Evaluating Decision Trees under Different Criteria

Mats Danielson and Love Ekenberg

WP-96-148
December 1996

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.
Evaluating Decision Trees under Different Criteria

Mats Danielson and Love Ekenberg

DECIDE Research Group

1Department of Computer and Systems Sciences,
Royal Institute of Technology,
Electrum 230, S-164 40 Kista, SWEDEN
email: mad@dsv.su.se

2IIASA, International Institute for Applied Systems Analysis,
A-2361 Laxenburg, AUSTRIA
email: ekenberg@iiasa.ac.at

Abstract. Based on our earlier results in decision theory, we demonstrate how decision trees can be integrated into a general framework for analysing decision situations with respect to different criteria, and suggest an evaluation rule taking into account all strategies, criteria, probabilities and utilities involved in the situations under consideration. A significant property of the framework is that it admits the representation of imprecise information at all stages. This information is modelled in sets of measures constrained by interval estimates. The strategies are then evaluated relative to different decision rules, e.g., a set of generalisations of the principle of admissibility. Decision situations are evaluated using fast algorithms developed particularly for solving these kinds of problems. The presented framework has been developed and used within a large-scale evaluation project at the Swedish National Rail Administration.

Keywords: Multiple Attribute Utility Theory, Decision Analysis, Decision Theory, Utility Theory

1 Introduction

Aggregation of utility functions under a variety of criteria is investigated in the area of Multi Attribute Utility Theory (MAUT) [12-14]. A number of techniques used in MAUT has been implemented as computer programs such as SMART [5] and EXPERT CHOICE, the latter which is based on the widely used AHP [23-25]. AHP has been criticised in a variety of respects [2, 29, 30] and models using geometric mean value techniques has been suggested instead [1, 15]. Techniques based on the geometric

1This work was carried out under grant P5873-1 from the Swedish National Board for Industrial and Technical Development (NUTEK). Ekenberg was supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT).
mean value has, for instance, been implemented by Lootsma and Rog in REMBRANDT [18].

All these approaches have their advantages, but the requirement to provide numerically precise information sometimes seems to be unrealistic in real-life decisions situations, and a number of models with representations allowing imprecise statements have been suggested. For instance, [27] extends the AHP-method in this respect and also make use of structural information when the alternatives are evaluated into overlapping intervals. The system ARIADNE [26] also allows the decision maker to use imprecise estimates, but does not discriminate between alternatives when these are evaluated into overlapping intervals. Fuzzy set theory is a more widespread approach to relaxing the requirement of numerically precise data by providing a more realistic model of the vagueness in subjective estimates of probabilities, weights, and values [3, 16]. These approaches allow, among other features, the decision maker to model and evaluate a decision situation in vague linguistic terms.

The methods we propose herein originate from earlier work on handling probabilistic decision problems involving a number of alternatives and consequences when the background information is vague or numerically imprecise [4, 8, 20]. The aim of this paper is to generalise the work into the realm of multiple criteria decision aids, but still conform to classical statistical theory rather than to fuzzy set theory. By doing so, we try to avoid problems emanating from difficulties in providing set membership functions and in defining set operators having a satisfying intuitive correspondence. Parts of the framework presented in this paper has also been implemented in the DELTA tool which at present is used in a large-scale evaluation at the Swedish National Rail Administration.

The next section describes how imprecise sentences are modelled and how the model subsequently can be evaluated. Section 3 extends the results from Section 2 and describes how consequence analyses can be incorporated into the method. Section 4 concludes the paper.

2 Modelling Decision Situations

As was mentioned above, a significant feature of the framework is that it allows for decision situations where numerically imprecise or comparative sentences occur. These sentences are represented in a numerical format and with respect to this the strategies can be evaluated using a variety of decision rules. The further discriminating analyses try to show which parts of the given information are the most critical and must be given extra careful consideration.

2.1. Information Frames

The decision maker’s importance (weight) estimates are represented by linear constraints and we treat three classes of weight sentences: vague sentences, interval sentences, and comparative sentences (cf. [6]).

