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Abstract

For many years energy optimization has dealt with large scale mixed integer linear programs. The paper
concentrates on programs that are used for controlling an existing generation system consisting of thermal
power units and pumped hydro storage plants, therefore they should be solved in real time. The problem
can be decomposed into smaller problems using Lagrangian Relaxation. One of these problems is still
a large scale multistage problem and it handles with pumped hydro storage plants only. In this paper,
this problem is investigated down to the smallest details. The objective function for this problem is a
linear function but stochastic. Using the special structure of the constraints, a solution method based
on a subset of descent directions was developed. This method was compared with an available standard
software for multistage linear programs.
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A Fast Descent Method for the

Hydro Storage Subproblem in

Power Generation

Matthias Peter Nowak

1 Introduction

The main question of the nineties is not the Question of the Universe, Life and Everything [Ada80] but
the question how to save the enviroment.

This paper deals with the optimization of energy systems. Optimization of such systems means
reducing air pollution, saving fuel and last but not least saving money. The use of electric energy is very
common today. Much is done by reducing the consumption of energy, but the production of energy can
be optimized, too. Since the reduction of fuel cost means also reduction of air pollution, the minimization
of fuel cost makes it easier to convince utility companies of the advantage of reducing air pollution. The
energy optimization problem becomes more complicated, if the uncertainty of the demand is included and
the problem has to be solved in real time. However, these assumptions make the problem more realistic
in the case of short term planning.

Since the problem is a large scale one, it is necessary to develop an appropriate solution method, that
takes advantage of the special structure of the problem.

2 Model

This paper deals with a system consisting of thermal power units and pumped hydro storage plants. The
thermal power units are �red by coal, oil and gas. These units can be turn on and o�. For getting a
thermal power unit to work, one has to spend a certain amount of energy for heating boilers and turbines.
These costs are called startup costs and they depend on the duration that unit has been turned o�. In the
case of coal �red units, these costs are as big as the production cost for 4 up to 9 hours. Because of these
costs one has to consider the question whether it is better to replace a thermal unit by a pumped hydro
storage plant or not. The pumped hydro storage plant considered in this paper have such a small income
of water at the upper dam that the amount of water used for energy production has to be pumped uphill
before the use. Therefore, the amount of water at the upper dam is measured in terms of energy. The
restricted e�ciency of pumped hydro storage plants is taken into account at the time of pumping. The
amount of water at the upper dam is limited from below and above. The same is true for the pumping
engines, the turbines and of course for the generators of the thermal power plants. Because of the startup
costs of the thermal power units and because of the storage function of the pumped hydro storage plants,
one cannot optimize the system for one time period only.

2.1 The deterministic model

The model described here is a slight modi�cation of the model in [RS96]. In this paper, T always denotes
the number of time periods. I denotes the number of thermal power units. The decisions dealing with
thermal power units are described by binary variables uit for ON/OFF-decision and by bounded real
valued variables pit for the amount of produced electricity. Such a pair (uit; p

i
t) is assigned to the thermal

power unit i and one time period t. Bi(pit; u
i
t) denotes the time independent fuel costs, while Ai

t(u
i)

denotes the startup costs. Furthermore, J is the number of pumped hydro storage plants, s
j
t is the

produced amount of electricity of the plant j and w
j
t is the power used for pumping water uphill. As in

[GRS92], it is assumed that there occur no generation costs for the pumped hydro storage plants. At
this point the objective function can be formulated.

min
(u;p;s;w)

IX
i=1

TX
t=1

Bi(pit; u
i
t) +Ai

t(u
i) (1)
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The fuel costs are zero, if the unit is turned o� (uit = 0). Otherwise, they are assumed to be convex with
respect to pit. The restrictions are the following. The power produced by thermal power units is bounded
from below and above. For simplicity, they are zero, if the corresponding unit is turned o�. If a thermal
power unit is turned on, then this plant has to produce at least a certain amount of electricity.

8i = 1 : : : I; t = 1 : : :T : uitp
i
min � pit � uitp

i
max (2)

The operation mode of pumped hydro storage plants can be changed continuously from maximumpump-
ing to maximum generating.

8j = 1 : : :J; t = 1 : : :T : 0 � s
j
t � sjmax (3)

0 � w
j
t � wj

max (4)

The amount of storaged energy is bounded, too. One can express this fact by using s
j
t and w

j
t only.

However, in this paper a new variable Ljt is introduced instead of only using s
j
t and w

j
t . This variable

describes the water level at the upper dam in terms of energy. The introduction of this variable allows
a markovian structure of the restrictions. This fact is a basic requirement of the algorithm presented in
this paper. At the beginning of the operation cycle the water level at the upper dam is known.

