initial basis construction) and, more importantly, 
when updating reduced costs and steepest edge weights (exact or approximate). 

The basic idea behind the duplicate constraint matrix representation is that reduced costs, 
dual variables (as in Bixby's CPLEX [3]) or steepest edge weights may be updated much more 
efficiently when using the row-wise representation. During the early phases of developing our im- 
plementation (when the row-wise representation was being introduced) we have seen a reduction 
of problem solution time by approximately 20% to  40%. 

3.2 Problem scaling 

In lack of a commonly agreed upon scaling quality criterion we have decided t o  use a rather 
"fuzzy" definition. Matrix A is considered poorly scaled if its non-zero entries are of vastly 
different magnitudes. 

In order to  avoid numerical difficulties caused by poor scaling of the constraint matrix we 
use a simple two pass scaling scheme followed by column equilibration. By column equilibration 
we mean dividing each column of the constraint matrix by the norm of its largest non-zero. 
After this operation the largest non-zero in the matrix does not exceed unity. For an overview 
of some linear problem scaling techniques and assessment of their impact on the simplex method 
see Tomlin [19]. 

The scaling technique is modified in order to  assure that scaling itself does not introduce 
any roundoff error. This is achieved by using only integer powers of two as scaling factors. 
We compute "ideal" scaling factors and then use their approximation by powers of two (see 
~ w i ~ t a n o w s k i  [17]). This approach has one additional advantage: reduction of computational 
effort needed t o  scale the problem (and later retrieve solution for the original LP from the 
solution to  a scaled one). Instead of multiplying or dividing numbers by scaling factors we only 
shift the binary mantissa. 

3.3 Initial basis 

The crashing method implemented in our program is based on an idea of Bixby [2]. We divide 
the variables into so-called preference sets, and then build the basis using as many columns of 
the original constraint matrix as possible. Our algorithm is simplified by requirement that  a 
(permuted) triangular basis always has to  be found. When the process is finished without pro- 
ducing a complete basis, the missing places are filled with unity columns and their corresponding 
artificial variables are added. 

3.4 Pivoting strategy 

Last but not least, we shortly describe the rules we use for selecting the variable which leaves 
the basis. Again, the standard method known from the basic version of the simplex algorithm 
is modified. As it was proposed by Harris [9], we first calculate the maximum steplength in 
the perturbed problem (one with slightly expanded simple bounds on basic variables). We 
then choose the largest (and thus the most stable numerically) pivot which will not exceed 
the steplength in original ("exact7') bounds. This technique has been shown to  decrease the 
likelihood of arriving a t  singular bases, which is a phenomenon commonly known to  appear 
during solution of numerically difficult problems. 
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4. Efficient pricing techniques 

Many authors have pointed out that the method for selection of the variable which enters the 
basis is of crucial importance for the simplex method's performance. It has long been known 
that  the "most negative reduced cost" criterion of Dantzig is not always efficient. Our code 
allows not only Dantzig's pricing method, but also a steepest edge algorithm of Goldfarb and 
Reid [8] as well as our own approximation of it. For a survey of a number of steepest edge 
algorithms consult Forrest and Goldfarb [ 5 ] .  

4.1 Steepest edge rationale 

The standard pricing method chooses the variable which guarantees the largest objective change 
per unit move along the axis. Steepest edge (SE) approach prefers the variable wich yields 
the largest objective decrease per unit move along the actual edge of the simplex. Instead of 
comparing reduced costs 

T zj = cj - c ~ q j  

we compare normalized reduced costs 

where I I - I I  denotes Euclidean norm.3 Explicit computation of all (or even some) of the norms l)qjll 
in each simplex iteration would be prohibitively expensive. We can however derive reccurrences 
for updating the sqares of norms of direction vectors. 

We now proceed to  recall the basic recurrences used by Goldfarb and Reid [8] to  update the 
steepest edge weights 7 j  = 11qj112 + 1. This will allow us to  derive and explain the recurrences 
used in our new approximate steepest edge algorithm. 

Let T represent the expanded simplex tableau 

and a - the p-th (pivotal) row of T 

Note that  vectors t j  may be expressed using direction vectors qj of the basic simplex algo- 
rithm as 

The quantities with a tilde will refer to  values after the exchange of basic column p and 
non-basic column q. The direction vectors t j  are updated according to  the following formulas: 

andfor  j = m + l ,  ..., n, j f q  
t .  t . - t  % L =  
f f Paq 

3Note the alternative equation used for computing the reduced cost. 
4Please, note that e, always denotes a vector of appropriate dimension. When used in expression Te, it is 

e, E En, later in e.g. ~ - ~ e ,  it is in Em. 
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The weights 
2 -  t T t .  = r lTrl .+l ,  j = m+ 1, ..., n 7j=lltjll - 3 3 3 3 

are updated as follows: 
;Y. 3 = ( t j  - 6jt,)T(tj - &jtq)  

= t T t  - 2& .tTt  + &?tTt 
3 3  + 3 q  3 9 9  

= 7j - 2&jtj  t, + &27 
= Yj-2&.  3 ~ 3  T r/q + aj7q. A q 5  

The reduced costs may be updated, which is much cheaper than computation of dual variables 
and reduced costs proposed in the basic algorithm of Section 2.. The update is performed 
according t o  a formula known from the tableau form of the simplex algorithm: 

4.2 Steepest edge s i m p l e x  a l g o r i t h m  

We now present a simplex algorithm in which the reduced costs are updated in each iteration 
(instead of being computed afresh) and optionally steepest edge pricing may be performed. 

A l g o r i t h m  11: Simplex algorithm with steepest edge weights and reduced cost updates 

0. Initialization of the algorithm: 

Compute dual variables 
T K = B- CB 

and a vector of reduced costs z 

Reset steepest edge weights 7 .  Since it is impractical (too expensive) to  compute for 
all non-basic variables the exact norms of their corresponding direction vectors, we have 
decided t o  assume that  the linear problem constraint matrix columns are scaled and equi- 
librated according t o  our default scaling scheme. Thus, every time we reset the steepest 
edge weights, we set 7j t o  be equal to  the number of non-zero entries of the j- th column of 
the constraint matrix plus one. This promotes shortest (sparsest) columns and encourages 
construction of sparse bases. 

1. Choose the most favourable weiihted reduced cost zq and check for optimality: 

Identical to  the standard simplex algorithm except that  when steepest edge is employed 
reduced costs z j  are weighted (divided by square roots of weights yj). 

The in-coming column number q is found or optimality of the current solution is detected. 

2. Compute change direction q of the basic variables: 

3. Compute zq and 7, afresh: 

'For any i # j tTtj = T $ ~ , .  
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4. Confirm that  move in direction 77, is profitable: 

Since the vector of reduced costs z is updated, it accumulates roundoff errors. Therefore 
we need to  verify the sign of z,. If the verification fails we go to  step 0. 

