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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 12

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Summary

We present a general framework for modeling adaptive trait dynamics in which we integrate various concepts and
techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a generalization
of the ESS-concept. We give a full classification of the singular strategies in terms of ESS-stability, convergence
stability, the ability of the singular strategy to invade other populations if initially rare itself, and the possibility of
protected dimorphisms occurring within the singular strategy's neighborhood. Of particular interest is a type of singular
strategy that is an evolutionary attractor from a large distance, but once in its neighborhood a population becomes
dimorphic and undergoes disruptive selection leading to evolutionary branching. Modeling the adaptive growth and
branching of the evolutionary tree thus can be considered as a major application of the framework. A haploid version of
Levene's ‘soft selection’ model is developed as a specific example in order to demonstrate evolutionary dynamics and
branching in monomorphic and polymorphic populations.

Keywords: adaptive dynamics; evolutionarily singular strategy; evolutionary branching; evolutionary modeling.

Introduction

The evolutionarily stable strategy (or ESS; Maynard Smith and Price, 1973), effectively defined as
an evolutionary trap, has become the main tool for predicting the outcomes of long term phenotypic
evolution when fitness depends on the frequencies of the various phenotypes present in a
population. A major advantage of the ESS is that it can be resolved from phenotypic considerations
alone without having to account explicitly for the (often unknown) underlying genetic detail.
Moreover, by circumventing the intricacies of diploid Mendelian inheritance, more complex
ecological interactions and adaptations can be explored than is usually possible with a fully genetic
approach. In those cases where a comparison with more complete approaches is possible, ESS-
theory has been shown to be largely compatible with both quantitative genetics (Charlesworth,
1990; Taper and Case, 1992; Abrams et al., 1993a) and population genetics (Eshel and Feldman,
1982, 1984; Eshel, 1991, 1996; Hammerstein and Selten, 1993; Hammerstein, 1996; Matessi and
Di Pasquale, 1996; Weissing, 1996).

Notwithstanding its strength and elegance, the ESS has a serious drawback: It always still
remains to be seen whether during the course of evolution the ESS will actually become established
at all. It now has been generally acknowledged that ESS-stability (which renders a population
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immune against invasion by any new mutant) and convergence stability (which ensures the gradual
approach through a series of small evolutionary steps) are two totally independent stability concepts
that can occur in any combination (Eshel and Motro, 1981; Eshel, 1983; Taylor, 1989; Christiansen,
1991; Abrams et al., 1993b). A phenotype that is convergence stable is an evolutionary attractor in
the sense that a population that starts off with a different phenotype can always be invaded by
phenotypes nearer by. If a phenotype is not convergence stable, then any such initial perturbation
tends to increase. The significance of the ESS as a long term evolutionary predictor thus depends on
whether or not is also convergence stable.

In this paper we integrate various concepts and techniques from modern ESS-theory into a
single mathematical framework for modeling the dynamics of long-term phenotypic evolution. We
introduce the concept of ‘evolutionarily singular strategy’ as a generalization of the ESS-concept.
Our main result is a classification of the singular strategies in terms of ESS-stability, convergence
stability, the ability of the singular strategy to invade other populations if initially rare itself, and the
possibility of protected dimorphisms occurring within the singular strategy's neighborhood. These
four properties are to a large extend independent of one another and can occur in many
combinations. Each combination represents a qualitatively different evolutionary scenario. A type
of singular strategy that stands out in particular is convergence stable but lacks ESS-stability. We
show that from larger distances it acts as an evolutionary attractor, but once nearby the population
undergoes disruptive selection and splits up into two subsequently phenotypically diverging
subpopulations. We therefore consider modeling the adaptive growth and branching of the
evolutionary tree as a major application of the classification.

We first develop the framework for monomorphic resident populations, and generalize
some of our results to polymorphic populations later. We formulate a haploid version of Levene's
(1953) ‘soft selection’ model as a specific example to demonstrate evolutionary branching in both
monomorphic and polymorphic populations. A more formal approach of the framework including
generalizations for multi-dimensional (that is, vector-valued) strategies was presented by Metz et al.
(1996).

The framework

Assumptions

We assume that individuals reproduce asexually, and that the offspring are phenotypically identical
to the parent. Phenotypes are denoted by their strategy, which can vary continuously. We consider
one-dimensional (that is, scalar-valued) strategies only.

The strategies in a given resident population can be considered as a set of model parameters
that implicitly specify a unique attractor for the resident population dynamics. Mutations occur
sufficiently infrequently so that the population has reached its attractor before a new mutant comes
along. On the longer time-scale of mutations, therefore, a population can be represented by merely
listing all strategies that are present.

A polymorphic resident population is assumed to be always a protected polymorphism in
the sense that each strategy present is protected against extinction by a positive growth rate when
rare, at least untill the next mutant comes along. Consequently, what strategies remain once the
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population has settled down again in a new demographic attractor after the successful invasion of a
new mutant, can be described purely in terms of the growth rates of each strategy if rare.

Finally, we assume that phenotypic mutations are small but random. We explicitly do not
assume infinitesimally small evolutionary changes giving rise to a continuous adaptive dynamic,
because that would rule out a number of our results (see Discussion). Evolution thus proceeds by
small but discrete steps.

Monomorphic populations

Fitness is the long-term exponential growth rate of a phenotype in a given environment (Metz et al.,
1992). The environment contains abiotic as well as biotic factors, including the number and
frequencies of the various phenotypes themselves. Once a population has reached its demographic
attractor there are no long-lasting trends towards population decline or growth. The fitness of all
phenotypes present, therefore, has become zero. Let Ex denote the environment in a population of a
single phenotype with strategy x, and let r(x,Ex) denote the population's long-term exponential
growth rate. At the demographic attractor we thus have

r x Ex( , ) = 0. (1)

Next, consider a new mutant with strategy y emerging in a population of residents with strategy x.
As long as the mutant is still rare, its effect on the environment Ex as set by the residents is
negligible. The fitness, sx(y), of the mutant is therefore equal to

s y r y Ex x( ) ( , )= . (2)

What sx(y) exactly looks like depends on the particular biological problem at hand. A specific
example is given in a later section. We here merely assume that sx(y) is a known function of x and y,
and develop a theory of adaptive dynamics in terms of properties of sx(y) only.