8j = 1 : : :J : Lj0 = L
j
in (5)

The water level at the upper dam changes due to generating energy and pumping water uphill. At this
point, the restricted e�ciency of pumped hydro storage plants is taken into account. The constant �j

describes the e�ciency of the pumped hydro storage plant j.

8j = 1 : : :J; t = 1 : : :T : Ljt = L
j
t�1 � s

j
t + �jw

j
t (6)

At the end of the operation cycle the water level must have a certain value.

8j = 1 : : :J : LjT = L
j

end (7)

And the water level is bounded.

8j = 1 : : :J; t = 1 : : : T : 0 � L
j
t � Ljmax (8)

The produced power must meet the demand.

8t = 1 : : :T :

IX
i=1

pit +

JX
j=1

(sjt �w
j
t ) = dt (9)

However, the demand is not constant during one time period, therefore there has to be a certain reserve
to ful�ll a slightly changed demand.

8t = 1 : : :T :

IX
i=1

(uitp
i
max � pit) � rt (10)

This is often called minute reserve. The opportunity of reducing the generated power is given by turning
o� thermal power plants, hence there are no extra restrictions.

This model is a mixed integer linear optimization problem. For a small number of units and a small
number of time periods, this problem can be solved by standard software like CPLEX[CPL95]. However,
an existing power system con�guration is not small, the operation cycle comprises at least one week and
the problem should be solved within 5 minutes because the solution is to be used for controlling that
system. Another reason, which makes this problem di�cult, is the uncertainty of the demand.

2.2 Description of the uncertain demand via scenario trees

First a few de�nitions will be given.
Let (
;A; P ) be a probability space, let d : 
�f1 : : :Tg ! IR be measurable with respect to A, i.e. a

random variable. For convenience, the function d(!; t) will be denoted by dt(!). Let Ft be the smallest
�-algebra generated by fd�1s (B) j B 2 B(IR); s � tg, whereas B(IR) denotes the Borel �-algebra on IR.

Then, F = (Ft)
T

t=1 is a �ltration as de�ned in [Tay90], i.e.:

8s; t; 1 � s � t � T : Fs � Ft

2
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scen 2

scen 1

scen 3

scen 4

scen 5

scen 6

scen 7

scen 8

Figure 1: Relation between a scenario tree and the partitions

Under the assumption that the random variable has only �nitely many possible values, one is able to
compute numerically expectations and functions that are based on expectations. Therefore, in this paper
it is assumed:

8t = 1 : : :T : #dt(
) <1 : (11)

Then, it follows:
8t = 1 : : :T : #Ft <1 : (12)

Finite �-algebras and partitions are closely related terms, since the power set of the partition and
the �-algebra generated by the sets of a partition are equal. If a function is measurable with respect to
a �nite �-algebra, then the function is constant on the sets of a certain partition. Let [!]t denote the
equivalence class of ! at time t.

[!]t := f� 2 
 j 8s = 1 : : : t : ds(�) = ds(!)g

The relation between the partitions and the �-algebras is:

f[!]tg!2
 = fA 2 Ft j A 6= ;; 8B 2 Ft; B � A; B 6= ; ) A = Bg :

The demand of the �rst time period is known, therefore it yields:

F1 = f;;
g (13)

and that d1(
) is a singleton.
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At the �rst time period, it is impossible to di�erentiate between several realisations of the random
variable for the next time periods, therefore all elements of 
 are in the same set, i.e. at time t = 1
the partition consists of only one set 
. This is to be seen in part t = 1 in �gure 1. Each �lled
rectangle denotes a set of a partition. The number of the corresponding time period can be read below
the rectangles. In �gure 1 the scenario tree branches into 2 parts at each time period . For that reason
there are 2 possibilities for the random variable at the time period t = 2 and therefore the partition for
t = 2 consists of 2 sets.

Under the assumptions given above, a scenario tree can be de�ned:

De�nition 1 A scenario tree is a directed graph G = (V;E) with:

V � 2
 � IN (14)

V = f([!]t; t) j ! 2 
; t = 1 : : :Tg (15)

E � V � V (16)

(([!]s; s); ([�]t; t)) 2 E , [�]t � [!]s ^ t = s + 1 (17)

For the notion of a directed graph see [Jun94]. This graph is a tree because [!]1 = 
. The root of the
tree is denoted by k0. Each ! 2 
 corresponds to a path from the root k0 to a leaf. Such a path is called
scenario. Let T (k) denote the reachability set, i.e. the set of all nodes, which can be reached from the
node k.