Typical vague sentences include: “The criterion K_i is the most important” or “The criterion K_j is of some importance”. They may be represented by suitable intervals according to the decision maker. Suppose that a decision maker stipulates that for K_i to be called ‘important’, the weight must be greater than 0.5 but less than 0.9. In this case, the translation will be $w_i \in [0.5, 0.9]$, represented by the two linear inequalities
Similar translations apply when representing other vague sentences. *Interval sentences* are of the form: "The importance of \(K_i \) lies between the numbers \(a_i \) and \(b_i \)" and are translated into \(w_i \in [a_i, b_i] \). Finally, *comparative sentences* are of the form: "The importance of \(K_i \) is greater than the importance of \(K_j \)". Such a sentence is translated into an inequality \(w_i \geq w_j \). Each statement is thus represented by one or more constraints. We call the conjunction of constraints of the types above, together with the normalisation constraint \(\sum_{i=1}^{n} w_i = 1 \), the *criteria base* (\(K \)).

The *strategy base* (\(S \)) consists of similar translations of vague and numerically imprecise utility estimates.\(^2\) A strategy base with \(n \) criteria and \(m \) strategies is expressed in strategy variables \(\{u_{11}, u_{12}, \ldots, u_{m1}, u_{m2}, \ldots, u_{mn}\} \) stating the utility of the strategies according to the different criteria. The term \(u_{ij} \) denotes the utility of strategy \(S_i \) with respect to criterion \(K_j \). The collection of weight and utility statements constitutes the *information frame*. It is assumed that the variables’ respective ranges are real numbers in the interval \([0,1]\). Below, we will refer to an information frame as a structure \((S, K)\).

Example: A decision maker gives assessments concerning the strategies for a risk policy of a company. The objective of the investigation is to decide how to allocate resources for preventing potential losses of the company. The available strategies are to prevent disruption of productions and services, to prevent obstruction of research and development, or to distribute the resources over both these objectives. These strategies are labelled \(S_1, S_2, \) and \(S_3 \) below. Assume that the decision is supposed to be evaluated with respect to a short-term financial perspective as well as credibility in the long run. These criteria are denoted \(K_1 \) and \(K_2 \) below. The utilities involved could, for example, be monetary values. In that case, they are linearly transformed to real values in the interval \([0,1]\).

For instance, the assessments with respect to criteria \(K_1 \) could be the following:

- The utility of strategy \(S_1 \) is between 0.20 and 0.50
- The utility of strategy \(S_2 \) is between 0.20 and 0.60
- The utility of strategy \(S_3 \) is between 0.40 and 0.60
- The utility of strategy \(S_2 \) is at least 0.10 better than that of \(S_1 \)

Similar utility assessments can be asserted with respect to \(K_2 \).\(^3\)

Moreover, the decision maker may estimate the importance of \(K_1 \) and \(K_2 \) as numbers in the interval \([0,1]\). The number 0 denotes the lowest importance and 1 the highest. Thus, the assessments about the criteria could be:

- Criteria \(K_2 \) is at least as important as \(K_1 \)
- The importance of criteria \(K_1 \) is between 0.30 and 0.70

One further reason for allowing interval as well as comparative assessments is that the background information may have different sources. For instance, intervals naturally occur from aggregated quantitative information while qualitative analyses

\(^2\)The values can be cost values, utility values, or values on any other appropriate scale. cf. [28].

\(^3\)Note that we only discuss the representation of the situation from a global point of view. The individual criteria assessors may have used different kinds of risk evaluation methods to determine their utilities (cf. [7, 10]).
often result in comparisons. Since the sources may be different, the assessments are not necessarily consistent with each other.

The utility estimates with respect to K_i are translated into the following expressions.

$u_{11} \in [0.20, 0.50]$
$u_{21} \in [0.20, 0.60]$
$u_{31} \in [0.40, 0.60]$
$u_{21} \geq u_{11} + 0.10$

The importance of K_1 and K_2 are also represented as numbers in the interval $[0, 1]$, and the translation of the assessments above results in the following expressions.

