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How Set-Valued Maps Pop Up 
in Control Theory 

H. Frankowska 
CNRS URA 749, CEREMADE 

Universitk Paris-Dauphine 
75775 Paris Cedex 16 France 

Abstract 

We describe four instances where set-valued rnaps intervene either 
as a tool to s tate  the results or as a technical tool of the proof. The 
paper is composed of four rather independent sections: 

1 .  Set-Valued Opti~rial Synthesis and Differential I~~clusions 
2. Viability Kernel 
3. Nonsmooth Solutions to Hamilton-Jacobi-Bellnlar~ Equations 
4. Interior and Boundary of Reachable Sets 

1 Optimal Synthesis 

We define optimal synthesis in two cases: for the Mayer problem with 
locally Lipschitz value function and for the time optillla1 control problem 
with lower serniconti~luous time optill-la1 function. 

1.1 Mayer Problem with Lipschitz Value Fuiiction 

Consider a complete separable metric space I J ,  a continuous f : Rn x U H 

Rn, a locally LipsChitz p : Rn H R and the nlil~irnization problem 

inin (p(z(1)) 1 x is solves ( I ) ,  z(0) = < o )  

(1) xl(t) = f(x(t),u(t)), 7 4 t )  E U 
The value function of this problem is defined by 

V(to, zO) = inf (p(x(1)) 1 z solves ( I ) ,  x(t0) = xo) 



The value function generates the optimal sy~lthesis since it is constant along 
optimal trajectories. I t  is well known that  in general it is nonsmooth. If 

V R > 0, 3 C R  > 0, V u ,  f(., u )  is C R  - Lipschitz on BR 
( )  { ii) 3 k > 0, v x ,  supu,u 1 1  f ( x ,  u),I 5 k(1 + 11x11) 
where BR denotes the closed ball of center zero and radius R, then the value 
function is locally Lipschitz (see for instance [25, FLEMING & RISHEL]). 
The opt.ima1 feedback set-valued map is given by 

denotes the directional derivative of V in the direction ( 1 ,  v ) .  where - 
a ( l , v )  

The  sets U ( t ,  x )  may be empty a t  points where V is not differentiable. T h e  
"optimal" control system can be described then in the following way 

A natural question arises : W h a t  are the solutions o f  the  above closed loop 
system? A possible answer comes from the theory of differential iiiclusioiis: 
Solutio~ls are absolutely continuous functions such that  

Let us introduce the set-valued map of "optimal dynamics" 

Theorem 1.1 ([30, H.F.]) Asstrine that V zs  locally Lzprchttz. T h e n  the 
followzr~g two state~rlents are equivalent: 

2) x solver the dzfferentzal zncluszon 

ii) x is optimal: V ( t O ,  x o )  = p(x (1 ) )  

Proof - T h e  proof is extremely sin~ple.  Fix a trajectory x of (3j and 
set $ ( t )  = V ( t ,  x ( t ) ) .  Then $ is absolutely coritiriuous and for almost all t 

If i )  holds true, then $ ~ ' ( t )  = 0 a.e. and thus Ij) is constant equal to p(x (1 ) ) .  
If i i )  is satisfied, then,  y'll = 0 and thus &(t , x ( t ) )  = 0 a.e.. 



It was proved in [12, CANNARSA & FRANKOWSKA] that  for smooth 
problems G is upper semicontinuous but its values are not convex. We 
recall next the definition of upper semicontinuous maps. 

Let X, Y be metric spaces and F : X -u Y be a set-valued map,  i.e., 
V x E X, F ( x )  C Y .  The  (Painlevh-I<uratowski) upper limit is defined by 

If Y is compact, then F is upper  semicont inuous on X if and only if 

When the da ta  f ,  p are srnooth enough, then the value function V has 
"regular" directional derivatives and therefore the i m p  C; inherits upper 
selnicontinuity, but  in the same time the function 

is concave. If it is both concave ant1 convex, then V is differentiable at  
( t ,  ~ ( t ) ) .  So the values of G' may be nonconvex at  points where V is riot 
differentiable. We would like t o  underline that  qualitative theory of dif- 
ferential inclusions is build for upper semicontinuous set-valued maps with 
convex values. Most of its results are not valid wi.thout convexity assump- 
tions. Because of tha t  one should not expect optimal trajectories t o  have 
a nice structure when V is nonsmooth. 

