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Abstract 

In this paper, for a distributed parameter system 
described by a partial differential equation of para- 
bolic type, two optimal control problems are investi- 
gated. From the engineering standpoint on the construction 
of control devices, we assumed that both distributed and 
boundary controls are respectively concentrated spatial- 
ly onto some spatial domains or onto some parts of the 
boundary. First, for a performance index in quadratic 
form, an optimal control problem with continuous- 
time control is considered. Applying the technique of 
dynamic programming, a non-linear integro-partial dif- 
ferential equation analogous to the Riccati equation has 
been obtained. Second, using Green's function repre- 
sentation, the same optimal control problem with discrete- 
time control is discussed, and the recurrence relation- 
ships to determine the optimal control policy have been 
derived. lastly, relationships between the above- 
obtained optimal continuous-time and discrete-time controls 
have been discussed. 

1. Introduction and Problem Statement 
-. . .- -. . . . . .. -. -. -. -. . . - -. - . . . - . - . . .. -- - - 

Recently, control theory for distributed parameter systems 
has been developing very rapidly, and we can notice this trend 
from the excellent survey presented by A.C. Robinson [ a ] .  
In the development of this field of research, one of the basic 
approaches is to extend the accepted theories for lumped param- 
eter control systems to distributed parameter control systems. 
Furthermore, we must investigate the peculiarities which only 
distributed parameter control systems show. It is also ircportant 
to investigate the obtained results from more general viewpoints 
and to establish a unified control theory within the framework 
of distributed parameter systems, and to present rational 
criteria for approximation. For example, in the optimal control 
theory for linear lumped parameter systems with quadratic per- 
formance indices, the relationships between optimal continuous- 
time and discrete-time controls already have been well investi- 
gated. For the cases of distributed parameter systems, the same 



optimal control problems have been researched by many scientists, 
for example, P.K.C. Wang [ 9 ] ,  H. Erzberger and M. Kim [1,2], 
and J. Lions [51. However, the relationships between optimal 
continuous-time and discrete-time controls have not been inves- 
tigated thoroughly. 

The purpose of this paper is to make clear the relation- 
ships between optimal continuous- and discrete-time controls 
for a distributed parameter system described by a linear partial 
differential equation of parabolic type, and to establish 
rational criteria for approximation. The performance index is 
assumed to be in quadratic form, and, as it is very difficult 
in practice to construct control devices which can change the 
intensity of control inputs continuously with respect to space 
variable, we assumed that both distributed and boundary controls 
are concentrated spatially onto some spatial domains or onto 
some parts of the boundary. Thc latter assumption is admittable 
from the practical engineering point of view (see Porter [7]). 

From now on, let us matkicrilatically describe the problem 
in more detail. The dynamic behavior of the distributed param- 
eter control system considered in this paper is described by 
the following partial differential equation of the parabolic 
type : 

where the bounded spatial domain D is an open, connected subset 
of an m-dimensional Esclidean space R". The function F (t,x) 
reprpsents a distrlhut,-?i control, and A denotes a linear partial 
di ffcrnntial oper-to-- icfined by 

where y (x) shows, f o r -  instance, the ratio of calorific power 
which is lost by heat radiation. 

For Eq. (1 ) , f l i e  boundary condition 



is imposed, where au(t,E)/an denotes the differentiation of 
u(t,E) along the outward directed normal from the boundary 
S of D, and G(t,E) is a boundary control function. The 
initial state of the system is given a priori as 

lim u(t,x) = u (x) . 
ttto 0 

Let us impose the following restrictions to the above- 
mentioned distributed and boundary controls F(t,x) and G(t,S): 

1) F (t,x) and G (t,S) are spatially concentrated respec- 
tively onto some finite number of spatial donains 
Dl'".' 

Dk, 
in D and onto some finite parts of St 

say S1,..:,Skq. 

2) F(t,x) and G(t,E) are constants with respect to x and 
E at each DIt...,Dk4, and S1, ..., S , respectively. 

k, 

Let us define the following characteristic functions @i(~) 

and $i (E) to each Di and Sit respectively; i.e. 

Then, we can write the control functions F(t,x) and G(t,E) 
respectively as 



Particularly, when the domain Di and/or boundary Si is con- 

centrated into some respective points, say di and/or si, 

each characteristic function must be defined as 

where 6m and 6m-1 are respectively m- and (m - 1)-dimensional 
Dirac Is delta functions (see Wiberg [I 01 ) . 

Moreover, we introduce the vector valued functions as 

and 

where the prime denotes the transpose. Then, two control 
functions of (6) and (7) can be respectively represented as 



Summing up the foregoing assumptions, we consider finally the 
distrihted parameter system governed by 

and 

As the performance criterion function, we introduce the 
quadratic one as 

+ f (t) K, (t) f (t) + g' (t) g2 (t) g (t) dt 1 

where 

q (t,x,y) , r (x,y) : scalar valued, symmetric kernels defined 
on DxD, which are positive semidefinite, i.e. 