T (k) := fl j 9K 2 IN; K > 0; 9fljg
K
j=1; (k; l1) 2 E; 8j = 1 : : :K � 1 (lj ; lj+1) 2 E; lK = lg (18)

The operation cycle of pumped hydro storage plants usually consists of several days. Since the demand
is not completely known for this time period, the stochasticity of the demand has to be taken into account.
Assuming that the demand can have only �nitely many possible values, one can model the stochasticity
by a scenario tree, where each scenario describes a possible realization (with a given probability) of the
demand. The known demand of the �rst time period is assigned to the root of the scenario tree. Because
there is only one possibility, this node gets the probability 1. The nodes on the second stage of the
scenario tree correspond to the possible realizations of the demand at the second time period. The same
is true for all further stages of the scenario tree.

2.3 Stochastic Model

Since the demand is a random variable and the generated power has to meet the demand, the variables
pit, s

j
t and w

j
t have to be random, too. The operator knows the demand values of the previous and the

current hour only, therefore all decisions he can make depend on these values. That means pit, s
j
t and w

j
t

are measurable with respect to Ft, i.e. they are nonanticipative ([Wet89]). In this paper, it is assumed
that thermal power units can be turned on immediately, which is not true in reality. The preparation
time for turning on a thermal power unit depends on the type of the thermal power unit. This time
may depend also on the duration the unit was turned o�, but this makes the problem even harder to
solve. Including preparation times means that uit is measurable with respect to Ft��i . It is also possible
to assume that uit does not depend on the random realization as assumed in [GRS95]. This leads to a
deterministic plan for the ON/OFF-decision of the thermal power units. As mentioned above, here it
is assumed that uit are random but nonanticipative. For simplicity, stochastic variables are denoted by
bold letters (dt) instead of denoting them by functions (dt(!)). Then the stochastic version of the model
reads:

min
(u;p;s;w)

E

IX
i=1

TX
t=1

Bi(pit;u
i
t) + Ai

t(u
i) (19)

subject to:
8i = 1 : : : I; t = 1 : : :T : uitp

i
min � pit � uitp

i
max (20)

8j = 1 : : :J; t = 1 : : :T : 0 � s
j
t � sjmax (21)

0 � w
j
t � wj

max (22)

8j = 1 : : :J : Lj0 = L
j
in (23)

4



8j = 1 : : : J; t = 1 : : :T : Ljt = L
j
t�1 � s

j
t + �jw

j
t (24)

8j = 1 : : :J : LjT = L
j
end (25)

8j = 1 : : :J; t = 1 : : :T : 0 � L
j
t � Ljmax (26)

8t = 1 : : :T :

IX
i=1

pit +

JX
j=1

(sjt �w
j
t ) = dt (27)

The requirement of a minute reserve may be super
ous because one may include a scenario with a slighly
increased demand instead.

8t = 1 : : :T :

IX
i=1

(uitp
i
max � pit) � rt (28)

This problem is a large scale mixed integer linear problem with a high dimension. One point that
makes this problem di�cult to solve, is the fact that there are joined restrictions for all units and plants.
Because of these constraints, the ON/OFF-decisions of each thermal power unit depend on the ON/OFF-
decisions of the others.

In the last 15 years, a dual approach using the Lagrangian Relaxation of the demand and of the
minute reserve constraints is suggested. An overview of solution techniques is given in [SF94], where
the authors came to the conclusion that a clear consensus is presently tending toward the Lagrangian
Relaxation approach over other methodologies. Dentcheva/R�omisch[DR96] present a detailed view of
this problem and a discussion about some methods for solving the formulated problem.

3 Dual Approach

A dual approach using the Lagrangian Relaxation of the demand and of the minute reserve constraints
is proposed for large generation systems and for large time horizons, because the relaxed problem can
be split into smaller problems. For these smaller problems e�cient fast solution techniques exist. For an
increasing number of time periods and of thermal power units the duality gap becomes smaller ([BLSP83]).
This may be a justi�cation for using the dual approach.

The approach for the problem given above is described in [RS96]. Here, the contraints are changed
by introduction of Ljt variables.