If sx(y) > 0 the mutant can spread (but will not necessarily always do so as a result of
random extinction due to the small initial size of the mutant population). If sx(y) < 0 it will die out.
If sx(y) > 0 and sy(x) < 0, then the mutant can spread but the resident cannot recover when rare itself.
A protected dimorphism of x and y is therefore not possible, and  eventually the mutant will replace
the resident and take over the whole population. If mutations are small, so that x and y are very
similar to one another, we have as a linear approximation of the mutant's fitness

s y s x D x y xx x( ) ( ) ( )( )= + − . (3)

where D(x) is the local fitness gradient defined as

D x
s y

y
x

y x

( )
( )

=










=

∂
∂

. (4)
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Since by definition sx(x) = r(x,Ex) = 0 for all x (see Equations 1 and 2), the sign of D(x)
determines what mutants can invade. If D(x) > 0, only mutants with y > x can invade and take over
the population, whereas if D(x) < 0, then this is only possible for mutants with y < x. The population
thus evolves in the direction of the local fitness gradient until it reaches the neighborhood of a
strategy for which D(x) is zero. A strategy for which the local fitness gradient is zero we call an
‘evolutionarily singular strategy’. Near a singular strategy there is no longer directional selection,
and it may happen that both sx(y) > 0 and sy(x) > 0. In this case neither strategy can eliminate the
other, and the population necessarily becomes dimorphic.

The evolution of a monomorphic population can be analyzed graphically by means of a
‘pairwise invasibility plot’, that is, a graph of the sign of sx(y) as a function of x and y (Figure 1; for
other examples of pairwise invasibility plots, see Van Tienderen and De Jong, 1986; Metz et al.,
1992; Kisdi and Meszéna, 1993, 1995). To see what mutants can spread in a given resident
population we look along a vertical line through a point on the x-axis representing the resident's
strategy. The parts of this line inside a region marked '+' correspond to strategies on the y-axis for
which sx(y) > 0, and hence denote potentially invading mutants. The parts of the line inside a region
marked '-' correspond to mutants for which sx(y) < 0, and which therefore cannot invade. On the
principal diagonal sx(y) is by definition zero (cf. Equations 1 and 2). The intersection of the diagonal
with an other line on which sx(y) is zero corresponds to an evolutionarily singular strategy. If
mutations are small we need to consider only strategies within a narrow band along the diagonal. A
'+' just above and a '-' just below the diagonal indicates a positive fitness gradient, whereas a '-'
above and a '+' below indicates a negative fitness gradient.

Close to a singular strategy there are only eight possible generic local configurations of the
pairwise invasibility plot that can be algebraically characterized in terms of the second-order
derivatives of sx(y) evaluated at the singular strategy (Figure 2). Each configuration represents a
different evolutionary scenario that can be interpreted in terms of ESS-stability, convergence
stability, the ability of the singular strategy to invade other populations if initially rare itself, and the
possibility of protected dimorphisms occurring within the singular strategy's neighborhood. We first
consider each of these four properties of the singular strategy separately before we investigate their
possible combinations and the corresponding evolutionary scenarios.

Properties of the singular strategy

A singular strategy x* is (locally) ESS-stable (Maynard Smith, 1982) if no nearby mutant can
invade, in other words, if sx*(y) < 0 for all y ≠ x* in a neighborhood of x*. In the pairwise invasibility
plot the vertical line through x* lies completely inside a region marked '-' (Figure 2c-f). Since along
this vertical line sx(y) as a function of y has a maximum for y = x*, it follows that at the singular
strategy

∂
∂

2

2 0
s y

y
x ( )

< . (5)

A singular strategy that is ESS-stable is an evolutionary trap in the sense that once it has become
established in a population, no further evolutionary change is possible by small mutations.
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A singular strategy is (locally) convergence stable (Christiansen, 1991) if a population of a
nearby phenotype can be invaded by mutants that are even closer to x*, that is, if sx(y) > 0 for x < y
< x* and x* < y < x. In the pairwise invasibility plot there is a '+' above the diagonal on the left of
x*, and below the diagonal on the right of x* (Figure 2b-e). In other words, the local fitness gradient
points towards the singular strategy. Since at x* the sign of the local fitness gradient changes from
positive to negative, D(x) is a (locally) decreasing function of x, and hence at the singular strategy
we have

dD x

dx

s y

x y

s y

y
x x( ) ( ) ( )

= + <
∂

∂ ∂
∂

∂

2 2

2 0 (6)

(Eshel, 1983). Notice that as on the diagonal of the pairwise invasibility plot sx(y) is always zero,
also the second-order directional derivative of sx(y) under a slope of plus 45° must also be zero on
the diagonal, that is,

∂
∂

∂
∂ ∂

∂
∂

2

2

2 2

22 0
s y

x

s y

x y

s y

y
x x x( ) ( ) ( )

+ + = . (7)

If we use this to eliminate the cross-derivative in Equation (6), we get

∂
∂

∂
∂

2

2

2

2

s y

x

s y

y
x x( ) ( )

> (8)

(Figure 2b-e). For a monomorphic population a singular strategy that is convergence stable is an
evolutionary attractor. A singular strategy that is not convergence stable is an evolutionary repeller
from which an initially monomorphic population evolves away.

A singular strategy can spread in populations of a slightly different phenotype when initially
rare itself if sx(x*) > 0 for all x ≠ x* in a neighborhood of x*. In the pairwise invasibility plot the
horizontal line through x* on the y-axis lies entirely inside a region marked '+' (Figure 2a-d). Since
along this horizontal line sx(y) as a function of x has a minimum for x = x*, it follows that at the
singular strategy

∂
∂

2

2 0
s y

x
x ( )

> . (9)

Two strategies x and y can mutually invade, and hence give rise to a dimorphic population,
if both sx(y) > 0 and sy(x) > 0. The set of all pairs of mutually invasible strategies near a singular
strategy is given by the overlapping parts of the '+' regions in the pairwise invasibility plot and its
mirror image taken along the main diagonal (Figure 3). This set is non-empty if, and only if the
secondary diagonal lies inside a '+' region (Figure 2a-c,h). Since along the secondary diagonal sx(y)
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has a local minimum for x = y = x*, the second-order directional derivative of sx(y) at the singular
strategy under a slope of minus 45° must be positive, that is,

∂
∂

∂
∂ ∂

∂
∂

2

2

2 2

2
2 0

s y

x

s y

x y

s y

y
x x x( ) ( ) ( )− + > . (10)

If we use Equation (7) to eliminate the cross-derivative, we find

∂
∂

∂
∂

2

2

2

2

s y

x

s y

y
x x( ) ( )> − (11)

(Figure 2a-c,h). With small evolutionary steps an initially monomorphic population can become
dimorphic only within the vicinity of a singular strategy that satisfies the above condition.