$w_2 \geq w_1$
$w_1 \in [0.30, 0.70]$ \blacksquare

2.2. Aggregations

In the following, we will assume that the bases are consistent, i.e. that there is at least one solution vector to each system of inequalities.4

One candidate for an aggregation principle could be based on a weighted sum of the utilities and the following notation will be used to define this with respect to an information frame representing n criteria and m strategies:

Definition: Given an information frame (S, K), the global utility $G(S_i)$ of a strategy S_i is $G(S_i) = \sum_{k \leq n} w_k \cdot u_{ik}$, where w_k and u_{ik} are variables in K and S, respectively.

Definition: Given an information frame (S, K), the difference in global utility δ_{ij} between two strategies S_i and S_j are $\delta_{ij} = G(S_i) - G(S_j) = \sum_{k \leq n} w_k \cdot (u_{ik} - u_{jk})$, where w_k, u_{ik}, and u_{jk} are variables in S and K, respectively. \blacksquare

Definition: Given an information frame (S, K), let a and d be two vectors of real numbers $(a_1, ..., a_n)$ and $(b_1, ..., b_{mn})$, $abG(S_i) = \sum_{k \leq n} a_k \cdot b_{ik}$, where a_k and b_{ik} are numbers substituted for w_k and u_{ik} in $G(S_i)$). Similarly, $ab\delta_{ij} = abG(S_i) - abG(S_j)$.

With respect to these definitions, we can, for instance, express the concept of admissibility in the sense of [17].

Definition: Given an information frame (S, K), S_i is at least as good as S_j iff $ab\delta_{ij} \geq 0$, for all a, b, d, where $\{w_1 = a_1\} \& ... \& \{w_n = a_n\}$ is consistent with K and $\{u_{11} = b_{11}\} \& ... \& \{u_{1n} = b_{1n}\} \& \{u_{jn} = d_{jn}\} \& ... \& \{u_{nn} = d_{nn}\}$ is consistent with S.

S_i is better than S_j iff S_i is at least as good as S_j and $ab\delta_{ij} > 0$, for some a, b, d, that are consistent with K and S as above.

S_i is admissible iff no other S_j is better. \blacksquare

4Recall that a list of numbers $[n_1, ..., n_s]$ is a solution vector to a set of inequalities S containing variables $x_1, ..., x_s$, if the substitution of n_i for x_i in S, for all $1 \leq i \leq s$, does not yield a contradiction. The set of solution vectors to S constitutes the solution set for S. If there is a non-empty solution set for S, it is consistent. Otherwise S is inconsistent. Given two sets of inequalities S and T, if $S \cup T$ is consistent we will sometimes say that S is consistent with T or vice versa. Needless to say, the solution sets to the bases can be determined by ordinary linear programming (LP) methods.
The concept of admissibility is computationally meaningful in our framework as demonstrated in [4]. However, the admissibility often seems to be too weak to form a decision rule by itself, and in [4, 9] we introduce further discriminating principles in the case of decisions under risk. These are readily adapted to the multi-criteria case. We first introduce some notations that will be used in the sequel.

Definition: Given a base Y and a function f into the set of real numbers, \(Y_{\text{max}}(f(y)) \) is \(\sup \{ a \mid f(y) > a \text{ is consistent with } Y \} \). Similarly, \(Y_{\text{min}}(f(y)) \) is \(\inf \{ a \mid f(y) < a \text{ is consistent with } Y \} \). Likewise, given an information frame \(\langle S, K \rangle \), \(SK_{\text{max}}(G(S_j)) \) is \(\sup \{ d \mid \forall a, b \text{ such that } \{ w_1 = a \} \& ... \& \{ w_n = a_n \} \text{ is consistent with } S \} \). Thus \(SK_{\text{min}}(G(S_j)) \) is \(\inf \{ d \mid \forall a, b \text{ such that } \{ u_1 = b \} \& ... \& \{ u_n = b_n \} \text{ is consistent with } S \} \).

Next, the problem of finding optima in the bases is addressed from an interactive point of view. Determining admissibility are computationally fairly demanding tasks in the general case, using quadratic programming (QP), and the main issue in the following section is to provide a procedure to reduce problems of this kind to linear systems, solvable with linear programming (LP) methods.

