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1. Derivations from individual-based models are a
necessary antidote against hidden assumptions
and vague concepts in models for higher levels
of biological complexity.

2. Ecological theory needs to give attention to pre-
dictions and conclusions that are both explicitly
conditional and qualitative.

3. When bridging mathematical models to ecologi-
cal applications, convergence to limit arguments
ought to be analysed by perturbation expan-
sions.

4. The adaptive dynamics framework contains
classical evolutionary game theory as a spe-
cial, structurally unstable case.

5. The canonical equation of adaptive dynam-
ics only applies under restrictive conditions,
higher-order terms are ignored and the phenom-
enon of evolutionary slowing down is missed.



6. Standard diffusion models of phenotypic
mutation-selection processes disregard the
discreteness of individuals and lead to qualita-
tively misleading predictions.

7. Focusing attention on evolutionary equilibria is
deceiving: evolutionary cycling and other types
of non-equilibrium attractors of coevolutionary
dynamics must be considered.

8. Evolution under asymmetric competition leads
to rich coevolutionary patterns which are not
foreseen by the simple supposition of character
divergence.

9. Constructing evolutionary dynamics on variable
adaptive topographies is meaningless unless fit-
ness functions are derived mechanistically.

10. Evolutionary stability crucially depends on un-
derlying mutation structures: in general selec-
tion alone is not enough to understand evolu-
tionary outcomes.

Ulf Dieckmann
January 23rd, 1997
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Introduction

Long-term evolution is due to the invasion and establishment of mutational innova-

tions. The establishment changes the parameters and structure of the very population-

dynamical systems the innovation took place in. By closing this feedback loop in

the evolutionary explanation, a new mathematical theory of the evolution of complex

adaptive systems arises. The dynamical theory of coevolution provides a rigorous and

coherent framework that links the interactions of individuals through the dynamics of

populations (made up of individuals) to the evolution of communities (made up of

populations). To encompass the effects of evolutionary innovations it allows, for the

first time, for the simultaneous analysis of changes in population sizes and population

traits. The approach thus captures the process of self-organization that enables complex

systems to adapt to their environment.

It is generally agreed that minimal conditions exist for a process of self-organization

to be enacted by natural selection. A characterization of such features is provided by

the replicator concept, originally proposed by Dawkins (1976). Dawkins argues that

units, called replicators, inevitably will undergo evolution by natural selection if the

following four conditions are met.

1. The units are capable to reproduce or multiply.

2. In the course of the reproduction some traits are inherited from parent to offspring.

3. Reproduction is not entirely faithful: a process of variation can introduce differences

between parent and offspring trait values.

4. The units interact with each other causing rates of fecundity or survival to be trait-

dependent.
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Similar conditions have been given, for example, by Eigen and Schuster (1979) and

by Ebeling and Feistel (1982), who emphasize in addition that evolutionary units

physically are realized as systems open to fluxes of energy and matter (Schrödinger

1944). Replicators therefore are the abstract entities on which to base an encompassing

theory of adaptation and the evolutionary process.

Only on short time scales biological populations can be envisaged as adapting to

environments constant in time. In contrast, ecological communities of interacting

populations will adapt in a coevolutionary manner. We will use the term coevolution

to indicate adaptation to environments that in turn are adaptive. In other words, the

environment that stimulates adaptation in one population, as a result of the environmental

feedback, is itself responsive to that adaptation. The technical notion of coevolution was

introduced by Ehrlich and Raven (1964) when analyzing mutual evolutionary influences

of plants and herbivorous insects. Janzen (1980) defines coevolution, more restrictively

than we do, to indicate that a trait in one species has evolved in response to a trait

in another species, which trait itself has evolved in response to the trait in the first.

Futuyma and Slatkin (1983) point out that this definition requires not only reciprocal

change (both traits must evolve) but also specificity (the evolution in each trait is due to

the evolution of the other). Like Janzen’s definition suggests, coevolutionary phenomena

are most easily observed in a single pair of tightly associated species. However, since

most species interact with a variety of other species, we do not restrict attention to the

adaptation of pairwise interactions.

Broadening the focus from evolutionary to coevolutionary processes changes our ex-

pectations concerning evolutionary outcomes. When considering adaptation separately

in only one population, natural selection is expected to take the population towards a

state where it has met whatever environmental challenges it originally had faced. Such

stationary endpoints of evolution are unrealistic on a larger evolutionary time scale.

In contrast, if two or more species are adapting in response to each other, continued

evolutionary progress may take place.

The traditional fields for investigating evolutionary phenomena are population genetics

and quantitative genetics (see e.g. Bulmer 1980; Falconer 1989). However, to assess

coevolutionary dynamics at the level of genes appears to be virtually impossible (Levin

1983). Numerous simplifying assumptions have to be made before feasible equations

are obtained (Lande 1979). Moreover, how to relate the fitness functions employed

in genetic models to interactions among individuals is not always obvious. These

circumstances have fostered the development of simpler models of coevolutionary

dynamics at the phenotypic level. Most prominently, evolutionary game theory reduces

the intricacies of ecological interactions to a matrix description of payoffs, resulting

from encounters between phenotypes (Maynard Smith and Price 1973; Maynard Smith
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1982). Unfortunately, individual-based derivations of payoff matrices typically are not

given, and evolutionary game theory cannot make dynamical predictions about the actual

pathways of evolutionary or coevolutionary change.

The dynamical theory of coevolution tries to bridge the gap between genetic and game-

theoretic models of adaptation. Coevolutionary change in communities of replicator pop-

ulations is derived from the underlying ecological interactions. The theory is individual-

based, thus allowing for the meaningful interpretation of ecological parameters, and it

explicitly accounts for the stochastic components of evolutionary change. A hierarchy

of increasingly tractable models of coevolutionary dynamics is constructed by mathe-

matical limit arguments. Particular attention is given to invasibility conditions. These

act as a powerful tool for analyzing the long-term effects of the interactions between

ecological and evolutionary processes, as observed by Diekmann et al. (1996).

Approaches to the analysis of biological evolution have taken somewhat divergent
paths. [...] These approaches have led to different definitions and descriptions of
equilibrium, stability and dynamics in the context of evolution. More and more it
becomes clear, however, that invasibility (of a resident type by a variant) serves
as a unifying principle.

Nevertheless, the dynamical theory of coevolution goes beyond invasibility conditions.

Where the latter reach their limitations, dynamical analyses of coevolutionary change

become essential. For adaptive systems with more than one phenotypic dimension,

stability of evolutionary attractors (and hence the outcome of adaptive change) gen-

erally is unknown when ignoring the dynamics of evolution. Only a fully dynamical

account of coevolutionary processes reveals phenomena like evolutionary cycling or

Red Queen coevolution, evolutionary slowing down, evolution to extinction and the

crucial importance of mutation structures.

The dynamical theory of coevolution, at its present stage, is concerned with replicators

possessing internal degrees of freedom that reflect adaptive traits under evolutionary

change. As a future development it will be interesting systematically to investigate the

impact other internal degrees of freedom can have on the process of evolution.

1. Replicators can carry diploid genotypic information and can undergo sexual repro-

duction. Recent studies in this direction are e.g. Eshel (1996), Hammerstein (1996),

Matessi and Di Pasquale (1996), and Weissing (1996).

2. Populations of replicators may be structured according to age or stage. Here an

evolutionary perspective could be integrated into the conceptual framework of Metz

and Diekmann (1986).

3. Replicators can be explicitly located in physical space and may possess specific

patterns of movement. The importance of spatial structure for predicting the
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outcome of selection has been demonstrated e.g. by Boerlijst and Hogeweg (1991)

and by Rand et al. (1995).

All three dimensions for extensions are bound to bring about novel evolutionary

phenomena which then can be studied in their own right. The additional amount

of structure available in these models will help to construct increasingly realistic

descriptions of the evolutionary process. For these extensions the coevolutionary theory

of basic replicators advanced here may serve as a backbone and guideline.

The structure of subsequent chapters is as follows. Chapter 1 provides an introduction to

basic adaptive dynamics theory. Fundamental concepts are explained, recent research in

the field is discussed and prospects for the future are assessed. Chapter 2 advances some

of the main derivations within the dynamical theory of coevolution. From an individual-

based account of intra- and interspecific ecological interactions, combined with a process

of mutation, stochastic and deterministic models of coevolutionary change are extracted.

In particular, the canonical equation of adaptive dynamics is recovered and identified

as a special case. For this equation higher-order corrections are established and are

shown to give rise to novel evolutionary effects including shifting evolutionary isoclines

and evolutionary slowing down. Extensions to more general ecological settings like

multi-trait coevolution and coevolution under nonequilibrium population dynamics are

developed. Chapter 3 places the dynamical theory of coevolution into a broader context

and discusses its relation with results from quantitative genetics. Special attention is

given to the distinction between classical evolutionary stability, convergence stability

and the asymptotic stability of coevolutionary attractors. In systems with more than one

phenotypic dimension the relations between these notions become weak and only the

asymptotic stability of coevolutionary attractors carries sufficient information to predict

evolutionary outcomes. The crucial dependence of asymptotic stability on assumptions

regarding mutation structures is illustrated. Chapter 4 analyzes the coevolutionary

dynamics in predator-prey communities. The new phenomenon of evolutionary cycling

is encountered and the conditions for such continuous coevolutionary change to occur

in the absence of external forcing are discussed. Chapter 5 investigates patterns

of coevolutionary change under asymmetric competition. A rich set of evolutionary

attractors is observed and the dependences on the intra- and interspecific competition

structures are analyzed. The applications in Chapters 4 and 5 illustrate a particular

capacity of the dynamical theory of coevolution: to infer evolutionary predictions at the

community level from ecological assumptions at the level of individuals.
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1 International Institute for Applied Systems
Analysis, A-2361 Laxenburg, Austria

An international group of scientists gathered in August 1996 for a workshop in
the Matrahaza mountains of Hungary to report and assess recent developments and
open research topics in the new field of adaptive dynamics. This paper provides a
brief overview of basic adaptive dynamics theory, outlines recent work within the
field and evaluates the prospects for the future.

1 Introduction

The emerging field of adaptive dynamics sets out to provide additional insights into the

long-term dynamics of evolutionary and coevolutionary processes.

Ever since Haldane, Fisher and Wright laid the foundations for the Modern Synthesis of

the 1930s, the pending integration of population ecology and evolutionary genetics has

been debated. Progress into this direction proved difficult as it is not straightforward

to implement into population genetic analyses ecologically realistic assumptions, for

example regarding density dependence or interspecific interactions. When trying to do

so, the resulting genetic models quickly become intractable.

Now population genetics’ detailed knowledge, which reflects the chromosomal mech-

anisms of evolutionary change, can be complemented by a new framework for under-

standing the dynamics of phenotypic evolution. By trading genetic for ecological detail,

adaptive dynamics theory links the interactions of individuals through the dynamics of

populations to the evolution of communities. The adaptive dynamics approach goes be-

yond classical evolutionary game theory in several respects. It originates from two main

research topics: an extended classification scheme for evolutionarily stable strategies

(Figure 1) and a network of evolutionary models linking classical evolutionary game

theory to replicator dynamics and individual-based ecological models (Figure 2).
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Pairwise Invasibility Plot Classification Scheme

(1) (2) (3) (4)

����� � Pairwise invasibility plots and the classification of evolutionarily singular points. The
adaptive dynamics invasion function of a particular ecological system defines a pairwise invasibility
plot for resident and mutant phenotypes. When the invasion function is positive for a particular pair
of phenotypes, the resident may be replaced by the invading mutant. Intersections of the invasion
function’s zero contour line with the 45 degree line indicate potential evolutionary end-points. Knowing
the slope of the countour line at these singular points suffices to answer four separate questions: (1) Is a
singular phenotype immune to invasions by neighboring phenotypes? (2) When starting from neighboring
phenotypes, do successful invaders lie closer to the singular one? (3) Is the singular phenotype capable
of invading into all its neighboring types? (4) When considering a pair of neighboring phenotypes to
both sides of a singular one, can they invade into each other?

2 From Mutant Invasions to Adaptive Dynamics

Interactions between individuals are bound to change the environments these individuals

live in. The phenotypic composition of an evolving population therefore affects

its ecological environment, and this environment in turn determines the population

dynamics of the individuals involved. It is this setting of resident phenotypes into

which mutant phenotypes must succeed to invade for long-term evolution to proceed.

Whether or not such an event may occur can be decided by adaptive dynamics’ invasion

functions: if the initial exponential growth rate of a small mutant population in an

established resident population (a rate which one obtains as a Lyapunov exponent) is

positive, the mutant phenotype has a chance to replace the former resident phenotype

(Metz et al. 1992; Rand et al. 1994; Ferrière and Gatto 1995).

Once the invasion function of the evolving system is known, pairwise invasibility plots

can be constructed (van Tienderen and de Jong 1986; Taylor 1989; Metz et al. 1996).

In the simplest case mutant and resident phenotypes are distinguished by a single metric

character or quantitative trait. When plotting the sign of the invasion function for each of

the possible combinations of mutant and resident phenotypes, the shape of a zero contour
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line becomes visible, see Figure 1. This line separates regions of potential invasion

success from those of invasion failure and its shape carries important information about

the evolutionary process (Metz et al. 1996). In particular, possible end-points of the

process are located at those resident phenotypes where a zero contour line and the 45

degree line intersect.

In characterizing such potential end-points, also called singular points, classical evolu-

tionary game theory emphasizes a single, fundamental dichotomy: either the resident

phenotype is an evolutionarily stable strategy (ESS) or it is not. In the former case

no mutant phenotype has a chance to invade into the resident population. In con-

trast, adaptive dynamics theory uses an extended classification scheme in which four

different questions are tackled simultaneously.

1. Is a singular phenotype immune to invasions by neighboring phenotypes? This

criterion amounts to a local version of the classical ESS condition.

2. When starting from neighboring phenotypes, do successful invaders lie closer to

the singular one? Here the attainability of a singular point is addressed, an issue

that is separate from its invasibility.

3. Is the singular phenotype capable of invading into all its neighboring types? Only

if so, the phenotype at the singular point can be reached in a single mutation step.

4. When considering a pair of neighboring phenotypes to both sides of a singular one,

can they invade into each other? Assessing this possibility is essential for predicting

coexisting phenotypes and the emergence of polymorphisms.

All four questions are relevant when trying to understand the nature of potential

evolutionary end-points. It is therefore remarkable how simple it is to obtain the four

answers: all that is required is to take a look at the pairwise invasibility plot and read

off the slope of the zero contour line at the singular phenotype (Metz et al. 1996), see

Figure 1.

3 Models of Phenotypic Evolution Unified

A large variety of phenotypic models has been used in the past to describe the dynamics

of the evolutionary process. Within the adaptive dynamics framework these disparate

approaches can be unified into a single network of linked descriptions (Dieckmann et

al. 1995; Dieckmann and Law 1996). Starting from an individual-based account of

birth, death and mutation processes, a stochastic model for the evolving polymorphic

frequency distributions of phenotypes is constructed (Figure 2a). This generalized

replicator dynamics can be applied either to a single population or to a community

of coevolving populations. As the rates for birth, death and mutations are allowed

to depend on any feature of these distributions, no limitations are imposed as to the
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����� � Generalized replicator dynamics. Four traditional types of models for phenotypic evolution
are unified into a single network of linked descriptions: (a) individual-based birth-death-mutation
process (polymorphic and stochastic), (b) reaction-diffusion model (polymorphic and deterministic), (c)
evolutionary random walk (monomorphic and stochastic), (d) gradient ascent on an adaptive topography
(monomorphic and deterministic).

kind of interspecific or intraspecific interactions, and no type of density- or frequency-

dependence in survival or fecundity is excluded.

From this model, which can be regarded as a generalization of the classical replicator

equations (Schuster and Sigmund 1983) to nonlinear stochastic population dynamics

with mutations, simplified models are derived. First, a reaction-diffusion approximation

can be obtained for sufficiently large populations (Figure 2b). Second, if the conven-

tional separation between the ecological and the evolutionary time scale is accepted,

the evolutionary dynamics become mutation-limited and phenotypic distributions are

monomorphic at most points in time (Figure 2c). The occurring phenotypic substitutions

(although not their expected rates) can then be understood using classical evolutionary

game theory complemented by pairwise invasibility plots. Sequences of such transitions

bring about a directed evolutionary random walk in the space of phenotypes. Third, if

mutational steps are not too large, the essence of the substitution process is captured

by a deterministic dynamic (Figure 2d). This dynamic provides an underpinning for a

class of models in the literature that are based on time-variable adaptive topographies

(Hofbauer and Sigmund 1990; Abrams et al. 1993; Vincent et al. 1993).
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4 Connections with Genetics

Adaptive dynamics theory predicts the existence of a type of evolutionary end-points

that, on closer examination, turn out not to be end-points at all (Metz et al. 1996).

Stefan Geritz and Hans Metz from the University of Leiden, the Netherlands, opened

discussions on the phenomenon of evolutionary branching: starting from one side of

a singular point, successfully invading phenotypes at first converge closer and closer

to that singular point. Eventually, however, mutants leaping across the point also

commence to invade on the other side. The two branches of phenotypes on both sides

of such a singular point, once established, actually can coexist and will start to diverge

from each other.

It has been suggested that the process of evolutionary branching could form the basis

for an adaptation-driven speciation event (Metz et al. 1996). However, only when going

beyond a merely phenotypic description of the evolutionary process by incorporating

genetic mechanisms, two critical questions can be evaluated.

1. Does the phenomenon of evolutionary branching persist when diploid genetics and

sexual reproduction are introduced?

2. Are there mechanisms that could cause genetic isolation of the evolving branches?

Contributions at the workshop indicated that both questions can be answered affirma-

tively. Work by Stefan Geritz and Eva Kisdi, Eötvös University Budapest, Hungary,

shows that when either reproductive compatibility between two types of individuals

or migration rates between two spatial patches are evolving, evolutionary branching

can develop for diploid, sexual populations. Michael Döbeli from the University of

Basel, Switzerland, and Ulf Dieckmann, IIASA Laxenburg, Austria, demonstrated that

an evolving degree of assortative mating in a multi-locus genetic model is sufficient to

allow for evolutionary branching at those phenotypes predicted by adaptive dynamics

theory.

Other talks also were concerned with integrating phenotypic and genetic understanding

of evolutionary dynamics. Carlo Matessi, IGBE-CNR Pavia, Italy, talked about the role

of genetic canalization for selection in fluctuating environments. Tom van Dooren from

the University of Antwerp, Belgium, and Stefan Geritz presented methods for extending

the analyses of pairwise invasibility plots to systems with diploid inheritance.
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5 Evolving Ecologies

The framework of adaptive dynamics is particularly geared to infer evolutionary pre-

dictions from ecological assumptions.

Richard Law from the University of York, U.K., showed how asymmetric competition

between two ecological types can give rise to rich patterns of phenotypic coevolution, in-

cluding the evolutionary cycling of phenotypes - patterns that are not expected from the

simple presumption of character divergence. Guy Sella, Hebrew University, Jerusalem,

Israel, and Michael Lachmann, Stanford University, USA, analytically investigated the

critical effects of spatial heterogeneities in a grid-based prisoner’s dilemma. Andrea

Mathias, Eötvös University Budapest, Hungary, showed how the evolution of germina-

tion rates in annual plants exposed to randomly varying environments may result in two

mixed strategies coexisting and may induce a cyclic process of evolutionary branching

and extinction. Andrea Pugliese, University of Trento, Italy, presented an analysis of

the coevolutionary dynamics of viruses and their hosts in which he explicitly allowed

for within-host competition of viral strains. Vincent Jansen, Imperial College at Silwood

Park, U.K., examined whether the damping effect which a spatial population structure

can have on predator-prey cycles could be expected to arise under the coevolution of

migration rates.

6 Adaptive Dynamics in the Wild

Several participants of the workshop reported on interpreting empirically observed

patterns in terms of adaptive processes.

Paul Marrow, University of Cambridge, U.K., showed experimental data on the dis-

tribution of offspring numbers in Soey sheep and studied whether its variation with

phenotypic state or population density could be understood as an outcome of optimized

reproductive strategies. John Nagy, Arizona State University, USA, analyzed the adap-

tive dynamics of dispersal behavior in metapopulations of pika. Ido Pen, University of

Groningen, the Netherlands, evaluated a set of competing adaptive explanations for the

seasonal sex-ratio trend observed in the kestrel by devising a life-history model of the

kestrel population and predicting the adaptive change by means of invasion functions.

Mats Gyllenberg, University of Turku, Finland, analyzed to what extent the predator-

prey cycles observed for voles and weasels in Northern Fennoscandia can be understood

as a result of a predator-induced evolution of suppressed reproduction in the prey.
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7 Remaining Challenges

Much progress has been made in setting up the adaptive dynamics framework over the

past five years. Nevertheless, many interesting directions for future research remain

widely open. Three examples illustrate this assertion.

Mikko Heino, University of Helsinki, Finland, and Géza Meszéna, Eötvös University

Budapest, Hungary, independently reported findings which demonstrate the importance

of environmental dimensionality. The environment closes the feedback loop from the

current phenotypic state to changes in this state. How many variables are necessary to

characterize this feedback? How can its dimensionality be assessed empirically? Issues

of this kind appear likely to become more important in our understanding of adaptive

outcomes than they are today.

Odo Diekmann, University of Utrecht, and Sido Mylius, Leiden University, both in

the Netherlands, have analyzed the evolution of reproductive timing in salmons. Their

model seems to show that adaptive dynamics’ invasion functions can not always be

obtained from the growth rates of mutants when these are rare. Under which conditions

can attention remain focused on initial invasion dynamics when predicting phenotypic

substitutions? The invasion-oriented approach to phenotypic evolution already has

succeeded in advancing our understanding substantially (Diekmann et al. 1996), but

its limitations still have to be evaluated in more detail.

Hans Metz, Stefan Geritz and Frans Jacobs, Leiden University, the Netherlands, are

exploring the options of building a bifurcation theory of evolutionarily stable strategies.

Similar to the bifurcation theory of ordinary differential equations, such a framework

could enable qualitative predictions of evolutionary outcomes that are robust under

small alterations in the underlying ecological settings. Although encouraging results for

one-dimensional phenotypes already are available, a general account of evolutionary

bifurcations is pending.

With problems of this calibre unsolved but now tractable, adaptive dynamics research

promises to remain a fertile ground for innovative ideas on evolution, coevolution and

complex adaptation in the years to come.
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In this paper we develop a dynamical theory of coevolution in ecological commu-
nities. The derivation explicitly accounts for the stochastic components of evolu-
tionary change and is based on ecological processes at the level of the individual.
We show that the coevolutionary dynamic can be envisaged as a directed random
walk in the community’s trait space. A quantitative description of this stochastic
process in terms of a master equation is derived. By determining the first jump
moment of this process we abstract the dynamic of the mean evolutionary path. To
first order the resulting equation coincides with a dynamic that has frequently been
assumed in evolutionary game theory. Apart from recovering this canonical equa-
tion we systematically establish the underlying assumptions. We provide higher
order corrections and show that these can give rise to new, unexpected evolutionary
effects including shifting evolutionary isoclines and evolutionary slowing down of
mean paths as they approach evolutionary equilibria. Extensions of the deriva-
tion to more general ecological settings are discussed. In particular we allow for
multi-trait coevolution and analyze coevolution under nonequilibrium population
dynamics.

1 Introduction

The self-organisation of systems of living organisms is elucidated most successfully by

the concept of Darwinian evolution. The processes of multiplication, variation, inheri-

tance and interaction are sufficient to enable organisms to adapt to their environments by

means of natural selection (see e.g. Dawkins 1976). Yet, the development of a general

and coherent mathematical theory of Darwinian evolution built from the underlying eco-

logical processes is far from complete. Progress on these ecological aspects of evolution

will critically depend on properly addressing at least the following four requirements.

1. The evolutionary process needs to be considered in a coevolutionary context. This

amounts to allowing feedbacks to occur between the evolutionary dynamics of
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a species and the dynamics of its environment (Lewontin 1983). In particular,

the biotic environment of a species can be affected by adaptive change in other

species (Futuyma and Slatkin 1983). Evolution in constant or externally driven

environments thus are special cases within the broader coevolutionary perspective.

Maximization concepts, already debatable in the former context, are insufficient in

the context of coevolution (Emlen 1987; Lewontin 1979, 1987).

2. A proper mathematical theory of evolution should be dynamical. Although some

insights can be gained by identifying the evolutionarily stable states or strategies

(Maynard Smith 1982), there is an important distinction between non-invadability

and dynamical attainability (Eshel and Motro 1981; Eshel 1983; Taylor 1989). It can

be shown that in a coevolutionary community comprising more than a single species

even the evolutionary attractors generally cannot be predicted without explicit

knowledge of the dynamics (Marrow et al. 1996). Consequently, if the mutation

structure has an impact on the evolutionary dynamics, it must not be ignored

when determining evolutionary attractors. Furthermore, a dynamical perspective

is required in order to deal with evolutionary transients or evolutionary attractors

which are not simply fixed points.