The four properties of the singular strategy and their algebraic relationship are summarized
in Table 1. Although not fully independent of one another, the four properties can be combined in
various ways, yielding the eight basic configurations presented in Figure 2. (Complete
independence would give sixteen different combinations). For example, a singular strategy can be
ESS-stable but not convergence stable (Figure 2f), or convergence stable but not ESS-stable (Figure
2b; for examples, see, e.g., Eshel and Motro, 1981; Eshel, 1983; Christiansen, 1991; Brown and
Pavlovic, 1992; Abrams et al., 1993b; Kisdi and Meszéna, 1993, 1995; Meszéna et al., 1996). A
singular strategy that is both an ESS and convergence stable (Figure 2c-e) is called a ‘continuously
stable strategy’ or CSS (Eshel and Motro, 1981; Eshel, 1983). A continuously stable strategy may
still be incapable of invading other populations if initially rare itself (Figure 2e), in which case it
can be approached only monotonically (that is, either from the left or from the right) by an infinite
series of ever decreasing evolutionary steps (Kisdi and Meszéna, 1993, 1995). If mutual invasibility
is possible near a singular strategy that lacks convergence stability, the population may evolve away
before it has a chance of becoming dimorphic (Figure 2a,h). However, if the singular strategy is
convergence stable, then an initially monomorphic population inevitably sooner or later becomes
dimorphic (Figure 2b,c). As till now we assumed monomorphic resident populations, the
occurrence of mutual invasibility giving rise to protected dimorphisms poses a potential problem
that is dealt with below.

Dimorphisms near a singular strategy and evolutionary branching

The evolutionary significance of mutual invasibility near a convergence stable singular strategy x*
depends on whether or not it is also ESS-stable. If x* is convergence stable and an ESS, then
mutually invasible strategies are necessarily on opposite sides of x* (Figure 2c). A mutant with
strategy y can invade a resident population with strategies x1 and x2 (with x1 < x2) if, and only if x1 <
y < x2 (see Appendix A). The reason for this can be seen intuitively as follows. In a monomorphic
resident population at the ESS no mutant can invade. The mutant's fitness, sx*(y), as a function of the
mutant's strategy, y, has a maximum at y = x* where it is zero, but elsewhere the fitness is negative
(Figure 4a). The case of a dimorphic resident population with strategies x1 and x2 close to x* can be
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considered as a small perturbation of this situation. As the mutant's fitness is zero for y = x1 and y =
x2, the maximum of the mutant's fitness now lies between x1 and x2 where it is positive (Figure 4b).
Mutants in between the two resident types, therefore, can invade, whereas mutants outside cannot.
A mutant that is sufficiently close to the ESS replaces both residents, and renders the population
monomorphic again. Otherwise only the type that is on the same side of x* as the mutant, but
further away, is ousted, and the population remains dimorphic (Figure 4c). In the long run,
however, any dimorphism eventually disappears as the population gradually evolves towards the
ESS through a series of monomorphic and (converging) dimorphic population states.

If x* is convergence stable but not an ESS (Figure 2b), then a mutant can invade if, and only
if y < x1 or x2 < y (see Appendix A). To see this intuitively, notice that in a monomorphic resident
population at a singular strategy that is not ESS all nearby mutants can invade (Figure 2b), and
hence have a positive fitness (Figure 4d). A slight perturbation leads to the case of a dimorphic
resident population with strategies x1 and x2 close to x* (Figure 4e). Only mutants outside the two
resident types have a positive fitness and can invade, whereas mutants in between cannot. After
invasion it is always the strategy in the middle that is ousted (Figure 4f). With each successive
invasion, therefore, the two remaining strategies become more and more distinct. On the long run
the population effectively splits up into two diverging sub-populations. This process of phenotypic
divergence in an initially monomorphic population we call ‘evolutionary branching’. The
corresponding singular strategy we will refer to as ‘evolutionary branching point’. An example
ofevolutionary branching is given in a later section (for other examples of branching, see Metz et
al., 1992, 1996; Meszéna et al., 1997).

We thus conclude that, irrespective of whether or not mutual invasibility near a singular
strategy is possible, singular strategies that are convergence stable as well as ESS-stable (that is, the
continuously stable strategies sensu Eshel and Motro, 1981; Eshel, 1983) give rise to stabilizing
selection in both monomorphic and nearby dimorphic populations. These singular strategies
therefore represent the final, monomorphic outcomes of an evolutionary process. In contrast,
singular strategies that are convergence stable but not ESS-stable (that is, the branching points) are
attractors for monomorphic populations but repellers for nearby dimorphic populations. Once an
initially monomorphic population has come sufficiently close to the singular strategy it will become
dimorphic and subsequently undergo disruptive selection, leading to two phenotypically distinct
and diverging subpopulations.

Polymorphic populations

After branching the two resident strategies soon grow too far apart for the local approximation of
the mutant's fitness in a dimorphic resident population near the branching point as used above to be
valid anymore. To see how evolution proceeds after branching, we generalize the formalism to
populations with an arbitrary number of different phenotypes. Let Ex1,..,xn denote the environment in
a population with strategies x1,..,xn at its demographic attractor, and let r(xi,Ex1,..,xn) denote the long-
term growth rate of the xi-phenotype. Since the long-term exponential growth rate of each resident
type is zero, Ex1,..,xn must satisfy

r x Ei x xn
( , ),..,1

0= (12)
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for all i (cf. Equation 1). In general this is possible only if the environment can be represented by a
vector of at least n independent components. For example, this is the case if individuals affect one
another through the availability of n different kinds of resources, the abundance of which in turn
depends on the frequencies of the various types of individuals present. The dimensionality of the
environment thus sets a theoretical upper limit to the number of phenotypes that could possibly
coexist on the same trophic level (MacArthur and Levins, 1964; Tilman, 1982). The actual number
of coexisting types, however, may at any time be smaller. For n = 2 the set of possible protected
dimorphisms is given by the overlapping '+' regions of the pairwise invasibility plot and its mirror
image taken along the principal diagonal (cf. Figure 3).