5 .  Calculate steplength B and check for unboundedness: 

Identical as in the basic algorithm. Stop if problem unbounded. Determine pivot row 
number p and store separately the pivot element rl, (which is equal to  a,). 

6. Make the step: 

7. Calculate work vector /3 (needed only for steepest edge pricing): 

8. Update the basis representation: 

B = B + e,(a, - a,) T 

9. Compute the value of the pivot row p of the simplex tableau for the next iteration: 

10. Update the reduced costs: 

5, = z,/a, 
5.  - z .  - .* - ,, j = m + l ,  ..., n a n d  j f q  

11. Update the steepest edge weights: 

12. Go back to  step 1. 

Note that  steps 6 and 8 may be performed more efficiently if row-wise representation of the 
constraint matrix is available. Vector K may be quite sparse and vector 6 (which is a row of the 
basis matrix inverse) is almost certainly very sparse. Our experience indicates that  regardless of 
the problem's dimension, it usually has only a few non-zeros. If we use the row representation we 
may scan only those rows of the constraint matrix A which correspond to  non-zeros in vectors 6 
and K respectively. The reduction in computation time is impressive (especially when only the 
reduced costs are updated and steepest edge pricing is not performed). 

Emphasis should be given to  the fact that steepest edge pricing is in principle more expensive 
than standard (Dantzig7s) pricing, especially if the latter is either performed as partial or multiple 
pricing (see e.g. Nazareth [ I l l )  or when reduced costs7 or dual variables7 updates are done. This 
setback is partially compensated by decrease in the avarage number of iterations needed to  solve 
a linear problem when a superior pricing technique is used. 

Let us now examine additional operations needed to  compute and update steepest edge 
weights. The computation of the steepest edge weights needs the following arithmetic operations: 



A .  ~wi~tanowski - 8 -  A Penalty Based Simplex Method 

A division of reduced costs by the weights during pricing. 

Computation of /?. To this end one BTRAN and then a single pass through the matrix A 
are needed. The latter is fairly expensive since the intermediate result K may be dense. 

Weights update according to  formula 4.6. It requires neither a pass through the constraint 
matrix nor a linear system solution. 

From the foregoing it is clear that  computation of vector /? (needed to  calculate $qq) is the 
single most expensive task performed. 

4.3 Approximate steepest edge strategy 

Recall the formula we use to  calculate exact weights: 

We can reduce the computational effort, avoid computing vector /? and use approximate weights 
4 instead. Observe that  vectors tj, j = m + 1,. . . , n are the columns of the expanded tableau T 
while vector a is its row (compare with formula (4.1)). We already know one non-zero of each 
qj. Thus the product 

77% = ajaq + C (7j)dqq)i 

may be (very roughly) approximated by 

if we assume that  the vectors q j  are quite sparse and thus most of the products are 
zero. At the same time we know a lower bound on exact weight y j  

Therefore we may update the approximate weights 4j for j # q 

2 2 $j = max ($j, &;a: + 1) - 2Gjaq + 5;yq 

and we may still use the exact formula for j = q 

Note that  we know the exact value of y, and a,. 
In the light of the above equations, it is apparent that  the update will never produce weight 

4j smaller than unity. Indeed, from equation (4.7) it follows that  

The method of weight updates proposed above is clearly just a rough approximation of 
steepest edge pricing. It has the advantage of eliminating the single most expensive phase of 
update of exact weights. The results of numerical experiments (presented in Section 7.) have 
shown that  in most cases it compares favourably with the Dantzig's pricing method both in 
terms of computation time and the number of iterations. It also seems to be more efficient than 
the steepest edge strategy. 
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5 .  New features 

Development of a decomposition type method (see Ruszczy6ski [13], [14] and ~ w i ~ t a n o w s k i  [16]) 
based on the primal simplex algorithm as well as experiments with new parallel approaches to  
linear programming (see Wierzbicki [20]) triggered emergence of a few new ideas concering the 
revised simplex method itself. A fresh look at  the use of penalties in objective function instead 
of a two-phase method or composite objective, a notion of semi-basic solution and separation 
of solution vector and the basis are the most prominent new features of the implementation 
resulting from this research. 

5.1 Non-basic variables no longer glued to their bounds 

We have already shown in Section 2. that  the simplex method can easily be generalized to  accept 
the non-basic variables that  are not fixed on their bounds. This relatively minor change has 
several interesting consequences. It is now possible t o  start the simplex algorithm with any XN 

satisfying box constraints IN I XN I UN. Of other interesting consequences we will now only 
mention the impact this may have on degeneracy. 

Definition 1. (semi-basic feasible solution) A vector 

such that 

where 

and B is non-singular, is a semi-basic feasible solution of a linear problem (1.1)-(1.2). 

Recall that  a degenerate iteration occurs when the out-going p-th basic variable is already 
on its finite bound before the step is made. The direction of the step 77 pushes the basic variable 
to  its bound. Thus only a step of zero length may be made and q-th non-basic variable replaces 
the p-th in the basis. No progress (measured by objective function value decrease) is achieved. 
In standard simplex method the incoming variable is necessarily on it's bound and thus the 
degeneracy level (the number of basic variables which are on their bounds) remains unchanged. 

Let us now assume that  some of the non-basic variables are between their bounds. In 
such situation a degenerate step would still be performed, but if the introduced q-th variable 
was between its bounds rather than on one of them, then the degeneracy level would decrease 
and chances of a non-zero step in the next iteration would increase. Numerical test results 
from experiments with the most degenerate problems of the Netlib test collection proved this 
reasoning t o  be right. In particular, some difficult and highly degenerate problems could only 
be solved when using this technique. 

Dropping the requirement that the non-basic variables always be on their bounds has many 
other simple yet, perhaps even more interesting consequences which will be enumerated in the 
following sections. 

5.2 Search for an initial feasible solution 

The penalty method for finding initial feasible solution (sometimes called "the big M method") 
has often been unduly criticized (see e.g. Nazareth [ l l ] ) .  The critics pointed out the difficulty 
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of finding appropriate value of the penalty term M. If M should be too large in comparison 
with other non-zero entries of the objective vector c,  then numerical difficulties would occur. 
Other non-zeros in c would appear as insignificant disturbances when compared to  the penalty 
term. A problem which has little to do with the original one would be solved. On the other 
hand, too small a value of M would allow the algorithm to  produce an infeasible solution. In 
case of an ill-formulated problem which is actually infeasible it would be difficult to  detect this 
infeasibility. 

Indeed, the attempts a t  assessing a priori the value of penalty M by rough estimation of 
spectral norms of all possible simplex bases are bound to produce huge, and thus impractical 
values of M. We claim that  in our approach in which penalty M is dynamically adjusted all 
the above mentioned difficulties have been successfully dealt with. We solve a problem with a 
well-scaled objective function vector. Throughout almost all iterations the objective does not 
have to  be changed, which is advantageous whenever reduced costs' or dual variables' update 
scheme is employed. We propose a method for precise calculation of penalty M as well as a 
criterion for determining problem's actual infeasibility. 