3. The coevolutionary dynamics ought to be underpinned by a microscopic theory.

Rather than postulating measures of fitness and assuming plausible adaptive dy-

namics, these should be rigorously derived. Only by accounting for the ecological

foundations of the evolutionary process in terms of the underlying population dy-

namics, is it possible to incorporate properly both density and frequency dependent

selection into the mathematical framework (Brown and Vincent 1987a; Abrams et

al. 1989, 1993; Saloniemi 1993). Yet, there remain further problems to overcome.

First, analyses of evolutionary change usually can not cope with nonequilibrium

population dynamics (but see Metz et al. 1992; Rand et al. 1993). Second, most

investigations are aimed at the level of population dynamics rather than at the level

of individuals within the populations at which natural selection takes place; in con-

sequence, the ecological details between the two levels are bypassed.

4. The evolutionary process has important stochastic elements. The process of muta-

tion, which introduces new phenotypic trait values at random into the population,

acts as a first stochastic cause. Second, individuals are discrete entities and con-

sequently mutants that arise initially as a single individual are liable to accidental

extinction (Fisher 1958). A third factor would be demographic stochasticity of

resident populations; however, in this paper we assume resident populations to be

large, so that the effects of finite population size of the residents do not have to be

considered (Wissel and Stöcker 1989). The importance of these stochastic impacts

on the evolutionary process has been stressed by Kimura (1983) and Ebeling and

Feistel (1982).
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Only some of the issues above can be tackled within the mathematical framework of

evolutionary game dynamics. This field of research focuses attention on change in

phenotypic adaptive traits and serves as an extension of traditional evolutionary game

theory. The latter identifies a game’s payoff with some measure of fitness and is

based on the concept of the evolutionarily stable strategy (Maynard Smith and Price

1973). Several shortcomings of the traditional evolutionary game theory made the

extension to game dynamics necessary. First, evolutionary game theory assumes the

simultaneous availability of all possible trait values. Though one might theoretically

envisage processes of immigration having this feature, the process of mutation typically

will only yield variation that is localized around the current mean trait value (Mackay

1990). Second, it has been shown that the non-invadability of a trait value does not imply

that trait values in the vicinity will converge to the former (Taylor 1989; Christiansen

1991; Takada and Kigami 1991). In consequence, there can occur evolutionarily stable

strategies that are not dynamically attainable, these have been called ’Garden of Eden’

configurations (Hofbauer and Sigmund 1990). Third, the concept of maximization,

underlying traditional game theory, is essentially confined to single species adaptation.

Vincent et al. (1993) have shown that a similar maximization principle also holds for

ecological settings where several species can be assigned a single fitness generating

function. However, this is too restrictive a requirement for general coevolutionary

scenarios, so in this context the dynamical perspective turns out to be the sole reliable

method of analysis.

We summarize the results of several investigations of coevolutionary processes based

on evolutionary game dynamics by means of the following canonical equation

�

��
�� � ����� �

�

���

�

��

�
��

�� �
� �
�
�
��

�
� ��

� (1.1)

Here, the �� with 	 � �� � � � � 
 denote adaptive trait values in a community comprising


 species. The ����
�

�
� �� are measures of fitness of individuals with trait value ��

�
in the

environment determined by the resident trait values �, whereas the ����� are non-negative

coefficients, possibly distinct for each species, that scale the rate of evolutionary change.

Adaptive dynamics of the kind (1.1) have frequently been postulated, based either on

the notion of a hill-climbing process on an adaptive landscape or on some other sort of

plausibility argument (Brown and Vincent 1987a, 1987b, 1992; Rosenzweig et al. 1987;

Hofbauer and Sigmund 1988, 1990; Takada and Kigami 1991; Vincent 1991; Abrams

1992; Marrow and Cannings 1993; Abrams et al. 1993). The notion of the adaptive

landscape or topography goes back to Wright (1931). A more restricted version of

equation (1.1), not yet allowing for intraspecific frequency dependence, has been used

by Roughgarden (1983). It has also been shown that one can obtain an equation similar
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to the dynamics (1.1) as a limiting case of results from quantitative genetics (Lande 1979;

Iwasa et al. 1991; Taper and Case 1992; Vincent et al. 1993; Abrams et al. 1993).

In this paper we present a derivation of the canonical equation that accounts for all

four of the above requirements. In doing this we recover the dynamics (1.1) and

go beyond them by providing higher order corrections to this dynamical equation;

in passing, we deduce explicit expressions for the measures of fitness �� and the

coefficients ��. The analysis is concerned with the simultaneous evolution of an arbitrary

number of species and is appropriate both for pairwise or tight coevolution and for

diffuse coevolution (Futuyma and Slatkin 1983). We base the adaptive dynamics of

the coevolutionary community on the birth and death processes of individuals. The

evolutionary dynamics are described as a stochastic process, explicitly accounting

for random mutational steps and the risk of extinction of rare mutants. From this

we extract a deterministic approximation of the stochastic process, describing the

dynamics of the mean evolutionary path. The resulting system of ordinary differential

equations covers both the asymptotics and transients of the adaptive dynamics, given

equilibrium population dynamics; we also discuss an extension to nonequilibrium

population dynamics.

The outline of the paper is as follows. Section 2 provides a general framework for

the analysis of coevolutionary dynamics. The relationship of population dynamics to

adaptive dynamics is discussed in a coevolutionary context and we describe the basic

quantities specifying a coevolutionary community. For the purpose of illustration we

introduce a coevolutionary predator-prey system that serves as a running example to

demonstrate most of the ideas in this paper. In Section 3 we derive the stochastic rep-

resentation of the coevolutionary process, explaining the notion of a trait substitution

sequence and giving a dynamical description of these processes in terms of a master

equation. In Section 4 we utilize this representation in combination with the stochastic

concept of the mean evolutionary path in order to construct a deterministic approxima-

tion of the coevolutionary process. From this the canonical equation (1.1) is recovered

and we demonstrate its validity up to first order. This result is refined in Section 5 by

means of higher order corrections, where a general expression for the adaptive dynamics

is deduced allowing for increased accuracy. The higher order corrections give rise to

new, unexpected effects which are discussed in detail. We also provide the conditions

that must be satisfied for making the canonical equation exact and explain in what sense

it can be understood as the limiting case of our more general process. In Section 6 we

extend our theoretical approach to a wider class of coevolutionary dynamics by dis-

cussing several generalizations such as multiple-trait coevolution and coevolution under

nonequilibrium population dynamics.
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2 Formal Framework

Here we introduce the basic concepts underlying our analyses of coevolutionary dynam-

ics. Notation and assumptions are discussed, and the running example of predator-prey

coevolution is outlined.

��� �����	
�� ����������

The coevolutionary community under analysis is allowed to comprise an arbitrary

number � of species, the species are characterized by an index � � �� � � � � � . We

denote the number of individuals in these species by ��, with � � ���� � � � � �� �. The

individuals within each species can be distinct with respect to adaptive trait values ��,

taken from sets ��� and being either continuous or discrete. For convenience we scale

the adaptive trait values such that ��� � ��� ��. The restriction to one trait per species

will be relaxed in Section 6.2, but obtains until then to keep notation reasonably simple.

The development of the coevolutionary community is caused by the process of mutation,

introducing new mutant trait values ��

�
, and the process of selection, determining survival

or extinction of these mutants. A formal description will be given in Sections 2.2 and

3.2; here we clarify the concepts involved. The change of the population sizes ��

constitutes the population dynamics, that of the adaptive trait values �� is called adaptive

dynamics. Together these make up the coevolutionary dynamics of the community. We

follow the convention widely used in evolutionary theory that population dynamics

occurs on an ecological time scale that is much faster than the evolutionary time scale

of adaptive dynamics (Roughgarden 1983). Two important inferences can be drawn

from this separation.

First, the time scale argument can be used in combination with a principle of mutual

exclusion to cast the coevolutionary dynamics in a quasi-monomorphic framework. The

principle of mutual exclusion states that no two adaptive trait values �� and ��

�
can

coexist indefinitely in the populations of species � � �� � � � � � when not renewed by

mutations; of the two trait values eventually only the single more advantageous one

survives. For the moment we keep this statement as an assumption; in Section 6.1 we

will have built up the necessary background to clarify its premisses. Together with the

time scale argument we conclude that there will be one trait value prevailing in each

species at almost any point in time. This is not to say that coexistence of several mutants

cannot occur at all: we will regard an evolving population as quasi-monomorphic, if the

periods of coexistence are negligible compared to the total time of evolution (Kimura

1983). The adaptive state of the coevolutionary community is then aptly characterized

by the vector � � ���� � � � � �� � of prevailing or resident trait values and the state

space of the coevolutionary dynamics is the Cartesian product of the monomorphic trait
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space �� � ��

���
��� � �� and the population size space �� � ��

���
��� � ��

�
. When

considering large population sizes we may effectively replace ��� � �� by ��� � ��.

Second, we apply the time scale argument together with an assumption of monostable

population dynamics to achieve a decoupling of the population dynamics from the

adaptive dynamics. In general, the population dynamics could be multistable, i.e.

different attractors are attained depending on initial conditions in population size space.

It will then be necessary to trace the population dynamics �

��
� in size space ��

simultaneously with the adaptive dynamics �

��
� in trait space ��. This is no problem in

principle but it makes the mathematical formulation more complicated; for simplicity we

hence assume monostability. Due to the different time scales, the system of simultaneous

equations can then be readily decomposed. The trait values � or functions thereof can be

assumed constant as far as the population dynamics �

��
� are concerned. The population

sizes � or functions � thereof can be taken averaged when the adaptive dynamics �

��
�

are considered, i.e.

���� � ���
���

�

�
�

��
�

� ��	 ���	 
�� �
 (2.1)

where ���	 
� is the solution of the population dynamics �

��
� with initial conditions

���	 �� which are arbitrary because of monostability. With the help of these solutions

���	 
� we can also define the region of coexistence ��� as that subset of trait space ��
that allows for sustained coexistence of all species

��� � �
� � �� � ���

���
����	 
� � � for all  � �	 	 	 	 	 �

�
� (2.2)

If the boundary � ��� of this region of coexistence is attained by the adaptive dynam-

ics, the coevolutionary community collapses from � species to a smaller number of

� � species. The further coevolutionary process then has to be considered in the cor-

responding � �-dimensional trait space. There can also exist processes that lead to an

increase in the dimension of the trait space, see e.g. Section 6.1.

��� ��������	
��� �� 
� �������
���	�� �������
�

We now have to define those features of the coevolutionary community that are relevant

for our analysis in terms of ecologically meaningful quantities.

We first consider the process of selection. In an ecological community the environment

�� of a species  is affected by influences that can be either internal or external with

respect to the community considered. The former effects are functions of the adaptive

trait values � and population sizes � in the community; the latter may moreover
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be subject to external effects like seasonal forcing which render the system non-

autonomous. We thus write

�� � ����� �� �� � (2.3)

The quantities ��� and ��� are introduced to denote the per capita birth and death rates

of an individual in species 	. These rates are interpreted stochastically as probabilities

per unit time and can be combined to yield the per capita growth rate �
� � ��� � ��� of

the individual. They are affected by the trait value ��

�
of the individual as well as by

its environment ��, thus with equation (2.3) we have

��� � ���
�
��

�� �� �� �
�

and ��� � ���

�
��

�� �� �� �
�
� (2.4)

Since we are mainly interested in the phenomenon of coevolution – an effect internal to

the community – in the present paper we will not consider the extra time-dependence

in equations (2.4) which may be imposed on the environment by external effects.

We now turn to the process of mutation. In order to describe its properties we introduce

the quantities �� and ��. The former denote the fraction of births that give rise to

a mutation in the trait value ��. Again, these fractions are interpreted stochastically

as probabilities for a birth event to produce an offspring with an altered adaptive trait

value. These quantities may depend on the phenotype of the individual itself,

�� � ������ � (2.5)

although in the present paper we will not dwell on this complication. The quantities

�� � ��

�
��� �

�

� � ��

�
(2.6)

determine the probability distribution of mutant trait values ��

�
around the original trait

value ��. If the functions �� and �� are independent of their first argument, the mutation

process is called homogeneous; if �� is invariant under a sign change of its second

argument, the mutation process is called symmetric.

With equilibrium population sizes ����� satisfying �
����� �� ������ � � for all 	 �

�� � � � �  , the time average in equation (2.1) is simply given by � ��� � � ��� ������. In

particular we thus can define
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�
��

�� �
�
� �
�

�
��

�� �� �����
�

(2.7)

and analogously for �� and ��. We come back to the general case of nonequilibrium

population dynamics in Section 6.3.

We conclude that for the purpose of our analysis the coevolutionary community of 

species is completely defined by specifying the ecological rates ���, ��� and the mutation

properties ��, ��. An explicit example is introduced for illustration in Section 2.3.

We will see that our formal framework allows us to deal both with density dependent

selection as well as with interspecific and intraspecific frequency dependent selection.
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To illustrate the formal framework developed above, here we specify a coevolutionary

community starting from a purely ecological one. The example describes coevolution

in a predator-prey system.

First, we choose the population dynamics of prey (index 1) and predator (index 2) to

be described by a Lotka-Volterra system with self-limitation in the prey

�

��
�� � �� � ��� � � � �� � � � ��� �

�

��
�� � �� � ���� � � � ���

(2.8)

where all parameters ��, ��, �, � and � are positive. These control parameters of the

system are determined by the species’ intraspecific and interspecific interactions as well

as by those with the external environment.

Second, we specify the dependence of the control parameters on the adaptive trait

values 	 � �	�� 	��

��	�� 	��
� � �� � ��	�� 	��

��	�� 	��
� � ���
�
��� � ��� � � � � � ��

�
�

��	��
� � �� � �� � 	� � �� � 	
�

�

(2.9)

with � � �	� � ���
�� and � � �	� � ���
�	; �� and �� are independent of 	� and 	�.

The constant � can be used to scale population sizes in the community. For the sake

of concreteness 	� and 	� may be thought of as representing the body sizes of prey

and predator respectively. According to the Gaussian functions � and �, the predator’s

harvesting of the prey is most efficient at �	� � ��� 	� � ��� and, since �� � 	, remains

particularly efficient along the line �	�� 	� � 	��, i.e. for predators having a body size

similar to their prey. According to the parabolic function �, the prey’s self-limitation

is minimal at 	� � ��
��� . Details of the biological underpinning of these choices are

discussed in Marrow et al. (1992).

Third, we provide the per capita birth and death rates for a rare mutant trait value 	�

�

or 	�

�
respectively,

���
�
	�

�� 	� �
�
� �� �

���
�
	�

�� 	� �
�
� �

�
	�

�

�
� �� � �

�
	�

�� 	�
�
� �� �

���
�
	�

�� 	� �
�
� �

�
	�� 	

�

�

�
� �� �

���
�
	�

�� 	� �
�
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(2.10)

These functions are the simplest choice in agreement with equations (2.8) and can be

inferred by taking into account that mutants are rare when entering the community.
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parameters affecting selection
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parameters affecting mutation
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�
��� � The default parameter values for the coevolutionary predator-prey community.

Fourth, we complete the definition of our coevolutionary community by the properties

of the mutation process,
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(2.11)

The standard numerical values for all parameters used in subsequent simulations are

given in Table 1.

Although the coevolutionary community defined by (2.10) and (2.11) captures some

features of predator-prey coevolution, other choices for the same purpose or for entirely

different ecological scenarios could readily be made within the scope of our approach.

Many features of the model presented will be analyzed in the course of this paper;

additional discussion is provided in Marrow et al. (1992, 1996) and Dieckmann et

al. (1995).

3 Stochastic Representation

In this section we establish the stochastic description of the coevolutionary dynamics.

The central idea is to envisage a sequence of trait substitutions as a directed random

walk in trait space determined by the processes of mutation and selection.
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The notion of the directed random walk is appropriate for three reasons. First, the

current adaptive state of the coevolutionary community is represented by the vector

� � ���� � � � � �� � composed of the trait values prevalent in each species. This is due to

the assumption of quasi-monomorphic evolution discussed in the last section. So a trait

substitution sequence is given by the dynamics of the point � in � -dimensional trait

space (Metz et al. 1992). Second, these dynamics incorporate stochastic change. As

already noted in the Introduction, the two sources for this randomness are (i) the process

of mutation and (ii) the impact of demographic stochasticity on rare mutants. Third,

the coevolutionary dynamics possess no memory, for mutation and selection depend

only on the present state of the community. The trait substitution sequence thus will

be Markovian, provided that � determines the state of the coevolutionary system. To

meet this requirement for realistic systems, a sufficient number of traits may need to

be considered, see Section 6.2.

By virtue of the Markov property the dynamics of the vector � is described by the

following equation

�

��
� ��� �� �

� �
�
�
����

�
� �
�
��� �

�
� �

�
����

�
� � ��� ��

�
���� (3.1)

Here � ��� �� denotes the probability that the trait values in the coevolutionary system are

given by � at time �. Note that � ��� �� is only defined on the region of coexistence �	�.
The ������� represent the transition probabilities per unit time for the trait substitution

� � ��. The stochastic equation above is an instance of a master equation (see e.g. van

Kampen 1981) and simply reflects the fact that the probability � ��� �� is increased by

all transitions to � (first term) and decreased by all those from � (second term).

��� ��	�
����� ����	������
 �� ���� ���

We now turn to the definition of the transition probabilities per unit time. Since

the change �� in the probability � ��� �� is only considered during the infinitesimal

evolutionary time interval ��, it is understood that only transitions corresponding to a

trait substitution in a single species have a nonvanishing probability per unit time. This

is denoted by

�
�
����

�
�

��
���

��

�
��

�� �
�
�

��
���
� ���



�
��
� � ��

�
(3.2)

where 
 is Dirac’s delta function. For a given � the �th component of this sum can be

envisaged in the space of all �� � � as a singular probability distribution that is only
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nonvanishing on the �th axis. The derivation of ����
�

�
� ��, the transition probability per

unit time for the trait substitution �� � ��

�
, comes in three parts.

1. Mutation and selection are statistically uncorrelated. For this reason the probability

per unit time �� for a specific trait substitution is given by the probability per

unit time �� that the mutant enters the population times the probability � � that it

successfully escapes accidental extinction

��

�
��

�� �
�
���

�
��

�� �
�
� � �

�
��

�� �
�
� (3.3)

2. The processes of mutation in distinct individuals are statistically uncorrelated. Thus

the probability per unit time �� that the mutant enters the population is given by

the product of the following three terms.

a. The per capita mutation rate ������ � ������ �� for the trait value ��. The

term ������ �� is the per capita birth rate of the �th species in the community

determined by the resident trait values �, and ������ denotes the fraction of

births that give rise to mutations in the species �.

b. The equilibrium population size ������ of the �th species.

c. The probability distribution 	����� �
�

�
� ��� for the mutation process in the trait

��.

Collecting the results above we obtain

��

�
��

�� �
�
� ������ � ������ �� � ������ �	�

�
��� �

�

� � ��

�
(3.4)

for the probability per unit time that the mutant enters the population.

3. The process of selection determines the mutant’s probability � � of escaping initial

extinction. Since mutants enter as single individuals, the impact of demographic

stochasticity on their population dynamics must not be neglected (Fisher 1958). We

assume, however, that the equilibrium population sizes ��� are large enough for there

to be negligible risk of accidental extinction of the established resident populations.

Two consequences stem from this.

a. Frequency-dependent effects on the population dynamics of the mutant can be

ignored when the mutant is rare relative to the resident.

b. The actual equilibrium size of the mutant after fixation is not important as long

as it is large enough to exceed a certain threshold. Above this threshold the

effect of demographic stochasticity is negligible (Wissel and Stöcker 1991).
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������ � Invasion success of a rare mutant. The probability ����
�

�
� �� of a mutant population initially

of size � with adaptive trait value ��

�
in a community of monomorphic resident populations with adaptive

trait values � to grow in size such as to eventually overcome the threshold of accidental extinction is
dependent on the per capita growth and death rates, �

�
���

�
� �� and �����

�
� ��, of individuals in the mutant

population. Deleterious mutants with �
�
���

�� �� � � go extinct with probability � but even advantageous
mutants with �

�
���

�
� �� � � have a survival probability less than �. Large per capita deaths rates hinder

invasion success while large per capita growth rates of the mutant favor it.

The probability that the mutant population reaches size � starting from size �

depends on its per capita birth and death rates, � and �. Based on the stochastic

population dynamics of the mutant (Dieckmann 1994) and statement (a) above, this

probability can be calculated analytically. The result is given by ��� ��������� �

������� (Bailey 1964; Goel and Richter-Dyn 1974). We exploit statement (b) above

by taking the limit � � �. The probability � � of escaping extinction is then

given by
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(3.5)

where the function �� � ��
�

� � � � � ����, the product of the identity and the

Heaviside function, leaves positive arguments unchanged and maps negative ones

to zero. It follows from equation (3.5) that deleterious mutants (with a per capita

growth rate smaller than that of the resident type) have no chance of survival but

even advantageous mutants (with a greater per capita growth rate) experience some

risk of extinction, see Figure 1.
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We conclude that the transition probabilities per unit time for the trait substitutions

�� � ��

�
are

��

�
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�
���� �

�
�� 	

(3.6)

This expression completes the stochastic representation of the mutation-selection process

in terms of the master equation.

��� �������	�
��

The information contained in the stochastic representation of the coevolutionary dy-

namics can be used in several respects.

First, we can employ the minimal process method (Gillespie 1976) to obtain actual

realizations of the stochastic mutation-selection process. We illustrate this method by

means of our example of predator-prey coevolution. The two-dimensional trait space
�
 of this system is depicted in Figure 2a. The dashed line surrounds the region of

coexistence �
�. Within this region different trait substitution sequences ������� ������

are displayed by continuous lines. Note that trait substitution sequences starting from the

same initial states (indicated by asterisks) are not identical. This underlines the unique,

historical nature of any evolutionary process. But, although these paths are driven apart

by the process of mutation, they are kept together by the directional impact of selection.
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������ �
 Stochastic representation of the adaptive dynamics: trait substitution sequences as defined
by equations (3.1), (3.2) and (3.6). Ten directed random walks in trait space for each of five different
initial conditions (indicated by asterisks) are depicted by continuous lines. The discontinuous oval curve
is the boundary of the region of coexistence. The coevolution of both species drives the trait values
towards a common equilibrium ��. The parameters of the coevolutionary predator-prey community are
given in Table 1.
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������ �� Stochastic representation of the adaptive dynamics: mean paths as defined by equation (3.7).
Ten trait substitution sequences for each of the five different initial conditions (indicated by asterisks)
are combined to obtain estimates for the mean paths, depicted by continuous lines. The jaggedness
of the lines is caused by the finite number of ten trait substitution sequences. The discontinuous oval
curve is the boundary of the region of coexistence. The parameters of the coevolutionary predator-prey
community are as in Figure 2a.
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Second, the latter observation underpins the introduction of a further concept from

stochastic process theory. By imagining a large number � of trait substitution sequences

����� �
�
��
�
���� � � � � ��

�
���
�
, with � � �� � � � � �, starting from the same initial state, it is

straightforward to apply an averaging process in order to obtain the mean path ������ by

������ � ���
���

�

�
�

��
���

����� � (3.7)

The construction of these mean paths is illustrated in Figure 2b. Since the mean path

obviously summarizes the essential features of the coevolutionary process, it is desirable

to obtain an explicit expression for its dynamics. This issue will be addressed in the

next two sections.

4 Deterministic Approximation: First Order

We now derive an approximate equation for the mean path of the coevolutionary

dynamics. In this section we obtain a preliminary result and illustrate it by application

to predator-prey coevolution. The argument in this section will be completed by the

results of Section 5.

��� ������	
	
� ��� ��
 ����

The mean path has been defined above as the average over an infinite number of

realizations of the stochastic process. Equivalently, we can employ the probability

distribution � ��� �� considered in the last section to define the mean of an arbitrary

function � ��� by �� ������� �
�
� ��� � � ��� �� 	�. In particular we thereby obtain for

the mean path

������ �

�
� � � ��� �� 	� � (4.1)

The different states � thus are weighted at time � according to the probability � ��� �� of

their realization by the stochastic process at that time. In order to describe the dynamics

of the mean path we start with the expression

	

	�
������ �

�
� �

	

	�
� ��� �� 	� � (4.2)

and utilize the master equation to replace �

��
� ��� ��. One then finds with some algebra
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By exploiting the delta function property of 
������, see equation (3.2), and introducing

the so called �th jump moment of the �th species

������ �

� �
��� � ��

��
� 
�

�
���� �

�
	��� (4.4)
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with �� � ����� � � � � ��� � we obtain

�

��
������ � ���������� � (4.5)

If the first jump moment ����� were a linear function of �, we could make use of the

relation ������� � ������� giving a self-contained equation for the mean path

�

��
������ � ���������� � (4.6)

However, the coevolutionary dynamics typically are nonlinear so that the relation

������� � ������� does not hold. Nevertheless, as long as the deviations of the stochastic

realizations from the mean path are relatively small or, alternatively, the nonlinearity is

weak, the equation above provides a very good approximation to the dynamics of the

mean path. A quantitative discussion of this argument is provided in van Kampen (1962)

and Kubo et al. (1973). To distinguish between the mean path itself and that actually

described by equation (4.6), the latter is called the deterministic path (Serra et al. 1986).