The growth rate of an initially rare mutant with strategy y in a resident population with
strategies x1,..,xn at its demographic attractor is equal to

s y r y Ex x x xn n1 1,.., ,..,( ) ( , )= (13)

(cf. Equation 2). With small mutations the direction of evolution in the xi-strategy is indicated by
the sign of the local fitness gradient

D x x
s y

yi n

x x

y x

n

i

( ,.., )
( ),..,

1
1=











=

∂
∂

(14)

(cf. Equation 4). Combinations of strategies for which Di(x1,..,xn) is zero lie on a n-1 dimensional
manifold that we shall refer to as the xi-isocline. For n = 2, the x1- and x2-isoclines are lines that
divide the set of protected dimorphisms into a number of separate regions with different
coevolutionary directions (Figs 6a and 7a). On the xi-isocline there is no longer directional selection
in the xi-strategy. If the n-1 other strategies were fixed and did not evolve, then each point on the xi-
isocline would correspond to a singular strategy in an environment set by the other strategies.
However, the n-1 other strategies are not fixed and continue to evolve (and possibly move the
population away from the xi-isocline again) unless the local fitness gradient is zero for all strategies
at the same time, that is, at the point of intersection of all isoclines. We call a polymorphism
consisting of the strategies x1*,..,xn* such that Di(x1*,..,xn*) is zero for all resident strategies
simultaneously, an ‘evolutionarily singular coalition’.

The individual strategies of a singular coalition can each be classified in a similar way as
singular strategies. A singular coalition is evolutionarily stable so that no new mutants can invade
the population if, and only if all its constituent strategies are ESS, that is, if

∂
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(15)
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for all i (cf. Equation 5; Brown and Vincent, 1987, 1992; Vincent and Brown, 1989; Brown and
Pavlovic, 1992). Generalization of convergence stability is less straightforward and depends on the
relative size and frequency of mutations in the various resident strategies. It is neither sufficient nor
necessary that the condition for convergence stability in a monomorphic population (Equation 8)
applies to each individual strategy of the singular coalition separately (Matessi and Di Pasquale,
1996). However, unambiguous examples of convergence stability for n = 2 have been recognized
(Motro, 1994; Matessi and Di Pasquale, 1996; also, see example in the next section).

Mutual invasibility of a mutant and its resident progenitor is possible near a singular
coalition if, and only if
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(16)

(cf. Equation 11). Mutual invasibility has no long-term consequences if the strategy is at the same
time evolutionarily stable, that is, if it also satisfies Equation (15). A singular coalition that is both
ESS and convergence stable represents a final, polymorphic outcome of the evolutionary process. A
singular coalition that is convergence stable but for which at least one strategy lacks ESS stability
and allows for mutual invasibility nearby (that is, for which Equation 16 is satisfied while Equation
15 is not) will lead to further branching of the evolutionary tree (see Appendix A).

A Specific Example

We here develop a haploid version of Levene's (1953) ‘soft selection’ model with continuous
strategies as a specific example to demonstrate evolutionary dynamics and branching in
monomorphic and polymorphic populations. Consider a resident population with strategies x1,..,xn

of an organism with discrete, non-overlapping generations in a spatially heterogeneous environment
consisting of m different patches. Each patch can support only a limited number of established
individuals denoted by K1,..,Km respectively. The total number of established individuals with
strategy xi (i=1,..,n) summed over all patches is denoted by Ni. We assume that all patches are
occupied to maximum capacity, so that the total population size in each generation is always
constant, that is,

N Ki
i

n

j
j

m

= =
∑ ∑=

1 1

. (17)

During dispersal, the offspring are distributed randomly into the different patches such that the
number of juveniles with a given strategy landing in a given patch is proportional to the frequency
of that particular strategy among the dispersing offspring. Assuming that all established individuals
have the same fecundity irrespective of their strategy or patch, the number of juveniles with strategy
xi landing in a given patch is thus proportional to Ni.
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Within a patch, juveniles first undergo a period of frequency-independent selection
followed by a period of non-selective ‘contest’ competition during which the available living-space
is allocated at random among the survivors. With fj(xi) denoting the pre-competitive survival
probability for an individual with strategy xi in the jth patch, the fraction of the available space in the
jth patch allocated to individuals with strategy xi is

f x N f x Nj j i j h h
h

n

( ) ( )
=

∑
1

. (18)

For the total number of established individuals with strategy xi in the next generation summed over
all patches we consequently have

N K f x N f x Ni j j j i j h h
h

n

j

m

' ( ) ( )=




==

∑∑
11

. (19)

At equilibrium Ni’  = Ni for all i. In order for the population to maintain n strategies at equilibrium,
the number of patches must be greater than or equal to the number of coexisting strategies, that is,
m ≥ n. Whenever an equilibrium with n strategies is possible, it is unique and stable (Gliddon and
Strobeck, 1975; Strobeck, 1979).

Consider an initially rare mutant with strategy y in a resident population with strategies
x1,..,xn. The resident population at its equilibrium determines the level of competition in the various

patches as experienced by the mutant. The resident equilibrium densities, denoted by � , .. , �N Nn1 ,
depend on the resident strategies. As long as the mutant is rare, the environment as set by the
residents remains unaffected by the mutant's presence itself. For the number of mutants, Nmut, in
successive years we thus have as first-order approximation

′ =




==

∑∑N K f y N f x Nmut j j mut j h h
h

n

j

m

( ) ( ) �
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(20)

 (cf. Equation 19). The mutant's exponential growth rate consequently is

s y
N

N
K f y f x Nx x
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11
,.., ( ) log ( ) ( ) �= ′






 = 



==

∑∑ . (21)

Below we confine ourselves to the case of three patches, each with the same carrying
capacity, that is, K1 = K2 = K3. Moreover, we assume that the pre-competitive survival probabilities
in the different patches are bell-shaped functions of strategy, that is,
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22
, (22)

each with the same height (α) and width (σ), but with different though evenly spaced optima µ1 = 
−d, µ2 = 0, and µ3 = +d for some fixed value d representing patch difference.