LL v (x) q (t,x,y) v (y) dxdy 2 - 0 for all square-integrable 
function v; and (1 6) 

Kl(t), K2(t): klxkl and k2xk2 positive definite symmetric 

matrices, respectively. 

Now, we consider the following optimal control problem: 
given the system equation (1 3) , the boundary condition (1 4) , 
and the initial condition (4), find the optimal control functions, 
f (t) = f* (t) and g (t) = g* (t) , which minimize the performance 
criterion function (15). We also consider the same optimal 



control problem for discrete-time control policy, and the 
relationships between the foregoing two optimal control policies. 
These problems will be explained in more detail in the following 
sections. 

2. Derivation of the Riccati Eauation 

In this section, we shall use the technique of dynamic 
programming to solve the problem stated in the previous sec- 
tion, and as a result, the Riccati equation to determine the 
optimal control law, which is a nonlinear integro-partial dif- 
ferential equation, is derived. First, let us introduce the 
minimum error function defined by 

It is easy to show that it holds the relation as 

min 

and at time t = tf, we get the terminal condition 

The next step is to apply the dynamic programming to the 
minimization of the error functional given by ( 1 7 ) .  Invoking 
the principle of optimality, it follows that 



The method of solving the functional equation (20) is similar 
in principle to the method of solving the equation used for 
lumped parameter systems; that is, the equation for lumped 
parameter systems consists of assuming a specific form for P 
which is then substituted into Eq. (20) in order to verify its 
correctness. Here, by the analogical inference from lumped 
parameter systems, P is taken to be the form 

Simultaneously, we assume that p(t,x,y) is symmetric with 
respect to x and y because of the assumptions that q(t,x,y), 
r (x,y) , K, (t) and K2 (t) are all symmetric; i.e. 

To solve the relation (20), we must expand the functional 
P(t + At,u(t + At,x)) with respect to At. Because of the system 
equation (131,  for sufficiently small At, it follows that 

and at the same time, we get 

Then, from Eqs. (21 ) , ( 2 2 )  and (23) , we can derive an expan- 
sion such as 



A f t e r  s u b s t i t u t i n g  Eqs. (21) and ( 2 4 )  i n t o  E q .  ( 2 0 ) ,  and 
d i v i d i n g  bo th  s i d e s  of  t h i s  equa t i on  by A t ,  l e t  A t  t end  t o  
ze ro ;  t h e n  w e  o b t a i n  

Our n e x t  s t e p  i s  t o  set up t h e  p rocedure  t o  t r ans fo rm E q .  
(25) w i th  t h e  h e l p  of Green ' s  formula [ ? ]  g iven  by 

Using E q .  (261,  w e  g e t  



where t h e  symbol Ax d e n o t e s  t h e  o p e r a t o r  d e f i n e d  by ( 2 )  
t a k e n  w i t h  r e s p e c t  t o  t h e  x  v a r i a b l e  of  p ( t , x , y ) .  

Next ,  w e  d i v i d e  t h e  boundary S  i n t o  two p a r t s ,  s a y  a l  and 
a 2 ,  i n  t h e  f o l l o w i n g  manner; 

Then, from t h e  boundary c o n d i t i o n  ( l o ) ,  w e  g e t  

and 

S u b s t i t u t i n g  t h e s e  two r e l a t i o n s  i n t o  E q .  (27), w e  c a n  d e r i v e  



In the same way, we also get the relation 

substituting Eqs. (31) and (32) into Eq. (25), it follows that 

The optimal controls f*(t) and g*(t), which minimize the 
right hand side of Eq. (33), are found by setting the functional 
derivative of Eq. (33) with respect to f (t) and g (t) to zero, 



respectively. The resulting expressions can be given by 

and 

Substituting these optimal control functions into Eq. (j3), 
we obtain the equation that p(t,x,y) must satisfy; i.e. 