��� ������	
	��	� �����	���	�
 	
 �	��� �����

We can now calculate the deterministic path of the coevolutionary dynamics by sub-

stituting (3.6) into (4.4) and the result into (4.6). Since from now on we concentrate

on this deterministic approximation we will cease denoting it by angle brackets �� � ��.

So we obtain
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(4.7)

where, as an alternative to employing the function �� � ��
�

in the integrand, we have

restricted the range of integration in (4.7) to ��
�
� ����� with

����� �
�
��� � �� � � ������ �� � �

�
� (4.8)

Note that the process of mutation causes the evolutionary rate of �� to be dependent

on the per capita growth and birth rates of all possible mutant trait values ��
�
. This

dependence is manifested both by the integrand of (4.7) and in the range of integration

(4.8). In order to transform the global coupling into a local one we apply a Taylor

expansion to � ���
�

�
� �� and �

��
� ���

�
� �� � � ���

�

�
� �� about ��

�
� ��. Higher orders in these

expansions are discussed in Section 5; in this section we will use the results only up

to first order

� �
�
���� �
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� � �

� � ����� �� �
�
��� � ��

�
���

�
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��
	 (4.9)
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and

�
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�
���

�
��� � ��

��
� �(4.10)

We have exploited the condition � ����� �� � � above, for the population dynamics of the

resident species are assumed to be at equilibrium. Since derivatives of the ecological

rate functions will be used throughout this paper, we apply the abbreviated notations

� �� � � �
�

���
�

� � � ��� � �
�

���

� � (4.11)

and analogously for all functions taking the arguments ���
�
� ��. From (4.8) and (4.9) we

can infer that the range ����� of integration in this first order result is either ������� or

���� ���, depending only on the sign of � �
�
� ����� ��. If we assume the mutation process

to be symmetric, we obtain the same result in both cases by substituting (4.10) into (4.7)
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� � ����� �� (4.12)

where

��� ���� �

�
���� ���������� ���� � (4.13)

denotes the second moment of the mutation distribution �. Since the first moment of

� vanishes due to symmetry, the second moment of this distribution equals its variance.

The set of equations (4.12) provides a first order, deterministic approximation of the

coevolutionary dynamics. The rate of evolution in the trait �� is determined by two

factors.

1. The first terms in equation (4.12) represent the influence of mutation. This product

is affected by the fraction 
����� of mutations per birth and by the variance ��
�
����

of the mutation distribution �. For homogeneous mutation processes these terms

are constant. The third factor 
����� is the equilibrium population size. All these

three terms make up the evolutionary rate coefficient which is non-negative and

serves to scale the rate of evolutionary change.

2. The last factor accounts for the impact of selection. The function

� �� � ����� �� �
�
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(4.14)
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which we call the selection derivative (Marrow et al. 1992), indicates the sensitivity

of the per capita growth rate of a species to a change in the trait value ��.

It is a measure of the selection pressure generated by the environment through

the ecological interactions. Consequently, this factor determines the direction of

adaptive change. When the selection derivative of � � is positive (negative), an

increase (a decrease) of the trait value �� will be advantageous in the vicinity of

the resident trait value.

The sign of the selection derivative evidently carries important information on the

dynamical structure of the mutation-selection process; yet, in Marrow et al. (1996)

we demonstrate that this information in general is not sufficient to predict evolutionary

attractors.

By means of equation (4.12) we have recovered the canonical equation (1.1) from the

stochastic ecological processes underlying the adaptive dynamics. For the evolutionary

rate coefficients we obtain ����� �
�

�
���������

�

�
�����������. In addition, we have shown the

appropriate measure of fitness to be given by the per capita growth rate of a rare mutant

evaluated while resident population sizes are at equilibrium, ����
�

�
� �� � � ���

�

�
� ��.

��� ������	
���

The deterministic approximation (4.12) readily allows us to calculate phase portraits

of the adaptive dynamics. The application to predator-prey coevolution is depicted in

Figure 2c. The evolutionary trajectories given by the deterministic paths coincide with

the mean paths calculated from the stochastic process itself, see Figure 2b. In Figure

3 phase portraits of the predator-prey system are displayed that correspond to other

choices of parameters. We see that the coevolutionary dynamics can either lead to

extinction of one species (Figure 3a), approach one of several coevolutionarily stable

states (Figure 3b), or it can give rise to continuous, in particular cyclic, coevolutionary

change (Figure 3c); see Dawkins and Krebs (1979) for a discussion of the ecological

and evolutionary implications and Dieckmann et al. (1995) for a detailed investigation

of the cyclic regime.

However, some caveats are necessary for understanding the validity of any deterministic

approximation of a stochastic process. First, if the adaptive dynamics turn out to be

multistable (as in Figure 3b), it will be possible for trait substitution sequences to

exhibit jumps between the existing basins of attraction. This must be kept in mind

while applying the deterministic approximation to initial states very close to the basin

boundary. Figure 4a illustrates this point. In principle, large fluctuations between

the multiple stable states themselves can happen. However, the latter will typically

be associated with extremely small probabilities per unit time, which are negligible
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������ �� Deterministic approximation of the adaptive dynamics: phase portrait as defined by
equations (4.12). The deterministic trajectories which correspond to the trait substitution sequences
in Figure 2a and to the mean paths in Figure 2b are depicted by continuous lines (initial conditions
are indicated by asterisks). Other trajectories have been added to supplement the phase portrait. The
structure of the evolutionary flow in trait space thereby becomes visible. The discontinuous oval curve
is the boundary of the region of coexistence. The dotted curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line: prey). The parameters of the coevolutionary
predator-prey community are as in Figure 2a.

on ecological and even on evolutionary time scales; moreover, when the mutation

distributions are bounded, such large jumps become impossible altogether. Second,

if the flow of the dynamical system describing the deterministic path is expanding,

i.e. trajectories are diverging (as in some regions of Figure 3b), the deviations of the

stochastic realizations from the mean path can grow too fast for the identification of

the deterministic path with the mean path to be reliable (see Figure 4b). Note that the

construction of phase portraits based on the deterministic path is useful in any case,

since these allow qualitative predictions of the stochastic dynamics by considering the

combined process of movement along the trajectories accompanied by jumps between

them. For illustration compare Figure 2a and 2c, see also Figure 4b. Third, if the

attractors of the adaptive dynamics turn out to have dimensions other than � (as in

Figure 3c), the deterministic approximation in principle cannot predict aspects of the

asymptotic mean dynamics of the stochastic process tangential to the attractor. The

reason is that the tangential fluctuations are not balanced by counteracting forces. In

consequence, for example, the asymptotic mean phase of stochastic limit cycle dynamics

is not defined, though the asymptotic mean period is accurately described (Dieckmann

et al. 1995).
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In addition to investigating the coevolutionary dynamics by means of phase portraits,

much insight is gained by applying techniques from bifurcation analysis to the deter-

ministic approximation (4.12). The effects of varying different ecological parameters,

which have an impact on the adaptive dynamics, can then be systematically explored

(Dieckmann et al. 1995).

5 Deterministic Approximation: Higher Orders

The first order result that we have obtained in Section 4 for the adaptive dynamics is not

always sufficient. In this section we will enhance the deterministic approximation by

accounting for the higher order corrections. In particular, two interesting consequences,

the shifting of evolutionary isoclines and the phenomenon of evolutionary slowing down

will be discussed.

��� ������	
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 �	���� ������

The process of mutation has induced a global coupling in the adaptive dynamics (4.7).

To substitute it precisely by a local one, an infinite number of orders in the Taylor

expansions of � ���
�

�
� �� and �

��

� ���
�
� �� � � ���

�

�
� �� about ��

�
� �� is required. The �th order

results are given by

� �

�
���� �

�
�

��
���

�
��� � ��

��
�
�

��
� � ��

� � ����� �� ���
�
��� � ��

����
� (5.1)
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����
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(5.2)

������ �
���� ���	��	���� Deterministic approximation of the adaptive dynamics: phase portraits.
The deterministic trajectories are depicted by continuous lines. Three qualitatively distinct outcomes of
two-species coevolution are illustrated. Figure 3a: Evolutionary extinction (the coevolution of both
species drives the trait values towards a boundary isocline where the predator becomes extinct). Figure
3b: Evolutionary multistability (depending on initial condition the coevolution of both species drives the
trait values towards one of two equilibria which are separated by a saddle). Figure 3c: Evolutionary
cycling (the coevolution of both species eventually forces the trait values to undergo sustained oscillatory
change). The discontinuous oval curve in each figure is the boundary of the region of coexistence. The
dotted curves are the inner evolutionary isoclines of the two species (straight lines: predator, curved
lines: prey). The parameters of the coevolutionary predator-prey community are as in Table 1, except
for: �� � �, �� � �, �� � �, �� � � and �� � ��

�� (Figure 3a); �� � �, �� � �, �� � �� and �� � ��
��

(Figure 3b); �� � ����, �� � �, �� � �� and �� � ��
�� (Figure 3c).
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������ �
�� Descriptive capacity of the stochastic representation. Ten directed random walks in trait
space with a common initial condition are depicted in each figure by continuous lines. Figure 4a: The set
of trait substitution sequences splits permanently into two separate bundles as the initial condition is close
to an existing basin boundary (depicted as a curve of dots and dashes). Figure 4b: The splitting of the set
of trait substitution sequences into two separate bundles is only temporary and is caused by the existence
of an expanding flow (shown as gray curves) in a region that contains the initial condition. Deterministic
descriptions of the dynamics of the mean path cannot capture these features. The discontinuous oval
curve in each figure is the boundary of the region of coexistence. The parameters of the coevolutionary
predator-prey community for Figure 4a are as in Figure 3b, and for Figure 4b as in Figure 2c except
for �� � ��

��.
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Again we have already accounted for � ����� �� � �. Substituting (5.2) into (4.7) yields

the result for the deterministic approximation of the coevolutionary dynamics in �th

order

�

��
�� � ������ � �������

��
���

	�������� �

�


�
�

��
���

�



�

�
� � ��

� � ����� �� � � ����
� 

��
� ���� ��

(5.3)

with

	����� �

�
�����

�
��� � ��

��
���

�
��� �

�

� � ��
�
���� � (5.4)

The range of integration in (5.4) is given by substituting (5.1) into (4.8)

����� � ���� �
��� �

��
���

�
��� � ��

��
�
�


�
� � ��

� � ����� �� � �� � (5.5)

The interpretation of the adaptive dynamics (5.3) is analogous to that given for (4.12)

in Section 4.2. The 	����� are called the 
th mutation moments of the �th species. They

actually coincide with the 
th moments of the mutation distribution �� only if the range

of integration ����� is �������. However, as (5.5) indicates, this is generically not

the case. Even in the first order result the range of integration was restricted to either

������� or ���� ��� and the situation gets more complicated now that higher orders

are considered. Notice that in the derivation above we did not require any symmetry

properties of the mutation process so the result (5.3) is independent of this assumption.

The corrections arising from the higher order result (5.3) in comparison to the first order

result (4.12) can be small for two reasons.

1. The ratios of the per capita growth and birth rates, � ���
�

�� �� and ���
�

�� ��, can be

almost linear, i.e. they can possess only weak nonlinearities in ��� around ��. In

this case the �th derivatives � �

�

�
��� ��

�
���� �� with � � 	 are small compared to the

first order derivative.

2. Moreover, the mutation distributions �� can be narrow, i.e. they may have only

small variances. Then the higher order mutation moments 	����� are negligible

compared to the second order moment.
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We conclude that in either limit – that of vanishing nonlinearity or that of vanishing

variance – the first order result (4.12) of the adaptive dynamics becomes an exact

representation of the deterministic path. The virtue of the dynamics (4.12) is its

simplicity combined with good accuracy as long as one of the two conditions above is

met. The virtue of the dynamics (5.3) is its generality, as it covers the coevolutionary

dynamics of mutation-selection systems allowing both for nonlinearities in the ecological

rates and for finite mutational steps as well as for asymmetric mutation processes.

However, it should be kept in mind that both results describe the dynamics of the

deterministic path; conditions for it to coincide with the mean path have been discussed

in Section 4.1. To illustrate the importance of the higher order corrections in specific

circumstances we now investigate two consequences. Both effects, the shifting of

evolutionary isoclines and the phenomenon of evolutionary slowing down, only become

visible in the deterministic dynamics when second and higher order correction terms

are considered.

��� ������	
 �� �������	��� ������	��

Given expression (5.3) which describes the coevolutionary dynamics beyond the first

order result, we can now analyze the conditions under which evolution in single traits

or in the whole community comes to a halt.

The evolutionary ��-isoclines are defined as those manifolds in trait space �� on which
�

��
�� � � holds. The intersection of all isoclines coincides with the set of fixed points

of the adaptive dynamics. In a first step we analyze the location of the evolutionary

isoclines considering only infinitesimal mutational steps, in accordance with assumptions

usually made in the literature (see e.g. Reed and Stenseth 1984; Taylor 1989). The result

(4.12) is then exact, and we infer that the evolutionary ��-isoclines are given by the union

of manifolds on which either the selection derivative � �

�
� ����� �� or the population size

������ vanishes. We refer to the former as inner isoclines (these are subsets of ���) and

call the latter boundary isoclines (as they are subsets of � ���). Since extinction of one

species terminates the coevolutionary process of the � -species system, we concentrate

on the inner isoclines. These can be classified as below (Metz et al. 1994).

1. Inner isoclines on which � ��

�
� ����� �� � � holds are called 	-stable or non-invadable.

2. Inner isoclines whose points satisfy � ��

�
� ����� �� � ��

�
� ����� �� � � are called 
-

stable or convergent.

3. Inner isoclines characterized by � ��

�
� ����� �� � ��

�
� ����� �� � � are said to be not

mutually invadable.
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The notions of �- and �-stability are due to Taylor (1989) the other names have been

used by Metz et al. (1994). For illustration, the evolutionary isoclines of the predator-

prey system are given in Figures 2c, 3 and 4, the dotted curve corresponding to the prey,

the dotted straight line to the predator. The conditions above can be slightly generalized

in order to account also for those cases where the right hand side of the inequalities

vanishes; for brevity this issue will not be covered here.

Now we consider the second order result. According to equation (5.5) the range of

integration here is given by ����� �
�
��

�
� ��� � ��

�

�
� ��� � �

�

�
� ����� �� � ���

�
� ���

�
�

�

�
� � ��

�
� ����� �� 	 �

�
. For � �

�
� ����� �� � � this range either vanishes or extends to

�������, depending on the sign of � ��

�
� ����� ��. Thus if an inner ��-isocline is non-

invadable, the mutation moment ������, see equation (5.4), and in consequence the

second order correction in equation (5.3) drops out owing to the vanishing integration

range. If the inner ��-isocline is invadable, the same conclusion holds true for symmetric

mutation distributions since ������ now coincides with the vanishing third moment

of those distributions. For asymmetric mutation distribution we already in second

order get a shifting of invadable inner evolutionary isoclines. For symmetric mutation

distributions, however, the evolutionary isoclines of the second order result match

those already established by the first order result. In both cases the inner isoclines

are determined by the vanishing of the selection derivative, � �

�
� ����� �� � �.

This simple picture changes when we consider the adaptive dynamics in terms of the

third and higher order results. We first examine the case of invadable evolutionary

��-isoclines. Since in general the integration range is now no longer symmetric, the

odd mutation moments do not vanish, and neither do the even mutation moments.

Further, the second and higher order derivatives � ��
�
� ����� �� and the first and higher order

derivatives � ����

�


��

� ���� �� in equation (5.3) usually contribute. The third and higher

order corrections therefore cause a displacement of the invadable inner evolutionary

isoclines. These displacements are quantitative deviations from the first order result. But

the higher order corrections can give rise even to qualitative discrepancies. Consider a

manifold in trait space on which � �

�
� ����� �� � � ��

�
� ����� �� � � but � ��

�
� ����� �� �� � hold.

In terms of the first order result (4.12) this manifold would be called an evolutionary

��-isocline. In terms of the more general higher order result (5.3) we notice that this

manifold is not an isocline at all, for the evolutionary rate �

��
��, though probably being

small, does not vanish here. The deviations are not so dramatic for non-invadable ��-

isoclines. Here the range of integration cannot contain the resident trait value ��. The

displacement of the isocline thus will only be significant, if the mutation distribution

������ �
�

�
� ��� extends considerably beyond that zero ��

�
of � ���

�

�
� �� which is closest

to the zero at �� itself. In general however, inner evolutionary isoclines are no longer

determined by the vanishing of the selection derivative.
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������ �
 Shifting of evolutionary isoclines: the effect of finite mutation variance. The discontinuous
oval curve is the boundary of the region of coexistence. The continuous curves are the inner evolutionary
isoclines of the two species (straight line: predator, curved line: prey) for infinitesimal mutation variances,
�� � � and �� � �. The dotted curve is the inner evolutionary isoclines of the predator for finite mutation
variances, �� � � � ��

�� and �� � � � ��
��. The other parameters of the coevolutionary predator-prey

community are as in Table 1.

We summarize that the shift of inner evolutionary isoclines owing to the finiteness of

mutational steps is a second or third order effect, depending on the symmetry of the

mutation distribution. This shift is illustrated for the case of predator-prey coevolution

by the dotted curve in Figure 5a. Note that not only the isoclines can be displaced, but

in consequence also the fixed points themselves. Thus the shifting discussed here may

affect the asymptotic stationary states of the coevolutionary system.

��� �����	���
 ��� ����	������ ������� ����

For illustration, we consider the two dynamical systems �

��
�� � ��� and �

��
�� � ��

�

�
.

Both examples possess a locally stable fixed point at the origin. The time evolution of

these systems is described by ����� � �������
�� and ����� � �

�
�
��

�
��� � ��

�
����

. Note

that for � �� the first system approaches the fixed point exponentially, ����� � �
��,

while in the second case the approach is only algebraic, ����� � �
����, and therefore

much slower. The latter effect is called slowing down. It can occur at fixed points

that are not only characterized by the vanishing of the rate of the dynamical system,
�
��� � �, but also by a vanishing of the rate’s slope, �

��
�
��� � �.
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������ �� Evolutionary slowing down: algebraic approach towards a fixed point. The continuous
curve shows the mean path dynamics of the predator’s trait value close to the evolutionary equilibrium ��

in Figure 2 (constructed from 20 trait substitution sequences). The fixed point �� lies on a non-invadable
predator isocline. In the figure the actual algebraically slow approach to �� is compared to the exponentially
fast one, depicted by the discontinuous curve, that is obtained from the first order result which cannot
account for evolutionary slowing down. The inset confirms the derived power law ����� � ��� � �����

by means of a double logarithmic plot, the jaggedness of the continuous curve stems from the extreme
amplification of single trait substitutions due to the logarithmic scale. The dotted straight line resulting
from a linear least square fit to the time series turns out to have a slope of �������, close to the predicted
value of ����. The parameters of the coevolutionary predator-prey community are as in Table 1.

In general, a dynamical system �
��
� � � ��� is said to exhibit �th order slowing down

at a fixed point �� if � ��� �
��

��� ��� � ��� ���� around � � �� with (i) � � � and

with (ii) ���� � � for � even and ��� � � for � odd. The distinction � refers to

the two cases ���� ��� � � and is necessary to account for slowing down of even

order. Condition (ii) only ensures the local stability of the fixed point � � ��, whereas

condition (i) implies the vanishing of the rate’s slope at � � ��. The algebraically slow

approach towards the fixed point is described by ����� �� � ����� � ��
�������.

The phenomenon of slowing down does arise in the context of coevolutionary dynamics.

Before turning to the general case, for intuition we first utilize the second order result.

We consider a locally stable fixed point of the adaptive dynamics which is situated

on a non-invadable inner evolutionary ��-isocline such that � ��� 	 ����
 �� � � holds

in the vicinity of this isocline. Thus the range of integration is given according

to (5.5) by ����� �
�
��
 �� � � � � �� 	 ����
 ����

��
� 	 ����
 ��

�
for � �� 	 ����
 �� � � and
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by ����� �
�
�� � � � � �

�
� ����� ����

��

�
� ����� ��� ��

�
for the other side of the isocline.

Evidently, the range of integration in second order vanishes on the isocline itself.

The ecological interpretation of this statement is intuitive: fewer and fewer mutants

��

�
are advantageous while approaching the fixed point, until finally all possible mutants

are deleterious. In order to prove formally that this process gives rise to evolutionary

slowing down, we examine the coefficients ��� defined above in the case of the adaptive

dynamics described by equation (4.7). For adaptation in a single species the results

obtained are ��� � ��� � ��� � ��� � � whereas ��� � ���� � �. Thus we are

confronted with slowing down of fourth order.

We conclude that evolutionarily stable fixed points of the adaptive dynamics are attained

at a rate that is algebraically slow in those traits �� whose isoclines are non-invadable at

the fixed point. In principle, the evolutionary slowing down thus can drastically increase

the length of evolutionary transients. Let us now briefly consider invadable isoclines.

Here, the evolutionary rate �
���� in the vicinity of the isoclines actually is increased by a

factor �, since here the integration range is doubling rather than vanishing. Compared to

the first order result, this amounts only to a quantitative but not to a qualitative change.

The phenomenon of evolutionary slowing down can be exemplified in the coevolutionary

predator-prey system. Figure 5b shows the algebraically slow dynamics taking place

in lieu of an exponentially fast approach towards a stable fixed point of the adaptive

dynamics. A double logarithmic plot in the inset confirms the predicted power law

���	�� ��� � �	���� and thus the fourth order of the evolutionary slowing down.

6 Extensions and Open Problems

In this section we discuss generalizations and limitations of our approach. We point out

how to extend the theoretical framework presented, in order to cover more complicated

ecological and evolutionary scenarios.

��� ������	
�� �����������

We have assumed in Section 2.1 that without mutations two or more trait values ��

within a species cannot coexist indefinitely, only the single more advantageous trait

value surviving. This principle of mutual exclusion can be proved for the case of

Lotka-Volterra population dynamics (Dieckmann 1994).

The theorem is as follows. Consider the population sizes 
� and 
�� of a resident trait

value �� and a sufficiently close mutant trait value ��� respectively in an environment

defined by trait values �� and population sizes 
� with � � �� � � � � � �� . The dynamics

of the population sizes are assumed to be of Lotka-Volterra type. When the mutant

is absent we call the remaining dynamical system for the population sizes the resident
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system, when the resident is absent the mutant system, and when both are present

the combined system. Provided that, first, the selection derivative � �

�
� ����� �� does not

vanish, and that, second, the Lotka-Volterra interaction matrix is regular and varies

smoothly with ��

�
, there exists no fixed point of the combined system in ����

�
. It

can then be shown that the mutant will either go to fixation or to extinction. To our

knowledge there exists no proof of the principle of mutual exclusion for coevolutionary

communities not of Lotka-Volterra type, although even in such cases the principle has

been tacitly assumed (e.g. Rand et al. 1993).

We pointed out in Section 2.1 that the quasi-monomorphic feature of the populations

rests on two requirements, the principle of mutual exclusion and a time scale separation.

We can now investigate the conditions for and the consequences of a violation of these

requirements.

1. The principle of mutual exclusion may fail to hold for species � in the vicinity

of an inner evolutionary ��-isocline, since this isocline is close or identical to the

manifold given by � �

�
� ����� �� � �. Whether this failure actually happens, depends

on the class of the isocline as defined in Section 5.2. In particular, the population

will remain quasi-monomorphic, if the isocline is not mutually invadable. Metz et

al. (1994) have suggested that otherwise the population can become polymorphic

via a process of evolutionary branching.

2. As a second possibility, the time scale separation may be violated. Again, this can

occur for species � in the vicinity of an inner evolutionary ��-isocline, since here

the per capita growth rates of a resident trait value and a close mutant trait value

will differ only slightly. For this reason it may take a relatively long time until the

mutant replaces the former resident.

Both cases can best be treated within a polymorphic framework that allows for phe-

notypic distributions ������ describing the density distribution of trait values �� in each

species’ population (Dieckmann 1994, Dieckmann et al. 1995).

��� �����	�
��� ��������

So far we have restricted attention to the case that each species � possesses only a single

adaptive trait ��. To understand the significance of coevolutionary phenomena on the

adaptive dynamics this was sufficient.

However, in real ecosystems adaptive change not only simultaneously happens with

respect to multiple species but also with respect to multiple traits within species. For

instance, life-history traits like rates of reproduction and growth at given ages typically

undergo concurrent evolution (Stearns 1992). We allow multiple traits within species
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by turning �� into a vector �� � ����� with a species index � � �� � � � � � and a trait

index � � �� � � � � ��.