1.2 Time Optimal Feedback 

We describe next the problem for which t,he value function is in general dis- 
colitil~uous. Consider a colnplet,e separal~le lr~et,ric space lT and a cont.illuous 
map f : R" x lJ ++ R". Let y(.; L:, ,u.) denote the solution tlo 

where u( t )  E U a.lmost everywhere and let I< c Rn be a closed set. Consider 
the tiine optimal coiltrol problem for system (4) ,with target I<: 

T(z)  = inf inf i t  >_ 0 I y ( t ; x , u )  E I {} .  
U 

By the usual convention T ( x )  = +m when no trajectory start ing a t  x 
reaches Ir'. A vector p E Rn is called a (proximal) i~or inal  to  S c Rn a t  a 
point x E s if 

d is ts (x  + P) = JlpJl 



Proxiinal normals  were introduced ill [9, BONY]. Tlie Hamiltonian associ- 
a ted  t o  t he  above control systenl is defined by H ( z ,  p) = ( P ,  f (z., 1 1 ) ) .  

To  definr t ime optimal  synthesis we need the  following extension of 
directional derivative. For p  : Rn k R U {+m) t h e  upper  contingent 
derivative of p  a t  xo in the  direction v  is defined by 

D L p ( x o ) ( v )  = l imsup  
~ ( X O  + hv' j  - ~ ( x o )  

h-0+, v'-ti  11 

See [3, AUBIN & FRANKOWSKA]  for properties of contingent derivatives. 
In the  two results below we impose assumptions ( 2 )  a n d  t h a t  for all x  E 
Rn, f ( i : ,  U )  is closed a n d  convex. 

Theorem 1.2 ([13, CANNARSA, H.F.  & SINESTRARI]) Let G ( . )  
be a fixed control such that the corresponding trajectory y ( . )  = y ( . ;  X O ,  u) 
satisfies 

for so7~te norrrial u to R"\I< at y ( T ) .  T h e n  ii is tinie 0pti7t)al ~f and only 
i f ,  for  every t E [0, To[, 

y(.s) - y(1) 
V .u E D y ( t )  := Limsup,,, 

s - t  

T h e  proof is no t  as straightforward as in the pl.evious section, since T ( . )  
may b e  merely lower semicontinuous. I t  is shown first t h a t  the  co-state p ( . )  
of Pontryagin's max imum principle verifies a n  adjoint inclusion. T h e n  t he  
Viability Theorein f rom [2, AUB[N] is applied t o  sllow tha t  t H V ( t ,  y ( t ) )  
is Lipschitz even when 1' is discontinuous. T h e  above result suggests t o  
define t h e  t ime  opt imal  synthesis in the following way: 

T h e  associated set-valued m a p  of "optiinal dyrlamics" is 

In view of Theo rem 1.2 it is na tura l  t o  expect  opt imal  trajectories t o  solve 
the  followiilg closed loop sys tem 

Consider the differential inclusion 

T h e  t ime optimal  function T( . )  being in general discontinuous, t he  argu- 
ments  from the  proof of Theorem 1.1 are not  valid any longer. For this  
reason we have to change the  notion of solution. 



D e f i n i t i o n  1.3 ( [ 3 7 ,  M A R C H A U D ] )  A continuous map  y : [O,To] - 
Rn is a contingent solution of (5) if 

We already know t h a t  every t ime op t imal  solution is a contingent solution 
of (5) under  all  assumptions of Theorem 1.2. Conversely, 

Tlleore~n 1.4 ( [13 ,  C A N N A R S A ,  H.F. & S I N E S T R A R I ] )  Suppose 
that y(.) i s  a contingent solutton of (5)  ill [O,To] salisfyzng 

T h e n  y i s  t ime  opt imal .  

