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How Set-Valued Maps Pop Up

in Control Theory

H. Frankowska
CNRS URA 749, CEREMADE
Université Paris-Dauphine
75775 Paris Cedex 16 France

Abstract

We describe four instances where set-valued maps intervene either
as a tool to state the results or as a technical tool of the proof. The
paper is composed of four rather independent sections:

1. Set-Valued Optimal Synthesis and Differential Inclusions

2. Viability Kernel

3. Nonsmooth Solutions to Hamilton-Jacobi-Bellman Equations

4. Interior and Boundary of Reachable Sets

1 Optimal Synthesis

We define optimal synthesis in two cases: for the Mayer problem with
locally Lipschitz value function and for the time optimal control problem
with lower semicontinuous time optimal function.

1.1 Mayer Problem with Lipschitz Value Function

Consider a complete separable metric space I/, a continuous f : R* X U —
R", a locally Lipschitz ¢ : R™ — R and the minimization problem

min {p(z(1)) | z is solves (1), z(0) = &}
(1) '(t) = f(z(t),u(t)), u(t) € U

The value function of this problem is defined by

V(to,zo) = inf {p(z(1)) | z solves (1), z(to) = zo}



The value function generates the optimal synthesis since it is constant along
optimal trajectories. It is well known that in general it is nonsmooth. If

9 i) VYVR>0,3¢cg>0, Vu, f(-,u) is cp — Lipschitz on Bg
@ Vi) 3k>0,Va, supuey Iz, w)ll < k(1 + [a]]

where B denotes the closed ball of center zero and radius R, then the value
function is locally Lipschitz (see for instance [25, FLEMING & RISHEL]).
The optimal feedback set-valued map is given by

U(t,x):{u€U| (9?1 )(t ,z) =0, v_f(:r,u)}

where 3(1 denotes the directional derivative of V in the direction (1, v).

The sets U(t z) may be empty at points where V is not differentiable. The
“optimal” control system can be described then in the following way

2'(t) = f(z(t),u(?)), u(t) €U(tz(t)), z(to) = =0

A natural question arises : What are the solutions of the above closed loop
system? A possible answer comes from the theory of differential inclusions:
Solutions are absolutely continuous functions such that

z'(t) € f(2(t),U(t,z(t))) ae & z(fy) =z

Let us introduce the set-valued map of “optimal dynamics”

G(t,z) = f(x,U{t,z)) = U {f(z,u)}

ueU(t,z)

Theorem 1.1 ([30, H.F.]) Assume that V s locally Lipschitz. Then the
following two statements are equivalent:
1) z solves the differential inclusion

(3) 2(t) € G(t,2(1)), z(to) = zo
i) z is optimal: V{tg,zo) = p(z(1))

Proof — The proof is extremely simple. Fix a trajectory z of (3) and
set () = V(¢,z()). Then ¢ is absolutely continuous and for almost all ¢

iy - 9V \
P(t) = m(t,x(u)

If i) holds true, then ¢(t) = 0 a.e. and thus ¥ is constant equal to ¢(z(1)).

If i7) is satisfied, then, ' = 0 and thus 3(13;(1))0 z(t)) = 0 ae.. O



It was proved in [12, CANNARSA & FRANKOWSKA] that for smooth
problems G is upper semicontinuous but its values are not convex. We
recall next the definition of upper semicontinuous maps.

Let X, Y be metric spaces and F : X ~ Y be a set-valued map, i.e.,
Vz € X, F(z) CY. The (Painlevé-Kuratowski) upper limit is defined by

Limsup,_,, F(z) := {nllr{:o Yn |Tn — To, Yn € F(zn)}
If Y is compact, then F'is upper semicontinuous on X if and only if
YV zo € X, Limsup,_ . F(x) C F(zo)

When the data f, ¢ are smooth enough, then the value function V has
“regular” directional derivatives and therefore the map ' inherits upper
semicontinuity, but in the same time the function

0
I )
is concave. If it is both concave and convex, then V is differentiable at
(t,z(t)). So the values of (¢ may be nonconvex at points where V' is not
differentiable. We would like to underline that qualitative theory of dif-
ferential inclusions is build for upper semicontinuous set-valued maps with
convex values. Most of its results are not valid without convexity assump-
tions. Because of that one should not expect optimal trajectories to have
a nice structure when V' is nonsmooth.