Moreover, allowing for multiple adaptive traits per species can be a prerequisite for

the reliability of the Markov assumption, introduced in Section 5.2; knowledge of all

the trait values at present ought to be sufficient to determine the potential of further

adaptive change in the immediate future.

A third reason for considering multiple traits in phenotypic coevolution is that the path

of evolution can be constrained. In addition to natural bounds on certain trait values

– e.g. fecundities or weights necessarily must be non-negative – which already ought

to be accounted for when considering only one trait per species, the set of accessible

trait values is further restricted by constraints on the combinations of different trait

values. These constraints may depend on simple matters of physics – e.g. surface to

volume ratios cannot decrease beyond a certain threshold. Alternatively, the constraints

may be an outcome of developmental pathways of the organism – e.g. an organism that

matures at a small size has only a small amount of resources to give to reproduction.

Constraints may also follow from the mapping from genotype to phenotype – e.g. if

the same gene influences two traits, the trait values that result are not independent; this

effect is called pleiotropy (Falconer 1989). For a more detailed discussion of constraints

see Maynard Smith et al. (1985), Loeschcke (1987) or Stearns (1992). We allow for

such constraints as follows.

1. Constraints restrict the set of trait values accessible within each species to a subset

of ��� which we denote by ������ . The Cartesian product of all these sets is called
���� � �

�
���

������ . The adaptive dynamics of the � -species community are then

confined to the subset ��� of �� with ��� � ��� �
���� where ��� denotes the region of

coexistence as defined in equation (2.2).

2. Due to pleiotropy the effects of mutations on different traits can be correlated. For

this reason we write the probability distribution for a change ��� from a given trait

value �� due to mutation as a single multivariate distribution���������� rather than

as a product of �� separate distributions ������������.

Here we generalize the results obtained in the previous sections to match the extended

framework of multiple-trait coevolution. The results for the stochastic representation in

Section 3, in particular equations (3.1), (3.2) and (3.6), carry over without alteration.

Notice first that the delta functions in equation (3.2) now take vectors as arguments

such that the usual definition 	���� �
���

��� 	����� applies, and second that the muta-

tion distribution in equation (3.6) now is multivariate. In addition, the principle of

mutual exclusion is more likely to be violated in mult-trait coevolution, but resulting

polymorphisms will usually be of a transient type. The results for the deterministic
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approximation in Section 4 generalize as below. No modifications are required in equa-

tions (4.7) and (4.8). However, the integral in equation (4.7) now is multi-dimensional

with ��� �
���

��� ���� , and consequently the range ����� of integration in (4.8) now

becomes a subspace of dimension �� instead of an interval. In generalizing equations

(4.12) and (4.13) we obtain

�

��
�� �

�

�
� ������ � ��� ���� � ������ � �

�

�	 ����
 �� (6.1)

as the first order result for the deterministic approximation of the multi-trait coevo-

lutionary dynamics in �� . Here �
�

�	 ����
 �� with �
�

� �
�
� �

��
 � � � 
 �
�

���

�
denotes the

selection gradient for species , a vector being composed of simple selection derivatives

� �

��	 ����
 �� with � �

�� � �����

�� for the traits � � �
 � � � 
 �� of species . In the case of

multi-trait coevolution ��� is the variance-covariance matrix of the multivariate mutation

distribution ��. The elements of this square matrix ��� �
�
�������

�
are given by

����������� �

�
���� ������ ������
���� ���� (6.2)

with �
 �� � �
 � � � 
 ��.

Notice that finite off-diagonal elements in ��� (non-vanishing covariances) cause the

adaptive dynamics to take a suboptimal path, i.e. the direction of adaptive change is not

parallel to the selection gradient. Notice also that up to first order the inner evolutionary

isoclines of the adaptive system (6.1) for species  are now given by those manifolds

in �� where the selection gradient ��

�	 ����
 �� either vanishes or lies in the null space

of the variance-covariance matrix ��� . The location and type of boundary isoclines on

��� is less easy to settle and phase portraits of the system (6.1) will prove useful in

this circumstance.

��� ������	
��� 	��� �����	������	� ���	��
��� ��������

In this section we discuss the issue of coevolution under nonequilibrium population

dynamics. In relaxing the assumption of a fixed point attractor in population size

space made at the end of section 2.1 we now allow for arbitrary attractors � that give

rise to periodic, quasi-periodic or chaotic population dynamics. We first outline some

mathematical concepts that have been considered in this context and then investigate

how these relate to the stochastic formalism developed in this paper.
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To decide upon the initial increase of a rare mutant ��

�
in an environment given by the

residents � the following constructs have been suggested

��

�
��

�� �
�
� ���

���
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�

� �
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���� �

�
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����

�������� �� �� �	��� 

(6.3)

The first quantity �� is the time average of the per capita growth rate of the rare

mutant along a trajectory ���� that starts on the attractor ���� of the resident system.

This construct immediately follows from our formal framework set out in Section 2.1; in

generalization of equation (2.7) we thus write � ���
�

�
� �� � ����

�

�
� ��. The second quantity

�� (Metz et al. 1992) is the Lyapunov exponent of the combined system along the

direction of the mutant’s population size for a point on the attractor ���� of the resident

system. It is given by the average logarithmic growth rate of the distance between

two specific trajectories. The first trajectory ���� starts from ���� on the attractor ����

itself, the second trajectory ����� has initial conditions ����� � �����
���� where 
����

denotes an initial displacement in the direction of the mutant’s population size. The

distance between these two trajectories is given by �
����� with 
���� � ������ ����,

where the particular choice of the distance function �  � does not affect the result. Note

that the mathematical definition of a Lyapunov exponent requires the time development

of ����� to be evaluated according to the linearization of the dynamics of the combined

system along the attractor ���� (Eckmann and Ruelle 1985). As a convenient alternative

for numerical estimations of Lyapunov exponents one might utilize the combined system

directly but then choose a small 
���� and extend the average only over a finite time

interval ��� � �; nonetheless in order to cover the attractor ���� sufficiently, several

repetitions of this procedure usually are necessary where each single repetition is

followed by a rescaling � �
��� �� 
���� with �� � (Baker and Gollub 1990). The

third quantity �� (Rand et al. 1993) is called invasion exponent and in our case is simply

the phase average of the per capita growth rate of the mutant on the attractor ���� of

the resident system weighted by the natural measure �	��� of this attractor. Taking the

natural measure rather than an arbitrary invariant measure is important when the attractor

���� is chaotic (Ott 1993). For practical applications this caveat however is immaterial

due to the noise inevitably associated with any numerical estimation (Schuster 1989).

In the literature, the condition for initial increase of the rare mutant is taken to be

��  � with � � �� �� � (e.g. Metz et al. 1992, Rand et al. 1993). The equivalence

of the three criteria can readily be established. First, the time average �� coincides

with the phase average �� (Ott 1993) – there can be exceptional initial conditions
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���� that do not satisfy this identity, but since the set of these has Lebesque measure

zero they are irrelevant for realistic systems. Second, the time average �� equals the

Lyapunov exponent ��. To show this we linearize the dynamics of the combined system

about the trajectory ���� and obtain �
��
����� � ������� � ����� where ���� denotes

the Jacobian matrix of the dynamics of the combined system evaluated at �. From the

population dynamics of the combined system we get ������ � � � ������ � �

(the left hand side holds since the initial displacement between ���� and ����� is

only affecting the mutant’s population size ��

�) as well as ��

���� � � � ��

���� � �

(the left hand side holds for the trajectory ���� since it starts on the attractor of the

resident system where the mutant is absent). From the first implication we obtain

������� � ����

����� and applying the second implication to the linearized dynamics

yields �
��
���

���� � ������

�� �� ��������� � ���

����. From these equations we conclude

����� ��	������� � ���
� �

�
������

�� �� ����� 
� which completes the proof of �� � ��.

We investigate whether or not we recover the condition �� � � for the initial increase

of a rare mutant in the light of our stochastic approach. Already in the case of a

fixed point attractor in population size space we had to distinguish between the time

scale �� of adaptive change and the time scale �� � �� on which a mutant either goes

extinct or reaches fixation while the population dynamics of the combined system attain

its attractor. With population dynamics settling to a nonequilibrium attractor ���,

an additional time scale �� for the motion on this attractor is introduced. We assume

�� � �� � ��. In this case the invasion of a successful mutant happens slowly compared

to the dynamics on the attractor ���; this is typical for mutants whose trait values ��

�

are sufficiently close to the resident trait value ��. In generalizing equations (3.6) and

(4.12) we obtain for the probabilities per unit time in the stochastic representation

��

�
��

�� �
�
�

������ � ������ �� � ����� ���

�
��� �

�

� � ��
�
� �

��
�

�
���� �

�
� �� �

�
���� �

�
��

(6.4)

and for the adaptive dynamics the deterministic approximation in first order yields
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� ������ � �

�
� ���� � �

��
� ���� �� � ������ �� � ����� � �

�

� � ����� �� � (6.5)

The construction of the higher order deterministic approximations for the adaptive

dynamics follows the same scheme as in Section 5.1 and is not repeated here. Note that

in result (6.5) the term �
��
� ���� �� � ������ �� � ����� will differ more from ����� the larger

the variation in the resident population size of species � is along the attractor ���.

We now turn to the invasion criteria. A rare mutant ��� can successfully invade a

community given by the resident trait values � provided that there is a positive transition

probability per unit time for the trait substitution �� � ���, i.e. ����
�

�� �� � �. We

easily draw the conclusion that our stochastic approach yields the criterion �� � �
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which is equivalent to those proposed previously. To see this, consider equation (6.4)

together with the definitions of �� � ��
�

and that of � ���
�

�
� �� � ����

�

�
� �� in equation

(6.3). However, our analysis not only yields these criteria for the initial increase of

a rare mutant but provides us also with a full dynamical description of the adaptive

process. We emphasize that the results above readily generalize to cover the issue of

coevolution in slowly varying environments where the additional time dependence stems

from external influences rather than from internal interactions.

7 Conclusions

In this paper we have established the canonical equation (1.1) of adaptive dynamics

from the underlying stochastic ecological processes. In the course of this derivation

we revealed the implicit assumptions, on which this result is based. Moreover, our

approach allowed us to relax many of these assumptions and thus to provide generalized

descriptions of coevolutionary dynamics.

To conclude, we briefly summarize these generalizations.

1. To obtain a dynamics like equation (1.1) from a mutation-selection process certain

symmetry properties of the mutation distributions are needed, see Section 4.2. Both

our deterministic approximation in higher orders, see Section 5.1, and the stochastic

representation in general remove this assumption.

2. Being a deterministic description of the coevolutionary dynamics, the canonical

equation describes the mean path and thus does not cover the full richness of

dynamical effects that can occur in stochastic mutation-selection systems, see

e.g. the discussion in Section 4.3. We have provided a stochastic representation

in Sections 3.1 and 3.2 that accounts for these features. Two examples illustrating

the difference are given in Figures 4a and 4b.

3. We have recovered the canonical equation as an exact description of the coevo-

lutionary deterministic path, provided that the mutational steps are considered to

be infinitesimal. Although the canonical equation gives a good approximation for

small finite mutation variance, the approximation becomes inaccurate as the vari-

ance increases and consideration of higher order correction terms is recommended,

see the derivation in Section 5.1.

4. The canonical equation does not permit interdependencies between several traits

within one species. In Section 6.2 we could show how the stochastic approach

to the coevolutionary mutation-selection process in this case naturally leads to the

introduction of the variance-covariance matrix for the mutation distributions. The

latter can give rise to less direct pathways towards evolutionary attractors.

5. The scope of the canonical equation is confined to coevolutionary systems with

equilibrium population dynamics and a constant external environment. We have
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demonstrated in Section 6.3 that this limitation can be overcome such that more

general ecological scenarios may be tackled.

Such relaxation of the restrictions of the canonical equation are variations on a single

theme: In modelling complex systems, like those exhibiting coevolutionary dynamics,

one can always trade descriptive capacity for mathematical simplicity. The canonical

equation may indeed be sufficient for specific goals, but this depends on what assump-

tions can reasonably be made. We have shown in this paper that new and distinct

evolutionary phenomena emerge by removing any of these assumptions. Conversely, if

the generalizations summarized above are not to be made, it is important to be aware

of the evolutionary phenomena that are then sacrificed.

��������	
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Evolution takes place in an ecological setting that typically involves interactions
with other organisms. To describe such evolution, a structure is needed which
incorporates the simultaneous evolution of interacting species. Here a formal
framework for this purpose is suggested, extending from the microscopic inter-
actions between individuals — the immediate cause of natural selection, through
the mesoscopic population dynamics responsible for driving the replacement of
one mutant phenotype by another, to the macroscopic process of phenotypic evolu-
tion arising from many such substitutions. The process of coevolution that results
from this is illustrated in the context of predator-prey systems. With no more than
qualitative information about the evolutionary dynamics, some basic properties of
predator-prey coevolution become evident. More detailed understanding requires
specification of an evolutionary dynamic; two models for this purpose are outlined,
one from our own research on a stochastic process of mutaton and selection and the
other from quantitative genetics. Much of the interest in coevolution has been to
characterize the properties of fixed points at which there is no further phenotypic
evolution. Stability analysis of the fixed points of evolutionary dynamical sys-
tems is reviewed and leads to conclusions about the asymptotic states of evolution
rather different from those of game-theoretic methods. These differences become
especially important when evolution involves more than one species.

1 Introduction

It is a central problem in evolutionary theory that the evolution of a lineage needs to be

considered in the context of ecological conditions experienced by the lineage. Natural

selection, the source of much biotic evolution, is driven by differences among organisms

in survival and reproduction as they live out their lives in an ecological setting, and

the relationship between evolution and ecology is aptly summed up in Hutchinson’s

(1967) metaphor ’The ecological theater and the evolutionary play’. The birth and

death processes of individuals are a common object of study of both subjects, and there

is a wide recognition that a synthesis of the relevant areas of population ecology and
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evolutionary genetics is needed to inject an ecological basis into evolutionary theory;

see for instance comments by Lewontin (1979).

The ecological setting of evolution can take many different forms, involving abiotic as

well as biotic factors. In this paper we focus on the ecological process of predation, and

consider how to model the evolutionary dynamics generated by an interaction between

a prey and predator species. We do this to provide some background to the subject for

theoreticians interested in entering the subject area, and also to illustrate and place in

context some mathematical methods developed by Marrow et al. (1992) and Dieckmann

and Law (1996). Although we concentrate on predation, the main ideas can be applied to

a variety of biotic interactions falling within the scope of coevolution, a term coined by

Ehrlich and Raven (1964) to describe the evolutionary process caused by the coupled

evolution of all of the lineages concerned. Slatkin and Maynard Smith (1979) and

Futuyma and Slatkin (1983) give introductions to coevolution. In a coevolving system,

the evolution of the component species needs to be considered simultaneously, because

evolutionary changes in one species can be the cause of evolutionary changes in the

other(s).

A number of biological issues are raised by the coevolution of predators and prey.

Most important is an instability inherent in their coevolution, since natural selection by

the prey on the predator favours predator phenotypes best able to consume the prey,

whereas selection by the predator on the prey favours prey phenotypes least likely to be

killed. This may lead to an escalation in traits affecting attack and defence, referred to

as an evolutionary ’rat race’ by Rosenzweig (1973) and an ’arms race’ by Dawkins and

Krebs (1979). Abrams (1986) argued that an arms race does not exhaust the possibilities;

for example, continuing evolution in one species may occur even if the other remains

constant. Although evidence is hard to find, Bakker (1983) documented changes in

mammalian herbivores and carnivores during the Paleocene to Mid Eocene that could

be of the kind suggested by Dawkins and Krebs (1979). Those taxa characteristic of

open habitats, where pursuit and flight are critical features of predation, show similar

speed-enhancing changes in limb morphology; during this time the prey appear to have

evolved faster than predators. Dawkins and Krebs (1979) argued that an asymmetry in

the selection pressures would be expected, on the grounds that the prey is running for

its life whereas the predator ’is only running for his dinner’. Notice that, if the predator

evolves faster than the prey, it could gain such a great advantage that it destroys its

prey altogether and brings about its own extinction. This led for example Slobodkin

(1968, 1974) and Michod (1979) to consider how the apparent ’prudence’ in exploitation

of prey by natural predators could come about by selection operating at the level of

the individual. One likely cause is that the predator selects for prey life histories in
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which the effects of predation on the prey’s reproductive success are reduced, a process

experimentally confirmed in the water flea Daphnia magna by Edley and Law (1988).

To investigate these and other issues arising in the coevolution of predators and prey

it helps to have a formal structure for modelling the process. Such models might be

cast in terms of population genetics, evolutionary game theory, or quantitative genetics.

Population genetics deals with how the frequency of a gene in each species with some

effect on the interaction changes over the course of time, as discussed by Jayakar and

Zonta (1990). This approach is to focus on the detailed dynamics of single genes.

Evolutionary game theory in contrast sacrifices genetics to focus on the details of

ecological, frequency-dependent interactions among organisms. Each species is assumed

to comprise a set of phenotypes influencing the interaction, and a search is made for

fixed points at which the phenotypes present are uninvadable by others; see for instance

Parker (1983, 1985). The focus in this case is on an endpoint of evolution and, implicit

in this, is an assumption that a sequence of gene substitutions, the stuff of population

genetics, can bring the system to the fixed point in the first place. With these two

approaches in mind, evolution has been likened to the motion of a streetcar, with many

stops and starts as one gene is substituted for another, before eventually reaching the

terminus; population genetics deals with the path between one stop and the next, and

evolutionary game theory searches for the terminus. (We will see below, however, that

a terminus does not necessarily exist.) The third approach, quantitative genetics, focuses

on statistical properties of traits with continuous variation caused by the environment and

a large (unspecified) number of genes with small effects; see for example Saloniemi

(1993). This has the advantage that many of the traits important in coevolution are

continuous variables, and the disadvantage that, like much of evolutionary game theory,

it lacks an explicit mechanistic basis in genetics.

The approach used here is motivated by the ecology of interactions between predators

and prey-the proximate cause of natural selection. The evolutionary variables are

therefore phenotypic traits (properties such as body weight or height) rather than gene

frequencies. But we wish to go beyond the game theoretic study of fixed points to

investigate a dynamical system of evolution within which the properties of fixed points

can be seen in their proper context. This could be done either through quantitative

genetics or as a development of evolutionary game theory; we have chosen the latter

path to keep a close connection with game theory. Casting the dynamics in these

terms entails some compromise over the genetic system; the methods we describe apply

explicitly to a system of pure-breeding clones, but it will be seen that a model used

in quantitative genetics has many of the same features. Our approach also departs

from single-species evolutionary game theory in being based on density in addition to

frequency of different phenotypes. This is an important ecological feature when dealing
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with games between species because, as Pimentel (1968) pointed out, the whole game

achieves more or less significance in the evolution of each species as the abundance of

the other species becomes respectively greater or lower.

2 A Structure for Modelling Coevolution

We seek a formal description for the process of coevolution that works from the details

of phenotype-dependent interactions of individuals (the cause of natural selection) to the

large-scale phenotypic evolution of the system. One would like the process to be ’self-

referencing’ in the sense that the path of evolution is driven internally by the population

dynamics of the interacting species. We focus on one prey and one predator species,

but note that the structure could readily be extended to systems with greater numbers of

species and involving other kinds of interactions, as described by Dieckmann (1994) and

Dieckmann and Law (1996). The following argument rests on a hierarchy of three time

scales: microscopic interactions among individuals, mesoscopic population dynamics,

and macroscopic phenotypic evolution.

��� �����	
���� 	���� ��������	�

Suppose that coevolution is taking place in one trait in each species, the value of the

trait in an individual (i.e. its phenotype) being �� in the prey and �� in the predator;

the traits might for instance be adult body sizes. The trait values are taken to be

continuous and are elements of the sets �� and �� in the prey and predator respectively.

The phenotypes of a prey individual and a predator individual, which are denoted

� � ���� ��� and taken from the set � � �� � ��, determine what happens when they

encounter one another. One must specify the effect of the encounter on the birth and

death rates of the individuals concerned. In qualitative terms the encounter will most

likely lead to an increased risk of mortality in the prey; the predator on the other hand

most likely experiences a reduced rate of mortality or, in the longer term, an increased

rate of reproduction, or both. How great the effect on the vital rates is, depends on

the phenotypes of the individuals; any difference in vital rates between co-occuring

conspecific individuals with different phenotypes causes natural selection. For instance,

a large prey individual is more likely than a small one to defend itself successfully from

a predator of intermediate size and, as a result, to gain a selective advantage through a

lower risk of death in the encounter. Some specific choices for the effect of encounters

on vital rates are given in an example in Section 3.
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��� ������	
�� ����
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The population dynamics described below will drive the replacement of one phenotype

by another. Suppose first, as a preliminary, that each species comprises only one

phenotype, the pair of phenotypes being given by �. To consider the population

dynamics, we introduce state variables � � ���� ��� for the densities of prey and predator

respectively. The population dynamics of the two species may then be written as a pair

of differential equations

��� � ������� �� for � � �� � (1)

where �� is the per capita rate of increase of species �, and depends on � through

a set of control parameters the values of which depend on the current phenotypes.

These control parameters indicate how the birth and death rates caused by � influence

population dynamics; for example in the familiar Lotka-Volterra equations, ��� �

��

�
�� �

�
� �����

�
, they are the ��’s and ���’s. The control parameters would be

taken as constants in a pure ecological model, but in the presence of coevolution they

may change as the phenotypic state changes, as discussed by Lewontin (1979) and

Stenseth (1986). Clearly we are only concerned with systems in which the densities

are bounded; moreover, the issue of coevolution only arises if the population dynamics

allow coexistence of the species over a subset of �, denoted by ��.

��� ������	
�� ����
�� �� ���
���	 ��� ��	��	 �����	���

To examine how the system evolves, we start by allowing a mutant to arise and determine

what happens to its population density ��

�. Suppose a mutation occurs in species �,

causing a phenotypic change 	�� in a system currently composed of individuals of

phenotypes �; such a mutant is denoted ��

� � �� � 	��. Two factors are crucial in

determining whether the mutant replaces the resident. First it should increase when rare

and second it should then tend to fixation.

To determine the initial behaviour of a mutant when rare, the initial per capita rate

of increase must be written in such a way that it distinguishes the phenotype of the

individual under consideration from those in the environment in which it occurs. Thus

we write ������

�� �� ��, where the first argument ��

� defines the phenotype of this individual,

and the latter arguments �, � can be regarded as defining the biotic environment, see

below. The dynamics of the system augmented by the rare mutant are therefore written

��� � ��
������

�� �� �
�

for 
 � �� � �

���

� � ��

�
������

�� �� �
�
�

(2)

The first two equations describe the dynamics of the resident phenotypes, and the last

gives the dynamics of the mutant. Since the mutant is rare initially, its effect on the
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biotic environment at this stage is negligible and the environment is determined by the

resident phenotypes. For simplicity we assume that, before arrival of a mutant, the

densities of resident populations with phenotypes � have come to equilibrium given by

������ � ���

�
��

�� �� ��
�
� � for � � �� � 	 (3)

in this case of a system at equilibrium the environment is fully specified by �, so the third

argument of ��� is no longer needed, and we write the initial per capita rate of increase

of the mutant as � ���
�

�� ��. The conditions under which the assumption of equilibrium

population dynamics can be removed are considered in Dieckmann and Law (1996).

A necessary condition then for the mutant to increase when rare is that it should have

a positive per capita rate of increase in the environment of the resident phenotypes at

their equilibrium densities, i.e.

� �

�
��

�� �
�
� � � (4)

The eventual fate of an initially successful mutant is less easy to settle. Either it goes

to fixation, thereby replacing the former resident, or both the mutant and the resident

stay in the system at finite densities. For population dynamics (2) of Lotka-Volterra

type (i.e. �� � �� 

�

� 	����), the latter outcome can typically be excluded; this is

principle of mutual exclusion is proven in Dieckmann (1994). In this case, invasion

implies fixation, and the phenotype of species 
 has made a step from �� to ��

�. The

idea here is to allow the dynamical system of population densities explicitly to drive

the replacement of one mutant by another.

��� �����	
�� �����	���

Once a method is in place to determine whether a mutant phenotype replaces the resident

phenotype, it is straightforward to consider a sequence of mutants each one replacing

the phenotype that was previously present. Such a sequence, called a trait-substitution

sequence by Metz et al. (1994), indicates the long-term evolutionary path of the system.

The aim now is to find a system of equations describing this macroscopic evolution, in

which the phenotypic traits are themselves the state variables.