2.3. Bilinear Optimisation

Our purpose now is to evaluate expressions such as \(\delta_{ij} \) and \(\delta_{ji} \) for all pairwise combinations of alternatives under consideration. This leads to quadratic problems with certain structural properties. Each comparison of two alternatives results in exactly one bilinear objective function together with many linear constraint equations, a bilinear programming (BP) problem. Since the objective function is quadratic and all the constraint equations are linear, the optimising problem could be solved with QP methods. However, QP algorithms are in general too demanding from an interactive point of view. [20] suggests a bilinear elimination (BE) algorithm for solving the BP problem by generating a large number of systems to solve. At the time of writing, solving these systems will not admit fast response and thus BE is not well suited for an interactive tool. The same problems occur when determining the strengths of the strategies. Therefore, an LP based method for use in an interactive environment is necessary. The algorithm described is the bilinear optimisation \((KB-\text{Opt})\). In describing this algorithm we will make use of the following concepts.

Definition C: Given an information frame \(\langle S, K \rangle \).

Then \(SK_{\text{max}}(G(S_j)) \) is \(w_1 a_1 + ... + w_n a_n \), where \(a_{ik}, 1 \leq k \leq n, \) is \(\sup \{ b \mid \{ k \leq u \} \& \{ a_{i(k-1)} = u_{i(k-1)} \} \& ... \& \{ a_{i1} = u_{i1} \} \text{ is consistent with } S \} \).

Further, \(SK_{\text{min}}(G(S_j)) \) is \(w_1 a_1 + ... + w_n a_n \), where \(a_{ik}, 1 \leq k \leq n, \) is \(\inf \{ b \mid \{ k \geq u \} \& \{ a_{i(k-1)} = u_{i(k-1)} \} \& ... \& \{ a_{i1} = u_{i1} \} \text{ is consistent with } S \} \).

By using the above definitions, the strategies can be evaluated with respect to a variety of decision rules using simple LP methods only. The evaluation of admissibility is quite straightforward, but also other decision rules can be formed. We demonstrate this by forming the relative strength.

Definition: Given an information frame \(\langle S, K \rangle \), the relative strength \(\Delta_{ij} \) of \(S_i \) compared to \(S_j \) is \((SK_{\text{max}}(\delta_{ij}) - SK_{\text{max}}(\delta_{ji}))/2 \).
Using the definition C above the following expression can be formed.

Definition: Given an information frame \((S,K)\), \(S_{ij}\) is \(S_{ij}^{\max} - S_{ij}^{\min}\) and \(K_{ij}\) is \((K_{ij}^{\max}(\delta_{ij}) - K_{ij}^{\min}(\delta_{ij}))/2\).

We will now demonstrate that \(K_{ij}\) is equal to \(\Delta_{ij}\) under specific circumstances. This means that the relative strength can be determined by using LP methods only. The idea behind \(K_{ij}\) is to transform a bilinear expression into a linear expression with the property of having the same extremal value under specific conditions. Thus, the evaluation of the relative strength \(\Delta_{ij}\) involves the evaluation of \(S^{K_{ij}}(\delta_{ij})\). To avoid the non-linearity inherent in the \(\delta_{ij}\) formula, an LP procedure is employed for calculating \(\delta_{ij}\). The following proposition follows immediately from a similar proposition that is proved in [4].

Proposition: Given an information frame \((S,K)\), assume that none of the comparative statements in \(S\) involve variables from different \(S_i\)'s. Then \(\Delta_{ij} = K_{ij}\) for any pair \(S_i\) and \(S_j\).

2.4. Contractions

Furthermore, in non-trivial decision situations, when an information frame contains numerically imprecise information, the principles suggested above are sometimes too weak to yield a conclusive result. A way to refine the analysis is to investigate how much the different intervals can be contracted before an expression such as \(\delta_{ij} > 0\) ceases to be consistent. This contraction avoids the complexity inherent in combinatorial analyses, but it is still possible to study the stability of a result by gaining a better understanding of how important the interval boundary points are. By co-varying the contractions of an arbitrary set of intervals, it is possible to gain much better insight into the influence of the structure of the information frame on the solutions. Contrary to volume estimates, contractions are not measures of the sizes of the solution sets but rather of the strength of statements when the original solution sets are modified in controlled ways. Both the set of intervals under investigation and the scale of individual contractions can be controlled. Consequently, a contraction can be regarded as a focus parameter that zooms in on central sub-intervals of the full statement intervals.