1.2 Time Optimal Feedback

We describe next the problem for which the value function is in general dis-
continuous. Consider a complete separable metric space [7 and a continuous
map f: R" x U R". Let y(-; x,u) denote the solution to

(4) y'(t) = f(y(t), u(t)) t>0, y0) ==z

where u(f) € U almost everywhere and let K C R™ be a closed set. Consider
the time optimal control problem for system ({) with target K:

T(x) = inf inf{t > 0] y(¢;z,u) € K}.
U

By the usual convention T'(z) = 400 when no trajectory starting at z
reaches . A vector p € R" is called a (proximal) normal to S C R™ at a
point x € S if

dists(z + p) = ||p||



Proximal normals were introduced in [9, BONY]. The Hamiltonian associ-
ated to the above control system is defined by H(z, p) = sup,¢p (p, f(z, u)).

To define time optimal synthesis we need the following extension of
directional derivative. For ¢ : R® — R U {400} the upper contingent
derivative of ¢ at zg in the direction v is defined by

hv') —
Dyp(xp)(v) = limsup p(zo + ht') — p(0)
h—0+, v/ —v h
See [3, AUBIN & FRANKOWSKA] for properties of contingent derivatives.
In the two results below we impose assumptions (2) and that for all x €
R*, f(x,U} is closed and convex.

Theorem 1.2 ([13, CANNARSA, H.F. & SINESTRARI])} Let u(-)
be a fired control such that the corresponding trajectory y(-) = y(-; zo,u)
satisfies

y(t) ¢ K, Vie[0,Tol; 9(To) € K; H(y(To),v) >0

for some normal v to R™M\K at y(T). Then u 1s time optimal «f and only
if, for every t € [0, Tp],

“(s) — i1

Dl T(g(t))(v) = —1’ V v E Dy(t) — Lin]supslty(#f(_)

The proof is not as straightforward as in the previous section, since 7'(:)
may be merely lower semicontinuous. It is shown first that the co-state p(-)
of Pontryagin’s maximum principle verifies an adjoint inclusion. Then the
Viability Theoremn from [2, AUBIN] is applied to show that ¢t — V (¢, §(t))
is Lipschitz even when V is discontinuous. The above result suggests to
define the time optimal synthesis in the following way:

U(z) ={uec U] D|T(x)(flz,u)) = -1}
The associated set-valued map of “optimal dynamics” is
G(z) = f(z, U(z))

In view of Theorem 1.2 it i1s natural to expect optimal trajectories to solve
the following closed loop system

v'(0) = fy(t), w(t), u(t) € U(y()), y(0)==

Consider the differential inclusion
(5) y'(t) € Gy(t), y(0)==

The time optimal function 7(:) being in general discontinuous, the argu-
ments from the proof of Theorem 1.1 are not valid any longer. For this
reason we have to change the notion of solution.



Definition 1.3 ([37, MARCHAUD]) A continuous map y : [0,Tp] —
R™ is a conlingent solulion of (5) if

Dy(t)NnG(y(t)) #0, Vie[0,To] & y(0)==

We already know that every time optimal solution is a contingent solution
of (5) under all assumptions of Theorem 1.2. Conversely,

Theorem 1.4 ([13, CANNARSA, H.F. & SINESTRARI]) Suppose
that y(-) is a contingent solution of (5) in [0,To] satisfying

y(t) ¢ K, Vite [O,To[; ’y(To) € K.

Then y is time oplimal.