What is important, the algorithmic overhead imposed by dynamic control of the penalty 
value has proven in the series of tests to  be negligible (see Section 7.). 

5.2.1 P r o b l e m  re fo rmula t ion  a n d  init ial  feasible solut ion 

Let us now restate the linear problem (1.1)-(1.2). We are concerned with minimizing 

T min c x (5.1) 

subject to  constraints 

-n - 
where 1, u E % , % = ?fZ U (-00, +m).  Additionally let us define index sets IL and Iu as 
IL = {i : li > - m )  and Iu = {i : u; < + m )  respectively. 

In order to  be able to  use easily any starting point xO, 1 < x0 5 u we reformulate the 
problem (5.1)-(5.2) by adding a vector of non-negative artificial variables t: 

min cTx + PTt (5.3) 

where J E ? f Z m x m  is a diagonal matrix such that  J,,; E (-1, +I) ,  i = 1 , .  . ., m and vector p ,  
p E Sm is a penalty term 

in which M > 0. 
The problem (5.3)-(5.4) has a feasible solution 

where to is a vector representing the xO's infeasibility in terms of constraints (5.2) of the original 
problem: 

ty = I(b - ~ x O ) ~ e ; l  
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5.2.2 The pair of dual problems 

Let us state dual problems for both (5.1)-(5.2) and (5.3)-(5.4) as 

subject to 

and 

subject to 

max bTy + C wili - C viu; 

T A Y + W - v = c  
w , v >  0 

W ;  = 0 for i $ IL  
v; = Ofor i $  Iu. 

max bTy + C wili - C viu; 
i€Ir. i€Zu 

A T y + w - v = c  
JY I P 

w , v > _  0 
W ;  = 0 for i $ I L  
v; = 0 for i $ Iu 

respectively. 
This re-statement of the problem pair offers one interesting insight into the real meaning 

of the penalty method (also commonly known as the "big M" method). Penalizing artificial 
variables which represent infeasibility is equivalent to  imposing an upper bound of M on the 
dual variables. This effectively means that  if fulfilling i-th row constraint of the original problem 
should cost us M or more per unit violation, then the constraint does not have to  be satisfied. 

5.2.3 Some properties of the reformulated problem 

It is quite obvious that  the reformulated problem (5.3)-(5.4) is either unbounded or has an 
optimal solution. We will not be concerned with the first case - unboundedness. Let us only 
note that  the reformulated problem is a relaxation of the original one, and as such is unbounded 
if the original one is. This property may easily be proven. 

Observation 5..1 (preservation of unboundedness) If the original linear problem (5.1)- 
(5.2) is unbounded then so i s  the reformulated problem (5.3)-(5.4). 

Proof: Unboundedness of (5.1)-(5.2) means that there exists a feasible solution x0 and an 
extreme ray d such that: 

d ; > O  i E I L  
d ; I O  i E I U  
d; E 8 otherwise 

Ad = 0 and 
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Therefore for every E > 0 x0 + ~d is a feasible solution to problem (5.1)-(5.2). Furthermore, for 
E ' +00 

T O  cTx = c ( x  + ~ d )  + -00. 

- Clearly a pair (xO, 0 )  is then a feasible solution to  problem (5.3)-(5.4) and there exists a ray 
d = ( d l  0 )  for which: 

- 
d; 2 0  i E I L u { n +  1, ..., n t m }  - 
d; '5 o i E IU - 
d; E % otherwise 

[A J] [ i ] = Ad = 0 and 

Thus the reformulated problem is unbounded as well. I 

L e m m a  1. (op t imal  solut ion equivalence) If the original problem (5.1)-(5.2) is not un- 
bounded and has an optimal solution x then there exists a finite positive number Mo such that 
for every M 2 Mo vector (k ,  0 )  is an optimal solution to problem (5.3)-(5.4). 

Proof: Let us consider the optimal solution y to  original problem's dual (5.5)-(5.6). Existence 
of finite x implies existence and finiteness of y. Let ymax denote the largest optimal dual variable 

Ymax = . max 6;. 
z = l ,  ..., m 

A pair (x ,  0 )  is a feasible primal solution to  the reformulated problem (5.3)-(5.4). Let 
Mo = Ymax and M = Mo + E, E > 0. For such M y defines an optimal solution to  (5.7)-(5.8). 
Thus from the complementarity conditions for dual slack variables associated with (5.8) one gets 

The definition of M ensures = 0.  Consequently, the solution (jc, 0 )  and 9 is both primal and 
dual feasible (and optimal). I 

The next observation specifies our requirements concerning the solution of the reformulated 
problem. If the original problem is feasible, we may demand that  the artificial variables in the 
optimal solution to  (5.3)-(5.4) all be equal to zero. 

Observa t ion  5..2 (op t ima l  solut ion exis tence)  If the original linear problem (5.1)-(5.2) is 
not unbounded and has a feasible solution then there exists a finite positive number Mo such that 
for every M 2 Mo problem (5.3)-(5.4) has a feasible and optimal solution (jc,O) such that jc is 
an optimal solution to (5.1)-(5.2). 

Proof: If the original problem (5.1)-(5.2) is not unbounded and has a feasible solution then it 
also has a finite optimal solution. This and lemma 1. proves the observation. I 

The following observation is the most important one. It shows (although indirectly) how 
infeasibility of the original problem can be proven. It is a direct consequence of observation 5..2. 

Observa t ion  5..3 (infeasibility de tec t ion)  If there does not exist a finite number M > 0 
for which (x,  0 )  is an optimal solution of (5.3)-(5.4) then the original problem (5.1)-(5.2) is 
infeasible. 
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Proof :  Let us assume that  (5.1)-(5.2) has a feasible solution x0 > 0. According to  the 
observation 5..2 this implies existence of a finite M for which problem (5.3)-(5.4) has a feasible 
and optimal solution (x ,  0 )  which contradicts the assumption. I 

The theoretical results of this section may be summarized as follows: 

1. if the original problem has a solution, we can find it by solving the reformulated problem 
with sufficiently large value of M ,  

2. we need to  reduce the artificial variables to  zero, 

3. if we prove that  it cannot be achieved by further increases of the value of M then we know 
the original problem is infeasible. 

5.3 When is "big M" big enough? 

When i = 0 then the reformulated problem is exactly equivalent to  the original one and x is the 
latter one's optimal solution. If, however, the original problem is infeasible, the reformulated 
one still has an optimal and feasible solution (2 , i ) .  The task of distinguishing between these 
two situations is the subject of this section. This problem may also be put differently: when is 
M big enough for us to  be sure, that  non-zero optimal value o f t  corresponds to  the infeasibility 
of the original LP (5.1)-(5.2) (see also observation 5..2). 

Note that  the optimal basis of the problem (5.3)-(5.4) is also a feasible basis of its dual 
problem and a feasible solution to  the above is also a feasible (but not necessarily optimal) 
solution to  original problem's dual. 