Definition: \(X\) is a base with the variables \(x_1,...,x_n\), \(\pi \in [0,1]\) is a real number, and \([\pi_i \in [0,1] : i = 1,...,n]\) is a set of real numbers. \([a_i, b_i]\) is the interval corresponding to the variable \(x_i\) in the solution set of the base, and \(k = (k_1,...,k_n)\) is a consistent point in \(X\). A \(\pi\)-**contraction** of \(X\) is to add the interval statements \([x_i \in [a_i + \pi \cdot (k_i - a_i), b_i - \pi \cdot (b_i - k_i)] : i = 1,...,n]\) to the base \(X\). \(k\) is called the **contraction point**.

By varying \(\pi\) from 0 to 1, the intervals are decreased proportionally using the gain factors in the \(\pi_i\)-set, thereby facilitating the study of co-variation among the variables.

5 For a 100% contraction, the volume of each base is reduced to a single point. For this special case, the results from the algorithms for comparing alternatives coincide with the ordinary expected value.
3 Multi-Level Decision Trees

In Section 2 decision problems were modelled without taking into account how a decision maker arrived at his preferences and there were no requirements on the methods he used in this process. By extending the concept of strategy, and using techniques similar to those proposed in that section, more general decision models can be handled. Consider a decision situation under risk as in Fig. 1 (cf., e.g., [22]).

![Fig. 1 A Multi-Level Tree](image)

The directed edges (labelled S) in the figure denote alternatives, and the c's different consequences. The squares are decision nodes, i.e., where a decision has to be made by a decision maker. The circles denote chance nodes, from which edges lead to leaves or to new decision nodes. Finally, the leaves correspond to ultimate consequences. A directed edge (labelled p) denotes the probability of the node where the edge terminates, given that the strategy (leading to the chance node where p begins) is chosen. The preferences among the consequences are supposed to be expressed by some kind of value function, for instance a utility function. If such a function exists, the value of consequence $c_{i_{k}}$ can be mapped onto a value $u_{i_{k}}$, and the situation can be evaluated with respect to different evaluation rules (cf. [9, 11, 19, 21]).

This model could be extended in a way similar to Section 2 by allowing for imprecise assessments. To simplify the presentation in the sequel, it is assumed that, to each chance node, there is at most one directed edge leading to a decision node. The general case is very similar.

Definition: Given a decision tree, a set $\{c_{1}, ..., c_{k}, D_{i(k+1)}\}$ is an alternative associated with a chance node C_{i} if the elements of the set are exhaustive and pairwise disjoint with respect to C_{i}. (This notation will be used even if an alternative does not contain an element $D_{i(k+1)}$.)

Informally, this means that exactly one of $c_{1}, ..., c_{k}, D_{i(k+1)}$ will occur given that the alternative, represented by the directed edge to C_{i} is chosen.
Definition: Given a decision tree, a sequence of edges \([S_1, \ldots, S_n]\) is a *strategy*, if for all elements in the set, \(S_{i-1}\) is a directed edge from a decision node to a chance node \(C_i\), and there is a directed edge from \(C_i\) to a decision node from which \(S_i\) is a directed edge.

Definition: Given a criterion \(K\), a decision tree associated with \(K\), and a strategy \([S_1, \ldots, S_n]\), where each \(S_i\) is an alternative \([c_{i1}, \ldots, c_{in}, D_j]\) associated with a chance node \(C_j\). The expected utility of \([S_1, \ldots, S_n]\) with respect to criterion \(K\), \(E^K(S_1, \ldots, S_n)\), is defined by the following:

(i) \(E^K(S_i) = \sum_{k \leq i} p_{ik} \cdot u_{ik}\), when \(S_i\) is an alternative \([c_{i1}, \ldots, c_{in}]\).

(ii) \(E^K(S_1, \ldots, S_n) = \sum_{k \leq n} p_{ik} \cdot u_{ik} + (p_{i(S_i+1)} \cdot E^K(S_{i+1}, \ldots, S_n))\), when \(S_i\) is an alternative \([c_{i1}, \ldots, c_{in}, D_j]\), \(u_{ij}\) denotes the utility of the consequence \(c_{ij}\) and \(p_{ij}\) denotes the probability of the consequence \(c_{ij}\) (or \(D_{ij}\)).