Eq. (36) must be satisfied for any state u. Therefore, the 
coefficients of integrands multiplied by the same fupction 
must themselves be zero. However, as it is possible to change 
u in the interior of D without changing it on the boundary, 
it follows that terms with different regions of integration 



a r e  independent of each o t h e r  and t h e r e f o r e  must be equated 
t o  ze ro  s e p a r a t e l y .  From Eq. ( 3 6 ) ,  t h e s e  obse rva t ions  y i e l d  
t h e  r e l a t i o n s  a s  

Reca l l ing  t h a t  a ( < )  = 0 on a 2 ,  we can exp res s  t h e  boundary 

cond i t i ons  of Eqs . (38)  more conc i se ly  a s  

From Eq. ( 1  9 )  , t h e  t e r m i n a l  cond i t i on  f o r  p ( t , x , y )  can be  
g iven  by 

Eq. (37)  w i th  boundary c o n d i t i o n s  (39) i s  a  non l inea r  i n t eg ro -  
p a r t i a l  d i f f e r e n t i a l  equa t ion  analogous t o  t h e  ~ i c c a t i  equa t ion ,  
which has never been s t u d i e d  be fo re  i n  t h e  v a s t  l i t e r a t u r e  on 
p a r t i a l  d i f f e r e n t i a l  euqa t ions  ( s e e  Erzberger  and K i m  [ 1 , 2 1 ) .  
I f  we can s o l v e  t h e  equa t ion  (37)  wi th  t h e  t e rmina l  cond i t i on  
given by ( 4 0 1 ,  t h e  op t imal  c o n t r o l  p o l i c i e s ,  f * ( t )  and g * ( t ) ,  
a r e  given by (34)  and (35)  r e s p e c t i v e l y ,  and a t  t h e  same t ime ,  
t h e  op t imal  e r r o r  f u n c t i o n a l  P ( t , u ( t , x ) )  can be c a l c u l a t e d  from 



Eq. (21). The resulting controls are obviously of the state 
feedback type. 

3. Discrete-Time Control Policy 

In this section, we consider the same optimal control 
problem stated in Section 1 but impose the following restriction 
to the control functions: both the distributed and boundary 
control functions, F(t,x) and G(t,S), are stepwise functions 
with respect to time. In other words, for t i-1 = < t < ti, let 

J 

the respective control functions f (t) and g (t) in Eq. (?o) be 

where j = 1, ..., N and N is the total number of sampling stages. 
For the convenience of consideration, we shall choose all 
sampling intervals to be equal to each other; namely 

We sha1.l consider the performance criterion function of the 
following discrete form, which corresponds to the one given 
by Eq. (15); 

qj(x,y), r(x,y): scalar valued, positive semidefinite kernels, 

which are symmetric on DxD, 



K1 j-1 lK2# j-1 : klxkl and k2xk2 ,positive definite symmetric 

matrices, respectively. 

From now on, let us determine the sequences of optimal 
control policy {fj-l) = jf~t*-*tf~-l) and {g~-~) = {g~t***t 

gi- 1 1 which minimizes the performance index Jd given by (43) 

unde; the conditions of (1 3) , (1 4) and (4) . The above-mentioned 
optimal control problem has already been investigated by the 
author (see Ito [41 and Matsumoto and Ito [61) . Therefore, 
let us here briefly explain only the derived results. 

Let the function U(t,x,y) be the Green's function associated 
with the homogeneous system of Eqs. (1) and (3). Then, the 
response of the inhomogeneous system can be written as (see 
Friedmann [ 3 1 ) 

where 

Particularly when wf-. consjder the control functions given by 
( 4 1 )  , we can get the t o 1  Jowing relation from Eq. (45) ; that is 

where is an inte~ral operator defined as 

and both hl (x) and h2(x) are vector valued functions of the 
form 



and 

From this place, for the convenience of mathematical 
description, we adopt vectors and a matrix as follows; 



Then, Eqs. (433 and (47) car, be written respectively 

We shall now solve the optimal control problem stated above 
by using dynamic programming technique. Let the error func- 
tional P . (u . (x) ) be defined as 

3 3  

Now, making an assumption that the error functional of 
(53) be of the form 

and let the sequence j-1 - } be the optimal {'* } = {~;,...,f;-~ 

control policy. Then the resulting form of the optimal control 
law can be written as 

rj* = - 
j-1 



where 

Furthermore the function p.(x,y) must satisfy the recurrence 
relationship as I 

As a result, starting with the terminal condition 

we solve the recurrence functional relationships of (56) 
and (57) with respect to s (x) and pj-l (x,y) . Then, the j - 1 
sequence of the optimal control poiicy (F* and the error j - 1  
functional Pi (u, (x) ) can be determined by (55) and (54) 

J J  
respectively. The control policy is also given as a feesbac!: 
control. 

4. Relationships Between Optimal Continuous-Time and Discrete- 
Time Control Policies 

In this section, let us investigate the relationships 
between the results derived in the preceding sections. We 
shall show that we can derive the Riccati equation of (37) from 
the recurrence relationships of (56) and (57) when the sampling 
interval T tend to zero. To begin with, as a preparation of 
the following investigation, let us enumerate some properties 
which the Green's function U(t,x,y) satisfies (see Friedmann 
[31), i.e. 