Let us assume that  we have an optimal solution (2,  i) to  the reformulated problem (5.3)- 
(5.4) such that  there exists i for which ti > 0. From now on (as long as the optimality criterion 
is satisfied and artificial variables are not equal t o  zero) we will use a different pricing technique. 

5.3.1 Spl i t  pr ic ing 

Constraints (5.8) may also be written as 

where z, = w - v and z t  are reduced costs for the original and artificial variables respectively. 
We now compute reduced cost for non-basic artificial variable t; as 

T zt; = M - y e; = M - y; for J;,; = +1 and 
zti = M - yT(-e;) = M + y; for J;,; = -1 

where e; denotes i-th row (or column) of the identity martix I. 
Since we would like to  decrease t; from its current positive value (and possibly to  zero), we 

want zt; t o  be positive. In other words we want M t o  be greater than the current value of y;. 
If there are no artificial variables in the basis then y = B - ~ c ~  does not depend on M and it is 
sufficient to  increase M by E > 0 to  make the reduced cost positive. 

It is, however, possible that y; = y;(M). Then we have t o  find such M that  would allow 
introduction of ti into basis. In order to  find out the dependency between y and M we split the 
basic cost vector c g  into two parts: cg, and c g t  corresponding t o  variables x and t respectively. 

We have 

c B =  ['El = [ ' ? I  + [.:,I 
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Since 

we may extract the subgradient yt of y t  

Note that  yt is simply a sum of those rows of the basis inverse, to which the basic artificial 
variables correspond. 

It goes without saying that  

And so we conclude, that  

zt ;  = M - yx ;  - M E ;  for J;,; = +1 and 
z t ;  = M + y x ;  + M y t ,  for J;,, = -1. 

5.3.2 D y n a m i c  p e n a l t y  con t ro l  c r i t e r i a  

We need zt ;  to  become non-zero. We shall distinguish the following cases: 

1. if J,,, = +1 then 

a if yti = 1 then the value of zt ;  is independent of M ,  so an increase of M can not 
produce a non-zero reduced cost, 

a if yt; < 1 then an increase of M so that 

will result in positive reduced cost zt ;  and possibly with decrease of t i  in the subse- 
quent simplex iteration, 

a if yt, > 1 then 
zt ;  = M - yx;  - M E ;  

= M(1- yt;) - Yxi 

and obviously y x ;  is already negative: 

This means that  if we increase M it will make increasing t ;  profitable. We use the 
same formula as before: 

Y x ,  M > -  
1 - y t ;  

2. if J;, ,  = +1 then 

a if yt; = -1 then z t ;  is independent of M ,  

a otherwise we state that  penalty M should be greater than 
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Similarly for variable x j  the reduced cost zxj (which we want to become non-zero) is com- 
puted as 

zxj = cj  - (y, + ~ y t ) ~ a ~ .  

Depending on the bound on which the non-basic structural variable x j  is we decide on further 
action: 

1. if x j  is a t  its finite lower bound and ytTaj > 0 or 

2. if x j  is a t  its finite upper bound and ytTaj < 0 or 

3. if x j  is between its bounds and @aj # 0 

we demand that  

Note that  since for any linear programming problem there is only a finite number of possible 
simplex bases, it is in principle (but not in practice) possible to  compute appropriately big value 
of M (by search of all possible simplex bases) or detect problem's infeasibility without actually 
solving it. This is a direct proof of observation 5..3. 

5.3.3 R e q u i r e d  modifications to s t a n d a r d  pricing 

Some applications in decomposition schemes (see [16]) require all non-zero artificial variables 
present in the optimal solution to  the modified problem to  be in the optimal basis. To this end 
we need to  modify slightly the pricing method used in the primal simplex algorithm. 

Typically we only consider variables with reduced cost zj  which guarantees a minimum profit 
of b0 per unit change of non-basic variable xj ,  where b0 > 0 is called optimality t ~ l e r a n c e . ~  In 
our case we want all non-zero artificial variables to be present in the optimal basis. In case of 
artificial variables we treat reduced costs of zero as profitable. Of course, if some other variables 
have non-zero and profitable reduced costs, they are chosen as candidates to  enter the basis. 

The result of this procedure is such that 

the algorithm introduces into the basis the same columns as it would otherwise, until no 
more variables have favourable reduced costs and 

when some non-zero artificial variables remain outside of basis in the optimum, thay are 
"forced" into the basis. 

5.3.4 Algor i thm's  e x p e c t e d  behav iour  

In case of a feasible problem (5.1)-(5.2) we are only able to  predict that  all artificial variables 
will be reduced to  zero. Some of them may be in the optimal basis, some may be not. But this 
is not the most interesting case. 

We are more concerned with a solution process of an infeasible problem. We expect that 
after the reformulated problem (5.3)-(5.4) is solved and some artificial variables are found to  
be non-zero, the penalty M will be increased (unless it s found to be pointless - according to 
the formulas presented before). The algorithm will then tend to  put more and more non-zero 
artificial variables into the basis. In general (especially in case of infeasible problems) we must 
take into account presence of artificial variables in the final (optimal) basis of the reformulated 
problem (5.3)-(5.4). 

As it was mentioned before, if we initially assign a very large value to M we are likely to  
cause unnecessary numerical difficulties as soon as the first artificial variable is introduced into 

61n the steepest edge algorithm we compare objective function value decrease per unit move along the edge of 
the simplex. 
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the basis. If M is very large (compared to  other cost vector coefficients of the basic variables), 
it will dominate the shadow prices (dual variables) used during pricing. Since we now know 
exactly "how big should the big M be", we may start the algorithm with a relatively small 
penalty M (e.g. M = pmaxj  cj, p 2 1) and increase it when necessary to  e.g. ten times the 
minimum value that  would allow us to  make a step. We recommend using a t  least a factor of two 
in order to  avoid unnecessarily many adjustments to  the penalty term. Indeed, our experience 
(see Section 7.) shows that  p = 2 is perfectly satisfactory. Note that  in case of dual variable or 
reduced cost update methods, the updated vectors would have to  be computed afresh after each 
change of the penalty factor M. 

5.4 A heuristic for infeasibility reduction 

The method for finding a feasible initial solution presented in this paper may in general produce 
a dense residual vector 

r0 = b - AX' 

before the artficial variables are added. We developed a simple yet efficient heuristic which 
(whenever possible) tries to  shift variables x j  from their initial positions xy, j = 1,. . . , n so that  
the residual vector is reduced. We want to  decrease a number of non-zero residuals r: as well 
as Euclidean norm of the vector rK, where K denotes the last step of the algorithm - the one 
in which the reduction stops. 

We scan the whole constraint matrix cl times, cl > 0 or until llrkll reaches zero. In each 
pass we change only one variable x j ,  j = 1 , .  . . , n at  a time so that 

(a) the norm of the current residual vector rk decreases and 

(b) no more than c2, c2 2 0 new non-zeros appear in the residual vector. 