Given a decision tree \(T\), a decision node \(D\) in \(T\) can be considered a set \([S_1, \ldots, S_n]\) of strategies, i.e. all directed edges from \(D\). Two bases may be associated to \(D\), one containing the probability variables of the edges from each \(S_i\), and one containing the utility variables corresponding to possible leaves emanating from each \(S_i\). Using such a structure, vague and numerically imprecise assessments can be represented and evaluated in a way similar to Section 2. The inequalities containing utility variables are included in the utility base \(V(D)\), and inequalities containing probability variables are included in the probability base \(P(D)\). These bases comprise the *local decision frame corresponding to \(D\) and criterion \(K\)* \((P^K(D), V^K(D))\). This framework for evaluating the expected utility of a strategy can be combined with the framework described in Section 2 and the total decision situation can be evaluated with respect to all criteria, strategies, probabilities and utilities involved in the decision situation under consideration. The decision maker may assert probability and utility assessments with respect to the tree. In this sense the probability and utility bases are local to each criterion. What remains is to substitute the utilities of strategies in Section 2 with the expected utility of a strategy as defined in this section.

Definition: Given a set of criteria \([K_1, \ldots, K_n]\), \(n\) decision trees – each associated with exactly one criterion, and a strategy \([S_1, \ldots, S_n]\), the *global expected utility of \([S_1, \ldots, S_n]\)*, \(G(S_1, \ldots, S_n)\), is defined as:

\[G(S_1, \ldots, S_n) = \sum_{k \leq n} E^{K_k}(S_1, \ldots, S_n) \cdot w_k,\]

where \(w_k\) is a variable denoting the weight of criterion \(K_k\) as in the corresponding definition in Section 2.

Note that the definition does not presume that the decision trees for the different criteria are identical. For some domains the tree could be the same for all criteria and only the probability and utility assessments may differ. In other domains the decision maker may have constructed different decision trees involving the strategies under consideration. Similar to Section 2, the strategies are evaluated with respect to the information in the criteria base. The difference here is that the strategy base is replaced by a set of probability and utility bases.
Consider the prerequisites in the definition above. Each S_i in the strategy $[S_1,...,S_r]$ is an alternative on the form $\{c_{i1},...,c_{i_k},D_{i(s+1)}\}$, for each criterion K. Each S_i is associated with a chance node C_i. Assume that the directed edge leading to C_i emanates from the decision node D_i, to which a local decision frame $(p^K(D_i),v^K(D_i))$ corresponds. Such a frame contains constraints representing the probability and utility assessments of criterion K. Consequently, $G^K(S_1,...,S_r)$ is associated with the set $\{p^K(D_i),v^K(D_i),\}$, $j=1,...,r$, in the same way as the strategy variables used in Section 2 are associated with the strategy base.

Definition: Given a criterion K, a decision tree T, and a strategy $[S_1,...,S_r]$ in T, where each S_i is an alternative $\{c_{i1},...,c_{i_k},D_{i(s+1)}\}$ associated with a chance node C_i. Let $a_{i1},...,a_{i_r},b_{i1},...,b_{i_r}$ be vectors of real numbers $\{(a_{i1},...,a_{i(s+1)})\}=1,...,r$. Now, the expected utility of $[S_1,...,S_r]$ according to criterion K is defined by the following:

(i) $a_{i1}b_{i1}E^K(S_1) = \Sigma_{k \leq n} a_{ik}b_{ik}$, when S_i is an alternative $\{c_{i1},...,c_{i_k}\}$.

(ii) $a_{i1}a_{i2}b_{i1}b_{i2}E^K(S_1,...,S_r) = \Sigma_{k \leq n} a_{ik}b_{ik} + (a_{i(s+1)}E^K(S_{i+1},...,S_r))$, when S_i is an alternative $\{c_{i1},...,c_{i_k},D_{i(s+1)}\}$.