The dual problem reads:

max
(��0;�)

min
(u;p;s;w)

E

TX
t=1

� IX
i=1

Bi(pit;u
i
t) + Ai

t(u
i) (29)

+�t

0
@dt � IX

i=1

pit �

JX
j=1

(s
j
t �w

j
t )

1
A (30)

+�t

 
rt �

IX
i=1

(uitp
i
max � pit)

!)
(31)

subject to:
8i = 1 : : : I; t = 1 : : :T : uitp

i
min � pit � uitp

i
max (32)

8j = 1 : : :J; t = 1 : : :T : 0 � s
j
t � sjmax (33)

0 � w
j
t � wj

max (34)

8j = 1 : : :J : Lj0 = L
j
in (35)

8j = 1 : : : J; t = 1 : : :T : Ljt = L
j
t�1 � s

j
t + �jw

j
t (36)

8j = 1 : : :J : LjT = L
j
end (37)

8j = 1 : : :J; t = 1 : : :T : 0 � L
j
t � Ljmax (38)
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The dual variables �t and �t are are also measurable with respect to Ft. The objective function can
be rewritten in such a way, that the separability structure of the problem becomes more visible.

max
(��0;�)

� IX
i=1

min
(ui;pi)

E

TX
t=1

�
Bi(pit;u

i
t) + Ai

t(u
i)� �tp

i
t � �t(u

i
tp

i
max � pit)

�
(39)

+

JX
j=1

min
(sj ;wj)

E

TX
t=1

h
��t

�
s
j
t �w

j
t

�i
(40)

+E

TX
t=1

[�tdt + �trt]

�
(41)

Obviously, the minimization problems are dealing with one unit or plant only and they can be solved
separately. The part (41) is a simple calculation. The problems (39) might be solved by dynamic
programming [NW88], but these (40) are still large scale linear programs. Therefore, these programs (40)
were investigated down to the smallest details.

4 Structure of the problem dealing with only one pumped hydro

storage plant

The problem dealing with the pumped hydro storage plant j is the following:

min
(sj;wj)

E

TX
t=1

��t

�
s
j
t �w

j
t

�
(42)

subject to:
L
j
0 = L

j
in (43)

8t = 1 : : :T : Ljt = L
j
t�1 � s

j
t + �jw

j
t (44)

L
j
T = L

j
end (45)

8t = 1 : : :T : 0 � s
j
t � sjmax (46)

0 � w
j
t � wj

max (47)

8t = 1 : : :T : 0 � L
j
t � Ljmax (48)

The nonanticipativity of the variables sjt , w
j
t and L

j
t can be forced in the following way. The scenario

tree is built up of the realizations of the demand. Each node of this tree is linked with a set of a certain
partition by the de�nition of a scenario tree. If a random variable should be measurable with respect to
the �ltration corresponding to that partition, then this variable is constant on all sets of that partition.
Therefore, the possible values of the random variable can be assigned to the nodes belonging to the
corresponding partition. That means the problem can be rewritten as a graph theoretical problem using
the scenario tree instead of partitions and �ltrations. Let k0 denote the root of the scenario tree and B

?

denote the set of its leaves, while Succ(k) denotes the successors of node k.

inf
f(sk;wk)gk2V

(X
k2V

�k(sk � wk)pk

)
(49)

8k 2 V : 0 � sk � smax (50)

0 � wk � wmax (51)

0 � Lk � Lmax (52)

8k 2 V; 8l 2 Succ(k) : Ll = Lk � sl + �wl (53)

Lk0 = Lin (54)

8k 2 B? : Lk = Llev (55)

6



Feasibility set

Possible descent

Optimal point

Subset of descent directions

Figure 2: Box constraints and the subset of descent directions

y - i - i - i - i - i - i - iy

t = 1

low costs

t = 7

high costs

--
w+ = 10

L+ = 7
s+ = 7energy

Figure 3: The deterministic case with � = 0:7

Constraints like (50)-(52) are called box constraints. That means each variable is bounded separately.
If there are no other constraints, then it is possible to optimize such a system by optimizing the system
with respect to each variable one by one.

More generally, the idea is to consider a certain subset of descent directions instead of the set of all
descent directions. It is necessary for such an approach that the subset is su�ciently large. If the set of
all descent direction is not empty, then the subset has to comprise at least one element. This is true for
problems with box constraints and in this case the subset of descent direction consists of the directions
of the axis and there negatives. A two dimensional example is shown in �gure 2.

The constraint (53) de�nes an intersection of the box of feasible points due to (50)-(52) with hyper-
planes. The obtained set has still a geometrically regular structure. A su�ciently large subset of descent
directions can be found using this structure.

The constraints (50)(51)(52)(54)(55) correspond to nodes, while the contraint (53) corresponds to an
edge. These constraints characterize some capacity bounds for moving energy from one time interval to
another. This problem is very closely related to network 
ow problems, because the deterministic version
is a network 
ow problem, where each node can be a source or a sink. In the deterministic case there
exists only one leaf.

In �gure (3) one spends cheap energy at time t = 1 (that is the root of the considered subtree) for
pumping water uphill, so that water can be used for generating energy at time t = 7 (the leaf of the
subtree), when energy is more expensive. The amount of three units has been payed due to the e�ciency.