The n e x t  s t e p  i s  t o  s u b s t i t u t e  Eq .  (56)  i n t o  E q .  ( 5 7 )  and 
i t  f o l l o w s  t h a t  

+ hlX){Tqj i x r y )  + P .  ( x ~ Y )  h l  (yldxdy 
I r 1-1 

Then, l e t  u s  cor ls ider  t h e  c a s e  of  (62)  i n  t h e  l i m i t  a s  t h e  
sampl ing  i n t e r v a l  T t e n d s  t o  ze ro .  F i r s t ,  u s i n g  t h e  r e l a t i o n s  
of  (59)  t o  (61)  and G r e e n ' s  formula  g i v e n  by ( 2 6 ) ,  w e  g e t  



Equation (63) must be s a t i s f i e d  f o r  t h e  a r b i t r a r y  Green 's  
f u n c t i o n  U(O,x,z) .  A s  mentioned i n  S e c t i o n  2 ,  s i n c e  it i s  
p o s s i b l e  t o  change U(O,x,z) w i t h  r e s p e c t  t o  z i n  t h e  i n t e r i o r  
o f  D w i thou t  changing them on t h e  boundary, it fo l l ows  t h a t  
t e r m s  w i t h  d i f f e r e n t  r e g i o n s  o f  i n t e g r a t i o n  a r e  independent  o f  
each o t h e r  and t h e r e f o r e  must be  equated t o  z e r o  s e p a r a t e l y .  
A t  t h e  same t i m e ,  cons ide r ing  t h a t  Eq. (63) must b e  s a t i s f i e d  
f o r  t h e  a r b i t r a r y  v a l u e s  of bo th  x and y ,  w e  g e t  

and 

Now l e t  u s  t end  t h e  sampling i n t e r v a l  T t o  z e r o  and w r i t e  
p j  ( x ,y )  a s  p ( t , x , y )  ; t hen  t h e  boundary c o n d i t i o n s  of  (65) 

can be w r i t t e n  a s  

I n  t h e  same way, it fo l l ows  t h a t  

p .  ( x t y )  ;J P j  ( x t y )  -4 J  
+ A p . ( x t y ) T  t 

Y J  

and w e  g e t  ano the r  boundary c o n d i t i o n  f o r  p ( t , x , y )  a s  

a ( S ) p ( t , x , S )  + = 0  on S  . (68)  



L e t  u s  c o n t i n u e  t h e  same p rocedu re s ,  and w e  g e t  t h e  ex- 
p r e s s i o n s  

A f t e r  s u b s t i t u t i n g  Eqs. ( 6 4 ) ,  (67)  and ( 6 9 )  t o  (72)  i n t o  
E q .  ( 6 2 ) ,  w e  d i v i d e  t h e  bo th  s i d e s  of t h i s  r e l a t i o n  by T ,  
and t end ing  T t o  z e ro ,  t h e n  w e  g e t  t h e  r e l a t i o n  t h a t  p ( t , x , y )  
must  s a t i s f y ,  which i s  equa l  t o  t h e  R i c c a t i  equa t i on  o f  ( 3 7 ) ;  
i . e .  



Applying the same procedure to s j-l (x) of Eq. (56) , we 
get the optimal control policy of continuous-time form; that is 

f* (t) = -Kil it) L{jd @(x)p(tfxly)dx (74) 

Obviously, the terminal condition of p(t,x,y) can be given from 
Eq.  (58) as 

All these results are just the same as those of Section 2. 

5. Concluding Remarks 

Two optimal control problems have been discussed for a 
linear distributed parameter system governed by a partial 
differential equation of the parabolic type. We imposed a 
restriction on both distributed and boundary control functions 
such that these controls are concentrated spatially onto some 
parts of a spatial domain from the standpoint of control 
device construction. 

In Section 2, the optimal control problem with continuous- 
time control was considered. The performance criterion func- 
tion of quadratic form was evaluated by using dynamic programming 
technique, and the Riccati equation was derived. In Section 
3, the same optimal control problem with discrete-time cont.to1 
functions was investigated by using Green's function represc~~ta- 
tion, and recurrence formulae for determining the optimal control 
policy were obtained. Finally, the relationships between the 
optimal continuous- and discrete-time control policies were 
discussed in Section 4. 

We can develop the foregoing discussions up to the problem 
where the closed spatial domains Dl,.. . Dkl and boundaries 
S1,...,S move with respect to time within the spatial domain. 

k, 
In this cdse, the characteristic functions Oi(x) and $J~(C) 

and the vector valued function h(x) become the functions of 
time t. It is notable that when we disregard the assumption 
that control functions are concentrated with respect to space 
variables as shown by Eqs. (6) and (7), then it becomes impos- 
sible to derive recurrence formulae (56) and (57). 
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