As a preliminary, we make two assumptions. These are that the principle of mutual

exclusion applies and that successful mutants occur rarely enough for evolution to be

modelled to a good approximation by a monomorphic dynamic within species. These

assumptions apply below unless otherwise stated. We caution that the assumption of

monomorphism would not apply if the mutant and resident phenotypes come to persist

in a protected polymorphism; Metz et al. (1994) and Dieckmann (1994) consider ways

to deal with this problem.
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A selection derivative, measuring the sensitivity of the mutant’s initial rate of increase

to changes in its phenotype, is central to the evolutionary dynamic. This is defined as2

�

���

�

� �

�
��

�� �
�
��

�
���

� ���
��

�
���

� ���
�

�
� ��� � ����� ��

��
�
� ��

(5)

where � ����� �� � �, because the resident phenotype is at equilibrium with respect to

population density. Notice that the derivative is evaluated while holding the environment

(defined by the equilibrium densities) constant, since it refers to a rare mutant invading

at �����. The selection derivative is important because it indicates whether phenotypic

evolution takes place in the direction of greater or smaller phenotypic values; if

�� ����
�

�
� � (respectively �� ����

�

�
� �), then the system is vulnerable to invasions

by mutants with ��
�
� �� (respectively ��

�
� ��) with ��

�
sufficiently close to ��. One

would expect, then, the macroscopic evolutionary dynamics to have a property

	��

��
�

� � when �� ����
�

�
� �

� � when �� ����
�

�
� �

� � when �� ����
�

�
� �

for 	 � 
� � 
 (6)

These conditions do not, of course, yet specify an evolutionary dynamic; this would

entail the introduction of a scaling factor which can be dependent on the process

of mutation. We will give in Section 4 such a dynamic from Dieckmann and Law

(1996) that is derived from the assumption of infinitesimal mutational steps and as such

applies as a close approximation for mutations of small finite size. Nonetheless, without

specifying the mutation process, it is still possible to get some qualitative insights into

predator-prey evolution and other kinds of coevolving systems. Notice, in particular

that isoclines of zero evolution according to (6) are defined by

����� �
�

���
�

� �

�
���� �

�
��

�
���

� �  (7)

the fixed points in phenotypic evolution are thus given by the intersections of �� and

��. These qualitative properties are illustrated in the next section.

3 An Example

We show how the structure above may be used in the context of a specific model

investigated by Marrow et al. (1992), in which the traits � undergoing evolution are

interpreted as body sizes of the prey and predator. The per capita rates of increase of

phenotypes s at densities � are given by

prey: ����� �� � �� � ����� � ������

predator: ����� �� � ��� � ������
(8)

where ��, ��, , � and � are positive control parameters. The benefit to a predator

of a prey item, ����, is taken to be at its maximum for some intermediate body size
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of both the predator and the prey. It is assumed that a bell-shaped function describes

the relationship:

���� � �� ���
�
���� � ������� � ���

�

where �� � ��� � ������ and �� � ��� � ������, and �� to �� are positive parameters.

On the basis that what is good for the predator is bad for the prey, the loss to the prey,

����, is taken to be proportional to ����

���� � ���
�
���� � ������� � ���

�

The term ���� represents self-limitation in the prey and therefore depends only on ��,

and a quadratic function is assumed such that the prey would evolve to an intermediate

body size in the absence of predation

����� � �� � ���� � �	�
�

�

where �� , �� and �	 are positive parameters.

For certain ranges of the parameters in the functions �, � and �, there are body sizes

that permit both species to have positive equilibrium densities 	�; the set of body sizes

with this property, 	�, is delimited by the oval curve in Figure 1. As Harrison (1979)

for example showed, 	� has global asymptotic stability given Equations (1) and (8),

and this ensures that the system comes to equilibrium for a given �. Suppose that a

mutation occurs causing small changes in body size to the predator or prey. A prey

mutant (respectively predator mutant) increases when rare if it satisfies respectively:


 �
�
��

�
� �
�
� �� � �

�
��

�

�
	������ �

�
��

�
� ��

�
	�����  



 �
�
��

�� �
�
� ��� � �

�
��� �

�

�

�
	�����  
 �

Since these dynamics are of Lotka-Volterra type, invasion typically implies fixation.

Exceptions to this principle of mutual exclusion can occur close to the isoclines �����,

as discussed in Dieckmann (1994), in which case both resident and mutant may remain

causing the population to become polymorphic. Usually this behaviour does not persist

because evolution in the other species takes the system away from the isocline, and the

system reverts to monomorphism. But it is possible for evolution to lead to a fixed

point with this polymorphic property (see Section 5), in which case the monomorphic

assumption underpinning the model breaks down, as discussed by Metz et al. (1994).

With these caveats, conditions (6) can be used to partition Sc into regions in which

evolution towards larger (�
 ����
�

�
 
), or smaller (�
 ����

�

�
� 
), body size occurs for

each species, separated by the isocline ����� on which there is no selection. An example

is given in Figure 1, the qualitative direction of evolution being shown by the arrows.
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����
� � Some qualitative properties of evolutionary dynamics of prey (��) and predator (��) body
size. �� is the interior of the oval region. The line �� is shown as discontinuous; the straight line �� is
shown as continuous. Fixed points of the system occur at the intersections of �� and ��. Arrows indicate
the direction in which body size evolves in each species, horizontal arrows for prey and vertical arrows
for predators. Discontinuous part of the boundary of the oval region indicates where a prey mutant could
cause predator extinction. From Marrow et al. (1992: Figure 2a), with parameters: �� � ���, �� � �����,
�� � ���, �� � ���, �� � ���, �� � ����, �� � ���, �� � ����, �� � ���, �� � ����, �	 � ����.

Simple though this approach is, it illustrates some features of a coevolving predator-prey

system. First, it shows the tension typical of predator-prey coevolution. In the example

given, the predator gains its greatest benefit from the prey at �� � ���, �� � ���, but the

prey suffers its greatest loss here and the system does not tend to this point. Second,

there is continuing evolution across the phenotype space, only terminated if the system

reaches a fixed point. We should emphasize that, although evolution in this example

leads to a fixed point, this is by no means an inevitable outcome, and an example is

given later (Figure 2) in which the �-limit set of the evolving system is a limit cycle

— the species driving each other to continue evolving as long as the system remains

in existence. Third, if one species tended to its isocline, continuing evolution would

require mutations in the other species to shift it along the isocline; such evolution can

be envisaged as an arms race because there would be no further change without the

’escalation’ due to these mutations. Fourth, the geometry of fixed points of the system

is exposed, that is, the points at which the lines �� and �� intersect. There can be

several such points, and the properties of these fixed points are of interest in their own

right (see Section 5). It can be seen that, in the case of the outer pair of fixed points,

each species is evolving towards its isocline; but, in the case of the intermediate fixed

point, the predator converges while the prey diverges. Fifth, the shape of �� indicates

that there is only a limited range of body sizes enabling coexistence of the species; it is
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����� � Phase portrait of a system with an evolutionary limit cycle. �� is the interior of the oval
region. The discontinuous line is �� and the straight continuous line is ��. A fixed point of the system
occurs at the intersection of �� and ��. Curved continuous lines within �

�
are orbits, all of which tend

to the limit cycle around the fixed point. The dynamical system (9) is set such that
�
���

�

�

�
�
�
���

�

�

�
� �;

other parameters are as in Figure 1 except for �� � ���� (Marrow et al. 1992: Figure 2g).

possible for a sequence of mutant substitutions in the prey to lead to extinction of the

predator, if they take a path across the part of the boundary shown as discontinuous.

On the other hand there is no region of phenotype space in which both species have an

equilibrium population density of zero, and thus there is in this example no evolutionary

path in which the predator can gain such an advantage over the prey that it destroys

the prey and brings about its own extinction.

4 Evolutionary Dynamics

To take the investigation of coevolution further, an explicit dynamic for the process is

needed. This can be done in several ways; here we mention a stochastic trait-substitution

model and one from quantitative genetics.

��� �����	
��� �	������
�������� �����

This models evolutionary trait-substitution sequences as directed random walks in

phenotype space arising from mutation and selection. Stochasticity is induced in the

evolutionary dynamics first by making the occurrence and size ��� of mutations a random

variable. Second, it comes about from the chance extinction that even advantageous

mutants experience after their first appearance in a single individual, due to the effects

of demographic stochasticity as discussed by Fisher (1958: 80 et seq.). These random
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effects are countered by natural selection arising from the biotic environment and this

imposes directionality on the random walks. A master equation for this process is

derived in Dieckmann and Law (1996), and it is shown that, by taking the first jump

moments of the equation (van Kampen 1981), this yields a system of ordinary differential

equations

� ���� � �����
�

���

�

� �

�
��

�� �
�
��

�
���

for � � �� � � (9)

where

����� �
�

�
���

�

�

�	����

	�

� � 


Here ���� is the expected phenotypic value, �� is the probability that a given birth

is a mutant, 	� is the unit density scaling �	� to numbers, and ��
�

is the variance of

the mutation distribution. The factor ����� scales the rate of evolution in species �

and comprises two parts, the evolutionary rate constant �

�
���

�

�
and the equilibrium

population size. Notice the dependence of this system on the selection derivative (5);

as a consequence the qualitative properties of the dynamics (6) remain in place, and

system (9) specifies a full dynamic for the process of coevolution developed earlier.

The system (9) is a first order result which is exact for mutational steps of infinitesimal

size, and gives a good approximation for mutational steps of small size. The system

can be refined by consideration of higher-order corrections, as derived and discussed

in Dieckmann and Law (1996).

Figure 2 illustrates some evolutionary orbits of a coevolving system of predator and

prey based on equations (9), having the feature that the �-limit set is a limit cycle

rather than a fixed point. This is of some biological interest because it shows that

the interaction between the predator and prey is sufficient to keep the system evolving

indefinitely; as discussed by Marrow et al. (1992), changes in the physical environment

are not a prerequisite for continuing evolution.

��� �����	���	
� �����	� �����

In the literature, an evolutionary dynamic from quantitative genetics has most often

been used. Quantitative genetics at its simplest distinguishes between two components

of the phenotypic value ��: an additive genetic part �� and a non-genetic part �

statistically independent of ��. The distinction between �� and �� is made because

selection operates on phenotypic values but only the additive genetic components are

inherited, as discussed by Falconer (1989). The standard formulation of a quantitative-

genetic dynamic given by Lande (1979) does not allow the per capita rate of increase

(fitness) associated with phenotype �� to depend on the environment. But Iwasa et
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al. (1991), Taper and Case (1992) and Abrams et al. (1993) have suggested ways of

removing this limitation. By assuming that the phenotypic distributions are narrow and

that the time scale of population dynamics can be separated from that of evolution, a

dynamic resembling closely that of equations (9) can be obtained:

��� � ��

�

���

�

� �

�
��

�� �
�
��

�
���

for � � �� � � (10)

where

�� � ����
� �

where �� is the expected mean phenotypic value and ��
��

the variance of the additive

genetic values, often assumed to be constant. Although not usually explicitly derived

from quantitative genetics, dynamics of this kind have been used on a number of

occasions; see for instance Brown and Vincent (1987a), Rosenzweig et al. (1987),

Hofbauer and Sigmund (1990), Vincent (1990) and Marrow and Cannings (1993).

In view of the models’ radically different starting points, the similarity of dynamics (9)

and (10) is notable. They do however differ in the source of variation on which selection

operates. Dynamics (10) depend on phenotypic variation due to many genes with small

additive phenotypic effects placed together in different combinations; evolution is then

a process of selection on these combinations as they are reshuffled through segregation

and recombination. Dynamics (9) on the other hand depend on variation generated

by mutation. The quantitative genetic model is well-founded empirically, whereas the

mutation-driven dynamic (9) is based on a somewhat simplified notion of phenotypic

variation. On the other hand dynamics (9) are derived explicitly from a stochastic

process of mutation and initial increase of advantageous mutants in Dieckmann and

Law (1996), and represent a natural dynamical extension to evolutionary game theory.

5 Fixed Point Properties

Much of the interest in models of coevolution has been to characterize properties of

fixed points in phenotype space at which the selection pressures generated by interacting

species are balanced, so that there is no further phenotypic evolution of the system.

Such work has usually been developed in the context of evolutionary game theory, and

a dynamic is often not made explicit in this context. Here we mention some of the

literature on the application of evolutionary game theory to questions of coevolution.

We then point out that the introduction of an evolutionary dynamic is necessary to

determine the asymptotic stability of fixed points (in contrast to the assertions of game

theory). It should be kept in mind, however, that these fixed point properties cannot

tell us all we need to understand the evolutionary process for, as we have already seen,

the 	-limit set of an evolutionary dynamic need not be a fixed point (Figure 2).
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The notion of an ESS, defined by Maynard Smith and Price (1973), has been widely used

to identify fixed points in phenotypic evolution, as discussed by Maynard Smith (1982).

An ESS is a phenotype which, if adopted by almost all individuals in a population,

cannot be invaded by a rare mutant of any other phenotype. The notion has been applied

to multispecies coevolution by Brown and Vincent (1987a, 1987b) amongst others. In

the context of two-species coevolution used in this paper, a sufficient condition for the

phenotypes s to be an ESS is that, for individuals of phenotypes ��

�
�� ��,

���

�
��

�� ��� ��� �����
�
��

�
���

� ���
�
��

�� ��� ��� �����
�

for �� � � �� �

and � �� � �

recalling from (2) that the first argument of ��� defines the individual’s phenotype, and

the other arguments define its biotic environment. The set from which ��

� is drawn is

discussed below. The argument � is written out in full above to distinguish the condition

for an ESS from another notion given earlier by Roughgarden (1979, 1983), that of a

coevolutionarily stable community (CSC); this has the property (in our notation)

���
�
��

�� ��� �����
�
��

�
���

� ���
�
��

�� ��� �����
�

for �� � � �� �

and � �� � �

where the phenotype of the conspecific resident is not allowed to affect the per capita

rate of increase of the mutant other than by the equilibrium densities, and is thus not

specified. This means that the mutant’s ��� depends on the phenotype of the conspecific

resident only through the effect of the latter on the equilibrium densities. Consequently

intraspecific frequency-dependent selection is excluded, and the circumstances under

which the notion of a CSC applies are rather more restricted than those for the ESS,

as discussed by Abrams (1989) and Taper and Case (1992). Notice that these game-

theoretic properties of fixed points do not consider evolutionary dynamics, and such

points may or may not be attractors in phenotypic evolution. An ESS as defined above

might be better called an evolutionarily steady state, as this makes no reference to the

dynamical notion of stability.

To add to the problems of terminology, the term ESS has also been used to refer to

local asymptotic stability of equilibria of population densities in coevolutionary theory

by Reed and Stenseth (1984). They envisaged a vector � of densities for resident

phenotypes �, and a vector �� of densities for mutant phenotypes ��, the set of phenotypes

� being an ESS if the equilibrium point at which � �� � and �� � � has local asymptotic

stability for all �� �� �, given that �� lies in the neighbourhood of �. This definition

explicitly extends the notion of an ESS to account for population dynamics but, like

the definitions above, makes no reference to evolutionary dynamics.
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In these arguments and those below it is important to be clear about what set of mutant

phenotypes is tested against the fixed-point phenotypes. Typically in evolutionary game

theory, it is assumed that all phenotypes in �� are tested (Maynard Smith 1982). How

useful it is to test the fixed point against all possible phenotypes in coevolutionary models

is debatable, because the range of phenotypes created by mutation and recombination

around the current mean value is typically a small subset of ��. As Roughgarden (1987)

pointed out, one would not expect all the phenotypic variation apparent in different

breeds of dogs to arise in a natural population of Canis lupus. To restrict phenotypic

variation to a small region in the neighbourhood of the current mean is in keeping with

Darwin’s (1859) notion that evolution typically occurs by the accumulation of small

phenotypic changes. It therefore seems more natural to use a local test, comparing the

fixed point against phenotypes involving small deviations from it, as in the definition

of an ESS above by Reed and Stenseth (1984); we adopt the local test below. We

also restrict attention to a fixed point that lies in ��. An interior fixed point of this

kind, denoted �� below, has the property that the selection derivatives �� ����
�

�
vanish

at �� for both species.

��� �����	
	�� 	�����	� 
� ����� �
��	�

Here we review and develop some results concerning the asymptotic stability of fixed

points given dynamics (9) to contrast with those from evolutionary game theory. We

assume throughout that � ���
�

�
� �� is continuous, twice differentiable in ��

�
and ��, and

has non-zero second derivatives. The function � ���
�

�
� �� then is saddle-like in ��

�
and ��

around the isoclines �����; on the line ��

�
� ��, we have � ���

�

�
� �� � �. As a preliminary,

we note two properties of the isoclines. The first is non-invasibility such that, on �����,

mutants in species � with phenotypes close to ����� are not able to invade:

��

����

�

� �

�
��

�� �
�
��

�
���

	 � � (11)

the converse of this we refer to as invasibility. The notion of non-invasibility is familiar

from ESS theory (Parker and Maynard Smith 1990) and the arguments of Roughgarden

(1983) and Brown and Vincent (1987a, 1987b). Second is the property of convergence

that successive mutations in species � cause evolution towards �����:

��

����

�

� �

�
��

�� �
�
��

�
���

�
��

�����
�

�

� �

�
��

�� �
�
��

�
���

	 � � (12)

with the converse property of divergence. Attention was first drawn to the distinction

between convergence and non-invasibility by Eshel and Motro (1981) and Eshel (1983),

and was discussed in more detail by Taylor (1989). It is, for instance, conceivable that

the isocline is non-invasible, but that starting from other points in its neighbourhood
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species � evolves away from it; such a configuration has aptly been called a ’Garden

of Eden’ configuration by Hofbauer and Sigmund (1990).

As shown by Abrams et al. (1993), the relationship between these isoclinic properties

and asymptotic stability is trivial if the dynamical system comprises only one species.

If we take just one of equations (9), the Jacobian at the fixed point ��� is:

� � �����

�
������

�

�� ��

����
�

�
������

�

�� ��

�����
�

�

�
��

�
�������

�

The condition for dynamical stability of a fixed point � 	 � thus coincides with the

condition for convergence (inequality 12). Clearly, dynamical stability of the fixed point

is not equivalent to non-invasibility of the fixed point.

For 2-dimensional systems as given in equations (9), the fixed points are given by the

intersection of the isoclines 
���� and 
����, and the Jacobian at a fixed point �� is

� �

�
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As in the 1-dimensional case, the bracketed terms on the diagonal are the same as

the expressions given in inequality (12), and are therefore the isoclinic conditions for

convergence of each species. But there is a much more indirect relationship between

these convergence conditions and dynamical stability. Abrams et al. (1993) consider

the necessary and sufficient condition for local stability of a fixed point, that tr � 	 �

and ��	� � �. From this and our own work we collect together the following results

for 2-dimensional systems. (i) Convergence of each species (i.e. bracketed terms in J

negative) is neither necessary nor sufficient for local asymptotic stability of the fixed

point. Convergence is not sufficient because, although convergence implies tr � 	 �,

the sign of ��	� depends on the off-diagonal mixed partial derivatives. Convergence is

not necessary because it is possible to have tr � 	 � and ��	� � � when one species is

convergent and the other divergent. (ii) If each species is divergent, i.e. both bracketed

terms of � are positive, we have tr � � � and hence the fixed point is unstable. Thus

certain classes of fixed point are definitely evolutionary repellors, but others could be

either repellors or attractors. However, by allowing for conditions on the signs of the

off-diagonal elements of � , three further results about these remaining fixed points can

be given. (iii) If each species is convergent and the off-diagonal elements are of opposite

sign, the fixed point is an evolutionary attractor. (iv) If one species is convergent, the

other divergent and the off-diagonal elements have the same sign, the fixed point is an

evolutionary repellor. (v) In all cases not covered by (ii), (iii) or (iv) local stability

of the fixed point can be tuned just by varying the evolutionary rate constants. We

conclude from these results that the simple identity of the condition for convergence
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����� � A system with isoclines such that the predator is convergent and the prey is divergent at the
fixed point. �� is the interior of the oval region. The discontinuous line is �� and the straight continuous
line is ��. A fixed point of the system occurs at the intersection of �� and ��. The parameters defining the
isoclines are as in Figure 2. Sections of the isoclines are labelled as follows. I: satisfies both inequality
(11) and (12); II: satisfies (12) but not (11); III: satisfies neither (11) nor (12).

with that for local asymptotic stability, which holds for single-species evolution, has no

counterpart in multispecies coevolution. In the latter case, the stability of a fixed point

can depend critically on the details of the dynamical features of the coevolving system.

��� �����	


Figure 3 is an example which illustrates some of the results described above. At

the point of intersection of the isoclines, the prey phenotype ��� has the properties of

invasibility and divergence, whereas the predator phenotype ��� has the properties of

non-invasibility and convergence. This example is interesting for several reasons. First,

the fixed point is an example of case (v) above, i.e. its dynamical stability depends

on the evolutionary rate constants. If the rate constants of the prey and predator are

chosen in the ratio 1:1, the fixed point is unstable and the attractor is given by a

limit cycle (Figure 2). On the other hand, if the rate constants are chosen in the ratio

1:10, allowing faster predator evolution, the fixed point becomes stable and serves as

an attractor for the evolutionary dynamics (Figure 4). Second, the example illustrates

how dynamical stability is independent of non-invasibility of the fixed point. It can be

seen that �� is an attractor in Figure 4 notwithstanding the fact that coevolution leads

to a local fitness minimum for the prey. Takada and Kigami (1991) and Abrams et al.

(1993) have also noted that a system of coevolving species may be driven to a fixed

point where one species is at a local fitness minimum. Third, the fixed point has a
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����
� � Phase portrait of a system based on the isoclines given in Figure 3. �� is the interior of
the oval region. The discontinuous line is �� and the straight continuous line is ��. A fixed point of the
system occurs at the intersection of �� and ��. Curved continuous lines within �

�
are orbits, all of which

tend to the fixed point. The dynamical system is the same as that in Figure 2, except that parameters of
dynamical system (9) are set to relatively slow down prey evolution:

�
���

�

�

�
�
�
���

�

�

�
� ���.

property that there is disruptive selection in the prey population and, as a result of

this, two phenotypes can coexist on opposite sides of the fixed point. This can lead to

evolutionary branching in the prey species, and the monomorphic evolutionary dynamic

(9) ceases to be appropriate when the system reaches the fixed point, a phenomenon

noted by Christiansen (1991) and discussed in depth by Metz et al. (1994). Fourth,

in the system illustrated in Figure 4, the three basic kinds of selection discussed by

Mather (1973: 90) are all present: selection is directional for both species away from

the isoclines, stabilizing for the predator around its isocline and disruptive for the prey

around its isocline in the neighbourhood of the fixed point.

6 Discussion

��� �����	
���� ���� ����� ��� �����
��� ���	���

A distinction between game theoretic methods, concerned primarily with non-invasibility

of fixed points (ESSs), and more general considerations of dynamics runs rather deep

through evolutionary theory. In evaluating these methods, the following points should

be stressed. First, even in the evolution of a single species, non-invasibility does

not guarantee dynamical stability of the fixed point. Second, in the coevolution of

interacting species, neither non-invasibility nor convergence is sufficient to ensure

dynamical stability of the fixed point. One needs further knowledge of the mixed
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partial derivatives arising from interactions between species and on the rates at which

evolutionary processes take place within species to determine whether a fixed point is

an attractor. Notice in particular that the evolutionary rates and thus the evolutionary

stability can depend on specific features of the mutation process, see equations (9),

which therefore must not be excluded from the discussion of evolutionary phenomena.

Third and perhaps most important, there are no a priori grounds in the first place to

suppose that an evolving system should tend to a fixed point; other �-limit sets such

as limit cycles or even chaotic orbits in phenotype space seem just as plausible. In fact

Van Valen (1973) proposed, on the basis of palaeontological evidence, that interactions

among organisms could be sufficient to cause continuing evolutionary change. As

pointed out by Fisher (1958: 45), such biotic processes could be responsible for a

continual deterioration in the environment experienced by a species, and Van Valen

(1973) used the metaphor of the Red Queen’s hypothesis ’it takes all the running you can

do, to stay in the same place’ from Carroll (1871) to describe the resulting evolutionary

process. Such �-limit sets are referred to as Red Queen dynamics in the literature by

authors such as Rosenzweig et al. (1987) and Marrow et al. (1992), and an example of

such a system was given in Figure 2.

Knowledge of non-invasibility and of other fixed point properties is nonetheless a helpful

guide to understanding certain features of the dynamics. In particular we note that a

system tending to a fixed point at which there is disruptive selection for at least one

species will violate the assumption of monomorphic dynamics on which equations (9)

depend. See Dieckmann and Law (1996) for suggestions as to how this problem may

be overcome.