The stochastic case is more di�cult. In the stochastic example k2 may denote the node with cheap
energy. This cheap energy will be transported to several nodes in the future. There exists at least one
node in each scenario, if that scenario includes k2. Therefore, a certain subset of subtrees was considered.
This su�ciently large subset of subtrees corresponds to a su�ciently large subset of descent directions.

7
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Figure 4: An example of a scenario subtree

4.1 Su�ciency of the subset of descent directions

The su�ciency of the subset depends on the opportunity to reach an arbitrary feasible point from every
feasible point using steps corresponding to subtrees (only) like in �gure 4. The next proposition shows
the existence of such a sequence of steps.

Proposition 1 Let fsk; wkgk2V and fŝk; ŵkgk2V be feasible points.
=) Then, there exists a �nite sequence of steps with:

9n 2 IN [ f0g; ff�slk;�w
l
kgk2V g

n
l=1 : (56)

8k 2 V : ŝk = sk +

nX
l=1

�slk (57)

8k 2 V : ŵk = wk +

nX
l=1

�wl
k (58)

(59)

All steps belong to the subset of directions:

8k 2 V; 8l = 1 : : :n : �slk ��w
l
k = 0 (60)

8l = 1 : : :n; 9!k 2 V; 9B � T (k) : (61)

8j 2 V n (fkg [B) : ��wl
j ��slj = 0 (62)

B = B n T (B) (63)

8j 2 T (k) n (B [ T (B)) : T (j) \B 6= ; (64)

(65)

All steps satisfy the water balance equations:

8j 2 B : ��wl
k ��slk + ��wl

j ��slj = 0 (66)
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Proof: The proof of the �nitesness works with the number of elements of following sets of nodes.

N+
s = fk j sk � ŝk > 0g (67)

N�
s = fk j sk � ŝk < 0g (68)

N+
w = fk jwk � ŵk > 0g (69)

N�
w = fk jwk � ŵk < 0g (70)

N = N+
s [N�

s [N+
w [N�

w (71)

The proof is done in a recursive manner. Therefore, the following number is introduced. m(s; w; ŝ; ŵ) =
#N+

s +#N�
s +#N+

w +#N�
w . If m = 0 is true, then let n = 0, the conditions are obviously satis�ed.

When m is positive, then N n T (N ) comprises at least one element. Let k 2 N n T (N ) be arbitrarily
selected.

Now 2 cases are distinguished.

1. �(wk � ŵk) � (sk � ŝk) < 0

2. �(wk � ŵk) � (sk � ŝk) > 0

Since k 2 N the case �(wk � ŵk) � (sk � ŝk) = 0 is impossible. Both cases can be processed in the same
way therefore only the �rst case will be considered. In that case it follows k 2 N�

w [N+
s . The leaves (B)

of the subtree have to be elements of the other set due to the water balance equations, i.e.:

N̂ = T (k) \N+
w \N�

s (72)

B = N̂ n T (N̂ ) (73)

The step length is a positive number, computed as follows:

d1 = min
fkg\N�w

�(ŵl � wl) (74)

d2 = min
fkg\N+

s

(sl � ŝl) (75)

d3 = min
B\N+

w

�(wl � ŵl) (76)

d4 = min
B\N�s

(ŝl � sl) (77)

d = minfd1; d2; d3; d4g (78)

Because of the water balance equations there is no scenario comprising node k but not comprising any

node of B. Now the step can be constructed. The variables �sk und �wk of nodes that are not mentioned
here are zero.

�s1k =

�
�d sk > 0
0 sk = 0

(79)

�w1
k =

�
d
�

sk = 0

0 sk > 0
(80)

8l 2 B�s1l =

�
d wl = 0
0 wk > 0

(81)

8l 2 B�w1
l =

�
�d

�
wl > 0

0 wl = 0
(82)

The variables (�s1;�w1) satisfy the constraints (60) - (66). Let �s1j = sj +�s1j , �w1
j = wj + �w1

j . The

point (�s1; �w1) is feasible since:

8j 2 V : �s1j 2 conv(sj ; ŝj); �w
1
j 2 conv(wj; ŵj) (83)

The water balance equations are satis�ed due to (66).
The same procedure is applied repeatedly. One gets a sequence of (�sl;�wl) and ( �sl ; �wl). Since

m(�s; �w; ŝ; ŵ) � m(s; w; ŝ; ŵ)� 1 the method stops after �nitely many steps. #

The sequence of steps constructed in proposition 1 is further investigated. What happens if (�s1;�w1)
is omitted?

9



Proposition 2 Let fsk; wkgk2V and fŝk; ŵkgk2V be feasible points , the sequence f(�sl;�wl)gnl=1 is
constructed as in proposition 1.