In Appendix B, we show that with above assumptions there is a unique evolutionarily
singular strategy x* = 0 that is convergence stable, that can invade other populations, and in the
neighborhood of which there are always pairs of strategies that can mutually invade. If the patches
are sufficiently similar to one another, that is, if d/σ < 1.22, then the singular strategy is also
evolutionarily stable (Figure 5a). The long term evolutionary outcome then consists of a single
generalists strategy that, although optimally adapted to the middle patch, also exploits the other two
patches. If the patches are further apart (d/σ > 1.22), however, then the singular strategy is a
branching point (Figure 5b). After having reached the singular strategy, the population now
undergoes evolutionary branching during which the generalist gives way to a dimorphic coalition of
more specialized strategies (Figure 6b).

Figure 6a gives the set of potential protected dimorphisms for d/σ = 1.5, and was obtained
by taking the overlapping parts of the '+' regions of the pairwise invasibility plot in Figure 5b and its
mirror image along the main diagonal (cf. Figure 3). The resulting set is necessarily symmetric in
the main diagonal. The isoclines, given by
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for i = 1, 2 (cf. Equation 14), were computed numerically using Equation (21), and divide the set of
potential dimorphisms into eight regions (four symmetrically on each side of the diagonal). Within
each region the set of permissible directions of evolutionary change, that is, the ‘invasion cone’
(Matessi and Di Pasquale 1996), follows from the local fitness gradients (Equation 14 with
Equation 21) and is indicated by arrows (Figure 6a). The intersection of the isoclines corresponds to
an evolutionarily singular coalition. The invasion cones determine whether or not the singular
coalition is convergence stable. The mutant's fitness as a function of its own strategy has a local
maximum on the xi-isocline (thick lines in Figure 6a) if

∂
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(cf. Equation 15), and a local minimum (thin lines in Figure 6a) if the inverse inequality is true. A
singular coalition is evolutionarily stable only if at the point of intersection both isoclines
correspond to fitness maxima, that is, if both isoclines are thick. If the patches are not too far apart
(1.22 < d/σ < 2.10), then there is a unique singular coalition that is both convergence stable and
ESS-stable (Figure 6a). Therefore, after branching at x* = 0, the population evolves towards a stable
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dimorphism in which the middle patch is exploited by both strategies, while the remaining two
patches are both monopolized by only one strategy each (Figure 6b).

If the difference between the patches is larger (d/σ > 2.10), then the isoclines intersect at
three points corresponding to three different evolutionarily singular coalition (Figure 7a). On
inspection of the invasion cones it can be seen that two of these are convergence stable, separated
by a convergence unstable singular coalition. To which of the two convergence stable coalitions the
population will actually evolve is a matter of chance. Neither coalition is evolutionarily stable (one
of the intersecting isoclines is always a thin line), so that once the population has come sufficiently
nearby it will undergo further branching. Both convergence stable dimorphic coalitions consist of a
specialist adapted to either the first or third patch, and a relative generalist exploiting the two
remaining patches. It is always this generalist that undergoes further branching, giving way to more
specialized strategies. Independent of the dimorphic coalition to which of the population will
evolve first, the population eventually ends up as a stable trimorphism with each strategy adapted to
its own specific patch (Fig 7b,c).

The dynamics of evolution as predicted by the model is confirmed by numerical simulations
(Figure 6b and 7b,c). In these simulations we use Equation (19) to calculate the number of
individuals with different strategies in successive generations. Starting with a monomorphic
population, new types are generated with a low probability per generation by small but random
mutations from strategies already present. The new mutants are added to the population with a low
initial frequency. By iteration of Equation (19) some mutants will increase in number, whereas
others remain rare or gradually vanish. When the frequency of a given strategy drops below a
certain pre-set threshold, the strategy is considered to have gone extinct and is removed from the
population. Details of the simulation (like the precise mutation rate, mutation radius, inoculation
and extinction thresholds) do not qualitatively affect the outcome of the simulations.

Figure 8 shows how the number, the stability properties, and the positions of the singular
strategy and the singular coalitions change due to changes in patch difference. The monomorphic
singularity does not change its position, but it loses ESS-stability and becomes a branching point
when d/σ becomes larger than 1.22 (Figure 8a). The dimorphic singularity first appears when the
monomorphic singularity becomes a branching point (Figure 8b). As patch difference increases, the
strategies of the dimorphic coalition grow also further apart. At d/σ = 2.10 the dimorphic
singularity undergoes a ‘pitchfork’ bifurcation yielding three dimorphic singularities, two of which
are convergence stable but not ESS-stable (pairs of strategies numbered 1 and 3 in Figure 8b)
separated by a convergence unstable dimorphic singularity (pair numbered 2). The trimorphic
singular coalition already emerges at d/σ = 1.93, that is, before the dimorphisms has lost its ESS-
stability. Although ESS-stable, the trimorphism remains unreachable for an initially monomorphic
or dimorphic population until the dimorphic coalition loses ESS-stability at d/σ = 2.10 (Figure 8c).
As patch difference decreases, the frequency of the middle strategy of the trimorphism becomes
zero when d/σ  approaches 1.93. At the same time the other two strategies of the trimorphism
converge to the dimorphic coalition (Figure 8c). As patch difference increases, the strategies of the
trimorphism converge to the within-patch optimal strategies µ1, µ2 and µ3.