For every variable x j  for which its corresponding column aj has no more than c2 non-zeros 
a t  positions a t  which rk has zero entries, we solve a simple optimization problem: 

min d(xjk) 
' I  <"I <"I 

where 

T k k  k T k  = a T a j ( ~ j k ) ~  - 2aj r x j  + ( r  ) r . 

Clearly d(x$) is a convex quadratic function of variable x;. It reaches its global minimum a t  

If 2; should be infeasible, we project it onto interval (Ij, uj): 

If x;+' # x; then 
k + l  - yk+l  = I' - aj (x .  xf) ,  

otherwise rk+' = rk. This ends k-th step; k is incremented, j is moved to point to  the next 
column (or the first one if j = n) and the algorithm continues until there are no more residuals 
or cl passes have been completed. 
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The computational effort required is rather moderate. We could rely entirely on updates of 
the residual vector, but a t  the beginning of each pass we compute it afresh. In this manner we 
prevent excessive build-up of round-off errors. We need to  compute the norms of all columns 
of matrix A  only once. In every step k we calculate a scalar product a?rk. It is inexpensive 
because aj is a sparse vector (typically it has no more than 5 to  10 entries). 

Note that  it is possible that  after the initial basis is chosen, some of the non-basic variables 
will be between their bounds. As it was explained before this is advantageous, because it helps 
to  avoid performing degenerate iterations. 

5.5 Consequences for the simplex method 

The whole Section 5. has been devoted to  the description of a new version of the revised simplex 
algorithm. We reiterate the consequences our approach has for the method: 

1. The basis and solution are now two seperate entities no longer bound together into a "basic 
solution". This allows us to  start (or restart) the algorithm with any combination of a 
feasible solution x  and a non-singular basis B.  

2. Any point x  E ?Rn is a legitimate starting point. The penalty method will take care of 
x's infeasibility. Of course very large values of some x j  will cause huge residuals and later 
numerical difficulties. But so would any other unnecessarily large numbers (e.g. constraint 
matrix coefficients) in the formulation of the problem. 

3. An inexpensive tool allowing to  reduce degeneration was proposed. 

In the future some features of our implementation will allow us to try even more interesting 
approaches to  linear programming. For example it might become possible t o  perform non- 
simplex steps, i.e. steps not along the edges of the simplex, but across its facets or even through 
the interior. Methods for finding non-simplex directions are beyond the scope of this paper (but 
certainly not beyond imagination). 

6. Restart of the penalty based simplex 

Let us assume that  an initial solution x0 and a non-singular initial basis B0 are given. The 
following algorithm may be used t o  start the penalty-based simplex from this solution and 
basis: 

Algorithm 111: Restart of the penalty-based primal simplex method 

0. An initial solution x0 and a non-singular initial basis BO are given. 

1. The non-basic variables which violate their simple bounds are projected on those bounds: 

I 1 ~ j  x L j < l N j  

x N j =  U N j  x L j > u N j  

GI j in all other cases 

2. The basic variables are calculated: 
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3. The infeasible basic variables are projected on intervals delimited by their box constraints: 

B x B j < l B j  

XB j = U B j  x B j > u B j  

x i  in all other cases. 

4. The residuals are computed: 
r = b -  NxN -BxB. 

If r = 0 the algorithm terminates. 

5. Residuals are decreased by means of shifting some variables from their current positions 
(see Section 5.4 for a description of a heuristic used). If the residuals are reduced to  zero 
the restart algorithm terminates. 

6. Artificial variables t are added to  the problem in order to  remove the remaining infeasibility. 
Their non-zero values are penalized. For details consult Section 5.2. 

7. A linear problem t o  which a feasible solution is known has thus been formulated. The 
restart algorithm terminates. 

One remark concerning the initial basis B0 is in order. As it has been stated in Section 5. it 
is in general possible that  the final (perhaps optimal) basis will contain some artificial variables. 
When we use this basis as a starting basis for another problem, the same artificial variables have 
to  be used again, even if the non-zeros in their corresponding columns have now different value. 

7. Numerical results 

The numerical results that  are presented in this section will not surprise the reader. Perhaps 
the choice of test problems requires more explanation then the tables themselves. We used about 
50 of the problems included in the NETLIB test LP collection of Gay [7], which is probably 
quite familiar to  readers who encountered other papers concerned with linear programming 
implementations. An overview of about 90 of those problems (listing their dimensions, optimal 
solutions and other details) is presented in [2]. 

In our tests we used a subset of those 90 LP's. We rejected the smallest problems (those with 
no more than 2000 non-zeros in the constraint matrix). The reason for this omission is rather 
obvious: we are concerned with large and sparse linear problems and we think that  the solution 
process of small (and consequently relatively dense) linear programs does not offer much insight 
into the possible performance of our code in real-life situations. 

We present a number of tables; each demonstrates one of the features of our code. Table 1 
shows the results of applying our infeasibility reduction heuristic to  the initial solutions obtained 
from a basis creation technique similar to  this of Bixby [2]. In Tables 2 and 3 a comparison of the 
performance of three pricing algorithms is given. Finally, dynamic penalty control is cofronted 
with large static penalty in Table 4. Unless otherwise noted, the code was run with dynamic 
penalty factor control and employed full pricing with reduced cost updates and approximate 
steepest edge calculation. All the computations were performed on the same 40MHz SPARC 
Station 2 computer. Computation times are measured in CPU seconds as reported by the Solaris 
operating system. 
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7.0.1 Infeasibility reduction heuristic 

Table 1 presents the reports of the infeasibility reduction routine described in Section 5.4 with 
cl = 2 and c2 = 1. That means that a t  most two passes of the constraint matrix were per- 
formed and only one non-zero creation in the residual vector per variable shift was allowed (see 
Section 5.4 for details). We have selected those numbers after some initial experiments which 
proved them to  be reasonable, but not necessarily the best. It  is likely that  more "fine tuning" 
of those parameters would help. Each table row corresponds to  one linear problem. First the 
name of the problem and the number of rows of its constraint matrix are given. Infeasibility 
before reduction (denoted by Initial infeas. in the table) is expressed by the number of non-zeros 
in the residual vector (no.) and the euclidean norm of this vector (norm). The same data  after 
the reduction is presented under the heading Final infeas.. The number of reduction passes is 
specified in the next column (Pass.). Finally, infeasibility reduction in terms of the number of 
non-zeros of the residual vector (Number red.) as well as its norm (Norm red.) are expressed in 
percent and calculated as 

number-afterreduction - number-beforereduction 
reduction = 

number-beforereduction 
loo[%]. 

Naturally, negative number corresponds to an increase in the number of non-zeros (the increase 
in the norm of the vector by our algorithm is not possible). 

It  is easy to  see that  the behaviour of the algorithm depends highly on the problem. We can 
see three major patterns: 

the initial solution found by crashing is feasible or 

the initial solution is not feasible, but the reduction routine is unable t o  reduce the residuals 
and terminates after one pass or 

the reduction progresses and two passes are completed. 