8j 2 V : �sj = sj +

nX
l=2

�slj (84)

�wj = wj +

nX
l=2

�wl
j (85)

=) The point f�s; �wgk2V is feasible.
Proof: Since fsk; wkgk2V was a feasible point and the sequence (�js;�jw) constructed in proposition
1 satisfy the equation (66), the point (�s; �w) also satis�es the water balance equations. Only the box
constraints are left to be checked.

Let k denote the root and B denote the leaves of the subtree corresponding to f�1s;�1wgk2V . The
following sets of nodes are introduced:

Vk = fkg [ T (k) n T (B) (86)

Tk = V n Vk (87)

Vk denotes the sets of all nodes of the subtree and Tk denote the complementary set. Then, it yields:

8j 2 Tk : �sj = ŝj (88)

�wj = ŵj (89)

The investigations of the values of the nodes in Vk remains. The de�nitions of the node sets N+
s , N

�
s ,

N+
w , N

�
w are as in proposition 1.

N+
s = fk j sk � ŝk > 0g (90)

N�
s = fk j sk � ŝk < 0g (91)

N+
w = fk jwk � ŵk > 0g (92)

N�
w = fk jwk � ŵk < 0g (93)

N = N+
s [N�

s [N+
w [N�

w (94)

At this point, only the case k 2 N+
s is considered, since all other cases can be proved in a similar way.

In this case, more energy will be generated at node k of the point fsj ; wjgj2V as at the same node of the
points fŝj ; ŵjgj2V and f�sj ; �wjgj2V .

Because of (83), the variables �s and �w satisfy the box constraints.
Now, the ful�llment of the constraint (52) will be proved. The corresponding L variables for the points

f�s; �wgj2V are denoted by �L. Having in mind the de�nition of B one gets:

(N�
s [N+

w ) \ (T (k) n T (B)) = B (95)

Therefore:
8l 2 T (k) n (T (B) [B) : Ll � �Ll � L̂l (96)

Since the points fsj ; wjgj2V und fŝj; ŵjgj2V are feasible, the variables �L are also feasible and the points
f�s; �wgj2V are feasible, too. #

If one applies the proposition 2 repeatedly, it follows that all points f�skj ; �w
k
jgj2V

8j 2 V : �skj = sj +

nX
l=k

�slj (97)

�wk
j = wj +

nX
l=k

�wl
j (98)

are feasible, too.

Proposition 3 Let fsk; wkgk2V and fŝk; ŵkgk2V be feasible points. fŝk; ŵkgk2V is an optimal point.
The sequence f(�sl;�wl)gnl=1 is constructed as in proposition 1.
=) The �rst step is a descent step. X

k2V

�k(�s
1
k ��w1

k)Pk � 0 (99)
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Proof: From the construction of the sequence, it follows:

X
k2V

�k(ŝk � ŵk)Pk =
X
k2V

�k(sk � wk)Pk +

nX
l=1

X
k2V

�k(�s
l
k ��wl

k)Pk (100)

This can be expressed using f�sk; �wkgk2V , which are de�ned as in proposition 2.X
k2V

�k(ŝk � ŵk)Pk =
X
k2V

�k(�s
1
k ��w1

k)Pk +
X
k2V

�k(�sk � �wk)Pk (101)

Since f�sk; �wkgk2V are feasible and fŝk; ŵkgk2V is optimal, it follows:X
k2V

�k(�sk � �wk)Pk �
X
k2V

�k(ŝk � ŵk)Pk (102)

Therefore: X
k2V

�k(�s
1
k ��w1

k)Pk � 0 (103)

#

The points f�sk;�wkgk2V satisfying strictly the inequality (103) are descent steps. Starting at a
feasible point one can look for descent directions.

4.2 Conditions for descent directions

Next, a �xed arbitrary su�cient subset of nodes of the scenario tree is considered. The current iteration
is l. There are several cases for each node:

1. pumping more wl+1 = wl + d, if sl = 0

2. generating less sl+1 = sl � �d, if sl > 0

3. generating more sl+1 = sl + �d, if wl = 0

4. pumping less wl+1 = wl � d, if wl > 0

The �rst two cases are valid when energy is stored, i.e. water is pumped uphill, the two other are valid
when pumped water is used for generating energy. Let B denote the set of leaves, k1 denote the root. Fi
denotes the set of nodes for which case i is valid. �Fi is the characteristic function of the set Fi.

The following inequalities guarantee a descrease of the objective function. The left sides of the
inequalities denote the slope of the objective function with respect to the considered direction.