2 Viability Kernel
We provide next three examples leading to the notion of viability kernel.
Example 1: Imphcit Control System
f(z,2"\w) = 0, uel
The way to make it “explicit” is to defiue the set-valued map
F(z) = {v|3uel, f(zv,u)=0}
and to study the differential inclusion
Z'(t) € F(z(t)) ae.

But in general F' is not defined on the whole space but only on a subset
Dom(F) := {z | F(z) # 0}. Furthermore there are zo € Dom(F) from
where no trajectory defined over R, of the control system starts. O

Example 2: Control System with State Constraints
(1) = S(z(),u(), h(z(),u(t) <0, u(t) €V
To “get rid” from the constraints let us introduce the set-valued map
U(z) = (ue U | h(z,u) < 0)
The new control system is

' = f(z,u), veU(z)



Again U may be defined only over a subset K = {z | U(z) # 0}. Further-
more, there are zqg € K from where no trajectory of the control system
satisfying state constraints starts. 0O

Example 3: Bounded Chattering

The problem is to find solutions to the control system

2'(t) = f(z(t),u(t), z(0)=zo, u(t) € U(x(t)), [lu'(t)
That is u has to be absolutely continuous and, in particular, it can not have
jumps. Define a new dynamical system

{ '(t) = f(z(t),u(t)), =(0) = =0, u(t) € U(z(t))
u'(t) € Bm

Naturally there may exist zg € Dom (U) from where no trajectory of the
above system starts. O

|<M

In all three cases we reduced the control system under investigation to
the following so called viability problem

#'(t) € F(xz(t)), for almost all ¢ >0,
(6) 2(t) € K, ¥Vt>0,
z(0) = zo€ K

The viability kernel Viab(K') of K (under F) is the set of all initial conditions
zg € K from which starts at least one solution (defined over R;) of the
differential inclusion (6). The notion of viability kernel was introduced in
[1, AUBIN]. If

{ i) F is upper semicontinuous with closed convex images
1) k>0, supyepr)[[vf] < k(]| + 1)

then the viability kernel Viab(K) is closed and enjoys some stability prop-
erties. Algorithms were obtained to compute the viability kernel which
for low dimensions run on PC’s. See [36, FRANKOWSKA & QUIN-
CAMPOIX], [38, SAINT-PIERRE], [15,16,17, CARDALIAGUET, QUIN-
CAMPOIX & SAINT-PIERRE]. These (global) algorithms were inspired
by “zero-dynamics” of [10, BYRNES & ISIDORI].

Since the notion of viability kernel revealed to be very useful in “comput-
ing” Lyapunov functions, time-optimal function, solving the target prob-
lem and in some applied problems (see [8, BONNEUIL & MULLERS],
[19, CARTELIER & MULLERS], [22, DOYEN & GABAY], [23, DOYEN,
GABAY & HOURCADE] and also [2, AUBIN] and its bibliography) the
research is carried out in Université Paris-Dauphine by P. Cardaliaguet,
L. Doyen, M. Quincampoix, P. Saint-Pierre and N. Seube to perfection
algorithms for computing the viability kernel.



3 Solutions to HIB Equations

We address here the Hamilton-Jacobi-Bellman equation of optimal control.
Consider again the Mayer Problem from Section 1.1. As we already ob-
served for locally Lipschitz data the value function is locally Lipschitz. It
is easy to understand how the generalized (bilateral) solutions arise in the
Lipschitz case.

Definition 3.1 ([21]) Let ¥ : X — RU {400} be an extended function
and o € X be such that Y(zo) # oo. The subdifferential of ¢ at zg s :