Meszéna et al. (1997) demonstrated evolutionary branching in monomorphic populations in
a similar model with two patches and limited migration between the patches (for recent related
models, see, e.g., Brown and Pavlovic, 1992; Brown, 1996).
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Discussion

Starting from four basic assumptions, we model evolution as a sequence of monomorphic or
polymorphic population states, where each time the transition from one state to the next occurs
when an advantageous mutant comes around and spreads. The evolutionarily singular strategies
play a key-role in the evolutionary dynamics of an initially monomorphic population. Among the
eight possible different types of singular strategies (Figure 2) we can distinguish three main groups:
Singular strategies that lack convergence stability and therefore act as evolutionary repellers (Figure
2a,f-h). Singular strategies that are both evolutionarily and convergence stable (that is, the
‘continuously stable strategies’ sensu Eshel and Motro, 1981; Eshel, 1983; Figure 2c-e), and hence
represent final outcomes of an evolutionary process. And finally, the singular strategy that is
convergence stable but not ESS, that is, the evolutionary branching point (Figure 2b). This latter
type stands out in particular, because from a large distance it acts as an evolutionary attractor, but
once nearby, the population undergoes disruptive selection leading to evolutionary branching. With
small evolutionary steps, an initially monomorphic population can become distinctively dimorphic
only if it passes first through the neighborhood of a singular strategy of this type. The branching
point, therefore, plays a central role in the adaptive growth and branching of the evolutionary tree.
Disruptive selection at singular strategies that are convergence stable but not evolutionarily stable
has also been indicated in specific models by Christiansen and Loeschcke (1980), Brown and
Pavlovic (1992), Metz et al. (1992) and Abrams et al. (1993b).

The generalization of the singular strategy for polymorphic populations is the evolutionarily
singular coalition. Each individual strategy of a singular coalition can be classified in the same way
as a monomorphic singular strategy. A singular coalition each strategy of which is an ESS given the
other strategies represents a final evolutionary stop for a polymorphic population. Evolution
towards a singular coalition consisting of one or more branching points will lead to further
branching of the evolutionary tree. Depending on the number of branching points contained in the
singular coalition one or more new branches may develop (nearly) simultaneously (for an example
of simultaneous branching in a dimorphic population, see Metz et al., 1996). Like in the case of
monomorphic populations, with small mutations a polymorphic population can reach a higher level
of (protected) polymorphism only if it first passes through the neighborhood of a singular coalition
with at least one branching point. Extinction of branches may occur when a population evolves
towards the boundary of the set of possible protected polymorphisms, in which case the population
falls back again to a lower level of polymorphism (see, e.g., Metz et al., 1996). In polymorphic
populations evolutionary cycles are also possible (Marrow et al., 1992; Dieckmann et al., 1995;
Abrams and Matsuda, 1996).

The predictions from our framework are confirmed by numerical simulations (see the
example in the previous section; for other examples, see Metz et al., 1992, 1996; Meszéna et al.,
1997). Notwithstanding our basic assumptions, in the simulations new mutants often come along
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before the population has reached its demographic attractor and before disadvantageous mutants
have disappeared. The simulations, therefore, show that relaxation of the assumption that the
resident population has reached its demographic attractor before a new mutant comes along, and
that a polymorphic population is always a protected polymorphism, does not qualitatively affect the
results. In the simulations the predictions also prove to be fairly robust with respect to larger
mutations as well. Below we consider the significance of some of the other assumptions of the
framework.

The present modeling is confined to one-dimensional strategies only (or to one-dimensional
parametrizations of multi-dimensional strategies). Extension of the framework to multiple traits
under simultaneous selection is not straightforward. In particular the meaning of convergence
stability becomes ambiguous and more complex (but see Motro, 1994; Matessi and Di Pasquale,
1996). Some generalizations to multiple traits have been discussed by Metz et al. (1996). For a
specific example of multiple traits in a population genetics context see Christiansen and Loeschcke
(1987).

In this article we assume that for each possible coalition of strategies there is a unique
demographic attractor that determines the long-term exponential growth rate of an emerging mutant
strategy (Equations 2 and 13). The demographic attractor may be either a fixed point, a limit cycle
or an ergodic stochastic attractor (but see Rand et al., 1994; Ferriere and Gatto, 1995 for
complications in the case of chaotic attractors). If there were more than one attractor, then the
resident population no longer could be represented by its strategies alone. Two populations with the
same strategies but in different demographic states may follow different evolutionary courses,
because the biotic environment in the two populations is not the same (cf. Rand et al., 1994).
However, if mutations are small, and moreover, a small change in strategies is accompanied by a
small change in population dynamics, then during the course of evolution a population may track
gradual changes in the initial demographic attractor instead of jumping back and forth between
different parallel attractors. Consequently, for a monomorphic resident population there will be
different pairwise invasibility plots depending on the initial demographic state of the population.
Obviously, this picture no longer holds if, as a consequence of the evolutionary change in the
resident strategies, the population dynamics undergo a bifurcation such that the demographic
attractor undergoes an abrupt change, loses its population dynamical stability or ceases to exist
altogether (e.g. Matsuda and Abrams, 1994). Notice, however, that neither evolutionary branching
nor extinction of branches are necessarily accompanied by a discontinuous change in the population
dynamics. Repeated alternations between parallel demographic states due to environmental
disturbances on an ecological time-scale could best be modeled as a single, multi-peaked stochastic
attractor rather than as different deterministic population states. This is not possible, however, if the
alternations occur on a longer time-scale.

In this article we assume that mutations are small but finite. This leads to an evolutionary
dynamics with small but discrete steps in the phenotype space. A similar approach with discrete
evolutionary steps in a population genetics context was followed by Matessi and Di Pasquale
(1996). Many other authors, however, assume infinitesimally small steps leading to a continuous
adaptive dynamics (in time as well as in phenotype space) in which the change per unit time is
proportional to the fitness gradient (e.g. Hofbauer and Sigmund, 1990; Marrow et al., 1992, 1996;
Abrams et al., 1993b; Dieckmann et al., 1995, Dieckmann and Law, 1996). The fixed-points (or
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equilibria) of the continuous adaptive dynamics coincide with the singular strategies or singular
coalitions of our descrete step approach, but the dynamical properties are different. In particular,
with infinitesimally small mutation steps evolutionary branching does not occur. To see this, notice
that mutual invasibility is possible only within the neighborhood of a singular strategy of a size
proportional to the mutation step size itself. As the mutation step size decreases, an initially
monomorphic population necessarily has to come closer to the singular strategy before the
population can become dimorphic. In the limit of continuous dynamics the step size has become
zero, so that the neighborhood in which mutual invasibility can occur has collapsed to a single
point, that is, the fixed-point itself. Since with continuous adaptive dynamics fixed-points can be
approached but are never actually reached, mutually invasibility, and hence evolutionary branching
are not possible.