��� ������	
� �
	������

To the theorist interested in entering the field of coevolution, we ought to point out

that the empirical base of the subject is not strong. Although many features of living

organisms are best interpreted as the outcome of a process of coevolution, rather little

is known about the dynamics of the process. There is, for instance, some evidence for

coevolution of predators and their prey from the fossil record of hard-bodied organisms;

see for example Vermeij and Covitch (1978), Kitchell et al. (1981), Vermeij (1982,1983,

1987), Bakker (1983), Stanley et al. (1983), West et al. (1991). But in such examples

one sees only an outcome of the evolutionary dynamics, and the dynamics themselves

are not readily reconstructed. A rare exception in the case of host-pathogen evolution is

myxomatosis in Australia documented by Fenner and Ratcliffe (1965) where, following

the release of the myxoma virus in 1950, the virulence of the myxoma virus declined

as did the susceptibility of the rabbit; from the information available, some inferences

about the evolution of virulence can be made from the data, as discussed by Anderson
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and May (1982) and Dwyer et al. (1990). There is unfortunately no experimental basis

in coevolution to match, for instance, the experiments of single-species quantitative

genetics where selection differentials can be applied to specific traits and responses to

selection measured, as described by Falconer (1989). This is not altogether surprising,

because the experimental problems of getting two or more interacting species to live

together while each generates selection differentials on the other(s) are, to say the

least, substantial. Yet experiments along these lines are needed to set the evolutionary

dynamics of coevolution on a firm empirical base and to guide development of theory.

We end with three suggestions about possible directions for future research.

��� ������	
� ������
	��

We have considered a simple case of coevolution involving two species, it being

straightforward in this case to visualise the geometry of evolutionary dynamics. In

reality matters are more complicated since it is rare for a predator and prey species to

live in isolation of other interactions; as reviewed by Pimm et al. (1991), typically they

would be embedded in a food web with other species. Unless the interactions between

a particular pair of species are much stronger than those with others, one needs to think

of the traits evolving as a result of an ensemble of the selection pressures of all the

species present, a process referred to as diffuse coevolution by Janzen (1980). The

issue of how these larger communities evolve is of interest in its own right, and there is

much to be done to develop a mathematical framework for such investigations. Some

steps in this direction are the lag-load model of Maynard Smith (1976) and Stenseth

and Maynard Smith (1984), the plant-herbivore model of Levin et al. (1990), the rugged

fitness landscape models of Kauffman and Johnsen (1991) and Kauffman (1993), and

the predator-prey community model of Brown and Vincent (1992).

��� ����
	�� �� ������
	�� �����	��

As phenotypic evolution takes place, the control parameters of population dynamics will

typically change and this may lead to qualitative changes in the population dynamics, for

instance a change from an equilibrium to a non-equilibrium �-limit set for population

densities. There have been few attempts to document this experimentally, although

Stokes et al. (1988) have suggested that changes observed in the population dynamics

of a laboratory population of blowflies were consistent with evolution from oscillatory to

equilibrium population dynamics. Data from natural populations such as those collated

by Hassell et al. (1976) have suggested that chaotic dynamics are rather rare; on the

other hand recent research by Rand and Wilson (1991) and Turchin and Taylor (1992)

suggests that such dynamics do occur. A question that arises from the feedback from

evolution to population dyanamics is whether there could be a tendency for equilibrium
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attractors for population density to come to prevail in natural systems. Work by Hansen

(1992), Metz et al. (1992), Gatto (1993) and Godfray et al. (1993) argues for this. But

whether there is a general mechanism (based on individual selection) for evolution to

do so is open to debate, and needs further investigation.

��� �����	
� ���������

One might ask if some property of the species increases during their coevolution, that is,

whether in some sense the species are ’improving’ on an absolute scale. The metaphor

of an adaptive topography, which envisages that phenotypic values of a species can

be mapped on to a scale of mean population fitness to produce a hilly landscape, has

been widely used in evolutionary theory. Evolution is then seen as a process of hill

climbing until a local maximum in mean fitness is reached. But it is not at all clear

that this metaphor is appropriate if selection is generated by interactions within the

system as opposed to factors set externally (e.g. abiotic factors such as temperature

and humidity). Let us consider two interpretations of this metaphor. We will examine

evolution in one of the species, and assume that the system is at some point s in a

phenotype space prior to a mutation in this species, with population dynamics that have

settled to equilibrium. Suppose an advantageous mutant starts to spread. (i) A first

obvious interpretation of mean fitness would be the population’s mean per capita rate of

increase. But this measure is not appropriate because the total population density may

decline as the mutant starts to spread; from a starting height of zero, the mean per capita

rate of increase would then become negative and the path of evolution would be down

a surface defined by this measure. (ii) An alternative interpretation would be to use a

surface defined by the initial per capita rate of increase of mutants in the environment

s, the slope of which is given locally by the selection derivative (5) indicating the

correct direction of evolution. Yet, by the time the mutant reaches fixation, it has a

per capita rate of increase of zero. Thus, based on this second measure, there is no

overall gain arising from the evolution, and we conclude that it remains debatable as

to how appropriate a hill-climbing metaphor is in the context of coevolution. This

leads us to ask what, if any, metaphor would be appropriate to describe a process of

coevolution, and under what circumstances there exists a function that is maximized

during the course of evolution.
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This paper describes the coevolution of phenotypes in a community comprising a
population of predators and of prey. It is shown that evolutionary cycling is a likely
outcome of the process. The dynamical systems on which this description is based
are constructed from microscopic stochastic birth and death events, together with
a process of random mutation. Births and deaths are caused in part by phenotype-
dependent interactions between predator and prey individuals and therefore generate
natural selection. Three outcomes of evolution are demonstrated. A community
may evolve to a state at which the predator becomes extinct, or to one at which the
species coexist with constant phenotypic values, or the species may coexist with
cyclic changes in phenotypic values. The last outcome corresponds to a Red Queen
dynamic, in which the selection pressures arising from the predator-prey interaction
cause the species to evolve without ever reaching an equilibrium phenotypic state.
The Red Queen dynamic requires an intermediate harvesting efficiency of the prey
by the predator and sufficiently high evolutionary rate constant of the prey, and
is robust when the model is made stochastic and phenotypically polymorphic. A
cyclic outcome lies outside the contemporary focus on evolutionary equilibria, and
argues for an extension to a dynamical framework for describing the asymptotic
states of evolution.

1 Introduction

Predator-prey interactions are ubiquitous in nature (Crawley 1992). The ecological

interactions between predator and prey species can sometimes be strong enough for

the predator to have a major effect on the environment in which the prey is evolving

and vice versa. Such interactions have therefore motivated a variety of theoretical

models of phenotypic coevolution in predator-prey communities (e.g. Rosenzweig 1973;

Parker 1985; Abrams 1986; Brown and Vincent 1992). Of some interest has been

the question as to whether the phenotypes of the predator and prey evolve to an
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equilibrium asymptotic state such as an evolutionarily stable strategy (Maynard Smith

and Price 1973). An alternative could be that their interaction prevents attainment of an

equilibrium point and that there is continuous evolutionary change of their phenotypes.

Following Van Valen’s (1973) Red Queen’s hypothesis, the latter behaviour has become

known as Red Queen dynamics (Stenseth and Maynard Smith 1984; Rosenzweig et al.

1987; Marrow et al. 1992). To make this notion precise, we refer here to a Red Queen

dynamic as any phenotypic dynamic that, in the absence of external forcing, does not

tend to an equilibrium state.

In the literature, it has been argued that a Red Queen dynamic would require the set of

feasible phenotypes to be unbounded, so that the phenotypes could evolve to ever more

extreme states. Rosenzweig et al. (1987) concluded that “the Red Queen depends on the

existence of special phenotypic features, i.e. those which are independent, boundless,

and about which it may be said, the larger (or smaller, or denser, or furrier, or ...), the

better“. This requirement is unlikely to be met in reality, and calls into question whether

Red Queen dynamics could occur at all. To investigate whether Red Queen dynamics are

possible, we have developed models of the evolutionary dynamics of predator and prey

phenotypes (Marrow et al. 1992; Marrow and Cannings 1993). These models suggested

that, over the course of evolution, the phenotypes could either tend to equilibrium or to

non-equilibrium asymptotic states. The models did not incorporate time explicitly, and

for this reason could give only qualitative information on the direction of evolution.

To determine the asymptotic states of coevolving systems, it is necessary to build the

time-dependent processes into the framework of a dynamical system (Dieckmann and

Law 1996; Marrow et al. 1996).

In this paper we utilize a hierarchy of three dynamical models to investigate the

phenotypic states to which coevolving predators and prey could tend. These models

represent different balances between descriptive capacity and corresponding analytic

tractability. Mathematical details are given in the Appendix. Section 2 introduces the

ecological interactions which define the predator-prey community, and Section 3 briefly

explains the distinctive features of the three models used. In Section 4 we demonstrate

that the system eventually attains one of three different evolutionary states: (a) the

predator goes extinct, (b) coevolution leads to constant phenotypes in predator and prey,

and (c) the phenotypes in both species undergo coupled and sustained oscillations on a

limit cycle corresponding to Red Queen dynamics. Section 5 analyzes the requirements

for this evolutionary cycling. The dependence of cycling on the interaction and mutation

structure of the predator and prey is revealed, and we show that the phenomenon is robust

under changes in the modelling approach. We conclude that the conceptual framework

of evolutionary theory, with its current focus on fixed points (like evolutionarily stable
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strategies) as the endpoints of evolution, needs to be expanded to encompass more

complex evolutionary attractors such as the limit cycles presented here.

2 The Coevolutionary Community

Our models of phenotypic evolution are underpinned by ecological processes describing

the dynamics of predator and prey populations. This ensures that the process of

natural selection directing evolution is driven explicitly by the ecology of predator-

prey interactions, rather than by an external ad hoc notion of relative fitness of different

phenotypes. For simplicity, we focus on a single phenotypic trait in each species; in

view of the importance of body size in determining interactions between predator and

prey (Cohen et al. 1993), one might think of these traits as body sizes �� and �� of

prey and predator respectively.

To describe the population dynamics in our community, it is necessary to define the

ecological processes that affect the population sizes of the two species (Table 1). Table

1a describes the birth and death events that are dependent on phenotype, these being

the events that arise from encounters with other individuals, as opposed to the constant

birth and death events given in Table 1b.

Evolutionary processes in the community require a mechanism for generating phenotypic

variation on which natural selection caused by the interaction between predator and prey

can operate. We assume that variation is created by a simple mutation process; in order

to keep the analysis tractable we envisage that the genetic systems of the species are

clonal. Table 1c shows that each birth event gives rise with probabilities �� and �� to

a mutant offspring in the phenotypic traits �� and �� of prey and predator respectively.

The new phenotypes are chosen according to the mutation distributions �� and �� of

prey and predator respectively.

Natural selection arises from the dependence of the birth and death probabilities per unit

time �, �, and � on the phenotypes of the interacting individuals. Various functions

could be used for this purpose; we use functions as described in Figure 1. Thus the

function �, which characterizes the ecological processes responsible for self-limitation

in the prey’s population size, is taken to be parabolic such that intermediate phenotypes

are favored in the absence of the predator (Figure 1a). The function � describing the

effect of a predator on the probability of death of the prey is taken to be bivariate

Gaussian (Figure 1b), on the grounds that the predator is likely to show some degree of

specialization in the size of prey it chooses relative to its own size (Cohen et al. 1993).

On the basis that what is bad for the prey is good for the predator, the function �

is related to � by a constant of proportionality, � � � � �. We call � the harvesting

efficiency.
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(a) Birth and death processes affected by phenotype

Target
individual

Encountered
individual

Birth/death event Probability of event per
encounter per unit time

prey �� prey ��� death of prey �� ����� †

prey �� predator �� death of prey �� ����� ���

predator �� prey �� birth predator �� ����� ���

(b) Birth and death processes independent of phenotype

Target individual Birth/death event Probability of event per
capita per unit time

prey �� birth of prey �� ��

predator �� death of predator �� ��

(c) Mutation processes

Birth event Mutation event Probability distribution
of event ‡

birth of prey �� prey �� � ��

�
��� ��� � ���

�

�
� ��� �

�� �	���
�

�
� ���

birth of predator �� predator �� � ��

�
��� ��� � ���

�

�
� ��� �

�� �	���
�

�
� ���

�
��� � Definition of birth, death and mutation processes for a prey individual of size �� and predator
of size ��.
† This death event is taken to be dependent only on the phenotype �� of the target individual, not on
that of the encountered individual ���.
‡ �� is the probability that the birth event in species � is a mutant; � is the Dirac �-function; �� is
the mutation distribution.

The ecological community presented here extends the model of Marrow et al. (1992)

by providing a full dynamical description of the birth, death and mutation processes.

It generalizes the former account in the sense that (a) it allows stochastic population

dynamics arising from individual-based encounters, and (b) it permits the populations to

have polymorphic phenotypic distributions since multiple phenotypic trait values may

be present simultaneously in each species. From Table 1 we recover as a special case

the well-known Lotka-Volterra equations

�
� � 
����� � �����
� � ����� ���
�� �

�
� � 
����� � ����� ���
��
(1)
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������ � Specification of the coevolutionary community given in Table 1. The functions used to
describe the effect of phenotype ���� ��� on the birth and death probabilities arising from encounters
between individuals are: (a) prey self-limitation ������� � �� � ���� � ���

�

�, (b) effect of predator on
prey ����� ����� � ���

�
���� � ������� � ���

�
, where �� � ��� � ������ and �� � ��� � ������, and �

is a constant that scales population sizes. Parameters take the values: �� � 		
, �� � �
	
, �� � �
	
,
�� � 
	�, �� � 
	, �� � 
	��, �� � 
	, �� � 
	�. The function 
���� ��� is not shown since it is
related to ����� ��� by the constant of proportionality �. The constant birth and death terms are: �� � 
	,
�� � 
	
. Mutation parameters used in the paper are: � � �
��, � � �
��; �� and �� are normal
distributions with mean 
 and

�
var�� � � � �
��,

�
var�� � � � �
��, except where otherwise stated.

The quantity � � �
�� is constant throughout.

for the population sizes �� and �� of prey and predator respectively, by assuming

no mutations, random encounters, deterministic population dynamics (the population

sizes of the species are large), and monomorphic phenotypic distributions (only one

phenotype present within each species).

3 Three Dynamical Models of Coevolution

Equations 1 illustrate how the general coevolutionary process defined in Table 1 can

be reduced by making appropriate simplifying assumptions. In a similar spirit, three

dynamical models are derived in the Appendix for the change in phenotypic traits ��

and �� of the prey and predator respectively.

1. Polymorphic stochastic model. This provides a full description of the dynamics

defined in Table 1. It can be given as a multivariate functional master equation,

and depends only on the assumption of random encounters, thus allowing both for

polymorphism and for stochasticity.
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2. Monomorphic stochastic model. This retains the stochasticity arising from mutation

in the coevolutionary process, but assumes that variation in the phenotypic distri-

butions is small enough for an assumption of monomorphism to provide a good

approximation. The coevolutionary process can then be described as a directed

random walk in the phenotype space spanned by �� and ��. Stochastic steps occur

when a resident phenotype is replaced by an advantageous mutant, e.g. �� � �
�

�
;

a sequence of such substitutions is called a trait substitution sequence (Metz et al.

1992). The model is framed as a multivariate master equation.

3. Monomorphic deterministic model. This is a deterministic approximation to the

monomorphic stochastic model above. It is given in terms of a system of ordinary

differential equations describing the expected evolutionary paths in the phenotype

space.

Further information as to the relation between the three models is given in the Appendix

and in Dieckmann (1994). The full derivation of the monomorphic models is given in

Dieckmann and Law (1996), and a discussion of the third model can be found in

Marrow et al. (1996).

4 Evolutionary Outcomes

Here we describe the variety of possible evolutionary outcomes in a predator-prey

community, using the monomorphic deterministic model. Deterministic dynamics of

this kind have been used elsewhere in the literature (e.g. Hofbauer and Sigmund 1990;

Vincent 1991; Abrams et al. 1993), but have not previously been underpinned by a

formal derivation.

In the case of the monomorphic dynamics we can immediately infer from equations

(1) that there is a region in the phenotype space where both species can coexist with

positive population densities. The boundary of this region is depicted by the oval

discontinuous curves in Figure 2. Only within this region can the predator population

harvest the prey sufficiently to survive; given a pair of phenotypes ���� ��� outside this

region, the predator population is driven to extinction by the population dynamics (1).

Accordingly, coevolution of the predator and prey can only be observed within this

region of coexistence.

For a coevolving predator-prey community starting with phenotypes in the region of

coexistence, there are eventually three possible outcomes.

1. Evolution to a fixed point. In Figure 2a, the phenotypic values tend to an equilibrium

point; once this is reached, no further evolution occurs. There are in fact three fixed

points at the intersection of the isoclines (i.e. at ��� � �, ��� � �, see Appendix) in this

example, as can be seen from the accompanying phase portrait (Figure 2b); two of
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������ � Patterns of evolution of prey (��) and predator (��) phenotypes obtained from the
monomorphic deterministic model. (a) Solution that tends to an equilibrium point over the course of
time obtained using the parameter values in Figure 1 with � � �. (b) Phase portrait of the phenotype
space from which (a) is drawn with orbits shown as continuous lines; the starting point of the orbit
corresponding to the solution in (a) is shown as the diamond. The boundary of the region of coexistence
of the predator and prey is given as the discontinuous oval line. Isoclines are shown as dotted lines
(straight line: predator; curved line: prey); equilibrium points occur at the intersection of the isoclines
and are indicated by the filled circles. (c) Solution for a community that evolves to predator extinction at
time = ���� � ��

�. After this time, the prey continues to evolve in the absence of the predator. Parameter
values as in Figure 1, except �� � ���, �� � ���, �� � ����, and with � � �. (d) Phase portrait of the
phenotype space from which solution (c) is drawn; the starting point of the orbit corresponding to the
solution in (c) is shown as the diamond. The prey isocline lies outside the region of coexistence and
orbits touch the boundary of the region of coexistence at which point the predator goes extinct.

these are attractors and they are separated by the stable manifold of the third which

is a saddle point. Notice that the coevolutionary process here is multistable with

two attractors having disjunct domains of attraction; thus there may be no more

reason for a particular observed asymptotic state than the more or less arbitrary

initial conditions.
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2. Evolution to extinction. In Figure 2c the coevolutionary process drives the phe-

notypic values towards the boundary of the region of coexistence (see Figure 2d).

There the predator population goes extinct and the predator phenotype is no longer

defined. The phenotype space of the community collapses from ���� ��� to the one

dimensional space ��, where the prey phenotype continues to evolve to its own

equilibrium point. Note here that the extinction of the predator is driven by the

evolutionary dynamics in ���� ��� and not merely by the population dynamics in

���� ���.

3. Evolutionary cycling. In Figure 3a, the coevolutionary process in the predator-prey

community continues indefinitely; mutants replace residents in a cyclic manner such

that the phenotypes eventually return to their original values and do not reach an

equilibrium point. As can be seen from Figure 3b, the attractor is a limit cycle,

confirming the conjecture made by Marrow et al. (1992) that Red Queen coevolution

can occur in this predator-prey community.

These three outcomes of coevolution correspond to the endpoints of evolutionary arms

races discussed qualitatively by Dawkins and Krebs (1979), namely: (i) equilibrium

endpoints, (ii) one side wins, and (iii) cyclic endings.

5 Requirements for Cycling

Here, we investigate the robustness of the phenomenon of evolutionary cycling. We

do this in two ways. First a bifurcation analysis of the monomorphic deterministic

model is given; this allows one to establish the range of parameters in the model that

permit evolutionary cycling to occur. Second, we examine the monomorphic stochastic

model and finally the polymorphic stochastic model to see how robust the phenomenon

of evolutionary cycling is when the simplifying assumptions of the monomorphic

deterministic model are removed.

��� �����	
��� �
����� �� ��� ���������	 �����������	 �����

We focus attention on the effect of two quantities of particular interest from an ecological

viewpoint. These are firstly the predator’s efficiency in harvesting the prey as given

by the ratio � � ���, and secondly the ratio of the evolutionary rate constants

� � �	�var
����	�var
�� (see Appendix). The results of the bifurcation analysis are

presented in Figure 4a. Four distinct regions within the parameter space can be seen:

1. For � � �� the two species cannot coexist, and therefore no coevolution can occur.

2. For �� � � � ���� there exists only one fixed point for the monomorphic

deterministic model. This fixed point is an attractor; the system evolves to this

point and there is no further coevolution once it is reached.
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������ � Example of evolutionary cycling using the monomorphic deterministic model in (a) and (b),
the monomorphic stochastic model in (c) and (d), and the polymorphic stochastic model in (e) and (f).
Graphs (a), (c) and (e) show the values of the prey (��) and predator (��) phenotypes as functions of time
(mean values in the case of the polymorphic model). The corresponding orbits are shown as continuous
lines in the phase spaces given in graphs (b), (d) and (f). See Figure 2 for an explanation of the phase
portrait. Parameter values for these simulations are identical and are set as given in Figure 1, except
�� � ��

��, �� � ��
��and with � � ����.
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������ � Results of bifurcation analysis, showing the effect of the harvesting efficiency �, and the
ratio of the evolutionary rate constants � on the dynamics of the monomorphic deterministic model.
Regions are: (1) predator absent, (2) one fixed point present, which is an attractor, (3) three fixed points,
two of which are attractors, (4) limit cycle attractor.

3. For � � ����� there exist three fixed points of the dynamics. The two outer points

are stable, and which of these is reached depends on the phenotypes initially present.

4. For ���� � � � ����� and sufficiently high values of � (Figure 4a), the attractor

turns into a limit cycle, giving rise to Red Queen dynamics. On the other hand, for

low values of �, the limit cycle breaks down and we recover the dynamical behavior

of cases 2 and 3 with the switch occurring at � � �����.

The boundary of region 4 is in fact slightly more complicated than the description

above suggests because two further kinds of dynamics can occur here: (i) a limit-cycle

attractor around each of the outer fixed points, and (ii) a limit-cycle attractor around

all three fixed points with each of the outer fixed points also being an attractor. But

the parameter space permitting these dynamics is very small compared to the others

and they are therefore of less biological interest. We conclude that evolutionary cycling

requires an intermediate harvesting efficiency plus prey evolution to occur sufficiently

fast compared to predator evolution.

The results from the bifurcation analysis are intuitive in that evolutionary cycling

requires: (i) the effect of selection by the predator on the prey to be great enough

to drive the prey from the phenotypic equilibrium it would have in the absence of

the predator (� not too low), (ii) sufficient need for the predator to track the prey’s

phenotypic change (� not too high), and (iii) in the resulting evolutionary race the prey

must be fast enough not to be ’caught up’ by the predator (� not too low). In view of
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the respiratory costs that the predators have to meet from consumption of prey simply to

stay alive, one would expect � to be substantially less than � and evolutionary cycling

to occur in a range of � likely to be observed in reality.

��� �������	
�� ���
����� �����

A realization of the monomorphic stochastic dynamics is given in Figures 3c and 3d.

The parameter values used are the same as those in Figures 3a and 3b, and we see that the

cyclic behaviour is still maintained. In addition two major new effects should be noted.

First, it can be seen that the oscillations in phenotypic values do not all have the same

period. This phenomenon, which is well known in the theory of stochastic processes

(phase diffusion, Tomita et al. 1974), comes about because stochastic perturbations along

the limit cycle are not balanced by a counteracting force, whereas those orthogonal to

the limit cycle are. Second, limit cycles whose extension in phenotype space is small

relative to the typical mutational step sizes (given by
�

var�� and
�

var��) will be

obscured by the stochastic noise. The boundaries of region 4 (Figure 4a) will then be

less sharp than those in the monomorphic deterministic model, as illustrated in Figure

4b. Thus, if the evolutionary cycling is to be visible, the mutational steps must not

be too large.

��� �������	
�� ���
����� �����

A realization of the polymorphic stochastic model is shown in Figures 3e and 3f, using

as before the parameter values of Figures 3a and 3b. The phenomenon of evolutionary

cycling still persists despite the phenotypic distributions now being polymorphic. In

addition, this model allows for the effects of demographic stochasticity also of the

resident phenotypes (see Appendix). Although this superimposes more random variation

to the solution, cycling is maintained. Provided that phenotypic variance is not too large

and population sizes are not too small, we thus can conclude that evolutionary cycling

is robust to relaxation of the simplifying assumptions of the monomorphic deterministic

model, and that it can actually occur in predator-prey communities like the one defined

in Section 2.

6 Discussion

The main result of this analysis is that evolutionary limit cycles, in which the predator

and prey phenotypes continue to change indefinitely, are a natural outcome in a

coevolutionary community. The cyclic behaviour is not an artefact of determinism

or monomorphism, because the phenomenon can be observed both in the stochastic

monomorphic simulations and in the stochastic polymorphic ones. Clearly there is no
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general rule in nature to say that phenotypic evolution would lead to an equilibrium

point in the absence of external changes in the environment.

A simple classification of the outcomes of phenotypic evolution can be constructed from

two dichotomies. The first depends on whether an attractor exists, and the second on

whether the attractor is a fixed point. This gives three classes of dynamics:

(i) evolution to a fixed-point attractor with stationary phenotypes,

(ii) evolution to an attractor that is not a fixed point on which the phenotypes continue

to change indefinitely, and

(iii) evolution without an attractor, such that the phenotypes take more and more

extreme values.