2 Viability Kernel 

We provide next  th ree  examples leading t o  t h e  notion of viability kernel.  

E x a n l p l e  1: I l l l p l i c i t  C o n t r o l  S y s t e n i  

T h e  way t o  make it "explicit" is t o  defirie t h e  set-valued m a p  

F ( x )  = {,u 13 u E U, f ( x , v , u )  = 0 )  

and  t o  s t u d y  t h e  differential inclusion 

B u t  in general F is no t  defined on tlie whole space b u t  only o n  a subset, 
D o m ( F )  := {x I F ( x )  # 0 ) .  Furthermore there a re  xo E Dorn(F)  f rom 
where n o  t rajectory defined over R+ of tlie control s y s t e m  s t a r t s .  

Exaliiple 2: Control Systeln w i t h  State Co~istraillts 

T o  "get rid" f r o m  t h e  constraints  let us  introduce t h e  set-valued m a p  

T h e  new control sys tem is 



Again U may be defined only over a subset I< = {x 1 U(x) # 0). Further- 
more, there are xo € I< from where no trajectory of the control system 
satisfying state constraints starts. 

Exaniple 3: Bounded Chattering 

The problem is to  find solutions to the control system 

That is u has to be absolutely continuous and, in particular, it call not have 
jumps. Define a new dynamical system 

= f ( x ( t ) , u ( t ) ) ,  4 0 )  = xo1 u(t) E U(x(t)) 
ul(t)  E BM { 

Naturally there may exist xo E Dorn(U) from where no trajectory of the 
above system starts. 

In all three cases we reduced the control system under investigation to 
the following so called viabi l i ty prob lem 

xl(t)  E F(x( t ) ) ,  forallnost all t 2 0 ,  
x(t)  E K ,  V t 2 0, 
x(0) = xo E K 

The viabi l i ty kernel Viab(1i') of K (under F )  is the set of all in i t ia l  cond i t ions 
xo E Ii' from which starts a t  least one solution (defined over R+) of the 
differential inclusion (6). The notion of viability kernel was introduced in 
[ I ,  ACTBIN']. If 

F is upper semicontinuous with closed convex images 

i i)  > 0, s " p u ~ ~ ( r )  l l v l l  5 /i(llxll + 1) 

then the viability kernel Viab(K) is closed and enjoys some stal~ilit~y prop- 
erties. Algorithms were obtained to compute the viability kernel which 
for low dimensions run on PC's. See [36, FRANKOWSKA & QUIN- 
CIAMPOIX], [38, SAINT-PIERRE], [It5,16,17, CARDALIAGUET, QUIN- 
CAMPOIX & SAINT-PIERRE]. These (global) algorithms were inspired 
by "zero-dynamics" of [ l o ,  BYRNES & ISIDORI]. 

Since the notion of viability kernel revealed to  be very useful in "comput- 
ing" Lyapunov functions, time-optimal function, solving the target prob- 
lem and in some applied problems (see [8, BONNEUIL & MULLERS], 
[19, CARTELIER & MCTLLERS], [22, DOYEN & GABAY], [23, DOYEN, 
GABAY & HOURCADE] and also [2, AUBIN] and its bibliography) the 
research is carried out in Universitd Paris-Dauphine by P. Cardaliaguet, 
L. Doyen, M. Quincampoix, P. Saint-Pierre and N. Seube to perfection 
algorithms for computing the viability kernel. 



3 Solutions to  HJB Equations 

We address here the Hamilton-Jacobi-Bellnlan equation of optimal control. 
Consider again the Mayer Problem from Section 1.1. As we already ob- 
served for locally Lipschitz data  the value function is locally Lipschitz. It 
is easy to understand how the generaIized (bilateral) solutions arise in the 
Lipschitz case. 