The condition for storing energy before using energy:

��t1(!k1))P ([!k1]) (�F1 (k1) + ��F2 (k1)) +
X
k2B

�tk(!k)P ([!k]) (�F4 (k) + ��F3 (k)) < 0 (104)

This set of descent directions satisfying (104) will be denoted by A"#. This means a 
ow of energy forward
in time.

The condition for using energy before storing energy:

+�t1(!k1)P ([!k1]) (�F4 (k1) + ��F3 (k1)) �
X
k2B

�tk(!k)P ([!k]) (�F1 (k) + ��F2(k)) < 0 (105)

This set of descent directions satisfying (105) will be denoted by A#". This means a 
ow of energy
backward in time.

An example: Pumping at node tk1 and generating at nodes ftkgk2B:

��k1P ([!k1]) + �
X
k2B

�tk(!k)P ([!k]) < 0 (106)

With the conditions (104) and (105), one can decide to pump or generate.
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The restrictions for the amount of energy transported from k1 to ftkgk2B or conversely, i.e. the step
length in the descent algorithm are given by the following inequalities:

8! 2 
; t = 1 : : :T : 0 � Ll+1t (!) � Lmax (107)

0 � wl+1
t (!) � wmax (108)

0 � sl+1t (!) � smax (109)

It makes sense to consider subtrees with dmax > 0 only.
The conditions for A"#:

8k 2 V nB �d � Lmax � Llk (110)

8k 2W wl
k + �F1 (k)d � wmax (111)

slk � ��F2(k)d � 0 (112)

8k 2 B slk + ��F3(k)d � smax (113)

wl
k � �F4 (k)d � 0 (114)

The conditions for A#":

8k 2 V nB �d � Llk (115)

8k 2W wl
k � �F4 (k)d � 0 (116)

slk + ��F3(k)d � smax (117)

8k 2 B slk � ��F2(k)d � 0 (118)

wl
k + �F1 (k)d � wmax (119)

4.3 The stochastic network 
ow algorithm

All subtrees considered above have exactly one root, auxilary variables are connected with them. The
following variables take part in the calculation of the slope of the objective function. The decrease is the
product of a weighted sum of some auxilary variables and the step length.

r
up

k =

�
�k(!k)P ([!k]) if slk = 0
�k(!k)P ([!k])� if slk > 0

(120)

rdownk =

�
�k(!k)P ([!k]) if wl

k > 0

�k(!k)P ([!k])� if wl
k = 0

(121)

These variables express an upper bound for the step length with respect to the pumps or turbines of that
node.

ddownk =

(
smax�s

l

k

�
if wl

k = 0

wl
k if wl

k > 0
(122)

d
up

k =

(
sl
k

�
if slk > 0

wmax � wl
k if slk = 0

(123)

If the objective function is a piecewise linear function, the di�erent slopes in
uence the variables rupk
and rdownk . The distance to the next segment of the piecewise linear objective function reduces the step
lengths d

up

k and ddownk . Binary variables b
up

k und bdownk are introduced for each node . bdownk = 1 means
that node k is a leaf in the set A"#. Let Succ(k) denote the set of successors. The �rst two variables
denote the weighted sums of the corresponding values of the leaves of that subtree starting at node k,
while the other two denote the minima of the corresponding step lengths.

r̂
up

k =

�
r
up
k if bupk = 1P
l2Succ(k) r̂

up

l if bupk = 0
(124)

r̂downk =

�
rdownk if bdownk = 1P

l2Succ(k) r̂
down
l if bdownk = 0

(125)

d̂
up

k =

�
d
up

k if bupk = 1

minfLk
�
;minl2Succ(k) d̂

up
l g if bupk = 0

(126)
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d̂downk =

�
ddownk if bdownk = 1

minfLmax�Lk
�

;minl2Succ(k) d̂
down
l g if bdownk = 0

(127)

Using these variables, one can write the conditions for descent directions in the following manner:

� Case A"#: �
�r

up

k + r̂downk

�
min

n
d
up

k ; d̂downk

o
< 0 (128)

� Case A#": �
rdownk � r̂

up

k

�
min

n
ddownk ; d̂

up

k

o
< 0 (129)

If bupk and b
up
k are set correct setting for bupk and b

up
k without paying attention to all subtrees. The

decision for one node can be made by considering the values of the following nodes only.

4.4 Steps of the stochastic network 
ow algorithm

1. Reading of Input

� global constants: �, Lmax, smax, wmax, Lin, Lend

� probabilities: P ([!k])

� dual variables (here: -cost gradients ) �k(!)