According to the definition in the Introduction, Red Queen dynamics would encompass

both class (ii) and class (iii). Class (iii) is unrealistic for most kinds of phenotypes and,

if the Red Queen were to depend on the existence of such dynamics in nature, one could

reasonably conclude that Red Queen dynamics would be very unusual (Rosenzweig et

al. 1987). But this would be to miss class (ii), and dynamics of this kind we have

shown here to be feasible. In fact the limit cycle is but one of a number of non-

equilibrium attractors; for instance in systems with more than two coevolving species,

chaotic evolutionary attractors could be found.

Cyclic phenotype dynamics can occur in coevolution as is well known from theoretical

studies of genetic polymorphisms under frequency-dependent selection (e.g. Akin 1981;

Seger 1992), and research into the dynamics of strategy frequencies (Nowak and

Sigmund 1989). The system considered here is different in two respects. First, the

trait values are continuous, whereas cyclic dynamics have typically been observed

in polymorphic systems with large qualitative differences between a small number of

coexisting phenotypes. Second, and more important, the underlying genetic process here

would be a sequence of gene substitutions in which mutants keep replacing the resident

types rather than one in which the genes always coexist and undergo oscillations in

frequency. Thus we are here looking at a process operating on an altogether larger

evolutionary scale, such that the populations can undergo drastic changes in their

phenotypic state, and still return to some earlier value.

The monomorphic deterministic dynamic described here in fact turns out to be canonical

(Dieckmann and Law 1996), and can be derived from other starting points such as

quantitative genetics (Abrams et al. 1993). It seems therefore that there is a large

class of models of phenotypic coevolution with the potential for non-equilibrium

asymptotic states. This needs to be emphasized because the assumption that asymptotic

states of evolution are fixed points underlies much contemporary evolutionary thought.

This assumption and the techniques that go with it (in particular evolutionarily stable
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strategies) are clearly not appropriate for dealing with non-equilibrium asymptotic states.

The prevailing view among evolutionary biologists, centred on equilibrium points, needs

to be extended to a dynamical framework to assimilate the Red Queen.

��������	
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Appendix

In this appendix we provide a brief derivation of the three dynamical models describing

the process of coevolution for the reader interested in the more technical details. The

theory outlined here is general in so far as it applies to a large variety of � -species

coevolutionary communities of which the predator-prey system analyzed in this paper

is just a particular instance.
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At time � there are �� individuals in species � with � � �� � � � � � . These have phenotypes

��� with � � �� � � � � �� such that the phenotypic distribution ������ in species � is given by

�� �
���

���

	��� (A.1)

with 	��
� � 	��� 
� where 	 denotes Dirac’s 	-function. These distributions change

in time due to stochastic birth, death and mutation processes like those specified in

Table 1.

The dynamics of the phenotypic distributions can be described by a functional master

equation for � ��� ��, the probability density of � � ���� � � � � �� � to be realized at time

� (Dieckmann 1994). The algorithm derived from this equation is the following.

1. Initialize the phenotypic distributions �� with � � �� � � � � � at time � � � and specify

the time  when to stop the dynamics.

2. Calculate the birth and death probabilities ������� �� and ������� �� for each indi-

vidual � � �� � � � � � , � � �� � � � � �� with phenotype ��� in the environment given

by �.

Remark. According to Table 1 we have for the predator-prey community

������ �� � ��, ������ �� �
�
������������ ���� �

�
����� ��������� ���, ������ �� ��

����� ��������� ���, and ������ �� � ��.

3. Construct the sums ��� � ������� �� � ������� ��, �� �
���

������ and � �
��

��� ��

with � � �� � � � � � , � � �� � � � � ��.

4. Choose the waiting time 	� for the next event to occur according to 	� � � �

�

� �

where � � � � � is a uniformly distributed random number.

5. Choose species � with probability �

�
��. Choose individual � in species � with

probability �

��
��� . Choose then a birth or death event with probability �

���
������� ��

and �

���
������� �� respectively.

6. If a birth event occurs for an individual with phenotype ��� , choose a new phenotype

��

�� with probability density ��� ���	��
�

�� � ���� � ������
�

�� � ����.

7. Update time and phenotypic distributions according to �� ��	� and �� � ���	��

��

or �� � �� � 	��� for a birth or death event in species � respectively.

8. Continue from Step 2 until � �  .

The protocol above utilizes the minimal process method (Gillespie 1976) to simulate

the functional master equation. Note in particular that according to Step 4 the waiting

times follow an exponential distribution, the standard result for stochastic processes

described by homogeneous master equations.
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If �� is sufficiently small for all � � �� � � � �� the phenotypic distributions in each species

will be sharply concentrated around a single phenotype, the resident phenotype. The

distributions then are called monomorphic (precisely one should refer to them as quasi-

monomorphic since still more than one phenotype may be present in the population) and

can well be approximated by �� � ����� with resident phenotype �� and population size

��. In this case phenotypic change occurs via a sequence of trait substitutions where a

resident phenotype �� is replaced by a mutant phenotype ��

� (Dieckmann 1994).

The resulting directed random walk in the phenotype space is described by the master

equation

	

	

� ��� 
� �

� �
�
�
����

�
�
�
��� 


�
� �

�
����

�
� ��� 
�

�
	�� (A.2)

where � ��� 
� denotes the probability density of the resident phenotypes to be given by

� � ���� � � � � �� � at time 
. Equation (A.2) only holds if the stochastic dynamics of �

are a Markov process; to guarantee this it can be necessary to consider more than one

trait per species. This more general case is analyzed in Dieckmann and Law (1996). In

the infinitesimal time interval 	
 a trait substitution in only a single trait can occur and

thus the probability per unit time ������� for the transition �� �� can be decomposed

according to

�
�
����

�
�

��
���

��

�
��

�� �
� ��
���
� ���

�
�
��� � ��

�
 (A.3)

Here ����
�
�� �� denotes the probability per unit time for a trait substitution �� � ��� to

occur in species � given an environment of phenotypes �.

A trait substitution requires that, first, a specific mutant phenotype ��� enters the

population of species � and, second, that it succeeds in replacing the resident phenotype

��. Since these two processes are statistically independent, their probabilities multiply

and ����
�
�� �� is given by the product

��

�
���� �

�
�

a� 	
 �
�������� �������

b� 	
 �
��

�
��� � ��

�

 �� 	

term I

����
�
���� �

��
��
�
���� �

��
�
 �� 	

term II

 (A.4)

The functions ����
�
�� ��, 	���

�
�� �� and ����

�
�� �� � ����

�
�� �� � 	���

�
�� �� denote the per

capita birth, death and growth probabilities per unit time (or rates) of a phenotype

��� in an environment given by the phenotypes �. They are defined in terms of the

analogous quantities of the polymorphic stochastic model by e.g. ������� �� � ����
�
�� ��
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with � � ���������� � � � � �������� �. Here the population sizes ����� are determined as

the equilibrium solutions of the resident’s population dynamics �

��
�� � �������� ��. The

general case of nonequilibrium population dynamics is treated in Dieckmann and Law

(1996). A more formal analysis is given in Rand et al. (1993)

Remark. For the predator-prey community we obtain ����
�

�
� �� � ��, 	���

�

�
� �� �


���

�
������ � ����

�
� ��������, �����

�
� �� � ����� �

�

�
������, and 	���

�

�
� �� � ��.

We now explain the different terms in equation (A.4).

1. Term I represents the impact of the mutation process and is given by weighting (a)

the probability per unit time for any mutant to occur in the resident population of

phenotype �� by (b) the probability density for the mutant phenotype to be given

by ��

�
. Since mutations in distinct individuals are statistically uncorrelated, term

Ia is composed of three factors. The per capita birth rate ������ �� of the resident

phenotype is multiplied by �, the mutation probability for each birth event, giving

the per capita mutation rate of the resident phenotype. This is multiplied by the

resident’s population size �� to yield the mutation rate of the resident population.

Term Ib simply is the mutation distribution ����
�

�
� ��� for mutant phenotypes ��

�

given the resident phenotype ��.

2. Term II stands for the process of selection. In the monomorphic stochastic model

it is assumed that the resident populations are sufficiently large not to be subject

to accidental extinction due to stochastic fluctuations of their population sizes. In

contrast, the mutant population starts with population size � such that the impact

of demographic stochasticity on its dynamics ought to be considered. Since the

function ��
�

returns its argument if the argument is positive and � otherwise,

deleterious mutants, with ����
�

�
� �� � �, have no chance to survive in the resident

population. But even advantageous mutants, with ����
�

�
� �� � �, experience some

risk of accidental extinction due to random sampling when initially rare (Fisher

1958). Term II also shows that for large initial per capita growth rates of the

mutant the probability for it to succeed in replacing the resident saturates at �. The

exact form of term II is derived in Dieckmann and Law (1996).

Combining equations (A.2), (A.3) and (A.4) yields a complete description of the sto-

chastic coevolutionary dynamics provided that phenotypic distributions are sufficiently

concentrated and that population sizes are sufficiently large. The algorithm for this

model again follows the minimal process method.
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To capture the representative features of the monomorphic coevolutionary dynamics

directly, rather than having to consider a large number of different realizations of the

monomorphic stochastic model, a deterministic approximation of the latter is devised.

The deterministic path ��� associated with a stochastic process is described by the

equation (Serra et al. 1986)

�

��
��� � ������ (A.5)

where the function � is the first jump moment of the stochastic process whose compo-

nents in our case are given by

����� �

� �
��

� � ��

�
��

�
��

�� �
�
���

� (A.6)

with � � �� � � � � � . If the different realizations of the stochastic process do not spread

too far apart, i.e. if the variance of the probability density 	 ��� �� in equation (A.2)

stays small, the deterministic path ��� provides a good approximation of the mean path�
�	 ��� �� �� (van Kampen 1981).

We obtain the deterministic monomorphic model by introducing equation (A.4) into

(A.6). To simplify the result, we expand the functions 
���
�

�
� �� and ���

�
���

�
� �� in the

mutant phenotype ��
�

about the resident phenotype ��. Here we only present the first order

result for symmetric mutation distributions, the derivation of higher order correction

terms and for arbitrary mutation distributions is given in Dieckmann and Law (1996).

By introducing the result into equation (A.5) we obtain the deterministic path of the

monomorphic stochastic model

�

��
���� �

�
�

�
��var�

�
�������� �	 


term I

�

���
�


�

�
���� ���

� ���
��

�
������ �	 


term II

(A.7)

for � � �� � � � � � . The deterministic path thus is described by a simple, though typically

nonlinear, dynamical system composed of � coupled first order differential equations.

The terms on the right hand side of equation (A.7) have the following meanings.

1. Term I again captures the influence of mutation on the coevolutionary dynamics.

The factor �

�
��var�, called the evolutionary rate constant, is affected by the

proportion �� of births that produce mutants and by the variance var� of the

mutation distribution in the trait ��. Together with the population size �� all these

terms are non-negative, so term I as a whole serves to scale the rate of evolutionary

change.
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2. Term II accounts for the impact of selection as it determines the direction of

evolutionary change. When this derivative of the per capita growth rate �� is positive

(respectively negative), mutants with increased (respectively decreased) phenotypic

values �� will be advantageous in the environment given by ���. The lines on which

the terms II are zero are the isoclines of the monomorphic deterministic dynamics.

The Runge-Kutta method can be employed to construct an algorithm for the monomor-

phic deterministic model. Equations (A.7) have features in common with other models

of adaptive dynamics (Hofbauer and Sigmund 1990; Vincent 1991; Abrams et al. 1993)

but are here explicitly derived from the underlying stochastic ecological processes.
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The evolutionary consequences of asymmetric competition between species are
poorly understood in comparison with symmetric competition. A model for
evolution of body size under asymmetric competition within and between species
is described. The model links processes operating at the scale of the individual
to that of macroscopic evolution through a stochastic mutation-selection process.
Phase portraits of evolution in a phenotype space characteristically show character
convergence and parallel character shifts, with character divergence being relatively
uncommon. The asymptotic states of evolution depend very much on the properties
of asymmetric competition. Given relatively weak asymmetries between species, a
single equilibrium point exists; this is a local attractor, and its position is determined
by the intra- and interspecific asymmetries. When the asymmetries are made
stronger, several fixed points may come about, creating further equilibrium points
which are local attractors. It is also possible for periodic attractors to occur;
such attractors comprise Red Queen dynamics with phenotype values that continue
to change without ever settling down to constant values. From certain initial
conditions, evolution leading to extinction of one of the species is also a likely
outcome.

1 Introduction

Asymmetric competition arises when, during an encounter between two or more indi-

viduals for some limited resource, these resources are divided up unequally. The larger

individual wins the contest (Clutton-Brock et al., 1979), the territory holder keeps the

territory (Davies, 1978), the taller plant gets more light (Weiner, 1990). Such asym-

metries are known to be a common phenomenon in nature (Lawton and Hassell, 1981;

Connell, 1983; Schoener, 1983; Weiner, 1990), and are therefore likely to be an impor-

tant force of natural selection. Asymmetric competition has a special interest because it

does not necessarily cause evolution of weak interactions among species, as one might

expect through divergent character displacement (the ’ghost of competition past’: Con-

nell, 1980). Thus natural selection generated by asymmetric competition is likely to be

a persistent and continuing phenomenon in communities.
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In view of the importance of asymmetric competition between species, it is surpris-

ing how little understanding there is of its evolutionary effects both empirically and

theoretically. Interest has focussed more on interactions within species and how these

contribute to arms races and cyclic changes in phenotype (Maynard Smith, 1982: 94

et seq.; Parker, 1983; Maynard Smith and Brown, 1986; Abrams and Matsuda, 1994;

Matsuda and Abrams, 1994). There has however been some study of the role of asym-

metries in the taxon cycles of Anolis lizards (Rummell and Roughgarden, 1983, 1985;

Taper and Case, 1992a), and some more general discussion of the evolutionary con-

sequences of asymmetric competition (Abrams, 1987; Abrams et al., 1993a; Abrams

and Matsuda, 1994).

Studies of asymmetric competition in the empirical literature are of three main kinds,

distinguished by the temporal scale at which the process is studied. Those at the

smallest, microscopic scale deal with encounters between individuals which depend on

behavioural mechanisms of competition between animals (Perfecto, 1994; Robinson

and Terborgh, 1995), and on short-term effects of neighbours on growth in plants

(Goldberg, 1987). Those at the intermediate, mesoscopic scale are concerned with

population dynamics, often involving the manipulation of densities of pairs of species

in a reciprocal manner. Asymmetries are commonly found in these studies, one species

being much more affected by the manipulations than the other (Lawton and Hassell,

1981; Morin and Johnson, 1988; Thompson and Fox, 1993). Studies at the largest

temporal scale, the macroscopic scale of phenotype evolution, attempt to account for

phenotype patterns across species as an outcome of evolution driven by asymmetric

competition. Such patterns include the differences in body size of lizard species when

they coexist on islands, in contrast to their intermediate sizes on islands where only one

species occurs (Case and Bolger, 1991). The Anolis lizards of the Lesser Antilles have

been studied in greatest detail, and there is fossil evidence suggesting that coexisting

Anolis species gradually decline in body size. The larger Anolis species is thought

to do so at a faster rate, leading to extinction of the smaller species, the taxon cycle

eventually repeating itself by invasion of a new species of large body size from the

mainland (Roughgarden and Pacala, 1989).

In this paper we link together these three time scales in a formal model of phenotypic

evolution of two interacting species. The idea is to apply a single theoretical framework

across the time scales to retain explicitly the individual-based ecological processes

ultimately responsible for natural selection (Marrow et al., 1992; Dieckmann, 1994;

Dieckmann and Law, 1996; Marrow et al., 1996). This entails deriving a model of

macroscopic phenotype dynamics as an approximation to a stochastic mutation-selection

process (Dieckmann and Law, 1996), where individuals with different phenotypic values

arise by mutation and replace one another in a trait substitution sequence (Metz et al.,
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1992). Our intention is to complement earlier research, which was based on quantitative

genetics, by making explicit the randomness associated with mutation and survival of

mutants when rare. Our approach also differs from previous theory on taxon cycles

(Rummell and Roughgarden, 1983, 1985; Brown and Vincent, 1987; Taper and Case,

1992a) in that asymmetric competition becomes monotonically greater the larger the

phenotypic difference between individuals. This earlier work, motivated by resource

utilization functions, assumed that, if the phenotypic difference was large enough, there

would be no interaction. We want to add to this, because some kinds of interspecific

competition are intrinsically asymmetric however great the phenotypic difference. Such

asymmetries include for instance that between tall and short plants in competition for

light, and the asymmetry between large and small individuals in aggressive interactions.

We give our results in the form of phase portraits of the evolutionary dynamics in a two-

dimensional phenotype space. These portraits show that modifications to the properties

of asymmetric competition can cause a diverse range of evolutionary outcomes, with

multiple local attractors leading to extinction of one species or coexistence of both

species. (Multiple local attractors should not be confused with single equilibrium points

that allow multiple strategies within species at an ESS (Vincent and Brown, 1988).) In

cases where the species coexist, the attractors may be fixed points or cyclic orbits. The

fixed points have the property that only one of the species is uninvadable to mutants

(i.e. at an ESS); the other is at a fitness minimum. The cyclic orbits can be thought

of as ’Red Queen’ dynamics, from Van Valen’s (1973) Red Queen’s hypothesis, as

phenotype dynamics that do not tend to a fixed point in the absence of external forcing

(Dieckmann et al., 1995).

2 Theory

In the theory developed below, we assume that the evolving community comprises two

species. Individuals are distinguished by the value of some phenotypic trait, denoted ��

for an individual of species � (where � � �� �). The phenotype values are continuous and

drawn from the sets ��, scaled so that �� � ��� ��. It is convenient, but by no means

essential, to think of the traits as body size in view of the well-documented effect

this has on asymmetric competition (Clutton-Brock et al., 1979; Weiner, 1990). The

intention is to describe how these traits evolve under natural selection due to asymmetric

competition between and within species. We investigate this by constructing a model

for macroscopic phenotypic evolution from microscopic encounters between individuals

and mesoscopic population dynamics.

The ecological assumptions made below are needed simply to specify a model system,

and can readily be altered to match the behaviour of particular ecological interactions.
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On the other hand the evolutionary assumptions, labelled (A1) to (A3), are structural

and needed in the derivation of the macroscopic evolutionary dynamic.

��� ������	
�� 
	�

� ����������� ������������ ����
�

The essence of asymmetric competition is that, when two individuals encounter one

another as they search for resources, the effect on them is unequal. We assume that

eventually this is transformed into different probabilities of death, ��� , (per encounter

per unit time) of the two individuals, and describe the asymmetry as

������� ����� � ���

�
� �

�

� � ������� ���

�
(1)

where ������� ��� � ��� �������� � ����. The first argument �� is the body size of

the individual whose mortality risk we wish to determine and the second �� is the

body size of the other individual. Parameters ��� and ��� are positive and non-negative

respectively. The parameter � has dimensions time–1 and scales the population sizes.

Body size can be thought of as log-transformed when the asymmetry depends on body-

size ratios rather than differences (Schwinning and Fox, 1995); the scaling �� � �	� ��

can be achieved by the transformation

�� � 
��

�
	�

	�����

�
� 
��

�
	�����

	�����

�
(2)

where the untransformed trait value is 	� � �	������ 	������.

Although Equations (1) are rather simple, they are readily tailored to different kinds of

encounters (Figure 1). This includes encounters with conspecifics (
 � �) and individuals

of the other species (
 �� �). The parameter ��� sets the overall mortality risk. When

the other individual is of the same size, ��� � ����; mortality increases to a maximum

value ��� if the other individual is much larger, and to a minimum of zero if the other

individual is much smaller. The term ��� measures the sensitivity of ��� to changes in ��

when �� � �� . The limit as ��� �� describes a version of the opponent-independent

costs game (Parker, 1983) in which the costs arising from an encounter are set prior to

the encounter and the larger individual gets all the reward; the costs here would take

the form of increased mortality risks inherent from having a larger body size, and the

rewards would be reduced mortality risks associated with encounters.
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�	���� � Asymmetric competition functions ������� ���, with ��� � �. (a) No asymmetry: ��� � �;
(b) weak asymmetric competition: ��� � �; (c) intermediate asymmetric competition: ��� � �; (d) strong
asymmetric competition: ��� � ��; (e) the limit as ��� � �.

��� ������	
�� ����
�� ���������
� ������

We define a model of population dynamics which describes how the number of indi-

viduals in each population is affected by competitive encounters and the fate of mutant

individuals with body sizes that differ from those of the residents. By doing this the need

for an external measure of fitness is eliminated; natural selection is described internally

by the population dynamics of mutant phenotypes. We start by defining the dynamics

of a community without phenotypic variation within species, and then determine the

fate of mutants as they are added to it.

Call � � ���� ��� the pair of body sizes in the resident community. Let � � ���� ���

be the number of individuals with each body size at some point in time. With large

numbers and the simplest assumption that individuals encounter one another at random,

the dynamics are given by

��� � �� � ����� �� � �� �

�
��� � �������

�
�����

������� ��� � ��

�
� (3)

Here the per capita rate of increase ����� �� is partitioned into the following birth and

death components. The first, ��, is a birth rate; this is taken to be independent of

encounters and body size. The second component is a basal rate of mortality ��. The
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dependence of �� on �� is introduced because an intrinsic cost to large body size is to

be expected; we use a linear function

������ � �� � ���� (4)

to describe this, where �� and �� are non-negative parameters. This mortality is

augmented by the third component caused by asymmetric competition from Equations

(1).

��� �����	
�� ����	��� ������������ ������

A dynamic for phenotype evolution can be constructed as the mean of a stochastic

process, the randomness entering both through mutation and through selection. First

we deal with mutation, writing the probability of a mutation per unit time as

��

�
��

�� �
�
� �� � �� � ������ �	�

�
��

� � ��

�
(5)

(Dieckmann and Law, 1996). Here ��

�
� �� � ��� is a mutant phenotype. The term �� is

the probability that a newborn individual is a mutant. This mutant has a phenotype value

drawn from a probability distribution 	� symmetric around �� and with constant variance


�
�
. (Departures from symmetry will have little effect on the deterministic dynamics

below as these are based on the assumption of small mutational steps. A constant

variance is most likely when body sizes are log-transformed.) The probability per unit

time of a birth is given by the product of the per capita birth probability per unit time,

��, and the equilibrium population size of the resident phenotypes, ������. Equilibrium

populations ������. are obtained from Equations (3) with ��� � � for � � �� 	. We have

made an assumption (A1) in Equation (5) that mutations occur rarely enough for the

population sizes to reach equilibrium values between mutation events. This separation

of ecological and evolutionary time scales is widely used in theoretical work, in view

of the difficulties in making any generalizations about evolution on the transients of

ecological dynamics (e.g. Lande, 1982; Roughgarden, 1983a).

Stochasticity arises during natural selection because mutations occur first in single

individuals and are liable to extinction irrespective of how advantageous they are (Fisher,

1958: 80 et seq.). We now make a second assumption (A2) that populations of residents

are large. This has two consequences. First mutants will initially be rare enough for

their effect on the population dynamics of the residents to be ignored. The initial per

capita rate of increase of the mutant � ���
�

�
� �� can then be written as a function of

the mutant phenotype ��

�
and the environment in which it arises, the latter being fully

specified by the resident trait values �. Thus

� �

�
��

�� �
�
� �� � ��

�
��

�

�
�

�

�����

��

�
��

�� �
�
� ������ � (6)
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This function is related to the fitness generating function (�-function) ������ �� ��� �,

which has been used to characterize evolutionary games in the context of ESS theory,

where �� � ��

�
, � � �, � � ��� ��, and � � �� (Vincent and Brown, 1988; Brown and

Vincent, 1992). Rosenzweig and McCord (1991) suggest that the �-function defines a

’bauplan’ within which microevolution takes place.

The second consequence of assumption (A2) is that the effect of demographic stochas-

ticity on the residents will be negligible. The probability that mutant numbers become

large enough to escape extinction due to demographic stochasticity can then be written as

� �

�
��

�� �
�
�

�
� ���

�

�
� ��	
� for � ���

�

�
� �� � �

� for � ���
�

�
� �� � �

(7)

(Goel and Richter-Dyn, 1974: 79). With a third assumption (A3) that no two trait

values ��

�
and �� can coexist, a mutant which escapes accidental extinction when rare

must go to fixation. Under Lotka-Volterra dynamics such as those in Equations (3), it

can be shown that this assumption typically holds (Dieckmann, 1994: 96 et seq.).