This may now be combined with the notation for instantiations of the global expected utility of a strategy in Section 2 into the following:

Definition: Given a set of criteria $\{K_1,...,K_n\}$, n decision trees – each associated with exactly one criterion, and a strategy $[S_1,...,S_r]$. Let $a_{1j},...,a_{nj},b_{1j},...,b_{nj}$ be vectors of real numbers $\{(a_{1j},...,a_{nj(s+1)})\}=1,...,n$. The latter are vectors of real numbers $\{(b_{1j},...,b_{nj(s+1)})\}=1,...,n$. Now, let d be a vector of real numbers $(d_1,d_2,...,d_n)$. Now, $a_{1j}a_{2j}b_{1j}b_{2j}G(S_1,...,S_r) = \Sigma_{k \leq n} a_{jk}b_{jk} + (a_{n(s+1)}E^K(S_{n+1},...,S_r))$, when S_i is an alternative $\{c_{i1},...,c_{i_k},D_{i(s+1)}\}$.

Definition: A general decision frame is a structure (T,S,L,K). T is a set of T_i’s – decision trees associated with the criteria K_j, $j=1,...,n$. S is the set of possible strategies modelled in the trees. L is a set of local decision frames $(p^K(D_i),v^K(D_i))$ corresponding to D_i and criterion K_j, where D_i is a node in the tree T_j. K is the criteria base as in Section 2. The different strategies can then be evaluated, for instance with respect to admissibility as in Section 2.

Definition: Given a general decision frame \mathcal{F} and a real number t in the interval $[0,1]$. The strategy $[S_1,...,S_r]$ is at least as good as the strategy $[S_1',...,S_r']$ iff $a_{1j}a_{2j}b_{1j}b_{2j}G(S_1,...,S_r) - (1-\frac{1}{n})a_{nj}b_{nj}G(S_1,...,S_r) \geq 0$, for all d, e where d and e are solution vectors to K. Furthermore, each a_{ij} in a_i, and each b_{ij} in b_i are solution vectors to $p^K(D_i)$, and each b_{ij} in b_i, and each a_{ij} in a_i are solution vectors to $v^K(D_i)$.
The strategy \([S_i, \ldots, S_k] \) is better than the strategy \([S_j, \ldots, S_l] \) iff \([S_i, \ldots, S_k] \) is at least as good as \([S_j, \ldots, S_l] \) and \(a_1 b_1 \cdots a_n b_n G(S_i, \ldots, S_k) - f_1 b_1 \cdots f_n b_n G(S_j, \ldots, S_l) > 0 \) for some \(d, e \) where \(d \) and \(e \) are solution vectors to \(X \), and for every \(a_i, b_i, g_i, i=1,\ldots,k \), \(a_i \) in \(a_i \), and \(f_i \) in \(f_i \) are solution vectors to \(P \), and for every \(a_i, b_i, g_i, i=1,\ldots,k \), \(a_i \) in \(a_i \), and \(f_i \) in \(f_i \) are solution vectors to \(V \).

The strategy \([S_i, \ldots, S_k] \) is admissible iff no other strategy in \(\mathcal{F} \) is better.

If the set of admissible strategies is too large, contraction methods similar to those suggested in Section 2 can be used for investigating the stability of the result.

4 Concluding Remarks

We have shown how a set of vague and numerically imprecise statements can be evaluated with respect to a set of criteria and how to determine which strategies are reasonable to choose among. The approach considers a decision problem with respect to the different criteria as well as the consequence analysis of the different strategies involved. These aspects are modelled into information frames consisting of systems of linear expressions stating inequalities and interval assessments. The strategies may be evaluated relative to a variety of principles, for example generalisations of the principle of maximising the expected utility. We also demonstrate how decision trees can be integrated into the framework and suggest an evaluation rule taking into account all strategies, criteria, probabilities and utilities involved in the framework.

Contractions are introduced as an automated sensitivity analysis. This concept allows us to investigate critical variables and the stability of the results. An important feature is the investigation into effects of decreasing the different intervals, since without such an option the set of admissible alternatives is often relatively large. In this paper, we have proposed a contraction principle that seems to be reasonable. However, a number of modifications are possible, such as decreasing the intervals from either side as far as possible in steps of different lengths in order to approximate a set of reliability criteria. Some suggestions for decision rules are described in the paper, but we have also noted that these are not the only possible ones and the framework could use other decision rules as well.

References