Defi~litiorl 3.1 ([21]) Let 4 : X H R U {+m) be an extended function 
and xo E X be such that ~ ( x o )  # m. The subdifferential of 4 at xo is : 

The  value function V is nondecreasing along solutions of the control system 
and is constant along optimal solutions. For this reason the following state- 
ment follows easily by classical arguments (see for instance [25, FLEMING 
& RISHEL]): If V is differentiable a t  ( t ,  x ) ,  then 

The Hamiltonian H ( x ,  .) being convex, we have 

where a V ( t ,  x )  denotes Clarke's generalized gradient. 
On the other hand V is a viscosity solution to the H J B  equation (see 

[21, CRANDALL, EVANS & LIONS]). In part,icular, 

But 8 - V ( t , x )  C a V ( t ,  x)  and therefore V is a bilateral solution: 

This notion of solution is valid as well for lower seinicontinuous fi~nctions 
[7 ,  BARRON & JENSEN], [32,33, FRANKOWSKA]. I11 [7] the authors ex- 
tended the maximum principle of PDE's to lower semicontinuous functions. 
The alternative approach proposed in [33] is based on viability theory. 

The "geometry" behind the method of proving uniqueness of nons- 
mooth solutions is the following one (details can be found in [4, AUBlN & 
FRANKOWSKA]): Consider the reachable set R ( t )  a t  time t of 



for all possible choices of x l .  Then R ( t )  is the epigraph of V ( t ,  .) 

The  semigroup properties of reachable sets are used to investigate tangents 
to the epigraph of V .  Namely consider the differential inclusion 

where F is a locally Lipschitz set-valued map with convex compact images, 
and define its reachable map  

R ( t ,  x o )  = { x ( t )  1 x  solves the above inclusion) 

Then by well known results from [24, FILIPPOV] 

where B denotes the closed unit ball. The  fact that  V  is a bilateral solution 
follows from monotonicity properties of the value function. Proofs of the 
converse are based on Viability Theory [2, AUBIN]. 

In conclusion, we have to underline that  for problems with lower serni- 
continuous cost function, it is natural to use subdifferentials rather than 
upper directional derivatives, because subdifferentials are related to  tangents 
to the epigraph of V :  Ep i (V )  = { ( t ,  x ,  r )  I r  > V ( t ,  x ) )  which is closed. 
On the other hand to construct optimal synthesis via subdifferentials one 
needs extra assumptions which may be difficult to check. We used here 
upper directional derivatives, related to tangents to the hypograph of V :  
{ ( t ,  x ,  r )  1 r  5 V ( t ,  I ) )  not closed in general. 

Next we discuss briefly the method of characteristics of H J B  equations. 
Since the Hamiltonian of Mayer's problen~ is not differentiable at, ( x ,  O ) ,  wr 
considel. the Bolza problem: 

( P )  minimize lr L ( x ( t ) ,  u( t ))dt  + p ( x ( T ) )  

over solution-control pairs ( 2 ,  u )  of control system 

The  Hamiltonian H in this case is defined by 



arid the value function is given by 

t o ,  x  = i ; f l r  L ( x ( t ;  to, x o , ~ ) ,  u ( t ) ) d t  + p ( x ( ~ ; t o , ~ o , u ) )  

where x ( . ;  t o ,  x o ,  U )  denotes the solution to (7) corresponding to  the control 
u. T h e  H J B  equation is 

If H  is smooth ,  then the  characteristic system of this equation is the  fol- 
lowing Hamiltonian system 

It is well known tha t  for nonconvex problems i t  is natural  to expect shocks 
for such system: 

3 x l ( T )  # z 7 ( T ) ,  3 to  < T  such tha t  z l ( t O )  = x 2 ( t 0 )  

T h i s  impl ies  t h a t  f o r  some i n i t i a l  cond i t ions  and some in i t i a l  t i m e  t o  we have 
mu l t i p l e  o p t i m a l  t ra jector ies or  equivalent ly 

3 z0 such tha t  Lirns~p,,,~ { g ( t o l  X I }  

is n o t  a s ingleton. 
In the  two results below we impose the following assumptions: 

H I )  f ,  g are  locally Lipschitz; f ,  g ,  L(. ,  u )  are differentiable, cp E C1 
H 2 )  V ( to ,  20 )  E [O, T ]  x Rn a n  optimal solution of (P)  does exist and 
V  : [0, T ]  x R" R is locally Lipschitz 
H 3 )  L ( x ,  .) is continuous, convex and 3 c > 0  such tha t  L ( x .  u) >. c 1 1 ~ 1 1 ~  
H4) For all r > 0 ,  there exists k,  >. 0 such tha t  

V u  E Rm, L( . ,  u )  is k, - Lipschitz on B,(O) 

H 5 )  H' is locally Lipschitz and  the Hamiltonian system is complete. 