On some smaller problems or with different values of the parameters cl and c;! the reduction 
heuristic has sometimes managed to  find a feasible primal solution, however in general this may 
be considered a rather rare occurence. In case of 6 problems the method increased the number 
of non-zeros. The infeasibility of 7 LP7s remained unchanged (and therefore the reduction 
necessarily caused a nett loss of computation time). In general, though, most of the initial 
solutions benefited from applying the reduction algorithm. Additionally, it is worth remembering 
that  this technique increases the number of non-basic variables placed between their bounds and 
thus may have beneficial impact on solution process of highly degenerate problems. 

While the average gains produced by our algorithm are encouraging (30% decrease in the 
euclidean norm of the initial residual vector), we see that its application should be decided upon 
on a problem-by-problem basis. 

7.0.2 Three pricing techniques 

Papers by Goldfarb and Reid [8], Forrest and Goldfarb [5], Harris 191, Bixby [3] and many others 
have discussed the practicability, efficiency and implementation of different pricing techniques 
for the modified simplex method. The most important of those are 

(i) full, partial and/or multiple pricing, 

(ii) DEVEX pricing (currently recognized as an approximation to steepest edge), 

(iii) steepest edge and 

(iv) hybrid approaches (typically used in commercial codes because of efficiency considera- 
tions). 
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It is now common knowledge that  (i) is cheapest per iteration (especially when implemented 
in a reasonable manner, e.g. with dual variables' or reduced costs7 updates) and offers reasonable 
overall efficiency. On the other hand (iii) adds some extra workload to  each simplex iteration, 
but usually results in a significant decrease in the number of iterations. It is especially well 
suited for numerically difficult and highly degenerate problems, where the simpler methods may 
fail. DEVEX is one of the possible compromises between the former and the latter. In terms 
of computation time it seems superior both to  steepest edge and minimum reduced cost pricing 
criteria. Finally, so-called hybrid approaches employ two or more of the basic techniques and 
switch between them when it seems that  the solution process might benefit (see e.g. Bixby [3] 
for a description of such a hybrid method). 

Our results gathered in Tables 2 and 3 conform to  the findings of the above mentioned 
papers. In the tables we present the number of iterations (Iter.) needed t o  solve each problem 
with each of the three methods implemented in our code and the CPU time taken (Time). The 
compared methods are: 

most negative reduced cost criterion of Dantzig (Reduced Cost or RC) ,  

steepest edge (also denoted by S E )  and 

our approximate steepest edge (Approx. SE and ASE). 

While Table 2 lists the numbers of iterations and CPU times, Table 3 compares the methods by 
listing improvements in terms of solution times as well as the numbers of iterations measured 
in percent. 

Steepest edge compared to  the most negative reduced cost criterion almost always reduces 
the number of iterations (on the average by 15%) and quite as often increases the solution 
time (34%). Approximate steepest edge cuts down the average of 17% of iterations and 13% of 
time needed by the Dantzig's method. Both those results come as no surprise. What is quite 
interesting though, is the fact that  approximate steepest edge is usually as good in terms of the 
number of iterations as the exact version! And, naturally, it is much faster. 

7.0.3 Dynamic penalty control: efficiency and numerical stability 

We shall present the impact of the dynamic penalty control method derived in Section 5. on 
the solution times and numbers of iterations of the simplex method employing Dantzig7s pricing 
strategy. The comparison is shown in Table 4. As previously, the number of iterations and 
problem solution times are shown. Then the improvement offered by dynamic penalty control 
is computed (under the heading Comparison). Additionally, for dynamic penalty method the 
number of necessary penalty factor adjustments is given (Pen. adj.). In this experiment we used 
the initial dynamic penalty factor M computed as 

Dynamic penalty method is definitely not a performance booster. In fact, on two problems, 
namely SCSDG and SCSD8 it  performed very badly. In most cases it reduces solution time 
by a tiny fraction, but sometimes the improvement reaches over thirty percent. The avarage 
improvement is negligibly small (and remains small, but positive if we disregard the two LP's 
mentioned above). What the table does not show is the impact of the dynamic penalty method 
on numerically difficult problems. The poorer is the scaling of the problem's objective function, 
the more disastrous effects may the large static penalty method have. We have observed that  
the dynamic penalty tends to  solve numerically difficult problems, for which the static penalty 
method fails. 

Now just a word about the penalty adjustments. From the description given in Section 5.3 it 
might seem that  the penalty adjustments are a rather costly operation. When standard pricing 
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discovers the need for penalty adjustment, up to  two linear systems with basis transpose have 
to  be solved, and then a "duplicate" pricing step is performed. The reader might be discour- 
aged by possible excessive costs of such operations. The experiment proved those fears to  be 
unsubstantiated. Only six problems needed penalty adjustments and it was always needed only 
once. In other experiments (with different initial penalty values or with other linear problems) 
we never observed more than two penalty adjustments. 

The method may be thus seen as an  inexpensive way of making the penalty method work 
without causing numerical difficulties. The obvious advantage of penalty method is the fact 
that it does not require a two phase simplex algorithm (in the first phase we cannot perform 
steepest edge pricing or reduced cost updates). It may be viewed as an alternative t o  a two-phase 
algorithms. 

It has one additional feature that  may be seen to be an advantage or a problem - depending 
on one's standpoint. The solver produces a solution even when the problem is not feasible. 
It may be seen as a waste of precious computation time or as a way of obtaining interestig 
information about the problem. The optimal solution to the modified problem may be used to 
reformulate the infeasible LP. And after necessary problem modifications the solution process 
may be restarted from the point in which the infeasibility was d i s~overed .~  

7This feature was already successfully tried in a decomposition scheme, but its description is far beyond the 
scope of this work. 



A Penalty Based S implex  Method 

Table 1: A test of the infeasibility reducing heuristic 
Problem 1 1  Rows I Initial infeas. I Final infeas. I Pass. I Number red. 

name I I  

Averaee: 

agg2 
agg3 
bandm 
beaconfd 
bnll 
boeingl 
brandy 
czprob 
degen3 
e226 
etamacro 
fffff800 
finnis 
fitld 
f i t lp  
fit2d 
fit2p 
for plan 
ganges 
gfrd-pnc 
grow7 
israel 
nesm 
pilot4 
scfxml 
scfxm2 
scfxm3 
scrs8 
scsdl 
scsd6 
scsd8 
sctap2 
sctap3 
seba 
shell 
ship041 
ship04s 
ship081 
ship08s 
ship121 
shipl2s 
sierra 
standata 
standgub 
standmps 
stocfor2 
tuff 
woodw 
80bau3b 

Norm r e d 1  
no. I norm I no. I norm 

517 
517 
306 
174 
644 
352 
221 
930 

1504 
224 
401 
525 
498 

25 
628 

26 
3001 

162 
1310 
617 
141 
175 
663 
41 1 
33 1 
66 1 
991 
491 

78 
148 
398 

1091 
1481 
516 
537 
403 
403 
779 
779 

1152 
1152 
1228 
360 
362 
468 

2158 
334 

1099 
2263 

I r%l 
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Table 2: Pricing methods - absolute performance 

Problem 
name 

a& 
agg3 
bandm 
beaconfd 
bnll 
boeingl 
brandy 
czprob 
degen3 
e226 
etamacro 
fffff800 
finnis 
f i t ld  
f i t lp  
fit2d 
fit2p 
forplan 
ganges 
gfrd-pnc 
grow7 
israel 
nesm 
pilot4 
scfxm 1 
scfxm2 
scfxm3 
scrs8 
scsdl 
scsd6 
scsd8 
sctap2 
sctap3 
seba 
shell 
ship041 
ship04s 
ship081 
shipO8s 
ship121 
shipl2s 
sierra 
s tandata  
standgub 
standmps 
stocfor2 
tuff 
woodw 
80bau3b 

Reduced 
Iter. 