8_1h(zo) = {p | liminf Y2 =¥ = (p.2 = 20) o}

gt Iz = ol

The value function V is nondecreasing along solutions of the control system
and is constant along optimal solutions. For this reason the following state-
ment follows easily by classical arguments (see for instance [25, FLEMING
& RISHEL)]): If V is differentiable at (¢, z), then

oV oV
_?ﬂ—t_(t’r) + H (I,—E(Ll)) =0

. ov
Y (p1,pe) € Limsup(y oy(r 2y %(t’,z’)) —p+ H(z,—-p;) = 0
The Hamiltonian H(z,-) being convex, we have
V (ptlpx) € av(taz)) i 2 + H(l‘} _pfb) S 0

where 0V (t,z) denotes Clarke’s generalized gradient.
On the other hand V 1s a viscosity solution to the HJB equation (see
[21, CRANDALL, EVANS & LIONS]). In particular,

v(ptapr)ea—v(t‘l.)’ _pt+H(Tu—pl‘)20
But 0_V(t,z) C 8V (¢, z) and therefore V is a bilateral solution:
v(ptvpx)ea—v(t7r)) _pl"l'H(J")_pI):O

This notion of solution is valid as well for lower semicontinuous functions
[7, BARRON & JENSEN], [32,33, FRANKOWSKA]. In [7] the authors ex-
tended the maximum principle of PDE’s to lower semicontinuous functions.
The alternative approach proposed in [33] is based on viability theory.
The “geometry” behind the method of proving uniqueness of nons-
mooth solutions is the following one (details can be found in [4, AUBIN &
FRANKOWSKA]): Consider the reachable set R({) at time ¢ of

{ z’ —flz,u(t)) =z(1)==x, u(t) e U
! 0 z(1) = p(z1)

z



for all possible choices of z;. Then R(t) is the epigraph of V(¢,-):
R(t) ={(z,r) |r 2 V(t,2)}

The semigroup properties of reachable sets are used to investigate tangents
to the epigraph of V. Namely consider the differential inclusion

z'(t) € F(z(t)), z(0) =z

where F is a locally Lipschitz set-valued map with convex compact images,
and define its reachable map

R(t,zy) = {z(t) | = solves the above inclusion}
Then by well known results from [24, FILIPPOV]
R(t,zg) = zo+tF(zo) +0(t)B

where B denotes the closed unit ball. The fact that V is a bilateral solution
follows from monotonicity properties of the value function. Proofs of the
converse are based on Viability Theory [2, AUBIN].

In conclusion, we have to underline that for problems with lower semi-
continuous cost function, it 1s natural to use subdifferentials rather than
upper directional derivatives, because subdifferentials are related to tangents
to the epigraph of V: Epi(V) = {(¢,z,7) |7 > V(t,z)} which is closed.
On the other hand to construct optimal synthesis via subdifferentials one
needs extra assumptions which may be difficult to check. We used here
upper directional derivatives, related to tangents to the hypograph of V:
{(t,z,7) | < V(¢,z)} not closed in general.

Next we discuss briefly the method of characteristics of HIB equations.
Since the Hamiltonian of Mayer’s problem is not differentiable at (z,0), we
consider the Bolza problem:

T
(P) minimize/ L(z(t), u(t))dt + o(z(T))
to
over solution-control pairs (z,u) of control system

{f’u) = @)+ g(=(O)u(t), ue L

z(ty) = =zg

(M)
The Hamiltonian H in this case is defined by

H(:c,p) = Slip((p,f(l?) + g(a:)u) - L(x,u))



and the value function is given by
T
Vito,0) = inf [ L(a(tit, 0, w(O)dt+ (=T o, 20,)
u Sy,
where z(-; o, 2o, u) denotes the solution to (7) corresponding to the control
u. The HJB equation 1s
Vi + H(z,=Ve) = 0, V(T,)=¢()

If H is smooth, then the characteristic system of this equation is the fol-
lowing Hamiltonian system

z'(t) Hy(e@)p(t))  =(T) =er

—p'(t) = Hi(=(t),p(t)) PpT)=-Ve(zr)

It is well known that for nonconvex problems it is natural to expect shocks
for such system:

A2(T) #£ z2(T), Ity < T such that z,(tg) = za(to)

This implies that for some initial conditions and some initial time 5 we have
multiple optimal trajectories or equivalently

3 zo such that Limsup,_, {(;_V(to,r)}
xz

is not a singleton.
In the two results below we impose the following assumptions:

Hq) f, g arelocally Lipschitz; f, g, L(-,u) are differentiable, ¢ € C*

)
Ho) V (to,z0) € [0,7] x R™ an optimal solution of (P) does exist and
V:[0, 7] x R" — R is locally Lipschitz
Hg3) L(z,-) s continuous, convex and 3 ¢ > Osuch that L(z,u) > ¢ |||
Hy) For all » > 0, there exists k. > 0 such that

YueR™, L(,u) is k, — Lipschitz on B,(0)
Hpy) H' is locally Lipschitz and the Hamiltonian system is complete.
Theorem 3.2 FEvery solution (z,p) to the Hamiltonian system

#(t) = Hy(z(1),p(t)) z(to) = 2o

-p'(t) = H.(z(t),p(t)) p(to) € —Limsup,_ . V; (%o, z)

15 so that = is opltimal.



Theorem 3.3 (BYRNES & H.F.) Assume that H(x,-) is strictly con-
vezr and let (T,%) be a trajectory-control pair. If T is an optimal trajectory
of the Bolza problem, then for allt €]ty, T, V is differentiable at (t,Z(t)).

The above extends earlier results of [14, CANNARSA & SONER]) of cal-
culus of variations. Further study of shocks is continued in [18, CAROFF
& FRANKOWSKA].

4 Interior and Boundary of Reachable Sets

4.1 Local Controllability
Consider the control system
(8) 2'(8) = fla(t),u(t)), u(t) € U, 2(0) = =

where f verifies (2) and f(z, U) are closed and convex. Its reachable set at
time ¢t > 0 1s given by

R(t)y = {z(t) | zis solves (8)}

We address the following question: When zg € Int(R(t)) for all ¢t > 07

Let us first recall the Graves theorem (1947): if f : X — ¥ is C'! and
f/(zo) is surjective, then ¥V € > 0, f(zo) € Int(f(Be(z0))), where B.(xzp)
denotes the closed ball of center zy and radius .

A very similar result holds true also for set-valued maps. Here we apply
it to the reachable map R(-). But in order to get such extension of Graves’
theoreni, one needs to differentiate set-valued maps on metric spaces. Recall
first the notion of Painlevé-Kuratowski lower limit of sets. Let F': X ~ Y
be a set-valued map. The lower limit is given by

Limmf, . F(z):= { lim y, | y: € F'(a:)}

We introduce k-order variations of reachable sets:

. - R(t) — z
R*(0) := lemft_.g+%

Notice that for all £ > 1, Rk(zo) C R¥*1(zy).
Theorem 4.1 ([31, H.F.]) If 0 € f(z0,U) and for some vy, ...v, € RF(0)
0 € Int co{vy,...,vp}

then zo € Int(R(t)) for all t > 0. Furthermore there exist L > 0, € > 0
such that for all smallt > 0, all y; € B.(zo) and y € R(t) there exists t,
such that

yi € R(t) & [ti—t] < L/ |lys —ll

10



4.2 Lipschitz Behavior of Controls

Consider again the control system (8) and let (z,%) be its trajectory control
pair. We impose assumptions (2) and that f(-,u) € C! for all u. The
linearized control system is given by

o [ WO = 0T 50, 10 €@ HE0,0) -2
G wo) = 0

and the corresponding reachable set by RY(T) = {w(T) | w solves (9)}.

Theorem 4.2 ([31, H.F.]) Assume that 0 € Int (RE(T)). Then 2(T) €
Int(R(T)) and there exist € > 0, L > 0 such that for allb € B.(2(T)) we
can find a control u(-) satisfying

zu(T) =6, p({L€[0.T]| u(t) #u(t)}) < L |lb—2(T)I|

4.3 Nonsmooth Maximum Principle

Consider the control system (1) and assume (2). Let g : R* — R* be a
locally Lipschitz function and Ky, K, C R"™ be closed. We impose the
following end-point constraints:

(10) z(0) € Ky, z(1) € K,

Define the reachable set at time one : R(1) = {z(1) |z solves (1), (10)}.
Let z be a trajectory of (1),(10). It is well known {see for instance [20,
CLARKE], [39, WARGA] etc.) that if g(z(1)) is a boundary point of
g(R(1)), then a maximum principle holds true. The aim of this section
is to make evident that behind there 1s an “alternative” inverse mapping
theorem, which is much more than the characterization of boundary of

reachable sets. Recall that generalized Jacobian of a locally Lipschitz func-
tion ¢ : R® — R™ (see [20, CLARKE]) is defined by:

O¢p(xe) = o (Limsup,_, ¢'(z))

Theorem 4.3 ([31, H.F.]) Let (z,u) be a trajectory-control pair of (1),
(10). Then at least one of the following two statements holds true:

i) 3 € R* and an absolutely continuous p : [0,1] — R™ not both equal to
zero, satisfying the mazimum principle

—p'(t) € O-f(z(t),u(t))*p(t) ae.in [0,1]
max (p(0), S((0,4) = (b(0), F(=(0), H(D) e
p(0) € Nk, (2(0)), —p(1)) € Og(2(1))*A + Nk, (2(1))

11



where Nk (z) denotes the Clarke normal cone to I at z and 0. f the gen-

eralized Jacobian with respect to x.
i) 3L >0, € >0 such that for all (a,b,c) € RF x R™ x R™ satisfying

lla = g(z(ADI + [1Bll + [lell < €
there exists a trajectory-conlrol pair (zy,u) such that
gz (1)) = a, z,(0) € b+ Ko, z,(l) €c+ Ky

and p({t | u(t) # @(t)}) < L(|la = g(ea(1)I] + [1Bll + llc[])-
In particular, if g(2(1)) is a boundary point of g(R(1)), then the state-
ment 1) holds true.

The above results from the set-valued inverse mapping theorem on metric
spaces. Denote by U the set of all measurable functions u : [0,1] — U. Let
z(-;u,zo) be the solution of (8) corresponding to the control u and define
the set-valued map G : R* x U ~ R x R* x R" by

G(zo,u) = (g(z(1;u,zg)), zo, (1, u, zg)) — {0} x Ky x K,
The "strategy” of the proof is the following one:

1. Approximate G via “smooth” maps by regularizing f and g.
2. Use the inverse mapping theorem on approximations.
3. Go to the lmit.

Regularization technics implying nonsmooth maximum principle go back
to [39, WARGA]. In [26, FRANKOWSKA] it was shown that Warga’s
scheme may be refined to get smaller objects than the derivatives contain-
ers. The inverse mapping theorem used on approximations is Theorem 4.4
below. Finally Stability Theorem 4.5 is applied to take limits.

Consider G © X ~» Y, where X is a complete separable metric space
and Y is a Banach space with the norm Gateaux differentiable away from

zero. Let yo € G{zq). The graph of G is defined by
Graph(G) = {(z,9) | y € G(2)}
The first order “contingent” varlation is defined by

G(Bh(fo)) — Yo
h

Theorem 4.4 ([31, H.F.]) If for somee >0, p>0, M >0

G (29,30) = Limsup,_q,

(11) pB C N o (G (z,y) N M B)
(z,y) € Graph(G)
(z,y) € Be(zo,0)

12



then for all (z1,y1,y2) € Graph(G) x Y near (zo,y0,Y0)

1
dist (z1, G~ '(y2)) < p lly1 — y2l|, where G™'(y) = {z | y € G(2)}

Theorem 4.5 ([31, H.F.]) Consider set-valued maps {G; };>o from a com-
plete metric space X to a Banach space Y having closed graphs. Lel
yo € Go(xo). We assume that for some 6 > 0 and for every A > 0 there
erists an integer I such that for alli > I, and allz € Bs(xq)

Gi(z) C Go(z) + AB

If G; have “a Lipschilz inverse” on a neighborhood of (zg,yo) with the same
Lipschitz constant, then so does G.
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