Tlleorexn 3.2 Every solution ( x , p )  t o  the Han~iltoilian system 

\ -p l ( t )  = P  to) E -Limsup,-,, ,V~(to,~) 

is so that z  is optimal. 



Tlieore~n 3.3 (BYRNES & H.F.)  .4ssu~r~e that H ( x ,  .) is strictly con- 
vex and let (?,I) be a  trajectory-control paw. If c is an optinlal trajectory 
of the Bolza problem, then for all t  € ] t o ,  TI, V is dzfferentrable at ( t ,  c ( t ) ) .  

Tlie above extends earlier results of [14, CANNARSA & SONER]) of cal- 
culus of variations. Further study of shocks is continued in [18, CAROFF 
& FRANKOWSKA]. 

4 Interior and Boundary of Reachable Sets 

4.1 Local Controllability 

Consider the control system 

where f  verifies (2) and f ( x ,  U) are closed and convex. Its reachable set at  
time t  > 0 is given by 

R ( t )  = { x ( t )  1 x  is solves ( 8 ) )  

We address the following q ~ e s t ~ i o n :  W h e n  J:O E I n t , ( R ( t ) )  for  a l l  t  > 0 ? 
Let us first recall the  Graves theoreln (1047): if f  : ,A' r Y is C" and 

f ' ( x o )  is surjective, then V E > 0 ,  f ( z 0 )  E In t ( f (B , (a :o ) ) ) ,  where B , ( x o )  
denotes the closed ball of center xo  and radius E .  

A very similar result holds true also for set-valued maps. Here we apply 
it to the reachable rnap R ( . ) .  But in order to get such extension of Graves' 
the or en^, one needs to differentiate set-valued malls on metric spaces. Rrcall 
first the notion of Painlevk-Kuratowski lower l i m i t  o f  sets. Let F : S ?- Y 
be a set-valued map. The  lower limit is given by 

I,iminf,,,o F ( x )  := lim y, I 11, E F ( x )  { r - r o 1 
We introduce k-order var iat ions o f  reachable sets: 

Notice t,hat for all k > 1 ,  R ~ ( X O )  C R ~ + ' ( X ~ ) .  

Tlieore~n 4.1 ([31, H.F.])  If 0  E f ( x 0 ,  U )  and for some v l ,  ... up E R k ( 0 )  

0  E Int co {vl,  ..., u p }  

then xo E I n t ( R ( t ) )  for all t > 0 .  Furthermore there exist L > 0 ,  E > 0 
such that for all small t  > 0 ,  all yl E  B , ( x o )  and y  E R ( t )  there exists t 1  
such that 

Y1 E R ( t i )  & It1 - tl _< L v m  



4.2 Lipschitz Behavior of Controls 

Consider again the control system (8) and let ( z ,Z)  be its trajectory control 
pair. We impose assumptions (2) and that  f (., u )  E C' for all u .  The  
linearized control system is given by 

and the corresponding reachable set by R ~ ( T )  = {w(T)  I w solves (9)) .  