2. Computing of a feasible solution (w; s)

3. Computing of auxiliary variables

� L, rupk ; rdownk ; d
up
k ; ddownk

� Let bup
k = 1, if

�
minfLk; min

l2Succ(k)
d̂
up

l g = 0

�
_ (dup

k > 0) ^

0
@rup

k �
X

l2Succ(k)

r̂
up

l

1
A

else bup
k = 0.

� Let bdownk = 1, if

�
minfLmax � Lk; min

l2Succ(k)
d̂downl g = 0

�
_
�
ddownk > 0

�
^

0
@rdownk �

X
l2Succ(k)

r̂downl

1
A

else bdownk = 0.

� r̂
up
k ; r̂downk ; d̂

up
k ; d̂downk

� Since a scenario tree is considered, all variables bup
k und bdownk are well de�ned.

4. Choice of a descent direction
Determination of minf(r̂downk � r

up

k ); (rdownk � r̂
up

k )g. Node k, yielding the minimum, becomes the
root of the considered subtree.

If minkf(r̂
down
k � r

up
k ); (rdownk � r̂

up
k )g � 0, then STOP

5. Update

� for root k and leaves B(k): s, w, r und d

Case A"#:

d = minfdupk ; d̂downk g (130)

sk := sk � �d, if sk > 0 (131)

wk := wk + d, if sk = 0 (132)

8l 2 B(k) (133)

sl := sl + �d, if wl = 0 (134)

wl := wl � d, if wl > 0 (135)

(136)
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Figure 5: The relation between the number of iterations of MSLiP and the number of scenarios

Case A#":

d = minfddownk ; d̂
up
k g (137)

sk := sk + �d, if wk = 0 (138)

wk := wk � d, if wk > 0 (139)

8l 2 B(k) (140)

sl := sl � �d, if sl > 0 (141)

wl := wl + d, if sl = 0 (142)

(143)

6. GOTO 3

4.5 Comparisons of MSLiP with StochTrans

StochTrans is the implementation of the algorithm described in section 4.3 in C++. All problems were
randomly generated and each problem was solved by MSLiP and StochTrans.

The generation of the scenario trees has some speci�cs. In order to generate trees with a number of
scenarios other than 2i, a part of binary trees was cutted.

The program MSLiP [Gas90] is the version "MSLiP 8.3, version of April 7, 1995." [Gas90]. This is
a general purpose program for solving MultiStage Linear Programs using the L-shaped Method [Bir85].
Therefore, the comparison is made with respect to the question, how much is the advantage of using
an adapted algorithm instead of a general purpose algorithm. MSLiP consider nonstochastic objective
functions only, thus additional variables were introduced.

The examples were computed on a HP-apollo Workstation Model 715/75 with HP-UX 9.03 and
64 Mbyte Memory. Figure 5 shows, how many iterations MSLiP needs. The implemention of the
L-shaped Method ([vSW67]) is very tricky. Subproblems are solved by a modi�ed simplex method.
Pivot steps for di�erent subproblems at the same stage are done together. Thus the code MSLiP is very
fast, as shown in �gure 6.

In �gure 7, the number of iterations done by StochTrans is small, but the amount of computations
for each iteration done by StochTrans is greater than the amount done by MSLiP.
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Figure 6: The relation between the computing time of MSLiP in seconds and the number of scenarios

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

Figure 7: The relation between the number of iterations of StochTrans and the number of scenarios
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Figure 8: The relation between the computing time of StochTrans in seconds and the number of scenarios
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Figure 9: The relation between ( the ratio of MSLiP and StochTrans computing times ) and the number
of scenarios

Figure 8 shows the time taken by StochTrans. The runaway points do not denote problems, which
take much time to solve, but moments with a big system load. The time in �gure 8 is the time between
the end of input and the start of output. The additional load of other programs have to be taken into
account, because the comparison was started by the command nice -17 do comp.sh.

Figure 9 shows that it is usefull to develope an adapted algorithm for a special structured problem,
since it shows that StochTrans is about 100 times faster.

5 Conclusions

Further examples were computed with up to 200 000 scenarios and 19 stages. The number of variables
was about 4 000 000. The solution of such large problems took ca 60 seconds. Problems with more than
230 000 scenarios exceed the memory (64 Mbyte). Then, solving such large problems took more than
2000 seconds swapping time included.

The crucial point in that algorithm is the application of a subset of descent directions to that problem.
This set was obtained by analysis of the problems special structure.

The problem dealing with thermal power units only can be solved by dynamic programming as de-
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scribed in [ZG88]. The dual program itself can be solved by a Bundle Method ([Kiw85][SZ92][TBL96][FKL96]).
The e�ciency of the described method is an essential contribution, which determine to great extend

the e�ective application of the dual approach.
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