Assumptions (A1) and (A3) specify a regime which is phenotypically monomorphic

except for those times when a mutant is replacing a resident phenotypic value. Under

these conditions the probability per unit time of the transition from �� to ��

�
is given

by the product ����
�

�
� �� � � ���

�

�
� ��. This is a stochastic mutation-selection process

in which, from time to time, new trait values replace old ones in a trait substitution

sequence (Metz et al., 1992). A large number of realizations of this process can be

averaged to give a mean path. As long as the deviations from the mean path are small,

the mean path can be replaced by the following deterministic dynamics

��� � ����� �


��

�

� �

�
��

�� �
� ���

��

�
���

(8)

where

����� �
�

�
� �� � �

�

� � ������

(van Kampen, 1992: 122 et seq.; Dieckmann and Law, 1996). These dynamics describe

the process of phenotypic evolution in a trait space � which is the Cartesian product

�����. The dynamics are exact if the mutational steps are infinitesimal and apply as a

close approximation if the steps are small, i.e. ��
�

is small. Evolution is driven essentially

by two factors according to Equations (8). The first is a coefficient ����� that scales

the rate of evolution, its value depending on how often mutations occur and the size of

the mutational steps. The second is a selection derivative (an evolutionary rate) which

depends on the underlying ecological processes responsible for natural selection, i.e.

what happens when individuals encounter one another and what effect these encounters

have on population dynamics. The dynamics are canonical, in that they can alternatively
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be derived from a starting point in quantitative genetics, although the meaning of the

evolutionary rate coefficient is then different (Iwasa et al., 1991; Taper and Case, 1992a;

Abrams et al., 1993a; Marrow et al., 1996).

��� ������	
� ��	���	��

This measures how sensitive the initial per capita rate of increase of a mutant is to

changes in its body size ��

�
close to ��, when the mutant arises in a community with

trait values �. It is given by

�

���

�

� �

�
��

�� �
� ���

��

�
���
� ���

��

�
�����

� ���
�

�� ��� � ����� ��

��� � ��
(9)

(Marrow et al., 1992), where � ����� �� � � since it is assumed that the populations of

resident phenotypes have come to equilibrium. The selection derivative is important

because it indicates the direction in which evolution is taking place; if it is positive

(negative), then mutants of greater (smaller) body size invade. From Equations (1), (4)

and (6), it can be written as

�

����
� �

�
���� �

� ���
��

�
���

�

��� ����������

� � 	����� ���������������������

��������������
� � 	�����

� �� �
�	�

� �� �
�		�

� �� �
�			�

(10)

where is as given in Equations (1). This expression comes in three parts. (I) is a

constant negative term due to the intrinsic advantage of smaller body size. (II) is a

positive term proportional to the number of conspecifics, due to the advantage of larger

body size in encounters with these individuals. (III) is also a positive term, in this

case due to encounters with individuals of the other species, and proportional to the

population size of the other species.

��� ���� ��
���	
��� ��
��	���

The isoclines are lines in the trait space � on which 
�� � �, and are given by the union

of the manifolds on which either the resident population or the selection derivative

vanishes (Equations (8)). We are concerned primarily with the isocline

�

����
� �

�
���� �

� ���
��

�
���

� � � (11)

because this allows both species to be present and as a result coevolution can occur;

we call this the inner isocline. The following properties of the inner isoclines, which

we refer to as non-invasibility and convergence, help in understanding the phenotype

dynamics.
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Non-invasibility is familiar from the concept of an evolutionarily stable strategy (ESS)

as the property that mutants ��

�
, with phenotypes close to the isoclinic values �� satisfying

Equation (11), cannot invade (Parker and Maynard Smith, 1990), and is given by the

condition

� �
��

����

�

� �

�
��

�� �
� �
�
�
��

�
���

� (12)

From Equation (10) this condition is

� � �� � ��� � 	
�

�� � �
���� � ������� ��� �
� � ������� ���

�� � ������� ����
�

(13)

where ������� ��� is as given in Equations (1). Notice that Inequality (13) holds only

for the larger species, which means that there is no point in the trait space satisfying

it simultaneously for both species.

Convergence was introduced in the context of phenotype dynamics in one dimension

and refers to the property of successive mutations in the vicinity of a fixed point to

cause evolution towards this point (Taylor, 1989; Abrams et al. 1993a; Metz, et al.

1994). This is distinct from the property of non-invasibility, and is given by

� �
��

�����
�

�

� �

�
��

�� �
� �
��
��

�
���

(14)

on the inner isocline of this two-dimensional system. Convergence means that, in the

vicinity of the isocline, a sequence of successful mutants tends to the isocline, provided

that the body size in the other species is held constant.

The fixed points �� at which both species coexist are the points in the trait space at

which the inner isoclines intersect, i.e.

�

���

�

� �

�
��

�� �
� ��
�
��

�
���

� � for � � �� � � (15)

These are of special interest because they are contenders as attractors of evolutionary

trajectories; over the course of time phenotypes may evolve towards them. It is clear

from Inequality (13) that, at all fixed points satisfying ��� �� ���, the species with smaller

body size is at a fitness minimum, and the one with a greater body size is at a maximum.

Nevertheless, it will be seen below that evolution readily leads towards such a point,

notwithstanding the fact that it is not an ESS for the species with smaller body size.

This is of interest because it shows that the ESS criterion cannot serve as a necessary

condition for identifying evolutionary attractors (Brown and Pavlovic, 1992; Abrams

et al., 1993a; Marrow et al., 1996). Neither does it qualify as a sufficient condition

(Hofbauer and Sigmund, 1990; Takada and Kigami, 1991; Abrams et al., 1993a; Marrow

et al., 1996); use of the ESS criterion is inadequate for delimiting the outcome of these

evolutionary processes.
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3 Results

The evolutionary dynamics (8) can be represented in terms of a two dimensional phase

portrait in the trait space �. This gives a clear picture of the geometry of evolution,

indicating the orientation of the isoclines, the positions of fixed points and the flow of

evolutionary trajectories. In this section we illustrate the varied evolutionary behaviour

which stems from modifications in asymmetric competition in Equations (1) using these

phase portraits. Throughout we hold � � � � ����, �� � �, �� � �, and �� � � for

� � �� � in Equations (1), (3) and (4), as this makes it possible to focus simply on the

effects of changes to asymmetric competition. The coefficients of the evolutionary rates

of the species in Equations (8) are kept the same unless otherwise stated.

It is important to appreciate that, on the time scale of population dynamics, the species

may not coexist, i.e. the asymptotic state to which the population size of one species

tends may be zero for constant �. To make this precise, we define a subspace �� of �

for which both species have positive equilibrium populations asymptotically:

�� � �� � � � �	���� 
 � for � � �� �� � (16)

It may often be the case that �� is an empty set, and questions about coevolution

obviously do not then arise. We deal here only with those systems for which �� is not

empty, so that there is some region in which coevolution takes place. For this to be the

case, we require that there should be some region in � with the properties

�� � ������

������ ���
�

�� � ������

������ ���
for � � �� � and � �� � � (17)

These conditions ensure that there is an equilibrium point satisfying �	���� 
 � for

� � �� �, and that the equilibrium point is a global attractor. With the values ��, ��

and �� given above, there are values of s satisfying Inequalities (17) when ��� 
 ���

for � � �� � and � �� �. This is no more than saying that there is a region in � where

intraspecific competition is stronger than interspecific competition. To ensure that there

is a substantial region of coexistence, we set ��� � � and ��� � � for � � �� � and � �� �

in the examples below.

Notice that, once evolution of body size has been introduced, it is entirely feasible for

the body sizes to evolve to the boundary of the subspace of coexistence ��, i.e. to

a point where the equilibrium population size of one of the species is zero. In such

cases the dynamics subsequently lie in one of the one-dimensional subspaces �� or

��. We indicate such parts of the �� boundary by discontinuous lines in Figure 2, in

contrast to those which repel the evolutionary trajectories. It should be borne in mind

that the deterministic population dynamics in Equations (3) do not allow for accidental

extinction of a species close to the �� boundary that results from the small size of the

resident population there.
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��� ������	
� �����	

This is the null case, indicating what would happen if competition was present but

there were no asymmetries in the encounters (��� � �, ��� � � for � � �� �). The

path of evolution is very simple (Figure 2a): body sizes just evolve to the smallest

values in �. This is because the intrinsic costs associated with large size (Equation

(4)) are not countered by any advantage in encounters with other individuals. Notice

that, in certain regions of the trait space �, coexistence is not possible; body size, if

large enough, causes an intrinsic mortality rate too great to maintain a population under

competition. Moreover, evolution can lead to the boundary of ��, and there the larger

species becomes extinct. Evolution then continues in one of the subspaces ��, �� until

the smallest body size is reached.

�� ������	
�� �����	�	��� ��	��� �������

A first step towards a more realistic system would be to suppose that asymmetric

encounters occur only among conspecifics (��� � �, ��� � � for � � �� � and � �� �). This

would be expected if asymmetries were a special feature of intraspecific interactions such

as the ability to hold territories against conspecifics (Davies, 1978). Figure 2b shows

that the intrinsic advantage of small size is now opposed by an advantage of larger body

size in encounters with conspecifics. Just how great the overall advantage stemming

from asymmetric encounters is depends on the number of conspecifics (Equation (10)).

When conspecifics are scarce, as they will be when body size is large, encounters occur

infrequently and the advantage is not great enough to counter that of small body size.

This is reversed when body size is small and, as a result, inner evolutionary isoclines

exist for both species. The isoclines intersect at a single point �� which satisfies the

condition for convergence for both species and the second order condition for non-

invasibility for neither of them (see Inequalities (13) and (14)); nonetheless it is an

attractor for evolutionary trajectories in its neighbourhood. As before evolution leads

to the boundary of �� from certain starting points, although this can now happen only

over a subset of the boundary.

��� ����
�	� ������	
�� �����	�	��� ��	���� �������

Asymmetric competition between species in addition to that within species is likely to

occur when all individuals must compete for a common resource, irrespective of their

identity. This changes some important features of the phase portrait. We consider first

a case in which the degree of asymmetry is equal for both species, (��� � ���) and

moderate in size (Figure 2c). The inner isoclines and the boundary of �� are now

non-linear. In the example shown, the single fixed point, now shifted to larger body

sizes, still remains in existence and is still an attractor for evolutionary trajectories in
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its neighbourhood. It is notable that the asymmetry in interspecific encounters expands

the region �� over which the species coexist. This may seem counterintuitive until

it is understood that individuals of large body size are now less adversely affected in

their encounters with small individuals of the other species and that their populations

are correspondingly larger. A substantial part of the non-linear boundary of �� permits

evolution on to the boundary, leading to extinction of the larger species.

��� �����	 
������� ���������� ������� �������

As the asymmetry between species is made stronger, the non-linearities of the inner

isoclines become greater, generating more fixed points. This is because, where indi-

viduals of the two species are similar in size, the advantage of being the larger one

becomes greater; this distorts the inner isoclines, pulling them towards the upper right

corner, � � ��� ��. In Figure 2d for example, the single fixed point has been replaced

by five fixed points. The one in the middle at which the species have the same body

size still exists and has a small basin of attraction. But two new attracting fixed points

have arisen at which the body sizes of the two species are quite different; these are

attractors even though the species with smaller body size is at a fitness minimum (see

Inequality (13)). Evidently, as the degree of asymmetry increases, alternative outcomes

to coevolution become possible; which outcome is realized depends on the body sizes

at the start of the evolutionary process.

�	���� � �����	���
� Phase portraits of the trait space �, showing contrasting dynamics as
asymmetric competition is altered. Evolutionary trajectories within the region of coexistence shown
as continuous lines. Inner evolutionary isoclines ��� � � shown as dotted lines: ��� species 1, ��� species 2.
Isoclines marking the boundary of coexistence ��� � � shown as: ��� species 1, ��� species 2; the isocline
is given as continuous (discontinuous) if it repels (attracts) orbits from the interior of the coexistence
region. Fixed points are shown as circles, and filled if the fixed point is an attractor. Parameters are
set as follows unless otherwise specified. Equations (1): � � � � ����, ��� � �, ��� � �, ��� � �,
for � � �� � and 	 �� �; Equations (3): 
� � �, for � � �� �; Equations (4): �� � �, �� � �, for
� � �� �; Equations (8): � � ����, ��� � ����, for � � �� �. (a) No asymmetric competition within and
between species: ��� � �, for �� 	 � �� �. (b) Asymmetric competition present within species and absent
between species: ��� � �, ��� � �. (c) Moderate asymmetric competition between species: ��� � �,
��� � �. (d) Strong asymmetric competition between species: ��� � 	, ��� � 	. (e) Differences between
species in interspecific asymmetric competition functions: ��� � 
, ��� � �. (f) Differences between
species in interspecific asymmetric competition functions together with fast evolutionary rate for species
2: ��� � 
, ��� � � ��

�
� ����.
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In general the advantage gained by a large individual of species 1 over a small one of

species 2 does not have to be the same as the advantage to an individual of species 2

when the sizes are reversed, (��� �� ���). For instance, one might well expect the canopy

architecture of two plant species to differ; the one with the more open canopy then has

a less adverse effect on its smaller neighbours than the species with the more closed

canopy when there is competition for light. Such differences between species seem

particularly likely when the species in competition are not closely related (Englund et

al., 1992).

Differences in the degree of asymmetry between species can add further complexities

to the dynamics, because the phase portrait is no longer symmetric about the line

�� � ��. Figure 2e gives an example in which the inner isoclines intersect at three

points, the outer two points (A) and (B) both being attractors. Fixed point (A) satisfies

the condition for convergence for both species and the condition for non-invasibility for

species 2 (Inequalities (13), (14)). Point (B) satisfies the conditions for non-invasibility

and convergence for species 1 only. This illustrates the fact that convergence by both

species is not necessary for the fixed point to be an attractor, just as non-invasibility is

not (Abrams et al., 1993a; Marrow et al., 1996).

In fact the stability properties of fixed point (B) depend on the coefficients that scale the

evolutionary rates in Equations (8), in addition to the properties of the inner isoclines.

This is shown in Figure 2f, where the coefficient of species 2 is increased by a factor

of ten. As can be seen from the orientation of the trajectories, evolution in the vertical

direction (species 2) is now faster than in the horizontal direction (species 1), and this

prevents point (B) from being an attractor. The evolutionary trajectories are nonetheless

confined to a region around the fixed point, and consequently the asymptotic state is

now a periodic orbit.

The periodic asymptotic state constitutes a Red Queen dynamic, the sequence of trait

substitutions continuing for as long as the system remains in existence (Figure 3a)

(Marrow et al., 1992, 1996; Dieckmann et al. 1995). Depending on where the species

are on the periodic orbit, invasions are sometimes by larger mutants, and sometimes by

smaller mutants. The oscillations in body size of the two species are nearly in phase,

but the larger evolutionary rate constant of species 2 causes it to have oscillations of

greater amplitude. The cycle cannot be driven by changes in the relative abundance

of the two species (cf. Pimentel, 1968; Pease, 1984), since their equilibrium numbers

are approximately in phase, being high when body size is relatively small (Figure 3b).

Selection follows these changes in population size, the component due to intraspecific

encounters being at its peak when numbers are greatest as measured by Equation (10)
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�	���� � Properties of the periodic attractor of Figure 2f, variables being given as functions of time:
(a) body size; (b) equilibrium population size / � � ��

��; (c) the intraspecific component of the selection
derivative (Equation (9,II)) shown as II, and the interspecific component of the selection derivative
(Equation (9,III)) shown as III. Continuous lines: species 1; discontinuous lines: species 2. Parameter
values as in Figure 2f.



132 ������� ��	
 ��� �����	 ��� �� ���������

part (II) (Figure 3c). Conversely, the component due to interspecific encounters is at

its peak when the numbers are lowest as measured by Equation (10) part (III).

4 Discussion

The results above show that asymmetric competition between species can, in principle,

have the following evolutionary effects. First, the non-linearities in the inner isoclines

created by asymmetric competition (a) cause evolutionary fixed points to be shifted to

larger body sizes, and (b) can give rise to multiple fixed points. Second, the asymptotic

states can be periodic orbits (Red Queen dynamics), rather than fixed points. Third,

because large individuals suffer less disadvantage when competition is asymmetric,

coexistence of the species occurs over a larger part of the phenotype space. Fourth,

evolution to the boundary of the coexistence region remains possible, and the smaller

species then drives the larger one to extinction, as Taper and Case (1992a) found in their

analysis. Much of this rich behaviour arises from modelling evolution in a manner that

links it directly to the underlying population dynamics. Such population processes are

important for ecologically-significant traits, because the selection pressures one species

generates upon another depend on the abundance of the species concerned, as is clear

from Equation (10) (see also Pimentel, 1968; Abrams and Matsuda, 1994).

��� �����	
���������

To lay bare the links from individual encounters, through population dynamics, to a

macroscopic model of coevolution, we have deliberately kept the processes operating

at each scale rather simple. As a result, some warnings about the limitations of the

phenotype dynamics in Equations (8) are needed. The most critical assumption is

that the populations can be treated, to a good approximation, as monomorphic with

respect to the evolving traits. Clearly one would wish to remove this; a model which

tracks phenotype distributions through time would be preferable. The quantitative-

genetic recursion used by Slatkin (1980) and Taper and Case (1985, 1992a) does retain

the phenotype distribution, but does not deal with the mutation process and is much

less tractable analytically. What we know from our stochastic simulations is that the

model remains a good approximation to the mean of a stochastic birth/death process in

which different phenotypes occur with a low probability through mutation, generating

a phenotype distribution with a small variance (Dieckmann, 1994; Dieckmann et al.,

1995).

The assumption of almost complete monomorphism is widely made in modelling

coevolution, through the use of the first order term of a Taylor’s expansion of the

fitness function (i.e. a selection derivative of the form used in Equations (8)). In models

motivated by quantitative genetics, the argument of the function is the additive genetic
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value, in which case monomorphism applies to this rather than the phenotypic value

(Iwasa et al., 1991; Taper and Case, 1992a; Abrams et al., 1993a; Marrow et al., 1996).

One might alternatively require that terms in the fitness function of order greater than

two are negligible (Abrams et al., 1993b), but this would not be generic for coevolving

systems. Dynamics like those of Equations (8) have been used heuristically on a number

of occasions in evolutionary biology (e.g. Brown and Vincent, 1987; Hofbauer and

Sigmund, 1990); these approaches also have an assumption of monomorphism although

this is not made explicit.

��� �����	
�� ����� ��� ������	����� ���� ������

The model illustrates how dynamical and game-theoretic approaches to study of evolu-

tion differ. Game theoretic approaches use isoclinic properties of non-invasibility (the

ESS condition). But it is clear from the phase portraits that this isoclinic property is

not enough to indicate whether the fixed point is an attractor of the evolutionary tra-

jectories (Takada and Kigami, 1991; Abrams et al., 1993a; Marrow et al., 1996). In

addition, they can provide no information on periodic attractors, where the trajectories

do not tend to a fixed point at all. There appears to be no short cut possible; direct

investigation of the dynamical system is needed.

Nevertheless, the isoclinic properties do provide some useful insights. For instance,

in the coevolutionary system considered here, at any fixed point with the property

��� �� ���, the species with smaller body size is at a fitness minimum. Although selection

on the larger species is stabilizing, it is disruptive for the smaller one and this may

lead to a polymorphism developing (Christiansen, 1991; Metz et al., 1994). In this

event, evolutionary branching takes place, and the quasi-monomorphic evolutionary

dynamic we have used is no longer appropriate. In principle, it is possible to follow the

evolution further, by increasing the dimensionality of Equations (8) to three, and treating

the two phenotypes of the smaller species separately. We have not done this because

it has not yet been possible to observe such branching in our stochastic simulations

of the underlying birth-death processes; the robustness of branching remains to be

demonstrated.

��� �����	
 �����

Strictly speaking, the model we have described applies only to phenotypes with an

asexual or haploid genetic system. We suggest that, with few modifications, the

dynamics would also apply over much of the trait space to a diploid genetic system

if there is an ordering of the phenotypic effects of the genes. The ordering is either

that �� � �
�

�
� �

��

�
or that �� � �

�

�
� �

��

�
, where �

�

�
and �

��

�
are the phenotypes of

the mutant heterozygote and homozygote respectively; additivity of the phenotypic
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effects is a special case of this. The probability that a mutant replaces a resident

allele depends first of all on the probability that it escapes extinction when rare; this

is still given by Equations (6) and (7), the per capita rate of increase now being that

of the rare heterozygote. Replacement subsequently depends on whether the mutant

goes to fixation. As long as �
�

�
and �

��

�
do not straddle the inner ��-isocline, this

ordering should lead to fixation of mutants which have escaped extinction when rare.

Moreover, polymorphisms straddling the isocline would not normally be maintained,

because evolution in the other species usually moves the system away from the vicinity

of the isocline. Exceptions to this are the evolutionary fixed points themselves; here the

larger species may go into a sustained polymorphic state, in which case the assumption

of quasi-monomorphism no longer applies. Notice that the evolutionary rate coefficient

in Equation (8) has to be multiplied by a factor of two if a switch from haploidy to

diploidy is involved.

��� ������	�
� �� ����
������ ��������

The focus of most early work on evolution of competing species was the divergence

of characters, in view of the potential importance of niche differentiation in structuring

ecological communities (Hutchinson, 1959; Roughgarden, 1983b). The trajectories in

Figure 2 illustrate how minor a role character divergence can play once asymmetric

competition is introduced (see also Abrams, 1987; Taper and Case, 1992a). Character

divergence would require a region in the phase space where the species with larger body

size evolves still larger sizes and the smaller species evolves still smaller sizes. Although

such regions do exist, the dynamics over most of the phase space comprise either

character convergence or parallel character shifts (Taper and Case, 1992b). Convergence

occurs when the larger species is evolving to a smaller size and the smaller one to a

larger size, as in the top left and bottom right regions of the phase space. Parallel

character shifts occur when both species change in the same direction, as in most of

the rest of the phase space. The parallel character shifts may themselves be convergent,

getting closer to the line �� � ��, but it is also common in our examples to observe

divergent shifts, getting further from the line �� � ��. Notice that, if there had already

been single-species evolution to a fixed point before the two species met, the starting

point for coevolution would be the body size at the fixed point that applies in the

absence of interspecific competition.
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The results show that evolution can lead to a cyclic asymptotic state, although our

exploration of the parameter space suggests that such behaviour is relatively infrequent.

The existence of a Red Queen dynamic is important for several reasons. First, it

warns that the current preoccupation of evolutionary theory with fixed-point asymptotic

states of evolution, in particular ESSs, misses other possible outcomes (Dieckmann et

al., 1995); these are likely to require more consideration as theorists turn to problems

of higher dimensionality such as those of coevolution. Second, it demonstrates that

continuing evolution is not dependent on changes in the abiotic environment (although

normally this obviously plays a major part); all that is needed is a system of interacting

and mutating species to prevent evolution from coming to a halt.

Cyclic solutions are well known from previous studies of evolution under asymmetric

competition within species. What happens is that mutants with body sizes greater

than those prevailing in the population gain an advantage and body size increases; but

eventually mutants of small size can invade because they gain an advantage so great

from the low costs of small size that this outweighs the defeat they experience in every

encounter (Maynard Smith and Brown, 1986). Such models have the properties that:

(a) mutants can cause large changes in phenotype, and (b) the payoffs are discontinuous

functions of phenotype. Parker (1985) suggested that cyclic systems will typically revert

to fixed point behaviour if the payoffs are made continuous; if in addition mutational

steps are made small, cyclic dynamics ought to become still less likely. That Red Queen

dynamics can still occur in our model, under a small mutation variance and a continuous

fitness function, suggests that cyclic asymptotic states to phenotypic evolution are more

robust than has previously been thought.

���	��������	��
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Summary

The Dynamical Theory of Coevolution

A unifying framework is presented for describing the phenotypic coevolutionary dy-

namics of a general ecological community. We start from an individual-based approach

allowing for the interaction of an arbitrary number of species. The adaptive dynamics

of species’ trait values are derived from the underlying population dynamics within the

community; in consequence, the evolutionary process is driven by ecological change.

We present a hierarchy of dynamical models for the investigation of coevolutionary

systems. The necessity of stochastic treatment is demonstrated and deterministic

approximations are derived where appropriate. The mathematical framework advanced

here to our knowledge is the first one to combine the individual-based, stochastic

perspective with a fully dynamical analysis of the phenotypic coevolutionary process.

The hierarchy of models presented is particularly geared to infer evolutionary predictions

from ecological assumptions. Applications to evolutionary dynamics both in predator-

prey systems and under asymmetric competition demonstrate the versatility of our

approach. Rich coevolutionary patterns are obtained and novel evolutionary phenomena

are revealed.

Deductions are given to derive various well-known equations from the literature of

evolutionary modelling. Consequently the different domains of validity for these models

are delineated and several ad-hoc assumptions are removed. In particular, equations

central to the fields of evolutionary game theory, adaptive dynamics, replicator dynamics

and reaction-diffusion models of phenotypic evolution are recovered and are identified

as special cases within a dynamical theory of coevolution.
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