Theorem 4.2 ([31, H.F.]) Assume that 0 E Int (RL(T) ) .  Then r ( T )  E 
Int(R(T)) and there ezist E > 0, L > 0 such that for all b E B,(z(T))  we 
can find a control u(.) satisfying 

4.3 Nonsmooth Maximum Principle 

Consider the control system (1) and assume (2).  Let g : Rn - R~ be a 
locally Lipschitz function and Iio, I<, C Rn be closed. We impose the 
following end-point constraints: 

Define the reachable set a t  time one : R ( l )  = ( ~ ( 1 )  11: solves ( I ) ,  (10)). 
Let r be a trajectory of (1),(10).  It is well known (see for instance [20, 
CLARKE], [39, WARGA] etc.) that  if g( r (1))  is a boundary point of 
g ( R ( l ) ) ,  then a maximum principle holds true. The  a i n ~  of this section 
is to make evident that  behind there is an "alternative" inverse mapping 
theorem, which is much more than the characterization of boundary of 
reachable sets. Recall that  generalized Jacobian of a locally Lipscllitz func- 
tion p : Rn H Rm (see [20, CLARKE]) is defined by: 

Theorelm 4.3 ([31, H.F.]) Let ( r , l )  be a trajectory-control pair of ( I ) ,  
(10). Then at least one of the following two statentents holds true: 
i )  3 X E R k  and an absolutely continuous p : [O,1] - R n  not both equal to 
zero, satisfying the rnazimum principle 



where N K ( x )  denotes the Clarke normal cone to I< at x  and a,f the gen- 
eralized Jacobzan with respect to x .  
ii) 3 L > 0 ,  E > 0  such that for all ( a ,  b, c)  E R k  x Rn x Rn satisfying 

there exisls a trajectory-control pair ( x u , u )  such that 

and ~ ( { t  I u ( t )  # ~ ( t ) ) )  i L(lla - s (xa( l ) ) l l  + llbll + IIcII). 
In particular, if g ( t ( 1 ) )  is a boundary point of g ( R ( l ) ) ,  then the state- 

ment i) holds true. 

The above results from the set-valued inverse mapping theorem on metric 
spaces. Denote by U the set of all measurable functions u  : [ O ,  11 + U .  Let 
x ( . ;  U ,  x O )  be the solution of (8) corresponding to the control u  and define 
the set-valued map G  : Rn x U - R  x Rn x Rn by 

G ( x o ,  u )  = ( g ( x ( 1 ;  u ,  xo ) ) ,  xo, x (1 ;  u ,  xo ) )  - ( 0 )  x ICo x I\ll 

The "strategy" of tlie proof is the following one: 

1. Approximate G  via "smootli" maps by regularizing f and g 
2. Use tlie inverse mapping theorem on approximations. 
3 .  Go to  the limit. 

Regularization technics implying nonsmooth maximum principle go back 
[39, WARGA]. In [26, FRANKOWSKA] it was shown that Warga's 

leme may be refined to get smaller objects than the derivatives contain- 
ers. The inverse mapping theorem used on approximations is Theorenr 4.4 
below. Finally Stability Theorem 4.5 is applied to take limits. 

Consider G : S I. Y ,  where X is a complete separable nretric space 
and Y  is a Barlach space with the norm Gateaux differelltiable away from 
zero. Let yo E G ( x 0 ) .  The graph of G  is defined by 

The first order "contingent" variation is defined by 

G ( ' ) ( x ~ ,  yo) = L i m s ~ p ~ + ~ +  G ( B h ( x 0 ) )  - YO 
h 

Theorern 4.4 ([31, H.F.])  If for some E > 0 ,  p  > 0, M  > 0 

(11) PB c r‘l = ( G ( ~ ) ( X , ~ )  n M B )  
( 2 ,  Y )  E Graph(G) 
( x I  Y )  E B E ( X O ,  Y O )  



then for all ( x i ,  y l ,  y2) E Graph(G)  x Y near (xo, yo, yo) 

1 
dist ( x i ,  C i ( y z ) )  5 - IJyi - ~ 2 1 1 ,  where G - ' ( ~ )  = {x 1 y E G ( x ) )  

P 

Theorern 4.5 ([31, H.F.])  Consider set-valued maps {G;) i>o from a com- 
plete metric  space X to a Banach space Y having closed graphs. Let 

yo E Go(xo) .  W e  assume that for some 6 > 0 and for every X > 0 there 
exists an  integer I A  such that for all i > I A  and all x E Ba(xo )  

If G, have "a Lipschitt  inverse" on a neighborhood of ( x o ,  yo) with the same 
Lipschitt  constant,  then  so does G .  
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