The dimensionality of the environment sets a theoretical upper limit to the number of
different strategies that can coexist as a protected polymorphism, and hence to the maximum
diversity that can be reached through branching of the evolutionary tree. One general prerequisite
for branching, therefore, is that individals affect one another via at least two environmental
variables that in turn depend on the frequencies of the various strategies present. If individuals
affect one another via only a single environmental variable (such as population equilibrium density,
or the abundance of a single resource), then only one strategy can persist at a time, and mutual
invasibility, and hence evolutionary branching are not possible. In such a one-dimensional
environment, a (local) ESS is always a (locally) optimal strategy that maintains the highest
equilibrium density or lowest resource abundance (Tilman, 1982; Kisdi and Meszéna, 1993, 1995;
Mylius and Diekmann, 1995). The pairwise invasibility plot is necessarily anti-symmetric along the
main diagonal, and there are only two possible local configurations of the pairwise invasibility plot
(Figure 9a), both of which are degenerate cases in our general classification of the singular
strategies (Figure 2).

Another general prerequisite for evolutionary branching is that the mutant's fitness is a
nonlinear function of the mutant's strategy. This excludes branching in all cases where sx(y) is given
as the (weighed) arithmetic average over two alternative pure strategies (like in the case of matrix
games) with x and y denoting the mixing frequencies for respectively the resident and the mutant. If
the mutant's fitness is a linear function of the mutant's strategy, then the second-order derivative of
sx(y) with respect to y is zero (cf. Equation 5), and there are only two local configurations of the
pairwise invasibility plot possible (Figure 9b), both of which are non-generic cases in the general
classification of Figure 2. Once the singular has been established, all mutations are neutral (Figure
9b; cf. Bishop-Cannings theorem, 1978). In matrix games the singular strategy is then ESS-stable if
it can invade other populations if initially rare itself (Maynard Smith, 1982, p.14). If this is the case,
then the ESS is also automatically convergence stable (Figure 9b; Taylor, 1989; Eshel, 1996).
Mutual invasibility near the ESS is possible, but branching does not occur.

Although evolutionary branching is reminiscent of speciation, in the present context of
asexually reproducing organisms the species concept has no clear meaning. The possible
connection between branching and speciation in a more general context depends on the extend to
which our results generalize to diploid and sexual organisms, and in particular whether reproductive
isolation evolves between the emerging branches. One possible way of applying our approach to
diploid and sexually reproducing organisms is the following. Assume that there is a continuum of
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potential allele types on a single, diploid locus (or, equivalently, that there are many loci with very
tight linkage). Moreover, assume that there exists a function φ such that φ(x1,x2) is the phenotype of
an individual with alleles x1 and x2. Finally, assume that the phenotype of a heterozygote is always
intermediate between that of the two homozygotes. Notice that this not necessarily implies that the
heterozygote also has an intermediate fitness. Next, consider an initially rare mutant allele y in a
randomly mating monomorphic resident population with allele x. As long as the mutant allele is
rare, its exponential growth rate is equal to the exponential growth rate of the number of
heterozygotes. For the mutant's fitness we thus find

( )s y r x y Ex x x( ) ( , ), ( , )= φ φ (24)

(cf. Equation 2), where φ(x,y) is the phenotype of the heterozygote, and φ(x,x) is the phenotype of
the resident homozygote. Using this definition of sx(y), the framework can be applied to sexual
populations with Mendelian inheritance describing evolution in allele space rather than in
phenotype space. Thus, depending on the particular problem at hand, all eight local configurations
(Figure 2) of the pairwise invasibility plot for allele types are theoretically possible, including the
branching point.

Branching in allele space leads to a genetic dimorphism (or to genetic polymorphisms after
repeated branching events). Mating between individuals from different genetic branches, however,
produces heterozygotes, so that on a phenotypic level we also see intermediate types. During
branching, these intermediate types necessarily have a lower fitness than the homozygotes and are
selected against (cf. Figure 4e). Types that mate more frequently within branches than between
branches are therefore at a selective advantage. Consequently, branching in allele space may favor
the evolution of assortative mating and of reproductive isolation. Two prerequisites for the
evolution of assortative mating are that a genetic polymorphism is maintained within the population
while at the same time heterozygotes are selected against. Various possible scenarios for the
evolution of assortative mating have been modeled elsewhere (see, e.g., Maynard Smith, 1966;
Balkau and Feldman, 1973; Dickinson and Antonovics, 1973; Felsenstein, 1981; Seger, 1985;
Diehl and Bush, 1989; de Meeûs et al., 1993). In most population genetic models, which lack
frequency-dependent selection, the maintenance of a genetic polymorphism and heterozygote
inferiority are mutually exclusive. However, within our evolutionary framework, during
evolutionary branching, both conditions arise in a very natural way.
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Dimorphisms near a singular strategy

Consider a dimorphic resident population with strategies x1 and x2 near a singular strategy x*, and
let sx1,x2(y) denote the fitness of an initially rare mutant with strategy y. Second-order Taylor
expansion of sx1,x2(y) for x1, x2, and y close to x* yields

s y x x x x y xx x1 2 1 1 2 2 3, ( ) ( *) ( *) ( *)= + − + − + −α β β β
+ − + − + −1

2 11 1
2 1

2 22 2
2 1

2 33
2γ γ γ( *) ( *) ( *)x x x x y x

+ − − + − − + − −γ γ γ12 1 2 13 1 23 2( *)( *) ( *)( *) ( *)( *)x x x x x x y x x x y x , (A1)

where the coefficients βi, γij (i, j = 1, 2, 3) denote the first- and second-order derivatives of sx1,x2(y)
evaluated at x1 = x2 = y = x*. Since the order of the numbering of the resident strategies is arbitrary,
we have

s y s yx x x x1 2 2 1, ,( ) ( )= . (A2)

If we apply this to Equation (A1), we find that

β β γ γ γ γ1 2 11 22 13 23= = =, , . (A3)