180 
211 
771 
47 

2725 
748 
388 

1286 
11739 

691 
1131 
1305 
903 

2079 
842 

39695 
10144 

422 
441 
517 
178 
287 

4652 
1252 
463 
934 

1445 
561 
460 

1224 
3048 

872 
1251 
222 
276 
236 
185 
487 
304 
913 
484 
767 

86 
86 

265 
1975 
270 

2040 
8223 

Cost 
Time 

2.7 
3.4 

15.0 
0.3 

99.8 
11.7 
6.7 

58.4 
1190.9 

11.0 
20.7 
35.9 
15.6 
63.3 
41.0 

14409.1 
5330.9 

7.3 
14.0 
8.1 
4.8 
4.1 

242.1 
59.7 

6.2 
22.9 
52.1 
14.0 

5.0 
21.1 

116.3 
33.3 
62.8 

1.3 
5.7 
4.9 
3.2 

21.4 
9.5 

52.3 
19.0 
30.1 

1.4 
1.4 
4.5 

150.7 
6.2 

210.1 
923.6 

Steepest 
Iter. 

202 
217 
447 

39 
1970 
697 
324 
996 

5067 
416 
717 
890 
676 

1363 
539 

20761 
9974 

288 
477 
512 
203 
220 

3605 
1153 
377 
775 

1305 
427 
223 
895 

2220 
995 

1271 
218 
318 
242 
178 
499 
299 
901 
485 
691 

79 
79 

274 
1644 
207 

1528 
7053 

Edge 
Time 

4.7 
5.3 

14.6 
0.4 

122.6 
18.6 
8.8 

84.1 
932.6 

10.2 
19.2 
41.9 
17.6 
78.9 
52.4 

12263.5 
5342.4 

8.5 
27.6 
16.0 
8.4 
5.5 

262.4 
88.3 

8.1 
31.0 
72.3 
15.9 
4.1 

28.4 
148.4 
49.0 
83.8 

1.8 
10.3 
7.1 
4.4 

34.1 
14.1 
72.8 
28.3 
34.2 

1.9 
2.0 
8.2 

188.2 
9.0 

325.2 
1050.8 

Approx. 
Iter. 

208 
216 
459 

39 
1725 
651 
343 

1108 
4104 

370 
729 
759 
675 

1279 
790 

21345 
9672 
248 
404 
540 
206 
184 

2808 
983 
373 
800 

1254 
477 
317 
668 

1279 
843 

1032 
218 
346 
239 
178 
539 
324 
907 
485 
713 

90 
90 

257 
1672 

143 
1474 
7140 

SE 
Time 

3.3 
3.7 
8.8 
0.2 

70.7 
10.6 
5.2 

54.2 
372.2 

5.8 
13.0 
20.0 
12.5 
37.5 
35.9 

6356.5 
2904.3 

4.5 
13.0 
9.9 
5.6 
2.7 

141.4 
55.2 
5.2 

20.2 
47.6 
13.5 
4.3 

12.6 
47.1 
33.7 
51.3 

1.5 
7.8 
5.4 
3.1 

26.8 
11.3 
59.0 
20.1 
26.5 

1.6 
1.7 
4.6 

132.9 
4.7 

171.3 
837.3 



A Penalty Based Simplex Method 

Table 3: Pricing methods - relative performance 

Problem 
name 

agg2 
agg3 
bandm 
beaconfd 
bnll 
boeingl 
brandy 
czprob 
degen3 
e226 
etamacro 
fffff800 
finnis 
fit ld 
f i t lp  
fit2d 
fit2p 
forplan 
ganges 
gfrd-pnc 
grow7 
israel 
nesm 
pilot4 
scfxm 1 
scfxm2 
scfxm3 
scrs8 
scsd 1 
scsd6 
scsd8 
sctap2 
sctap3 
seba 
shell 
ship041 
ship04s 
ship081 
shipO8s 
ship121 
shipl2s 
sierra 
s tandata  
standgub 
standmps 
stocfor2 
tuff 
woodw 
80bau3b 
Average: 

S E  vs. 
Iter. 

-12.22 
-2.84 
42.02 
17.02 
27.71 

6.82 
16.49 
22.55 
56.84 
39.80 
36.60 
31.80 
25.14 
34.44 
35.99 
47.70 

1.68 
31.75 

-8.16 
0.97 

-14.04 
23.34 
22.51 

7.91 
18.57 
17.02 
9.69 

23.89 
51.52 
26.88 
27.17 

-14.11 
-1.60 

1.80 
-15.22 

-2.54 
3.78 

-2.46 
1.64 
1.31 

-0.21 
9.91 
8.14 
8.14 

-3.40 
16.76 
23.33 
25.10 
14.23 
15.13 

RC 
Time 

-74.07 
-55.88 

2.67 
-33.33 
-22.85 
-58.97 
-31.34 
-44.01 

21.69 
7.27 
7.25 

-16.71 
-12.82 
-24.64 
-27.80 

14.89 
-0.22 

-16.44 
-97.14 
-97.53 
-75.00 
-34.15 

-8.38 
-47.91 
-30.65 
-35.37 
-38.77 
-13.57 

18.00 
-34.60 
-27.60 
-47.15 
-33.44 
-38.46 
-80.70 
-44.90 
-37.50 
-59.35 
-48.42 
-39.20 
-48.95 
-13.62 
-35.71 
-42.86 
-82.22 
-24.88 
-45.16 
-54.78 
-13.77 
-34.27 

ASE vs. S E  
Iter. 

-2.97 
0.46 

-2.68 
0.00 

12.44 
6.60 

-5.86 
-11.24 

19.01 
11.06 

-1.67 
14.72 
0.15 
6.16 

-46.57 
-2.81 

3.03 
13.89 
15.30 

-5.47 
- 1.48 
16.36 
22.11 
14.74 

1.06 
-3.23 

3.91 
-11.71 
-42.15 

25.36 
42.39 
15.28 
18.80 
0.00 

-8.81 
1.24 
0.00 

-8.02 
-8.36 
-0.67 

0.00 
-3.18 

-13.92 
-13.92 

6.20 
-1.70 
30.92 
3.53 

-1.23 
2.18 

ASE 
Iter. 

-15.56 
-2.37 
40.47 
17.02 
36.70 
12.97 
11.60 
13.84 
65.04 
46.45 
35.54 
41.84 
25.25 
38.48 

6.18 
46.23 

4.65 
41.23 

8.39 
-4.45 

-15.73 
35.89 
39.64 
21.49 
19.44 
14.35 
13.22 
14.97 
31.09 
45.42 
58.04 
3.33 

17.51 
1.80 

-25.36 
-1.27 

3.78 
-10.68 

-6.58 
0.66 

-0.21 
7.04 

-4.65 
-4.65 

3.02 
15.34 
47.04 
27.75 
13.17 
17.03 

vs. RC 
Time 

-22.22 
-8.82 
41.33 
33.33 
29.16 

9.40 
22.39 
7.19 

68.75 
47.27 
37.20 
44.29 
19.87 
40.76 
12.44 
55.89 
45.52 
38.36 

7.14 
-22.22 
-16.67 

34.15 
41.59 

7.54 
16.13 
11.79 
8.64 
3.57 

14.00 
40.28 
59.50 

-1.20 
18.31 

-15.38 
-36.84 
-10.20 

3.13 
-25.23 
-18.95 
-12.81 
-5.79 
11.96 

-14.29 
-21.43 
-2.22 
11.81 
24.19 
18.47 
9.34 

13.48 
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Table 4: Dynamic penalty control vs. large static penalty 

Problem 
name 

agg2 
agg3 
bandm 
beaconfd 
bnll 
boeingl 
brandy 
czprob 
degen3 
e226 
etamacro 
fffff800 
finnis 
fitld 
f i t lp  
fit2d 
fit2p 
forplan 
ganges 
gfrd-pnc 
grow7 
israel 
nesm 
pilot4 
scfxm 1 
scfxm2 
scfxm3 
scrs8 
scsdl 
scsd6 
scsd8 
sctap2 
sctap3 
seba 
shell 
ship041 
ship04s 
ship081 
shipO8s 
ship121 
shipl2s 
sierra 
standata 
standgub 
standmps 
tuff 
woodw 
80bau3b 
Average: 

Static 
Iter. 

193 
231 
764 
47 

2676 
742 
468 

1479 
14505 

776 
1183 
1163 
815 

2079 
842 

39695 
10144 

44 1 
439 
513 
178 
287 

4085 
Not 
454 
989 

1512 
560 
441 
770 

1272 
953 

1221 
224 
276 
236 
185 
487 
303 
919 
484 
772 

86 
86 

271 
270 

1916 
8930 

penalty 
Time 

2.7 
3.5 

14.3 
0.3 

99.9 
10.7 
7.6 

68.1 
1671.2 

16.6 
28.8 
46.1 
19.6 
86.9 
61.1 

14401.0 
5166.6 

7.0 
13.5 
7.7 
4.7 
4.0 

199.0 
solved! 

5.9 
23.5 
52.4 
13.1 
4.8 

14.2 
50.8 
35.0 
59.5 

1.4 
5.5 
4.8 
3.0 

20.9 
9.3 

51.1 
18.5 
30.9 

1.3 
1.4 
4.4 
6.1 

187.6 
957.3 

Iter. 

180 
211 
771 

47 
2725 

748 
388 

1286 
11739 

691 
1131 
1305 
903 

2079 
842 

39695 
10144 

422 
441 
517 
178 
287 

4652 
1252 
463 
934 

1445 
561 
460 

1224 
3048 

872 
1251 
222 
276 
236 
185 
487 
304 
913 
484 
767 

86 
86 

265 
270 

2040 
8223 

Comparison 
Iter. 

[%I 
6.74 
8.66 

-0.92 
0.00 

-1.83 
-0.81 
17.09 
13.05 
19.07 
10.95 
4.40 

-12.21 
-10.80 

0.00 
0.00 
0.00 
0.00 
4.31 

-0.46 
-0.78 

0.00 
0.00 

-13.88 
- 

-1.98 
5.56 
4.43 

-0.18 
-4.31 

-58.96 
-139.62 

8.50 
-2.46 

0.89 
0.00 
0.00 
0.00 
0.00 

-0.33 
0.65 
0.00 
0.65 
0.00 
0.00 
2.21 
0.00 

-6.47 
7.92 

-3.00 

Dynamic 
Pen. 
adj . 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Time 

[%I 
0.00 
2.86 

-4.90 
0.00 
0.10 

-9.35 
11.84 
14.24 
28.74 
33.73 
28.12 
22.13 
20.41 
27.16 
32.90 

0.00 
0.00 

-4.29 
-3.70 
-5.19 

0.00 
0.00 

-21.66 
- 

-5.08 
2.55 
0.57 

-6.87 
-4.17 

-48.59 
-128.94 

4.86 
-5.55 
14.29 
0.00 
0.00 
0.00 
0.00 

-1.08 
0.00 
0.00 
2.59 
0.00 
0.00 
0.00 
0.00 

-11.99 
3.52 

-0.23 

penalty 
Time 

2.7 
3.4 

15.0 
0.3 

99.8 
11.7 
6.7 

58.4 
1190.9 

11.0 
20.7 
35.9 
15.6 
63.3 
41.0 

14401.0 
5166.6 

7.3 
14.0 
8.1 
4.7 
4.0 

242.1 
59.7 

6.2 
22.9 
52.1 
14.0 
5.0 

21.1 
116.3 
33.3 
62.8 

1.2 
5.5 
4.8 
3.0 

20.9 
9.4 

51.1 
18.5 
30.1 

1.3 
1.4 
4.4 
6.1 

210.1 
923.6 
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8. Conclusions 

We have presented several issues of an advanced and efficient (but still experimental) imple- 
mentation of the revised simplex method for linear programming. The most important of its 
original features include: 

a new approximate steepest edge pricing method, 

efficient, numerically stable and reliable penalty method for finding an initial feasible 
solution, 

equal treatment of basic and non-basic variables (they are both allowed to  take any feasible 
values) which facilitates avoiding degeneracy, 

ability to  restart easily and reliably (as well as start from any combination of initial solution 
and basis8), 

ability to  provide information useful in tracking down the source of infeasibility, 

a heuristic which reduces the infeasibility of the initial solution. 

The results of numerical experiments presented in Section 7. have proven practicability, 
usefullness, robustness and reliability of our algorithms. The tests confirmed the theoretical 
speculations concerning the performance of some of our techniques. Some of the ideas presented 
here, specifically those regarding simplex method's restarts, were already put to  the test of 
sequential solution of thousands and tens of thousands of middle and large scale linear problems 
arising in a certain stochastic program decomposition scheme[l6]. We hope to  be able t o  use 
this method successfully in many other novel and non-standard approaches t o  linear program 
solution (e.g. method of Wierzbicki [20]). 
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'It is possible to specify only an initial basis or only the solution - the algorithm will take care of finding the 
missing part of initial solution information. 
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