Further, as residents are selectively neutral among themselves, we necessarily have

s x s xx x x x1 2 1 21 2 0, ,( ) ( )= = (A4)

which, if applied to Equation (A1), yields the additional conditions

α = 0
β β β1 2 3 0= = =
γ γ11 22 0= =
γ γ γ γ13

1
2 33 23

1
2 33 0+ = + =

γ γ γ γ12 23 12 13 0+ = + = . (A5)

Finally, as the set of potential protected dimorphisms connects to the diagonal of the pairwise
invasibility plot exactly at the singular strategy (Figure 3), we have

s y s yx x x*, * *( ) ( )= . (A6)

Second-order Taylor expansion of sx*(y) for y close to x* gives
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The first term is zero because of the selective neutrality of residents among themselves. The second
term is equal to the local fitness gradient at the singular strategy, and therefore is also zero.
Substitution of Equations (A1) and (A7) into Equation (A6) with x1 = x2 = x* gives
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If we combine the information given in Equations (A3), (A5) and (A8), and use this to simplify
Equation (A1), we get
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It follows that for given resident strategies x1 and x2, the graph of sx1,x2(y) as a function of y is a
parabola with zeros at y = x1 and y = x2. Moreover, if x* is ESS-stable, the coefficient in Equation
(A9) is negative (see Equation 5), so that the parabola has a maximum and is positive for y in
between x1 and x2 (Figure 4b). If, however, x* lacks ESS-stability, the coefficient in Equation (A9)
is positive (see Equation 5), and the parabola has a minimum and is positive for y outside x1 and x2

(Figure 4e).
Equation (A9) readily generalizes to cases of mutual invasibility of nearby types in the

vicinity of a singular coalition. Consider a protected polymorphism x1,..,xn close to a singular
coalition x1*,..,xn*. For given i, let xi' denote a mutant derived from xi that can coexist with all the
other strategies including xi itself. Proceeding in a similar manner as before, we get as second-order
Taylor approximation of the fitness of a new mutant with strategy y close to xi and xi' in the now
(n+1)-morphic population gives
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For a mutant close to xi* the fitness as a function of its own strategy is a parabola with zeros at y = xi

and y = xi*. If xi* is ESS stable (cf. Equation 15), then only mutants in between xi and xi' can invade,
whereas otherwise only mutants outside can invade.

Appendix B
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We here derive algebraically the singular strategies and their stability properties in Levene's (1953)
‘soft selection’ model for haploids with m different patches. Let cj = Kj/∑Kj denote the relative size
of the jth patch, and let the pre-competitive survival probability, fj(x), for an individual with strategy
x in the jth patch be given as in Equation (22). The fitness of an initially rare mutant with strategy y
in an equilibrium resident population with strategy x then is
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 (cf. Equation 21), where we used that the total population size ∑Ni is equal to ∑Ki (cf. Equation
17). At a singular strategy, x*, the local fitness gradient by definition is zero, that is,
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Solving Equation (B2) for x*, we find
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that is, the weighted average of the within-patch optimal strategies. For the stability properties of
the singular strategy we need
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Since Equation (B4) is always positive, it follows that x* can always spread in populations with a
different strategy (cf. Equation 9). Moreover, summation of Equations (B4) and (B5) gives
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which is also positive, so that mutual invasibility within the singular strategy's neighborhood is also
always possible (cf. Equation 11). From Equation (B5) it can be seen that x* is ESS-stable if
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but lacks ESS-stability if the inverse inequality is true (cf. Equation 5). In other words, x* is an ESS
as long as σ is sufficiently large, that is, as long as the overlap of the fitness functions in the
different patches is sufficiently large. The singular strategy is always convergence stable, however,
independently of whether or not it is an ESS, because
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which is always positive (cf. Equation 8). Consequently, if x* is not an ESS, it must be a branching
point. With three patches of equal size (c1 = c2 = c3 = 1/3), and with equally spaced within-patch
optima with difference d (µ1 = -d, µ2 = 0, µ3 = +d), the Equation (B7) becomes d/σ < √1.5 (≈ 1.22).
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Figure 1. Example of a pairwise invasibility plot. The resident’s and mutant’s strategy are
denoted by x and y, respectively. The shaded area indicates combinations of x and y for
which the mutant’s fitness, sx(y), is positive. The singular strategy is denoted by x*.



Figure 2. The eight possible generic local configurations of the pairwise invasibility plot
and their relation to the second-order derivatives of sx(y). Inside the shaded regions within
each separate plot, sx(y) is positive.



Figure 3. Graphic representation of the set of mutually invasible strategies. (a) Sign of
sx(y); (b) sign of sy(x); and (c) superposition of (a) and (b).



Figure 4. A mutant’s fitness as a function of its own strategy y in a dimorphic population
with strategies x1 and x2 as a perturbation from the fitness in a monomorphic population
with a single strategy x* that is an ESS (a-c) or not an ESS (d-f).



Figure 5. Pairwise invasibility plot for Levene’s (1953) haploid selection model with
three patches for (a) d/σ = 1, and (b) d/σ = 1.5.



Figure 6. (a) Set of potential protected dimorphisms (shaded regions) with invasion cones
and isoclines for d/σ = 1.5. Thick isoclines are ESS-stable, thin isoclines lack ESS-
stability. (b) Simulated evolutionary tree. The arrows at the top of indicate the within-
patch optimal strategies.



Figure 7. (a) Set of potential protected dimorphisms (shaded regions) with invasion cones
and isoclines for d/σ = 2.5. Thick isoclines are ESS-stable, thin isoclines lack ESS-
stability. (b,c) Simulated evolutionary tree. The arrows at the top of indicate the within-
patch optimal strategies.



Figure 8. Bifurcation plot with d/σ as bifurcation parameter for (a) the monomorphic
singular strategy, (b) the dimorphic singular coalition (the different strategy pairs are
labeled 1-3), and (c) the trimorphic singular coalition. Thick lines indicate ESS-stability,
thin lines indicate lack of ESS-stability of the corresponding strategy.



Figure 9. (a) Local configuration of the pairwise invasibility plot near a local fitness
maximum (i.e., optimal strategy) if the environment is one-dimensional; the signs are
opposite near a local fitness minimum (i.e., ‘pessimal’ strategy). (b) Pairwise invasibility
plot in the case of an ESS if the mutant’s fitness is a linear function of the mutant’s
strategy (for a non-ESS the signs are opposite).


